WO2003096770A1 - Plasma-assisted coating - Google Patents
Plasma-assisted coating Download PDFInfo
- Publication number
- WO2003096770A1 WO2003096770A1 PCT/US2003/014037 US0314037W WO03096770A1 WO 2003096770 A1 WO2003096770 A1 WO 2003096770A1 US 0314037 W US0314037 W US 0314037W WO 03096770 A1 WO03096770 A1 WO 03096770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavity
- plasma
- catalyst
- electromagnetic radiation
- source
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/126—Microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2013—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
- F01N3/202—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means using microwaves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32302—Plural frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32366—Localised processing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6402—Aspects relating to the microwave cavity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
- H05B6/806—Apparatus for specific applications for laboratory use
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/818—Employing electrical discharges or the generation of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00058—Temperature measurement
- B01J2219/00063—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00193—Sensing a parameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00193—Sensing a parameter
- B01J2219/00195—Sensing a parameter of the reaction system
- B01J2219/002—Sensing a parameter of the reaction system inside the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00211—Control algorithm comparing a sensed parameter with a pre-set value
- B01J2219/00213—Fixed parameter value
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00222—Control algorithm taking actions
- B01J2219/00227—Control algorithm taking actions modifying the operating conditions
- B01J2219/0024—Control algorithm taking actions modifying the operating conditions other than of the reactor or heat exchange system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0892—Materials to be treated involving catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/12—Processes employing electromagnetic waves
- B01J2219/1203—Incoherent waves
- B01J2219/1206—Microwaves
- B01J2219/1248—Features relating to the microwave cavity
- B01J2219/1269—Microwave guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/005—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/28—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/08—Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/02—Details
- H01J2237/0203—Protection arrangements
- H01J2237/0206—Extinguishing, preventing or controlling unwanted discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/336—Changing physical properties of treated surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/338—Changing chemical properties of treated surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/04—Heating using microwaves
- H05B2206/044—Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/4645—Radiofrequency discharges
- H05H1/4652—Radiofrequency discharges using inductive coupling means, e.g. coils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- This invention relates to methods and apparatus for plasma- assisted coating, and particularly for coating one or more objects using an electromagnetic radiation-induced plasma with a plasma catalyst.
- plasma spray deposition Another plasma-assisted coating method is plasma spray deposition.
- material is reportedly deposited on a surface by compounding a buildup of "splats" of molten material on the surface.
- the heat of the plasma either melts or vaporizes material injected into path of the plasma ejected from a nozzle, and the material impinges on the surface of a work piece at high velocity.
- Typical coatings that have been reported by this method are thermal barrier coatings and oxide coatings.
- plasma spray deposition typically requires expensive equipment and can only be used on a limited range of materials because of the relatively high heat and thermal shock inherent in this technique.
- a catalyzed coating plasma can be formed in a cavity by subjecting a gas to an amount of electromagnetic radiation in the presence of a plasma catalyst, adding at least one coating material to the plasma, and allowing the at least one material to deposit on the surface area of the object to form a coating.
- the coating method includes flowing a gas into a multi-mode processing cavity and igniting a coating plasma by subjecting the gas in the cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of at least one passive plasma catalyst that includes a material that is at least electrically semi- conductive.
- a material deposition system may be provided.
- the system can include a first vessel in which a first cavity is formed, an electromagnetic radiation source coupled to the cavity such that the electromagnetic radiation source can direct electromagnetic radiation into the first cavity during the deposition process, a gas source coupled to the first cavity so that a gas can flow into the cavity during the deposition process, and at least one plasma catalyst in the presence of the radiation (e.g., located either in the first cavity, near the first cavity, or in and near the first cavity).
- Plasma catalysts for initiating, modulating, and sustaining a plasma may be provided.
- a plasma catalyst may be passive or active consistent with this invention.
- a passive plasma catalyst can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electro-magnetic field) consistent with this invention, without necessarily adding additional energy.
- An active plasma catalyst can be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation. In both the passive and active cases, a plasma catalyst can improve, or relax, the environmental conditions required to ignite a coating plasma.
- FIG. 1 shows a schematic diagram of an illustrative plasma coating system consistent with this invention
- FIG. 1 A shows an illustrative embodiment of a portion of a plasma coating system for adding a powder plasma catalyst to a plasma cavity for igniting, modulating, or sustaining a plasma in a cavity consistent with this invention
- FIG. 1 B shows an illustrative embodiment of a portion of the coating system shown in FIG. 1 with additional optional plasma chambers consistent with this invention
- FIG. 1C shows another illustrative embodiment of a portion of the coating system shown in FIG. 1 for applying a voltage to an object to be coated consistent with this invention
- FIG. 1 D shows still another illustrative embodiment of a portion of the coating system shown in FIG. 1 for coating an object through an aperture consistent with this invention
- FIG. 1 E shows yet another illustrative embodiment of a portion of the coating system shown in FIG. 1 where a plasma cavity has internal surface features for fabricating patterned coatings consistent with this invention
- FIG. 2 shows an illustrative plasma catalyst fiber with at least one component having a concentration gradient along its length consistent with this invention
- FIG. 3 shows an illustrative plasma catalyst fiber with multiple components at a ratio that varies along its length consistent with this invention
- FIG. 4 shows another illustrative plasma catalyst fiber that includes a core under layer and a coating consistent with this invention
- FIG. 5 shows a cross-sectional view of the plasma catalyst fiber of FIG. 4, taken from line 5--5 of FIG. 4, consistent with this invention
- FIG. 6 shows an illustrative embodiment of another portion of a plasma system including an elongated plasma catalyst that extends through an ignition port consistent with this invention
- FIG. 7 shows an illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 6 consistent with this invention
- FIG. 8 shows another illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 6 consistent with this invention.
- FIG. 9 shows an illustrative embodiment of a portion of a plasma system for directing an active plasma catalyst, in the form of ionizing radiation, into a radiation chamber consistent with this invention.
- This invention can relate to methods and apparatus for initiating, modulating, and sustaining a plasma for a variety of coating applications, including, for example, generating high temperatures for heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, as well as for applications that relate to manufacturing of coated objects, such as automobile or other vehicular components.
- This invention can be used for controllable plasma-assisted coating that may lower energy costs and increase deposition efficiency and manufacturing flexibility.
- One coating method consistent with this invention can include adding a gas, a plasma catalyst, and electromagnetic radiation to a cavity for catalyzing a coating plasma.
- a plasma catalyst for the purpose of coating one or more objects is a "catalyzed coating plasma," or more simply, "a coating plasma.”
- the catalyst can be passive or active.
- a passive plasma catalyst can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention without necessarily adding additional energy through the catalyst, such as by applying a voltage to create a spark.
- An active plasma catalyst may be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule, in the presence of electromagnetic radiation.
- FIG. 1 shows illustrative plasma system 10 consistent with one aspect of this invention.
- cavity 12 is formed in a vessel that is positioned inside electromagnetic radiation chamber (i.e., applicator) 14.
- electromagnetic radiation chamber i.e., applicator
- vessel 12 and electromagnetic radiation chamber 14 are the same, thereby eliminating the need for two separate components.
- the vessel in which cavity 12 is formed can include one or more electromagnetic radiation-transmissive insulating layers to improve its thermal insulation properties without significantly shielding cavity 12 from the electromagnetic radiation.
- cavity 12 is formed in a vessel made of ceramic. Due to the extremely high temperatures that can be achieved with plasmas consistent with this invention, the upper temperature limit for processing is restricted only by the melting point of the ceramic used to make the vessel.
- the ceramic material can include, by weight, 29.8% silica, 68.2% alumina, 0.4% ferric oxide, 1% titania, 0.1% lime, 0.1% magnesia, 0.4% alkalis, which is sold under Model No. LW-30 by New Castle Refractories Company, of New Castle, Pennsylvania. It will be appreciated by those of ordinary skill in the art, however, that other materials, such as quartz, and those different (e.g., those having higher melting temperatures) from the ceramic material described above, can also be used consistent with the invention.
- a plasma was formed in a partially open cavity inside a first brick and topped with a second brick.
- the cavity had dimensions of about 2 inches by about 2 inches by about 1.5 inches.
- At least two holes were also provided in the brick in communication with the cavity: one for viewing the plasma and at least one hole for providing the gas.
- the size of the cavity can depend on the desired plasma process being performed. Also, the cavity should at least be configured to prevent the plasma from rising/floating away from the primary processing region, even though the plasma may not contact the object being coated.
- Cavity 12 can be connected to one or more gas sources 24 (e.g., a source of argon, nitrogen, hydrogen, xenon, krypton, etc.) by line 20 and control valve 22, which may be powered by power supply 28.
- Line 20 may be tubing (e.g., between about 1/16 inch and about 14 inch, such as about 1/8"), but could be any device capable of supplying gas.
- a vacuum pump can be connected to the chamber to remove any undesirable fumes that may be generated during plasma processing.
- gas can flow in and/or out of cavity 12 through one or more gaps in a multi-part vessel.
- gas ports consistent with this invention need not be distinct holes and can take on other forms as well, such as many small distributed holes.
- a radiation leak detector (not shown) was installed near source 26 and waveguide 30 and connected to a safety interlock system to automatically turn off the electromagnetic radiation power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm 2 ), was detected.
- a predefined safety limit such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm 2 )
- Electromagnetic radiation source 26 which can be powered by electrical power supply 28, directs electromagnetic radiation into chamber 14 through one or more waveguides 30. It will be appreciated by those of ordinary skill in the art that electromagnetic source 26 can be connected directly to chamber 14 or cavity 12, thereby eliminating waveguide 30. The electromagnetic radiation entering chamber 14 or cavity 12 can be used to ignite a plasma within the cavity. This catalyzed plasma can be substantially modulated or sustained and confined to the cavity by coupling additional electromagnetic radiation with the catalyst.
- Electromagnetic radiation can be supplied through circulator 32 and tuner 34 (e.g., 3-stub tuner). Tuner 34 can be used to minimize the reflected power as a function of changing ignition or processing conditions, especially before the catalyzed plasma has formed because electromagnetic radiation will be strongly absorbed by the plasma after its formation.
- tuner 34 e.g., 3-stub tuner.
- the location of electromagnetic radiation-transmissive cavity 12 in chamber 14 may not be critical if chamber 14 supports multiple modes, and especially when the modes are continually or periodically mixed.
- motor 36 can be connected to mode-mixer 38 for making the time-averaged electromagnetic radiation energy distribution substantially uniform throughout chamber 14.
- window 40 e.g., a quartz window
- temperature sensor 42 e.g., an optical pyrometer
- the optical pyrometer output can increase from zero volts as the temperature rises to within the tracking range.
- the pyrometer can be used to sense radiant intensities at two or more wavelengths and to fit those intensities using Planck's law to determine the temperature of the work piece.
- the pyrometer can also establish the temperature of a species present in the plasma by monitoring its excited state population distribution from the emission intensities at two discrete transitions.
- Sensor 42 can develop output signals as a function of the temperature or any other monitorable condition associated with a work piece (not shown) within cavity 12 and provide the signals to controller 44. Dual temperature sensing and heating, as well as automated cooling rate and gas flow controls can also be used. Controller 44 in turn can be used to control operation of power supply 28, which can have one output connected to electromagnetic radiation source 26 as described above and another output connected to valve 22 to control gas flow into cavity 12.
- the invention has been practiced with equal success employing electromagnetic radiation sources at both 915 MHz and 2.45 GHz, provided by Communications and Power Industries (CPI), although radiation having any frequency less than about 333 GHz can be used.
- the 2.45 GHz system provided continuously variable electromagnetic radiation power from about 0.5 kilowatts to about 5.0 kilowatts. Consistent with one embodiment of the present invention, the electromagnetic radiation power density during deposition may be between about 0.05 W/cm 3 and about 100 W/cm 3 . For example, about 2.5 W/cm 3 was successfully used.
- a 3-stub tuner allowed impedance matching for maximum power transfer and a dual directional coupler was used to measure forward and reflected powers. Also, optical pyrometers were used for remote sensing of the work piece temperature.
- radiation having any frequency less than-about 333 GHz can be used consistent with this invention.
- frequencies such as power line frequencies (about 50 Hz to about 60 Hz)
- the pressure of the gas from which the plasma is formed may be lowered to assist with plasma ignition.
- any radio frequency or microwave frequency can be used consistent with this invention, including frequencies greater than about 100 kHz.
- the gas pressure for such relatively high frequencies need not be lowered to ignite, modulate, or sustain a plasma, thereby enabling many plasma-processes to occur at atmospheric pressures and above.
- the equipment was computer controlled using LabVIEW ® 6i software, which provided real-time temperature monitoring and electromagnetic radiation power control.
- LabVIEW ® graphical development environment was used to automate data acquisition, instrument control, measurement analysis, and data presentation.
- LabVIEW ® is available from the National Instruments Corporation, of Austin, Texas.
- Noise was reduced by using sliding averages of suitable number of data points. Also, to improve speed and computational efficiency, the number of stored data points in the buffer array were limited by using shift-registers and buffer-sizing.
- the pyrometer measured the temperature of a sensitive area of about 1 cm 2 , which was used to calculate an average temperature. The pyrometer sensed radiant intensities at two wavelengths and fit those intensities using Planck's law to determine the temperature.
- Chamber 14 had several glass-covered viewing ports with electromagnetic radiation shields and one quartz window for pyrometer access. Several ports for connection to a vacuum pump and a gas source were also provided, although not necessarily used.
- System 10 also included a closed-loop de-ionized water cooling system (not shown) with an external heat exchanger cooled by tap water. During operation, the de-ionized water first cooled the magnetron, then the load-dump in the circulator (used to protect the magnetron), and finally the electromagnetic radiation chamber through water channels welded on the outer surface of the chamber.
- a plasma catalyst consistent with this invention can include one or more different materials and may be either passive or active.
- a plasma catalyst can be used, among other things, to ignite, modulate, and/or sustain a coating plasma at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
- One method of forming a plasma consistent with this invention can include subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a passive plasma catalyst.
- a passive plasma catalyst consistent with this invention can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention, without necessarily adding additional energy through the catalyst, such as by applying an electric voltage to create a spark.
- a passive plasma catalyst consistent with this invention can also be a nano-particle or a nano-tube.
- the term "nano-particle” can include any particle having a maximum physical dimension less than about 100 nm that is at least electrically semi-conductive.
- both single-walled and multi-walled carbon nanotubes, doped and undoped can be particularly effective for igniting plasmas consistent with this invention because of their exceptional electrical conductivity and elongated shape.
- the nanotubes can have any convenient length and can be a powder fixed to a substrate. If fixed, the nanotubes can be oriented randomly on the surface of the substrate or fixed to the substrate (e.g., at some predetermined orientation) while the plasma is ignited or sustained.
- a passive plasma catalyst can also be a powder consistent with this invention, and need not be made of nano-particles or nano-tubes. It can be formed, for example, from fibers, dust particles, flakes, sheets, etc.
- the catalyst can be suspended, at least temporarily, in a gas. By suspending the powder in the gas, the powder can be quickly dispersed throughout the cavity and more easily consumed, if desired.
- the powder catalyst can be carried into the cavity and at least temporarily suspended with a carrier gas.
- the carrier gas can be the same or different from the gas that forms the plasma.
- the powder can be added to the gas prior to being introduced to the cavity.
- electromagnetic radiation source 52 can supply radiation to electromagnetic radiation cavity 55, in which plasma cavity 60 is placed.
- Powder source 65 provides catalytic powder 70 into gas stream 75.
- powder 70 can be first added to cavity 60 in bulk (e.g., in a pile) and then distributed in the cavity in any number of ways, including flowing a gas through or over the bulk powder.
- the powder can be added to the gas for igniting, modulating, or sustaining a coating plasma by moving, conveying, drizzling, sprinkling, blowing, or otherwise, feeding the powder into or within the cavity.
- a coating plasma was ignited in a cavity by placing a pile of carbon fiber powder in a copper pipe that extended into the cavity. Although sufficient electromagnetic (microwave) radiation was directed into the cavity, the copper pipe shielded the powder from the radiation and no plasma ignition took place. However, once a carrier gas began flowing through the pipe, forcing the powder out of the pipe and into the cavity, and thereby subjecting the powder to the electromagnetic radiation, a plasma was nearly instantaneously ignited in the cavity.
