[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003016639A1 - Sand shift preventing sea bottom dam and method of constructing the dam - Google Patents

Sand shift preventing sea bottom dam and method of constructing the dam Download PDF

Info

Publication number
WO2003016639A1
WO2003016639A1 PCT/JP2002/008067 JP0208067W WO03016639A1 WO 2003016639 A1 WO2003016639 A1 WO 2003016639A1 JP 0208067 W JP0208067 W JP 0208067W WO 03016639 A1 WO03016639 A1 WO 03016639A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
dam
breaking
submarine
sand
Prior art date
Application number
PCT/JP2002/008067
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Ishikura
Original Assignee
Soken Kogyo Co Ltd
Kenji Ishikura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kogyo Co Ltd, Kenji Ishikura filed Critical Soken Kogyo Co Ltd
Priority to JP2003520916A priority Critical patent/JPWO2003016639A1/en
Publication of WO2003016639A1 publication Critical patent/WO2003016639A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Definitions

  • the present invention relates to a sediment-prevention submarine dam for preventing coastal sedimentation and a method of constructing the same.
  • the artificial reefs, submerged levee, etc. weaken the power of the waves, so that sand can be stored behind them (shore side), but these levee bodies have high seawater permeability and can directly store sand. Because it is not structured, it may be re-driven by the direction of the waves, coastal currents, etc. In other words, the artificial reefs and submerged embankments can indirectly accumulate sand, but do not have a structure that actively and directly accumulates sand. Therefore, there was a problem that the sand near the beach line, which was wound up by the waves, penetrated the embankment and was carried offshore.
  • Preventing coastal erosion and maintaining sandy beaches can be achieved by reducing the speed of the waves that hit the coast due to wave extinction, and by lowering the coastal sand to the shore side of the submarine dam, reducing the amount of sand carried offshore. The effect is expected.
  • the present invention not only minimizes the sedimentation caused by natural energy, but also uses it to convert the power of nature not to destructive force but to the creation force, and to assist the artificial.
  • the above problem was solved by retaining quicksand on the shore.
  • an artificial submarine dam was used to reduce the strength of the waves breaking and breaking the shore, and the sand that was carried offshore was settled on the shore of the submarine dam, successfully preventing the coast from collapsing. Not only that, sandy beach development was successful.
  • the invention of the submarine dam is to create a rubble foundation on the seabed near the breaking point or on the shore side of the breaking point, install a wave-breaking structure on the rubble foundation, A sand runoff dike was constructed behind the side.
  • the rubble foundation ground is composed of a breaking wave laying material in which a grid frame formed by joining high-strength members is installed on the seabed ground, and a wave breaking laying material fitted and locked in the grid frame of the breaking wave laying material. It can be constituted by a corrugated material.
  • the wave-absorbing structure can be a wave breaking block array in which prefabricated wave-breaking blocks are three-dimensionally combined in the direction of the waves, the horizontal direction of the coast, and the depth direction so that there is a gap inside. .
  • the reason for having a void inside is to keep only the shore sand on the shore side of the submarine dam and allow ebb to pass offshore from the submarine dam.
  • the sand runoff prevention levee can be formed by appropriately combining a quarry stone, a wave breaking material, and a buried soil.
  • the invention of the method of constructing a submarine dam is to lay a grid frame made of high-strength members horizontally on the seabed near the breaking point or on the shore side of the breaking point, To form a rubble foundation ground, install a wave-damping structure on the rubble foundation ground in a three-dimensional combination, and place a wave-damping material offshore of the wave-damping structure. In this method, they are juxtaposed to form a submarine dam.
  • the symbol i indicates the seabed gradient.
  • H is the equivalent deep water wave and L is the equivalent. Indicates a wavelength.
  • H is calculated from the offshore wave height H 0 , but the description of the calculation method and the like is omitted.
  • Waves break at seabed gradient i and waveform gradient H. / L. Although it varies greatly depending on the condition of, it generally breaks at a position where the water depth h b is 1.5 to 2.5 times H (.
  • breaking waves a large offshore deep wave goes to the shore without breaking, and the wave breaks when approaching a shallow water where the value of h b / wave height H (is approximately 1.5 to 2.5 or less. This is called breaking waves.
  • Fig. 9 conceptually shows how the breaking waves travel toward the shore, reach the run-up area, cut the sandy beach and erode the shore.
  • the breaking wave 33 is generated at the breaking point 30 where the water depth wave height 1 ⁇ is approximately 1.5 to 2.5, and the wave height 1 ⁇ proceeds while breaking further.
  • the breaking wave 3 3 which reached the run-up area 3 1 cuts the sandy beach 3 2 and erodes the coast.
  • the shaved sand is transported offshore and settles and deposits near the breaking point 30, forming sand bars 34.
  • the moss is settled, even the smaller waves break at the sand bar 34, and the sand in the sand bar 34 is transported again to the upstream area 31. If this balance is maintained, no erosion will occur, but the sand will float and move not only when it is shrimp, but also when it is a small wave. This is related to the offshore waves and the particle size of the sand, the water temperature, etc. In general, the longer the offshore wave cycle, the more the sand moves offshore. However, the amount is a problem, and the amount of movement in the case of moss is overwhelmingly large.
  • the mechanism of movement of sand on the coast is generally considered as described above.
  • the submarine dam of the present invention aims at artificially reducing the breaking water depth.
  • the wave power is greatly weakened, and the ascending area 35 in FIG. 7 is much narrower than the conventional ascending area 31 in FIG. Very low.
  • the new reef stops just before the submarine dam 25, so that the shaved sand does not fall offshore.
  • the submarine dam acts as a resistance, weakens the flow velocity, and promotes the sedimentation of the sand.
  • the submarine dam of the present invention is located near the breaking point, breaks waves, and has the effect of weakening its power.Therefore, the foundation is built firmly on the submarine ground, and scattering of blocks due to scouring, etc. The structure must be durable. Therefore, the material constituting the rubble foundation ground on which the submarine dam of the present invention is based is a high-strength member such as steel.
  • the offshore part of the upper part of the submarine dam must be able to withstand large waves and provide characteristics to steadily extinguish waves. Therefore, the height of the submarine dam needs to be set up near the area where the sudden change of the wave below the water surface occurs.
  • the submarine dam is a structure whose purpose is to receive the breaking of a large wave and further dissipate the energy of the wave. Therefore, on the shore side of the submarine dam, a wave-dissipating structure is constructed by packing the wave-dissipating blocks and others, and its width is at least 7 ⁇ ! It is desirable that the length be 10 m or more. In this way, the energy of the waves is By contrast, the destructive forces applied to the shore are rapidly weakened, and the destruction of the shore is thus minimized.
  • the shore side of the wave-dissipating structure shall have a structure that can withstand the flow of the wave-dissipating current by reinforcing the strength with quarry stone and the like.
  • the shore side shall be gently sloped to promote sedimentation of quicksand.
  • the submarine dam Since the submarine dam is located at the forefront of the sandy beach to be maintained and constructed, it is conceivable to build a sand stop structure separate from the seabed dam between the coast and the submarine dam.
  • the submarine dam of the present invention can create a sandy beach by utilizing natural force by minimizing the destruction and erosion of the shore, especially the sandy beach, and by sedimenting a large amount of sand carried offshore.
  • the present invention fulfills the auxiliary role of sand development (helping natural power). Therefore, the destruction of the coast by natural forces is not only prevented beforehand, but also the beach area can be increased year by year.
  • FIG. 1 is an enlarged conceptual view in which a part of a side surface of a triangular structure in which a prefabricated breakwater block of a submarine dam according to an embodiment of the present invention is assembled is omitted.
  • Fig. 2 (a) is an enlarged conceptual diagram of the submarine dam shown in Fig. 1 with a part of the surface where the triangle structure adjacent to the triangle structure shown in Fig. 1 appears, omitted.
  • Fig. 2 (b) shows the triangular structure shown in Fig. 1 and the triangular shape shown in Fig. 2 (a) in the wave-dissipating structure of the submarine dam shown in Fig. 1 and Fig. 2 (a).
  • FIG. 4 is an enlarged conceptual diagram in which a part of a state in which the structure is alternately connected in the left-right direction is omitted.
  • FIG. 3 is an enlarged cross-sectional view of a trapezoidal structure in which a prefabricated breakwater block of a submarine dam according to another embodiment is partially omitted, showing a side surface thereof.
  • FIG. 4 (a) is an enlarged conceptual view of the submarine dam shown in FIG. 3, in which a part of a surface where a trapezoidal structure adjacent to the trapezoidal structure shown in FIG. 3 appears is omitted.
  • FIG. 4 (b) shows the trapezoidal structure shown in Fig. 3 and the trapezoidal structure shown in Fig. 4 (a) in the wave-damping structure of the submarine dam shown in Figs. 3 and 4 (a).
  • FIG. 3 is an enlarged conceptual diagram in which a part of a state in which are alternately connected in the left-right direction is omitted.
  • FIG. 5 is a conceptual diagram omitting a part of an embodiment in which a different assembly type wave canceling block is assembled.
  • FIG. 6 (a) is a conceptual diagram of an embodiment in which a submarine dam is installed in a plane U shape.
  • FIG. 6 (b) is a conceptual diagram of an embodiment in which the submarine dam is installed in a plane arch shape.
  • FIG. 7 is an explanatory view in which a part of the beach on which the submarine dam of the present invention is installed is omitted.
  • FIG. 8 is an explanatory view of conditions for generating a breaking wave.
  • FIG. 9 is an explanatory view in which a part of a conventional beach is omitted.
  • a submarine dam 25 embodiment of the present invention will be described with reference to FIGS.
  • a wave-breaking laying material 1 having a grid-like mesh is installed horizontally on the submarine ground G, and a wave-breaking material 2 such as a stone or concrete block is closely fitted into the grid.
  • a wave-breaking material 2 such as a stone or concrete block is closely fitted into the grid.
  • the position where the wave-breaking laying material 1 is installed may be on the shore or offshore from the breaking point as long as it is near the breaking point.
  • a suitable horizontal section 41 is provided at the tip of the rubble foundation ground 3 on the offshore side.
  • a wave-dissipating structure 42 constructed by assembling the assembly-type wave-dissipating blocks 4 so as to have a porosity of several tens of percent is installed.
  • This wave-absorbing structure 42 is constructed on land, and is installed on the horizontal portion 41 of the submarine rubble foundation 3.
  • a block according to Japanese Patent No. 2037152 can be used as the prefabricated type wave-eliminating block 4.
  • This prefabricated breaker block 4 has a short block and a long block.
  • the short work has a shape in which convex portions are provided on both sides of both ends in the longitudinal direction.
  • the long block has a shape in which convex portions are further provided on both sides at the center in the longitudinal direction.
  • the prefabricated wave-dissipating block 4 can form a wave-dissipating structure 42 of various shapes by locking the other prefabricated wave-dissipating block 4 to the projection.
  • the wave-absorbing structure 42 When viewed from the side as shown in Fig. 1, the wave-absorbing structure 42 has a long block 4a forming the bottom, a long block 4b forming the hypotenuse on the shore, and a long block 4 forming the hypotenuse on the offshore. c combine to form a triangular structure 43.
  • the long block 4a is placed horizontally on the rubble foundation 3, the long block 4b is placed diagonally on top of it, and the long block 4c is connected to the lower end by the horizontal section. It is formed so that it is locked to the step part 41a on the shore side of the minute 41 and leans against the offshore end of the long block 4a. At this time, the long blocks 4a, 4b, and 4c are locked to each other's projections, and form a strong triangle.
  • the prefabricated breaker block 4 has almost the same shape as the triangular structure 43 using long blocks 4d, 4e, and 4f, but differs in the manner of assembling as shown in Fig. 2 (a).
  • a triangular structure 4 4 is formed.
  • the wave-absorbing structure 42 is composed of triangular structures 43 and 44 alternately arranged in a plurality of rows in the left and right directions, and is provided via spacer protrusions 15 and 15. It is connected by steel materials 16 and 16.
  • the wave-absorbing structure 42 is constructed as an integrated structure.
  • FIG. 2 (b) is a conceptual diagram when the wave-dissipating structure 42 is viewed from the sea side.
  • a backing stone 5 is inserted into the back of the shore side of the wave-dissipating structure 42 configured as described above. : At this time, the side of the shore where the backing stone 5 was inserted is a slope corresponding to the slope of the long block 4b.
  • a sand-prevention sheet 6 is attached. This is to prevent the sand on the beach from flowing through the backing stone 5 and into the wave-dissipating structure 42 and the rubble foundation ground 3.
  • the top of the sand protection sheet 6 is covered with chestnut stone 7, and then a split stone 8 is put on the back side of the shore.
  • a split stone 8 On the upper surface of the backing stone 5 and the chestnut stone 7, large stones 14 with a mass of about 200 kg are laid.
  • a stone stone 9 may be laid behind the shore of the split stone 8 as shown in FIG.
  • a grid net 10 is laid below and locked to this 9 and so on to prevent scattering. If Kuriishi 9 etc. are not scattered, seaweed such as kelp will grow, which will have the effect of improving the coastal environment.
  • JP02 / 08067 In the figures, reference numerals 10 and 11 indicate a steel mesh grid, and reference numeral 12 indicates a water surface.
  • the wave is further broken by the above (200 kg or more), and the 5 large waves are eliminated during the passage of about 10 m width.
  • the large waves break and then break, and the sand generally settles on the shore of the sea bottom dam 25.
  • the sand is clogged between the broken stones or the like, and the sand is prevented from flowing out by the sandproof sheet 6, so that the amount of sand carried to the sea side by the waves is significantly reduced.
  • the wave-absorbing structure 46 of this embodiment is different from the wave-absorbing structure 42 of Embodiment 1 when viewed from the side as shown in FIG.
  • the short block 4 g and the short block 4 h forming the hypotenuse are combined to form a trapezoidal structure 47.
  • the long work 4a is placed horizontally on the rubble foundation 3 and the short work 4g is placed thereon in parallel, and the short work 4h is placed on the shore end of the long work 4a. It is formed so as to lean against 5 parts.
  • the assembled wave-breaking block 4 has the same shape as the trapezoidal structure 47, with the short block 4h further leaning against the offshore end of the long block 4a, but is assembled differently.
  • (A) Form a trapezoidal structure 48 as shown.
  • the wave-absorbing structure 46 is formed by connecting the trapezoidal structures 47 and 48 to the left and right sides.
  • a plurality of rows are alternately arranged in parallel in the direction, and connected by steel materials 16 and 16 via spacer projections 15 and 15.
  • a plurality of the trapezoidal structures 47 and 48 in such a different manner are arranged in parallel in the left and right direction and connected to each other, whereby the wave-absorbing structure 46 is constructed as an integrated structure.
  • FIG. 4 (b) is a conceptual diagram when the wave-dissipating structure 46 is viewed from the sea side.
  • the second embodiment is the same as the first embodiment in the structure, operation, and effects except that the shapes of the wave-dissipating structures 42 and 46 are different.
  • the same reference numerals are given in the drawings, and the description thereof will be omitted.
  • Example 3
  • the difference between the submarine dam 49 of this embodiment and the submarine dam 25 described in Embodiment 1 is that the method of assembling the prefabricated wave-dissipating block 4, that is, the shape of the wave-dissipating structures 42 and 50 The only difference is.
  • the wave-breaking structure 50 of this embodiment has a triangular structure 4 3 (44) in the wave-breaking structure 42 of Embodiment 1 in the direction in which waves hit.
  • an inverted triangular structure 4 3 (4 4) is formed in a triangular space formed between the two triangular structures 4 3 (4 4) and 4 3 (4 4). Further combined, they form a large trapezoid. That is, three triangular structures 4 3 (44) in Example 1 are arranged in a trapezoid, and these are arranged in a plurality of rows in the left-right direction via the spacer projections 15, 15, and the steel material 16, It is composed by connecting by 16.
  • the third embodiment has the same structure, operation, and effect as the first embodiment except that the shape of the wave-dissipating structures 42 and 50 is different.
  • the same reference numerals are given in the drawings, and the description thereof will be omitted.
  • the submarine dams 25, 45, and 49 of the present invention may be arranged in a flat U shape as shown in FIG. 6 (a) to prevent sand from flowing out.
  • Fig. 6 (b) there are cases where the land is arranged in a flat arch between capes in a terrain such as a pocket beach.
  • reference numeral 24 denotes a shoreline
  • 23 denotes a breakwater. Is a cape).
  • the submarine dams 25, 45, and 49 of the present invention are provided near the wave breaking position 36 as shown in FIG. Therefore, even if the sand naturally accumulates or the sand is poured into the submarine dam and the recess on the shore side, the sand does not flow out as in the past, so the sandy beach is secured.
  • a submarine dam is constructed near the breaking wave point, and the power of the waves is reduced by breaking waves, breaking waves, etc., so that sand is precipitated and erosion and destruction of the coast is minimized. effective.
  • the sand carried offshore by the submarine dam settles on the shore of the submarine dam and prevents outflow, so that it has the effect of automatically creating a sandy beach.
  • the natural force is used to the utmost, there is an effect that, after the construction of the seabed dam, the erosion of the coast is prevented and the sand beach is automatically created without applying any artificial force.
  • the wave-damping laying material 1 is installed horizontally on the seabed ground G, and the wave-damping structure consisting of the wave-damping material and wave-damping block is installed on top of it. There is no risk of the materials and wave-breaking structures tilting or collapsing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Abstract

A sand shift preventing sea bottom dam and a method of constructing the dam capable of suppressing the erosion of coast and building a sandy beach, the method characterized by comprising the steps of allowing a depth of breaking to artificially shallow so as to weaken wave energy, building a debris foundation ground on a sea bottom ground near a breaking point or on the coast side of the breaking point to prevent sand from shifting to an offing, installing a water breaking structural body on the debris foundation ground, and constructing a sand shift preventing bank on the coast side rear part of the water breaking structural body.

