WO2003096519A2 - Induction motor having stator windings divided it axial direction - Google Patents
Induction motor having stator windings divided it axial direction Download PDFInfo
- Publication number
- WO2003096519A2 WO2003096519A2 PCT/JP2003/004418 JP0304418W WO03096519A2 WO 2003096519 A2 WO2003096519 A2 WO 2003096519A2 JP 0304418 W JP0304418 W JP 0304418W WO 03096519 A2 WO03096519 A2 WO 03096519A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- induction motor
- stator core
- phase
- coil
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
- H02K17/02—Asynchronous induction motors
- H02K17/12—Asynchronous induction motors for multi-phase current
Definitions
- the present invention relates to a single-phase induction motor such as a condenser motor operated by a single-phase power supply, a capacitor starting motor, a split-phase starting motor, and a three-phase induction motor operated by a three-phase power supply.
- a single-phase induction motor such as a condenser motor operated by a single-phase power supply, a capacitor starting motor, a split-phase starting motor, and a three-phase induction motor operated by a three-phase power supply.
- a structure as shown in FIG. 16 is generally adopted.
- Fig. 16 (a) is a side view of the half-section in the axial direction.
- the stator core 120 has a coil 110 of U'V'W phase, and the winding development of Fig. 16 (b).
- terminal treatments such as connection between windings and connection of lead wires are performed.
- the coils 110 of the U′V and W phases are distributed in the circumferential direction and are wound, so that they project from the axial end face of the stator core 120.
- the length h of the coil end increases and the amount of winding and the copper loss increase due to the coil end that does not contribute to the characteristics at all.
- Single-phase induction motors have the same problem because the main winding and the auxiliary winding are wound around the stator core in the circumferential direction.
- the present invention has been made to solve the above-described problems, and has a small-sized, light-weight, high-efficiency, low-cost winding method and a stator core structure for an induction motor because there is no coil end.
- the purpose is to get. Disclosure of the invention
- an induction motor has a stator in which a plurality of coils are wound in a ring shape by being divided in an axial direction, and a center of a ring of each coil and a center of a rotary shaft are substantially set.
- the stator cores constituting the magnetic circuit are provided on the outer peripheral side and the axial both ends of each coil, respectively, and the magnetic pole teeth are provided on the inner peripheral side of the rotating shaft around the coil.
- the induction motor according to the next invention further includes a pole piece made of a magnetic member at each magnetic pole tooth formed on the stator core at both ends in the axial direction of the coil.
- the induction motor according to the next invention further includes means for reducing leakage of magnetic flux in the stator.
- At least a part of the stator core is formed by lamination and integration using a plate-shaped magnetic member.
- at least a part of the stator core is formed using a so-called dust core (hereinafter, also referred to as iron powder core).
- the stator or the rotor is further skewed.
- FIG. 1 is an axial half cross-sectional side view of a single-phase induction motor according to Embodiment 1.
- FIG. 2 is a connection diagram of the single-phase induction motor according to the first embodiment.
- FIG. 3 is a view of the configuration of the magnetic pole teeth of the side stator core according to the first embodiment as seen through from the non-load side to the load side.
- FIG. 4 is a half-sectional side view in the axial direction of the three-phase induction motor according to the second embodiment.
- FIG. 5 is a connection diagram of a three-phase induction motor according to the second embodiment.
- FIG. 6 is a view of the configuration of the magnetic pole teeth of the side stator core according to the second embodiment, seen from the non-load side to the load side.
- FIG. 7 shows a configuration of a side stator core and a pole piece according to the third embodiment.
- FIG. 8 shows a configuration of a side stator core and a pole piece according to the fourth embodiment.
- FIG. 9 (a) is an axial half cross-sectional side view showing a stator according to the fifth embodiment, and
- FIG. 9 (b) is a stator according to another embodiment.
- FIG. 10 is an axial half cross-sectional side view showing a stator according to still another embodiment of the fifth embodiment.
- FIG. 11 is a diagram of the configuration of the side stator core and the pole piece according to the sixth embodiment, viewed from the non-load side to the load side.
- FIG. 12 is an axial half cross-sectional side view showing a stator according to another embodiment of the sixth embodiment.
- FIG. 13 is an axial half cross-sectional side view showing the stator according to the seventh embodiment.
- FIG. 14 is a half-sectional view in the axial direction showing a stator according to another embodiment of the seventh embodiment.
- FIG. 15 is a diagram of the inner peripheral surface of the stator core according to the eighth embodiment.
- FIGS. 16A and 16B show a conventional three-phase induction motor.
- FIG. 16A is an axial half-sectional side view, and
- FIGS. 1 to 3 show a first embodiment of an induction motor according to the present invention, which is a four-pole single-phase induction motor having two types of stator windings divided in an axial direction, which is applied to a capacitor motor.
- Fig. 1 is an axial half cross-sectional side view showing the A-phase and B-phase coils 10 and 11, the lead wires 13, and the stator 20, the cage rotor 80, the rotating shaft 90, It is composed of a bearing member 91, a bracket 92, a frame 93 and the like.
- the A-phase coil forms the main winding
- the B-phase coil forms the auxiliary winding.
- the A-phase and ⁇ -phase coils 10 and 11 are divided in the axial direction of the rotating shaft 90 so that the center of the ring of each coil 10 and 11 and the center of the rotating shaft 90 are approximately aligned. It is wound and subjected to appropriate insulation treatment, and is connected to a single-phase power supply 15 together with a capacitor 14 as shown in FIG.
- the stator 20 is composed of a coil 10 ⁇ 11, a back stator core 21-22 on the outer peripheral side thereof, and side stator cores 24 on both axial ends of each coil 10 ⁇ 11:
- the back stator core 21 of the ⁇ phase and the side stator cores 24, 25 are magnetically connected to each other, and the inner circumference of the side stator cores 24, 25 Magnetic pole teeth 30 and 31 are formed on the sides.
- the B-phase stator has the same configuration, and has magnetic pole teeth 32 and 33 formed on the inner peripheral side.
- the cage rotor 80 can be rotated by the rotating shaft 90 and the bearing member 91 via the magnetic pole teeth 30 to 33 of the A-phase and B-phase coils 10 and 11 and a predetermined gear gap. It is supported by.
- FIGS. 3 (a) to 3 (d) show the configuration of the side stator cores 24 to 27 and the convex magnetic pole teeth 30 to 33 formed on the inner peripheral side. This is a view seen through from the non-load side to the load side (the shaft end side) of FIG. 1, and other components are omitted in the figure.
- Figure 3 (a) shows the side stator iron on the non-load side of the A-phase coil 10
- the magnetic pole teeth 30 are formed at two locations so that the center in the circumferential direction is at the 12 o'clock and 6 o'clock positions of the watch.
- FIG. 3 (b) shows the side stator core 25 on the load side of the A-phase coil 10 and the magnetic pole tooth 31 has its center in the circumferential direction, and the side stator core 24 on the non-load side. It is formed at a position deviated by 7 ° in electrical angle from the center of the magnetic pole tooth portion 30 formed in FIG.
- the four magnetic poles are formed by the magnetic pole teeth portions 30 and 31 of the side stator core 24 and 25 with the A-phase coil 10 interposed. , Are formed alternately in the circumferential direction on the inner circumferential side.
- Fig. 3 (c) shows the side stator iron core 26 on the non-load side of the B-phase coil 11 and the magnetic pole teeth 32 are centered in the circumferential direction on the anti-load side of the A-phase coil 10. It is configured so as to be shifted by an electrical angle of 7 ⁇ 2 with respect to the center of the magnetic pole tooth portion 30 formed on the side stator core 24.
- Fig. 3 (d) shows the side stator core 27 on the load side of the B-phase coil 11 and the magnetic pole teeth 33 have the center in the circumferential direction of the side stator core 26 on the non-load side. It is formed at a position deviated by 7 ° in electrical angle from the center of the magnetic pole teeth 32 formed at the center.
- the magnetic pole teeth 30 and 31 formed by the main winding of the A-phase coil 10 were separated by ⁇ ⁇ / 2 in electrical angle through the back stator core 2 2 (omitted in the figure) to form a 4-pole coil.
- Magnetic poles are alternately formed in the circumferential direction on the inner peripheral side by the magnetic pole teeth 32, 33 of the side stator cores 26, 27 with the B-phase coil 11 interposed therebetween.
- the stator 20 is composed of the above-mentioned A-phase and B-phase coils 10 and 11, the outer stator back stator cores 21 and 22, and the side stator cores 24 to 27 of each coil. It is configured such that they are overlapped in the axial direction while maintaining the above-described positional relationship.
- the magnetic flux generated by the A-phase coil 10 is applied to the back stator core 21 on the outer peripheral side ⁇ the side stator core 24 ⁇ the magnetic pole teeth portion 30 ⁇ the predetermined edge.
- a change in magnetic flux generated in the axial direction by the ring-shaped coil 10 can be changed to a change in magnetic flux in the rotation direction by forming a magnetic path around the ring.
- the magnetic flux generated by 1 also shifts the magnetic pole teeth 32, 33 by 7 electrical degrees in the circumferential direction, corresponding to the phase difference caused by the capacitor 14 connected to the power supply. Therefore, the coil 10 0-
- the cage rotor 80 can be driven to rotate by electromagnetic induction. Further, by changing the connection position of the capacitor 14 or the like, the rotating shaft 90 can be rotated in the reverse direction as in the case of the conventional condenser.
- the amount of copper wire used in the coil can be reduced and the copper loss can be reduced, so that the efficiency of the single-phase induction motor can be improved, and the cost can be improved. Down, small size, and light weight can be realized.
- coil winding work and terminal processing can be simplified, and automation using a dedicated machine can be performed, contributing to an improvement in productivity.
- FIGS. 4 to 6 show an example in which an induction motor according to a second embodiment of the present invention is applied to a four-pole three-phase induction motor having three types of stator windings divided in an axial direction.
- Fig. 4 is an axial half-section side view of the U * V'W phase coils 10 to 12 and lead wires 13, and stator 20, cage rotor 80, rotating shaft 90, It is composed of a bearing member 91, a bracket 92, a frame 93 and the like.
- the U ⁇ V ⁇ W phase coils 10 to 12 are divided in the axial direction of the rotation axis 90, and the center of the ring of each coil 10 to 12 and the center of the rotation axis 90 are almost coincident. So that it is wound in the same direction with respect to the rotating shaft 90.
- Each coil is appropriately insulated, connected in a Y-shape, and connected to a three-phase power supply 16 by a lead wire 13 as shown in FIG. JP03 / 04418
- the stator 20 is composed of coils 10 to 12, outer stator cores 21 to 23 on the outer peripheral side thereof, and side stator cores 24 to 29 at both axial ends of the coils 10 to 12, U
- the back stator core 21 of the phase and the side stator cores 24 and 25 are magnetically connected to each other, and further, on the inner peripheral side of the side stator cores 24 and 25, magnetic pole teeth 30 and 31 are respectively provided. Is formed.
- the V and W phases have the same configuration, and the magnetic pole teeth 32 to 35 are formed on the inner peripheral side.
- the burrow rotor 80 is rotatably supported by the rotating shaft 90 and the bearing member 91 via the magnetic pole teeth 30 to 35 of the U, V, and W phase coils 10 to 12 and a predetermined gap. .
- FIG. 6 (a) to 6 (f) show the configuration of the side stator cores 24 to 29 and the convex magnetic pole teeth 30 to 35 formed on the inner peripheral side of the cores. This is a view seen from the load side (the shaft end side) to the load side, and other components are omitted in the figure.
- FIG. 6 (a) shows the side stator core 24 on the non-load side of the U-phase coil 10, and the magnetic pole teeth 30 are arranged so that the center in the circumferential direction is at the 12 o'clock and 6 o'clock positions of the clock. It is formed in two places.
- FIG. 6 (b) shows a side stator core 25 on the load side of the U-phase coil 10, and the magnetic pole teeth 31 have a circumferential center formed on the side stator core 24 on the non-load side.
- the magnetic pole tooth portion 30 is formed at a position shifted by 7 electrical degrees with respect to the center.
- the four magnetic poles pass through the back stator core 21 (omitted in the figure), and the magnetic pole teeth 30, 3, 1 of the side stator cores 24, 25 sandwich the U-phase coil 10. Are formed alternately in the circumferential direction.
- Fig. 6 (c) shows the side stator core 26 on the non-load side of the V-phase coil 11 and the magnetic pole teeth 32 are fixed at the center in the circumferential direction on the anti-load side of the ⁇ -phase coil 10.
- the magnetic pole teeth 30 formed on the iron core 24 are shifted from the center of the magnetic pole teeth 30 by an electrical angle of 2 ⁇ / 3.
- Fig. 6 (d) shows the side stator core 27 on the load side of the V-phase coil 11 and the magnetic pole teeth 33 are positioned in the circumferential direction.
- the core is formed at a position deviated by an electrical angle with respect to the center of the magnetic pole teeth 32 formed on the side stator core 26 on the non-load side.
- the four magnetic poles pass through the back stator core 22 (omitted in the figure), and the side stator cores 26, 27 sandwich the V-phase coil 11 therebetween.
- the magnetic pole teeth 32, 33 are alternately formed in the inner circumferential direction.
- FIG. 6 (e) shows the side stator core 28 on the non-load side of the W-phase coil 12, and the magnetic pole teeth 34 have the circumferential center at the non-load side of the U-phase coil 10. The electrical angle is shifted by 4 ⁇ / 3 with respect to the center of the magnetic pole teeth 30 formed on the side stator core 24.
- Fig. 6 (f) shows the side stator core 29 on the load side of the W-phase coil 12 and the magnetic pole teeth 35 have the center in the circumferential direction of the side stator core 28 on the non-load side. It is formed at a position deviated by 7 ° in electrical angle from the center of the magnetic pole teeth 34 formed in FIG.
- the four magnetic poles pass through the back stator core 23 (omitted in the figure), and the magnetic poles of the side stator cores 28 and 29 sandwich the W-phase coil 12 therebetween.
- the teeth 3 4 ⁇ 3 5 are alternately formed in the circumferential direction on the inner circumferential side.
- the stator 20 includes the coils 10 to 12 of the above-described U and V'W phases, the outer stator cores 21 to 23 on the outer peripheral side, and the side stator cores 24 to 29 of each coil. Are arranged in the axial direction while maintaining the above positional relationship.
- the magnetic flux generated by the U-phase coil 10 is applied to the outer stator side stator core 21 ⁇ side stator iron core 24 ⁇ magnetic pole teeth 30 ⁇ predetermined key.
- Key gap Cage rotor 8 0 Predetermined yair gap Magnetic pole teeth 3 1 Side stator core 2 5 ⁇ Back stator core 2 1
- a magnetic path is formed, and it is generated in the axial direction by a ring-shaped coil 10.
- the change in the applied magnetic flux can be changed to a change in the magnetic flux in the rotation direction.
- the magnetic flux generated by the V'W phase coils 11 and 12 is also the same because the magnetic pole teeth 32 to 35 are shifted by 27 ⁇ ⁇ / 3 in electrical angle in the circumferential direction according to the phase difference of the power supply.
- each phase coil since there is no portion corresponding to the coil end, it is possible to reduce the amount of copper wire used in the coil and reduce the copper loss, thereby contributing to an improvement in the efficiency of the three-phase induction motor.
- cost reduction and downsizing and weight reduction can be realized.
- the number of coils for each phase is at least one for each coil, the coil winding work and terminal processing can be greatly simplified.
- FIG. 7 shows Embodiment 3 of the induction motor according to the present invention.
- a magnetic pole piece formed of a magnetic member is provided on the magnetic pole tooth portion of the side stator core of the first or second embodiment described above.
- the positional relationship between the teeth and the cage rotor is the same as in the first or second embodiment.
- FIG. 7 (a) and Fig. 7 (c) show the side stator cores 24 and 25 of the coil 10 (omitted in the figure) in the same manner as in the first or second embodiment.
- FIG. 7 (b) is a cross-sectional view taken along line AA of FIG. 7 (a)
- FIG. 7 (d) is a view seen from FIG. 7 (c).
- Section B B is shown.
- the magnetic pole teeth 30 of the side stator iron core 24 on the non-load side have the same inner diameter as the magnetic pole teeth 30 in the direction of the opposite side stator core 25 on the load side.
- the configured pole piece 40 is provided on the inner diameter side of the coil 10.
- the magnetic pole teeth 31 of the side stator core 25 on the load side have the same inner diameter as the magnetic pole teeth 31 in the direction opposite to the pole piece 40 and in the direction of the side stator core 24 on the non-load side. It has a piece 41.
- FIG. 7 (e) shows a state where the side stator cores 24 and 25 provided with the pole pieces 40 and 41 are assembled
- FIG. 7 (f) shows a cross section CC of FIG. 7 (e).
- the magnetic pole teeth 30 of the side stator core 24 and the magnetic pole pieces 40 are separated from the magnetic pole teeth 31 and the magnetic pole pieces 41 of the side stator iron core 25, which are circumferentially adjacent poles, by a predetermined gap a.
- the same pole piece is also formed at the pole teeth formed on the side stator core of the other coils.
- the magnetic flux generated in each coil by each pole piece can be effectively used, and the leakage magnetic flux is reduced, so that the efficiency of the induction motor is improved and contributes to downsizing. Can be.
- FIG. 8 shows Embodiment 4 of the induction motor according to the present invention.
- a 0 in the third embodiment described above, and the magnetic pole pieces, the magnetic pole tooth portions, and the magnetic pole pieces adjacent to each other in the circumferential direction are connected to each other at the bridge portion.
- FIG. 8A shows a state in which the side stator cores 24 and 25 of the coil 10 (omitted in the figure) are assembled in the same manner as in FIG.
- the magnetic pole teeth 30 and the pole pieces 40 of the side stator iron core 24 are circumferentially adjacent to each other. On the inner peripheral side opposite to), they are connected by a bridge part ⁇ .
- FIG. 8B is an enlarged view of the bridge portion E in FIG. 8A, and s indicates the radial thickness of the bridge portion.
- Fig. 8 (c) is the same as Fig. 8 (a).
- the cross-section CC is shown, and the inner peripheral side facing the cage rotor 80 has a continuous cylindrical shape with no cutout. Similar bridge portions are formed on the pole teeth formed on the side stator cores of the other coils and on the pole pieces.
- the gap flux due to the leakage magnetic flux can be improved. Since the strength of the pole piece can be ensured while suppressing the decrease in density, the rigidity is improved and the generation of vibration and noise can be reduced.
- a magnetic gap is provided between adjacent phases in the axial direction as a means for reducing the leakage of the magnetic flux of the stator core. is there.
- Fig. 9 (a) is a half sectional side view in the axial direction showing the assembled state of the A-phase and B-phase stators of the single-phase induction motor and the frame 93, and other components are omitted in the figure.
- the A-phase stator is composed of coil 10, side stator cores 24, 25 at both ends in the axial direction, and back stator core 21, and the B-phase stator is also connected to coil 11. Although it is composed of a stator core, a predetermined gap b is provided as a magnetic gap between the A-phase stator core and the B-phase stator core that are adjacent to each other.
- FIG. 9 (b) shows another embodiment. Compared to FIG. 9 (a), the back stator cores 21 and 22 are connected and integrally formed, but the A A predetermined gap b is provided as a magnetic gap between the phase stator core 25 and the phase B stator core 26.
- FIG. 10 shows still another embodiment, in which the pole piece 40 formed on the A-phase side stator core 24 is an axial end face of the adjacent B-phase side stator core 25. Therefore, the B-phase side stator 03 04418
- the pole piece formed on the iron core 27 is configured to be shorter by a predetermined dimension c than the axial end face of the adjacent A-phase side stator core 26.
- FIG. 11 shows Embodiment 6 of the induction motor according to the present invention.
- a part of the stator core is laminated and integrated using a plate-shaped magnetic member.
- FIGS. 11 (a) and 11 (c) show the side stator cores 24 and 25 of the coil 10 (omitted in the figure) in the same manner as in the first or second embodiment.
- a view seen through from the non-load side to the load side (shaft end side) in Fig. 4 is shown.
- the side stator core 24 has a magnetic pole piece 41 adjacent to the magnetic pole teeth 30 and is integrally formed by being connected by a bridge portion.
- the side stator core 25 has magnetic pole teeth 41.
- a pole piece 40 is formed adjacent to the part 31.
- Fig. 11 (b) shows the magnetic pole piece 40 and the magnetic pole piece 41 that are connected to each other by a bridge and are integrally formed, and are supported by being sandwiched between the side stator cores 24 and 25. Things.
- a plate-shaped magnetic member is manufactured by press working, and at the same time, a required number of sheets are laminated by squeezing and tightening, and are tightly fixed. In addition, besides squeezing, fix by welding etc. You can also.
- the pole teeth and pole pieces formed on the side stator cores of the other coils have the same configuration, and are used in combination with the cylindrical back stator core 21 (see Fig. 9). .
- Fig. 12 (a) is an axial half-section side view of the state where the above-described side stator core and the pole piece are assembled and the coil 10 is wound, and injection molding or the like is performed on the winding side of the coil 10.
- FIG. 12 (b) shows still another embodiment in which the resin 43 is also filled in the gap 44 between the side stator core 25 and the pole piece 40.
- FIG. 12 (c) shows that an insulating layer is formed of resin by injection molding or the like as described above, and the coil 10 is wound, and then the coils 10 are fixed to each other with resin 45 by injection molding or the like.
- an insulating layer is formed on the outer peripheral side of the coil 10 will be described.
- a high-accuracy stator core can be easily manufactured at a low cost, and a winding frame for winding a coil is not required, and the stator core can be insulated at a low cost and easily. And contribute to the improvement of productivity. Also, at this time, by using a magnet wire having a substantially square cross section instead of a conventional magnet wire having a circular cross section, the gap between the wires can be reduced and the space factor of the winding can be improved. Therefore, it is possible to suppress a rise in the temperature of the coil, which can contribute to improving the efficiency and reducing the size of the induction motor.
- FIGS. 12 (a) to 12 (c) have been described with reference to the shape shown in FIG. 8 of the fourth embodiment as an example, the shape shown in FIG. 10 of the fifth embodiment may also be used. Obviously, it is adaptable. Embodiment 7
- FIGS. 13 and 14 show Embodiment 7 of the induction motor according to the present invention.
- a dust core obtained by insulating iron particles one by one with an inorganic coating or the like and performing compression molding or the like is used.
- FIG. 13 is a half cross-sectional side view in the axial direction showing an assembled state of the stator 20 and the frame 93 of the single-phase induction motor, and other components are omitted in the figure.
- the stator 20 is composed of A-phase and B-phase coils 10 and 11, a back stator core 5.0 on the outer peripheral side, and a side stator core on both axial ends of the coil 10 and 11. It consists of 24, 25, etc.
- the back stator core 50 is made of a dust core with the back stator cores 2 1 and 2 of the coils 10 and 11 integrated, and the coil 10 and 11 1 And the side stator cores 24, 25, etc. are sequentially stacked in the axial direction.
- the arrow lines 5 1 and 5 2 in FIG. 13 schematically show the flow of magnetic flux at a certain moment due to the coils 10 and 11.
- the magnetic flux is three-dimensional. Will move. Therefore, the use of a dust core having a large specific resistance and magnetic permeability in all directions facilitates the movement of magnetic flux, reduces the loss inside the iron core, and improves the efficiency of the single-phase induction motor. It can contribute to improvement.
- the loss can be reduced by using a dust core for the back stator core.
- the back stator core of each phase is shared by one member, so that the assembly is facilitated and the productivity can be improved.
- the frame 93 can be removed and the back stator core 50 can be used as a part of the structure, which can contribute to downsizing and cost reduction.
- the dust core can be used by using the frame 93 or the like. In any case, by using a dust core similarly for the side stator cores 24, 25, etc., the loss inside the core can be further reduced.
- FIG. 14 shows another embodiment in which one phase portion of the stator core shown in FIG. 10 'of the fifth embodiment is taken out and made of a dust core.
- the stator core is bisected by a dividing plane f in the direction perpendicular to the axis, and each is composed of a dust core.
- the 15-layer 10 is formed in a ring shape in a separate process, subjected to an appropriate insulation treatment, and then assembled with the side-surface stator cores 24 and 25.
- the stator cores of the other phases are configured similarly.
- the magnetic flux can easily move three-dimensionally inside the stator core from the back stator core 21 to the pole piece 40, the loss inside the core can be further reduced. This can contribute to improving the efficiency of single-phase and three-phase induction motors.
- the stator core pressing process is not required, the stator core can be easily manufactured at a low cost, and the winding of each coil becomes easy, which contributes to improvement in productivity and cost reduction.
- the stator core bisected by the dividing surface f is fixed as appropriate by press-fitting, screwing, or the like.
- FIG. 15 shows an eighth embodiment of the induction motor according to the present invention.
- the stator is skewed.
- Fig. 15 is a view of the three-phase induction motor with the stator core cut out with the rotation axis being horizontal and the inner peripheral surface facing the cage rotor.
- the U-phase magnetic pole tooth 30 and the magnetic pole piece 40 are connected to the magnetic pole tooth 31 and the magnetic pole piece 41 adjacent to each other in the circumferential direction at a skew angle and connected by a flange portion E.
- the adjacent V'W phase magnetic pole teeth and pole pieces are similarly configured.
- the influence of the harmonic component of the gap magnetic flux can be reduced by the skew effect, so that the vibration and noise can be reduced, and the three-phase induction motor can be reduced. Characteristics can be improved. Note that the same effect can be obtained by skewing the rotor in place of skewing the stator. Also, in the case of a single-phase induction motor, the skew The effect can be obtained.
- the shape of the stator core shown in FIG. 10 of the fifth embodiment is shown as an example, but the shape of the stator core shown in FIG. 9 of the fifth embodiment can also be applied.
- Embodiments 1 to 8 described above applied a case where the number of poles of a single-phase / three-phase induction motor is four to the present invention.However, the induction motor according to the present invention has a case where the number of poles is other than this. It is also effective. In the induction motor according to the present invention, a rotating machine having an optimum number of poles can be easily obtained without being affected by the inner diameter of the stator, the number of slots, and the like, unlike a conventional induction motor. Also, it is possible to perform variable speed operation by overnight drive or the like like a conventional induction motor. Industrial applicability
- a plurality of coils are wound in a ring shape on the stator in the axial direction, and the outer periphery and the both ends in the axial direction of each coil are respectively provided.
- a stator iron core that constitutes a magnetic circuit is provided, and the magnetic pole teeth are shifted by a predetermined angle in the circumferential direction of the rotating shaft on the inner peripheral side, and are superposed in the axial direction. Since there is no part to be used, the amount of copper wire used in the coil is reduced and the copper loss can be reduced, so that it is possible to reduce the cost, size, and weight of the induction motor.
- each magnetic pole tooth formed on the stator core at both ends in the axial direction of the coil is provided with a pole piece made of a magnetic member, so that the magnetic flux generated by the coil is reduced. Since it can be used effectively, the leakage flux is reduced and the efficiency of the induction motor is improved, which can contribute to downsizing.
- the induction motor of the next invention by providing a means for reducing the leakage of the magnetic flux of the stator, the leakage magnetic flux is reduced, and the gap magnetic flux density is reduced. Therefore, the characteristics of the induction motor can be improved.
- At least a part of the stator core is formed by laminating and integrating using a plate-shaped magnetic member, so that a high-precision stator core can be easily manufactured at low cost. Can greatly contribute to the improvement of productivity.
- At least the portion of the stator core is formed by using a dust core, so that the magnetic flux can easily move three-dimensionally, thereby reducing the loss inside the core. This contributes to improving the efficiency of the induction motor and reducing its size and weight.
- the influence of the harmonic component of the gap magnetic flux can be reduced by skewing the stator or the rotor. Characteristics can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Induction Machinery (AREA)
- Windings For Motors And Generators (AREA)
Description
明細書 軸方向に分割された複数の固定子卷線を有する誘導電動機 技術分野 Description Induction motor having a plurality of stator windings divided in the axial direction
この発明は、 単相電源にて運転されるコンデンサモー夕 ·コンデンサ 始動モータ ·分相始動モータ等の単相誘導電動機、 及び、 三相電源にて · 運転される三相誘導電動機に関し、 特に巻線方式及び固定子鉄心構造に 関する。 背景技術 The present invention relates to a single-phase induction motor such as a condenser motor operated by a single-phase power supply, a capacitor starting motor, a split-phase starting motor, and a three-phase induction motor operated by a three-phase power supply. Regarding wire system and stator core structure. Background art
従来、 この種の電動機としては、 例えば三相誘導電動機を例にとると、 図 1 6に示すような構造が一般的に採用されている。 図 1 6 ( a ) は軸 方向半断面側面図であり、 固定子鉄心 1 2 0には、 U ' V ' W相のコィ ル 1 1 0が、 図 1 6 ( b ) の卷線展開図に示すように専用機等により巻 装された後、 巻線相互間の結線及びリード線接続等の端末処置を行って いる。 Conventionally, as a motor of this type, for example, taking a three-phase induction motor as an example, a structure as shown in FIG. 16 is generally adopted. Fig. 16 (a) is a side view of the half-section in the axial direction.The stator core 120 has a coil 110 of U'V'W phase, and the winding development of Fig. 16 (b). After being wound by a dedicated machine as shown in (2), terminal treatments such as connection between windings and connection of lead wires are performed.
上述のような従来の三相誘導電動機においては、 U ' V · W相のコィ ル 1 1 0を周方向に分布して卷線を行なうため、 固定子鉄心 1 2 0の軸 方向端面から突出したコイルエンドの長さ hが大きくなり、 特性に何ら 寄与していないコイルェンドによる巻線量増加と銅損増加により、 小 型 ·軽量化ゃコストダウンが困難であるという問題がある。 単相誘導電 動機においても、 固定子鉄心に主巻線と補助卷線を周方向に分布して巻 線を行なうため、 同様の問題がある。 In the conventional three-phase induction motor as described above, the coils 110 of the U′V and W phases are distributed in the circumferential direction and are wound, so that they project from the axial end face of the stator core 120. The length h of the coil end increases and the amount of winding and the copper loss increase due to the coil end that does not contribute to the characteristics at all. There is a problem that it is difficult to reduce the size and weight and reduce the cost. Single-phase induction motors have the same problem because the main winding and the auxiliary winding are wound around the stator core in the circumferential direction.
この発明は、 上述のような問題点を解消するためになされたものであ り、 コイルェンドが存在しないため小形 ·軽量 ·高効率で口一コストな 誘導電動機の巻線方法及び固定子鉄心構造を得ることを目的としている。
発明の開示 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has a small-sized, light-weight, high-efficiency, low-cost winding method and a stator core structure for an induction motor because there is no coil end. The purpose is to get. Disclosure of the invention
上述の目的を達成するために、 この発明による誘導電動機は、 固定子 に軸方向に分割してリング状に複数のコイルを巻装し、 各コイルのリン グの中心と回転軸の中心が概ね一致するように配置して、 各コイルの外 周側と軸方向両端側に夫々磁気回路を構成する固定子鉄心を設け、 この 内周側に磁極歯部が当該コイルを挟んで回転軸の周方向に互いに電気角 で Γずれた位置に交互に形成され、 更に、 各コイルの磁極歯部を回転軸 の周方向に所定の角度ずらして軸方向に重ね合わせたように構成されて いるものである。 In order to achieve the above object, an induction motor according to the present invention has a stator in which a plurality of coils are wound in a ring shape by being divided in an axial direction, and a center of a ring of each coil and a center of a rotary shaft are substantially set. The stator cores constituting the magnetic circuit are provided on the outer peripheral side and the axial both ends of each coil, respectively, and the magnetic pole teeth are provided on the inner peripheral side of the rotating shaft around the coil. Are formed alternately at positions shifted by an electrical angle from each other in the direction, and the magnetic pole teeth of each coil are axially overlapped with each other shifted by a predetermined angle in the circumferential direction of the rotating shaft. is there.
つぎの発明による誘導電動機は、 さらに、 コイルの軸方向両端側の固 定子鉄心に形成された各磁極歯部に、 磁性部材で構成された磁極片を備 えたものである。 The induction motor according to the next invention further includes a pole piece made of a magnetic member at each magnetic pole tooth formed on the stator core at both ends in the axial direction of the coil.
つぎの発明による誘導電動機は、 さらに、 固定子に磁束の漏れを軽減 するための手段を備えたものである。 The induction motor according to the next invention further includes means for reducing leakage of magnetic flux in the stator.
つぎの発明による誘導電動機は、 さらに、 固定子鉄心の少なくともそ の一部を、 板状磁性部材を用いて積層一体化して形成するものである。 つぎの発明による誘導電動機は、 さらに、 固定子鉄心の少なくともそ の一部を、 所謂圧粉磁心 (鉄粉磁心ともいう。 以下同様) を用いて形成 するものである。 In the induction motor according to the next invention, at least a part of the stator core is formed by lamination and integration using a plate-shaped magnetic member. In the induction motor according to the next invention, at least a part of the stator core is formed using a so-called dust core (hereinafter, also referred to as iron powder core).
つぎの発明による誘導電動機は、 さらに、 固定子あるいは回転子にス キューを施したものである。 図面の簡単な説明 In the induction motor according to the next invention, the stator or the rotor is further skewed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施の形態 1における単相誘導電動機の軸方向半断面側面図 である。 FIG. 1 is an axial half cross-sectional side view of a single-phase induction motor according to Embodiment 1.
図 2は、 実施の形態 1における単相誘導電動機の接続図である。
図 3は、 実施の形態 1における側面固定子鉄心の磁極歯部の構成を、 反負荷側から負荷側へ透かして見た図である。 FIG. 2 is a connection diagram of the single-phase induction motor according to the first embodiment. FIG. 3 is a view of the configuration of the magnetic pole teeth of the side stator core according to the first embodiment as seen through from the non-load side to the load side.
図 4は、 実施の形態 2における三相誘導電動機の軸方向半断面側面図 である。 FIG. 4 is a half-sectional side view in the axial direction of the three-phase induction motor according to the second embodiment.
図 5は、 実施の形態 2における三相誘導電動機の接続図である。 FIG. 5 is a connection diagram of a three-phase induction motor according to the second embodiment.
図 6は、 実施の形態 2における側面固定子鉄心の磁極歯部の構成を、 反負荷側から負荷側へ透かして見た図である。 FIG. 6 is a view of the configuration of the magnetic pole teeth of the side stator core according to the second embodiment, seen from the non-load side to the load side.
図 7は、 実施の形態 3における側面固定子鉄心と磁極片の構成を示す。 図 8は、 実施の形態 4における側面固定子鉄心と磁極片の構成を示す。 図 9 ( a ) は実施の形態 5における固定子、 図 9 ( b ) は他の実施の 形態における固定子を示す夫々軸方向半断面側面図である。 FIG. 7 shows a configuration of a side stator core and a pole piece according to the third embodiment. FIG. 8 shows a configuration of a side stator core and a pole piece according to the fourth embodiment. FIG. 9 (a) is an axial half cross-sectional side view showing a stator according to the fifth embodiment, and FIG. 9 (b) is a stator according to another embodiment.
図 1 0は、 実施の形態 5の、 更に他の実施の形態における固定子を示 す軸方向半断面側面図である。 FIG. 10 is an axial half cross-sectional side view showing a stator according to still another embodiment of the fifth embodiment.
図 1 1は、 実施の形態 6における側面固定子鉄心と磁極片の構成を、 反負荷側から負荷側へ透かして見た図である。 FIG. 11 is a diagram of the configuration of the side stator core and the pole piece according to the sixth embodiment, viewed from the non-load side to the load side.
図 1 2は、 実施の形態 6の、 他の実施の形態における固定子を示す軸 方向半断面側面図である。 FIG. 12 is an axial half cross-sectional side view showing a stator according to another embodiment of the sixth embodiment.
図 1 3は、 実施の形態 7における固定子を示す軸方向半断面側面図で める。 FIG. 13 is an axial half cross-sectional side view showing the stator according to the seventh embodiment.
図 1 4は、 実施の形態 7の、 他の実施の形態における固定子を示す軸 方向半断面側面図である。 FIG. 14 is a half-sectional view in the axial direction showing a stator according to another embodiment of the seventh embodiment.
図 1 5は、 実施の形態 8における固定子鉄心の内周面の図である。 図 1 6は、 従来例の三相誘導電動機を示し、 (a ) は軸方向半断面側 面図、 (b ) は卷線展開図である。 発明を実施するための最良の形態 FIG. 15 is a diagram of the inner peripheral surface of the stator core according to the eighth embodiment. FIGS. 16A and 16B show a conventional three-phase induction motor. FIG. 16A is an axial half-sectional side view, and FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付の図を参照にして、 この発明にかかる誘導電動機の実施の
形態を詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, an embodiment of an induction motor according to the present invention will be described below. The form will be described in detail.
実施の形態 1 . Embodiment 1
図 1〜図 3は、 この発明による誘導電動機の実施の形態 1として、 軸 方向に分割された 2種類の固定子卷線を有する 4極の単相誘導電動機と して、 コンデンサモー夕に適用した例を示す。 図 1は、 軸方向半断面側 面図であり、 A相 · B相のコイル 1 0 · 1 1とリード線 1 3、 及び固定 子 2 0、 カゴ形回転子 8 0、 回転軸 9 0、 軸受部材 9 1、 ブラケヅト 9 2、 フレーム 9 3等で構成されている。 なお、 この実施の形態において は、 A相コイルは主卷線を、 B相コイルは補助卷線を形成する。 FIGS. 1 to 3 show a first embodiment of an induction motor according to the present invention, which is a four-pole single-phase induction motor having two types of stator windings divided in an axial direction, which is applied to a capacitor motor. An example is shown below. Fig. 1 is an axial half cross-sectional side view showing the A-phase and B-phase coils 10 and 11, the lead wires 13, and the stator 20, the cage rotor 80, the rotating shaft 90, It is composed of a bearing member 91, a bracket 92, a frame 93 and the like. In this embodiment, the A-phase coil forms the main winding and the B-phase coil forms the auxiliary winding.
A相 · Β相のコイル 1 0 · 1 1は、 回転軸 9 0の軸方向に分割して、 各コイル 1 0 · 1 1のリングの中心と回転軸 9 0の中心が概ね一致する ように巻装され、 適切な絶縁処理が施されて、 リード線 1 3により図 2 に示すようにコンデンサ 1 4とともに単相電源 1 5に接続されている。 固定子 2 0は、 コイル 1 0 · 1 1とこれの外周側の背面固定子鉄心 2 1 - 2 2及び、 各コイル 1 0 · 1 1の軸方向両端側の側面固定子鉄心 2 4:〜 2 7で構成されており、 Α相の背面固定子鉄心 2 1と側面固定子鉄 心 2 4、 2 5は夫々磁気的につながつており、更に側面固定子鉄心 2 4、 2 5の内周側には磁極歯部 3 0、 3 1が夫々形成されている。 B相の固 定子も同様に構成されており内周側には磁極歯部 3 2 · 3 3が形成され ている。 The A-phase and Β-phase coils 10 and 11 are divided in the axial direction of the rotating shaft 90 so that the center of the ring of each coil 10 and 11 and the center of the rotating shaft 90 are approximately aligned. It is wound and subjected to appropriate insulation treatment, and is connected to a single-phase power supply 15 together with a capacitor 14 as shown in FIG. The stator 20 is composed of a coil 10 · 11, a back stator core 21-22 on the outer peripheral side thereof, and side stator cores 24 on both axial ends of each coil 10 · 11: The back stator core 21 of the Α phase and the side stator cores 24, 25 are magnetically connected to each other, and the inner circumference of the side stator cores 24, 25 Magnetic pole teeth 30 and 31 are formed on the sides. The B-phase stator has the same configuration, and has magnetic pole teeth 32 and 33 formed on the inner peripheral side.
カゴ形回転子 8 0は、 A相 · B相のコイル 1 0 · 1 1の磁極歯部 3 0 〜3 3と所定のェヤーギヤヅプを介して回転軸 9 0、 軸受部材 9 1によ り回転可能に支持されている。 The cage rotor 80 can be rotated by the rotating shaft 90 and the bearing member 91 via the magnetic pole teeth 30 to 33 of the A-phase and B-phase coils 10 and 11 and a predetermined gear gap. It is supported by.
図 3 ( a ) 〜図 3 ( d ) は、 側面固定子鉄心 2 4〜 2 7と、 これの内 周側に形成された凸形の磁極歯部 3 0〜3 3の構成を、 図 1の反負荷側 から負荷側 (軸端側) へ透かして見た図であり、 他の構成部品は図中省 略している。 図 3 ( a ) は、 A相コイル 1 0の反負荷側の側面固定子鉄
心 2 4であり、 磁極歯部 3 0は、 その周方向の中心が、 時計の 1 2時と 6時の位置となるように 2箇所に形成されている。 図 3 ( b ) は、 A相 コイル 1 0の負荷側の側面固定子鉄心 2 5であり、 磁極歯部 3 1は、 そ の周方向の中心が、 反負荷側の側面固定子鉄心 2 4に形成された磁極歯 部 3 0の中心に対し、 電気角で 7Γずれた位置に形成されている。 この結 果、 背面固定子鉄心 2 1 (図中省略) を通して 4極の磁極が、 A相コィ ル 1 0を挟んで側面固定子鉄心 2 4 · 2 5の磁極歯部 3 0 · 3 1により、 内周側の周方向に交互に形成される。 FIGS. 3 (a) to 3 (d) show the configuration of the side stator cores 24 to 27 and the convex magnetic pole teeth 30 to 33 formed on the inner peripheral side. This is a view seen through from the non-load side to the load side (the shaft end side) of FIG. 1, and other components are omitted in the figure. Figure 3 (a) shows the side stator iron on the non-load side of the A-phase coil 10 The magnetic pole teeth 30 are formed at two locations so that the center in the circumferential direction is at the 12 o'clock and 6 o'clock positions of the watch. Fig. 3 (b) shows the side stator core 25 on the load side of the A-phase coil 10 and the magnetic pole tooth 31 has its center in the circumferential direction, and the side stator core 24 on the non-load side. It is formed at a position deviated by 7 ° in electrical angle from the center of the magnetic pole tooth portion 30 formed in FIG. As a result, through the back stator core 21 (omitted in the figure), the four magnetic poles are formed by the magnetic pole teeth portions 30 and 31 of the side stator core 24 and 25 with the A-phase coil 10 interposed. , Are formed alternately in the circumferential direction on the inner circumferential side.
図 3 ( c ) は、 B相コイル 1 1の反負荷側の側面固定子鉄心 2 6であ り、 磁極歯部 3 2は、 その周方向の中心が、 A相コイル 1 0の反負荷側 の側面固定子鉄心 2 4に形成された磁極歯部 3 0の中心に対し、 電気角 で 7ΤΖ 2ずらして構成されている。 図 3 ( d ) は、 B相コイル 1 1の負 荷側の側面固定子鉄心 2 7であり、 磁極歯部 3 3は、 その周方向の中心 が、 反負荷側の側面固定子鉄心 2 6に形成された磁極歯部 3 2の中心に 対し、 電気角で 7Γずれた位置に形成されている。 この結果、 A相コイル 1 0の主卷線による磁極歯部 3 0 · 3 1に対し、 電気角で ΤΓ/ 2離れた 位置に、 背面固定子鉄心 2 2 (図中省略) を通して 4極の磁極が、 B相 コイル 1 1を挟んで側面固定子鉄心 2 6 · 2 7の磁極歯部 3 2 · 3 3に より、 内周側の周方向に交互に形成される。 Fig. 3 (c) shows the side stator iron core 26 on the non-load side of the B-phase coil 11 and the magnetic pole teeth 32 are centered in the circumferential direction on the anti-load side of the A-phase coil 10. It is configured so as to be shifted by an electrical angle of 7ΤΖ2 with respect to the center of the magnetic pole tooth portion 30 formed on the side stator core 24. Fig. 3 (d) shows the side stator core 27 on the load side of the B-phase coil 11 and the magnetic pole teeth 33 have the center in the circumferential direction of the side stator core 26 on the non-load side. It is formed at a position deviated by 7 ° in electrical angle from the center of the magnetic pole teeth 32 formed at the center. As a result, the magnetic pole teeth 30 and 31 formed by the main winding of the A-phase coil 10 were separated by 電 気 / 2 in electrical angle through the back stator core 2 2 (omitted in the figure) to form a 4-pole coil. Magnetic poles are alternately formed in the circumferential direction on the inner peripheral side by the magnetic pole teeth 32, 33 of the side stator cores 26, 27 with the B-phase coil 11 interposed therebetween.
固定子 2 0は、 上述の A相 · B相の各コイル 1 0 · 1 1と、 外周側の 背面固定子鉄心 2 1 · 2 2、 及び各コイルの側面固定子鉄心 2 4〜2 7 を、 上述の位置関係を維持しながら軸方向に重ね合わせたように構成さ れている。 The stator 20 is composed of the above-mentioned A-phase and B-phase coils 10 and 11, the outer stator back stator cores 21 and 22, and the side stator cores 24 to 27 of each coil. It is configured such that they are overlapped in the axial direction while maintaining the above-described positional relationship.
この実施の形態のものにおいては、 例えば、 A相コイル 1 0により発 生した磁束は、 外周側の背面固定子鉄心 2 1→側面固定子鉄心 2 4→磁 極歯部 3 0→所定のェャ一ギヤップ カゴ形回転子 8 0→所定のェヤー ギャップ 磁極歯部 3 1→側面固定子鉄心 2 5→背面固定子鉄心 2 1と
4418 In the present embodiment, for example, the magnetic flux generated by the A-phase coil 10 is applied to the back stator core 21 on the outer peripheral side → the side stator core 24 → the magnetic pole teeth portion 30 → the predetermined edge. Key gap Cage rotor 8 0 → Predetermined layer gap Magnetic pole teeth 3 1 → Side stator core 2 5 → Back stator core 2 1 4418
6 6
巡る磁路を構成し、 リング状のコイル 1 0により軸方向に発生した磁束 の変化を、 回転方向の磁束の変化に変えることができる。 B相コイル 1A change in magnetic flux generated in the axial direction by the ring-shaped coil 10 can be changed to a change in magnetic flux in the rotation direction by forming a magnetic path around the ring. B phase coil 1
1により発生した磁束も、 電源との間に接続されたコンデンサ 1 4によ る位相差に対応して、 磁極歯部 3 2 · 3 3を周方向に電気角で 7Γ/ 2ず らしているため同様に作用させることができ、 この結果、 コイル 1 0 -The magnetic flux generated by 1 also shifts the magnetic pole teeth 32, 33 by 7 electrical degrees in the circumferential direction, corresponding to the phase difference caused by the capacitor 14 connected to the power supply. Therefore, the coil 10 0-
1 1により回転軸 9 0を中心とする二相の回転 (移動) 磁界が発生し、 電磁誘導作用により、カゴ形回転子 8 0を回転駆動させることができる。 更に、 コンデンサ 1 4の接続位置を変更する等により、 従来のコンデン サモ一夕と同様に回転軸 9 0を逆回転させることができる。 11 generates a two-phase rotation (movement) magnetic field around the rotation axis 90, and the cage rotor 80 can be driven to rotate by electromagnetic induction. Further, by changing the connection position of the capacitor 14 or the like, the rotating shaft 90 can be rotated in the reverse direction as in the case of the conventional condenser.
上述のような構成によれば、 コイルエンドに相当する部分が存在しな いため、 コイルの銅線使用量を減らし、 銅損も低減することができ、 単 相誘導電動機の効率が向上し、 コストダウンや小形 ·軽量化も実現する ことができる。 また、 コイルの巻線作業及び端末処理を簡略化する事が でき、 専用機による自動化も可能となり生産性の向上に寄与することが できる。 According to the above-described configuration, since there is no portion corresponding to the coil end, the amount of copper wire used in the coil can be reduced and the copper loss can be reduced, so that the efficiency of the single-phase induction motor can be improved, and the cost can be improved. Down, small size, and light weight can be realized. In addition, coil winding work and terminal processing can be simplified, and automation using a dedicated machine can be performed, contributing to an improvement in productivity.
実施の形態 2 . Embodiment 2
図 4〜図 6は、 この発明による誘導電動機の実施の形態 2として、 軸 方向に分割された 3種類の固定子卷線を有する 4極の三相誘導電動機に 適用した例を示す。 図 4は、 軸方向半断面側面図であり、 U * V ' W相 のコイル 1 0〜 1 2とリード線 1 3、 及び固定子 2 0、 カゴ形回転子 8 0、 回転軸 9 0、 軸受部材 9 1、 ブラケット 9 2、 フレーム 9 3等で構 成されている。 FIGS. 4 to 6 show an example in which an induction motor according to a second embodiment of the present invention is applied to a four-pole three-phase induction motor having three types of stator windings divided in an axial direction. Fig. 4 is an axial half-section side view of the U * V'W phase coils 10 to 12 and lead wires 13, and stator 20, cage rotor 80, rotating shaft 90, It is composed of a bearing member 91, a bracket 92, a frame 93 and the like.
U■ V · W相のコイル 1 0〜 1 2は、 回転軸 9 0の軸方向に分割して、 各コイル 1 0〜 1 2のリングの中心と回転軸 9 0の中心が、 概ね一致す るように、 回転軸 9 0に対し同一方向に卷装されている。 各コイルは、 適切な絶縁処理が施されて Y字形に結線された後、 リード線 1 3により 図 5に示すように三相電源 1 6に接続されている。
JP03/04418 The U ■ V · W phase coils 10 to 12 are divided in the axial direction of the rotation axis 90, and the center of the ring of each coil 10 to 12 and the center of the rotation axis 90 are almost coincident. So that it is wound in the same direction with respect to the rotating shaft 90. Each coil is appropriately insulated, connected in a Y-shape, and connected to a three-phase power supply 16 by a lead wire 13 as shown in FIG. JP03 / 04418
7 7
固定子 20は、 コイル 10〜12と、 これの外周側の背面固定子鉄心 21〜23、 及びコイル 10〜12の軸方向両端側の側面固定子鉄心 2 4〜29で構成されており、 U相の背面固定子鉄心 21と側面固定子鉄 心 24、 25は、 夫々磁気的につながつており、 更に側面固定子鉄心 2 4、 25の内周側には、磁極歯部 30、 31が夫々形成されている。 V · W相も同様に構成されており内周側には磁極歯部 32〜35が形成され ている。 The stator 20 is composed of coils 10 to 12, outer stator cores 21 to 23 on the outer peripheral side thereof, and side stator cores 24 to 29 at both axial ends of the coils 10 to 12, U The back stator core 21 of the phase and the side stator cores 24 and 25 are magnetically connected to each other, and further, on the inner peripheral side of the side stator cores 24 and 25, magnetic pole teeth 30 and 31 are respectively provided. Is formed. The V and W phases have the same configuration, and the magnetic pole teeth 32 to 35 are formed on the inner peripheral side.
力ゴ形回転子 80は、 U · V · W相の各コイル 10〜 12の磁極歯部 30〜35と所定のェヤーギヤップを介して回転軸 90、 軸受部材 9 1 により回転可能に支持されている。 The burrow rotor 80 is rotatably supported by the rotating shaft 90 and the bearing member 91 via the magnetic pole teeth 30 to 35 of the U, V, and W phase coils 10 to 12 and a predetermined gap. .
図 6 (a) 〜図 6 (f) は、 側面固定子鉄心 24〜 29とこれの内周 側に形成された凸形の磁極歯部 30〜35の構成を、 図 4の反負荷側か ら負荷側 (軸端側) へ透かして見た図であり、 他の構成部品は図中省略 している。 図 6 (a) は、 U相コイル 10の反負荷側の側面固定子鉄心 24であり、 磁極歯部 30は、 その周方向の中心が、 時計の 12時と 6 時の位置となるように 2個所に形成されている。 図 6 (b) は、 U相コ ィル 10の負荷側の側面固定子鉄心 25であり、 磁極歯部 31は、 その 周方向の中心が、 反負荷側の側面固定子鉄心 24に形成された磁極歯部 30の中心に対し、電気角で 7Γずれた位置に形成されている。この結果、 背面固定子鉄心 2 1 (図中省略) を通して 4極の磁極が、 U相コイル 1 0を挟んで側面固定子鉄心 24 · 25の磁極歯部 30 · 3、1により、 内 周側の周方向に交互に形成される。 6 (a) to 6 (f) show the configuration of the side stator cores 24 to 29 and the convex magnetic pole teeth 30 to 35 formed on the inner peripheral side of the cores. This is a view seen from the load side (the shaft end side) to the load side, and other components are omitted in the figure. FIG. 6 (a) shows the side stator core 24 on the non-load side of the U-phase coil 10, and the magnetic pole teeth 30 are arranged so that the center in the circumferential direction is at the 12 o'clock and 6 o'clock positions of the clock. It is formed in two places. Fig. 6 (b) shows a side stator core 25 on the load side of the U-phase coil 10, and the magnetic pole teeth 31 have a circumferential center formed on the side stator core 24 on the non-load side. The magnetic pole tooth portion 30 is formed at a position shifted by 7 electrical degrees with respect to the center. As a result, the four magnetic poles pass through the back stator core 21 (omitted in the figure), and the magnetic pole teeth 30, 3, 1 of the side stator cores 24, 25 sandwich the U-phase coil 10. Are formed alternately in the circumferential direction.
図 6 (c) は、 V相コイル 1 1の反負荷側の側面固定子鉄心 26であ り、 磁極歯部 32は、 その周方向の中心が、 ϋ相コイル 10の反負荷側 の側面固定子鉄心 24に形成された磁極歯部 30の中心に対し、 電気角 で 2ττ/3ずらして構成されている。 図 6 (d) は、 V相コイル 1 1の 負荷側の側面固定子鉄心 27であり、 磁極歯部 33は、 その周方向の中
心が、 反負荷側の側面固定子鉄心 2 6に形成された磁極歯部 3 2の中心 に対し、 電気角で Γずれた位置に形成されている。 この結果、 U相コィ ル 1 0の場合と同様に、 背面固定子鉄心 2 2 (図中省略) を通して 4極 の磁極が、 V相コイル 1 1を挟んで側面固定子鉄心 2 6 · 2 7の磁極歯 部 3 2 · 3 3により、 内周側の周方向に交互に形成される。 Fig. 6 (c) shows the side stator core 26 on the non-load side of the V-phase coil 11 and the magnetic pole teeth 32 are fixed at the center in the circumferential direction on the anti-load side of the ϋ-phase coil 10. The magnetic pole teeth 30 formed on the iron core 24 are shifted from the center of the magnetic pole teeth 30 by an electrical angle of 2ττ / 3. Fig. 6 (d) shows the side stator core 27 on the load side of the V-phase coil 11 and the magnetic pole teeth 33 are positioned in the circumferential direction. The core is formed at a position deviated by an electrical angle with respect to the center of the magnetic pole teeth 32 formed on the side stator core 26 on the non-load side. As a result, as in the case of the U-phase coil 10, the four magnetic poles pass through the back stator core 22 (omitted in the figure), and the side stator cores 26, 27 sandwich the V-phase coil 11 therebetween. The magnetic pole teeth 32, 33 are alternately formed in the inner circumferential direction.
図 6 ( e ) は、 W相コイル 1 2の反負荷側の側面固定子鉄心 2 8であ り、 磁極歯部 3 4は、 その周方向の中心が、 U相コイル 1 0の反負荷側 の側面固定子鉄心 2 4に形成された磁極歯部 3 0の中心に対し、 電気角 で 4 ττ/ 3ずらして構成されている。 図 6 ( f ) は、 W相コイル 1 2の 負荷側の側面固定子鉄心 2 9であり、 磁極歯部 3 5は、 その周方向の中 心が、 反負荷側の側面固定子鉄心 2 8に形成された磁極歯部 3 4の中心 に対し、 電気角で 7Γずれた位置に形成されている。 この結果、 U · V相 の場合と同様に、 背面固定子鉄心 2 3 (図中省略) を通して 4極の磁極 が、 W相コイル 1 2を挟んで側面固定子鉄心 2 8 · 2 9の磁極歯部 3 4 ■ 3 5により、 内周側の周方向に交互に形成される。 FIG. 6 (e) shows the side stator core 28 on the non-load side of the W-phase coil 12, and the magnetic pole teeth 34 have the circumferential center at the non-load side of the U-phase coil 10. The electrical angle is shifted by 4 ττ / 3 with respect to the center of the magnetic pole teeth 30 formed on the side stator core 24. Fig. 6 (f) shows the side stator core 29 on the load side of the W-phase coil 12 and the magnetic pole teeth 35 have the center in the circumferential direction of the side stator core 28 on the non-load side. It is formed at a position deviated by 7 ° in electrical angle from the center of the magnetic pole teeth 34 formed in FIG. As a result, as in the case of the U and V phases, the four magnetic poles pass through the back stator core 23 (omitted in the figure), and the magnetic poles of the side stator cores 28 and 29 sandwich the W-phase coil 12 therebetween. The teeth 3 4 ■ 3 5 are alternately formed in the circumferential direction on the inner circumferential side.
固定子 2 0は、 上述の U · V ' W相の各コイル 1 0〜 1 2と、 外周側 の背面固定子鉄心 2 1〜2 3、 及び各コイルの側面固定子鉄心 2 4〜 2 9を、 上述の位置関係を維持しながら軸方向に重ね合わせたように構成 されている。 The stator 20 includes the coils 10 to 12 of the above-described U and V'W phases, the outer stator cores 21 to 23 on the outer peripheral side, and the side stator cores 24 to 29 of each coil. Are arranged in the axial direction while maintaining the above positional relationship.
この実施の形態のものにおいては、 例えば、 U相コイル 1 0により発 生した磁束は、 外周側の背面固定子鉄心 2 1→側面固定子鉄心 2 4→磁 極歯部 3 0→所定のェャ一ギヤップ カゴ形回転子 8 0 所定のェヤー ギャップ 磁極歯部 3 1 側面固定子鉄心 2 5→背面固定子鉄心 2 1と 巡る磁路を構成し、 リング状のコイル 1 0により軸方向に発生した磁束 の変化を回転方向の磁束の変化に変えることができる。 V ' W相コイル 1 1 · 1 2により発生した磁束も、 電源の位相差に対応して磁極歯部 3 2〜 3 5を周方向に電気角で 2 7Γ / 3ずつずらしているため同様に作用
させることができ、 この結果、 コイル 1 0〜 1 2に三相電源を供給する ことにより、 回転軸 9 0を中心とする三相の回転磁界が発生し、 電磁誘 導作用によりカゴ形回転子 8 0を回転駆動させることができる。 更に、 従来の三相誘導電動機と同様に、 U · V■ W相のコイルのうち、 任意の 2つのコイルを電源に対して入れ替え、 逆接続とすることにより相回転 の順序が反対となり、 カゴ形回転子 8 0に働く トルクの方向が逆向きと なるため、 回転軸 9 0を逆回転させることができる。 また、 コイル 1 0 〜 1 2の巻き方向が同一でない場合は、 当該磁極歯部を、 回転軸の周方 向に電気角で 7Γずらす等により、 同様に作用させることができる。 In this embodiment, for example, the magnetic flux generated by the U-phase coil 10 is applied to the outer stator side stator core 21 → side stator iron core 24 → magnetic pole teeth 30 → predetermined key. Key gap Cage rotor 8 0 Predetermined yair gap Magnetic pole teeth 3 1 Side stator core 2 5 → Back stator core 2 1 A magnetic path is formed, and it is generated in the axial direction by a ring-shaped coil 10. The change in the applied magnetic flux can be changed to a change in the magnetic flux in the rotation direction. The magnetic flux generated by the V'W phase coils 11 and 12 is also the same because the magnetic pole teeth 32 to 35 are shifted by 27 電 気 / 3 in electrical angle in the circumferential direction according to the phase difference of the power supply. Action As a result, by supplying three-phase power to the coils 10 to 12, a three-phase rotating magnetic field around the rotating shaft 90 is generated, and the cage rotor is driven by electromagnetic induction. 80 can be driven to rotate. Furthermore, as in the case of the conventional three-phase induction motor, any two coils of the U, V, and W phases are switched to the power supply and connected in reverse to reverse the order of the phase rotation, and Since the direction of the torque acting on the shaped rotor 80 is reversed, the rotating shaft 90 can be rotated in the reverse direction. When the winding directions of the coils 10 to 12 are not the same, the magnetic pole teeth can be similarly actuated by shifting the magnetic pole tooth portion by 7 ° in electrical angle in the circumferential direction of the rotating shaft.
上述のような構成によれば、 コイルエンドに相当する部分が存在しな いため、 コイルの銅線使用量を減らし、 銅損を低減することにより三相 誘導電動機の効率向上に寄与する事ができ、 コストダウンや小形 ·軽量 化も実現することができる。 また、 各相のコイル数は最小限各 1個で済 むため、コィルの卷線作業及び端末処理を大幅に簡略化する事ができる。 なお、 大容量機種においては、 各相のコイルを夫々複数個に分割して軸 方向に配置することも可能であり、 △結線や Υ—Δ起動等も採用するこ とができる。 According to the configuration described above, since there is no portion corresponding to the coil end, it is possible to reduce the amount of copper wire used in the coil and reduce the copper loss, thereby contributing to an improvement in the efficiency of the three-phase induction motor. However, cost reduction and downsizing and weight reduction can be realized. In addition, since the number of coils for each phase is at least one for each coil, the coil winding work and terminal processing can be greatly simplified. In a large-capacity model, it is also possible to divide each phase coil into a plurality of pieces and arrange them in the axial direction, and it is also possible to adopt Δ connection, Υ-Δ activation, and the like.
実施の形態 3 . Embodiment 3.
図 7は、 この発明による誘導電動機の実施の形態 3を示している。 実 施の形態 3では、 上述の実施の形態 1あるいは 2の側面固定子鉄心の磁 極歯部に、 磁性部材で構成されたに磁極片を備えたものであり、 各側面 固定子鉄心と磁極歯部及びカゴ形回転子の位置関係は、 実施の形態 1あ るいは 2と同一である。 FIG. 7 shows Embodiment 3 of the induction motor according to the present invention. In the third embodiment, a magnetic pole piece formed of a magnetic member is provided on the magnetic pole tooth portion of the side stator core of the first or second embodiment described above. The positional relationship between the teeth and the cage rotor is the same as in the first or second embodiment.
図 7 ( a ) ·図 7 ( c ) は、 コイル 1 0 (図中省略) の側面固定子鉄 心 2 4、 2 5を、 実施の形態 1あるいは実施の形態 2と同様に、 図 1あ るいは図 4の反負荷側から負荷側 (軸端側) へ透かして見た図を示し、 図 7 ( b ) は図 7 ( a ) の断面 A A、 図 7 ( d ) は図 7 ( c ) の断面 B
Bを示す。 反負荷側の側面固定子鉄心 24の磁極歯部 30には、 これと 対をなす負荷側の側面固定子鉄心 25の方向に, 磁極歯部 30と同一内 径寸法を有し、 磁性部材で構成された磁極片 40を, コイル 10の内径 側に備えている。 負荷側の側面固定子鉄心 25の磁極歯部 3 1には、 磁 極片 40と逆向きに, 反負荷側の側面固定子鉄心 24の方向に, 磁極歯 部 3 1と同一内径寸法の磁極片 41を備えている。 Fig. 7 (a) and Fig. 7 (c) show the side stator cores 24 and 25 of the coil 10 (omitted in the figure) in the same manner as in the first or second embodiment. Alternatively, FIG. 7 (b) is a cross-sectional view taken along line AA of FIG. 7 (a), and FIG. 7 (d) is a view seen from FIG. 7 (c). ) Section B B is shown. The magnetic pole teeth 30 of the side stator iron core 24 on the non-load side have the same inner diameter as the magnetic pole teeth 30 in the direction of the opposite side stator core 25 on the load side. The configured pole piece 40 is provided on the inner diameter side of the coil 10. The magnetic pole teeth 31 of the side stator core 25 on the load side have the same inner diameter as the magnetic pole teeth 31 in the direction opposite to the pole piece 40 and in the direction of the side stator core 24 on the non-load side. It has a piece 41.
図 7 (e) は、 磁極片 40、 4 1を備えた側面固定子鉄心 24と 25 を組み立てた状態を示し、 図 7 (f ) は、 図 7 (e) の断面 CCを示す。 側面固定子鉄心 24の磁極歯部 30と磁極片 40は, 周方向の隣極とな る側面固定子鉄心 25の磁極歯部 3 1及び磁極片 41と、 所定の空隙 a を隔てて嚙み合わせるように構成されており、 他のコイルの側面固定子 鉄心に形成された磁極歯部にも同様の磁極片が構成されている。 FIG. 7 (e) shows a state where the side stator cores 24 and 25 provided with the pole pieces 40 and 41 are assembled, and FIG. 7 (f) shows a cross section CC of FIG. 7 (e). The magnetic pole teeth 30 of the side stator core 24 and the magnetic pole pieces 40 are separated from the magnetic pole teeth 31 and the magnetic pole pieces 41 of the side stator iron core 25, which are circumferentially adjacent poles, by a predetermined gap a. The same pole piece is also formed at the pole teeth formed on the side stator core of the other coils.
上述のような構成によれば、 各磁極片により夫々のコイルで発生する 磁束を有効に活用することができ、 漏れ磁束も減少するため、 誘導電動 機の効率が向上し小形化に寄与することができる。 According to the configuration described above, the magnetic flux generated in each coil by each pole piece can be effectively used, and the leakage magnetic flux is reduced, so that the efficiency of the induction motor is improved and contributes to downsizing. Can be.
実施の形態 4. Embodiment 4.
図 8は、 この発明による誘導電動機の実施の形態 4を示している。 実 施の形態 4では、 上述の実施の形態 3において a = 0となり、 周方向に 互いに隣接する磁極片と磁極歯部、 及び磁極片どうしがプリッジ部分で 連結されたものである。 FIG. 8 shows Embodiment 4 of the induction motor according to the present invention. In the fourth embodiment, a = 0 in the third embodiment described above, and the magnetic pole pieces, the magnetic pole tooth portions, and the magnetic pole pieces adjacent to each other in the circumferential direction are connected to each other at the bridge portion.
図 8 (a) は、 コイル 10 (図中省略) の側面固定子鉄心 24、 25 を、 実施の形態 3の図 7 ( Θ) と同様に組み立てた状態を示す。 側面固 定子鉄心 24の磁極歯部 30と磁極片 40は、 周方向に互いに隣接する 側面固定子鉄心 25の磁極歯部 31及び磁極片 4 1に、 力ゴ形回転子 8 0 (図中省略) に対向する内周側において、 ブリッジ部分 Εにより連結 している。 図 8 (b) は、 図 8 (a) のプリヅジ部分 Eの拡大図であり、 sはブリッジ部分の径方向の厚さを示す。 図 8 (c) は、 図 8 (a) の
断面 C Cを示し、 カゴ形回転子 8 0に対向する内周側は、 切り欠けの無 い連続した円筒形状となっている。 他のコィルの側面固定子鉄心に形成 された磁極歯部、 及び、 磁極片にも同様のブリッジ部分が形成されてい る。 FIG. 8A shows a state in which the side stator cores 24 and 25 of the coil 10 (omitted in the figure) are assembled in the same manner as in FIG. The magnetic pole teeth 30 and the pole pieces 40 of the side stator iron core 24 are circumferentially adjacent to each other. On the inner peripheral side opposite to), they are connected by a bridge part Ε. FIG. 8B is an enlarged view of the bridge portion E in FIG. 8A, and s indicates the radial thickness of the bridge portion. Fig. 8 (c) is the same as Fig. 8 (a). The cross-section CC is shown, and the inner peripheral side facing the cage rotor 80 has a continuous cylindrical shape with no cutout. Similar bridge portions are formed on the pole teeth formed on the side stator cores of the other coils and on the pole pieces.
上述のような構成によれば、 側面固定子鉄心と磁極片の内周側の寸法 精度を向上させることができ、 また、 ブリッジ部分の寸法、 形状を最適 化することにより、 漏れ磁束によるギヤップ磁束密度の低下を抑制しな がら、 磁極片の強度を確保することができるため、 剛性が向上し振動 · 騒音の発生を低減することができる。 According to the above configuration, it is possible to improve the dimensional accuracy of the side stator core and the inner peripheral side of the pole piece, and by optimizing the dimensions and shape of the bridge portion, the gap flux due to the leakage magnetic flux can be improved. Since the strength of the pole piece can be ensured while suppressing the decrease in density, the rigidity is improved and the generation of vibration and noise can be reduced.
実施の形態 5 . Embodiment 5
実施の形態 5では、 上述のような実施の形態の構成に加え、 固定子鉄 心の磁束の漏れを軽減するための手段として、 軸方向に隣接する相間に 磁気的な隙間を設けたものである。 In the fifth embodiment, in addition to the configuration of the above-described embodiment, a magnetic gap is provided between adjacent phases in the axial direction as a means for reducing the leakage of the magnetic flux of the stator core. is there.
図 9 ( a ) は、 単相誘導電動機の A相 · B相の固定子とフレーム 9 3 の組み立て状態を示す軸方向の半断面側面図であり、 他の構成部品は図 中省略している。 A相の固定子は、 コイル 1 0と軸方向両端側の側面固 定子鉄心 2 4、 2 5及び背面固定子鉄心 2 1で構成されており、 B相の 固定子も同様にコイル 1 1と固定子鉄心で構成されているが、 互いに隣 接する A相の固定子鉄心と B相の固定子鉄心の間には、 磁気的な隙間と して所定の空隙 bを設けて構成されている。 Fig. 9 (a) is a half sectional side view in the axial direction showing the assembled state of the A-phase and B-phase stators of the single-phase induction motor and the frame 93, and other components are omitted in the figure. . The A-phase stator is composed of coil 10, side stator cores 24, 25 at both ends in the axial direction, and back stator core 21, and the B-phase stator is also connected to coil 11. Although it is composed of a stator core, a predetermined gap b is provided as a magnetic gap between the A-phase stator core and the B-phase stator core that are adjacent to each other.
図 9 ( b ) は、 他の実施の形態を示し、 図 9 ( a ) と比較して背面固 定子鉄心 2 1と 2 2は連結して一体に形成されているが、 互いに隣接す る A相の側面固定子鉄心 2 5と B相の側面固定子鉄心 2 6の間には、 磁 気的な隙間として所定の空隙 bを設けて構成されている。 FIG. 9 (b) shows another embodiment. Compared to FIG. 9 (a), the back stator cores 21 and 22 are connected and integrally formed, but the A A predetermined gap b is provided as a magnetic gap between the phase stator core 25 and the phase B stator core 26.
図 1 0は、 更に他の実施の形態を示し、 A相の側面固定子鉄心 2 4に 形成された磁極片 4 0は、 隣接する B相側の側面固定子鉄心 2 5の軸方 向端面より, 所定の寸法 cだけ短く構成されており、 B相の側面固定子
03 04418 FIG. 10 shows still another embodiment, in which the pole piece 40 formed on the A-phase side stator core 24 is an axial end face of the adjacent B-phase side stator core 25. Therefore, the B-phase side stator 03 04418
1 2 1 2
鉄心 2 7に形成された磁極片も同様に、 隣接する A相側の側面固定子鉄 心 2 6の軸方向端面より、 所定の寸法 cだけ短く構成されている。 Similarly, the pole piece formed on the iron core 27 is configured to be shorter by a predetermined dimension c than the axial end face of the adjacent A-phase side stator core 26.
上述のような構成によれば、寸法 bまたは cを最適化することにより、 隣接する相への磁束の漏れを軽減し、 ギヤップ磁束密度を確保すること ができるため、 単相誘導電動機の特性を向上させることができる。 According to the above configuration, by optimizing the dimension b or c, it is possible to reduce the leakage of the magnetic flux to the adjacent phase and to secure the gap magnetic flux density, thereby improving the characteristics of the single-phase induction motor. Can be improved.
三相誘導電動機の場合も同様に、 U相と V相、 V相と W相の間に空隙 bまたは cを設けることにより、 隣接する相への磁束の漏れを軽減する ことができるため、 三相誘導電動機の特性を向上させることができる。 また、 単相 '三相いずれの場合も、 空隙 bまたは cを隙間とせずに非磁 性部材を用いて形成しても、 同様の効果を得ることができる。 Similarly, in the case of a three-phase induction motor, by providing a gap b or c between the U and V phases and between the V and W phases, leakage of magnetic flux to adjacent phases can be reduced. The characteristics of the phase induction motor can be improved. In addition, in any of the single-phase and three-phase cases, the same effect can be obtained by forming the gap b or c using a non-magnetic member without forming a gap.
実施の形態 6 . Embodiment 6
図 1 1は、 この発明による誘導電動機の実施の形態 6を示している。 実施の形態 6では、 上述のような実施の形態の構成を実現する手段とし て、 固定子鉄心の一部を、 板状磁性部材を用いて積層一体化を行なうも のである。 FIG. 11 shows Embodiment 6 of the induction motor according to the present invention. In the sixth embodiment, as a means for realizing the configuration of the above-described embodiment, a part of the stator core is laminated and integrated using a plate-shaped magnetic member.
図 1 1 ( a ) 、 図 1 1 ( c ) は、 コイル 1 0 (図中省略) の側面固定 子鉄心 2 4、 2 5を、 実施の形態 1あるいは実施の形態 2と同様に、 図 1あるいは図 4の反負荷側から負荷側 (軸端側) へ透かして見た図を示 す。 側面固定子鉄心 2 4には、 磁極歯部 3 0に隣接して磁極片 4 1が、 ブリッジ部分により連結されて一体に形成されており、 側面固定子鉄心 2 5にも同様に、磁極歯部 3 1に隣接して磁極片 4 0が形成されている。 図 1 1 ( b ) は、 磁極片 4 0と磁極片 4 1が、 ブリッジ部分により連結 されて一体に形成されたものであり、 側面固定子鉄心 2 4と 2 5の間に 挟むようにして支持されるものである。 FIGS. 11 (a) and 11 (c) show the side stator cores 24 and 25 of the coil 10 (omitted in the figure) in the same manner as in the first or second embodiment. Alternatively, a view seen through from the non-load side to the load side (shaft end side) in Fig. 4 is shown. The side stator core 24 has a magnetic pole piece 41 adjacent to the magnetic pole teeth 30 and is integrally formed by being connected by a bridge portion. Similarly, the side stator core 25 has magnetic pole teeth 41. A pole piece 40 is formed adjacent to the part 31. Fig. 11 (b) shows the magnetic pole piece 40 and the magnetic pole piece 41 that are connected to each other by a bridge and are integrally formed, and are supported by being sandwiched between the side stator cores 24 and 25. Things.
図 1 1 ( a ) 〜図 1 1 ( c ) の夫々の部品は、 板状磁性部材をプレス 加工により製作し、 同時にヌキカシメ 4 2により所要枚数を夫々積層し 密着固定を行なう。 なお、 ヌキカシメの他に溶接等により固着を行なう
こともできる。 他のコイルの側面固定子鉄心に形成された磁極歯部及び 磁極片も、 同様に構成されており、 円筒状の背面固定子鉄心 2 1 (図 9 参照) 等と組み合わせて用いられるものである。 For each of the parts shown in FIGS. 11 (a) to 11 (c), a plate-shaped magnetic member is manufactured by press working, and at the same time, a required number of sheets are laminated by squeezing and tightening, and are tightly fixed. In addition, besides squeezing, fix by welding etc. You can also. The pole teeth and pole pieces formed on the side stator cores of the other coils have the same configuration, and are used in combination with the cylindrical back stator core 21 (see Fig. 9). .
図 1 2 ( a ) は、 上述の側面固定子鉄心と磁極片を組み立て、 コイル 1 0を巻回した状態の軸方向半断面側面図であり、 コイル 1 0の卷回側 に、 射出成型等により樹脂 4 3で絶縁層を形成した他の実施の形態を示 す。 図 1 2 ( b ) は、 更に側面固定子鉄心 2 5と磁極片 4 0の隙間 4 4 にも樹脂 4 3を充填した、 更に他の実施の形態を示す。 また図 1 2 ( c ) は、 前述の如く射出成型等により、 樹脂で絶縁層を形成しコイル 1 0を 卷回後、 更に射出成型等により樹脂 4 5でコイル 1 0の相互間を固着す るとともに、 コイル 1 0の外周側にも絶縁層を形成する、 更に更に他の 実施の形態を示す。 Fig. 12 (a) is an axial half-section side view of the state where the above-described side stator core and the pole piece are assembled and the coil 10 is wound, and injection molding or the like is performed on the winding side of the coil 10. Another embodiment in which an insulating layer is formed of resin 43 is shown. FIG. 12 (b) shows still another embodiment in which the resin 43 is also filled in the gap 44 between the side stator core 25 and the pole piece 40. Further, FIG. 12 (c) shows that an insulating layer is formed of resin by injection molding or the like as described above, and the coil 10 is wound, and then the coils 10 are fixed to each other with resin 45 by injection molding or the like. In addition, another embodiment in which an insulating layer is formed on the outer peripheral side of the coil 10 will be described.
上述のような製法によれば、 高精度な固定子鉄心を安価で容易に製作 することができ、 コイル卷きのための巻き枠も不要となり、 固定子鉄心 の絶縁を安価で容易に行なうことができ、 生産性の向上に寄与すること ができる。 またこのとき、 断面形状が円形の従来のマグネットワイヤに 代えて、断面形状が概略四角形のマグネットワイヤを用いることにより、 ワイヤ間の隙間が減少し、巻線の占積率を向上させることができるため、 コィルの温度上昇を抑制することが可能となり、 誘導電動機の効率向上 と小形化に寄与することができる。 なお、 図 1 2 ( a ) 〜図 1 2 ( c ) においては、 実施の形態 4の図 8に示す形状を例に説明を行なったが、 実施の形態 5の図 1 0に示す形状にも適応可能なことは明白である。 実施の形態 7 . According to the above-described manufacturing method, a high-accuracy stator core can be easily manufactured at a low cost, and a winding frame for winding a coil is not required, and the stator core can be insulated at a low cost and easily. And contribute to the improvement of productivity. Also, at this time, by using a magnet wire having a substantially square cross section instead of a conventional magnet wire having a circular cross section, the gap between the wires can be reduced and the space factor of the winding can be improved. Therefore, it is possible to suppress a rise in the temperature of the coil, which can contribute to improving the efficiency and reducing the size of the induction motor. Although FIGS. 12 (a) to 12 (c) have been described with reference to the shape shown in FIG. 8 of the fourth embodiment as an example, the shape shown in FIG. 10 of the fifth embodiment may also be used. Obviously, it is adaptable. Embodiment 7
図 1 3、 図 1 4は、 この発明による誘導電動機の実施の形態 7を示し ている。 実施の形態 7では、 固定子鉄心の材料として、 鉄粉を無機系の 皮膜などで一粒一粒絶縁し圧縮成型等を行なつた圧粉磁心を用いるもの である。
図 1 3は、 単相誘導電動機の固定子 2 0とフレーム 9 3の組み立て状 態を示す軸方向の半断面側面図であり、 他の構成部品は図中省略してい る。 固定子 2 0は、 A相 · B相のコイル 1 0 · 1 1と、 これの外周側の 背面固定子鉄心 5. 0と、 コイル 1 0 · 1 1の軸方向両端側の側面固定子 鉄心 2 4、 2 5等で構成されている。 背面固定子鉄心 5 0は、 コイル 1 0 · 1 1の背面固定子鉄心 2 1 · 2 2を一体として圧粉磁心を用いて構 成されており、 その内径側に、 コイル 1 0 · 1 1及び側面固定子鉄心 2 4、 2 5等を、 軸方向に順次積み重ねたように構成されている。 FIGS. 13 and 14 show Embodiment 7 of the induction motor according to the present invention. In the seventh embodiment, as the material of the stator core, a dust core obtained by insulating iron particles one by one with an inorganic coating or the like and performing compression molding or the like is used. FIG. 13 is a half cross-sectional side view in the axial direction showing an assembled state of the stator 20 and the frame 93 of the single-phase induction motor, and other components are omitted in the figure. The stator 20 is composed of A-phase and B-phase coils 10 and 11, a back stator core 5.0 on the outer peripheral side, and a side stator core on both axial ends of the coil 10 and 11. It consists of 24, 25, etc. The back stator core 50 is made of a dust core with the back stator cores 2 1 and 2 of the coils 10 and 11 integrated, and the coil 10 and 11 1 And the side stator cores 24, 25, etc. are sequentially stacked in the axial direction.
図 1 3の矢印線 5 1 · 5 2は、 コイル 1 0 · 1 1による、 ある瞬間の 磁束の流れを模式的に示しており、 背面固定子鉄心 5 0の内部において は、 磁束が三次元的に移動することとなる。 このため、 全方向に対し比 抵抗と透磁率の値がともに大きい圧粉磁心を用いることにより、 磁束の 移動が容易となり、 鉄心内部の損失を軽減することができ、 単相誘導電 動機の効率向上に寄与することができる。 The arrow lines 5 1 and 5 2 in FIG. 13 schematically show the flow of magnetic flux at a certain moment due to the coils 10 and 11.In the back stator core 50, the magnetic flux is three-dimensional. Will move. Therefore, the use of a dust core having a large specific resistance and magnetic permeability in all directions facilitates the movement of magnetic flux, reduces the loss inside the iron core, and improves the efficiency of the single-phase induction motor. It can contribute to improvement.
三相誘導電動機の場合にも同様に、背面固定子鉄心に圧粉磁心を用い、 損失を軽減することができる。 また、 単相 '三相いずれの場合も、 各相 の背面固定子鉄心を一つの部材で共用することにより、 組み立てが容易 となり生産性の向上に寄与することができる。 更に、 フレーム 9 3を取 り除き、 背面固定子鉄心 5 0を構造物の一部として利用することも可能 であり、小形化とコストダウンに寄与することができる。なお、図 9 ( a ) に示すように、 背面固定子鉄心が各相ごとに分割されている場合にも、 フレーム 9 3等を併用することにより圧粉磁心を用いることができる。 また、 いずれの場合も側面固定子鉄心 2 4、 2 5等にも同様に圧粉磁心 を用いることにより、 鉄心内部の損失を更に軽減することができる。 図 1 4は、 実施の形態 5の図 1 0'に示す固定子鉄心の一相分を取り出 し、 圧粉磁心で構成した他の実施の形態を示す。 固定子鉄心は、 軸直角 方向の分割面 f で二分されて、 夫々が圧粉磁心で構成されており、 コィ
蘭 18 Similarly, in the case of a three-phase induction motor, the loss can be reduced by using a dust core for the back stator core. In addition, in both the single-phase and three-phase, the back stator core of each phase is shared by one member, so that the assembly is facilitated and the productivity can be improved. Further, the frame 93 can be removed and the back stator core 50 can be used as a part of the structure, which can contribute to downsizing and cost reduction. As shown in FIG. 9 (a), even when the back stator core is divided for each phase, the dust core can be used by using the frame 93 or the like. In any case, by using a dust core similarly for the side stator cores 24, 25, etc., the loss inside the core can be further reduced. FIG. 14 shows another embodiment in which one phase portion of the stator core shown in FIG. 10 'of the fifth embodiment is taken out and made of a dust core. The stator core is bisected by a dividing plane f in the direction perpendicular to the axis, and each is composed of a dust core. Orchid 18
1 5 ル 1 0は、 別工程にてリング状に形成され適切な絶縁処理を施した後、 側面固定子鉄心 2 4 , 2 5と組み立てを行なう。 他の相の固定子鉄心も 同様に構成されている。 The 15-layer 10 is formed in a ring shape in a separate process, subjected to an appropriate insulation treatment, and then assembled with the side-surface stator cores 24 and 25. The stator cores of the other phases are configured similarly.
上述のような構成によれば、 背面固定子鉄心 2 1から磁極片 4 0まで の固定子鉄心内部を磁束が三次元的に容易に移動できるため、 鉄心内部 の損失を更に軽減することができ、 単相 ·三相誘導電動機の効率向上に 寄与することができる。 また、 鉄心プレスの工程が不要となるため、 固 定子鉄心を安価で容易に製作することができ、 更に各コイルの卷線が容 易となるため、 生産性の向上とコストダウンに寄与することができる。 なお、 分割面 f で二分された固定子鉄心は圧入、 ネジ止め等により適宜 固定されるものである。 According to the above-described configuration, since the magnetic flux can easily move three-dimensionally inside the stator core from the back stator core 21 to the pole piece 40, the loss inside the core can be further reduced. This can contribute to improving the efficiency of single-phase and three-phase induction motors. In addition, since the iron core pressing process is not required, the stator core can be easily manufactured at a low cost, and the winding of each coil becomes easy, which contributes to improvement in productivity and cost reduction. Can be. The stator core bisected by the dividing surface f is fixed as appropriate by press-fitting, screwing, or the like.
実施の形態 8 . Embodiment 8
図 1 5は、 この発明による誘導電動機の実施の形態 8を示している。 実施の形態 8では、 上述のような実施の形態の構成に加え、 固定子にス キューを施すものである。 FIG. 15 shows an eighth embodiment of the induction motor according to the present invention. In the eighth embodiment, in addition to the configuration of the above-described embodiment, the stator is skewed.
図 1 5は、 三相誘導電動機の回転軸を水平方向として固定子鉄心を切 り開いて、 カゴ形回転子と対向する内周面を見た図である。 U相の磁極 歯部 3 0と磁極片 4 0は、 周方向に隣接する磁極歯部 3 1、 及び、 磁極 片 4 1とスキュー角だけ傾いてプリヅジ部分 Eにより連結しており、 軸 方向に隣接する V ' W相の夫々の磁極歯部と磁極片も同様に構成されて いる。 Fig. 15 is a view of the three-phase induction motor with the stator core cut out with the rotation axis being horizontal and the inner peripheral surface facing the cage rotor. The U-phase magnetic pole tooth 30 and the magnetic pole piece 40 are connected to the magnetic pole tooth 31 and the magnetic pole piece 41 adjacent to each other in the circumferential direction at a skew angle and connected by a flange portion E. The adjacent V'W phase magnetic pole teeth and pole pieces are similarly configured.
上述の構成においては、 スキュー角を最適化することにより、 スキュ 一効果によってギャップ磁束の高調波成分の影響を低減させることがで きるため、 振動 ·騒音を小さくすることができ、 三相誘導電動機の特性 を向上させることができる。 なお、 固定子をスキュ一する代わりに、 力 ゴ形回転子にスキューを施しても同様の効果を得ることができる。また、 単相誘導電動機の場合も同様にスキューを行なうことにより、 スキュー
効果を得ることができる。 図 1 5においては、 実施の形態 5の図 1 0に 示す固定子鉄心の形状を例に示したが、 実施の形態 5の図 9に示す固定 子鉄心の形状にも適応可能である。 In the above-described configuration, by optimizing the skew angle, the influence of the harmonic component of the gap magnetic flux can be reduced by the skew effect, so that the vibration and noise can be reduced, and the three-phase induction motor can be reduced. Characteristics can be improved. Note that the same effect can be obtained by skewing the rotor in place of skewing the stator. Also, in the case of a single-phase induction motor, the skew The effect can be obtained. In FIG. 15, the shape of the stator core shown in FIG. 10 of the fifth embodiment is shown as an example, but the shape of the stator core shown in FIG. 9 of the fifth embodiment can also be applied.
上述の実施の形態 1〜8は、 単相 ·三相誘導電動機の極数が 4極の場 合をこの発明に適用したが、 この発明による誘導電動機は、 これ以外の 極数を有する場合に対しても有効である。 そして、 この発明による誘導 電動機は、 従来の誘導電動機のように固定子の内径寸法 ·スロット数等 に左右されることなく、最適な極数の回転機を容易に得ることができる。 また、 従来の誘導電動機と同様にィンバ一夕駆動等により可変速運転を 行なうことも可能である。 産業上の利用可能性 Embodiments 1 to 8 described above applied a case where the number of poles of a single-phase / three-phase induction motor is four to the present invention.However, the induction motor according to the present invention has a case where the number of poles is other than this. It is also effective. In the induction motor according to the present invention, a rotating machine having an optimum number of poles can be easily obtained without being affected by the inner diameter of the stator, the number of slots, and the like, unlike a conventional induction motor. Also, it is possible to perform variable speed operation by overnight drive or the like like a conventional induction motor. Industrial applicability
以上の説明から理解される如く、この発明による誘導電動機によれば、 固定子に軸方向に分割してリング状に複数のコイルを卷装し、 各コイル の外周側及び軸方向両端側に夫々磁気回路を構成する固定子鉄心を設け、 この内周側に、 磁極歯部を回転軸の周方向に所定の角度ずらして、 軸方 向に重ね合わせたように構成することにより、 コイルェンドに相当する 部分が存在しないため、 コイルの銅線使用量が減少し、 銅損も低減する ことができるため、 誘導電動機のコストダウンや小形 ·軽量化を実現す ることができる。 As can be understood from the above description, according to the induction motor of the present invention, a plurality of coils are wound in a ring shape on the stator in the axial direction, and the outer periphery and the both ends in the axial direction of each coil are respectively provided. A stator iron core that constitutes a magnetic circuit is provided, and the magnetic pole teeth are shifted by a predetermined angle in the circumferential direction of the rotating shaft on the inner peripheral side, and are superposed in the axial direction. Since there is no part to be used, the amount of copper wire used in the coil is reduced and the copper loss can be reduced, so that it is possible to reduce the cost, size, and weight of the induction motor.
つぎの発明による誘導電動機によれば、 コイルの軸方向両端側の固定 子鉄心に形成された各磁極歯部に、 磁性部材で構成された磁極片を備え たことにより、 コィルで発生する磁束を有効に活用することができるた め、 漏れ磁束が減少し誘導電動機の効率が向上し小形化に寄与すること ができる。 According to the induction motor of the next invention, each magnetic pole tooth formed on the stator core at both ends in the axial direction of the coil is provided with a pole piece made of a magnetic member, so that the magnetic flux generated by the coil is reduced. Since it can be used effectively, the leakage flux is reduced and the efficiency of the induction motor is improved, which can contribute to downsizing.
つぎの発明による誘導電動機によれば、 固定子の磁束の漏れを軽減す るための手段を備えたことにより、 漏れ磁束を低減し、 ギャップ磁束密
度を確保することができるため、 誘導電動機の特性を向上させることが できる。 According to the induction motor of the next invention, by providing a means for reducing the leakage of the magnetic flux of the stator, the leakage magnetic flux is reduced, and the gap magnetic flux density is reduced. Therefore, the characteristics of the induction motor can be improved.
つぎの発明による誘導電動機によれば、 固定子鉄心の少なく ともその 一部を、 板状磁性部材を用いて積層一体化して形成することにより、 高 精度な固定子鉄心を、 安価で容易に製作することができるため、 生産性 の向上に大きく寄与することができる。 According to the induction motor of the following invention, at least a part of the stator core is formed by laminating and integrating using a plate-shaped magnetic member, so that a high-precision stator core can be easily manufactured at low cost. Can greatly contribute to the improvement of productivity.
つぎの発明による誘導電動機によれば、 固定子鉄心の少なくともその —部を、 圧粉磁心を用いて形成することにより、 磁束が三次元的に容易 に移動できるため、 鉄心内部の損失を軽減することができ、 誘導電動機 の効率向上と小形 ·軽量化に寄与することができる。 According to the induction motor of the next invention, at least the portion of the stator core is formed by using a dust core, so that the magnetic flux can easily move three-dimensionally, thereby reducing the loss inside the core. This contributes to improving the efficiency of the induction motor and reducing its size and weight.
つぎの発明による誘導電動機によれば、 固定子あるいは回転子にスキ ュ一を施すことにより、 ギヤップ磁束の高調波成分の影響を低減させる ことができるため、 振動 ·騒音を小さくして、 誘導電動機の特性を向上 させることができる。
According to the induction motor of the next invention, the influence of the harmonic component of the gap magnetic flux can be reduced by skewing the stator or the rotor. Characteristics can be improved.
Claims
1 . 回転子の外側に、 所定のェヤーギャップを介して対向する磁極歯部 を備えた固定子を配置したィンナ一口一夕形の誘導電動機において、 前 記固定子に、 軸方向に分割してリング状に複数のコイルを卷装し、 前記 各コイルのリングの中心と回転軸の中心が概ね一致するように配置して、 前記各コイルの外周側と軸方向両端側に、 夫々磁気回路を構成する固定 子鉄心を設ける。 そして、 前記固定子鉄心の内周側には、 前記磁極歯部 が当該コイルを挟んで回転軸の周方向に電気角で Γずれた位置に交互に 形成されており、 更に各コイルの前記磁極歯部を、 回転軸の周方向に所 定の角度ずらして、 軸方向に重ね合わせたように構成されている事を特 徴とする誘導電動機。 1. In the case of an induction motor with an open-ended, single-mouth type, in which a stator having magnetic pole teeth opposed to each other via a predetermined gap is arranged outside the rotor, the stator is divided axially into a ring. A plurality of coils are wound in a shape, and the coils are arranged so that the center of the ring of each coil and the center of the rotation axis substantially coincide with each other, and a magnetic circuit is formed on each of the outer peripheral side and each axial end of each coil. A stator core will be provided. On the inner peripheral side of the stator core, the magnetic pole teeth are alternately formed at positions deviated by an electrical angle in the circumferential direction of the rotation axis with the coil interposed therebetween. An induction motor characterized in that its teeth are shifted by a predetermined angle in the circumferential direction of the rotating shaft and are superposed in the axial direction.
2 . 前記各磁極歯部に、 磁性部材で構成された磁極片を備えている事を 特徴とする請求項 1に記載の誘導電動機。 2. The induction motor according to claim 1, wherein each magnetic pole tooth portion includes a magnetic pole piece made of a magnetic member.
3 . 前記固定子に、 磁束の漏れを軽減するための手段を備えている事を 特徴とする請求項 1または 2のいずれかに記載の誘導電動機。 3. The induction motor according to claim 1, wherein the stator is provided with means for reducing magnetic flux leakage.
4 . 前記固定子鉄心の少なくともその一部を、 板状磁性部材を用いて積 層一体化して形成する事を特徴とする請求項 1〜 3のいずれか一つに記 4. The method according to any one of claims 1 to 3, wherein at least a part of the stator core is formed integrally by lamination using a plate-shaped magnetic member.
5 . 前記固定子鉄心の少なくともその一部を、 所謂圧粉磁心 (鉄粉磁心 ともいう。 ) を用いて形成する事を特徴とする請求項 1〜4のいずれか 一つに記載の誘導電動機。
5. The induction motor according to any one of claims 1 to 4, wherein at least a part of the stator core is formed using a so-called dust core (also referred to as iron powder core). .
6 . 前記固定子あるいは前記回転子に、 スキューを施した事を特徴とす る請求項 1〜 5のいずれか一つに記載の誘導電動機。
6. The induction motor according to any one of claims 1 to 5, wherein the stator or the rotor is skewed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002175078A JP2003333811A (en) | 2002-05-12 | 2002-05-12 | Induction motor having a plurality of axially divided stator windings |
JP2002-175078 | 2002-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003096519A2 true WO2003096519A2 (en) | 2003-11-20 |
Family
ID=29417284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/004418 WO2003096519A2 (en) | 2002-05-12 | 2003-04-07 | Induction motor having stator windings divided it axial direction |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2003333811A (en) |
WO (1) | WO2003096519A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100384065C (en) * | 2004-01-07 | 2008-04-23 | 杨芳春 | High actuating torque low operating power three phase capacitane type bisquirrel motor |
JP2005341782A (en) * | 2004-05-30 | 2005-12-08 | Yoshimitsu Okawa | Electric motor including ring-shaped stator coils |
EP1684400B1 (en) | 2005-01-21 | 2008-05-14 | Hitachi, Ltd. | Rotating electric machine |
JP4894273B2 (en) * | 2005-01-21 | 2012-03-14 | 株式会社日立製作所 | Rotating electric machine |
FR2961970B1 (en) * | 2010-06-25 | 2017-03-10 | Valeo Systemes De Controle Moteur | ELECTRICAL MOTOR WITH ALTERNATING CURRENT OF A COMBINED POWER SUPPLY AND CHARGING ELECTRICAL DEVICE |
CN102983653A (en) * | 2012-11-07 | 2013-03-20 | 朱运龙 | Single-layer short isometric winding of 48-slot 4-pole three-phase asynchronous motor |
CN103647389A (en) * | 2013-11-30 | 2014-03-19 | 重庆市乐尔佳机械有限公司 | Ultrahigh energy efficiency 1100W four-pole three-phase asynchronous motor |
-
2002
- 2002-05-12 JP JP2002175078A patent/JP2003333811A/en active Pending
-
2003
- 2003-04-07 WO PCT/JP2003/004418 patent/WO2003096519A2/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2003333811A (en) | 2003-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6064132A (en) | Armature structure of a radial rib winding type rotating electric machine | |
JP6599005B2 (en) | Consecutive pole type rotor, electric motor and air conditioner | |
WO2015104893A1 (en) | Axial gap type motor | |
JP6959733B2 (en) | Single-phase permanent magnet motor | |
JP2009189163A (en) | Electric motor | |
JP2008283785A (en) | Switched reluctance motor | |
JP6545393B2 (en) | Conscious pole rotor, motor and air conditioner | |
JP5067365B2 (en) | motor | |
JP2006060952A (en) | Permanent magnet embedded motor | |
JP2004015998A (en) | Permanent magnet version rotating machine with three-phase stator winding divided in axial direction | |
JP2005151785A (en) | Synchronous generator having annular armature coil | |
JP2001309625A (en) | Motor of permanent-magnet type | |
JP2007336624A (en) | Multi-phase claw tooth type permanent magnet motor | |
JP2009050116A (en) | Capacitor motor, and manufacturing method thereof | |
WO2003096519A2 (en) | Induction motor having stator windings divided it axial direction | |
CN112688523B (en) | Axial magnetic field stator yoke-free magnetic flux reverse permanent magnet motor | |
JP4415176B2 (en) | Induction motor having a ring-shaped stator coil | |
JP4482918B2 (en) | Permanent magnet type electric motor having ring-shaped stator coil | |
JP5471653B2 (en) | Permanent magnet type electric motor | |
WO2018180344A1 (en) | Stator for electric motor, and electric motor | |
CN113300558B (en) | Double concentrated winding permanent magnet synchronous motor | |
JP2005253280A (en) | Outer rotor type brushless dc motor and ac servo motor having annular stator coil | |
WO2021117320A1 (en) | Coil and motor comprising same | |
RU2246167C1 (en) | Face-type electrical machine | |
JP5352442B2 (en) | Permanent magnet motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): CA CN DE GB KR US |