WO2003012880A2 - Solar cell having a bypass diode for reverse bias protection and method of fabrication - Google Patents
Solar cell having a bypass diode for reverse bias protection and method of fabrication Download PDFInfo
- Publication number
- WO2003012880A2 WO2003012880A2 PCT/US2002/023978 US0223978W WO03012880A2 WO 2003012880 A2 WO2003012880 A2 WO 2003012880A2 US 0223978 W US0223978 W US 0223978W WO 03012880 A2 WO03012880 A2 WO 03012880A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- solar cell
- diode
- contact
- cell structure
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 163
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 40
- 229910052732 germanium Inorganic materials 0.000 claims description 27
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 26
- 239000010936 titanium Substances 0.000 claims description 20
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 17
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 229910052785 arsenic Inorganic materials 0.000 claims description 11
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 description 20
- 229920002120 photoresistant polymer Polymers 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001741 metal-organic molecular beam epitaxy Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0687—Multiple junction or tandem solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/044—PV modules or arrays of single PV cells including bypass diodes
- H01L31/0443—PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to semiconductor devices. More specifically, the present invention relates to methods and apparatuses of solar cells.
- Photovoltaic cells are well-known devices which convert solar energy into electrical energy. Solar cells have long been used to generate electrical power in both terrestrial and space applications. Solar cells offer several advantages over more conventional power sources. For example, solar cells offer a clean method for generating electricity. Furthermore, solar cells do not have to be replenished with fossil fuels. Instead, solar cells are powered by the virtually limitless energy of the sun. The solar cell is a particularly attractive device for generating energy in space, where low-cost conventional power sources are unavailable.
- Solar cells are typically assembled into arrays of solar cells connected together in series, or in parallel, or in a series-parallel combination.
- the desired output voltage and current determine the number of cells in an array, as well as the array topology.
- each cell will be forward biased.
- the shadowed cell or cells may become reversed biased because of the voltage generated by the unshadowed cells. Reverse biasing of a cell can cause permanent degradation in cell performance or even complete cell failure. To guard against such damage, it is customary to provide protective bypass diodes.
- One bypass diode may be connected across several cells, or for enhanced reliability, each cell may have its own bypass diode.
- Multij unction solar cells are particularly susceptible to damage when subjected to reverse bias condition.
- multijunction cells in particular benefit from having the bypass diode protection.
- a bypass diode is connected in an anti-parallel configuration, with the anode and the cathode of the bypass diode respectively connected to the cathode and the anode of the solar cell, so that the bypass diode will be reversed biased when the cells are illuminated.
- the bypass diode connected across the shadowed cell in turn becomes forward biased. Most of the current will flow through the bypass diode rather than through the shadowed cell, thereby allowing current to continue flowing through the array.
- the bypass diode limits the reverse bias voltage across the shadowed cell, thereby protecting the shadowed cell.
- Another conventional technique providing a bypass diode for each cell requires that a recess be formed on the back of the cell in which a bypass diode is placed.
- Each cell is provided with a first polarity contact on a front surface of the cell and a second polarity contact is provided on a back surface of each cell.
- An "S" shaped interconnect must then be welded from a back surface contact of a first cell to a front surface contact of an adjoining cell.
- this technique disadvantageously requires the cells to be spaced far enough apart to accommodate the interconnect which must pass between the adjoining cells.
- a Schottky diode is formed at the interface between a metallic diode contact and a semiconductor substrate on which the solar cell is grown.
- the solar cell circuit comprises a substrate having a front surface and a back surface, the substrate selected to have at least a portion thereof forming part of a Schottky diode.
- a multijunction solar cell structure includes at least a first photovoltaic cell having a first photoactive junction therein and a second photovoltaic cell having a second photoactive junction therein overlaying at least a portion of the first photovoltaic cell.
- a Schottky diode is electrically connected across the at least first and second photovoltaic cells to protect the at least first and said second photovoltaic cells against reverse biasing.
- the Schottky diode is formed at least in part from the substrate and a diode contact formed over the substrate.
- a solar cell structure having protection against reverse biasing comprises a substrate having a front surface and a back surface and at least one photovoltaic cell over the front surface of the substrate.
- a front contact is applied over the at least one photovoltaic cell
- a back contact is applied over the back surface of the substrate.
- a trough extends through the at least one photovoltaic cell to expose at least a portion of the front surface of the substrate.
- a diode is formed over the exposed portion of the front surface of the substrate in the trough. The diode contact and the substrate together form a Schottky diode in the trough, which is electrically connected across the at least one photovoltaic cell.
- Figure 1 illustrates the layers of a multijunction solar cell structure formed over a substrate in accordance with one embodiment of the present invention
- Figure 2 illustrate a first processing step for forming a solar cell with protection against reverse biasing, showing a photoresist layer formed over the multijunction solar cell structure of Figure 1;
- Figure 3 illustrates a second processing step for forming a solar cell with protection against reverse biasing, showing a trough formed through the multijunction solar cell structure of Figure 2 extending to the front surface of the substrate;
- Figure 4 illustrates a third processing step for forming a solar cell with protection against reverse biasing, showing the photoresist layer of Figure 3 removed and a n-type doped island isolated within the trough;
- Figure 5 illustrates a fourth processing step for forming a solar cell with protection against reverse biasing, showing contacts formed on the structure
- Figure 6 illustrates a fifth processing step for forming a solar cell with protection against reverse biasing, showing a back cell contact formed on the back surface of the substrate;
- Figure 7 illustrates a sixth processing step for forming a solar cell with protection against reverse biasing, showing a jumper bar connecting a front cell contact and a diode contact, and a second interconnect connecting the island with a p-type portion of the substrate;
- Figure 8 illustrates an alternative embodiment of a solar cell with protection against reverse biasing, showing the metallic interconnects formed over insulator layers;
- Figure 9 illustrates an alternative embodiment of a solar cell with protection against reverse biasing, showing a Schottky diode formed in a recess on the back surface of the solar cell structure;
- Figure 10 illustrates a series of interconnected solar cell structures having Schottky diode protection when solar cells are exposed to light
- Figure 11 illustrates a series of interconnected solar cell structures having Schottky diode protection when the cells are shadowed.
- the present invention may contain circuits that can be manufacturable using well-known CMOS ("complementary metal-oxide semiconductor) technology, or other semiconductor manufacturing processes.
- CMOS complementary metal-oxide semiconductor
- the present invention may be implemented with other manufacturing processes for making digital devices.
- a multijunction solar cell circuit uses Schottky diodes as bypass diodes for providing reverse bias protection.
- a Schottky diode is formed at the interface between a metallic diode contact and a semiconductor substrate on which the solar cell is grown.
- the solar cell is a multijunction cell formed from at least group III, IV, or V materials.
- the solar cell includes a Ge substrate, which may further include a photoactive junction.
- a Schottky diode is provided in a trough or recess extending through the solar cell layers to a doped region on the front surface of the substrate.
- a solar cell structure comprises a substrate having a front surface and a back surface, the substrate selected to have a least a portion thereof forming part of a Schottky diode.
- a multijunction solar cell structure includes at least a first photovoltaic cell having a first photoactive junction therein and a second photovoltaic cell having a second photoactive junction therein overlaying at least a portion of the first photovoltaic cell.
- a Schottky diode is electrically connected across the at least first and second photovoltaic cells to protect the at least first and said second photovoltaic cells against reverse biasing.
- the Schottky diode is formed at least in part from the substrate and a diode contact formed over the substrate.
- a solar cell structure having protection against reverse biasing comprises a substrate having a front surface and a back surface and at least one photovoltaic cell over the front surface of the substrate.
- a front contact is applied over the at least one photovoltaic cell
- a back contact is applied over the back surface of the substrate.
- a trough extends through the at least one photovoltaic cell to expose at least a portion of the front surface of the substrate.
- a diode is formed over the exposed portion of the front surface of the substrate in the trough. The diode contact and the substrate together form a Schottky diode in the trough, which is electrically connected across the at least one photovoltaic cell.
- the solar cell structure comprises a substrate having a front surface and a back surface and at least one photovoltaic cell over the front surface of the substrate.
- a front contact is applied over the at least on photovoltaic cell
- a back contact is applied over the back surface of the substrate.
- a recess extends through the back contact to expose the back surface of the substrate.
- a diode contact is applied over the back surface of the substrate in the recess.
- the diode contact and the back surface of the substrate together form a Schottky diode in the recess which is electrically connected across the at lest one photovoltaic cell.
- this electrical connection is formed with a C-clamp that connects the diode contact to the front contact.
- a method of manufacturing a protected multijunction solar cell circuit is provided.
- a substrate is selected having a front surface and a back surface, the substrate having at least a portion thereof capable of forming a Schottky diode.
- a multijunction solar cell structure is formed over at least a portion of the front surface of the substrate.
- the multijunction solar cell structure includes at least a first photovoltaic cell having a first photovoltaic junction therein and a second photovoltaic cell having a second photoactive junction therein overlaying at least a portion of the first photovoltaic cell.
- a diode contact is formed over the substrate to form a Schottky diode at the interface between the diode contact and the substrate.
- the Schottky diode is electrically connected across the at least first and second photovoltaic cells to protect the at least first and said second photovoltaic cells against reverse biasing.
- the solar cell may be a single junction or multijunction solar cell.
- a bypass diode is provided on a multijunction solar cell structure, which may be a Schottky diode formed at the connection of a metallic contact and a semiconductor substrate.
- the solar cell/bypass diode device may be interconnected with other solar cells to form series and/or parallel strings of solar cells. The strings may be further connected to form a reliable and robust solar cell array.
- the solar cell array in one embodiment may be mounted to a space vehicle, thereby providing power to the space vehicle.
- Figure 1 shows a sequence of III-V layers 104-128 which are grown sequentially on a Ge substrate 102 in one embodiment of the present invention to form a multijunction solar cell structure 100.
- the Ge substrate 102 may further include a photoactive junction.
- the layers are epitaxially grown, meaning that they replicate the single crystalline structure of material.
- the growth parameters (deposition temperature, growth rate, compound alloy composition, and impurity dopant concentrations) are selected to provide layers with the desired electrical qualities and thickness, to thereby obtain the desired overall cell performance.
- the epitaxial techniques which may be used to grow the cell layers include, by way o example, MOCVD (metal-organic chemical vapor deposition) epitaxy, sometimes called OMVPE (organic-metal vapor phase epitaxy), MBE (molecular beam epitaxy), and MOMBE (metal-organic molecular beam epitaxy).
- MOCVD metal-organic chemical vapor deposition
- OMVPE organic-metal vapor phase epitaxy
- MBE molecular beam epitaxy
- MOMBE metal-organic molecular beam epitaxy
- a GaAs buffer layer 106 is grown over at least a portion of the substrate 102. At the interface between layer 102 and layer 106 a photoactive junction is formed, constituting the lower cell of the solar cell structure.
- a photoactive junction is formed, constituting the lower cell of the solar cell structure.
- the diffusion of As form the n-type layer 106 forms an n/p homojunction 104 in the substrate 102.
- the photoactive junction is an n+GaAs/n+Ge heterodiode.
- a highly n doped GaAs layer 108 and a highly p doped GaAs layer 110 are grown over at least a portion of the GaAs buffer layer 106.
- the combined layers 108 and 110 function as a tunnel diode.
- a p-type GaAs layer 112 is grown on the tunnel diode layer 110, and an n-type GaAs emitter layer 114 is formed over the base layer 112.
- the base layer 112 and the n type emitter layer 114 together form a middle cell stage.
- a highly n doped Al GaAs window layer 116 overlays the emitter layer 114.
- a tunnel diode including very highly doped n-type GalnP and p-type AlGaAs layers 118, 120, is grown over the window layer 116.
- An upper cell stage including a p doped base layer 122 is a highly n doped emitter layer 124, is formed over the tunnel diode.
- the upper cell base layer and emitter layer are formed of GalnP.
- the last two layers grown for the solar cell are respectively a highly n doped AllnP window layer 126 and a highly n-doped GaAs cap layer 128.
- the window layer 126 is a thin layer of wide band gap material that passivates (reduces carrier recombination) the surface onto which the front surface ohmic contacts are deposited.
- the contacts are in grid-finger form, to balance low electrical resistance and high optical transparency. However, other contact patterns may be used as well. Formation of these contacts is described below.
- the three cells, three- junction, solar cell structure 100, illustrated in Figure 1 is only one of may possible cell embodiments which can be used.
- a complementary structure with the polarities of one or more layers switched (i.e., n doped layers are, instead, p doped, and p doped layers are, instead, n doped) may be used.
- the cell and diode configurations illustrated in the figures and discussed below can be changed from n/p to p/n.
- the doping concentrations or layer thicknesses may be varied.
- the solar cell structure 100 may include four or more photovoltaic cells, or only one or two cells. Similarly, the solar cell structure may alternatively include only one junction or two or more junctions. By way of example, in one embodiment, the cell structure 100 may include four junctions. It will also be appreciated that the term "formed over" as used herein does not limit a layer to being formed directly on top of another layer, and thus, a structure having a layer "formed over" another layer can include one or more additional layers formed between the two layers.
- the solar cell structure 100 may include cells made from other materials, including but not limited to AlGaAs or InP.
- the substrate 102 may be formed using a variety of different materials.
- the solar cell 100 may use other semiconductors, including but not limited to GaAs, Si, or InP for the substrate, rather than the Ge substrate 102 illustrated in Figure 1.
- insulating substrates such as sapphire, may be used.
- the substrate 102 is a single crystal. If the solar cell structure 100 is intended for space use, such as on a space vehicle or satellite, then the cell materials are space-qualified for the appropriate space environment. For example, the solar cell structure 100 may be space qualified to operate in an AMO radiation environment.
- FIG 2-9 illustrate the formation of solar cell structures having a Schottky diode formed at the junction of the Ge substrate and a metallic contact formed on the Ge substrate. More particularly, Figures 7 and 8 describe embodiments in which the Schottky diode is formed in a trough or recess extending through the solar cell structure down to the upper surface of the substrate (i.e., the surface on which the solar cell is grown). Figure 9 describes an embodiment in which the Schottky diode is formed on the back surface of the substrate.
- the solar cell structure having bypass diode protection is formed by first epitaxially growing the layers shown in Figure 1 by conventional MOCVD and/or MBE technologies. As shown in Figure 2, portions of the front surface of the layers are then protected with a photoresist layer 130, which is exposed through a photomask (not shown) patterned to create open areas in the front surface of the structure. As shown in Figure 3, etching occurs through these open areas to form a trough 132 through the layers of the solar cell structure.
- a etchant to remove layers 106-128 is HC1 and a mixed acid comprising H 2 SO 4 , H 2 O 2 , and H 2 0 at a volume basis of (1 :8:5).
- an HBr etchant with a Br percentage greater than about 48% can be used to etch the epi-grown layers.
- portions of the n p homojunction 104 formed in the Ge substrate 102 are next removed within the trough 132 with a photoresist layer (not shown) and by using a second etchant, a solution of HF/H 2 O 2 /H 2 O prepared at various ratios.
- the ratio can vary from (1:1:2) to (1 :1 :10) on a volume basis.
- the etching temperature can vary from about 20°C to about 35°C.
- this etching step leaves an island 152 in the trough 132, the island 152 being part of the Ge substrate 102.
- the front surface of the island 152 is n-type Ge, more As-doped germanium.
- a recess 154 surrounds the island 152, exposing portion a p-type 156 of the Ge substrate.
- the photoresist layers are removed using acetone to leave the structure solar cell structure shown in Figure 4. Microstripping techniques may be used to remove any residual photoresist left remaining after the acetone removal process.
- the contact fabrication process including corresponding photoresist coating, baking, exposing, developing, metal evaporation, and lift off operations, can take place.
- photoresist layers (not shown) are coated over the whole front surface of the structure, including in the trough 132.
- the photoresist layers are then baked and exposed with a photomask which leaves opened areas where contacts are to be deposited to the front surface of the Ge substrate 102 on the island 152, to a small region of the exposed n-doped GaAs layer cap layer 128, and to the p-type Ge substrate surface 156.
- Metals are evaporated into the exposed areas and over the remaining photoresist layer.
- a front cell contact 134 is thereby formed on the cap layer 128, and contacts 136 and 158 are formed on the front surface of the island 152 in the trough 132.
- a fourth contact 160 is provided on the exposed surface 156 of the p-type Ge substrate.
- the contact 136 is made of a titanium material or other types of materials such as, for example Ti/Pd/Ag, to facilitate the formation of a Schottky diode as described below.
- the contact 134 may similarly be made of titanium or other suitable material.
- the contact 158 is made of gold or other suitable material, and the contact 160 is made of gold, titanium or other suitable material.
- the photoresist also provides open slots to provide gridlines and bars/pad contacts to the cell. Next, a lift-off process is performed. The solar cell structure 100 is immersed in acetone, causing the photoresist to swell, and thereby breaks the metal film everywhere except on the regions designated to retain contacts, including contacts 134, 136, 158 and 160.
- a back metal contact 138 is formed by evaporating a metallic material such as, for example Ag, over the back surface of the Ge substrate 102.
- the contacts 134, 136, 158, 160 and 138 are then heat-treated or sintered at about 400°C for about 5 minutes.
- Ohmic contacts are thereby formed between layer 134 and cap layer 128, and layer 138 and substrate 102.
- Ohmic contacts are also formed between the contact 158 and the n-type island 152, and the contact 160 and the p-type substrate 102. It will be appreciated that the contact 160 need not be provided on the front surface of the substrate, and therefore, could be provided at a p-type portion of the substrate on the back as well.
- a Schottky diode 142 is formed between the As-doped Ge 152 and contact 136.
- a further processing step may also include using the front contact metal 134 as an etch-mask, and etching the GaAs cap layer 128 off a major part of the exposed front surface.
- the cap layer 128 remains under the metallized areas, forming part of a low resistance contact mechanism.
- an anti-reflecting layer may be deposited.
- the solar cell structure 100 is completed by forming a first interconnect 162 between the contact 158 and the germanium substrate contact 160.
- the contact 158, the interconnect 162 and the contact 160 could be made from on piece of material.
- the interconnects may be jumper bars made of a material such as silver, although other suitable materials, such as silver coated invar, covar or other alloys and metals may be used as well.
- the interface of the metallic diode contact 136 and the As-doped semiconductor substrate 152 forms a Schottky diode 142.
- the contacts are sintered at a temperature of about 400°C for about 5 minutes, although sintering temperatures in the range of about 350°C to 450°C can also be used.
- sintering takes place at a temperature less than about 450°C in order to avoid formation of a high ohmic resistance contact between the contact 136 and the As-doped island 152.
- a second sintering step can be used to make the contacts stronger without damaging the diode characteristics. This second sintering takes place at 300°C for about 5 minutes.
- the Schottky diode provides protection against reverse biasing for the top, middle and bottom cells of the solar cell structure across which it is connected by the interconnects 140 and 162. It will be appreciated that the Schottky diode can also be formed to protect a fewer or greater number of cells.
- the Schottky diode can be used to protect both p/n and n/p solar cells. It will be appreciated that, for one embodiment, the formation of the Schottky diode is facilitated by the selection of a highly As doped germanium substrate such as, for example, on the order of about 5 x 10 16 cm “3 or higher. This doping can occur during n- type Ge ingot growth or by As diffusion during GaAs growth (for both n-type Ge and p- Type Ge). In the embodiment described above, the Ge substrate 102 is doped with Ga to make it p-type, and the following MOCVD process will diffuse high concentration As into the Ge substrate at layer 152.
- a highly As doped germanium substrate such as, for example, on the order of about 5 x 10 16 cm "3 or higher. This doping can occur during n- type Ge ingot growth or by As diffusion during GaAs growth (for both n-type Ge and p- Type Ge).
- the Ge substrate 102 is doped with Ga to make it
- This layer of As-doped Ge 152 can generate a Schottky diode with the Ti alloy 136 used as a metal contact.
- a Schottky diode can be formed by Ti alloy deposition without additional As diffusion.
- the diode contacts are formed of a titanium material such as, for example, a Ti/Pd/Ag alloy.
- other metals or alloys including but not limited to Ti/Au/Ag and Ti/Ge/Ni/Ag, can also form a Ge-Schottky diode.
- Figure 8 illustrates another embodiment of a solar cell structure 100 similar to the embodiment of Figure 7.
- the front cell contact 134 and the diode contact 136 are electrically connected with an interconnect 140 running along the walls of the trough 132.
- An insulating material 144 which may be a polyimide material, separates the metallic interconnect from the walls of the trough.
- Other materials such Al 2 O 3 , TiOx, and other inorganic materials can also function as the insulator.
- a second insulating material 146 can be used to separate the interconnect 162 from the walls of the island 152.
- Figure 9 illustrates another embodiment of a solar cell structure having bypass diode protection.
- a Schottky diode 142 is positioned on the back surface of the Ge substrate 102.
- the layers as shown in Figure 1 are first deposited.
- the Ge substrate is doped with As at the back surface, with doping occurring during ingot growth from residual GaAs inside the MOCVD chamber, or by a specific As diffusion step by turning the Ge wafer upside down. This forms as As-doped region 164 at the bottom surface of the substrate.
- the front contact 134 is formed as described above.
- the back contact 138 is formed, with a mask protecting an area of the back surface of the Ge substrate 102 in order to form a recess 148.
- a photoresist layer is coated over the entire back surface, and is baked an exposed with a photomask to leave opened areas where the contact is to be deposited to the back surface of the substrate.
- the metallic diode contact which may be a titanium material or a Ti/Pd/Ag alloy, is evaporated into the exposed area and over the remaining photoresist layer.
- a lift- off process is used to remove the photoresist, by immersing the solar cell structure in acetone, causing the photoresist to swell, and thereby breaks the metal film everywhere except on the regions designated to retain the diode contact 136.
- the interface of the metallic diode contact 136 and the Ge substrate 102 at As- doped region 164 forms a Schottky diode in the recess 148.
- the back side metal contact 138 is Au/Ge/Ni/Ag, which will not form a Schottky diode with the Ge substrate.
- the Schottky diode 142 is electrically connected with the front contact using a C-clamp 150, which is made of Ag or other suitable material. Thus, the C-clamp electrically connects the diode across all of the photovoltaic cells.
- a second contact 162 is provided on the back surface of the Ge substrate 102 to connect the n-type Ge substrate with the surrounding p-type Ge substrate.
- a contact 164 is formed on a p-type portion of the back surface, and an interconnect 170 is used to adjoin the contacts 166 and 168.
- the second contact on the As-doped portion of the germanium substrate, and the contact 168 may be made of titanium, gold or other suitable materials to form an ohmic contact with the p-type portion of the substrate.
- a variety of other interconnect techniques may be used to connect the solar cell structure to the Schottky diodes discussed above. The final choice may depend on the additional complexity and the effect on cell yields and costs which results from the use of these alternative approaches. Using at least some of the techniques described above, a solar cell incorporating a
- a Schottky diode with cascaded cells has achieved efficiencies of well over 25%, and even over 27.0%. These efficiencies are comparable to conventional cascade cells lacking the Schottky diode.
- a Schottky diode made with a Ge substrate has a forward bias voltage drop of approximately 0.3 to 0.6 volts when conducting 400 mA of forward current.
- the Ge diode generates less heat during operation.
- FIG 10 illustrates a device 1000 with a series of interconnected solar cell structures having bypass diodes protection in accordance to one embodiment of the present invention.
- the solar cell structures 1002-1006 are multijunction solar cell structures as shown in Figure 7.
- the solar cell structures 1002- 1006 further contain bypass diodes 1010-1014 and the bypass diodes 1010-1014 are deposited on the solar cell structures 1002-1006 for providing reverse bias protection.
- the device 1000 further includes cell interconnections 1020-1024 as coupling mechanism between individual solar cells.
- the bypass diodes 1010-1014 are Schottky diodes wherein one terminal of the Schottky diode is connected to the substrate of the solar cell while the other terminal of the Schottky diode is connected to the front cell contacts via interconnecting wires 1030. It should be apparent to one skill in the art that other arrangements between the solar cells or solar cell structures are possible.
- each illuminated cell in one embodiment, becomes forward biased and generates power and/or electrical current.
- the bypass diode such as for example a Schottky diode, comes reverse biased.
- the solar cell structure 1002 generates electrical current and passes the current from the solar cell structure 1002 to the solar cell structure 1004 through the cell interconnection 1020.
- the solar cell structure 1004 transports the electrical current to the solar cell structure 1006 via the cell connection 1022. It should be apparent to one skilled in the art that other arrangements of the solar cell structures are possible within the framework of the present invention.
- FIG 11 illustrates a solar cell structure 1100 having bypass diode for reverse bias protection when the solar cell structure 1100 is under the shadow.
- the solar cell structure 1100 is connected with a first cell connection 1110 for receiving electrical current and a second cell connection 1112 for sending the electrical current.
- the solar cell structure 1100 further includes a bypass diode 1104 for providing reverse bias protection.
- the bypass diode 1104 is a Schottky diode.
- the shadowed solar cell structure 1102 comes the reverse biased while the bypass diode, such as a Schottky diode, comes forward biased.
- the bypass diode passes electrical current received from the cell connection 1110 to the stage, which is not shown in Figure 11 , via the cell connection 1112.
- the bypass diode connected across the shadowed structure in turn becomes forward biased.
- bypass diode 1104 limits the reverse bias voltage across the shadowed structure 1102, thereby protecting the shadowed structure 1102. It should be apparent to one skilled in the art that this concept can be applied to various related solar cell structure arrangements.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002329656A AU2002329656A1 (en) | 2001-07-27 | 2002-07-26 | Solar cell having a bypass diode for reverse bias protection and method of fabrication |
JP2003517953A JP2005512306A (en) | 2001-07-27 | 2002-07-26 | Solar cell device having bypass diode for reverse bias protection and method for manufacturing the same |
EP02765896A EP1428267B1 (en) | 2001-07-27 | 2002-07-26 | Solar cell having a bypass diode for reverse bias protection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30850301P | 2001-07-27 | 2001-07-27 | |
US60/308,503 | 2001-07-27 |
Publications (4)
Publication Number | Publication Date |
---|---|
WO2003012880A2 true WO2003012880A2 (en) | 2003-02-13 |
WO2003012880A8 WO2003012880A8 (en) | 2003-04-17 |
WO2003012880A9 WO2003012880A9 (en) | 2003-11-13 |
WO2003012880A3 WO2003012880A3 (en) | 2004-03-11 |
Family
ID=23194233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/023978 WO2003012880A2 (en) | 2001-07-27 | 2002-07-26 | Solar cell having a bypass diode for reverse bias protection and method of fabrication |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1428267B1 (en) |
AU (1) | AU2002329656A1 (en) |
WO (1) | WO2003012880A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006027225A1 (en) * | 2004-09-11 | 2006-03-16 | Azur Space Solar Power Gmbh | Solar cell assembly and method for connecting a string of solar cells |
ES2362293A1 (en) * | 2007-08-31 | 2011-07-01 | Emcore Corporation | Solar cell receiver having an insulated bypass diode |
WO2014154769A1 (en) * | 2013-03-29 | 2014-10-02 | Soitec | Advanced cpv solar cell assembly process |
WO2015032241A1 (en) * | 2013-09-05 | 2015-03-12 | 厦门市三安光电科技有限公司 | Solar battery integrated with bypass diode, and preparation method therefor |
CN109768104A (en) * | 2018-12-28 | 2019-05-17 | 中国电子科技集团公司第十八研究所 | Self-protection type integrated diode battery structure and preparation method thereof |
RU2703840C1 (en) * | 2019-01-10 | 2019-10-22 | Публичное акционерное общество "Сатурн" (ПАО "Сатурн") | Method for manufacturing a photoconverter on a germanium soldered substrate and a device for its implementation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY170447A (en) | 2012-10-16 | 2019-07-31 | Solexel Inc | Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000021138A1 (en) * | 1998-10-05 | 2000-04-13 | Astrium Gmbh | Solar cell comprising a bypass diode |
US6103970A (en) * | 1998-08-20 | 2000-08-15 | Tecstar Power Systems, Inc. | Solar cell having a front-mounted bypass diode |
EP1056137A1 (en) * | 1999-05-11 | 2000-11-29 | Angewandte Solarenergie - ASE GmbH | Solar cell with a protection diode and its manufacturing method |
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
-
2002
- 2002-07-26 WO PCT/US2002/023978 patent/WO2003012880A2/en active Application Filing
- 2002-07-26 AU AU2002329656A patent/AU2002329656A1/en not_active Abandoned
- 2002-07-26 EP EP02765896A patent/EP1428267B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103970A (en) * | 1998-08-20 | 2000-08-15 | Tecstar Power Systems, Inc. | Solar cell having a front-mounted bypass diode |
WO2000021138A1 (en) * | 1998-10-05 | 2000-04-13 | Astrium Gmbh | Solar cell comprising a bypass diode |
EP1056137A1 (en) * | 1999-05-11 | 2000-11-29 | Angewandte Solarenergie - ASE GmbH | Solar cell with a protection diode and its manufacturing method |
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006027225A1 (en) * | 2004-09-11 | 2006-03-16 | Azur Space Solar Power Gmbh | Solar cell assembly and method for connecting a string of solar cells |
US10074761B2 (en) | 2004-09-11 | 2018-09-11 | Azur Space Solar Power Gmbh | Solar cell assembly and method for connecting a string of solar cells |
ES2362293A1 (en) * | 2007-08-31 | 2011-07-01 | Emcore Corporation | Solar cell receiver having an insulated bypass diode |
WO2014154769A1 (en) * | 2013-03-29 | 2014-10-02 | Soitec | Advanced cpv solar cell assembly process |
FR3004002A1 (en) * | 2013-03-29 | 2014-10-03 | Soitec Silicon On Insulator | PROCESS FOR ADVANCED ASSEMBLY OF CONCENTRATED PHOTOVOLTAIC CELL |
CN105247685B (en) * | 2013-03-29 | 2017-10-27 | 索泰克公司 | Advanced CPV solar cell modules processing |
US10361326B2 (en) | 2013-03-29 | 2019-07-23 | Soitec | Advanced CPV solar cell assembly process |
WO2015032241A1 (en) * | 2013-09-05 | 2015-03-12 | 厦门市三安光电科技有限公司 | Solar battery integrated with bypass diode, and preparation method therefor |
CN109768104A (en) * | 2018-12-28 | 2019-05-17 | 中国电子科技集团公司第十八研究所 | Self-protection type integrated diode battery structure and preparation method thereof |
RU2703840C1 (en) * | 2019-01-10 | 2019-10-22 | Публичное акционерное общество "Сатурн" (ПАО "Сатурн") | Method for manufacturing a photoconverter on a germanium soldered substrate and a device for its implementation |
Also Published As
Publication number | Publication date |
---|---|
WO2003012880A9 (en) | 2003-11-13 |
AU2002329656A1 (en) | 2003-02-17 |
WO2003012880A8 (en) | 2003-04-17 |
WO2003012880A3 (en) | 2004-03-11 |
EP1428267A2 (en) | 2004-06-16 |
EP1428267B1 (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7449630B2 (en) | Solar cell having an integral monolithically grown bypass diode | |
US5716459A (en) | Monolithically integrated solar cell microarray and fabrication method | |
JP3661941B2 (en) | Monolithic bypass diode and solar cell string device | |
US5009720A (en) | Solar cell | |
US6617508B2 (en) | Solar cell having a front-mounted bypass diode | |
US5616185A (en) | Solar cell with integrated bypass diode and method | |
EP1443566B1 (en) | Solar cell having an integral monolithically grown bypass diode | |
US6680432B2 (en) | Apparatus and method for optimizing the efficiency of a bypass diode in multijunction solar cells | |
US6552259B1 (en) | Solar cell with bypass function and multi-junction stacked type solar cell with bypass function, and method for manufacturing these devices | |
US8187907B1 (en) | Solder structures for fabrication of inverted metamorphic multijunction solar cells | |
WO1999062125A1 (en) | Solar cell having an integral monolithically grown bypass diode | |
US4997491A (en) | Solar cell and a production method therefor | |
US4575577A (en) | Ternary III-V multicolor solar cells containing a quaternary window layer and a quaternary transition layer | |
EP1428267B1 (en) | Solar cell having a bypass diode for reverse bias protection | |
JP2005512306A (en) | Solar cell device having bypass diode for reverse bias protection and method for manufacturing the same | |
JP4606959B2 (en) | Solar cell with bypass diode | |
JPH08274358A (en) | Iii-v compound semiconductor solar cell | |
JPH0548134A (en) | Solar battery and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: IN PCT GAZETTE 07/2003 UNDER (30) REPLACE "60/305,503" BY "60/308,503" |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/11-11/11, DRAWINGS, REPLACED BY NEW PAGES 1/11-11/11; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002765896 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003517953 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 2002765896 Country of ref document: EP |