Description

明 細 書 流砂防止海底ダム及びその築造方法 技術分野  Description Submarine dam for preventing sediment transport and its construction method
この発明は、 海岸の流砂を防止することを目的とした流砂防止海底ダム及びそ の築造方法に関する。 背景技術  The present invention relates to a sediment-prevention submarine dam for preventing coastal sedimentation and a method of constructing the same. Background art
従来海岸の侵食防止および砂浜の維持対策としては、 人工リーフ、 潜堤、 離岸 堤、 ヘッドランド、 突堤等が知られている。 前記人工リーフ、 潜堤以外は水面上 に構造物の躯体が大きく見えるため、 利用上または景観上好ましくないとの意見 もある。 発明の開示  Conventionally, artificial reefs, submerged embankments, breakwaters, headlands, jetties, etc. are known as measures to prevent erosion of the coast and maintain the sandy beach. Other than the artificial reefs and submerged embankments, there are some opinions that the structure of the structure looks large on the water surface, which is not preferable in terms of use or landscape. Disclosure of the invention
前記人工リーフ及び潜堤は水面下にあり、 景観を損ねることは無かった。 しか し、 基礎捨石部の法先が洗堀され易く、 消波を主目的とすることから、 砂の流失 を直接阻止することができないなどの問題点があつた。  The artificial reef and submerged submergence were below the water surface and did not impair the landscape. However, there was a problem that the tip of the basic rubble was easily scoured and the main purpose was to extinguish the waves, so it was not possible to directly prevent the sand from being washed away.
すなわち、 前記人工リーフ、 潜堤等は、 波の勢力を弱めるので、 その背後 (岸 側) に砂を溜めることはできるが、 これらの堤体は海水の透過率が大きく、 砂を 直接貯留できる構造になっていないので、 波の方向、 沿岸流などにより再び流さ れることがある。 つまり、 前記人工リーフ、 潜堤等は、 間接的に砂を溜めること はできるが、 積極、 直接的に砂を溜める構造とはなっていない。 従って、 波によ つて巻き上げられた渚線付近の砂が堤体を透過して沖合へ運び去られてしまうと いう問題があった。  In other words, the artificial reefs, submerged levee, etc. weaken the power of the waves, so that sand can be stored behind them (shore side), but these levee bodies have high seawater permeability and can directly store sand. Because it is not structured, it may be re-driven by the direction of the waves, coastal currents, etc. In other words, the artificial reefs and submerged embankments can indirectly accumulate sand, but do not have a structure that actively and directly accumulates sand. Therefore, there was a problem that the sand near the beach line, which was wound up by the waves, penetrated the embankment and was carried offshore.
一方、 砂を直接貯留するための構造物も存在するが、 従来のこのような構造物 は、 砕波後の波の勢力が弱まった地点に構築するもので、 構造物自ら強大な波力 に抵抗することはできなかった。  On the other hand, there is a structure for directly storing sand, but such a conventional structure is built at a point where the wave power after breaking the wave is weakened, and the structure itself resists a strong wave force. I couldn't.
前記のように、 従来の構造物は、 砂の流出を阻止できておらず、 砂浜海岸の決 壊は大きな問題となっている。 この問題は日本は申すに及ばず世界各地で発生し ている。 As mentioned above, conventional structures have not been able to prevent sand from flowing out, Breaking is a major problem. This problem is occurring all over the world, not to mention Japan.
しかし、 この問題に対する根本的かつ有効な対策は無く、 沖合から海底の砂を 採取し、 或いは砂を海外から輸入して決壊海岸に投入するなど、 いわば対症療法 に終始しているのが現状である。 このままでは、 問題の十分の改善は望むべくも なく、 毎年膨大な維持費を投じているにも拘わらず、 逐年悪化の一途を迪つてい る。  However, there is no fundamental and effective countermeasure against this problem, and at present, the symptomatic treatment has been started, such as collecting seabed sand from offshore or importing sand from abroad and putting it on the broken coast. is there. In this situation, it is hopeless that the problem will be sufficiently improved, and despite enormous maintenance costs being invested every year, it is getting worse year by year.
海岸の侵食防止および砂浜の維持は、 消波により海岸に打ち寄せる波浪の勢い を弱めることと、 海岸の砂を海底ダムの岸側へ沈降させ、 沖合に運ばれる砂を減 少させることによってかなりの効果が期待される。  Preventing coastal erosion and maintaining sandy beaches can be achieved by reducing the speed of the waves that hit the coast due to wave extinction, and by lowering the coastal sand to the shore side of the submarine dam, reducing the amount of sand carried offshore. The effect is expected.
そこで、 この発明は、 自然の力を破壊力としてではなく、 造成力に変換する為 に利用し、 人工の手助けをするという観点に立って、 自然エネルギーによる流砂 を最小限に留めるのみならず、 流砂を岸辺に保留させることにより、 上記問題点 を解決したのである。 具体的には、 人工の海底ダムによって、 砕波し、 海岸を崩 壊する波浪の勢いを弱めると共に、 沖合に運ばれる砂を、 海底ダムの岸側へ沈殿 させて、 海岸の崩壊防止に成功したのみならず、 砂浜造成に成功したのである。 即ち海底ダムの発明は、 砕波点付近又は砕波点より岸側の海底地盤上に捨石基 礎地盤を造成し、 当該捨石基礎基盤上に消波構造体を設置し、 当該消波構造体の 岸側の背後に砂流出防止堤を構築したものである。  Therefore, the present invention not only minimizes the sedimentation caused by natural energy, but also uses it to convert the power of nature not to destructive force but to the creation force, and to assist the artificial. The above problem was solved by retaining quicksand on the shore. Specifically, an artificial submarine dam was used to reduce the strength of the waves breaking and breaking the shore, and the sand that was carried offshore was settled on the shore of the submarine dam, successfully preventing the coast from collapsing. Not only that, sandy beach development was successful. In other words, the invention of the submarine dam is to create a rubble foundation on the seabed near the breaking point or on the shore side of the breaking point, install a wave-breaking structure on the rubble foundation, A sand runoff dike was constructed behind the side.
ここで、 前記捨石基礎地盤は、 高強度部材を接合して形成した格子枠を海底地 盤に据え付けた砕波敷設材と、 当該砕波敷設材の前記格子枠の桝目に嵌合係止し た消波材とによつて構成することができる。  Here, the rubble foundation ground is composed of a breaking wave laying material in which a grid frame formed by joining high-strength members is installed on the seabed ground, and a wave breaking laying material fitted and locked in the grid frame of the breaking wave laying material. It can be constituted by a corrugated material.
また、 消波構造体は、 内部に空隙を有するように組立式消波ブロックを波の打 ち寄せ方向、 海岸の左右方向、 深さ方向に立体的に組み合わせた砕波ブロック列 とすることができる。 内部に空隙を有するようにするのは、 海岸の砂のみを海底 ダムの岸側に保留させ、 引潮は海底ダムの沖側へ通過できるようにするためであ る。  In addition, the wave-absorbing structure can be a wave breaking block array in which prefabricated wave-breaking blocks are three-dimensionally combined in the direction of the waves, the horizontal direction of the coast, and the depth direction so that there is a gap inside. . The reason for having a void inside is to keep only the shore sand on the shore side of the submarine dam and allow ebb to pass offshore from the submarine dam.
前記砂流出防止堤は、 割石、 消波材及び埋土を適宜組み合わせて構成すること ができる。 次に海底ダムの築造方法の発明は、 砕波点付近又は碎波点より岸側の海底地盤 上に、 高強度部材よりなる格子枠を水平状に敷設し、 該格子枠の桝目に消波材を 嵌合掛止させて捨石基礎地盤を造成し、 該捨石基礎地盤上に消波プロツクを立体 的に組み合わせた消波構造体を設置し、 当該消波構造体の沖側へ消波材を並置し て海底ダムとする方法である。 The sand runoff prevention levee can be formed by appropriately combining a quarry stone, a wave breaking material, and a buried soil. Next, the invention of the method of constructing a submarine dam is to lay a grid frame made of high-strength members horizontally on the seabed near the breaking point or on the shore side of the breaking point, To form a rubble foundation ground, install a wave-damping structure on the rubble foundation ground in a three-dimensional combination, and place a wave-damping material offshore of the wave-damping structure. In this method, they are juxtaposed to form a submarine dam.
また、 前記消波構造体の沖側へ消波材を並置した後、 前記消波構造体の岸側の 背後に流砂防止材を介装させて割石を積み上げ、 当該割石の岸側を埋土して、 海 底ダムとすることもできる。  Moreover, after juxtaposing the wave-breaking material to the offshore side of the wave-absorbing structure, stacking the quarry stone with the sediment-prevention material behind the shore side of the wave-breaking structure, burying the shore side of the quarry stone It can be turned into a submarine dam.
ここで、 第 8図、 第 9図を用いて、 海岸の石少の移動のメカニズムについて説明 する。 海岸の砂の移動については多くの研究がされているが、 まだその実態が完 全には解明されていないのが現状である。 しかし、 このような現状にあって、 大 略、 以下のように考えられている。  Here, using Fig. 8 and Fig. 9, the mechanism of stone movement on the coast will be explained. Much research has been conducted on the movement of sand on the coast, but the actual situation has not yet been fully elucidated. However, in this situation, it is generally considered as follows.
第 8図中、 記号 iは海底勾配を示している。 また、 H は換算沖波波高(equ ivalent deep water wave)、 L。は波長を示している。 ここで、 は、 沖波高 H 0から計算されるものであるが、 その計算方法等についての説明は省略する。 波が砕ける位置は、 海底勾配 iや、 波形勾配 H。/L。の条件によって大きく異 なるものであるが、 概ね、 水深 h bが H ( の 1 . 5〜2 . 5倍となる位置で砕け る。 In Fig. 8, the symbol i indicates the seabed gradient. H is the equivalent deep water wave and L is the equivalent. Indicates a wavelength. Here, is calculated from the offshore wave height H 0 , but the description of the calculation method and the like is omitted. Waves break at seabed gradient i and waveform gradient H. / L. Although it varies greatly depending on the condition of, it generally breaks at a position where the water depth h b is 1.5 to 2.5 times H (.
従って、 水深の深い沖合の大きな波は碎けることなく岸に向かい、 水深 h b/ 波高 H ( の値が概ね 1 . 5〜2 . 5以下の水深となる浅瀬に近づくと波は砕け る。 これを砕波という。 Therefore, a large offshore deep wave goes to the shore without breaking, and the wave breaks when approaching a shallow water where the value of h b / wave height H (is approximately 1.5 to 2.5 or less. This is called breaking waves.
第 9図は、 砕波が岸に向かって進み、 遡上域に達し、 砂浜を削り海岸を侵食す る様子を概念的に示したものである。  Fig. 9 conceptually shows how the breaking waves travel toward the shore, reach the run-up area, cut the sandy beach and erode the shore.
砕波 3 3は、 水深 波高 1^が概ね 1 . 5〜2 . 5となる砕波点 3 0で発生 し、 波高 1^はさらに砕けながら進行する。 遡上域 3 1に達した砕波 3 3は砂浜 3 2を削り海岸を侵食する。  The breaking wave 33 is generated at the breaking point 30 where the water depth wave height 1 ^ is approximately 1.5 to 2.5, and the wave height 1 ^ proceeds while breaking further. The breaking wave 3 3 which reached the run-up area 3 1 cuts the sandy beach 3 2 and erodes the coast.
削りとられた砂は、 沖に向かって運ばれ、 砕波点 3 0の近辺で沈下堆積し、 砂 州 3 4ができる。 シケが収まると、 シケのときより小さな波でも砂州 3 4のところで砕波し、 砂 州 3 4の砂は再び遡上域 3 1に運ばれる。 このバランスが保たれていれば侵食は 起きないが、 砂はシケのときだけでなく、 小さな波でも浮遊し、 移動する。 これ は沖波と砂の粒径、 水温等に関係するが、 一般に沖波の周期が長くなると砂は沖 側へ移動する。 ただしその量が問題で、 シケのときに移動する量が圧倒的に多い 海岸の砂の移動のメ力二ズムは、 概ね以上の如く考えられている。 The shaved sand is transported offshore and settles and deposits near the breaking point 30, forming sand bars 34. When the moss is settled, even the smaller waves break at the sand bar 34, and the sand in the sand bar 34 is transported again to the upstream area 31. If this balance is maintained, no erosion will occur, but the sand will float and move not only when it is shrimp, but also when it is a small wave. This is related to the offshore waves and the particle size of the sand, the water temperature, etc. In general, the longer the offshore wave cycle, the more the sand moves offshore. However, the amount is a problem, and the amount of movement in the case of moss is overwhelmingly large. The mechanism of movement of sand on the coast is generally considered as described above.
そこで、 この発明の海底ダムは、 砕波水深を人為的に浅くすることを目的とし ている。 この発明の海底ダム 2 5を第 7図のように、 在来の碎波帯付近に築造す れば、 砕波水深 h 2が浅くなるから、 従来は砕けなかった大きな波も、 水深 h 2 / 波高 H 2の値が砕波の条件となる 1 . 5〜2 . 5を満たすこととなり、 この位置 で砕かれる。 波の勢力は非常に弱められ、 第 7図中の遡上域 3 5は、 第 9図中の 従来の遡上域 3 1と比較してその範囲が非常に狭くなり、 砂を削る量も非常に少 なくなる。 しかも新しい砂洲の位置は海底ダム 2 5の手前で止まるから、 削られ た砂が沖合の深みに落ちることはない。 Therefore, the submarine dam of the present invention aims at artificially reducing the breaking water depth. Submarine dam 2 5 of the present invention as FIG. 7, lever to construction near碎波band of conventional, since breaking the water depth h 2 becomes shallow, large waves conventionally that did not crumble even depth h 2 / 1 the value of the wave height H 2 is a condition of breaking. 5-2. will be satisfied 5 is broken at this location. The wave power is greatly weakened, and the ascending area 35 in FIG. 7 is much narrower than the conventional ascending area 31 in FIG. Very low. In addition, the new reef stops just before the submarine dam 25, so that the shaved sand does not fall offshore.
また、 海岸を洗堀した波が引潮の際に海底ダムが抵抗になって流速を弱め、 砂 の沈殿を促すので、 海底ダムを越えて沖合に流される砂が著しく少なくなる。 前記のようにこの発明の海底ダムは砕波点付近にあって、 砕波し、 その勢力を 弱める作用効果を奏する為、 基礎は海底地盤上へ堅固に築造され、 洗堀によるプ ロックの飛散等を受けない構造であって、 耐久性がなければならない。 そこで、 この発明の海底ダムの基礎とする捨石基礎地盤を構成する材料は、 鋼材等の高強 度部材としている。  In addition, when the waves that scour the shore make the ebb tide, the submarine dam acts as a resistance, weakens the flow velocity, and promotes the sedimentation of the sand. As described above, the submarine dam of the present invention is located near the breaking point, breaks waves, and has the effect of weakening its power.Therefore, the foundation is built firmly on the submarine ground, and scattering of blocks due to scouring, etc. The structure must be durable. Therefore, the material constituting the rubble foundation ground on which the submarine dam of the present invention is based is a high-strength member such as steel.
また、 海底ダムの上部沖側は、 大波浪に耐え得ると共に、 着実に消波する特性 を付与するものでなければならない。 従って、 海底ダムの高さは、 水面下におけ る波浪の急激な変化を生じる付近に亘つて設ける必要がある。  In addition, the offshore part of the upper part of the submarine dam must be able to withstand large waves and provide characteristics to steadily extinguish waves. Therefore, the height of the submarine dam needs to be set up near the area where the sudden change of the wave below the water surface occurs.
前記海底ダムは、 大波浪の砕波を受けて更に波浪のエネルギーを消失させるこ とを目的とする構造物である。 従って、 海底ダムの岸側の構造は、 消波ブロック その他を詰めて消波構造体を構築し、 その巾は少なくとも 7 π!〜 1 0 m以上であ ることが望ましい。 このようにして波浪のエネルギーは、 海底ダムがない場合に 比し、 大幅に低下するので、 海岸に加えられる破壊力も急速に弱化し、 従って海 岸の破壊は最小限にとどめられる。 The submarine dam is a structure whose purpose is to receive the breaking of a large wave and further dissipate the energy of the wave. Therefore, on the shore side of the submarine dam, a wave-dissipating structure is constructed by packing the wave-dissipating blocks and others, and its width is at least 7π! It is desirable that the length be 10 m or more. In this way, the energy of the waves is By contrast, the destructive forces applied to the shore are rapidly weakened, and the destruction of the shore is thus minimized.
前記消波構造体の岸側は、 割石その他によって強度補強をかねて消波流の流動 に耐える構造とする。 また、 岸側の面を緩傾斜に造成して、 流砂の沈殿を促すよ うにする。  The shore side of the wave-dissipating structure shall have a structure that can withstand the flow of the wave-dissipating current by reinforcing the strength with quarry stone and the like. In addition, the shore side shall be gently sloped to promote sedimentation of quicksand.
前記海底ダムは、 維持 ·造成すべき砂浜の最先端に位置するものであるので、 海岸と海底ダムとの間に海底ダムとは別体の砂止め構造物を築造することも考え られる。  Since the submarine dam is located at the forefront of the sandy beach to be maintained and constructed, it is conceivable to build a sand stop structure separate from the seabed dam between the coast and the submarine dam.
この発明の海底ダムは、 海岸、 特に砂浜の破壊流失を最小限に止めると共に、 沖合から運ばれてきた多量の砂を沈殿させること より、 自然力を利用して砂浜 を造成することができる。 すなわち、 この発明は砂浜造成の補助的役割 (自然力 の手助け) を果たすものである。 従って自然力による海岸の破壊は未然に防止さ れるのみならず、 逐年砂浜面積を増大させることができる。 図面の簡単な説明  The submarine dam of the present invention can create a sandy beach by utilizing natural force by minimizing the destruction and erosion of the shore, especially the sandy beach, and by sedimenting a large amount of sand carried offshore. In other words, the present invention fulfills the auxiliary role of sand development (helping natural power). Therefore, the destruction of the coast by natural forces is not only prevented beforehand, but also the beach area can be increased year by year. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施例の海底ダムの組立式消波プロックを組み立てた三 角構造の側面が表れる面の一部を省略した拡大概念図である。  FIG. 1 is an enlarged conceptual view in which a part of a side surface of a triangular structure in which a prefabricated breakwater block of a submarine dam according to an embodiment of the present invention is assembled is omitted.
第 2図 (a ) は、 第 1図図示の海底ダムの第 1図に表れた三角構造に隣り合う 三角構造が表れる面の一部を省略した拡大概念図である。 . . 第 2図 (b ) は、 第 1図、 第 2図 (a ) 図示の海底ダムの消波構造体において 第 1図に表れた三角構造と、 第 2図 (a ) に表れた三角構造とを左右方向に交互 に連結した状態の一部を省略した拡大概念図である。  Fig. 2 (a) is an enlarged conceptual diagram of the submarine dam shown in Fig. 1 with a part of the surface where the triangle structure adjacent to the triangle structure shown in Fig. 1 appears, omitted. Fig. 2 (b) shows the triangular structure shown in Fig. 1 and the triangular shape shown in Fig. 2 (a) in the wave-dissipating structure of the submarine dam shown in Fig. 1 and Fig. 2 (a). FIG. 4 is an enlarged conceptual diagram in which a part of a state in which the structure is alternately connected in the left-right direction is omitted.
第 3図は、 他の実施例の海底ダムの組立式消波プロックを組み立てた台形構造 の側面が表れる面の一部を省略した拡大断面図である。  FIG. 3 is an enlarged cross-sectional view of a trapezoidal structure in which a prefabricated breakwater block of a submarine dam according to another embodiment is partially omitted, showing a side surface thereof.
第 4図 (a ) は、 第 3図図示の海底ダムの第 3図に表れた台形構造に隣り合う 台形構造が表れる面の一部を省略した拡大概念図である。  FIG. 4 (a) is an enlarged conceptual view of the submarine dam shown in FIG. 3, in which a part of a surface where a trapezoidal structure adjacent to the trapezoidal structure shown in FIG. 3 appears is omitted.
第 4図 (b ) は、 第 3図、 第 4図 (a ) 図示の海底ダムの消波構造体において 第 3図に表れた台形構造と、 第 4図 (a ) に表れた台形構造とを左右方向に交互 に連結した状態の一部を省略した拡大概念図である。 第 5図は、 さらに異なる組立式消波プロックの組み方をした実施例の一部を省 略した概念図である。 Fig. 4 (b) shows the trapezoidal structure shown in Fig. 3 and the trapezoidal structure shown in Fig. 4 (a) in the wave-damping structure of the submarine dam shown in Figs. 3 and 4 (a). FIG. 3 is an enlarged conceptual diagram in which a part of a state in which are alternately connected in the left-right direction is omitted. FIG. 5 is a conceptual diagram omitting a part of an embodiment in which a different assembly type wave canceling block is assembled.
第 6図 (a ) は、 海底ダムを平面コ状に設置した実施例の概念図である。 第 6図 (b ) は、 海底ダムを平面アーチ状に設置した実施例の概念図である。 第 7図は、 この発明の海底ダムを設置した海浜の一部を省略した説明図である 第 8図は、 砕波の発生条件の説明図である。  FIG. 6 (a) is a conceptual diagram of an embodiment in which a submarine dam is installed in a plane U shape. FIG. 6 (b) is a conceptual diagram of an embodiment in which the submarine dam is installed in a plane arch shape. FIG. 7 is an explanatory view in which a part of the beach on which the submarine dam of the present invention is installed is omitted. FIG. 8 is an explanatory view of conditions for generating a breaking wave.
第 9図は、 従来の海浜の一部を省略した説明図である。 発明を実施するための最良の形態  FIG. 9 is an explanatory view in which a part of a conventional beach is omitted. BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1  Example 1
この発明の海底ダム 2 5実施例を第 1図、 第 2図に基づいて説明する。  A submarine dam 25 embodiment of the present invention will be described with reference to FIGS.
まず、 従来の砕波点付近に、 格子状桝目を有する消波敷設材 1を水平に海底地 盤 G上に据え付け、 その桝目に石やコンクリートプロック等の消波材 2を密に嵌 め込んで、 水平な捨石基礎地盤 3を作る。 この消波敷設材 1を据え付ける位置は 、 砕波点付近であれば、 砕波点より岸側であっても沖側であってもよい。  First, near the conventional breaking point, a wave-breaking laying material 1 having a grid-like mesh is installed horizontally on the submarine ground G, and a wave-breaking material 2 such as a stone or concrete block is closely fitted into the grid. Make a horizontal rubble foundation 3. The position where the wave-breaking laying material 1 is installed may be on the shore or offshore from the breaking point as long as it is near the breaking point.
' · 捨石基礎地盤 3の沖側先端部には、 適当な水平部分 4 1が設けられている。 当 該水平部分 4 1の岸側には、 数十%の空隙率を有するように組立式消波ブロック 4を組み立てて構築した消波構造体 4 2を設置する。 この消波構造体 4 2は陸上 で構築しておいて、 海中の捨石基礎地盤 3の水平部分 4 1に据え付ける。 なお、 この組立式消波ブロック 4は、 日本特許第 2 0 3 7 1 5 2号に係るブロックを使 用することができる。 '· A suitable horizontal section 41 is provided at the tip of the rubble foundation ground 3 on the offshore side. On the shore side of the horizontal part 41, a wave-dissipating structure 42 constructed by assembling the assembly-type wave-dissipating blocks 4 so as to have a porosity of several tens of percent is installed. This wave-absorbing structure 42 is constructed on land, and is installed on the horizontal portion 41 of the submarine rubble foundation 3. In addition, as the prefabricated type wave-eliminating block 4, a block according to Japanese Patent No. 2037152 can be used.
この組立式消波プロヅク 4は、 短プロヅクと長プロックとがある。 短プロヅク は長手方向の両端の両側に凸部を設けた形状となっている。 長ブロックではさら に長手方向の中央の両側にも凸部が設けられた形状となっている。 組立式消波プ ロック 4は当該凸部に他の組立式消波プロック 4を係止して種々の形状の消波構 造体 4 2を形成することができる。  This prefabricated breaker block 4 has a short block and a long block. The short work has a shape in which convex portions are provided on both sides of both ends in the longitudinal direction. The long block has a shape in which convex portions are further provided on both sides at the center in the longitudinal direction. The prefabricated wave-dissipating block 4 can form a wave-dissipating structure 42 of various shapes by locking the other prefabricated wave-dissipating block 4 to the projection.
消波構造体 4 2は、 第 1図図示のように側面から見ると、 その底辺を成す長プ ロック 4 a、 岸側の斜辺を成す長プロヅク 4 b、 沖側の斜辺を成す長プロヅク 4 cが組み合わされて三角構造 4 3を形成している。 When viewed from the side as shown in Fig. 1, the wave-absorbing structure 42 has a long block 4a forming the bottom, a long block 4b forming the hypotenuse on the shore, and a long block 4 forming the hypotenuse on the offshore. c combine to form a triangular structure 43.
この三角構造 4 3は、 長プロヅク 4 aを捨石基礎基盤 3上に水平に載置し、 そ の上に長プロック 4 bを斜めに載置し、 長プロック 4 cをその下端を前記水平部 分 4 1の岸側の段差部分 4 1 aに係止し、 長プロック 4 aの沖側端部に立て掛け るように配置して形成されている。 このとき、 各長プロック 4 a、 4 b、 4 cは 、 お互いの凸部に係止されるので、 強固な三角形を形成している。  In this triangular structure 43, the long block 4a is placed horizontally on the rubble foundation 3, the long block 4b is placed diagonally on top of it, and the long block 4c is connected to the lower end by the horizontal section. It is formed so that it is locked to the step part 41a on the shore side of the minute 41 and leans against the offshore end of the long block 4a. At this time, the long blocks 4a, 4b, and 4c are locked to each other's projections, and form a strong triangle.
組立式消波プロヅク 4は、 さらに長ブロック 4 d、 4 e、 4 f を用いて、 三角 構造 4 3とほぼ同一形状であるが、 その組み方を異にする第 2図 (a ) 図示のよ うな三角構造 4 4を形成する。  The prefabricated breaker block 4 has almost the same shape as the triangular structure 43 using long blocks 4d, 4e, and 4f, but differs in the manner of assembling as shown in Fig. 2 (a). A triangular structure 4 4 is formed.
消波構造体 4 2は、 第 2図 (b ) 図示のように、 三角構造 4 3、 4 4を左右方 向に交互に複数列並列し、 スぺーサ突起 1 5、 1 5を介して鋼材 1 6、 1 6によ つて連結して構成されている。  As shown in FIG. 2 (b), the wave-absorbing structure 42 is composed of triangular structures 43 and 44 alternately arranged in a plurality of rows in the left and right directions, and is provided via spacer protrusions 15 and 15. It is connected by steel materials 16 and 16.
このように異なる組み方をした三角構造 4 3、 4 4を左右方向に複数列並列し 、 連結することによって、 消波構造体 4 2は一体化した構造として構築されるこ ととなる。  By arranging and connecting a plurality of triangular structures 43, 44 in different ways in the left-right direction in this manner, the wave-absorbing structure 42 is constructed as an integrated structure.
なお、 第 2図 (b ) は、 消波構造体 4 2を海側から見たときの概念図である。 上記のように構成された消波構造体 4 2の岸側背面には裏込石 5を投入する。: このとき裏込石 5を投入した岸側の面は、 長ブロック 4 bの傾斜に対応した斜面 となっている。 この裏込石 5の斜面には流砂防止材である防砂シート 6を貼る。 これは、 砂浜の砂が裏込石 5を通って、 消波構造体 4 2、 捨石基礎地盤 3に流出 しないようにするためである。  FIG. 2 (b) is a conceptual diagram when the wave-dissipating structure 42 is viewed from the sea side. A backing stone 5 is inserted into the back of the shore side of the wave-dissipating structure 42 configured as described above. : At this time, the side of the shore where the backing stone 5 was inserted is a slope corresponding to the slope of the long block 4b. On the slope of the backing stone 5, a sand-prevention sheet 6 as a sand-prevention material is attached. This is to prevent the sand on the beach from flowing through the backing stone 5 and into the wave-dissipating structure 42 and the rubble foundation ground 3.
防砂シート 6は、 その上面を栗石 7で被覆し、 さらにその岸側背面に割石 8を 投入する。 また、 裏込石 5、 栗石 7の上面には一つ一つの質量が 2 0 0 k g程度 の大割石 1 4を敷き詰めてある。 このように海底ダム 2 5を構成することにより 、 割石 8の岸側の背後には砂 8 aが自然に溜まる。  The top of the sand protection sheet 6 is covered with chestnut stone 7, and then a split stone 8 is put on the back side of the shore. On the upper surface of the backing stone 5 and the chestnut stone 7, large stones 14 with a mass of about 200 kg are laid. By constructing the submarine dam 25 in this way, the sand 8a naturally accumulates behind the shore of the crushed stone 8.
ここで、 この砂 8 aが溜まった部分が局部的に深く掘れる場合は、 第 1図図示 のように割石 8の岸側の背後に栗石 9等を敷くこともある。 この栗石 9等は散乱 しないように、 下に格子網 1 0を敷きこれに係止する。 栗石 9等が散乱しなけれ ば、 こんぶ等の海藻が着生し、 海岸の環境が改善される効果がある。 JP02/08067 尚、 図中、 符号 1 0、 1 1は鋼材製の格子網、 符号 1 2は水面である。 Here, if the portion where the sand 8a has accumulated can be dug locally deep, a stone stone 9 may be laid behind the shore of the split stone 8 as shown in FIG. A grid net 10 is laid below and locked to this 9 and so on to prevent scattering. If Kuriishi 9 etc. are not scattered, seaweed such as kelp will grow, which will have the effect of improving the coastal environment. JP02 / 08067 In the figures, reference numerals 10 and 11 indicate a steel mesh grid, and reference numeral 12 indicates a water surface.
前記実施例において、 海側から矢示 1 3のように波浪が押し寄せて来た場合に は、 先ず消波構造体 4 2によって大凡砕波され、 ついで大割石 1 4 (例えば質量 In the above-described embodiment, when a wave comes in from the sea side as indicated by arrow 13, first, the wave is roughly broken by the wave-dissipating structure 42, and then the crushed stone 14 (for example, mass
2 0 0 k g以上) などにより更に砕波され、 この間の幅 1 0 m位を通過する間に 5 大波浪は消波される。 これにより、 大波浪は砕波後、 消波され、 砂は概ね海底ダ ム 2 5の岸側に沈殿する。 The wave is further broken by the above (200 kg or more), and the 5 large waves are eliminated during the passage of about 10 m width. As a result, the large waves break and then break, and the sand generally settles on the shore of the sea bottom dam 25.
ついで引波に際しては、 各割石などの間に砂がつまり、 又は防砂シート 6によ つて砂の流失が阻止されるので、 波浪によって海側に運ばれる砂は著しく少なく なる。  Then, at the time of towing, the sand is clogged between the broken stones or the like, and the sand is prevented from flowing out by the sandproof sheet 6, so that the amount of sand carried to the sea side by the waves is significantly reduced.
L0 一方前記組立式消波プロック 4、 消波材 2などの作用によつて砕波されるので 、 岸辺に当たる波浪の勢力は著しく削減され、 海岸破壊の大きな力は大いに減少 する。 実施例 2  L0 On the other hand, since the waves are broken by the action of the prefabricated breaker block 4 and the breaker 2, the power of the waves hitting the shore is remarkably reduced, and the great power of shore destruction is greatly reduced. Example 2
L5 この発明の他の実施例を第 3図、 第 4図に基づいて説明する。 ' この実施例の海底ダム 4 5と、 実施例 1記載の海底ダム 2 5とが異なる点は、 組立式消波ブロック 4の組み方、 すなわち、 消波構造体 4 2と 4 6との形状の相 違のみである。  L5 Another embodiment of the present invention will be described with reference to FIGS. '' The difference between the submarine dam 45 of this embodiment and the submarine dam 25 of the first embodiment is that the method of assembling the assembled wave-dissipating block 4, that is, the shape of the wave-dissipating structures 42 and 46 The only difference is.
この実施例の消波構造体 4 6は、 実施例 1の消波構造体 4 2とは異なり、 第 30 図図示のように側面から見ると、 下底を成す長ブロック 4 a、 上底を成す短プロ ック 4 g、 斜辺を成す短ブロック 4 hが組み合わされて台形構造 4 7を形成して いる。  The wave-absorbing structure 46 of this embodiment is different from the wave-absorbing structure 42 of Embodiment 1 when viewed from the side as shown in FIG. The short block 4 g and the short block 4 h forming the hypotenuse are combined to form a trapezoidal structure 47.
この台形構造 4 7は長プロヅク 4 aを捨石基礎基盤 3上に水平に載置し、 その 上に短プロヅク 4 gを平行に載置し、 短プロヅク 4 hを長プロヅク 4 aの岸側端5 部に立て掛けるように配置して形成されている。  In this trapezoidal structure 47, the long work 4a is placed horizontally on the rubble foundation 3 and the short work 4g is placed thereon in parallel, and the short work 4h is placed on the shore end of the long work 4a. It is formed so as to lean against 5 parts.
組立式消波プロック 4は、 さらに短プロック 4 hを長プロック 4 aの沖側端部 に立て掛けるようにして、 台形構造 4 7とほぼ同一形状であるが、 その組み方を 異にする第 4図 (a ) 図示のような台形構造 4 8を形成する。  The assembled wave-breaking block 4 has the same shape as the trapezoidal structure 47, with the short block 4h further leaning against the offshore end of the long block 4a, but is assembled differently. (A) Form a trapezoidal structure 48 as shown.
消波構造体 4 6は、 第 4図 (b ) 図示のように、 台形構造 4 7、 4 8を左右方 向に交互に複数列並列し、 スぺ一サ突起 1 5、 1 5を介して鋼材 1 6、 1 6によ つて連結して構成されている。 As shown in Fig. 4 (b), the wave-absorbing structure 46 is formed by connecting the trapezoidal structures 47 and 48 to the left and right sides. A plurality of rows are alternately arranged in parallel in the direction, and connected by steel materials 16 and 16 via spacer projections 15 and 15.
このように異なる組み方をした台形構造 4 7、 4 8を左右方向に複数列並列し 、 連結することによって、 消波構造体 4 6は一体化した構造として構築されるこ ととなる。  A plurality of the trapezoidal structures 47 and 48 in such a different manner are arranged in parallel in the left and right direction and connected to each other, whereby the wave-absorbing structure 46 is constructed as an integrated structure.
なお、 第 4図 (b ) は、 消波構造体 4 6を海側から見たときの概念図である。 この実施例 2は、 消波構造体 4 2と 4 6との形状が相違する以外は構造、 作用 、 効果において総て実施例 1と同一につき、 実施例 1の海底ダムと同一の構成に ついては、 図面中に同一の符号を付して、 その説明を省略する。 実施例 3  FIG. 4 (b) is a conceptual diagram when the wave-dissipating structure 46 is viewed from the sea side. The second embodiment is the same as the first embodiment in the structure, operation, and effects except that the shapes of the wave-dissipating structures 42 and 46 are different. About the same configuration as the submarine dam of the first embodiment, The same reference numerals are given in the drawings, and the description thereof will be omitted. Example 3
この発明のさらに他の実施例を図 5について説明する。  Another embodiment of the present invention will be described with reference to FIG.
この実施例の海底ダム 4 9と、 実施例 1記載の海底ダム 2 5とが異なる点は、. 組立式消波ブロック 4の組み方、 すなわち、 消波構造体 4 2と 5 0との形状の相 違のみである。  The difference between the submarine dam 49 of this embodiment and the submarine dam 25 described in Embodiment 1 is that the method of assembling the prefabricated wave-dissipating block 4, that is, the shape of the wave-dissipating structures 42 and 50 The only difference is.
この実施例の消波構造体 5 0は、 第 5図図示のように側面から見ると、 実施例 1の消波構造体 4 2における三角構造 4 3 ( 4 4 ) が波の打ち寄せ方向に 2つ並 列しており、 その 2つの三角構造 4 3 ( 4 4 )、 4 3 ( 4 4 )の間に形成される三 角形の空間に、 逆さにされた三角構造 4 3 ( 4 4 ) がさらに組み合わされて、 大 きな台形を形成している。 すなわち、 実施例 1における三角構造 4 3 ( 4 4 ) を 三個、 台形に並べ、 これをスぺ一サ突起 1 5、 1 5を介して左右方向に複数列並 列し、 鋼材 1 6、 1 6によって連結して構成している。  When viewed from the side as shown in FIG. 5, the wave-breaking structure 50 of this embodiment has a triangular structure 4 3 (44) in the wave-breaking structure 42 of Embodiment 1 in the direction in which waves hit. In a triangular space formed between the two triangular structures 4 3 (4 4) and 4 3 (4 4), an inverted triangular structure 4 3 (4 4) is formed. Further combined, they form a large trapezoid. That is, three triangular structures 4 3 (44) in Example 1 are arranged in a trapezoid, and these are arranged in a plurality of rows in the left-right direction via the spacer projections 15, 15, and the steel material 16, It is composed by connecting by 16.
この実施例 3は、 消波構造体 4 2と 5 0との形状が相違する以外は構造、 作用 、 効果において総て実施例 1と同一につき、 実施例 1の海底ダムと同一の構成に ついては、 図面中に同一の符号を付して、 その説明を省略する。  The third embodiment has the same structure, operation, and effect as the first embodiment except that the shape of the wave-dissipating structures 42 and 50 is different. The same reference numerals are given in the drawings, and the description thereof will be omitted.
なお、 この発明の海底ダム 2 5、 4 5、 4 9は、 第 6図 (a ) 図示のように平 面コ状に配置して砂の流出を防止する場合もある。  The submarine dams 25, 45, and 49 of the present invention may be arranged in a flat U shape as shown in FIG. 6 (a) to prevent sand from flowing out.
また、 第 6図 (b ) 図示のようにポケットビーチのような地形で岬と岬の間に 平面アーチ状に配置する場合もある。 図中、 符号 2 4は汀線、 2 3は防波堤 (又 は岬) である。 この発明の海底ダム 2 5、 4 5、 4 9は、 第 7図図示のように、 波浪の砕波位置 3 6付近に設ける。 従って砂が自然に溜まるか、 または海底ダム と岸側の凹部に砂を投入しても、 従来のように流出しないから、 砂浜は安全に確 保される。 In addition, as shown in Fig. 6 (b), there are cases where the land is arranged in a flat arch between capes in a terrain such as a pocket beach. In the figure, reference numeral 24 denotes a shoreline, and 23 denotes a breakwater. Is a cape). The submarine dams 25, 45, and 49 of the present invention are provided near the wave breaking position 36 as shown in FIG. Therefore, even if the sand naturally accumulates or the sand is poured into the submarine dam and the recess on the shore side, the sand does not flow out as in the past, so the sandy beach is secured.
この発明の効果としては、 以下の事項が挙げられる。  The effects of the present invention include the following.
すなわち、 この発明によれば、 碎波地点付近に海底ダムを造成し、 砕波、 消波 などにより波浪の勢力を削減するので、 砂を沈殿させると共に、 海岸の侵食破壊 を可及的に小さくする効果がある。  That is, according to the present invention, a submarine dam is constructed near the breaking wave point, and the power of the waves is reduced by breaking waves, breaking waves, etc., so that sand is precipitated and erosion and destruction of the coast is minimized. effective.
また海底ダムにより沖合いに運ばれる砂が海底ダムの岸側に沈殿し、 流出を阻 止するので、 自動的に砂浜を造成できる効果がある。  In addition, the sand carried offshore by the submarine dam settles on the shore of the submarine dam and prevents outflow, so that it has the effect of automatically creating a sandy beach.
この発明によれば、 自然力を最大限に利用するので、 海底ダム造成後は、 何等 の人工力を加えることなく、 海岸の侵食を阻止し、 かつ砂浜を自動的に造成でき る効果がある。  According to the present invention, since the natural force is used to the utmost, there is an effect that, after the construction of the seabed dam, the erosion of the coast is prevented and the sand beach is automatically created without applying any artificial force.
また、 消波敷設材 1を水平に海底地盤 G上に据え付け、 その上に消波材、 消波 ブロックからなる消波構造体を設置しているので、 波や海底地盤の変形等により 消波材、 消波構造体が傾いたり、 崩壊したりするおそれがない。  In addition, the wave-damping laying material 1 is installed horizontally on the seabed ground G, and the wave-damping structure consisting of the wave-damping material and wave-damping block is installed on top of it. There is no risk of the materials and wave-breaking structures tilting or collapsing.

Claims

請 求 の 範 囲 The scope of the claims
1 . 砕波点付近又は砕波点より岸側の海底地盤上に捨石基礎地盤を造成し、 当該 捨石基礎基盤上に消波構造体を設置し、 当該消波構造体の岸側の背後に砂流出防 止堤を構築したことを特徴とする流砂防止海底ダム。  1. Build a rubble foundation on the seabed near the breaking point or on the shore side of the breaking point, install a wave-absorbing structure on the rubble foundation, and run off the sand behind the shore of the wave-breaking structure. A sediment-prevention submarine dam characterized by the construction of a breakwater.
2 . 捨石基礎地盤は、 高強度部材を接合して形成した格子枠を海底地盤に据え 付けた砕波敷設材と、 当該砕波敷設材の前記格子枠の桝目に嵌合係止した消波材 とによつて構成されたことを特徴とする請求項 1記載の流砂防止海底ダム。 2. The rubble foundation ground is composed of a breaking wave laying material in which a grid frame formed by joining high-strength members is installed on the seabed ground, and a wave breaking material fitted and locked in the grid frame of the breaking wave laying material. The submarine dam for preventing sediment transport according to claim 1, characterized by comprising:
3 . 消波構造体は、 内部に空隙を有するように組立式消波ブロックを波の打ち 寄せ方向、 海岸の左右方向、 深さ方向に立体的に組み合わせた砕波プロック列と したことを特徴とする請求項 1記載の流砂防止海底ダム。 3. The wave-absorbing structure is characterized by a wave breaking block array in which a prefabricated wave-breaking block is three-dimensionally combined in the direction of the waves, the horizontal direction of the coast, and the depth direction so that there is a gap inside. The submarine dam for preventing sediment transport according to claim 1.
4 . 砂流出防止堤は、 割石、 消波材及び埋土としたことを特徴とする請求項 1 記載の流砂防止海底ダム。  4. The sediment-prevention submarine dam according to claim 1, wherein the sand runoff prevention embankment is made of split stone, wave-breaking material and buried soil.
5 . 砕波点付近又は砕波点より岸側の海底地盤上に、 高強度部材よりなる格子 枠を水平状に敷設し、 該格子枠の桝目に消波材を嵌合掛止させて捨石基礎地盤を 造成し、 該捨石基礎地盤上に消波プロックを立体的に組み合わせた消波構造体を 設置し、 当該消波構造体の沖側へ消波材を並置することを特徴とした流砂防止海 底ダムの築造方法。  5. A grid frame made of high-strength material is laid horizontally on the seabed near the wave breaking point or on the shore side of the wave breaking point. And a wave-absorbing structure in which wave-absorbing blocks are three-dimensionally combined is installed on the rubble foundation ground, and a wave-absorbing material is juxtaposed offshore of the wave-absorbing structure. How to build a bottom dam.
6 . 砕波点付近又は砕波点より岸側の海底地盤上に、 高強度部材ょりなる格子 枠を水平状に敷設し、 該格子枠の桝目に消波材を嵌合掛止させて捨石基礎地盤を 造成し、 該捨石基礎地盤上に消波プロックを立体的に組み合わせた消波構造体を 設置し、 当該消波構造体の沖側へ消波材を並置し、 前記消波構造体の岸側の背後 に流砂防止材を介装させて割石を積み上げ、 当該割石の岸側を埋土することを特 徴とした流砂防止海底ダムの築造方法。  6. A grid frame consisting of high-strength members is laid horizontally on the seabed near the wave breaking point or on the shore side of the wave breaking point. Constructing the ground, installing a wave-damping structure three-dimensionally combining wave-damping blocks on the rubble foundation ground, and juxtaposing wave-damping materials offshore of the wave-damping structure; A method of building a sediment-prevention submarine dam characterized by stacking quarry stones with a sediment-prevention material behind the shore and burying the shore of the quarry stone.
PCT/JP2002/008067 2001-08-10 2002-08-07 Sand shift preventing sea bottom dam and method of constructing the dam WO2003016639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003520916A JPWO2003016639A1 (en) 2001-08-10 2002-08-07 Sediment control submarine dam and its construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-244465 2001-08-10
JP2001244465 2001-08-10

Publications (1)

Publication Number Publication Date
WO2003016639A1 true WO2003016639A1 (en) 2003-02-27

Family

ID=19074386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008067 WO2003016639A1 (en) 2001-08-10 2002-08-07 Sand shift preventing sea bottom dam and method of constructing the dam

Country Status (2)

Country Link
JP (1) JPWO2003016639A1 (en)
WO (1) WO2003016639A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110409368A (en) * 2019-08-30 2019-11-05 华北水利水电大学 A kind of adjustable permeable spur with riverbank angle
JP2020159017A (en) * 2019-03-26 2020-10-01 裕弘 増田 Sediment retention submerged bank in membrane structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341122A (en) * 1985-08-24 1994-12-13 Masaaki Sakuta Sea-bottom structure
JPH1193138A (en) * 1997-09-18 1999-04-06 Soken Kogyo Kk Assembly concrete block and civil engineering structure using block
JPH11100821A (en) * 1997-09-29 1999-04-13 Toray Ind Inc Civil engineering nonwoven sheet
JPH11350446A (en) * 1998-06-04 1999-12-21 Soken Kogyo Kk Composite main pile for wave absorbing structure and wave absorbing structure
JP2000290954A (en) * 1999-04-12 2000-10-17 Soken Kogyo Kk Wave-dissipating laid body and wave-dissipating structure using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732098B2 (en) * 1988-12-07 1998-03-25 株式会社コスタルエンジニアリング Erosion prevention and sediment promotion device and its construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341122A (en) * 1985-08-24 1994-12-13 Masaaki Sakuta Sea-bottom structure
JPH1193138A (en) * 1997-09-18 1999-04-06 Soken Kogyo Kk Assembly concrete block and civil engineering structure using block
JPH11100821A (en) * 1997-09-29 1999-04-13 Toray Ind Inc Civil engineering nonwoven sheet
JPH11350446A (en) * 1998-06-04 1999-12-21 Soken Kogyo Kk Composite main pile for wave absorbing structure and wave absorbing structure
JP2000290954A (en) * 1999-04-12 2000-10-17 Soken Kogyo Kk Wave-dissipating laid body and wave-dissipating structure using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159017A (en) * 2019-03-26 2020-10-01 裕弘 増田 Sediment retention submerged bank in membrane structure
JP6997737B2 (en) 2019-03-26 2022-01-18 裕弘 増田 Membrane structure sediment dike
CN110409368A (en) * 2019-08-30 2019-11-05 华北水利水电大学 A kind of adjustable permeable spur with riverbank angle
CN110409368B (en) * 2019-08-30 2024-03-08 华北水利水电大学 Angle-adjustable permeable T-dam

Also Published As

Publication number Publication date
JPWO2003016639A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US20040265060A1 (en) Method for constructing scour protection of bridge and stabilization of stream bed using block mat
KR100657183B1 (en) Vegetation block with equipment structure
US4896996A (en) Wave actuated coastal erosion reversal system for shorelines
KR100296515B1 (en) environmentally friendly embankment and river-bed member capable of protecting fishes and amphibia in the river and working method using the same
CN105804006A (en) Lake shoal protective structure giving consideration to landscapes
CN114867917B (en) Method for preventing repeated (tsunami/flood/river) disasters by using natural force
CN205776073U (en) A kind of shore-beach protection structure taking into account view
WO2003016639A1 (en) Sand shift preventing sea bottom dam and method of constructing the dam
Lawson Geotextiles in marine engineering
JP3077022B2 (en) Wave-dissipating structure
KR200413124Y1 (en) Hexapod for prevention against wave abrasion of structure in water
Wamsley et al. Coastal barrier island breaching, Part 2: Mechanical breaching and breach closure
JPH1054019A (en) Artificial sands nourishment method of seashore making use of lattice-like frame wave dissipation construction material and construction method thereof
JP2688867B2 (en) Subsea scouring prevention method and subsea scouring deterrent consolidation structure
Szmytkiewicz Sustainable measures of shore protection against erosion and flooding
Heibaum et al. Geotextile bags for sole permanent bank protection
Neal Coastal topography, human impact on
Sadeghi et al. An introduction to onshore structures’ construction
CN218779421U (en) Coastal port protects end scour prevention structure
KR100788950B1 (en) Hexapod for prevention against wave abrasion of structure in water
JPH02157309A (en) Erosion preventing/sand sediment promotor and construction thereof
JP2881725B2 (en) Wave-breaking laying body and wave-breaking structure using it
Heibaum The use of geosynthetics in scour protection
KR200295217Y1 (en) Concrete groyne of consolidation structure
JP3390128B2 (en) Breakwater and its construction method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP MX NO NZ RU SG

Kind code of ref document: A1

Designated state(s): CA JP MX NO NZ RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003520916

Country of ref document: JP

122 Ep: pct application non-entry in european phase