- a powder plasma catalyst consistent with this invention can be substantially non-combustible, thus it need not contain oxygen, or burn in the presence of oxygen.
- the catalyst can include a metal, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, or any combination thereof.
- powder catalysts can be substantially uniformly distributed in the plasma cavity (e.g., when suspended in a gas), and plasma ignition can be precisely controlled within the cavity. Uniform ignition can be important in certain applications, including those applications requiring brief plasma exposures, such as in the form of one or more bursts. Still, a certain amount of time can be required for a powder catalyst to distribute itself throughout a cavity, especially in complicated, multi-chamber cavities. Therefore, consistent with another aspect of this invention, a powder catalyst can be introduced into the cavity through a plurality of ignition ports to more rapidly obtain a more uniform catalyst distribution therein (see below).
- a passive plasma catalyst consistent with this invention can include, for example, one or more microscopic or macroscopic fibers, sheets, needles, threads, strands, filaments, yarns, twines, shavings, slivers, chips, woven fabrics, tape, whiskers, or any combination thereof.
- the plasma catalyst can have at least one portion with one physical dimension substantially larger than another physical dimension.
- the ratio between at least two orthogonal dimensions should be at least about 1 :2, but could be greater than about 1 :5, or even greater than about 1 :10.
- a passive plasma catalyst can include at least one portion of material that is relatively thin compared to its length.
- a bundle of catalysts e.g., fibers
- the number of fibers in and the length of a bundle are not critical to igniting, modulating, or sustaining the plasma. For example, satisfactory results have been obtained using a section of graphite tape about one-quarter inch long.
- One type of carbon fiber that has been successfully used consistent with this invention is sold under the trademark Magnamite ® , Model No. AS4C-GP3K, by the Hexcel Corporation of Salt Lake City, Utah. Also, silicon-carbide fibers have been successfully used.
- a passive plasma catalyst consistent with another aspect of this invention can include one or more portions that are, for example, substantially spherical, annular, pyramidal, cubic, planar, cylindrical, rectangular, or elongated.
- the passive plasma catalysts discussed above include at least one material that is at least electrically semi-conductive.
- the material can be highly conductive.
- a passive plasma catalyst consistent with this invention can include a metal, an inorganic material, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, or any combination thereof.
- Some of the possible inorganic materials that can be included in the plasma catalyst include carbon, silicon carbide, molybdenum, platinum, tantalum, tungsten, carbon nitride, and aluminum, although other electrically conductive inorganic materials are believed to work just as well.
- a passive plasma catalyst consistent with this invention can include one or more additives (which need not be electrically conductive).
- the additive can include any material that a user wishes to add to the plasma.
- one or more dopants can be added to the plasma through the catalyst. See, e.g., commonly owned, concurrently filed
- the catalyst can include the dopant itself, or it can include a precursor material that, upon decomposition, can form the dopant.
- the plasma catalyst can include one or more additives and one or more electrically conductive materials in any desirable ratio, depending on the ultimate desired composition of the plasma and the process using the plasma.
- the ratio of the electrically conductive components to the additives in a passive plasma catalyst can vary over time while being consumed.
- the plasma catalyst could desirably include a relatively large percentage of electrically conductive components to improve the ignition conditions.
- the catalyst could include a relatively large percentage of additives. It will be appreciated by those of ordinary skill in the art that the component ratio of the plasma catalyst used to ignite and sustain the plasma could be the same and that the ratio can be customized to deposit any desired coating composition.
- a predetermined ratio profile can be used to simplify many plasma processes.
- the components within the plasma are added as necessary, but such addition normally requires programmable equipment to add the components according to a predetermined schedule.
- the ratio of components in the catalyst can be varied, and thus the ratio of components in the plasma itself can be automatically varied. That is, the ratio of components in the plasma at any particular time can depend on which of the catalyst portions is currently being consumed by the plasma.
- the catalyst component ratio can be different at different locations within the catalyst.
- the current ratio of components in a plasma can depend on the portions of the catalyst currently and/or previously consumed, especially when the flow rate of a gas passing through the plasma chamber is relatively slow.
- a passive plasma catalyst consistent with this invention can be homogeneous, inhomogeneous, or graded.
- the plasma catalyst component ratio can vary continuously or discontinuously throughout the catalyst. For example, in FIG. 2, the ratio can vary smoothly forming a gradient along a length of catalyst 100.
- Catalyst 100 can include a strand of material that includes a relatively low concentration of a component at section 105 and a continuously increasing concentration toward section 110.
- the ratio can vary discontinuously in each portion of catalyst 120, which includes, for example, alternating sections 125 and 130 having different concentrations. It will be appreciated that catalyst 120 can have more than two section types. Thus, the catalytic component ratio being consumed by the plasma can vary in any predetermined fashion. In one embodiment, when the plasma is monitored and a particular additive is detected, further processing can be automatically commenced or terminated.
- an automated system can include a device by which a consumable plasma catalyst is mechanically inserted before and/or during plasma igniting, modulating, and/or sustaining.
- a passive plasma catalyst consistent with this invention can also be coated.
- a catalyst can include a substantially non-electrically conductive coating deposited on the surface of a substantially electrically conductive material.
- the catalyst can include a substantially electrically conductive coating deposited on the surface of a substantially electrically non-conductive material.
- FIGS. 4 and 5, for example, show fiber 140, which includes under layer 145 and coating 150.
- a plasma catalyst including a carbon core is coated with nickel to prevent oxidation of the carbon.
- a single plasma catalyst can also include multiple coatings. If the coatings are consumed during contact with the plasma, the coatings could be introduced into the plasma sequentially, from the outer coating to the innermost coating, thereby creating a time-release mechanism.
- a coated plasma catalyst can include any number of materials, as long as a portion of the catalyst is at least electrically semi-conductive.
- a plasma catalyst can be located entirely within an electromagnetic radiation chamber to substantially reduce or prevent electromagnetic radiation energy leakage.
- the plasma catalyst does not electrically or magnetically couple with the radiation chamber, the vessel containing the cavity, or to any electrically conductive object outside the cavity. This can prevent sparking at the ignition port and prevents electromagnetic radiation from leaking outside the chamber during the ignition and possibly later if the plasma is sustained.
- the catalyst can be located at a tip of a substantially electrically non-conductive extender that extends through an ignition port.
- FIG. 6, shows electromagnetic radiation chamber 160 in which plasma cavity 165 can be placed.
- Plasma catalyst 170 can be elongated and extends through ignition port 175.
- catalyst 170 can include electrically conductive distal portion 180 (which is placed in chamber 160) and electrically non-conductive portion 185 (which is placed substantially outside chamber 160, but may extend somewhat into the chamber). This configuration prevents an electrical connection (e.g., sparking) between distal portion 180 and chamber 160.
- the catalyst can be formed from a plurality of electrically conductive segments 190 separated by and mechanically connected to a plurality of electrically non-conductive segments 195.
- the catalyst can extend through the ignition port between a point inside the cavity and another point outside the cavity, but the electrically discontinuous profile significantly prevents sparking and energy leakage.
- Another method of forming a coating plasma consistent with this invention includes subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of an active plasma catalyst, which generates or includes at least one ionizing particle.
- An active plasma catalyst consistent with this invention can be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation.
- the ionizing particles can be directed into the cavity in the form of a focused or collimated beam, or they may be sprayed, spewed, sputtered, or otherwise introduced.
- FIG. 9 shows electromagnetic radiation source 200 directing radiation into electromagnetic radiation chamber 205.
- Plasma cavity 210 can be positioned inside of chamber 205 and may permit a gas to flow therethrough via ports 215 and 216.
- Source 220 can direct ionizing particles 225 into cavity 210.
- Source 220 can be protected by a metallic screen which allows the ionizing particles to go through, but shields source 220 from electromagnetic radiation. If necessary, source 220 can be water-cooled.
- Examples of ionizing particles consistent with this invention can include x-ray particles, gamma ray particles, alpha particles, beta particles, neutrons, protons, and any combination thereof.
- an ionizing particle catalyst can be charged (e.g., an ion from an ion source) or uncharged and can be the product of a radioactive fission process.
- the vessel in which the plasma cavity is formed could be entirely or partially transmissive to the ionizing particle catalyst.
- the source can direct the fission products through the vessel to ignite the plasma.
- the radioactive fission source can be located inside the electromagnetic radiation chamber to substantially prevent the fission products (i.e., the ionizing particle catalyst) from creating a safety hazard.
- the ionizing particle can be a free electron, but it need not be emitted in a radioactive decay process.
- the electron can be introduced into the cavity by energizing the electron source (such as a metal), such that the electrons have sufficient energy to escape from the source.
- the electron source can be located inside the cavity, adjacent the cavity, or even in the cavity wall. It will be appreciated by those of ordinary skill in the art that the any combination of electron sources is possible.
- a common way to produce electrons is to heat a metal, and these electrons can be further accelerated by applying an electric field.
- free energetic protons can also be used to catalyze a plasma.
- a free proton can be generated by ionizing hydrogen and, optionally, accelerated with an electric field.
- An electromagnetic radiation waveguide, cavity, or chamber is designed to support or facilitate propagation of at least one electromagnetic radiation mode.
- the term "mode" refers to a particular pattern of any standing or propagating electromagnetic wave that satisfies Maxwell's equations and the applicable boundary conditions (e.g., of the cavity).
- the mode can be any one of the various possible patterns of propagating or standing electromagnetic fields.
- Each mode is characterized by its frequency and polarization of the electric field and/or magnetic field vectors.
- the electromagnetic field pattern of a mode depends on the frequency, refractive indices or dielectric constants, and waveguide or cavity geometry.
- a transverse electric (TE) mode is one whose electric field vector is normal to the direction of propagation.
- a transverse magnetic (TM) mode is one whose magnetic field vector is normal to the direction of propagation.
- a transverse electric and magnetic (TEM) mode is one whose electric and magnetic field vectors are both normal to the direction of propagation.
- a hollow metallic waveguide does not typically support a normal TEM mode of electromagnetic radiation propagation. Even though electromagnetic radiation appears to travel along the length of a waveguide, it may do so only by reflecting off the inner walls of the waveguide at some angle. Hence, depending upon the propagation mode, the electromagnetic radiation may have either some electric field component or some magnetic field component along the axis of the waveguide (often referred to as the z-axis).
- the actual field distribution inside a cavity or waveguide is a superposition of the modes therein.
- Each of the modes can be identified with one or more subscripts (e.g., TE- ⁇ 0 ("tee ee one zero").
- the subscripts normally specify how many "half waves" at the guide wavelength are contained in the x and y directions. It will be appreciated by those skilled in the art that the guide wavelength can be different from the free space wavelength because electromagnetic radiation propagates inside the waveguide by reflecting at some angle from the inner walls of the waveguide.
- a third subscript can be added to define the number of half waves in the standing wave pattern along the z-axis.
- the size of the waveguide can be selected to be small enough so that it can support a single propagation mode.
- the system is called a single-mode system (i.e., a single-mode applicator).
- the TE ⁇ 0 mode is usually dominant in a rectangular single-mode waveguide.
- the waveguide or applicator can sometimes support additional higher order modes forming a multi-mode system. When many modes are capable of being supported simultaneously, the system is often referred to as highly moded.
- a simple, single-mode system has a field distribution that includes at least one maximum and/or minimum.
- the magnitude of a maximum largely depends on the amount of electromagnetic radiation supplied to the system.
- the field distribution of a single mode system is strongly varying and substantially non-uniform.
- a multi-mode cavity can support several propagation modes simultaneously, which, when superimposed, results in a complex field distribution pattern. In such a pattern, the fields tend to spatially smear and, thus, the field distribution usually does not show the same types of strong minima and maxima field values within the cavity.
- a mode-mixer can be used to "stir" or "redistribute” modes (e.g., by mechanical movement of an electromagnetic radiation reflector). This redistribution desirably provides a more uniform time-averaged field (and therefore plasma) distribution within the cavity.
- a multi-mode cavity consistent with this invention can support at least two modes, and may support many more than two modes. Each mode has a maximum electric field vector. Although there may be two or more modes, one mode may be dominant and has a maximum electric field vector magnitude that is larger than the other modes.
- a multi-mode cavity may be any cavity in which the ratio between the first and second mode magnitudes is less than about 1 :10, or less than about 1 :5, or even less than about 1 :2. It will be appreciated by those of ordinary skill in the art that the smaller the ratio, the more distributed the electric field energy between the modes, and hence the more distributed the electromagnetic radiation energy is in the cavity.
- the distribution of a coating plasma within a cavity may strongly depend on the distribution of the applied electromagnetic radiation. For example, in a pure single mode system, there may only be a single location at which the electric field is a maximum. Therefore, a strong plasma may only form at that single location. In many applications, such a strongly localized plasma could undesirably lead to non-uniform plasma treatment or heating (i.e., localized overheating and underheating).
- the cavity in which the plasma is formed can be completely closed or partially open.
- the cavity could be entirely closed. See, for example, commonly owned, concurrently filed U.S. Patent Application No. 10/ , (Attorney Docket No. 1837.0020), which is fully incorporated herein by reference.
- a cavity containing a uniform plasma is desirable.
- electromagnetic radiation can have a relatively long wavelength (e.g., in the case of microwave radiation, several tens of centimeters)
- obtaining a uniform distribution can be difficult to achieve.
- the radiation modes in a multi-mode cavity can be mixed, or redistributed, over a period of time. Because the field distribution within the cavity must satisfy all of the boundary conditions set by the inner surface of the cavity, those field distributions can be changed by changing the position of any portion of that inner surface.
- a movable reflective surface can be located inside the electromagnetic radiation cavity.
- the shape and motion of the reflective surface should, when combined, change the inner surface of the cavity during motion.
- an "L" shaped metallic object i.e., "mode-mixer”
- mode-mixer when rotated about any axis will change the location or the orientation of the reflective surfaces in the cavity and therefore change the electromagnetic radiation distribution therein.
- Any other asymmetrically shaped object can also be used (when rotated), but symmetrically shaped objects can also work, as long as the relative motion (e.g., rotation, translation, or a combination of both) causes some change in the location or orientation of the reflective surfaces.
- a mode-mixer can be a cylinder that can be rotated about an axis that is not the cylinder's longitudinal axis.
- Each mode of a multi-mode cavity may have at least one maximum electric field vector, but each of these vectors could occur periodically across the inner dimension of the cavity. Normally, these maxima are fixed, assuming that the frequency of the electromagnetic radiation does not change. However, by moving a mode-mixer such that it interacts with the electromagnetic radiation, it is possible to move the positions of the maxima.
- mode-mixer 38 can be used to optimize the field distribution within cavity 1 such that the plasma ignition conditions and/or the plasma sustaining conditions are optimized.
- the position of the mode-mixer can be changed to move the position of the maxima for a uniform time-averaged plasma process (e.g., heating).
- mode-mixing can be useful during plasma ignition.
- an electrically conductive fiber is used as a plasma catalyst, it is known that the fiber's orientation can strongly affect the minimum plasma-ignition conditions. It has been reported, for example, that when such a fiber is oriented at an angle that is greater than 60° to the electric field, the catalyst does little to improve, or relax, these conditions. By moving a reflective surface either in or near the cavity, however, the electric field distribution can be significantly changed.
- Mode-mixing can also be achieved by launching the radiation into the applicator chamber through, for example, a rotating waveguide joint that can be mounted inside the applicator chamber.
- the rotary joint can be mechanically moved (e.g., rotated) to effectively launch the radiation in different directions in the radiation chamber.
- a changing field pattern can be generated inside the applicator chamber.
- Mode-mixing can also be achieved by launching radiation in the radiation chamber through a flexible waveguide.
- the waveguide can be mounted inside the chamber.
- the waveguide can extend into the chamber.
- the position of the end portion of the flexible waveguide can be continually or periodically moved (e.g., bent) in any suitable manner to launch the radiation (e.g., microwave radiation) into the chamber at different directions and/or locations.
- This movement can also result in mode-mixing and facilitate more uniform plasma processing (e.g., heating) on a time-averaged basis. Alternatively, this movement can be used to optimize the location of a plasma for ignition or other plasma-assisted process.
- the flexible waveguide is rectangular, a simple twisting of the open end of the waveguide will rotate the orientation of the electric and the magnetic field vectors in the radiation inside the applicator chamber. Then, a periodic twisting of the waveguide can result in mode-mixing as well as rotating the electric field, which can be used to assist ignition, modulation, or sustaining of a plasma.
- mode-mixing can be useful during subsequent plasma processing to reduce or create (e.g., tune) "hot spots" in the chamber.
- an electromagnetic radiation cavity only supports a small number of modes (e.g., less than 5)
- one or more localized electric field maxima can lead to "hot spots" (e.g., within cavity 12).
- these hot spots could be configured to coincide with one or more separate, but simultaneous, plasma ignitions or coating processes.
- a plasma catalyst can be located at one or more of those ignition or coating positions.
- a plasma can be ignited using multiple plasma catalysts at different locations.
- multiple fibers can be used to ignite the plasma at different points within the cavity.
- Such multi-point ignition can be especially beneficial when a uniform plasma ignition is desired. For example, when a coating plasma is modulated at a high frequency (i.e., tens of Hertz and higher), or ignited in a relatively large volume, or both, substantially uniform instantaneous striking and re-striking of the plasma can be improved.
- plasma catalysts when plasma catalysts are used at multiple points, they can be used to sequentially ignite a plasma at different locations within a plasma chamber by selectively introducing the catalyst at those different locations. In this way, a plasma ignition gradient can be controllably formed within the cavity, if desired.
- each powder particle may have the effect of being placed at a different physical location within the cavity, thereby improving ignition uniformity within the cavity.
- a dual-cavity arrangement can be used to ignite and sustain a plasma consistent with this invention.
- a system includes at least ignition cavity 280 and plasma processing cavity 285 in fluid communication with each other, for example, as shown in FIG. 1 B.
- Cavities 280 and 285 can be located, for example, inside electromagnetic radiation chamber (i.e., applicator) 14, as shown in FIG. 1.
- a gas in first ignition cavity 280 can be subjected to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst. In this way, the proximity of the first and second cavities can permit plasma 600, formed in cavity 280, to ignite plasma 610 in cavity 285, which may be sustained with additional electromagnetic radiation. Additional cavities 290 and 295 are optional, and can be kept in fluid communication with cavity 285 by channel 605, for example.
- An object to be coated, such as work piece 250 can be placed in any of cavities 285, 290, or 295 and can be supported by any type of supporting device, such as support 260, which optionally moves or rotates work piece 250 during the coating procedure.
- cavity 280 can be very small and designed primarily, or solely for plasma ignition. In this way, very little electromagnetic radiation energy may be required to ignite plasma 600, permitting easier ignition, especially when a plasma catalyst is used consistent with this invention. It will also be appreciated that the cavities used in the plasma system consistent with the present invention can have a variable size, and a deposition controller can be used to control the size of the cavity.
- cavity 280 can be a substantially single mode cavity and cavity 285 can be a multi-mode cavity.
- the electric field distribution may strongly vary within the cavity, forming one or more precisely located electric field maxima. Such maxima are normally the first locations at which plasmas ignite, making them ideal points for placing plasma catalysts. It will be appreciated, however, that when a plasma catalyst is used to ignite plasma 600, the catalyst need not be placed in the electric field maximum and, many cases, need not be oriented in any particular direction.
- FIGS. 1 B-1 E show various illustrative embodiments of plasma chambers that can be used to coat objects consistent with this invention.
- FIG. 1 B shows how a dual-cavity system can be used to ignite a plasma in one chamber and form a coating plasma in another.
- FIG. 1 B also shows how additional chambers can be added sequentially, if desired.
- FIG. 1C illustrates another embodiment in which a single cavity can be used to ignite a plasma with a plasma catalyst and coat an object.
- a first surface area of work piece 250 can be coated by forming coating plasma 615 in cavity 230 by subjecting a gas to an amount of electromagnetic radiation in the presence of plasma catalyst 240, which can be located, for example, on mount 245.
- plasma catalyst 240 which can be located, for example, on mount 245.
- a coating plasma can be catalyzed from a gas using a plasma catalyst and then used to coat an object in the same cavity consistent with this invention.
- a plasma- assisted coating system can include any electronic or mechanical means for introducing a catalyst to a plasma cavity.
- a fiber can be mechanically inserted before or during the formation of the coating plasma.
- plasma 600 can also be triggered by a spark plug, pulsed laser, or even by a burning match stick introduced in cavity 230 before, during, or after the presence of electromagnetic radiation.
- Plasma 615 can absorb an appropriate level of electromagnetic radiation energy to achieve any predetermined temperature profile (e.g., any selected temperature).
- the gas pressure in the cavity can be less than, equal to, or greater than atmospheric pressure.
- At least one additional coating material (not shown) can be added to plasma 615, thereby allowing it to form a multi-component coating on the surface of work piece 250.
- Work piece 250 can be any object that may need a coating, such as a steel object.
- the work piece may be an automotive part, such as a brake banjo block, a cam lobe, a gear, a seat component, a rail lever, a socket fastener, or a parking brake part.
- Work piece 250 can also be, for example, a semiconductor substrate, a metal part, a ceramic, a glass, etc.
- a bias can be applied to work piece 250 to produce a more uniform and rapid coating process.
- a potential difference can be applied between electrode 270 and work piece 250 by voltage supply 275.
- the applied voltage can, for example, take the form of a continuous or pulsed DC or AC bias.
- the voltage can be applied outside applicator 14 and in combination with a microwave filter to prevent, for example, microwave energy leakage.
- the applied voltage may attract charged ions, energizing them, and facilitate coating adhesion and quality.
- FIG. 1 D shows another embodiment consistent with this invention where the coating process takes place outside of the plasma chamber.
- cavity 292 has aperture 410, which may be at or near the bottom of cavity 292 to help prevent plasma 620 from escaping cavity 292. It will be appreciated, however, that aperture 410 can be located at any position of cavity 292.
- work piece 250 can be supported by mount 260 and optionally rotated or otherwise moved with respect to aperture 410.
- Plasma 620 inside cavity 292 can include one or more coating materials that can be deposited on a surface of work piece 250.
- plasma 620 can be sustained or modulated in cavity 292 and work piece 250 can be maintained at a temperature that is substantially below plasma 620.
- mount 260 can be heated or cooled by any external means (e.g., a heat exchanger) to keep work piece 250 at a desirable temperature.
- a cooling fluid e.g., gas
- a gas such as with nitrogen
- coating 252 on work piece 250 may have improved electrical, thermal, and mechanical properties.
- the coating material passing through aperture 410 may be combined with one or more other materials or gases (not shown), inside or outside cavity 292, to achieve any desired coating composite or composition.
- igniting, modulating, or sustaining a coating plasma consistent with this invention can occur at atmospheric pressure, a coating can be deposited onto work piece 250 at the same or different pressure, including below, at, or above atmospheric pressure.
- plasma pressure and temperature can be varied as desired. For example, using a system (like the one shown in FIG. 1 B) allows one to modulate or sustain coating plasma 610 at atmospheric pressure in cavity 285, and deposit a coating on work piece 250 in another cavity (e.g., cavity 285, 290, or 295) at a pressure higher or lower than atmospheric pressure.
- Such flexibility can be very desirable in, for example, large scale manufacturing processes.
- FIG. 1 E shows how an inner surface of cavity 230 can contain surface features (e.g., one or more topographical features) to form a patterned coating on work piece 250.
- plasma 320 can be modulated or sustained, for example, at predetermined locations above the surface of electrically conducting work piece 250 by providing a sufficient gap between that surface and the inner surface of cavity 230.
- plasma 320 can be formed, and a coating can be deposited adjacent to plasma 320, when the gap is at least about ⁇ /4, where ⁇ is the wavelength of the applied electromagnetic radiation.
- ⁇ is the wavelength of the applied electromagnetic radiation.
- coating 332 can form adjacent to plasmas, but can be prevented where plasma is prevented.
- the plasma may not be sustained in a region with a gap less than about ⁇ /4 (below, e.g., surface 300), a coating may not deposit there.
- the plasma may be sustained below surface 310, and a coating may be deposited there.
- FIG. 1 E shows the inner surface of cavity 230 with raised and depressed surface features, it will be appreciated that these features can be located on work piece 250, and the inner surface of cavity 230 can be relatively flat or smooth.
- the plasma-formation dependency on wavelength results from the boundary conditions imposed by electrically-conductive surfaces, such as an inner metallic surface of a cavity.
- electrically-conductive surfaces such as an inner metallic surface of a cavity.
- the size of the local plasma volume can be increased or decreased beyond the ⁇ /4.
- controlling the plasma volume in the proximity of a coating surface can be used to control the energy flux delivered to that surface by the plasma and any resulting plasma-assisted coating process.
- This "mask” can be the work piece itself, or it can be a photo resist, for example, like that used in the semiconductor industry, or it can be any other material used to alter the deposition process (e.g., a sacrificial film designed to prevent coating on the sides of a gear, for example, thereby allowing the coating to deposit only on the gear teeth).
- Masks for example, can be negative or positive photo resists, deposited metals, oxides, or other materials used in a permanent or sacrificial manner to effectuate a desired coating pattern.
- one or more components can be added to the plasma for deposition on work piece 250.
- the coating materials (i.e., components) added to the plasma can be provided using a nitrogen source, an oxygen source, a carbon source, an aluminum source, an arsenic source, a boron source, chromium source, a gallium source, a germanium source, an indium source, a phosphorous source, a magnesium source, a silicon source, a tantalum source, a tin source, a titanium source, a tungsten source, a yttrium source, a zirconium source, and any combination thereof.
- a source can be a pure elemental source, but can also be a combination of one or more elements, including, for example, any carbide, oxide, nitride, phosphide, arsenide, boride, and any combination thereof.
- tungsten carbide tungsten nitride, tungsten oxide, tantalum nitride, tantalum oxide, titanium oxide, titanium nitride, silicon oxide, silicon carbide, silicon nitride, aluminum oxide, aluminum nitride, aluminum carbide, boron nitride, boron carbide, boron oxide, gallium phosphide, aluminum phosphide, chromium oxide, tin oxide, yttria, zirconia, silicon-germanium, indium tin oxide, indium gallium arsenide, aluminum gallium arsenide, boron, chromium, gallium, germanium, indium, phosphorous, magnesium, silicon, tantalum, tin, titanium, tungsten, yttrium, and zirconium.
- many other materials can also be formed, depending on the source materials.
- the materials provided by these sources can form nearly any type of coating, which may be deposited on nearly any substrate.
- carbides, nitrides, borides, oxides, and other materials can be synthesized and deposited on a substrate consistent with this invention, including various combinations, such as silicon carbide (SiC), titanium carbide (TiC), titanium carbon nitride (TiCN), titanium aluminum nitride (TiAIN), titanium boron nitride (TiBN), chromium nitride (CrN), tungsten carbide (WC), aluminum nitride (AIN), silicon nitride (Si 3 N 4 ), titanium diboride (TiB 2 ), cubic-boron nitride (cBN), boron carbide (B C), alumina (Al 2 0 3 ), boron oxide, and diamond.
- Other materials mentioned previously may also be synthesized, including any combination of the materials listed above. It will be appreciated that hydrogen
- one or more components can be added to a catalyzed plasma and then deposited on a substrate to form coatings, including powders.
- a source of silicon e.g., any organosilane precursor, such as SiCI , SiH 4 , SiF 4 , SiH 2 Cl2, or any combination thereof
- any carbon source e.g., a hydrocarbon, such as alcohol, propane, ethane, methane, as well as carbon powder, fiber, vapor, etc.
- a source of silicon e.g., any organosilane precursor, such as SiCI , SiH 4 , SiF 4 , SiH 2 Cl2, or any combination thereof
- any carbon source e.g., a hydrocarbon, such as alcohol, propane, ethane, methane, as well as carbon powder, fiber, vapor, etc.
- Silane gas can also be used as a source of silicon.
- An advantage of depositing coatings, like those described above, using this catalyzed plasma process may include a higher growth rate due to the very high concentration of species that may exist above work piece 250 during coating, even at relatively high pressures. Also, it is believed that the number of pinholes formed in the coating using this invention will be reduced compared with conventional chemical vapor deposition techniques. It will be appreciated that SiC thin films fabricated with this invention can be used, for example, in making high- temperature electronic chips, or in providing high-strength coatings for automotive and other types of parts.
- TiC for example, a source of titanium (e.g., TiCI , TiO 2 , and any combination thereof) and any carbon source (e.g., see above) can be added to the plasma.
- An appropriate amount of hydrogen can also be added, such as about 10% by volume to prevent oxidation.
- the cavity temperature can be operated at any convenient temperature, such as between about 1 ,000 degrees Celsius and about 1 ,200 degrees Celsius.
- WC can be formed using a source of W (e.g., W0 3 , WF 6 , and any combination thereof) and a source of carbon (e.g., see above).
- TiN for example, a source of titanium (e.g., see above) and any nitrogen source (e.g., N 2 , NH 3 , and any combination thereof) can be added to the plasma.
- the cavity temperature can be held at any convenient temperature, such as between about 1 ,000 degrees Celsius and about 1 ,200 degrees Celsius although other temperatures can be used.
- a source of titanium e.g., see above
- a carbon source e.g., see above
- a nitrogen source e.g., see above
- TiAIN for example, a source of titanium (e.g., see above), a source of aluminum (e.g., AICI 3 , trimethylaluminum, elemental aluminum (e.g., powder), etc.), and any nitrogen source (e.g., see above) can be added to a plasma.
- a source of titanium e.g., see above
- a source of boron e.g., BCI 3 , NaBH 4 , (CNBH 2 ) n , and any combination thereof
- any nitrogen source e.g., see above
- a source of Cr e.g., atomic Cr
- any source of nitrogen e.g., see above
- a source of Al e.g., see above
- any source of nitrogen e.g., see above
- Si 3 N a source of silicon (e.g., see above) and any source of nitrogen (e.g., see above) can be added to a plasma. It will be appreciated that silicon nitride can be used, for example, for many applications that require increased strength or improved optical properties.
- borides and oxides can also be deposited consistent with this invention.
- a source of titanium e.g., TiCI 4 , Ti0 2 , and any combination thereof
- a source of boron e.g., see above
- Hydrogen and/or trichloroethane can also be added to the plasma in suitable quantities to improve yields.
- a source of boron e.g., see above
- any nitrogen source see above
- B C a source of boron (e.g., see above) and any carbon source (e.g., see above) can be added to the plasma.
- B 4 C for example, can be used to coat tool bits.
- a source of Al e.g., see above
- any source of oxygen including pure oxygen, can be added to the plasma.
- hydrogen may not be desirable for this reaction. It will be appreciated that other oxides can be synthesized in a similar manner.
- carbon films such as diamond films
- a source of carbon e.g., a hydrocarbon or carbon powder or fiber
- hydrogen By adding hydrogen to the plasma, formation of graphite can be substantially suppressed and formation of diamond can be encouraged.
- a combination of CH , H 2 , Ar, and carbon fibers in the presence of a nickel catalyst (e.g., in the form of a plate) with a cavity temperature at about 600 degrees Celsius can be used to form diamond.
- Ni powder for example, can also be used as catalyst.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Nanotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Clinical Laboratory Science (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Carbon And Carbon Compounds (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Catalysts (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Chemical Vapour Deposition (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
- Exhaust Gas After Treatment (AREA)
- Chemically Coating (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003234477A AU2003234477A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted coating |
BR0309812-5A BR0309812A (en) | 2002-05-08 | 2003-05-07 | Material deposition system, coating and method of coating a first surface area of an object |
US10/513,221 US20050233091A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted coating |
EP03728704A EP1502487A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted coating |
TW092134050A TW200424327A (en) | 2002-12-04 | 2003-12-03 | Plasma-assisted coating |
ARP030104452A AR042280A1 (en) | 2002-12-04 | 2003-12-03 | PLASMA ASSISTED COATING |
US11/384,104 US20060228497A1 (en) | 2002-05-08 | 2006-03-17 | Plasma-assisted coating |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37869302P | 2002-05-08 | 2002-05-08 | |
US60/378,693 | 2002-05-08 | ||
US43067702P | 2002-12-04 | 2002-12-04 | |
US60/430,677 | 2002-12-04 | ||
US43527802P | 2002-12-23 | 2002-12-23 | |
US60/435,278 | 2002-12-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/384,104 Continuation-In-Part US20060228497A1 (en) | 2002-05-08 | 2006-03-17 | Plasma-assisted coating |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003096770A1 true WO2003096770A1 (en) | 2003-11-20 |
Family
ID=29424519
Family Applications (21)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/014121 WO2003096768A1 (en) | 2002-05-08 | 2003-05-07 | Plasma assisted dry processing |
PCT/US2003/014122 WO2003096370A1 (en) | 2002-05-08 | 2003-05-07 | Methods and apparatus for forming and using plasma jets |
PCT/US2003/014035 WO2003095807A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted engine exhaust treatment |
PCT/US2003/014054 WO2003095130A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted sintering |
PCT/US2003/014036 WO2003096380A2 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted nitrogen surface-treatment |
PCT/US2003/014053 WO2003096773A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted joining |
PCT/US2003/014137 WO2003096383A2 (en) | 2002-05-08 | 2003-05-07 | Cavity shapes for plasma-assisted processing |
PCT/US2003/014136 WO2003096749A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted heat treatment |
PCT/US2003/014034 WO2003095058A2 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted multi-part processing |
PCT/US2003/014135 WO2003096382A2 (en) | 2002-05-08 | 2003-05-07 | Methods and apparatus for plasma processing control |
PCT/US2003/014039 WO2003096772A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted decrystallization |
PCT/US2003/014038 WO2003096771A1 (en) | 2002-05-08 | 2003-05-07 | Plasma generation and processing with multiple radiation sources |
PCT/US2003/014052 WO2003095090A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted carburizing |
PCT/US2003/014124 WO2003095699A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted enhanced coating |
PCT/US2003/014040 WO2003095089A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted formation of carbon structures |
PCT/US2003/014055 WO2003096381A2 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted processing in a manufacturing line |
PCT/US2003/014123 WO2003096774A1 (en) | 2002-05-08 | 2003-05-07 | Plasma catalyst |
PCT/US2003/014130 WO2003095591A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted doping |
PCT/US2003/014133 WO2003096747A2 (en) | 2002-05-08 | 2003-05-07 | Plasma heating apparatus and methods |
PCT/US2003/014134 WO2003096369A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted gas production |
PCT/US2003/014037 WO2003096770A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted coating |
Family Applications Before (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/014121 WO2003096768A1 (en) | 2002-05-08 | 2003-05-07 | Plasma assisted dry processing |
PCT/US2003/014122 WO2003096370A1 (en) | 2002-05-08 | 2003-05-07 | Methods and apparatus for forming and using plasma jets |
PCT/US2003/014035 WO2003095807A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted engine exhaust treatment |
PCT/US2003/014054 WO2003095130A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted sintering |
PCT/US2003/014036 WO2003096380A2 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted nitrogen surface-treatment |
PCT/US2003/014053 WO2003096773A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted joining |
PCT/US2003/014137 WO2003096383A2 (en) | 2002-05-08 | 2003-05-07 | Cavity shapes for plasma-assisted processing |
PCT/US2003/014136 WO2003096749A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted heat treatment |
PCT/US2003/014034 WO2003095058A2 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted multi-part processing |
PCT/US2003/014135 WO2003096382A2 (en) | 2002-05-08 | 2003-05-07 | Methods and apparatus for plasma processing control |
PCT/US2003/014039 WO2003096772A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted decrystallization |
PCT/US2003/014038 WO2003096771A1 (en) | 2002-05-08 | 2003-05-07 | Plasma generation and processing with multiple radiation sources |
PCT/US2003/014052 WO2003095090A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted carburizing |
PCT/US2003/014124 WO2003095699A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted enhanced coating |
PCT/US2003/014040 WO2003095089A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted formation of carbon structures |
PCT/US2003/014055 WO2003096381A2 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted processing in a manufacturing line |
PCT/US2003/014123 WO2003096774A1 (en) | 2002-05-08 | 2003-05-07 | Plasma catalyst |
PCT/US2003/014130 WO2003095591A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted doping |
PCT/US2003/014133 WO2003096747A2 (en) | 2002-05-08 | 2003-05-07 | Plasma heating apparatus and methods |
PCT/US2003/014134 WO2003096369A1 (en) | 2002-05-08 | 2003-05-07 | Plasma-assisted gas production |
Country Status (12)
Country | Link |
---|---|
US (7) | US6870124B2 (en) |
EP (15) | EP1502274A1 (en) |
JP (5) | JP2005525234A (en) |
KR (3) | KR20050026387A (en) |
CN (15) | CN100447289C (en) |
AT (1) | ATE536086T1 (en) |
AU (21) | AU2003230264A1 (en) |
BR (6) | BR0309815A (en) |
CA (1) | CA2485195A1 (en) |
IL (2) | IL164824A0 (en) |
MX (1) | MXPA04010875A (en) |
WO (21) | WO2003096768A1 (en) |
Families Citing this family (224)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207646B1 (en) * | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7212860B2 (en) * | 1999-05-21 | 2007-05-01 | Cardiac Pacemakers, Inc. | Apparatus and method for pacing mode switching during atrial tachyarrhythmias |
EP1361437A1 (en) * | 2002-05-07 | 2003-11-12 | Centre National De La Recherche Scientifique (Cnrs) | A novel biological cancer marker and methods for determining the cancerous or non-cancerous phenotype of cells |
US20060062930A1 (en) * | 2002-05-08 | 2006-03-23 | Devendra Kumar | Plasma-assisted carburizing |
US20060228497A1 (en) * | 2002-05-08 | 2006-10-12 | Satyendra Kumar | Plasma-assisted coating |
US20060233682A1 (en) * | 2002-05-08 | 2006-10-19 | Cherian Kuruvilla A | Plasma-assisted engine exhaust treatment |
US7638727B2 (en) * | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
ATE536086T1 (en) * | 2002-05-08 | 2011-12-15 | Btu Int | METHOD FOR GENERATING PLASMA USING A PLASMA CATALYST |
US7560657B2 (en) * | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
US7494904B2 (en) * | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US7445817B2 (en) * | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
US20050233091A1 (en) * | 2002-05-08 | 2005-10-20 | Devendra Kumar | Plasma-assisted coating |
US7465362B2 (en) * | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
US7498066B2 (en) * | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US20060057016A1 (en) * | 2002-05-08 | 2006-03-16 | Devendra Kumar | Plasma-assisted sintering |
US20060237398A1 (en) * | 2002-05-08 | 2006-10-26 | Dougherty Mike L Sr | Plasma-assisted processing in a manufacturing line |
AU2002325215A1 (en) * | 2002-05-08 | 2003-11-11 | Leonhard Kurz Gmbh And Co. Kg | Method of decorating large plastic 3d objects |
CN101076221B (en) * | 2002-05-08 | 2011-08-31 | Btu国际公司 | Multiple radiation sources plasma generating and processing |
US7497922B2 (en) * | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7189940B2 (en) * | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
US7511246B2 (en) | 2002-12-12 | 2009-03-31 | Perkinelmer Las Inc. | Induction device for generating a plasma |
US20040216845A1 (en) * | 2003-05-02 | 2004-11-04 | Czeslaw Golkowski | Non-thermal plasma generator device |
JP2005024539A (en) * | 2003-06-10 | 2005-01-27 | Hitachi Ltd | Charged particle detector and sensing device using the same |
US20050067098A1 (en) | 2003-09-30 | 2005-03-31 | Tokyo Electron Limited | Method and system for introduction of an active material to a chemical process |
JP4324078B2 (en) * | 2003-12-18 | 2009-09-02 | キヤノン株式会社 | Carbon-containing fiber, substrate using carbon-containing fiber, electron-emitting device, electron source using the electron-emitting device, display panel using the electron source, and information display / reproduction device using the display panel, And production methods thereof |
FR2871478B1 (en) * | 2004-06-15 | 2006-12-22 | Arash Mofakhami | CATION-ELECTRON INTRUSION AND COLLISION SYSTEM IN NON-CONDUCTIVE MATERIAL |
US7517215B1 (en) * | 2004-07-09 | 2009-04-14 | Erc Incorporated | Method for distributed ignition of fuels by light sources |
WO2006127037A2 (en) * | 2004-11-05 | 2006-11-30 | Dana Corporation | Atmospheric pressure processing using microwave-generated plasmas |
KR101500929B1 (en) * | 2004-11-24 | 2015-03-11 | 엔씨씨 나노, 엘엘씨 | Electrical, plating and catalytic uses of metal nanomaterial compositions |
DE602005021050D1 (en) * | 2005-03-09 | 2010-06-17 | Askair Technologies Ag | Method for guiding a flow plasma device |
CN101495262B (en) | 2005-03-11 | 2014-11-12 | 魄金莱默有限公司 | Plasmas and methods of using them |
US20090212015A1 (en) * | 2005-03-18 | 2009-08-27 | Dougherty Sr Mike L | Plasma-Assisted Processing in a Manufacturing Line |
AU2006259381B2 (en) * | 2005-06-17 | 2012-01-19 | Perkinelmer Health Sciences, Inc. | Boost devices and methods of using them |
US8622735B2 (en) * | 2005-06-17 | 2014-01-07 | Perkinelmer Health Sciences, Inc. | Boost devices and methods of using them |
TW200714845A (en) * | 2005-06-17 | 2007-04-16 | Dana Corp | Microwave plasma cooking |
US7742167B2 (en) | 2005-06-17 | 2010-06-22 | Perkinelmer Health Sciences, Inc. | Optical emission device with boost device |
JP4732057B2 (en) * | 2005-07-29 | 2011-07-27 | 株式会社日立ハイテクノロジーズ | Plasma processing apparatus and processing method |
KR100689037B1 (en) | 2005-08-24 | 2007-03-08 | 삼성전자주식회사 | micrewave resonance plasma generating apparatus and plasma processing system having the same |
US20070051233A1 (en) * | 2005-09-06 | 2007-03-08 | Duge Robert T | Radiant electromagnetic energy management |
JP5531240B2 (en) * | 2005-09-20 | 2014-06-25 | イマジニアリング株式会社 | Ignition device, internal combustion engine, spark plug, and plasma device |
US8945686B2 (en) * | 2007-05-24 | 2015-02-03 | Ncc | Method for reducing thin films on low temperature substrates |
JP4699235B2 (en) * | 2006-02-20 | 2011-06-08 | 株式会社サイアン | Plasma generating apparatus and work processing apparatus using the same |
JP4846392B2 (en) * | 2006-02-28 | 2011-12-28 | 株式会社東芝 | Underwater repair welding method |
US20070278199A1 (en) * | 2006-04-14 | 2007-12-06 | Ewa Environmental, Inc. | Particle burning in an exhaust system |
US7714248B2 (en) * | 2006-05-24 | 2010-05-11 | Kuan-Jiuh Lin | Microwave plasma generator |
EP1867386A1 (en) * | 2006-06-02 | 2007-12-19 | Thomas Wendling | Method for the production of nanoparticles |
US7722778B2 (en) * | 2006-06-28 | 2010-05-25 | Lam Research Corporation | Methods and apparatus for sensing unconfinement in a plasma processing chamber |
US20110064605A1 (en) * | 2006-07-05 | 2011-03-17 | Thermapure, Inc. | Method for treating an object contaminated with harmful biological organisms or chemical substances utilizing electromagnetic waves |
US7541561B2 (en) * | 2006-09-01 | 2009-06-02 | General Electric Company | Process of microwave heating of powder materials |
US7326892B1 (en) | 2006-09-21 | 2008-02-05 | General Electric Company | Process of microwave brazing with powder materials |
US7524385B2 (en) * | 2006-10-03 | 2009-04-28 | Elemetric, Llc | Controlled phase transition of metals |
EP2415469A1 (en) * | 2006-10-24 | 2012-02-08 | David W. Krempin | Anti-Resorptive and Bone Building Dietary Supplements and Methods of Use |
US7775416B2 (en) * | 2006-11-30 | 2010-08-17 | General Electric Company | Microwave brazing process |
US8342386B2 (en) * | 2006-12-15 | 2013-01-01 | General Electric Company | Braze materials and processes therefor |
US8574686B2 (en) * | 2006-12-15 | 2013-11-05 | General Electric Company | Microwave brazing process for forming coatings |
US7946467B2 (en) * | 2006-12-15 | 2011-05-24 | General Electric Company | Braze material and processes for making and using |
US8409318B2 (en) * | 2006-12-15 | 2013-04-02 | General Electric Company | Process and apparatus for forming wire from powder materials |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US8158217B2 (en) | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US9806273B2 (en) * | 2007-01-03 | 2017-10-31 | The United States Of America As Represented By The Secretary Of The Army | Field effect transistor array using single wall carbon nano-tubes |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
DE102007011310B4 (en) * | 2007-03-06 | 2015-06-18 | Biotronik Crm Patent Ag | Medical implant and method of making the same |
FR2921388B1 (en) * | 2007-09-20 | 2010-11-26 | Air Liquide | HIGH ATMOSPHERIC PRESSURE PLASMA ASSISTED CVD DEPOSITION DEVICE AND METHOD AND APPLICATIONS THEREOF |
US20090139607A1 (en) * | 2007-10-28 | 2009-06-04 | General Electric Company | Braze compositions and methods of use |
US8115135B2 (en) * | 2008-02-14 | 2012-02-14 | Adventix Technologies Inc. | Plasma assisted oxygen decontaminant generator and sprayer |
US20090295509A1 (en) * | 2008-05-28 | 2009-12-03 | Universal Phase, Inc. | Apparatus and method for reaction of materials using electromagnetic resonators |
US9288886B2 (en) | 2008-05-30 | 2016-03-15 | Colorado State University Research Foundation | Plasma-based chemical source device and method of use thereof |
US8994270B2 (en) | 2008-05-30 | 2015-03-31 | Colorado State University Research Foundation | System and methods for plasma application |
US8575843B2 (en) | 2008-05-30 | 2013-11-05 | Colorado State University Research Foundation | System, method and apparatus for generating plasma |
WO2011123125A1 (en) | 2010-03-31 | 2011-10-06 | Colorado State University Research Foundation | Liquid-gas interface plasma device |
US8410712B2 (en) * | 2008-07-09 | 2013-04-02 | Ncc Nano, Llc | Method and apparatus for curing thin films on low-temperature substrates at high speeds |
US8128788B2 (en) | 2008-09-19 | 2012-03-06 | Rf Thummim Technologies, Inc. | Method and apparatus for treating a process volume with multiple electromagnetic generators |
US8760520B2 (en) | 2008-11-10 | 2014-06-24 | Eduard Levin | System and method for tracking and monitoring personnel and equipment |
CN101579617B (en) * | 2009-01-20 | 2012-05-30 | 江苏工业学院 | Microwave chemical reactor |
US9186742B2 (en) * | 2009-01-30 | 2015-11-17 | General Electric Company | Microwave brazing process and assemblies and materials therefor |
CA2750484A1 (en) | 2009-02-17 | 2010-12-16 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
WO2010141130A1 (en) | 2009-02-27 | 2010-12-09 | Lockheed Martin Corporation | Low temperature cnt growth using gas-preheat method |
US20100227134A1 (en) | 2009-03-03 | 2010-09-09 | Lockheed Martin Corporation | Method for the prevention of nanoparticle agglomeration at high temperatures |
CA2761850A1 (en) | 2009-04-14 | 2010-10-21 | Rf Thummim Technologies, Inc. | Method and apparatus for excitation of resonances in molecules |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
CA2758568A1 (en) | 2009-04-24 | 2010-10-28 | Applied Nanostructured Solutions, Llc | Cnt-infused emi shielding composite and coating |
BRPI1014711A2 (en) | 2009-04-27 | 2016-04-12 | Applied Nanostrctured Solutions Llc | cnt-based resistance heating to defrost composite structures |
CN102474925B (en) * | 2009-07-10 | 2013-11-06 | 松下电器产业株式会社 | Microwave heating device and microwave heating control method |
CN102470546B (en) | 2009-08-03 | 2014-08-13 | 应用纳米结构方案公司 | Incorporation of nanoparticles in composite fibers |
US8222822B2 (en) | 2009-10-27 | 2012-07-17 | Tyco Healthcare Group Lp | Inductively-coupled plasma device |
AU2010350691A1 (en) | 2009-11-23 | 2012-04-19 | Applied Nanostructured Solutions, Llc | CNT-tailored composite sea-based structures |
CN102596564B (en) | 2009-11-23 | 2014-11-12 | 应用纳米结构方案公司 | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
CA2780354A1 (en) | 2009-12-14 | 2011-11-17 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US20110180385A1 (en) * | 2010-01-28 | 2011-07-28 | Raytheon Company | Control of Catalytic Chemical Processes |
BR112012018244A2 (en) | 2010-02-02 | 2016-05-03 | Applied Nanostructured Sols | carbon nanotube infused fiber materials containing parallel aligned carbon nanotubes, methods for producing them and composite materials derived therefrom |
EP2534051A4 (en) * | 2010-02-08 | 2017-04-05 | Microspace Rapid PTE LTD | A micro-nozzle thruster |
KR101818640B1 (en) | 2010-03-02 | 2018-01-15 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
WO2011109480A2 (en) | 2010-03-02 | 2011-09-09 | Applied Nanostructed Solution, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
WO2011116187A1 (en) | 2010-03-17 | 2011-09-22 | Rf Thummim Technologies, Inc. | Method and apparatus for electromagnetically producing a disturbance in a medium with simultaneous resonance of acoustic waves created by the disturbance |
EP2554028B1 (en) | 2010-03-31 | 2016-11-23 | Colorado State University Research Foundation | Liquid-gas interface plasma device |
US10422578B2 (en) * | 2010-04-08 | 2019-09-24 | Ncc Nano, Pllc | Apparatus for curing thin films on a moving substrate |
ES2819216T3 (en) * | 2010-04-08 | 2021-04-15 | Ncc Nano Llc | Apparatus for curing thin films on a moving substrate |
CN101940902A (en) * | 2010-05-04 | 2011-01-12 | 姚光纯 | Processing method for improving efficiency of catalytic chemical reaction by impulse wave |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
KR101870844B1 (en) | 2010-09-14 | 2018-06-25 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
AU2011305809A1 (en) | 2010-09-22 | 2013-02-28 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
EP2619767A2 (en) | 2010-09-23 | 2013-07-31 | Applied NanoStructured Solutions, LLC | Cnt-infused fiber as a self shielding wire for enhanced power transmission line |
US8755165B2 (en) | 2010-10-18 | 2014-06-17 | Veeco Instruments, Inc. | Fault tolerant ion source power system |
CN102476954A (en) * | 2010-11-22 | 2012-05-30 | 鸿富锦精密工业(深圳)有限公司 | Connecting method of stainless steel and silicon nitride ceramic and connecting piece manufactured by connecting method |
CN102093915B (en) * | 2010-12-17 | 2013-05-01 | 南通海鹰机电集团有限公司 | Reforming reaction kettle for biomass power generation system |
CN102172833B (en) * | 2011-02-21 | 2012-10-03 | 南京航空航天大学 | Controllable and ablated non-conductive engineering ceramic grinding method based on discharge induction |
JP2014510896A (en) * | 2011-03-11 | 2014-05-01 | インダージット・シン | Method and apparatus for plasma assisted laser cooking of food products |
CN102794354A (en) * | 2011-05-26 | 2012-11-28 | 昆山市瑞捷精密模具有限公司 | Nickel-based superalloy stamping die with high-temperature-resistant coating |
CN102806270A (en) * | 2011-05-30 | 2012-12-05 | 昆山市瑞捷精密模具有限公司 | Ferrite stainless steel die with high temperature resistance coating |
CN102343391A (en) * | 2011-06-14 | 2012-02-08 | 昆山市瑞捷精密模具有限公司 | Nickel-based superheat resisting alloy stamping die with hard film structure |
CN102343394A (en) * | 2011-06-14 | 2012-02-08 | 昆山市瑞捷精密模具有限公司 | Preparation method of nickel-based superheat resisting die with hard film structure |
CN102343392A (en) * | 2011-06-14 | 2012-02-08 | 昆山市瑞捷精密模具有限公司 | Preparation method of ferritic stainless steel die with hard film structure |
CN102825135A (en) * | 2011-06-16 | 2012-12-19 | 昆山市瑞捷精密模具有限公司 | Ferrite stainless steel stamping die with self-lubricating coating |
CN102389922A (en) * | 2011-06-16 | 2012-03-28 | 昆山市瑞捷精密模具有限公司 | Nickel-based superheat-resisting alloy stamping mould with self-lubricating coating |
JP5490192B2 (en) * | 2011-12-28 | 2014-05-14 | 東京エレクトロン株式会社 | Microwave heat treatment apparatus and treatment method |
CN103199215B (en) * | 2012-01-05 | 2016-12-21 | 三星Sdi株式会社 | Equipment for Heating Processing |
EP2806728B1 (en) * | 2012-01-27 | 2019-09-11 | N/C-Quest Inc | Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
WO2014011919A2 (en) | 2012-07-13 | 2014-01-16 | Perkinelmer Health Sciences, Inc. | Torches and methods of using them |
CN102961787B (en) * | 2012-12-13 | 2015-06-03 | 北京大学 | Iron-based composite material used for full-degradation cardiovascular support and preparation method thereof |
US9374853B2 (en) | 2013-02-08 | 2016-06-21 | Letourneau University | Method for joining two dissimilar materials and a microwave system for accomplishing the same |
US9532826B2 (en) | 2013-03-06 | 2017-01-03 | Covidien Lp | System and method for sinus surgery |
US9555145B2 (en) | 2013-03-13 | 2017-01-31 | Covidien Lp | System and method for biofilm remediation |
WO2014159449A1 (en) * | 2013-03-14 | 2014-10-02 | Tokyo Electron Limited | Microwave surface-wave plasma device |
US9505503B2 (en) * | 2013-03-27 | 2016-11-29 | Lockheed Martin Corporation | Reactants sprayed into plasma flow for rocket propulsion |
US9941126B2 (en) | 2013-06-19 | 2018-04-10 | Tokyo Electron Limited | Microwave plasma device |
US9512766B2 (en) | 2013-08-16 | 2016-12-06 | Ford Global Technologies, Llc | Multi-cell structure for automotive catalyst support |
CN103495730B (en) * | 2013-10-12 | 2015-06-10 | 宝鸡正微金属科技有限公司 | Vacuum plasma powder metallurgy sintering technology |
WO2015069905A1 (en) | 2013-11-06 | 2015-05-14 | Tokyo Electron Limited | Multi-cell resonator microwave surface-wave plasma apparatus |
CN103647095B (en) * | 2013-11-20 | 2016-01-20 | 江苏大学 | A kind of Laser-alkaline fuel cell |
CN104649247A (en) * | 2013-11-22 | 2015-05-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for formation of nitrogen doped single-walled carbon nanotube |
KR102437125B1 (en) * | 2014-06-27 | 2022-08-25 | 어플라이드 머티어리얼스, 인코포레이티드 | Plasma corrosion resistive heater for high temperature processing |
CN104176949A (en) * | 2014-08-18 | 2014-12-03 | 苏州宏久航空防热材料科技有限公司 | Preparation method of high-infrared-absorption glass fiber |
AU2015376829B2 (en) * | 2015-01-12 | 2019-08-15 | Guangdong Aisun Med-tech Co., Ltd. | Plasma generating device and method for treatinig skin |
US10153133B2 (en) | 2015-03-23 | 2018-12-11 | Applied Materials, Inc. | Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion |
DE102015111555B3 (en) * | 2015-07-16 | 2016-09-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Arrangement for the treatment of materials with microwaves |
US10244613B2 (en) * | 2015-10-04 | 2019-03-26 | Kla-Tencor Corporation | System and method for electrodeless plasma ignition in laser-sustained plasma light source |
WO2017095972A1 (en) * | 2015-11-30 | 2017-06-08 | The Board Of Regents For Oklahoma State University | Microwave processing of thermoelectric materials and use of glass inclusions for improving the mechanical and thermoelectric properties |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
PL3389862T3 (en) | 2015-12-16 | 2024-03-04 | 6K Inc. | Method of producing spheroidal dehydrogenated titanium alloy particles |
KR102690629B1 (en) * | 2016-01-19 | 2024-07-31 | 브릴리언트 라이트 파워, 인크. | thermovoltaic electric generator |
US9831066B1 (en) * | 2016-05-27 | 2017-11-28 | Mks Instruments, Inc. | Compact microwave plasma applicator utilizing conjoining electric fields |
CN106435519A (en) * | 2016-09-18 | 2017-02-22 | 北京工业大学 | Method for improving uniformity of tungsten coating prepared on inner wall of long pipe through CVD method |
US9812295B1 (en) | 2016-11-15 | 2017-11-07 | Lyten, Inc. | Microwave chemical processing |
EP3542036B1 (en) * | 2016-11-17 | 2020-11-04 | Eprotech S.R.L. | Device for abatement of liquid, gaseous and/or solid pollutant substances of various kind, contained into the exhaust smokes, and process for treatment and abatement of such pollutant substances |
CN106631086A (en) * | 2017-01-16 | 2017-05-10 | 青岛大学 | Analysis method for microwave joining of ceramic materials in multi-mode sintering cavity |
CN106744676A (en) * | 2017-01-23 | 2017-05-31 | 上海朗研光电科技有限公司 | The device and its synthetic method of glow discharge synthesizing nano-particle |
US9997334B1 (en) | 2017-02-09 | 2018-06-12 | Lyten, Inc. | Seedless particles with carbon allotropes |
US9767992B1 (en) | 2017-02-09 | 2017-09-19 | Lyten, Inc. | Microwave chemical processing reactor |
KR102507791B1 (en) | 2017-03-16 | 2023-03-08 | 라이텐, 인코포레이티드 | Carbon and elastomer integration |
US10920035B2 (en) | 2017-03-16 | 2021-02-16 | Lyten, Inc. | Tuning deformation hysteresis in tires using graphene |
CN106861912B (en) * | 2017-03-21 | 2018-08-17 | 哈尔滨工程大学 | A kind of enhancing plasma density improves the device and method of efficiency of dust collection |
US20180308661A1 (en) | 2017-04-24 | 2018-10-25 | Applied Materials, Inc. | Plasma reactor with electrode filaments |
CN107029645A (en) * | 2017-05-12 | 2017-08-11 | 武汉喜玛拉雅光电科技股份有限公司 | A kind of continuous microwave synthesizer and the method that platinum carbon catalyst is prepared with it |
US10434490B2 (en) | 2017-08-08 | 2019-10-08 | H Quest Vanguard, Inc. | Microwave-induced non-thermal plasma conversion of hydrocarbons |
US11358113B2 (en) | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Non-thermal micro-plasma conversion of hydrocarbons |
US9987611B1 (en) | 2017-08-08 | 2018-06-05 | H Quest Vanguard, Inc. | Non-thermal plasma conversion of hydrocarbons |
US11358869B2 (en) | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Methods and systems for microwave assisted production of graphitic materials |
US20190061005A1 (en) * | 2017-08-30 | 2019-02-28 | General Electric Company | High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation |
JP6591030B2 (en) * | 2017-11-15 | 2019-10-16 | 日本発條株式会社 | Joint and automobile seat frame |
US10756334B2 (en) | 2017-12-22 | 2020-08-25 | Lyten, Inc. | Structured composite materials |
WO2019136181A1 (en) | 2018-01-04 | 2019-07-11 | Lyten, Inc. | Resonant gas sensor |
EP3508334A1 (en) * | 2018-01-08 | 2019-07-10 | CL Schutzrechtsverwaltungs GmbH | Apparatus for additively manufacturing of three-dimensional objects |
WO2019143559A1 (en) | 2018-01-16 | 2019-07-25 | Lyten, Inc. | Microwave transparent pressure barrier |
EP3581371B1 (en) * | 2018-06-14 | 2021-04-14 | Fundació Institut de Ciències Fotòniques | A method and a system for self-repairing an object |
CN112654444A (en) | 2018-06-19 | 2021-04-13 | 6K有限公司 | Method for producing spheroidized powder from raw material |
CN109186216B (en) * | 2018-08-23 | 2023-08-22 | 绍兴市质量技术监督检测院 | Leak-proof microwave quick drying device |
DE102018121897A1 (en) | 2018-09-07 | 2020-03-12 | Infineon Technologies Ag | SEMICONDUCTOR DEVICE WITH A AREA CONTAINING SILICON AND NITROGEN AND PRODUCTION METHOD |
EP3488851A1 (en) * | 2018-10-03 | 2019-05-29 | AVM Biotechnology, LLC | Immunoablative therapies |
EP3671511B1 (en) | 2018-12-19 | 2022-07-06 | Rohde & Schwarz GmbH & Co. KG | Communication system and method |
KR102217086B1 (en) * | 2018-12-28 | 2021-02-18 | 금오공과대학교 산학협력단 | Automotive Rear Lamp Cutting and Plasma Surface Treatment System |
CN109570739B (en) * | 2019-02-12 | 2024-05-28 | 黄山学院 | Novel device for controlling friction stir welding deformation |
CN110289115B (en) * | 2019-02-22 | 2022-08-30 | 中国工程物理研究院核物理与化学研究所 | High-strength silicone rubber-based flexible neutron shielding material and preparation method thereof |
US20200286757A1 (en) * | 2019-03-08 | 2020-09-10 | Dsgi Technologies, Inc. | Apparatus for annealing semiconductor integrated circuit wafers |
SG11202111576QA (en) | 2019-04-30 | 2021-11-29 | 6K Inc | Mechanically alloyed powder feedstock |
KR102644961B1 (en) | 2019-04-30 | 2024-03-11 | 6케이 인크. | Lithium Lanthanum Zirconium Oxide (LLZO) Powder |
US11158561B2 (en) | 2019-05-01 | 2021-10-26 | Micron Technology, Inc. | Memory device with low density thermal barrier |
CN110064291B (en) * | 2019-05-07 | 2021-09-24 | 中冶华天工程技术有限公司 | Integrated low-concentration stink waste gas treatment device |
CN110557853B (en) * | 2019-07-18 | 2022-08-09 | 武汉纺织大学 | Method for manufacturing high-temperature sintered body capable of generating heat by electrifying, product and application method |
CN112404713B (en) * | 2019-08-23 | 2022-10-14 | 大族激光科技产业集团股份有限公司 | OLED laser welding system and temperature control method |
CN110385020B (en) * | 2019-09-02 | 2024-01-30 | 浙江大学城市学院 | Multi-needle coaxial discharge removal method and reactor for removing nitrogen oxides |
DE102019006499A1 (en) * | 2019-09-16 | 2021-03-18 | Albonair Gmbh | Heated injection nozzle |
CN110735691B (en) * | 2019-11-13 | 2021-07-30 | 燕山大学 | Automobile exhaust purifying equipment based on plasma |
PL4061787T3 (en) | 2019-11-18 | 2024-08-26 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
CN112899617B (en) * | 2019-12-04 | 2023-03-31 | 中微半导体设备(上海)股份有限公司 | Method, device, component and plasma processing device for forming plasma-resistant coating |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
CN111219992A (en) * | 2020-03-19 | 2020-06-02 | 广东石井新材料有限公司 | Lifting structure and oxygen lance system |
JP2023532166A (en) | 2020-03-24 | 2023-07-27 | エフェンコ オーウー | Nanoceramic plasma catalysts for combustion stabilization and plasma-assisted combustion |
CN111250916B (en) * | 2020-03-25 | 2021-06-29 | 荆门诺恒科技有限公司 | Water bucket assembly welding annealing tool of aero-engine experimental pulley |
CN111545148B (en) * | 2020-04-07 | 2022-06-07 | 华东交通大学 | Chiral catalysis method and catalytic device thereof |
CN111420834A (en) * | 2020-04-11 | 2020-07-17 | 张新旺 | Cable semi-conductive graphite coating equipment |
CN113539076B (en) * | 2020-04-20 | 2022-12-13 | Oppo广东移动通信有限公司 | Terminal device and folding display screen thereof |
CN111479375B (en) * | 2020-05-08 | 2022-12-02 | 高维等离子体源科技(孝感)有限公司 | Surface coupling induced ionization technology and corresponding plasma and plasma device |
WO2021226741A1 (en) * | 2020-05-09 | 2021-11-18 | 张麟德 | Surface coupling induced ionization technology, and plasma and plasma device corresponding thereto |
TWI755749B (en) * | 2020-06-08 | 2022-02-21 | 馬思正 | Internal combustion engine waste reduction and energy saving equipment |
CN116034496A (en) | 2020-06-25 | 2023-04-28 | 6K有限公司 | Microcosmic composite alloy structure |
CN111850489B (en) * | 2020-07-29 | 2023-01-24 | 江苏集萃先进金属材料研究所有限公司 | Intermediate material of target material, forming method thereof and device for realizing forming method |
CN111992161A (en) * | 2020-09-04 | 2020-11-27 | 江西科技学院 | Photocatalytic degradation device for copper slag pollutants and use method thereof |
WO2022067303A1 (en) | 2020-09-24 | 2022-03-31 | 6K Inc. | Systems, devices, and methods for starting plasma |
CN112383997B (en) * | 2020-10-05 | 2024-10-25 | 四川大学 | High-power microwave plasma pulverized coal cracking device |
CN112196645B (en) * | 2020-10-27 | 2024-07-26 | 武汉洛特福动力技术有限公司 | Cylindrical cone pipe cyclone mixer |
CN116600915A (en) | 2020-10-30 | 2023-08-15 | 6K有限公司 | System and method for synthesizing spheroidized metal powder |
CN112675648B (en) * | 2020-12-02 | 2022-04-15 | 杨振华 | Energy-saving air purification equipment and use method thereof |
CN112594031B (en) * | 2020-12-08 | 2024-05-28 | 上研动力科技江苏有限公司 | Diesel engine with flue gas treatment and secondary utilization device |
CN112759408B (en) * | 2021-01-04 | 2022-12-23 | 苏州第一元素纳米技术有限公司 | Boron carbide ceramic and preparation method and application thereof |
CN112985064A (en) * | 2021-02-05 | 2021-06-18 | 陕西翼飞航智能科技有限公司 | Sintering device and sintering method based on plasma hot blast stove |
US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
CN113218190B (en) * | 2021-04-01 | 2022-09-27 | 青海湘和有色金属有限责任公司 | Oxygen supply device for stabilizing oxygen supply of oxygen-enriched side-blown converter and use method thereof |
CN112996209B (en) * | 2021-05-07 | 2021-08-10 | 四川大学 | Structure and array structure for microwave excitation of atmospheric pressure plasma jet |
CN113244866B (en) * | 2021-05-14 | 2022-05-06 | 昆明理工大学 | Device and method for synthesizing light hydrocarbon through microwave-assisted gas catalysis |
CN113245901B (en) * | 2021-06-28 | 2022-03-04 | 浙江重力智能装备有限公司 | Coolant liquid cleaning device for digit control machine tool |
CN114234239A (en) * | 2021-12-13 | 2022-03-25 | 哈尔滨工业大学 | Combustion system and method based on cooperation of metal-based particles and microwaves |
CN114199032B (en) * | 2021-12-21 | 2023-11-28 | 清华大学深圳国际研究生院 | Plasma-assisted ceramic sintering device and ceramic sintering method |
CN117387368A (en) * | 2022-01-19 | 2024-01-12 | 福建华清电子材料科技有限公司 | Gas distribution system of graphite furnace |
CN114873561A (en) * | 2022-05-12 | 2022-08-09 | 哈尔滨工业大学 | Packed bed type reforming hydrogen production reactor with variable catalyst particle size and reaction method |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
CN115275507A (en) * | 2022-08-09 | 2022-11-01 | 南木纳米科技(北京)有限公司 | Dry method diaphragm coating machine |
CN115121388A (en) * | 2022-08-09 | 2022-09-30 | 南木纳米科技(北京)有限公司 | Dry-method battery pole piece primary coating machine |
WO2024044498A1 (en) | 2022-08-25 | 2024-02-29 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip) |
CN116219369A (en) * | 2023-03-09 | 2023-06-06 | 安徽光智科技有限公司 | Method for preparing boron carbide film by evaporation |
CN116609189B (en) * | 2023-07-21 | 2023-10-20 | 镇江华浩通信器材有限公司 | Quick detection device of radio frequency coaxial cable connector |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698234A (en) * | 1985-04-01 | 1987-10-06 | Energy Conversion Devices, Inc. | Vapor deposition of semiconductor material |
US4919077A (en) * | 1986-12-27 | 1990-04-24 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor producing apparatus |
US5058527A (en) * | 1990-07-24 | 1991-10-22 | Ricoh Company, Ltd. | Thin film forming apparatus |
US5271963A (en) * | 1992-11-16 | 1993-12-21 | Materials Research Corporation | Elimination of low temperature ammonia salt in TiCl4 NH3 CVD reaction |
US5366764A (en) * | 1992-06-15 | 1994-11-22 | Sunthankar Mandar B | Environmentally safe methods and apparatus for depositing and/or reclaiming a metal or semi-conductor material using sublimation |
US5607509A (en) * | 1992-11-04 | 1997-03-04 | Hughes Electronics | High impedance plasma ion implantation apparatus |
US5616373A (en) * | 1990-09-14 | 1997-04-01 | Balzers Aktiengesellschaft | Plasma CVD method for producing a diamond coating |
US5645897A (en) * | 1992-02-15 | 1997-07-08 | Andra; Jurgen | Process and device for surface-modification by physico-chemical reactions of gases or vapors on surfaces, using highly-charged ions |
US5980999A (en) * | 1995-08-24 | 1999-11-09 | Nagoya University | Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods |
US6149985A (en) * | 1999-07-07 | 2000-11-21 | Eastman Kodak Company | High-efficiency plasma treatment of imaging supports |
US6383333B1 (en) * | 1998-04-28 | 2002-05-07 | Tokai Carbon Company, Ltd. | Protective member for inner surface of chamber and plasma processing apparatus |
Family Cites Families (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU432371B2 (en) * | 1967-07-13 | 1973-02-06 | Commonwealth Scientific And Industrial Research Organization | Plasma sintering |
US3612686A (en) | 1968-01-03 | 1971-10-12 | Iit Res Inst | Method and apparatus for gas analysis utilizing a direct current discharge |
US3731047A (en) * | 1971-12-06 | 1973-05-01 | Mc Donnell Douglas Corp | Plasma heating torch |
US4004934A (en) | 1973-10-24 | 1977-01-25 | General Electric Company | Sintered dense silicon carbide |
JPS5823349B2 (en) * | 1975-08-11 | 1983-05-14 | 新日本製鐵株式会社 | Tai Kabutunoshiyouketsuhouhou |
JPS5378170A (en) | 1976-12-22 | 1978-07-11 | Toshiba Corp | Continuous processor for gas plasma etching |
US4025818A (en) * | 1976-04-20 | 1977-05-24 | Hughes Aircraft Company | Wire ion plasma electron gun |
CA1080562A (en) * | 1977-02-10 | 1980-07-01 | Frederick D. King | Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube |
US4307277A (en) * | 1978-08-03 | 1981-12-22 | Mitsubishi Denki Kabushiki Kaisha | Microwave heating oven |
US4213818A (en) | 1979-01-04 | 1980-07-22 | Signetics Corporation | Selective plasma vapor etching process |
JPS55131175A (en) * | 1979-03-30 | 1980-10-11 | Toshiba Corp | Surface treatment apparatus with microwave plasma |
US4230448A (en) | 1979-05-14 | 1980-10-28 | Combustion Electromagnetics, Inc. | Burner combustion improvements |
JPS5673539A (en) | 1979-11-22 | 1981-06-18 | Toshiba Corp | Surface treating apparatus of microwave plasma |
FR2480552A1 (en) | 1980-04-10 | 1981-10-16 | Anvar | PLASMA GENERATOR |
US4404456A (en) | 1981-03-26 | 1983-09-13 | Cann Gordon L | Micro-arc welding/brazing of metal to metal and metal to ceramic joints |
JPS5825073A (en) * | 1981-08-07 | 1983-02-15 | Mitsubishi Electric Corp | Electrodeless discharge lamp |
US4479075A (en) | 1981-12-03 | 1984-10-23 | Elliott William G | Capacitatively coupled plasma device |
US4500564A (en) | 1982-02-01 | 1985-02-19 | Agency Of Industrial Science & Technology | Method for surface treatment by ion bombardment |
US4504007A (en) | 1982-09-14 | 1985-03-12 | International Business Machines Corporation | Solder and braze fluxes and processes for using the same |
FR2533397A2 (en) | 1982-09-16 | 1984-03-23 | Anvar | IMPROVEMENTS IN PLASMA TORCHES |
US4664937A (en) * | 1982-09-24 | 1987-05-12 | Energy Conversion Devices, Inc. | Method of depositing semiconductor films by free radical generation |
JPS59103348A (en) * | 1982-12-06 | 1984-06-14 | Toyota Central Res & Dev Lab Inc | Manufacture of semiconductor device |
JPS59169053A (en) * | 1983-03-16 | 1984-09-22 | Toshiba Corp | Electrodeless electric-discharge lamp |
DD222348A1 (en) * | 1983-12-27 | 1985-05-15 | Erste Maschinenfabrik K Marx S | METHOD OF INTENSIVATING THE INFLUENCING OF MATERIAL IN THERMAL-CHEMICAL TREATMENT OF MATERIALS |
US4504564A (en) * | 1984-01-03 | 1985-03-12 | Xerox Corporation | Method for the preparation of photoconductive compositions |
US4666775A (en) | 1985-04-01 | 1987-05-19 | Kennecott Corporation | Process for sintering extruded powder shapes |
US4624738A (en) | 1985-07-12 | 1986-11-25 | E. T. Plasma, Inc. | Continuous gas plasma etching apparatus and method |
US4687560A (en) * | 1985-08-16 | 1987-08-18 | The United States Of America As Represented By The United States Department Of Energy | Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides |
SE448297B (en) | 1985-09-27 | 1987-02-09 | Stiftelsen Inst Mikrovags | METHOD AND DEVICE FOR HEATING GLASSES |
JPS6311580A (en) | 1986-06-30 | 1988-01-19 | 株式会社豊田中央研究所 | Ceramics joining equipment |
US4767902A (en) | 1986-09-24 | 1988-08-30 | Questech Inc. | Method and apparatus for the microwave joining of ceramic items |
DE3632684A1 (en) | 1986-09-26 | 1988-03-31 | Philips Patentverwaltung | METHOD AND DEVICE FOR THE INTERNAL COATING OF TUBES |
JPH0689456B2 (en) | 1986-10-01 | 1994-11-09 | キヤノン株式会社 | Functional deposited film forming apparatus by microwave plasma CVD method |
IT1213433B (en) | 1986-12-23 | 1989-12-20 | Eniricerche S P A Agip S P A | PROCEDURE FOR OLIGOMERIZING LIGHT OLEFINS |
US4792348A (en) | 1987-03-02 | 1988-12-20 | Powerplex Technologies, Inc. | Method of forming glass bonded joint of beta-alumina |
JPH0754759B2 (en) * | 1987-04-27 | 1995-06-07 | 日本電信電話株式会社 | Plasma processing method and apparatus, and mode converter for plasma processing apparatus |
US4883570A (en) * | 1987-06-08 | 1989-11-28 | Research-Cottrell, Inc. | Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves |
FR2616614B1 (en) * | 1987-06-10 | 1989-10-20 | Air Liquide | MICROWAVE PLASMA TORCH, DEVICE COMPRISING SUCH A TORCH AND METHOD FOR MANUFACTURING POWDER USING THE SAME |
JPH0623430B2 (en) | 1987-07-13 | 1994-03-30 | 株式会社半導体エネルギ−研究所 | Carbon production method |
US4891488A (en) * | 1987-07-16 | 1990-01-02 | Texas Instruments Incorporated | Processing apparatus and method |
US4963709A (en) | 1987-07-24 | 1990-10-16 | The United States Of America As Represented By The Department Of Energy | Method and device for microwave sintering large ceramic articles |
EP0329338A3 (en) * | 1988-02-16 | 1990-08-01 | Alcan International Limited | Process and apparatus for heating bodies at high temperature and pressure utilizing microwave energy |
US4893584A (en) * | 1988-03-29 | 1990-01-16 | Energy Conversion Devices, Inc. | Large area microwave plasma apparatus |
JP2805009B2 (en) * | 1988-05-11 | 1998-09-30 | 株式会社日立製作所 | Plasma generator and plasma element analyzer |
DE3820237C1 (en) * | 1988-06-14 | 1989-09-14 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De | |
DE3830249A1 (en) | 1988-09-06 | 1990-03-15 | Schott Glaswerke | PLASMA PROCESS FOR COATING LEVEL SUBSTRATES |
US5122431A (en) | 1988-09-14 | 1992-06-16 | Fujitsu Limited | Thin film formation apparatus |
US4877589A (en) * | 1988-09-19 | 1989-10-31 | Hare Louis R O | Nitrogen fixation by electric arc and catalyst |
US4956590A (en) | 1988-10-06 | 1990-09-11 | Techco Corporation | Vehicular power steering system |
US5131993A (en) | 1988-12-23 | 1992-07-21 | The Univeristy Of Connecticut | Low power density plasma excitation microwave energy induced chemical reactions |
US5015349A (en) * | 1988-12-23 | 1991-05-14 | University Of Connecticut | Low power density microwave discharge plasma excitation energy induced chemical reactions |
JP2994652B2 (en) | 1989-01-26 | 1999-12-27 | キヤノン株式会社 | Deposition film forming apparatus by microwave plasma CVD method |
US4888088A (en) | 1989-03-06 | 1989-12-19 | Tegal Corporation | Ignitor for a microwave sustained plasma |
US5103715A (en) * | 1989-03-17 | 1992-04-14 | Techco Corporation | Power steering system |
DE3912568A1 (en) * | 1989-04-17 | 1990-10-18 | Siemens Ag | GAS LASER, ESPECIALLY CO (DOWN ARROW) 2 (DOWN ARROW) LASER |
US5227695A (en) | 1989-06-05 | 1993-07-13 | Centre National De La Recherche Scientifique | Device for coupling microwave energy with an exciter and for distributing it therealong for the purpose of producing a plasma |
WO1990015515A1 (en) | 1989-06-07 | 1990-12-13 | Wolfgang Moshammer | Process and device for irradiating material containing or mixed with water with microwave energy |
EP0406690B1 (en) | 1989-06-28 | 1997-03-12 | Canon Kabushiki Kaisha | Process for continuously forming a large area functional deposited film by microwave PCVD method and an apparatus suitable for practicing the same |
US5130170A (en) * | 1989-06-28 | 1992-07-14 | Canon Kabushiki Kaisha | Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation |
US5114770A (en) * | 1989-06-28 | 1992-05-19 | Canon Kabushiki Kaisha | Method for continuously forming functional deposited films with a large area by a microwave plasma cvd method |
JPH03193880A (en) * | 1989-08-03 | 1991-08-23 | Mikakutou Seimitsu Kogaku Kenkyusho:Kk | Method and device for forming film at high rate by microwave plasma cvd under high pressure |
US4946547A (en) | 1989-10-13 | 1990-08-07 | Cree Research, Inc. | Method of preparing silicon carbide surfaces for crystal growth |
CA2031927A1 (en) * | 1989-12-27 | 1991-06-28 | Imperial Oil Limited | Method for improving the activity maintenance of a plasma initiator |
US5023056A (en) * | 1989-12-27 | 1991-06-11 | The United States Of America As Represented By The Secretary Of The Navy | Plasma generator utilizing dielectric member for carrying microwave energy |
EP0435591A3 (en) * | 1989-12-27 | 1991-11-06 | Exxon Research And Engineering Company | Conversion of methane using microwave radiation |
US5277773A (en) | 1989-12-27 | 1994-01-11 | Exxon Research & Engineering Co. | Conversion of hydrocarbons using microwave radiation |
US5074112A (en) * | 1990-02-21 | 1991-12-24 | Atomic Energy Of Canada Limited | Microwave diesel scrubber assembly |
KR910016054A (en) | 1990-02-23 | 1991-09-30 | 미다 가쓰시게 | Surface Treatment Apparatus and Method for Microelectronic Devices |
US5164130A (en) * | 1990-04-20 | 1992-11-17 | Martin Marietta Energy Systems, Inc. | Method of sintering ceramic materials |
US5120567A (en) * | 1990-05-17 | 1992-06-09 | General Electric Company | Low frequency plasma spray method in which a stable plasma is created by operating a spray gun at less than 1 mhz in a mixture of argon and helium gas |
JPH0462716A (en) | 1990-06-29 | 1992-02-27 | Matsushita Electric Ind Co Ltd | Crystalline carbonaceous thin-film and its deposition method |
JPH0474858A (en) * | 1990-07-16 | 1992-03-10 | Asahi Chem Ind Co Ltd | Production of nitride film |
US5307892A (en) * | 1990-08-03 | 1994-05-03 | Techco Corporation | Electronically controlled power steering system |
US5072650A (en) | 1990-08-03 | 1991-12-17 | Techco Corporation | Power steering system with improved stability |
JPH0779102B2 (en) * | 1990-08-23 | 1995-08-23 | 富士通株式会社 | Method for manufacturing semiconductor device |
US5085885A (en) | 1990-09-10 | 1992-02-04 | University Of Delaware | Plasma-induced, in-situ generation, transport and use or collection of reactive precursors |
JP2958086B2 (en) | 1990-09-18 | 1999-10-06 | 奈良精機株式会社 | Melting device for injection needle |
JPH04144992A (en) * | 1990-10-01 | 1992-05-19 | Idemitsu Petrochem Co Ltd | Microwave plasma-generating device and method for producing diamond film with the same |
US5282338A (en) * | 1990-10-12 | 1994-02-01 | British Aerospace Public Limited Company | Sealing structure |
US5087272A (en) * | 1990-10-17 | 1992-02-11 | Nixdorf Richard D | Filter and means for regeneration thereof |
JPH084103Y2 (en) * | 1990-10-24 | 1996-02-07 | 新日本無線株式会社 | Microwave plasma equipment |
JP2714247B2 (en) * | 1990-10-29 | 1998-02-16 | キヤノン株式会社 | Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD |
JP2994814B2 (en) * | 1990-11-09 | 1999-12-27 | キヤノン株式会社 | Liquid crystal device |
JP2824808B2 (en) * | 1990-11-16 | 1998-11-18 | キヤノン株式会社 | Apparatus for continuously forming large-area functional deposited films by microwave plasma CVD |
AU649770B2 (en) * | 1991-01-25 | 1994-06-02 | Societe Prolabo | Apparatus for simultaneous treatment, in a moist medium, on a plurality of samples, and utilisation of the said apparatus |
US5202541A (en) * | 1991-01-28 | 1993-04-13 | Alcan International Limited | Microwave heating of workpieces |
EP0502269A1 (en) * | 1991-03-06 | 1992-09-09 | Hitachi, Ltd. | Method of and system for microwave plasma treatments |
US5397558A (en) * | 1991-03-26 | 1995-03-14 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming diamond or diamond containing carbon film |
US5349154A (en) | 1991-10-16 | 1994-09-20 | Rockwell International Corporation | Diamond growth by microwave generated plasma flame |
US5223308A (en) | 1991-10-18 | 1993-06-29 | Energy Conversion Devices, Inc. | Low temperature plasma enhanced CVD process within tubular members |
US5321223A (en) | 1991-10-23 | 1994-06-14 | Martin Marietta Energy Systems, Inc. | Method of sintering materials with microwave radiation |
US5961871A (en) * | 1991-11-14 | 1999-10-05 | Lockheed Martin Energy Research Corporation | Variable frequency microwave heating apparatus |
US5521360A (en) * | 1994-09-14 | 1996-05-28 | Martin Marietta Energy Systems, Inc. | Apparatus and method for microwave processing of materials |
US5316043A (en) * | 1992-02-04 | 1994-05-31 | Techco Corporation | Preload mechanism for power steering apparatus |
US5311906A (en) * | 1992-02-04 | 1994-05-17 | Techco Corporation | Preload mechanism for power steering apparatus |
WO1993018471A1 (en) * | 1992-03-06 | 1993-09-16 | Omron Corporation | Image processor, method therefor and apparatus using the image processor |
US5222448A (en) * | 1992-04-13 | 1993-06-29 | Columbia Ventures Corporation | Plasma torch furnace processing of spent potliner from aluminum smelters |
JP2738251B2 (en) | 1993-01-20 | 1998-04-08 | 松下電器産業株式会社 | Filter regeneration device for internal combustion engine |
US5307766A (en) * | 1993-03-12 | 1994-05-03 | Westinghouse Electric Corp. | Temperature control of steam for boilers |
US5370525A (en) | 1993-03-22 | 1994-12-06 | Blue Pacific Environments Corporation | Microwave combustion enhancement device |
US5449887A (en) | 1993-03-25 | 1995-09-12 | Martin Marietta Energy Systems, Inc. | Thermal insulation for high temperature microwave sintering operations and method thereof |
WO1994022628A1 (en) | 1993-04-05 | 1994-10-13 | Seiko Epson Corporation | Combining method and apparatus using solder |
JP2803017B2 (en) | 1993-06-07 | 1998-09-24 | 工業技術院長 | Antithrombotic medical material and medical device, and their manufacturing method, manufacturing apparatus, and plasma processing apparatus |
CA2168093A1 (en) | 1993-07-29 | 1995-02-09 | Edward H. Phillips | Bootstrap power steering systems |
US5435698A (en) | 1993-07-29 | 1995-07-25 | Techco Corporation | Bootstrap power steering systems |
US5755097A (en) * | 1993-07-29 | 1998-05-26 | Techco Corporation | Bootstrap power steering systems |
US5505275A (en) | 1993-09-09 | 1996-04-09 | Techo Corporation | Power steering system |
US6342195B1 (en) * | 1993-10-01 | 2002-01-29 | The Penn State Research Foundation | Method for synthesizing solids such as diamond and products produced thereby |
US5671045A (en) | 1993-10-22 | 1997-09-23 | Masachusetts Institute Of Technology | Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams |
ZA95482B (en) * | 1994-01-31 | 1995-10-09 | Atomic Energy South Africa | Treatment of a chemical |
JPH07245193A (en) * | 1994-03-02 | 1995-09-19 | Nissin Electric Co Ltd | Plasma generating device and plasma processing device |
DE4423471A1 (en) | 1994-07-05 | 1996-01-11 | Buck Chem Tech Werke | Device for the plasma treatment of fine-grained goods |
GB9414561D0 (en) * | 1994-07-19 | 1994-09-07 | Ea Tech Ltd | Method of and apparatus for microwave-plasma production |
JPH0891951A (en) * | 1994-09-22 | 1996-04-09 | Sumitomo Electric Ind Ltd | Aluminum-silicon nitride conjugate and its production |
JP3339200B2 (en) * | 1994-09-28 | 2002-10-28 | ソニー株式会社 | Plasma generator, plasma processing method, and thin film transistor manufacturing method |
JPH08217558A (en) * | 1995-02-15 | 1996-08-27 | Mitsubishi Heavy Ind Ltd | Ceramic bonding device |
US5536477A (en) | 1995-03-15 | 1996-07-16 | Chang Yul Cha | Pollution arrestor |
US5794113A (en) | 1995-05-01 | 1998-08-11 | The Regents Of The University Of California | Simultaneous synthesis and densification by field-activated combustion |
US5689949A (en) | 1995-06-05 | 1997-11-25 | Simmonds Precision Engine Systems, Inc. | Ignition methods and apparatus using microwave energy |
US5793013A (en) * | 1995-06-07 | 1998-08-11 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
SE504795C2 (en) * | 1995-07-05 | 1997-04-28 | Katator Ab | Network-based combustion catalyst and production thereof |
US6139656A (en) * | 1995-07-10 | 2000-10-31 | Ford Global Technologies, Inc. | Electrochemical hardness modification of non-allotropic metal surfaces |
US6132550A (en) * | 1995-08-11 | 2000-10-17 | Sumitomo Electric Industries, Ltd. | Apparatuses for desposition or etching |
US5848348A (en) * | 1995-08-22 | 1998-12-08 | Dennis; Mahlon Denton | Method for fabrication and sintering composite inserts |
US5796080A (en) | 1995-10-03 | 1998-08-18 | Cem Corporation | Microwave apparatus for controlling power levels in individual multiple cells |
US5712000A (en) | 1995-10-12 | 1998-01-27 | Hughes Aircraft Company | Large-scale, low pressure plasma-ion deposition of diamondlike carbon films |
US5859404A (en) * | 1995-10-12 | 1999-01-12 | Hughes Electronics Corporation | Method and apparatus for plasma processing a workpiece in an enveloping plasma |
JP3150056B2 (en) * | 1995-10-19 | 2001-03-26 | 東京エレクトロン株式会社 | Plasma processing equipment |
DE19542352A1 (en) * | 1995-11-14 | 1997-05-15 | Fraunhofer Ges Forschung | Microwave bonding of ceramic to ceramic or metal |
GB9525543D0 (en) * | 1995-12-14 | 1996-02-14 | Central Research Lab Ltd | A single mode resonant cavity |
US5847355A (en) * | 1996-01-05 | 1998-12-08 | California Institute Of Technology | Plasma-assisted microwave processing of materials |
WO1997026777A1 (en) * | 1996-01-19 | 1997-07-24 | Belin-Lu Biscuits France | Microwave application device, particularly for baking products on a metal carrier |
US6376021B1 (en) * | 1996-02-12 | 2002-04-23 | Polymer Alloys Llc | Heat treatment of polyphenylene oxide-coated metal |
AU729396B2 (en) * | 1996-04-04 | 2001-02-01 | Mitsubishi Heavy Industries, Ltd. | Apparatus and method for treating exhaust gas and pulse generator used therefor |
US5828338A (en) * | 1996-05-23 | 1998-10-27 | Hughes Electronics | Thyratron switched beam steering array |
JP3895000B2 (en) * | 1996-06-06 | 2007-03-22 | Dowaホールディングス株式会社 | Carburizing, quenching and tempering method and apparatus |
JPH1081971A (en) * | 1996-07-10 | 1998-03-31 | Suzuki Motor Corp | Formation of sic thin coating on high polymer substrate by plasma cvd and device therefor |
US6011248A (en) * | 1996-07-26 | 2000-01-04 | Dennis; Mahlon Denton | Method and apparatus for fabrication and sintering composite inserts |
JP3670452B2 (en) * | 1996-07-31 | 2005-07-13 | 株式会社東芝 | Coil unit for magnetic field generation and coil winding method |
US6038854A (en) * | 1996-08-19 | 2000-03-21 | The Regents Of The University Of California | Plasma regenerated particulate trap and NOx reduction system |
US5711147A (en) * | 1996-08-19 | 1998-01-27 | The Regents Of The University Of California | Plasma-assisted catalytic reduction system |
US6248206B1 (en) * | 1996-10-01 | 2001-06-19 | Applied Materials Inc. | Apparatus for sidewall profile control during an etch process |
US6121569A (en) * | 1996-11-01 | 2000-09-19 | Miley; George H. | Plasma jet source using an inertial electrostatic confinement discharge plasma |
US5734501A (en) | 1996-11-01 | 1998-03-31 | Minnesota Mining And Manufacturing Company | Highly canted retroreflective cube corner article |
US5715677A (en) * | 1996-11-13 | 1998-02-10 | The Regents Of The University Of California | Diesel NOx reduction by plasma-regenerated absorbend beds |
FR2757082B1 (en) * | 1996-12-13 | 1999-01-15 | Air Liquide | PROCESS FOR DEPURING A PLASMAGEN GAS AND INSTALLATION FOR THE IMPLEMENTATION OF SUCH A PROCESS |
AU5960698A (en) * | 1997-01-17 | 1998-08-07 | California Institute Of Technology | Microwave technique for brazing materials |
US6189482B1 (en) * | 1997-02-12 | 2001-02-20 | Applied Materials, Inc. | High temperature, high flow rate chemical vapor deposition apparatus and related methods |
US6616767B2 (en) * | 1997-02-12 | 2003-09-09 | Applied Materials, Inc. | High temperature ceramic heater assembly with RF capability |
US6039834A (en) * | 1997-03-05 | 2000-03-21 | Applied Materials, Inc. | Apparatus and methods for upgraded substrate processing system with microwave plasma source |
US5998774A (en) * | 1997-03-07 | 1999-12-07 | Industrial Microwave Systems, Inc. | Electromagnetic exposure chamber for improved heating |
US6287988B1 (en) * | 1997-03-18 | 2001-09-11 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device |
DE69838027D1 (en) * | 1997-04-10 | 2007-08-16 | Nucon Systems Inc | METHOD AND DEVICE FOR CONNECTING CERAMIC THICK-WALLED PIECES THROUGH MICROWAVES |
FR2762748B1 (en) * | 1997-04-25 | 1999-06-11 | Air Liquide | SURFACE WAVE PLASMA GAS EXCITATION DEVICE |
US5952671A (en) * | 1997-05-09 | 1999-09-14 | Micron Technology, Inc. | Small electrode for a chalcogenide switching device and method for fabricating same |
JPH1154773A (en) * | 1997-08-01 | 1999-02-26 | Canon Inc | Photovoltaic element and its manufacture |
US6284202B1 (en) * | 1997-10-03 | 2001-09-04 | Cha Corporation | Device for microwave removal of NOx from exhaust gas |
EP1029099A2 (en) * | 1997-10-15 | 2000-08-23 | Tokyo Electron Limited | Apparatus and method for adjusting density distribution of a plasma |
US5868670A (en) * | 1997-11-03 | 1999-02-09 | Werner A. Randell, Sr. | Article of manufacture for a biomedical electrode and indicator |
US6183689B1 (en) * | 1997-11-25 | 2001-02-06 | Penn State Research Foundation | Process for sintering powder metal components |
CN1078264C (en) * | 1997-12-11 | 2002-01-23 | 中国科学院物理研究所 | Microwave plasma chemical vapor deposition synthesis of crystalline phase carbon nitrogen film |
US6028393A (en) * | 1998-01-22 | 2000-02-22 | Energy Conversion Devices, Inc. | E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials |
US20020034461A1 (en) * | 1998-01-29 | 2002-03-21 | Segal David Leslie | Plasma assisted processing of gas |
US6892669B2 (en) * | 1998-02-26 | 2005-05-17 | Anelva Corporation | CVD apparatus |
DE19814812C2 (en) * | 1998-04-02 | 2000-05-11 | Mut Mikrowellen Umwelt Technol | Plasma torch with a microwave transmitter |
US6228773B1 (en) * | 1998-04-14 | 2001-05-08 | Matrix Integrated Systems, Inc. | Synchronous multiplexed near zero overhead architecture for vacuum processes |
US6214372B1 (en) * | 1998-05-04 | 2001-04-10 | Con Lin Co., Inc. | Method of using isomer enriched conjugated linoleic acid compositions |
US6368678B1 (en) * | 1998-05-13 | 2002-04-09 | Terry Bluck | Plasma processing system and method |
JP4014300B2 (en) * | 1998-06-19 | 2007-11-28 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP2000021871A (en) * | 1998-06-30 | 2000-01-21 | Tokyo Electron Ltd | Plasma treating method |
JP4024389B2 (en) * | 1998-07-14 | 2007-12-19 | 東京エレクトロン株式会社 | Plasma processing equipment |
CA2338230A1 (en) * | 1998-07-21 | 2000-02-03 | Edward H. Phillips | Feedback and servo control for electric power steering systems |
JP2991192B1 (en) * | 1998-07-23 | 1999-12-20 | 日本電気株式会社 | Plasma processing method and plasma processing apparatus |
US6362449B1 (en) * | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
JP3293564B2 (en) * | 1998-08-20 | 2002-06-17 | 株式会社村田製作所 | Manufacturing method of electronic device |
US6204606B1 (en) * | 1998-10-01 | 2001-03-20 | The University Of Tennessee Research Corporation | Slotted waveguide structure for generating plasma discharges |
TW383500B (en) * | 1998-10-03 | 2000-03-01 | United Semiconductor Corp | Manufacturing method for lower electrode of capacitor using hemisphere grain polysilicon |
US6186090B1 (en) * | 1999-03-04 | 2001-02-13 | Energy Conversion Devices, Inc. | Apparatus for the simultaneous deposition by physical vapor deposition and chemical vapor deposition and method therefor |
US6237526B1 (en) * | 1999-03-26 | 2001-05-29 | Tokyo Electron Limited | Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma |
SE516722C2 (en) * | 1999-04-28 | 2002-02-19 | Hana Barankova | Process and apparatus for plasma gas treatment |
JP2000348898A (en) * | 1999-06-03 | 2000-12-15 | Nisshin:Kk | Method for generating surface wave excited plasma |
JP2000349081A (en) * | 1999-06-07 | 2000-12-15 | Sony Corp | Method for formation of oxide film |
FR2797372B1 (en) * | 1999-08-04 | 2002-10-25 | Metal Process | METHOD FOR PRODUCING ELEMENTARY PLASMAS WITH A VIEW TO CREATING A UNIFORM PLASMA FOR A USING SURFACE AND DEVICE FOR PRODUCING SUCH A PLASMA |
JP3471263B2 (en) * | 1999-09-22 | 2003-12-02 | 株式会社東芝 | Cold cathode electron-emitting device and method of manufacturing the same |
US6365885B1 (en) * | 1999-10-18 | 2002-04-02 | The Penn State Research Foundation | Microwave processing in pure H fields and pure E fields |
EP1102299A1 (en) * | 1999-11-05 | 2001-05-23 | Iljin Nanotech Co., Ltd. | Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof |
JP2001149771A (en) * | 1999-11-30 | 2001-06-05 | Japan Organo Co Ltd | Microwave plasma device |
JP3595233B2 (en) * | 2000-02-16 | 2004-12-02 | 株式会社ノリタケカンパニーリミテド | Electron emission source and method of manufacturing the same |
US6367412B1 (en) * | 2000-02-17 | 2002-04-09 | Applied Materials, Inc. | Porous ceramic liner for a plasma source |
DE10009569C2 (en) * | 2000-02-29 | 2003-03-27 | Schott Glas | Method and device for comminuting glass bodies by means of microwave heating |
US6345497B1 (en) * | 2000-03-02 | 2002-02-12 | The Regents Of The University Of California | NOx reduction by electron beam-produced nitrogen atom injection |
JP2001257097A (en) * | 2000-03-09 | 2001-09-21 | Toshiba Corp | Plasma generating device |
KR20020093071A (en) * | 2000-04-26 | 2002-12-12 | 코넬 리서치 화운데이션,인크. | Lamp utilizing fiber for enhanced starting field |
KR100341407B1 (en) * | 2000-05-01 | 2002-06-22 | 윤덕용 | A Crystall ization method of lithium transition metal oxide thin films by plasma treatm ent |
CA2405176C (en) * | 2000-05-11 | 2009-02-03 | Her Majesty The Queen In Right Of Canada, As Represented By The Ministerof National Defence | Process for preparing carbon nanotubes |
JP4523118B2 (en) * | 2000-06-14 | 2010-08-11 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP2001357999A (en) * | 2000-06-15 | 2001-12-26 | Yoshihiko Otsuki | Plasma generation device |
JP2002025425A (en) * | 2000-07-07 | 2002-01-25 | Hitachi Ltd | Electron emitter, its manufacturing method and electron beam device |
JP3865289B2 (en) * | 2000-11-22 | 2007-01-10 | 独立行政法人科学技術振興機構 | Microwave plasma generator |
WO2002058437A1 (en) * | 2001-01-17 | 2002-07-25 | The Penn State Research Foundation | Microwave processing using highly microwave absorbing powdered material layers |
JP2002280196A (en) * | 2001-03-15 | 2002-09-27 | Micro Denshi Kk | Plasma generating device using microwave |
US6503846B1 (en) * | 2001-06-20 | 2003-01-07 | Texas Instruments Incorporated | Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates |
JP2003075077A (en) * | 2001-09-05 | 2003-03-12 | Natl Inst For Fusion Science | Microwave calcination furnace, and microwave calcination method |
ATE536086T1 (en) * | 2002-05-08 | 2011-12-15 | Btu Int | METHOD FOR GENERATING PLASMA USING A PLASMA CATALYST |
US7097782B2 (en) * | 2002-11-12 | 2006-08-29 | Micron Technology, Inc. | Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly |
-
2003
- 2003-05-07 AT AT03724467T patent/ATE536086T1/en active
- 2003-05-07 AU AU2003230264A patent/AU2003230264A1/en not_active Abandoned
- 2003-05-07 BR BR0309815-0A patent/BR0309815A/en not_active IP Right Cessation
- 2003-05-07 AU AU2003228880A patent/AU2003228880A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014121 patent/WO2003096768A1/en not_active Application Discontinuation
- 2003-05-07 CN CNB038102781A patent/CN100447289C/en not_active Expired - Fee Related
- 2003-05-07 AU AU2003234478A patent/AU2003234478A1/en not_active Abandoned
- 2003-05-07 BR BR0309813-3A patent/BR0309813A/en not_active IP Right Cessation
- 2003-05-07 WO PCT/US2003/014122 patent/WO2003096370A1/en not_active Application Discontinuation
- 2003-05-07 AU AU2003234500A patent/AU2003234500A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014035 patent/WO2003095807A1/en active Search and Examination
- 2003-05-07 CN CNB038102765A patent/CN100425106C/en not_active Expired - Fee Related
- 2003-05-07 AU AU2003245264A patent/AU2003245264A1/en not_active Abandoned
- 2003-05-07 BR BR0309812-5A patent/BR0309812A/en not_active IP Right Cessation
- 2003-05-07 WO PCT/US2003/014054 patent/WO2003095130A1/en not_active Application Discontinuation
- 2003-05-07 MX MXPA04010875A patent/MXPA04010875A/en active IP Right Grant
- 2003-05-07 EP EP03726654A patent/EP1502274A1/en not_active Withdrawn
- 2003-05-07 AU AU2003234474A patent/AU2003234474A1/en not_active Abandoned
- 2003-05-07 CN CNB038102773A patent/CN100455144C/en not_active Expired - Fee Related
- 2003-05-07 EP EP03728706A patent/EP1501631A4/en not_active Withdrawn
- 2003-05-07 WO PCT/US2003/014036 patent/WO2003096380A2/en not_active Application Discontinuation
- 2003-05-07 EP EP03738901A patent/EP1502490A1/en not_active Withdrawn
- 2003-05-07 WO PCT/US2003/014053 patent/WO2003096773A1/en not_active Application Discontinuation
- 2003-05-07 US US10/430,414 patent/US6870124B2/en not_active Expired - Fee Related
- 2003-05-07 CN CNB038102730A patent/CN1304103C/en not_active Expired - Fee Related
- 2003-05-07 US US10/430,415 patent/US7227097B2/en not_active Expired - Fee Related
- 2003-05-07 EP EP03741773A patent/EP1501632A4/en not_active Withdrawn
- 2003-05-07 CN CNA038102722A patent/CN1652889A/en active Pending
- 2003-05-07 CA CA002485195A patent/CA2485195A1/en not_active Abandoned
- 2003-05-07 JP JP2004504253A patent/JP2005525234A/en not_active Withdrawn
- 2003-05-07 IL IL16482403A patent/IL164824A0/en unknown
- 2003-05-07 KR KR1020047017818A patent/KR20050026387A/en not_active Application Discontinuation
- 2003-05-07 EP EP03724468A patent/EP1501959A4/en not_active Withdrawn
- 2003-05-07 EP EP03738900.4A patent/EP1502489B1/en not_active Expired - Lifetime
- 2003-05-07 WO PCT/US2003/014137 patent/WO2003096383A2/en not_active Application Discontinuation
- 2003-05-07 AU AU2003267863A patent/AU2003267863A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014136 patent/WO2003096749A1/en not_active Application Discontinuation
- 2003-05-07 WO PCT/US2003/014034 patent/WO2003095058A2/en not_active Application Discontinuation
- 2003-05-07 AU AU2003228881A patent/AU2003228881A1/en not_active Abandoned
- 2003-05-07 AU AU2003234501A patent/AU2003234501A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014135 patent/WO2003096382A2/en not_active Application Discontinuation
- 2003-05-07 EP EP03728727A patent/EP1501911A1/en not_active Withdrawn
- 2003-05-07 EP EP03724467A patent/EP1502486B1/en not_active Expired - Lifetime
- 2003-05-07 EP EP03741774A patent/EP1501649A4/en not_active Withdrawn
- 2003-05-07 CN CNB038102749A patent/CN100336156C/en not_active Expired - Fee Related
- 2003-05-07 WO PCT/US2003/014039 patent/WO2003096772A1/en not_active Application Discontinuation
- 2003-05-07 AU AU2003234499A patent/AU2003234499A1/en not_active Abandoned
- 2003-05-07 EP EP03728703A patent/EP1504464A2/en not_active Withdrawn
- 2003-05-07 EP EP03728705A patent/EP1502488A1/en not_active Withdrawn
- 2003-05-07 CN CN03810275A patent/CN100588305C/en not_active Expired - Fee Related
- 2003-05-07 JP JP2004504588A patent/JP2005524963A/en active Pending
- 2003-05-07 EP EP03728729A patent/EP1502480A4/en not_active Withdrawn
- 2003-05-07 AU AU2003234477A patent/AU2003234477A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014038 patent/WO2003096771A1/en active Application Filing
- 2003-05-07 BR BRPI0309810-9A patent/BR0309810A/en unknown
- 2003-05-07 CN CNB038102668A patent/CN100436763C/en not_active Expired - Fee Related
- 2003-05-07 CN CNB03810279XA patent/CN100505976C/en not_active Expired - Fee Related
- 2003-05-07 KR KR1020047017819A patent/KR20050025173A/en not_active Application Discontinuation
- 2003-05-07 CN CNB038102714A patent/CN1324114C/en not_active Expired - Fee Related
- 2003-05-07 AU AU2003234476A patent/AU2003234476A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014052 patent/WO2003095090A1/en not_active Application Discontinuation
- 2003-05-07 BR BRPI0309811-7A patent/BR0309811A/en not_active IP Right Cessation
- 2003-05-07 AU AU2003230267A patent/AU2003230267A1/en not_active Abandoned
- 2003-05-07 EP EP03741775A patent/EP1502287A2/en not_active Withdrawn
- 2003-05-07 AU AU2003245263A patent/AU2003245263A1/en not_active Abandoned
- 2003-05-07 CN CNB038102684A patent/CN1302843C/en not_active Expired - Fee Related
- 2003-05-07 WO PCT/US2003/014124 patent/WO2003095699A1/en not_active Application Discontinuation
- 2003-05-07 BR BR0309814-1A patent/BR0309814A/en not_active IP Right Cessation
- 2003-05-07 KR KR1020047017851A patent/KR101015744B1/en not_active IP Right Cessation
- 2003-05-07 AU AU2003230265A patent/AU2003230265A1/en not_active Abandoned
- 2003-05-07 CN CNB038102676A patent/CN1324931C/en not_active Expired - Fee Related
- 2003-05-07 WO PCT/US2003/014040 patent/WO2003095089A1/en not_active Application Discontinuation
- 2003-05-07 WO PCT/US2003/014055 patent/WO2003096381A2/en active Application Filing
- 2003-05-07 JP JP2004504585A patent/JP5209174B2/en not_active Expired - Fee Related
- 2003-05-07 AU AU2003267104A patent/AU2003267104A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014123 patent/WO2003096774A1/en active Application Filing
- 2003-05-07 JP JP2004504264A patent/JP2005526359A/en active Pending
- 2003-05-07 CN CNB03810265XA patent/CN100338976C/en not_active Expired - Fee Related
- 2003-05-07 WO PCT/US2003/014130 patent/WO2003095591A1/en not_active Application Discontinuation
- 2003-05-07 WO PCT/US2003/014133 patent/WO2003096747A2/en not_active Application Discontinuation
- 2003-05-07 AU AU2003267860A patent/AU2003267860A1/en not_active Abandoned
- 2003-05-07 WO PCT/US2003/014134 patent/WO2003096369A1/en active Application Filing
- 2003-05-07 WO PCT/US2003/014037 patent/WO2003096770A1/en not_active Application Discontinuation
- 2003-05-07 CN CNB038102692A patent/CN100505975C/en not_active Expired - Fee Related
- 2003-05-07 EP EP03728704A patent/EP1502487A1/en not_active Withdrawn
- 2003-05-07 US US10/430,426 patent/US7132621B2/en not_active Expired - Fee Related
- 2003-05-07 CN CNB038102706A patent/CN100441732C/en not_active Expired - Fee Related
- 2003-05-07 US US10/430,416 patent/US7214280B2/en not_active Expired - Fee Related
- 2003-05-07 AU AU2003230266A patent/AU2003230266B2/en not_active Ceased
- 2003-05-07 AU AU2003234475A patent/AU2003234475A1/en not_active Abandoned
- 2003-05-07 AU AU2003234479A patent/AU2003234479A1/en not_active Abandoned
- 2003-05-07 EP EP03728702A patent/EP1502012A4/en not_active Withdrawn
- 2003-05-07 JP JP2004503782A patent/JP2005524799A/en active Pending
- 2003-05-07 AU AU2003228882A patent/AU2003228882A1/en not_active Abandoned
-
2004
- 2004-10-21 US US10/971,180 patent/US7309843B2/en not_active Expired - Fee Related
- 2004-10-25 IL IL164824A patent/IL164824A/en not_active IP Right Cessation
-
2005
- 2005-07-15 US US11/182,172 patent/US7608798B2/en not_active Expired - Fee Related
-
2006
- 2006-10-31 US US11/590,058 patent/US7592564B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698234A (en) * | 1985-04-01 | 1987-10-06 | Energy Conversion Devices, Inc. | Vapor deposition of semiconductor material |
US4919077A (en) * | 1986-12-27 | 1990-04-24 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor producing apparatus |
US5058527A (en) * | 1990-07-24 | 1991-10-22 | Ricoh Company, Ltd. | Thin film forming apparatus |
US5616373A (en) * | 1990-09-14 | 1997-04-01 | Balzers Aktiengesellschaft | Plasma CVD method for producing a diamond coating |
US5645897A (en) * | 1992-02-15 | 1997-07-08 | Andra; Jurgen | Process and device for surface-modification by physico-chemical reactions of gases or vapors on surfaces, using highly-charged ions |
US5366764A (en) * | 1992-06-15 | 1994-11-22 | Sunthankar Mandar B | Environmentally safe methods and apparatus for depositing and/or reclaiming a metal or semi-conductor material using sublimation |
US5607509A (en) * | 1992-11-04 | 1997-03-04 | Hughes Electronics | High impedance plasma ion implantation apparatus |
US5271963A (en) * | 1992-11-16 | 1993-12-21 | Materials Research Corporation | Elimination of low temperature ammonia salt in TiCl4 NH3 CVD reaction |
US5980999A (en) * | 1995-08-24 | 1999-11-09 | Nagoya University | Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods |
US6383333B1 (en) * | 1998-04-28 | 2002-05-07 | Tokai Carbon Company, Ltd. | Protective member for inner surface of chamber and plasma processing apparatus |
US6149985A (en) * | 1999-07-07 | 2000-11-21 | Eastman Kodak Company | High-efficiency plasma treatment of imaging supports |
Non-Patent Citations (2)
Title |
---|
GRANT J.: "Hackh's Chemical Dictionary", 1944, MCGRAW-HILL BOOK COMPANY, INC., NEW YORK, pages: 174 - 175, XP002965822 * |
LEWIS R.J. SR.: "Hawley's Condensed Chemical Dictionary", 1993, VAN NOSTRAND REINHOLD COMPANY, NEW YORK, pages: 230 - 232, XP002965821 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050233091A1 (en) | Plasma-assisted coating | |
WO2003096770A1 (en) | Plasma-assisted coating | |
US20060228497A1 (en) | Plasma-assisted coating | |
US7445817B2 (en) | Plasma-assisted formation of carbon structures | |
US7498066B2 (en) | Plasma-assisted enhanced coating | |
US20060057016A1 (en) | Plasma-assisted sintering | |
US7432470B2 (en) | Surface cleaning and sterilization | |
US7494904B2 (en) | Plasma-assisted doping | |
US7465362B2 (en) | Plasma-assisted nitrogen surface-treatment | |
ZA200408532B (en) | Plasma Catalyst. | |
US20060062930A1 (en) | Plasma-assisted carburizing | |
TW200424327A (en) | Plasma-assisted coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 3326/DELNP/2004 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038102692 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003728704 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003728704 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10513221 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |