[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003003345A1 - Dispositif et procede d'interpolation des composantes de frequence d'un signal - Google Patents

Dispositif et procede d'interpolation des composantes de frequence d'un signal Download PDF

Info

Publication number
WO2003003345A1
WO2003003345A1 PCT/JP2001/005620 JP0105620W WO03003345A1 WO 2003003345 A1 WO2003003345 A1 WO 2003003345A1 JP 0105620 W JP0105620 W JP 0105620W WO 03003345 A1 WO03003345 A1 WO 03003345A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
component
suppressed
band
Prior art date
Application number
PCT/JP2001/005620
Other languages
English (en)
French (fr)
Inventor
Yasushi Sato
Original Assignee
Kabushiki Kaisha Kenwood
Kenwood Geobit Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kenwood, Kenwood Geobit Corporation filed Critical Kabushiki Kaisha Kenwood
Priority to PCT/JP2001/005620 priority Critical patent/WO2003003345A1/ja
Priority to JP2003509435A priority patent/JP4106624B2/ja
Priority to US10/362,421 priority patent/US7400651B2/en
Publication of WO2003003345A1 publication Critical patent/WO2003003345A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/667Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a division in frequency subbands
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/097Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters using prototype waveform decomposition or prototype waveform interpolative [PWI] coders

Definitions

  • the present invention provides a spectral distribution by synthesizing a frequency component of a given signal from which a frequency component in a specific frequency band is removed or suppressed to an approximate value and interpolating the approximate value into the given signal.
  • the present invention relates to a frequency interpolation device and a method for improving the frequency interpolation.
  • Another method is to extract an audio component in which a fundamental tone and a harmonic exist as a pair from the original audio signal, and use the extracted audio component to generate an original audio signal.
  • harmonics are only generated by distorting the waveform of the audio signal using a limiting circuit or the like, and these harmonics are originally included in the original audio signal. It is not certain that something can be approximated.
  • the overtone component of the pure tone timbre cannot be predicted and extrapolated.
  • the audio component from which the harmonic component has been removed as a result of the band limitation it is not possible to extrapolate by inferring the removed harmonic component.
  • the target signal is subjected to frequency analysis to estimate the spectrum pattern or the intensity of the suppressed frequency component from the residual spectrum pattern, and synthesizes these to add to the target signal. Some are added.
  • This method is excellent for improving sound quality, but has practical problems. Because this method inevitably requires high-resolution short-time Fourier transform and inverse transform over a wide band of the main signal of interest, the amount of computation used for digital signal processing is enormous. Because it is.
  • DSP digital signal processor
  • the present invention has been made in view of the above-mentioned circumstances, and provides a signal interpolation device and a signal interpolation method for restoring, with high quality, an audio signal in which a specific frequency band of an original signal is suppressed, and It is another object of the present invention to provide a signal interpolation device and a signal interpolation method having a high practical value that can efficiently restore a signal close to the original signal while using a relatively small operation scale.
  • a frequency interpolating apparatus provides an original signal obtained by approximately reconstructing a suppressed frequency component from an input signal in which a frequency component in a specific frequency band of the original signal is suppressed.
  • the input signal is divided into a plurality of component signals each having a respective frequency component in a plurality of frequency bands, and using the divided component signals, It basically operates to combine the component signals having the suppressed band frequency components and add them to the input signal.
  • Each of the divided component signals is further frequency-converted into a signal of a predetermined same frequency band, and a signal having the suppressed frequency component is obtained as a linear combination of the frequency-converted component signals.
  • the apparatus of the present invention includes a means for extracting spectrum envelope information of a frequency component remaining without being suppressed in the input signal, and the combining is performed based on the spectrum envelope information.
  • the level of the component signal is determined appropriately.
  • the spectrum envelope information is represented by a predetermined function expression obtained by frequency-analyzing the input signal, and the function expression is to improve the efficiency of processing.
  • the simplest linear function linear equation is used, and the plurality of component signals are generated using a plurality of band-pass filters having a constant pass bandwidth.
  • a digital audio signal obtained by sampling and quantizing an analog audio signal is typically used as an input signal.
  • a frequency interpolating device of the present invention includes: a unit that divides the input signal into a plurality of component signals each having a respective frequency component in a plurality of frequency bands; Means for frequency-converting a plurality of component signals to make the frequency band of each component signal the same, and means for frequency-analyzing the input signal to extract spectrum envelope information of the remaining frequency components. And synthesizing a component signal having the suppressed frequency band component using the divided and frequency-converted component signal.
  • Means for determining the level of the synthesized signal based on the extracted spectrum envelope information, and means for subjecting the frequency-converted component signal to inverse frequency conversion and returning to the original frequency band signal It can be said that it consists of
  • the synthesis of the interpolation component signal having the suppressed frequency band component is performed by linearly combining several component signals having the remaining frequency component.
  • the frequency interpolation apparatus of the present invention includes: a means for generating a component signal including a part of a frequency component remaining without being suppressed by filtering the input signal; and performing frequency conversion on the component signal. Accordingly, a signal having the suppressed frequency component can be combined and realized by a simple configuration including a unit for adding the signal to the input signal.
  • the simplification device further includes means for extracting the spectrum envelope information of the frequency components remaining without being suppressed in the input signal, and the synthesis is performed based on the spectrum envelope information. Signal level is determined.
  • the signal interpolation device of the present invention employs the above configuration, the frequency components originally included in the original signal (before the specific band component is suppressed) can be relatively faithfully synthesized, and the suppression can be achieved. It can be used for signal interpolation. For this reason, a signal with a high degree of approximation to the original signal is restored, and it is possible to reproduce an audio signal or the like with low distortion and high sound quality.
  • the apparatus of the present invention does not use the Fourier transform (for high-bandwidth signals and high resolution) and the inverse transform to process the main signal itself.
  • the signal processing is performed by focusing on the frequency components of the signal
  • the method of the present invention converts the main signal itself from the “time domain” to the “frequency domain” (or conversely, the “frequency domain”).
  • the signal No processing is performed.
  • the Fourier transform processing is partially used, but this is a processing for estimating the envelope of the residual spectrum. (The conversion does not require very high resolution.)
  • the processing of the main signal is performed using a linear filter (ie, a band-pass filter) instead of a Fourier transform. Therefore, there is an advantage that the amount of calculation in the entire signal processing can be greatly reduced, and the frequency interpolation device of the present invention completes the calculation processing required for digital signal processing using only a single-chip DSP for audio. It has high practical value.
  • FIG. 1 is a diagram showing a basic configuration of a frequency interpolation device of the present invention.
  • FIG. 2 is a diagram schematically showing the form of a signal in each step of the first half of signal processing performed by the apparatus of the present invention.
  • FIG. 3 is a diagram schematically showing a form of a signal in each step of signal processing in the latter half performed by the device of the present invention.
  • FIG. 4 is a block circuit diagram of a preferred embodiment of the frequency interpolation device of the present invention.
  • FIG. 5 is a diagram showing a specific internal configuration of a frequency interpolation unit in the block circuit shown in FIG.
  • FIG. 6 is a diagram showing an example of frequency interpolation.
  • FIG. 7 is a diagram showing the operation and effect of the filter inserted to smooth the temporal fluctuation of the frequency analysis data (Fourier coefficients).
  • FIG. 8 is a diagram showing an actual example of a remaining spectrum pattern in a signal and a spectrum pattern after interpolation, and a linear function line representing envelope information.
  • FIG. 9 is a flowchart of a series of processing steps relating to extraction processing of spectrum envelope information.
  • FIG. 10 is a block diagram of a simplified frequency interpolation device which is another embodiment of the frequency interpolation device of the present invention.
  • FIG. 11 is a diagram showing a basic configuration of a frequency interpolation device using a non-linear circuit according to the related art.
  • FIG. 1 is a diagram showing a basic configuration of a frequency interpolation device according to the present invention.
  • the device of the present invention is mainly composed of a band division section, a frequency conversion section, a frequency interpolation section, a frequency inverse conversion section, and a band synthesis section. It consists of
  • a signal to be subjected to frequency interpolation (a frequency component of a specific frequency band has been removed or suppressed in advance) is first input to the band division section 10.
  • the frequency band of the plurality of input signals is a predetermined (M number) (F., F 1; F 2, ⁇ ⁇ ⁇ ⁇ , F M _ X) of M with the respective frequency components in component signal (SS 2, S 3, ⁇ ⁇ ⁇ ⁇ , S M _ X) is divided into.
  • the divided component signals are combined, and a desired signal having frequency components interpolated is extracted as an output.
  • FIG. 2 and FIG. 3 schematically show the form of signals in each processing step so that the flow of the signal processing described above can be intuitively grasped.
  • Fig. 2 (a) shows the input signal (in which the frequency component of a specific band has been removed or suppressed) in the time domain expression format.
  • FIG. 2 (b) shows a frequency domain display of the signal.
  • Fig. 2 (c) shows the spectral arrangement of each component signal after frequency conversion.
  • Figure 2 (c) is the frequency spectrum distribution before frequency interpolation
  • the third view (a) shows a scan Bae-vector distribution after interpolation, spectrum suppression band F 6, F 7 and F 8 It can be seen that the torque distribution is interpolated.
  • Fig. 3 (b) shows the spectrum distribution after frequency inverse transformation
  • Fig. 3 (c) shows the time domain representation of the signal having this spectrum distribution, that is, the output after frequency interpolation. It represents the time series of the signal itself.
  • FIG. 4 is a diagram showing a preferred embodiment of the frequency interpolation device of the present invention.
  • the integrated bandpass filter section 60, mixer X, and lowpass filter section are known to those skilled in the art as a QMF (Quadrature Filter Filter) analyzer.
  • QMF Quadrature Filter Filter
  • the significance of the component signals in different frequency bands into component signals of the same frequency band frequency conversion "bandpass fill evening (BPF. ⁇ BPF M - filter obtained by passing the - output signal Is a set of multiple locations
  • Component signal S whose frequency band has been shifted. ', S,' ⁇ ⁇ , Sw-i 'are then supplied to the frequency interpolation unit 80, where the frequency components of the suppressed band are synthesized and interpolated as described later.
  • This frequency interpolation unit uses an input signal
  • FFT frequency analysis
  • S Interpolated in the frequency interpolation unit 80 (a signal in which the suppressed frequency component is synthesized and added) S.
  • mixer 80 and the low-pass filter section are integrated is known to those skilled in the art as a QMF synthesizer.
  • the frequency interpolation unit 80 includes the component signals S ′ ′, S 2 ′, S 3 ′,..., S M — divided into M bands and subjected to frequency conversion.
  • Component signal S that is input and interpolated. ", S- ⁇ ⁇ , S M — Is output.
  • component signals in a band in which (frequency components) are suppressed are synthesized by linearly combining these signals using component signals in a remaining band (of frequency components).
  • Linear combination coefficient values a ⁇ , a! 2 aa 2 1 a 2 1 a 2 3 a 3 (M ⁇ 3) is generally determined based on the characteristics of the remaining spectrum in the signal. In the present invention, these coefficient values are determined based on the envelope of the residual spectrum and in relation to the estimated value of the signal level to be compensated for the suppressed frequency, as described later.
  • FIG. 5 is a diagram showing a specific configuration example of the frequency interpolation unit 80.
  • the signal is divided into 10 frequency bands F 0 , F 1 ; F 2 , F 3,..., F 7 , F 8 and F 9 , and the 10 (frequency-converted) components signal
  • a part of the linear combination coefficient in the above equation (2) is used. Is equivalent to Note that the coefficient values k 2 , k 3, ( ⁇ 1) are obtained (as described later) based on the envelope function of the remaining spectrum of the signal.
  • Fig. 6 shows another example of the frequency interpolation operation in another expression.
  • the signal is assumed to be divided into 19 bands (F., F...., F 18 ), and the bands F 14 , F 15 , F 16 , F 17 and F 18 is assumed to be the suppression band.
  • Figure 6 (a) is suppressed band F of signal C 9 band F 9 to F i 3 remaining '-C 3' correspond directly respectively! 4 to F i 8 are shown.
  • FIG. 6 (b) is, the suppression band F 14 to F signals C 14 to be interpolated to 18 '-C 18' is
  • the frequency analyzer 110 specifically, the Fourier transformer
  • the low-pass filter 120 and the spectrum envelope detector 130 in the block diagram of FIG. State.
  • These components perform frequency analysis (specifically, Fourier transform) by the frequency analyzer 110 to discriminate and detect the suppressed frequency band (if it is not known beforehand), and to scan the remaining frequency components. It is used to extract vector envelope information. Signal speed Since the vector is changing from moment to moment, this frequency analysis is a short-time spectrum analysis, typically by applying a predetermined time window to the digital input signal and applying a predetermined sample value for each frame. A discrete Fourier transform is performed.
  • the detected frequency analysis data (for example, parameters such as the complex Fourier coefficients obtained by the FFT operation) changes every frame, but it does not change stepwise in a discontinuous manner.
  • LPF low-pass filter
  • FIG. 7 shows how the parameter values change before and after such smoothing processing.
  • the spectral envelope detector 130 expresses the spectral envelope in the remaining frequency band based on the obtained frequency analysis results as a functional expression, and then (in the frequency interpolation unit) frequency interpolation heavy Mizuno only coefficient values (e.g., k 2, k 3) is to calculate the output.
  • frequency interpolation heavy Mizuno only coefficient values e.g., k 2, k 3
  • a short-time spectrum is obtained for a certain frame as a result of frequency analysis of the input signal (for example, as shown in FIG. 8 (a)).
  • f c is the lower limit frequency of the suppression band.
  • a function expression representing an envelope is obtained as quantitative data of the spectrum envelope characteristic.
  • the simplest is a linear function approximating the envelope
  • Is calculated by the least squares approximation method Specifically, for a spectrum intensity SP (f) as a function of frequency, a value obtained by averaging and sampling a given frequency band by N at intervals ⁇ f is SP 1 ; SP 2 , SP 3 , ⁇ ⁇ ⁇ ⁇ ⁇ SP N — i and SP N (SP i SP u in the example in the figure).
  • the coefficients A and B of the linear function equation (5) should be obtained so that the measure is minimized.
  • the suppression band to be interpolated The spectral intensity L (interpolation coefficient) is obtained. That is, the interpolation coefficient (spectral intensity of the signal to be interpolated) is determined so that the envelope of the interpolated spectrum can also be accurately approximated by a linear function.
  • the frequency point of the suppression band to be interpolated for example, SP N + 1, S PN + 2, ⁇ ⁇ ⁇ , in the illustrated that S [rho and Micromax points New + Micromax ( Figure 8, SP 8, SP 9, SP i. 3 points).
  • FIG. 9 is a flowchart showing the coefficient calculation process.
  • a given input signal is spectrally analyzed (typically subjected to a Fast Fourier Transform (FFT)) to obtain frequency analysis parameters (typically complex Fourier coefficients) representing the frequency spectrum of the signal.
  • FFT Fast Fourier Transform
  • This parameter is calculated for each frame.
  • a low Smoothing processing is performed by passing through the bandpass filter (Fig. 4, 120) (step 210).
  • the spectral parameters for example, complex Fourier coefficients R (f), I (f)
  • the amplitude term of the spectrum VR (f) 2 + 1 (f) 2 ) is obtained.
  • a function representing the envelope of the spectrum is calculated using the method described above (step 220).
  • Weighting factor L) is calculated (step 250).
  • the weighted synthesized signal (having the frequency component of the suppression band) is added to the band-limited signal to be interpolated.
  • a uniform frequency band for example, a band [0, f]).
  • a uniform frequency band for example, a band [0, f]).
  • an input signal is filtered by a band-pass filter 310 to generate a signal of a band component to be used for interpolation (for example, a high-frequency component adjacent to a suppression band), and then the signal is suppressed.
  • the frequency is converted to a band.
  • a sine wave signal of a predetermined frequency is multiplied, and Phil evening rings.
  • the center frequency of the band to be subjected to interpolation is fi, if the center frequency of the suppression band is f 2 is the signal subjected to the interpolation (output signal of the band-pass 3 1 0 Fill evening) (f 2 - f (Chi g ports, sin ⁇ 2 ⁇ (f 2 - f x) t ⁇ ) sine wave of the frequency of it is sufficient to begin taking in Mioro wave component near band f 2 by multiplying.
  • reference numeral 330 denotes a multiplier for assigning a weighting coefficient, and the coefficient can be determined by the method described above for the first embodiment. Then, the spectrum envelope function is obtained, and the level L of the interpolation signal is determined based on the function (that is, the coefficient is obtained).
  • High-frequency components such as audio signals from which high-frequency components have been removed (or suppressed) in advance, can be restored with good approximation, and a signal tone close to the original signal can be synthesized. As a result, it is possible to reproduce a high-quality audio signal whose treble range has been sufficiently extended. Further, since the amount of calculation required for the digital signal processing for frequency interpolation of the present invention is relatively small, the device can be configured with a small-scale circuit, and the cost can be significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

明細書 信号の周波数成分を補間するための装置および方法 技術分野
本発明は、 特定の周波数帯域における周波数成分が除去又は抑圧され ている所与の信号の当該周波数成分を近似値に合成してこれを該所与 の信号に補間することによりスぺク トル分布を改善するための周波数 補間装置および方法に関する。
背景技術
MP 3 (MP EG 1 a u d i o l a y e r 3) 形成のデータの 酉己信、 及び、 FM (F r e q u e n c y Mo d u l a t i o n) 放送 やテレビジョン音声多重放送等の手法による音楽などの供給が近年盛 んになっている。 これらの手法では、 帯域が過度に広くなることによる データ量の増大や占有帯域幅の広がりを回避するために、 対象となるォ 一ディォ信号などの高域周波数成分を抑圧して上限周波数を下げるよ うにしている。 例えば、 上限周波数が 2 0 kH zのオーディオ信号の約 1 5 kH z以上の周波数成分を抑圧して上限周波数を低下させれば、 サ ンプリング周波数は元の信号の 3 4で済むため、 データレートの低減 につながり有利である。 しかしながら、 当然のことながら、 高域周波数 成分が抑圧されたオーディォ信号は、 元の信号に比べその音質が劣化す る。 このため、 当該抑圧された周波数成分を、 何らかの形で近似的に復 元する試みがなされている。 このような周波数成分復元の手法としては、 対象となる信号を歪ませて、 その結果発生する歪み信号から抑圧帯域の 補間に供する周波数帯域成分をフィル夕にて抽出し、 これを補間の対象 となる信号に加算してもとの信号に近似して信号を復元するようにし たものがある。
また別の手法としては、 原オーディォ信号から基音と倍音が組で存在 する音声成分を抽出して、 抽出した音声成分を用い、 原オーディオ信号 の帯域より高域側の倍音成分を予測して原オーディォ信号に外挿する というものがある。
しかしながら、 前者の手法においては、 オーディオ信号の波形をリミ ッ夕回路等を用いて歪ませることにより高調波を発生させるに過ぎな いので、 この高調波は元のオーディォ信号に本来含まれているものを近 似し得るものであるかは定かでない。
また、 元の音声等の帯域を制限して得られる原オーディォ信号に後者 の手法を適用した場合、 純音の音色成分については、 倍音成分を予測し て外揷することができず、 同様に、 帯域が制限された結果倍音成分が除 去された音声成分については除去された倍音成分を推測して外挿する ことができない。
さらに、 最近考案された手法として、 対象信号を周波数分析して残存 スぺクトルパターンから抑圧周波数成分のスぺクトルパターン、 あるい はその強度等を推定し、 これを合成して対象信号に加算付加するように したものがある。 この手法は、 音質改善上、 優れたものであるが、 実用 上問題がある。 というのは、 この手法は、 必然的に対象となる主信号の 広帯域にわたる高分解能の短時間フーリェ変換および逆変換処理を要 求するものであるため、 デジタル信号処理に用する演算量が膨大となる からである。
これは、 デジタル信号プロセッサ (D S P ) の演算速度および回路規 摸についての過度の要求につながり、 実用価値を低下せしめることとな る。
本発明は、 上記実状に鑑みてなされたものであり、 原信号の特定の周 波数帯域が抑圧されたオーディォ信号を高品質で復元するための信号 補間装置及び信号補間方法を提供すること、 並びに、 比較的小さな演算 規模を用いながらも原信号に近い信号を効率的に復元できるという実 用的価値の高い信号補間装置及び信号補間方法を提供することを目的 とする。
発明の開示 上記目的を達成するために、 本発明の周波数補間装置は、 原信号の特 定周波数帯域における周波数成分が抑圧された入力信号から、 該抑圧さ れた周波数成分を近似的に復元して原信号に近い信号を再生すること を目的として、 該入力信号を、 各々が複数の周波数帯域におけるそれぞ れの周波数成分を有するような複数の成分信号に分割し、 この分割され た成分信号を用いて該抑圧された帯域周波数成分を有する成分信号を 合成し、 及び該入力信号に付加するよう、 基本的に動作する。
そして、 該分割されたそれぞれの成分信号は、 さらに所定の同一の周 波数帯域の信号に周波数変換されて、 該周波数変換された成分信号の線 形結合として、 該抑圧された周波数成分を有する信号が合成されるよう になっている。 さらに、 本発明の装置においては、 該入力信号における 抑圧されないで残存する周波数成分のスぺク トル包絡線情報を抽出す る手段を含み、 このスペク トル包絡線情報に基づいて、 該合成される成 分信号のレベルが適正に決定されるようになっている。 また、好適には、 該スぺク トル包絡線情報は、 該入力信号を周波数分析することにより求 められる所定の関数式により表されるものであり、 この関数式としては、 処理を効率化すべく最も簡単な一次関数直線式が用いられる、 また該複 数の成分信号は、 一定の通過帯域幅を有する複数個の帯域通過フィル夕 を用いて生成されるようになっている。 なお、 本発明において、 入力信 号としては、典型的にはアナログ ·オーディォ信号を、サンプリングし、 かつ量子化することにより得られたディジタル · オーディォ信号が用い られる。
本発明を別の局面から把えるとすれば、 本発明の周波数補間装置は、 該入力信号を、 各々が複数の周波数帯域におけるそれぞれの周波数成分 を有する複数の成分信号に分割する手段と、 該複数の成分信号を周波数 変換処理してそれぞれの成分信号の周波数帯域を同一にする為の手段 と、 該入力信号を周波数分析して残存する周波数成分のスぺクトル包絡 線情報を抽出する手段と、 該分割されかつ周波数変換された成分信号を 用いて該抑圧された周波数帯域成分を有する成分信号を合成するとと もに、 抽出されたスぺク トル包絡線情報に基づいて合成信号のレベルを 決定する手段と、 該周波数変換された成分信号を逆周波数変換して、 も との周波数帯域の信号にもどす手段とから成るものであるということ ができる。 この装置においては、 該抑圧された周波数帯域成分を有する 補間用成分信号の合成は、 該残存する周波数成分を有するいくつかの成 分信号を線形結合することにより行われる。
さらに、 本発明の周波数補間装置は、 該入力信号をフィルタリングす ることにより、 抑圧されないで残存する周波数成分の一部を含む成分信 号を生成する手段と、 この成分信号に周波数変換を施すことにより、 該 抑圧された周波数成分を有する信号を合成して、 これを該入力信号に付 加する手段とを含む簡易な構成により実現することも可能である。 この 簡易化装置においては、 さらに該入力信号における抑圧されないで残存 する周波数成分のスぺク トル包絡線情報を抽出する手段が含まれ、 この スぺク トル包絡線情報に基づいて、 該合成される信号のレベルが決定さ れるようになっている。
本発明の信号補間装置は、 上記のような構成を採用するため、 (特定 の帯域成分が抑圧される前の) 原信号に本来含まれていた周波数成分を 比較的忠実に合成し得、 抑圧信号の補間に供することができる。 このた め、 原信号に対して近似度の良い信号が復元されることとなり、 オーデ ィォ信号等を低歪み、 かつ高音質で再生することが可能となる。
その上、 非線形動作をする回路構成は一切用いられていないため、 信 号歪が若干存在するとしても、 その信号歪は聴感上許容され得る線形性 のものに、 限られるものである。 したがって、 聴感上の歪感は極めて少 ないといえる。
さらに、本発明の装置においては、主信号そのものを処理するために、 (広帯域の信号を対象とし、 かつ高分解能の) フーリエ変換及びその逆 変換を用いていない。 本発明の手法は、 信号の周波数成分に着目して信 号処理がなされるものではあるが、 主信号そのものを "時間領域" から "周波数領域"へと変換する (あるいは逆に "周波数領域"の信号を "時 間領域" の信号にもどす) 処理はおこなわれていない。 なるほど、 本発 明においても、 フーリエ変換処理を一部で用いてはいるが、 これは残存 スぺク トルの包絡線を推定する処理に留まるものである (その変換は、 さほど高分解能を要しない)。 本発明において、 主信号の処理は、 フー リエ変換ではなく線形のフィルタ (即ち帯域通過型フィル夕) を用いて 行っている。 このため、 信号処理全体の演算量が大幅に低減できるとい う長所がある。 したがって、 本発明の周波数補間装置は、 オーディオ用 の 1チップの D S Pのみでデジタル信号処理に必要な演算処理を完遂 でき実用な価値が高いといえる。
図面の簡単な説明
第 1図は、 本発明の周波数補間装置の基本構成を示す図である。
第 2図は、 本発明の装置により行われる前半の信号処理の各過程にお ける信号の形態を模式的に示す図である。
第 3図は、 本発明の装置により行われる後半の信号処理の各過程にお ける信号の形態を模式的に示す図である。
第 4図は、 本発明の周波数補間装置の好適な一実施例のブロック回路 図である。
第 5図は、 第 2図に示すブロック回路中の周波数補間ュニッ トの一具 体的内部構成を示す図である。
第 6図は、 周波数補間の実例を示す図である。
第 7図は、 周波数分析データ (フーリエ係数) の時間的変動を平滑か するために挿入されるフィル夕の作用効果を示す図である。
第 8図は、 信号における残存するスぺク トルパターンおよび補間後の スぺク トルパターンの実例と、 包絡線情報を表す一次関数直線を示す図 である。
第 9図は、 スぺク トル包絡線情報の抽出処理に関する一連の処理ステ ップのフローチャートである。
第 1 0図は、 本発明の周波数補間装置の別の実施例である簡易型周波 数補間装置のプロック図である。 第 1 1図は、 従来技術の、 非線形回路を用いた周波数補間装置の基本 構成を示す図である。
発明の実施の形態
以下図面を参照して、 本発明による周波数補間装置の実施の形態を詳 細に説明する。
第 1図は、 本発明の周波数補間装置の基本構成を示す図であり、 本発 明の装置が、 大きく帯域分割セクション、 周波数変換セクション、 周波 数補間セクション、 周波数逆変換セクションおよび帯域合成セクション から成るものであることを示している。
本発明においては周波数補間の対象となる (予め特定の周波数帯域の 周波数成分が除去又は抑圧された) 信号が、 まず帯域分割セクション 1 0に入力される。 ここでは、 入力信号が予め定めた複数個 (M個) の周 波数帯域 (F。, F 1; F 2, · · · · , FM_X) におけるそれぞれの周波 数成分を有する M個の成分信号 (S S 2, S 3, · · · ·, SM_X) に 分割される。 ついで、 帯域分割により得られた各成分信号 S , ( i = 0 , · · ·, M— 1 ) は周波数変換セクション 2 0に供給されて周波数 シフ卜が施され、 各成分信号の周波数帯域 F。, F 1; F2, · · · · , F M— iが特定の 1つの周波数帯域 (典型的には、 最低周波数の帯域 F。) に一律に変換される。 次に、 周波数補間セクション 30においては、 周 波数変換された成分信号 S ( i = l, 2 , · · · , M— 1 ) のうちの いくつかを用いて抑圧された帯域の成分信号 (例えば、 高域周波数帯域 の成分信号 SM2', S ' M_い および S ' M) が合成される。 これが、 事実上の周波数補間処理に相当する。 その後、 周波数逆変換セクション 40において、 周波数変換されていた成分信号 S i ' ( i = 0〜M— 1 ) の周波数帯域がもとにもどされる。 そして、 最後に、 分割されていた成 分信号が結合され、 周波数成分の補間された所望の信号が出力として取 り出されることとなる。
第 2図及び第 3図は、 以上説明した信号処理の流れを直感的に把握し 得るよう、 各処理過程における信号の形態を模式的に示したものである。 第 2図 ( a ) は、 (特定帯域の周波数成分が除去もしくは抑圧された) 入力信号を時間領域表現形式で示したものである。 第 2図 (b) は、 信 号の周波数領域表示であり、 例示として、 入力信号が帯域幅 f 。を有す る M個 (M= 9 ) の周波数帯域に分割される様子を示している。 ここで は、 第 7、 8および 9番目の周波数帯域 (F 6, F 7および F 8) の周波 数成分が抑圧されている場合を想定している。 第 2図 (c ) は、 周波数 変換後の各成分信号のスペク トル配置を表し、 いずれも周波数成分 (ス ベク トル) の占有帯域が 0〜 f 。 (H z ) となっていることがわかる。 第 2図 (c ) は周波数補間前の周波数スペク トル分布を、 また第 3図 ( a) は補間後のスぺク トル分布を示しており、 抑圧帯域 F 6, F 7及び F 8のスペク トル分布が補間される様子がわかる。 第 3図 (b) は、 周 波数逆変換後のスペク トル分布を示すものであり、 また第 3図 ( c ) は このスペク トル分布を有する信号の時間領域表現、 即ち、 周波数補間後 の出力信号そのものの時系列を表している。
次に、 第 4図は、 本発明の周波数補間装置の好適な実施例を示す図で ある。
第 1 図を参照しての説明で述べた帯域分割成分信号 S い S 2, S 3, · · · , S M— は、 M個のバンドパスフィル夕 6 0 (B P F。〜B P Fu_ ,) により生成される。 ついで、 成分信号 Sい S 2, S 3, · · · , S M— は、 それぞれミキサ部 Xにて周波数 n f 。 (n = 2 , 3, · · · M) を有する正弦波信号 S i n ( 2 η π f 。 t ) にて乗算され、 かつ低域通 過フィル夕 7 0 (L P F 0, - · · · , L P FM_X) により低域ろ波され て、 その周波数帯域が最低周波数帯域 [ 0、 f 。] にシフトされる。 な お、 帯域通過フィル夕部 6 0と、 ミキサ Xと、 低域通過フィル夕部とを 一体化したものは、 当業者には QMF (Q u a d r a t u r e M i r r o r F i l t e r ) アナライザとして知られている。 このように、 異なる周波数帯域の成分信号を同一の周波数帯域の成分信号へと周波 数変換をする意義は、 「帯域通過フィル夕 (B P F。〜B P FM— を通 して得たフィルタ-出力信号の集合を複数ロケ一ションを有する 1つの フィル夕バンクにおさめ、 そのフィルタバンク内の各ロケーションに格 納された各信号 S i ( i = 0〜M— 1 ) を任意にとり出して相互に交換 あるいは加減算又はコピーなどをすることが自由にできるようにな る。」 という点にある。 周波数帯域がシフ トされた成分信号 S。 ', S , ' · ·, Sw—i ' は、 ついで周波数補間ユニッ ト 8 0に供給され、 そこでは後述するように、 抑圧された帯域の周波数成分が合成され、 か つ補間される。 この周波数補間ユニッ トには、 入力信号を周波数分析器
(F F T) 1 1 0により周波数分析し (典型的には、 フーリエ変換し)、 かつ低域ろ波された信号が供給されている。 これら F F T 1 1 0および 低域通過フィルタ 1 2 0の動作機能については、 後に詳述するが、 基本 的には、 入力信号の抑圧された特定帯域が既知でない場合にそれを検出 するとともに、 残存するスペク トルの (補間用信号のレベルを定めるた めの) 包絡線情報を求めるためのものである。 周波数補間ユニッ ト 8 0 において補間処理された (抑圧された周波数成分が合成復元されて付加 された信号) S。", S S 2", · · · , SM— は、 ミキサー部 Yに て周波数 n ' f o (n ' = 1 , 2 , 3 , · · ·, (Μ— 1 )) を有する正弦 波信号 S i n ( 2 n ' ττ f 。 t ) にて乗算され、 かつ低域通過フィル夕 9 0 (L P F。〜L P FM— にて (その低域成分が) ろ波され、 結果 として、 補間後の成分信号 (S。", S · - · , S M- ) はもとの周 波数帯域の信号にもどされる。
なお、 ミキサ 8 0と、 低域通過フィルタ部とを一体化したものは、 当 業者には QMFシンセサイザとして知られている。
最後に、 これら成分信号 S i" ( i = 0 , 〜, (M— 1 )) は、 加算器 1 0 0にて互いに加え合わされて出力信号 bとして取り出される。
さて、 本発明の本題である周波数補間ュニッ ト 8 0の構成およびそこ でなされる信号処理機能について説明する。
上述したように、 周波数補間ユニッ ト 8 0には、 M個の帯域に分割さ れ、 かつ周波数変換された成分信号 Sェ ', S 2', S 3', · · ·, SM— が入力され、 補間処理のなされた成分信号 S。", S - · ·, SM— が出力される。
本発明の補間処理においては、 (周波数成分が) 抑圧された帯域にお ける成分信号が、 (周波数成分の) 残存する帯域における成分信号を用 いて、 これら信号を線形結合することにより合成される。
出力が入力の線形結合で表されるような周波数補間ュニッ ト 8 0入 力と出力関係は一般に次のように表すことができる。
Figure imgf000011_0001
( 1) ここで、 M個の周波数帯域のうち、 高域部の周波数帯域 F M - 3 ' F M . および の周波数成分が予め抑制されていた (即ち、 SM3' = S - 2 = SM_ = 0) ものとする。 この場合、 残りの周波数帯域 (F。 〜FM_4) の各周波数成分は 0でないと考えられるから S。 ' = S i ' = · · • =SM_1' ≠ 0である。 また、 抑圧帯域以外の成分信号につい ては、 入力がそのまま出力されるものとすると、 上記第 ( 1 ) 式は、 以 下のように表される。
Figure imgf000012_0001
(2) と表現される。
線形結合係数の値 a ^, a! 2 a a 2 1 a 2 1 a 2 3 a 3 (M - 3 ) は、 一般には、 信号中の残存するスペク トルの特性に基づい て決められるものである。 本発明においては、 これら係数値は後述する ように、 残存スペク トルの包絡線基づき、 抑圧された周波数に対して補 間すべき信号レベルの推定値との関連で決められる。
第 5図は、 周波数補間ュニッ ト 80の具体的構成例を示す図である。 ここでは、 信号が 1 0個の周波数帯域 F 0, F 1; F 2, F 3 , · · · · , F 7, F8および F 9に分割され、 10個の (周波数変換後の) 成分信号
S 0', S ', S 2 ', S 7 S 8 ' および S 9, が生成され る場合であって、 高域の 3つの帯域 F 7 F 8および F 9が抑圧帯域であ る場合を想定している。 第 5図の例においては、 抑圧帯域 F 7に低周波 数側で隣接する周波数帯域 F F 5および F fiの信号 C C およ びじ をそれぞれ所定レベル減衰させて、 即ち、 重み係数 k ,, k k (< 1 ) を掛けたもの k , · C k C ' および k · C を抑圧帯域に加算 (つまり、 抑圧帯域の成分を補間) するようにしてい る。 この構成例は、 上述の第 (2) 式における線形結合係数の一部を
Figure imgf000013_0001
とした場合に相当する。 なお、 係数値 k 2, k 3 , (< 1 ) は、 信号 の残存するスペクトルの包絡線関数に基づいて (後述のように) 求めら れるものである。
第 6図は、 周波数補間操作についての別の事例を別の表現法にて表し たものである。この第 6図において、信号は 1 9個の帯域(F。, Fい ···, F 18) に分割されたものとし、 また、 帯域 F 14, F 15, F 16, F 17お よび F 18を抑圧帯域と仮定している。 第 6図 (a) は、 残存する帯域 F 9〜F i 3の信号 C 9 '〜C 3 ' がそれぞれそのまま対応する抑圧帯域 F! 4〜F i 8に加えられる場合を示している。 また、 第 6図 (b) は、 抑圧 帯域 F 14〜F 18に対し補間されるべき信号 C14' 〜C 18' は、
1 2 3
c14, = 一 c0' + _ C + — c2' +
1 0 1 0 1 0
+ c9
1 2 3
c15, = - Co' + - c + - c2, +
1 1 1 1 1 1
0
+ ― C 9 + 10
1 1
1 2
c18, = — c。, 十 — c + + c13
14 14 として求められる場合を示している。 つまり、 寄与率を考慮した重み づけをして、 抑圧された帯域 (例えば、 F 1 t) に対応する補間帯域 (例 えば、 F9) の成分信号 (例えば、 C9') には、 最も高い重みづけ ( 1 ) を与え、 その帯域から低い方に遠ざかるにつれ、 (寄与率を減ずるよう にして) 徐々に重みづけの値を減ずるようになっている。
ここで、 第 6図 (b) に示す補間操作を、 上記行列式 ( 1 ) の表現形 式で略記すると、 次のようになる。
Figure imgf000014_0001
次に、 第 4図のブロック図中周波数分析器 1 1 0 (具体的にはフーリ ェ変換器)、 低域通過フィル夕 1 2 0およびスぺク トル包絡線検出器 1 3 0の役割について述べる。 これら構成要素は、 周波数分析器 1 1 0に より周波数分析 (具体的にはフーリエ変換) して抑圧された周波数帯域 を識別検出 (予めそれが既知でない場合) するともに、 残存する周波数 成分のスぺク トル包絡線情報を抽出するために用いられる。 信号のスぺ クトルは時々刻々変化するものであるため、 この周波数分析は短時間ス ぺク トル分析であり、 典型的にはデジタル入力信号に所定の時間窓をか け、 各フレームについて所定のサンプル値についての離散的フーリェ変 換が行われる。 検出される周波数分析デ一夕 (例えば、 F F T演算によ る複素フーリエ係数のようなパラメータ) は各フレーム毎に変化するが、 それが階段状に不連続に変化しないよう、 つまりその急激な変化を抑え、 パラメータがゆるやかに変化するよう、 平滑化のための低域フィルタ一 (L P F) 1 2 0を通すようにする。 このような平滑処理の前後におけ るパラメ一夕値の変化の様子を第 7図に示す。 これにより高域補間を避 け、 補間後の波形の歪を最小限に迎えることが可能となる。
最後に、 スペク トル包絡線検出器 1 3 0は、 得られた周波数分析結果 に基づいて残存する周波数帯域におけるスぺク トル包絡線を関数式で 表し、 およびそれから (周波数補間ユニッ ト内の) 周波数補間用重みづ け係数値 (例えば、 k2, k 3) を算出し出力するものである。
入力信号を周波数分析した結果あるフレームについて (例えば、 第 8 図 (a)) に示されるように短時間スペク トルが得られたとする。 f cは 抑圧帯域の下限周波数である。 このとき、 残存スぺク トルパターン (a) から、 スぺクトル包絡線特性の定量データとして包絡線を表す関数式を 求める。 例えば、 最も簡単には包絡線を近似する一次関数
H ( f ) = A f + B ( 5)
を最小 2乗近似法により求める。 具体的には周波数の関数としてのスぺ ク トル強度 S P ( f ) について、 所与の周波数帯域を N等分し間隔 Δ f 毎に平均化しかつサンプルして得た値を S P 1; S P 2, S P 3, · · · ·, S PN— iおよび S PN (図の例示では、 S P i S P u) とする。
このとさ
1 N
<5 = - ∑ (H ( f s) - S P i) 2 · - · (6)
N i = 1
という測度が最小と成るよう一次関数式 (5) の係数 Aおよび Bを求め ればよい。 次に、 この一次関数式に基づいて、 補間されるべき抑圧帯域 のスペク トル強度 L (補間係数) が求められる。 即ち、 補間後のスぺク トルの包絡線もやはり一次関数式で精度よく近似され得るように、 補間 係数し (補間されるべき信号のスペク トル強度) を決めるようにする。 補間されるべき抑圧帯域の周波数ポイントを例えば、 S PN+ 1S PN + 2, · · ·, S ΡΝ + Μの Μポイントとする (第 8図の例示では、 S P 8, S P9, S P i。の 3ポイント)。 抑圧帯域における Mボイン卜の周波数成 分を、抑圧帯域に隣接する残存する帯域の周波の周波数ボイント S PNM, S PN M+い S PN_M + 2 · · · · S PN (図の例では、 S P5, S P 6, S P 7) (正確には、 これを L倍したもの) で補間するものとする。 このとき、 次式で表される 2乗平均誤差が最小値をとるように Lの値を 決定するようにすればよい。
δ ' = - ∑ (H ( f — S P ;)
N i =1
1 M
+ 一 ∑ (H ( N + j ) - S P N + j
M j =1
- ∑ (H ( f i) — S P i)
N i = 1
1
+ - ∑ (H ( f N+ j) - k X S PN_5 + j) 2
M j =1
• · · (7)
ここで、 上記 ( 7) 式の第 1項は先の演算で求められる最小値 5m i n で表され、 また、 H ( f ) は周波数成分が残存する帯域のスペク トル包 絡線特性により H ( f ) =A f +B (A, B : 定値) として既に算出さ れているから、 これらの値を用いて補間レベル (補間スペク トル強度) Lを具体的に求めることができる。
以上説明した、 入力信号の残存成分のスぺク トル包絡線に基づく補間 係数の算出過程をフローチヤ一卜で示したのが第 9図である。
まず、 所与の入力信号をスペクトル分析して (典型的には高速フーリ ェ変換 (F FT) を施して)、 信号の周波数スペク トルを表す周波数分 析パラメータ (典型的には複素フーリエ係数) を求める (ステップ 2 0 0)。 このパラメ一夕は、 フレーム毎に求められるものであり、 フレー ム間における不連続な変化 (第 7図 ( a)) を例えば、 第 7図 (b) に 示すように緩和するために、 低域通過フィル夕 (第 4図、 1 20) を通 過させて平滑化処理を行う (ステップ 2 1 0)。 得られたスペク トルパ ラメ一夕 (例えば、 複素フーリエ係数 R ( f )、 I ( f )) を用いてスぺ クトルの振幅項 (V R ( f ) 2+ 1 ( f ) 2) を求め、 前述した手法によ りスぺク トルの包絡線を表す関数を計算する (ステップ 2 2 0 )。一方、 残存する成分信号から抑圧帯域の成分信号(補間用信号)を合成する(ス テツプ 240 ) とともに、 包絡線関数式 H ( f ) =A f +Bから補間用 信号のレベル (即ち、 補間用重みづけ係数 L) を算出する (ステップ 2 5 0)。 最後に重みづけされた (抑圧帯域の周波数成分を有する) 合成 信号を補間の対象となる帯域制限信号に付加することとする。
上述の実施例における、 (その具体的構成が第 4図に示されるような) 周波数補間装置については、 入力信号を帯域分割した後、 一律に一定の 周波数帯域 (例えば、 帯域 [ 0 , f 。]) へと周波数変換するようにして いた。 このようにすることにより、 フィルタバンクとしたての操作が容 易となるメリッ トあるが、 必ずしもこの方法による必要はない。 補間に 供する周波数帯域が事前に判明している場合には、 その帯域の成分のみ を (帯域通過フィルタなどで) 抽出してその帯域の成分信号を抑圧帯域 に直接周波数変換するようにしてもよい。 こうすることにより回路構成 が簡略化できる。 この簡略化構成の例を示したのが第 1 0図である。 こ の方式においては、 入力信号が、 帯域通過フィルタ 3 1 0によりろ波さ れ、 補間に供する帯域成分 (例えば、 抑圧帯域に隣接する高域成分) の 信号が生成され、 ついでその信号が抑圧帯域へと周波数変換される。 周 波数変換の具体的方法としては、 所定の周波数の正弦波信号を乗算して、 フィル夕リングする。 例えば、 補間に供する帯域の中心周波数が f iで あり、 抑圧帯域の中心周波数が f 2の場合には、 補間に供する信号 (帯 域通過 3 1 0フィル夕の出力信号) に( f 2— f の周波数の正弦波(g口 ち、 s i n { 2 κ ( f 2 - f x ) t } ) を乗算して f 2の近傍帯域の成分の みをろ波してとり出すようにすればよい。 第 1 0図おいて 3 3 0は重み づけ係数を与える乗算器であるがこの係数の決め方については第一の 実施例について上述した手法をそのままもちいることができる。 即ち、 入力信号を周波数分析してスぺク トル包絡線関数を求め、 それに基づい て補間用信号のレベル Lを定める (つまり、 係数を求める) ようにすれ ばよい。
産業上の利用可能性
予め高域周波数成分が除去 (もしくは抑圧) されたオーディオ信号等 の高域成分を良い近似度で復元し、 もとの原信号に近い信号音を合成す ることができる。 このため高音域が十分に伸びた高品質のオーディォ信 号の再生が可能となる。 また、 本発明の周波数補間用デジタル信号処理 に要求される演算量は比較的少ないため小規模の回路にて装置を構成 でき、 コストを大幅に低減化することができる。

Claims

請求の範囲
1 . 原信号の特定周波数帯域における周波数成分が抑圧された入力信 号から、 該抑圧された周波数成分を近似的に復元して原信号に近い信号 を再生するための周波数補間装置であって、
該入力信号を、 各々が複数の周波数帯域におけるそれぞれの周波数成 分を有するような複数の成分信号に分割し、 この分割された成分信号を 用いて該抑圧された帯域の周波数成分を有する成分信号を合成し、 該入 力信号に付加するようにしたことを特徴とする周波数補間装置。
2 . 請求項 1に記載の周波数補間装置において、
該分割された成分信号の各々を、 同一の周波数帯域の信号に周波数変 換して、 該周波数変換された成分信号の線形結合として抑圧された周波 数帯域成分を有する成分信号を合成するものである周波数補間装置。
3 . 請求項 1に記載の周波数補間装置において、
該入力信号における抑圧されないで残存する周波数成分のスぺク ト ル包絡線情報を抽出する手段を含み、 このスぺク トル包絡線情報に基づ いて、 該合成される成分信号のレベルを決定するようにした周波数補間
4 . 請求項 3に記載の周波数補間装置において、
該スぺク トル包絡線情報は、 該入力信号を周波数分析することにより 求められる関数式により表されるものである周波数補間装置。
5 . 請求項 4に記載の周波数補間装置において、
該関数式が一次関数である周波数補間装置。
6 . 請求項 1に記載の周波数補間装置において、
該複数の成分信号が、 一定の通過帯域幅を有する複数個の帯域通過フ ィル夕を用いて生成されるものである周波数補間装置。
7 . 請求項 1乃至 6に記載の周波数補間装置において、
該入力信号は、 アナログ · オーディオ信号を、 サンプリングし、 かつ 量子化することにより得られたディジタル 'オーディォ信号である周波 数補間装置。
8 . 原信号の特定周波数帯域における周波数成分が抑圧された入力信 号から、 該抑圧された周波数成分を近似的に復元して原信号に近い信号 を再生するための周波数補間装置であって、
該入力信号を、 各々が複数の周波数帯域におけるそれぞれの周波数成 分を有する複数の成分信号に分割する手段と、
該複数の成分信号を周波数変換処理してそれぞれの成分信号の周波 数帯域を同一にするため手段と、
該入力信号を周波数分析して、 残存する周波数成分のスぺク トル包絡 線情報を抽出する手段と、
該分割されかつ周波数変換された成分信号を用いて該抑圧された周 波数成分を有する補間用成分信号を合成するととともに、 抽出されたス ぺク トル包絡線情報に基づいて合成信号のレベルを決定する手段と、 該周波数変換された成分信号を逆周波数変換して、 もとの周波数帯域 の信号にもどす手段とを含む周波数補間装置。
9 . 請求項 8に記載の周波数補間装置において、
該抑圧された周波数帯域成分を有する補間用成分信号の合成が、 該残 存する周波数成分を有するいくつかの成分信号の線形結合により行わ れる周波数補間装置。
1 0 . 原信号の特定周波数帯域における周波数成分が抑圧された入力信 号から、 該抑圧された周波数成分を近似的に復元して原信号に近い信号 を再生するための周波数補間装置であって、
該入力信号を、 フィルタリングすることにより抑圧されないで残存す る周波数成分の一部を含む成分信号を生成し、 この成分信号に周波数変 換を施すことにより、 該抑圧された周波数成分を有する信号を合成して、 これを該入力信号に付加するようにしたことを特徴とする周波数補間
1 1 . 請求項 1 0に記載の周波数補間装置において、
該入力信号における抑圧されないで残存する周波数成分のスぺク ト ル包絡線情報を抽出する手段を含み、 このスぺク トル包絡線情報に基づ いて、 該合成される信号のレベルを決定するようにした周波数補間装置。
1 2 . 原信号の特定周波数帯域における周波数成分が抑圧された入力信 号から、 該抑圧された周波数成分を近似的に復元して原信号に近い信号 を再生するための周波数補間方法であって、
該入力信号を、 各々が複数の周波数帯域におけるそれぞれの周波数成 分を有するような複数の成分信号に分割し、 この分割された成分信号を 用いて該抑圧された帯域の周波数成分を有する成分信号を合成し、 及び 該入力信号に付加する各ステツプを含むことを特徴とする周波数補間 方法。
1 3 . 請求項 1 2に記載の周波数補間方法において、
該分割された成分信号の各々を、 同一の周波数帯域の信号に周波数変 換して、 該周波数変換された成分信号の線形結合として抑圧された周波 数帯域成分を有する成分信号を合成するものである周波数補間方法。
1 4 . 原信号の特定周波数帯域における周波数成分が抑圧された入力信 号から、 該抑圧された周波数成分を近似的に復元して原信号に近い信号 を再生するための周波数補間方法であって、
該入力信号を、 各々が複数の周波数帯域におけるそれぞれの周波数成 分を有する複数の成分信号に分割するステップと、
該複数の成分信号を周波数変換処理してそれぞれの成分信号の周波 数帯域を同一にするためステップと、
該入力信号を周波数分析して、 残存する周波数成分のスぺク トル包絡 線情報を抽出するステップと、
該分割されかつ周波数変換された成分信号を用いて該抑圧された周 波数成分を有する補間用成分信号を合成するととともに、 抽出されたス ぺク トル包絡線情報に基づいて合成信号のレベルを決定するステツプ と、
該周波数変換された成分信号を逆周波数変換して、 もとの周波数帯域 の信号にもどすステップとを含む周波数補間方法。
1 5 . 請求項 1 4に記載の周波数補間方法において、
該抑圧された周波数帯域成分を有する補間用成分信号の合成が、 該残 存する周波数成分を有するいくつかの成分信号の線形結合により行わ れる周波数補間方法。
1 6 . 原信号の特定周波数帯域における周波数成分が抑圧された入力信 号から、 該抑圧された周波数成分を近似的に復元して原信号に近い信号 を再生するための周波数補間方法であって、
該入力信号を、 フィル夕リングすることにより抑圧されないで残存す る周波数成分の一部を含む成分信号を生成し、 この成分信号に周波数変 換を施すことにより、 該抑圧された周波数成分を有する信号を合成して、 これを該入力信号に付加するようにしたことを特徴とする周波数補間 方法。
1 7 . 請求項 1 6に記載の周波数補間方法において、
該入力信号における抑圧されないで残存する周波数成分のスぺク ト ル包絡線情報を抽出する手段を含み、 このスぺク トル包絡線情報に基づ いて、 該合成される信号のレベルを決定するようにした周波数補間方法。
PCT/JP2001/005620 2001-06-29 2001-06-29 Dispositif et procede d'interpolation des composantes de frequence d'un signal WO2003003345A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2001/005620 WO2003003345A1 (fr) 2001-06-29 2001-06-29 Dispositif et procede d'interpolation des composantes de frequence d'un signal
JP2003509435A JP4106624B2 (ja) 2001-06-29 2001-06-29 信号の周波数成分を補間するための装置および方法
US10/362,421 US7400651B2 (en) 2001-06-29 2001-06-29 Device and method for interpolating frequency components of signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/005620 WO2003003345A1 (fr) 2001-06-29 2001-06-29 Dispositif et procede d'interpolation des composantes de frequence d'un signal

Publications (1)

Publication Number Publication Date
WO2003003345A1 true WO2003003345A1 (fr) 2003-01-09

Family

ID=11737498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005620 WO2003003345A1 (fr) 2001-06-29 2001-06-29 Dispositif et procede d'interpolation des composantes de frequence d'un signal

Country Status (3)

Country Link
US (1) US7400651B2 (ja)
JP (1) JP4106624B2 (ja)
WO (1) WO2003003345A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040749A1 (ja) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. スペクトル符号化装置、スペクトル復号化装置、音響信号送信装置、音響信号受信装置、およびこれらの方法
WO2007010817A1 (ja) * 2005-07-20 2007-01-25 Kyushu Institute Of Technology 高域信号補間方法及び高域信号補間装置
WO2007064023A1 (ja) * 2005-11-30 2007-06-07 Kabushiki Kaisha Kenwood 補間装置、音再生装置、補間方法および補間プログラム
JP2007532934A (ja) * 2004-01-23 2007-11-15 マイクロソフト コーポレーション 広義知覚類似性(wide−senseperceptualsimilarity)を使用するデジタルメディアスペクトルデータの効率的なコーディング
JP2008129542A (ja) * 2006-11-24 2008-06-05 Fujitsu Ltd 復号化装置および復号化方法
JP2009530675A (ja) * 2006-10-25 2009-08-27 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン オーディオ副帯値を生成する装置及び方法、並びに、時間領域オーディオサンプルを生成する装置及び方法
JP2010079275A (ja) * 2008-08-29 2010-04-08 Sony Corp 周波数帯域拡大装置及び方法、符号化装置及び方法、復号化装置及び方法、並びにプログラム
US7805293B2 (en) 2003-02-27 2010-09-28 Oki Electric Industry Co., Ltd. Band correcting apparatus
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
JP2013148920A (ja) * 2009-01-16 2013-08-01 Dolby International Ab クロス生成物により向上された高調波転換
US8554569B2 (en) 2001-12-14 2013-10-08 Microsoft Corporation Quality improvement techniques in an audio encoder
US8645146B2 (en) 2007-06-29 2014-02-04 Microsoft Corporation Bitstream syntax for multi-process audio decoding
CN108022599A (zh) * 2014-02-07 2018-05-11 皇家飞利浦有限公司 音频信号解码器中改进的频带扩展
USRE50158E1 (en) 2006-10-25 2024-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395817C (zh) * 2001-11-14 2008-06-18 松下电器产业株式会社 编码设备、解码设备和解码方法
US7587144B2 (en) * 2004-01-12 2009-09-08 Oewaves, Inc. Tunable radio frequency and microwave photonic filters
JP2007322153A (ja) * 2006-05-30 2007-12-13 Ono Sokki Co Ltd スペクトル内挿方法、スペクトル内挿装置、および、スペクトル内挿プログラム
JP4972742B2 (ja) * 2006-10-17 2012-07-11 国立大学法人九州工業大学 高域信号補間方法及び高域信号補間装置
JP6305694B2 (ja) * 2013-05-31 2018-04-04 クラリオン株式会社 信号処理装置及び信号処理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235424A (ja) * 1989-03-09 1990-09-18 Fujitsu Ltd 時間切替型帯域分割音声符号化方式および装置
JPH03254223A (ja) * 1990-03-02 1991-11-13 Eastman Kodak Japan Kk アナログデータ伝送方式
JPH0685607A (ja) * 1992-08-31 1994-03-25 Alpine Electron Inc 高域成分復元装置
JPH06222799A (ja) * 1992-10-09 1994-08-12 American Teleph & Telegr Co <Att> 音声信号の符号化方法と符号化音声信号の復号化方法およびそのシステム
JPH06294830A (ja) * 1993-01-22 1994-10-21 Hewlett Packard Co <Hp> 周波数領域の解析を強化するための方法と装置
JPH0990992A (ja) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 広帯域音声信号復元方法
JPH09258787A (ja) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd 狭帯域音声信号の周波数帯域拡張回路
JPH1097287A (ja) * 1996-07-30 1998-04-14 Atr Ningen Joho Tsushin Kenkyusho:Kk 周期信号変換方法、音変換方法および信号分析方法
JP2000036755A (ja) * 1998-05-15 2000-02-02 Sony Corp 符号変換方法及び装置、並びにプログラム供給媒体
JP2001083995A (ja) * 1999-09-13 2001-03-30 Matsushita Electric Ind Co Ltd サブバンド符号化・復号方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674125A (en) * 1983-06-27 1987-06-16 Rca Corporation Real-time hierarchal pyramid signal processing apparatus
JPH05172869A (ja) 1991-11-29 1993-07-13 Sanyo Electric Co Ltd スペクトラムアナライザ
JP3747492B2 (ja) * 1995-06-20 2006-02-22 ソニー株式会社 音声信号の再生方法及び再生装置
US6473533B1 (en) * 1996-10-25 2002-10-29 Fuji Xerox Co., Ltd. Image encoding apparatus and image decoding apparatus
SE512719C2 (sv) * 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
US6829360B1 (en) * 1999-05-14 2004-12-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for expanding band of audio signal
JP4792613B2 (ja) * 1999-09-29 2011-10-12 ソニー株式会社 情報処理装置および方法、並びに記録媒体
US6836761B1 (en) * 1999-10-21 2004-12-28 Yamaha Corporation Voice converter for assimilation by frame synthesis with temporal alignment
JP2001356799A (ja) * 2000-06-12 2001-12-26 Toshiba Corp タイム/ピッチ変換装置及びタイム/ピッチ変換方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235424A (ja) * 1989-03-09 1990-09-18 Fujitsu Ltd 時間切替型帯域分割音声符号化方式および装置
JPH03254223A (ja) * 1990-03-02 1991-11-13 Eastman Kodak Japan Kk アナログデータ伝送方式
JPH0685607A (ja) * 1992-08-31 1994-03-25 Alpine Electron Inc 高域成分復元装置
JPH06222799A (ja) * 1992-10-09 1994-08-12 American Teleph & Telegr Co <Att> 音声信号の符号化方法と符号化音声信号の復号化方法およびそのシステム
JPH06294830A (ja) * 1993-01-22 1994-10-21 Hewlett Packard Co <Hp> 周波数領域の解析を強化するための方法と装置
JPH0990992A (ja) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 広帯域音声信号復元方法
JPH09258787A (ja) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd 狭帯域音声信号の周波数帯域拡張回路
JPH1097287A (ja) * 1996-07-30 1998-04-14 Atr Ningen Joho Tsushin Kenkyusho:Kk 周期信号変換方法、音変換方法および信号分析方法
JP2000036755A (ja) * 1998-05-15 2000-02-02 Sony Corp 符号変換方法及び装置、並びにプログラム供給媒体
JP2001083995A (ja) * 1999-09-13 2001-03-30 Matsushita Electric Ind Co Ltd サブバンド符号化・復号方法

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443525B2 (en) 2001-12-14 2016-09-13 Microsoft Technology Licensing, Llc Quality improvement techniques in an audio encoder
US8805696B2 (en) 2001-12-14 2014-08-12 Microsoft Corporation Quality improvement techniques in an audio encoder
US8554569B2 (en) 2001-12-14 2013-10-08 Microsoft Corporation Quality improvement techniques in an audio encoder
US7805293B2 (en) 2003-02-27 2010-09-28 Oki Electric Industry Co., Ltd. Band correcting apparatus
US8315322B2 (en) 2003-10-23 2012-11-20 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
US7949057B2 (en) 2003-10-23 2011-05-24 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
WO2005040749A1 (ja) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. スペクトル符号化装置、スペクトル復号化装置、音響信号送信装置、音響信号受信装置、およびこれらの方法
US8208570B2 (en) 2003-10-23 2012-06-26 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
US8275061B2 (en) 2003-10-23 2012-09-25 Panasonic Corporation Spectrum coding apparatus, spectrum decoding apparatus, acoustic signal transmission apparatus, acoustic signal reception apparatus and methods thereof
JP2007532934A (ja) * 2004-01-23 2007-11-15 マイクロソフト コーポレーション 広義知覚類似性(wide−senseperceptualsimilarity)を使用するデジタルメディアスペクトルデータの効率的なコーディング
JP4745986B2 (ja) * 2004-01-23 2011-08-10 マイクロソフト コーポレーション 広義知覚類似性(wide−senseperceptualsimilarity)を使用するデジタルメディアスペクトルデータの効率的なコーディング
US8645127B2 (en) 2004-01-23 2014-02-04 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
WO2007010817A1 (ja) * 2005-07-20 2007-01-25 Kyushu Institute Of Technology 高域信号補間方法及び高域信号補間装置
JP2007025480A (ja) * 2005-07-20 2007-02-01 Kyushu Institute Of Technology 高域信号補間方法及び高域信号補間装置
JP4701392B2 (ja) * 2005-07-20 2011-06-15 国立大学法人九州工業大学 高域信号補間方法及び高域信号補間装置
WO2007064023A1 (ja) * 2005-11-30 2007-06-07 Kabushiki Kaisha Kenwood 補間装置、音再生装置、補間方法および補間プログラム
US8438015B2 (en) 2006-10-25 2013-05-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
US8775193B2 (en) 2006-10-25 2014-07-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
US8452605B2 (en) 2006-10-25 2013-05-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50159E1 (en) 2006-10-25 2024-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE49999E1 (en) 2006-10-25 2024-06-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50157E1 (en) 2006-10-25 2024-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50158E1 (en) 2006-10-25 2024-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50009E1 (en) 2006-10-25 2024-06-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50015E1 (en) 2006-10-25 2024-06-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50194E1 (en) 2006-10-25 2024-10-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50144E1 (en) 2006-10-25 2024-09-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50132E1 (en) 2006-10-25 2024-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
USRE50054E1 (en) 2006-10-25 2024-07-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
JP2009530675A (ja) * 2006-10-25 2009-08-27 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン オーディオ副帯値を生成する装置及び方法、並びに、時間領域オーディオサンプルを生成する装置及び方法
US8788275B2 (en) 2006-11-24 2014-07-22 Fujitsu Limited Decoding method and apparatus for an audio signal through high frequency compensation
JP2008129542A (ja) * 2006-11-24 2008-06-05 Fujitsu Ltd 復号化装置および復号化方法
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US9741354B2 (en) 2007-06-29 2017-08-22 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US8645146B2 (en) 2007-06-29 2014-02-04 Microsoft Corporation Bitstream syntax for multi-process audio decoding
US9026452B2 (en) 2007-06-29 2015-05-05 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US9349376B2 (en) 2007-06-29 2016-05-24 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
JP2010079275A (ja) * 2008-08-29 2010-04-08 Sony Corp 周波数帯域拡大装置及び方法、符号化装置及び方法、復号化装置及び方法、並びにプログラム
US11935551B2 (en) 2009-01-16 2024-03-19 Dolby International Ab Cross product enhanced harmonic transposition
US9799346B2 (en) 2009-01-16 2017-10-24 Dolby International Ab Cross product enhanced harmonic transposition
US10192565B2 (en) 2009-01-16 2019-01-29 Dolby International Ab Cross product enhanced harmonic transposition
US8818541B2 (en) 2009-01-16 2014-08-26 Dolby International Ab Cross product enhanced harmonic transposition
US11682410B2 (en) 2009-01-16 2023-06-20 Dolby International Ab Cross product enhanced harmonic transposition
JP2013148920A (ja) * 2009-01-16 2013-08-01 Dolby International Ab クロス生成物により向上された高調波転換
US11031025B2 (en) 2009-01-16 2021-06-08 Dolby International Ab Cross product enhanced harmonic transposition
US12119011B2 (en) 2009-01-16 2024-10-15 Dolby International Ab Cross product enhanced harmonic transposition
US10586550B2 (en) 2009-01-16 2020-03-10 Dolby International Ab Cross product enhanced harmonic transposition
CN108022599A (zh) * 2014-02-07 2018-05-11 皇家飞利浦有限公司 音频信号解码器中改进的频带扩展

Also Published As

Publication number Publication date
US7400651B2 (en) 2008-07-15
JP4106624B2 (ja) 2008-06-25
JPWO2003003345A1 (ja) 2004-10-21
US20040098431A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
WO2003003345A1 (fr) Dispositif et procede d&#39;interpolation des composantes de frequence d&#39;un signal
RU2720495C1 (ru) Гармоническое преобразование на основе блока поддиапазонов, усиленное перекрестными произведениями
RU2665298C1 (ru) Усовершенствованное гармоническое преобразование на основе блока поддиапазонов
RU2487426C2 (ru) Устройство и способ преобразования звукового сигнала в параметрическое представление, устройство и способ модификации параметрического представления, устройство и способ синтеза параметрического представления звукового сигнала
KR101494062B1 (ko) 인벨롭 섀이핑을 사용하는 오디오 신호를 변조하는 방법 및 장치
JP5598536B2 (ja) 帯域拡張装置および帯域拡張方法
JP2002524759A (ja) オーディオ信号の時間スケール及び/又は基本周波数を変更するための信号処理技術
JP4012506B2 (ja) 信号の周波数成分を適応的に補間するための装置および方法
JP4031813B2 (ja) オーディオ信号処理装置、オーディオ信号処理方法およびその方法をコンピュータに実行させるプログラム
Hill et al. A hybrid virtual bass system for optimized steady-state and transient performance
JP2002175099A (ja) 雑音抑制方法および雑音抑制装置
RU2822612C1 (ru) Гармоническое преобразование на основе блока поддиапазонов, усиленное перекрестными произведениями
Schörkhuber et al. Pitch shifting of audio signals using the constant-q transform
RU2810281C1 (ru) Гармоническое преобразование на основе блока поддиапазонов, усиленное перекрестными произведениями
RU2801960C1 (ru) Гармоническое преобразование на основе блока поддиапазонов, усиленное перекрестными произведениями
RU2813317C1 (ru) Усовершенствованное гармоническое преобразование на основе блока поддиапазонов
RU2796943C2 (ru) Гармоническое преобразование на основе блока поддиапазонов, усиленное перекрестными произведениями
RU2789688C1 (ru) Усовершенствованное гармоническое преобразование на основе блока поддиапазонов
RU2800676C1 (ru) Усовершенствованное гармоническое преобразование на основе блока поддиапазонов
Pekonen et al. Filter-based alias reduction for digital classical waveform synthesis
RU2772356C2 (ru) Усовершенствованное гармоническое преобразование на основе блока поддиапазонов
JP2004029587A (ja) 音声信号処理方法、装置及び音声信号処理プログラム
AU2017206142A1 (en) Improved Subband Block Based Harmonic Transposition
JP2015210420A (ja) 変換装置、方法、およびプログラム
JP2015210421A (ja) フィルタバンク演算装置、変換装置、方法、およびプログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2003 509435

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2003509435

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10362421

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2004111792

Country of ref document: RU

Kind code of ref document: A

Ref document number: 2004114875

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase