[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003048225A2 - Prozess zur herstellung von aryl-aryl gekoppelten verbindungen - Google Patents

Prozess zur herstellung von aryl-aryl gekoppelten verbindungen Download PDF

Info

Publication number
WO2003048225A2
WO2003048225A2 PCT/EP2002/013584 EP0213584W WO03048225A2 WO 2003048225 A2 WO2003048225 A2 WO 2003048225A2 EP 0213584 W EP0213584 W EP 0213584W WO 03048225 A2 WO03048225 A2 WO 03048225A2
Authority
WO
WIPO (PCT)
Prior art keywords
aryl
heteroaryl
palladium
compounds
water
Prior art date
Application number
PCT/EP2002/013584
Other languages
English (en)
French (fr)
Other versions
WO2003048225A3 (de
Inventor
Kevin Treacher
Philipp STÖSSEL
Hubert Spreitzer
Heinrich Becker
Aurélie FALCOU
Original Assignee
Covion Organic Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covion Organic Semiconductors Gmbh filed Critical Covion Organic Semiconductors Gmbh
Priority to DE50212243T priority Critical patent/DE50212243D1/de
Priority to US10/495,003 priority patent/US6956095B2/en
Priority to EP02792850A priority patent/EP1458783B1/de
Priority to JP2003549410A priority patent/JP4596779B2/ja
Publication of WO2003048225A2 publication Critical patent/WO2003048225A2/de
Publication of WO2003048225A3 publication Critical patent/WO2003048225A3/de
Priority to US11/182,964 priority patent/US20050263758A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring

Definitions

  • This invention relates to the manufacture of aryl-aryl coupled compounds and materials. These materials play an important role in industry, such as liquid crystals, pharmaceuticals and agrochemicals, to name just a few fields of application. Especially in the rapidly growing field for organic semiconductors (e.g. applications in organic or polymer light emitting diodes, organic solar cells, organic ICs), these compounds are of outstanding importance.
  • the efficiency (degree of conversion) of the process is particularly important when it comes to implementing one or more multifunctional compounds.
  • An example of this type of reaction is the reaction of a multifunctional compound with a monofunctional compound, resulting in a discrete molecule.
  • Another example is a polymerization, in which one or more multifunctional compound (s) are reacted with one or more further multifunctional compound (s).
  • a high molecular weight is required in order to achieve the desired physical properties, for example film formation, flexibility, mechanical stability and others.
  • the electrical properties are strongly influenced by the molecular weight - usually a very high molecular weight is required in order to prevent defects such as short circuits in the electrical device. High reproducibility of the process is still required for this application.
  • the degree of polymerization (DP, average number of repeat units in the chain) one by one Growth of built-up polymer is related to the degree of conversion of the reaction (p) as follows:
  • reaction parameters are already known. It is usually customary to carry out the reaction in two phases; an aqueous phase contains most of a base and an organic phase contains most of the aryl compounds.
  • a non-polar aromatic solvent is often used as the organic solvent, e.g. Benzene, toluene, xylenes (e.g., Chem. Commun., 1598, (1997)). It is also known to carry out the reaction in a mixture of an aromatic solvent such as e.g. Benzene or toluene and an alcohol such as e.g. Methanol or ethanol (see e.g. J. Med. Chem., 40 (4), 437, (1997)).
  • EP-A-0694530 teaches that a process is based on a combination of water-soluble complex ligands, a palladium compound soluble in the organic phase, and so much water that the reaction mixture is an aqueous one Phase forms, offers advantages especially for aryl compounds containing electrophilic groups.
  • this process has several shortcomings:
  • the process typically yields only 90-95% yields, which may be satisfactory for the purposes of producing a simple molecule (ie, a molecule that has only one aryl-aryl coupled unit) is not sufficient for the production of multiple coupled single molecules or polymers.
  • JP-A-2001/089404 describes a process for the production of polycyclic aromatics, in which an aromatic boron compound is coupled with an aromatic halogen compound in the presence of a carbonyl compound. Since the reaction is carried out in the presence of a base, this leads to problems with undesired chemical reactions between the base and the carbonyl compound. These side reactions not only disrupt the efficiency of the main reaction, but also lead to the formation of larger amounts of impurities. Methods are also known in which a phase transfer reagent is used to improve the contact between the base and the aromatic boron compound:
  • US-A-5777070 (WO 99/20675) describes a polymerization process for reacting a bifunctional aromatic boron compound with a bifunctional aryl halide in the presence of an organic solvent, an aqueous solution of an inorganic base and a catalytic amount of a palladium complex, using a phase transfer catalyst (e.g. a tetraalkylammonium salt) in a molar ratio of at least 0.01% (and preferably less than 10 mol%), based on the aromatic boron compound.
  • a phase transfer catalyst e.g. a tetraalkylammonium salt
  • the reaction leads to different types of discoloration under different conditions; if the reaction is carried out in the presence of a non-polar solvent, such as toluene, the polymer turns light gray-black, whereas in the presence of a polar solvent (for example THF or dioxane) the polymer turns yellow.
  • a non-polar solvent such as toluene
  • a polar solvent for example THF or dioxane
  • the gray-black color is due to the decomposition of the palladium catalyst, with palladium depositing colloidally.
  • the yellow color indicates decomposition of the base or the resulting salt.
  • the bases described (and the borate salts formed therefrom) are phase transition catalysts due to their nature and can therefore only be separated from the product with great effort. This leads to the fact that
  • Residues in the application can interfere.
  • this type of base also leads to foam formation.
  • the invention thus relates to a process for reacting a halogen or sulfonyloxy-functional aryl or heteroaryl compound with an aromatic or heteroaromatic boron compound in the presence of a catalytic amount of a palladium compound, a base and a solvent mixture, with the formation of an aryl-aryl or aryl heteroaryl - or heteroaryl-heteroaryl-CC bond, characterized in that a. that the solvent mixture in each case contains at least 0.1% by volume of a compound of the following groups i) water-miscible organic solvents ii) water-immiscible organic solvents iii) water, with the proviso that both alcohols and
  • Carbonyl compounds containing ⁇ -hydrogen atoms are excluded; b. that the palladium compound does not contain triphenylphosphine or that it is not specifically added to the reaction mixture.
  • the reaction according to the invention can now (depending on the precise composition and temperature) either run in one or more phases, or change this while the reaction is being carried out. However, the reaction according to the invention preferably takes place in multiple phases.
  • Simple compounds which can preferably be used are the corresponding substituted or unsubstituted derivatives of benzene, naphthalene, anthracene, pyrene, biphenyl, fluorene, spiro-9,9'-bifluorene, phenanthrene, triptycene, pyridine, furan, thiophene, benzothiadiazole, Pyrrole, quinoline, quinoxaline, pyrimidine and pyrazine.
  • multifunctional compounds are expressly included, as are the oligomers with functional aryl or heteroaryl ends which occur during a polymerization.
  • the starting compounds for the process according to the invention are, on the one hand, halogen- or sulfonyloxy-functionalized aryl or heteroaryl compounds of the formula (I),
  • Ar is an aryl or heteroaryl radical as defined above
  • X is -Cl, -Br, -I, -OS (O) 2 R 1
  • R 1 is an alkyl, aryl or fluorinated alkyl radical and n is at least 1 , preferably 1 to 20, particularly preferably 1, 2, 3, 4, 5 or 6.
  • the second class of starting compounds for the process according to the invention are aromatic or heteroaromatic boron compounds of the general formula (II)
  • Ar is an aryl or heteroaryl radical as defined above
  • Q- * and Q 2 are the same or different with each occurrence -OH, -CC 4 -A! koxy, -C-aryloxy, CC 4 -alkyl, or halogen mean, or Qi and Q 2 together form a C1-C4-alkylenedioxy group, which may optionally be substituted by one or more C1-C4-alkyl groups, or Qi and Q 2 and the boron atom together form part of a boroxine ring of the formula (III ), or similar boronic anhydrides or partial anhydrides,
  • m is at least 1, preferably 1 to 20, particularly preferably 1, 2, 3, 4, 5 or 6.
  • the value 2 is now preferably chosen for n and m at the same time.
  • the palladium compound consists of a palladium source and possibly one or more additional components.
  • the palladium source can be either a palladium compound or metallic. Suitable sources of palladium are salts of palladium (II) or palladium (0) compounds or complexes. Preferred sources of palladium are palladium (II) halides, palladium (II) carboxylates, palladium (II) ß-diketonates, tris (dibenzylidene acetone) dipalladium (0) (Pd 2 dba 3 ),
  • Preferred variants are phosphine ligands from the group of the tri-aryl-phosphines, di-aryl-alkyl-phosphines, aryl-dialkyl-phosphines, trialkyl-phosphines, tri-heteroaryl-phosphines, di-heteroaryl-alkyl-phosphines, heteroaryl- Dialkylphosphines, where the substituents on the phosphorus can be the same or different, chiral or achiral, where one or more of the substituents can link the phosphorus groups of several phosphines and some of these linkages can also be one or more metal atoms, with the exception of triphenylphosphine.
  • Halogen phosphines dihalophosphines, alkoxy- or aryloxy-phosphines, dialkoxy- or diaryloxy-phosphines can also be used.
  • Y- 1 to Y 15 are the same or different hydrogen, alkyl, aryl, alkoxy, dialkylamino, chlorine, fluorine, sulfonic acid; Cyano, nitro radicals, with the proviso that at least 1, but preferably 3 or more of the substituents Yi to Y 15 are not hydrogen.
  • Examples of the very particularly preferred variants are tris (o- or m- or p-tolyl) phosphine, tris (o- or m- or p-anisyl) phosphine, tris (o- or m- or p-fluorophenyl) phosphine, tris (o- or m- or p-chlorophenyl) phosphine, tris (2,6-dimethylphenyl) phosphine, tris (2,6-dimethoxyphenyl) phosphine, tris (mesityl) phosphine, tris (2,4,6-trimethoxyphenyl) phosphine , Tris (pentafluorophenyl) phosphine.
  • ligands are terf-butyl-di-o-tolylphosphine, di-fert-butyl-o-tolylphosphine, dicyclohexyl-2-biphenylphosphine, di-fatty-butyl-2-biphenylphosphine, triethylphosphine, tri / so-propyl-phosphine , Tri-cyclohexylphosphine, Tri-terf-butylphosphine, Tri-ferf-pentylphosphine, Bis (di-te / -butylphosphino) methane, 1, 1 'bis (di-te / -butylphosphino) ferrocene.
  • Triphenylphosphine is now excluded from this invention because it has surprisingly been found that this leads to a particularly high level of incorrect reactions.
  • the use of the other ligands according to the invention as described above avoids these disadvantages.
  • the palladium compound can be either a solid (i.e. heterogeneous) or dissolved, in the latter case either dissolved in the organic or in the aqueous phase.
  • the palladium compound is generally added in an amount of 0.00001 mol% to 5 mol% (palladium), based on the amount closing CC links used.
  • the range from is preferred here
  • 0.001% to 2% particularly preferably the range from 0.001% to 1%.
  • the additional component is generally added in the range from 10: 1 to 1: 2, preferably in the range from 8: 1 to 1: 1, based on the palladium content.
  • the bases are e.g. B. analogous to the above. Application US-A-5,777,070 used.
  • water-miscible organic solvent means a solvent which forms a clear single-phase solution both at least 5% by weight of water in the solvent and at least 5% by weight of solvent in water at room temperature.
  • Preferred solvents of this type are organic ethers, esters, nitriles, tertiary alcohols, sulfoxides, amides and carbonates, particularly preferably ethers and very particularly preferably dioxane, tetrahydrofuran, ethylene glycol ether, DME and various polyethylene glycol ethers.
  • solvents selected from this class in a range (based on the volume of the total reaction mixture) from 1 to 90%, particularly preferably in a range from 10 to 75%, very particularly preferably in a range from 25 up to 75% used.
  • water-immiscible organic solvent a solvent which does not mean a clear single-phase solution when less than 5% by weight of water is present in the solvent, or when less than 5% by weight of solvent is present in water at room temperature forms more, ie a phase separation can already be seen here.
  • Preferred water-immiscible solvents are aromatic and aliphatic hydrocarbons, non-polar ethers, chlorine-containing hydrocarbons, preferably aromatic hydrocarbons, very particularly preferably toluene, xylenes or anisole.
  • one or more solvents are preferably selected from this class in a range (based on the volume of the total reaction mixture) from 1 to 70%, particularly preferably in a range from 10 to 50%, very particularly preferably in a range from 15 to 50% used.
  • Water is usually of normal quality, i.e. H. Tap water, possibly deionized, used. Of course, better cleaned or desalinated qualities can also be used for special requirements.
  • water is preferably used in a range (based on the volume of the total reaction mixture) of 1 to 50%, particularly preferably in a range of 5 to 35%.
  • the process according to the invention is generally slightly exothermic, but usually requires easy activation.
  • the process is therefore often carried out at temperatures above room temperature.
  • a preferred temperature range is therefore the range between room temperature and the boiling point of the reaction mixture, particularly preferably the temperature range between 40 and 120 ° C, very particularly preferably the range between 40 and 100 ° C.
  • the reaction proceeds sufficiently quickly at room temperature so that no active heating is required.
  • the reaction takes place with stirring, depending on the viscosity of the reaction mixture, simple stirrers or high-viscosity stirrers can be used. Baffles can also be used for high viscosities.
  • the concentration of the reaction components now depends very much on the respective reaction. While polymerizations are often carried out (because of the viscosity increase that occurs) at concentrations in the range of less than 1 mol / l (based on the CC bonds to be closed), this can be the case with Synthesis of defined single molecules also happen in a higher concentration range.
  • reaction time is in principle freely selectable and will be based on the respective reaction speed.
  • a technically sensible framework can certainly be seen in the range from a few minutes to 100 hours, preferably in the range from 15 minutes to 24 hours.
  • the reaction itself takes place under normal pressure. Technically, it can also make sense to work under increased or reduced pressure. This depends very much on the individual reaction and above all on the available equipment.
  • a particular advantage of the present invention is that, because of the improved efficiency of the Suzuki reaction, the amount of expensive palladium catalyst used can be reduced. As a result, the manufacturing costs are reduced, and in addition the residual amounts of palladium in the product is drastically reduced.
  • This has technical advantages, for example avoiding impairment of the color of the product, but the reduction of such impurities is particularly advantageous in the case of organic semiconductors, since the presence of metal residues leads to impairments in use.
  • the other disadvantages, as described above for applications WO 00/53656 and US-A-5777070 (WO 99/20675), are either completely overcome (e.g. expensive bases or phase transfer catalysts) or at least significantly alleviated ( foaming).
  • a preferred embodiment is the conversion of multifunctional molecules, either to defined single molecules or to polymers.
  • Multifunctional in the sense of this application is intended to mean that a compound contains several (eg two, three, four, five, etc.) identical or similar functional units, all of which in the corresponding reaction (here Suzuki reaction) in the same Way to react to a product molecule.
  • Multifunctional should also include molecules that contain several functional groups that react with one another (e.g. a molecule that contains both at least one aromatic halogen group and at least one aromatic boron group; a so-called AB monomer).
  • multifunctional compounds means here first of all the implementation of a multifunctional compound with several monofunctional compounds to form a defined “low molecular weight” compound. However, if (at least) two different multifunctional compounds are reacted with one another, the product will have a polymeric character. This also expressly represents a Suzuki reaction in the sense of this invention.
  • low molecular weight in the context of the present invention denotes molecules with a defined molar mass which will always be ⁇ 10000 g / mol, preferably also ⁇ 2000 g / mol.
  • a polymeric character is present if, when adding or omitting a single repeating unit, the relevant properties ( ⁇ . B. solubility, melting point, glass transition temperature, etc.) do not change or change only insignificantly.
  • a simpler definition is the indication of the molecular weight, after which “polymeric character” is then to be defined at a molecular weight of> 10000 g / mol.
  • a preferred embodiment of the invention is the indication of the molecular weight, after which “polymeric character” is then to be defined at a molecular weight of> 10000 g / mol.
  • a further preferred embodiment of the process according to the invention is its use during a polymerization.
  • the resulting polyarylenes (this term is also intended to include copolymers which do not contain arylene or heteroarylene units in the main chain) are notable for their high (but also easily adjustable) molecular weight and absence (or very low proportion) from structural defects produced by the polymerization.
  • These polymers, produced by the process according to the invention therefore have significant improvements over the prior art and are therefore also an object of the invention.
  • a preferred polymerization process according to the invention can be described as follows:
  • Dioxane or THF in the range from 25 to 75% (based on the total solution volume) is used as the "water-miscible organic solvent”.
  • a "water-immiscible organic solvent” is an aromatic, for example toluene, a xylene, chlorobenzene, or anisole, preferably toluene or a xylene in the range from 15 to 50%.
  • the monomers are used in the concentration range from 20 to 200 mmol / l.
  • Either the two different functionalities (halide or sulfonyloxy versus boron groups) are presented in a ratio of 1: 1 (as precisely as possible) from the beginning, or this ratio is added during the reaction by continuous (either continuous or batchwise) addition of one of the two Functionalities achieved in excess of the other functionality.
  • endcappers small amounts of monofunctional compounds (“endcappers”) or trifunctional or multifunctional groups (“branchers”) are added.
  • the palladium compound is added in a ratio of 1: 10000 to 1:50, preferably 1: 5000 to 1: 100, based on the number of bonds to be closed.
  • the use of palladium (II) salts, such as PdAc 2 or Pd 2 dba 3 and the addition of ligands such as P (o-Tol) 3 is preferred, based on Pd.
  • B. K 3 PO 4 is a preferred use. This is preferably added in a ratio of 0.8: 1 to 5: 1 based on the number of bonds to be closed.
  • the polymer can now be cleaned by conventional cleaning methods, such as. B. failures, falling over, extraction u. ⁇ . be further cleaned up.
  • contamination with organic (e.g. oligomers) and inorganic substances e.g. Pd residues, base residues
  • contamination with organic (e.g. oligomers) and inorganic substances must be as low as possible to be brought.
  • This can be for Pd can be achieved in a variety of ways, e.g. B. by ion exchanger, liquid-liquid extraction, extraction with complexing agents and other methods for the removal of low molecular weight z.
  • B. by the methods already described for Pd and the low molecular weight, but also by extraction with, for example, inorganic mineral acids.
  • Another possible embodiment of the polymerization described above is to carry it out in at least two stages, an excess of one of the monomers being used in the first stage, so that a short-chain polymer with a first composition is formed.
  • Short-chain means that initially only an oligomer is formed which has a few (e.g. between 3 and 20) repeat units.
  • the remaining monomers are added in one or more further stage (s), so that the ratio of the boron-containing reactive groups and halogen- or sulfonyloxy-containing reactive groups is finally 1: 1.
  • the monomer composition of the second or further stages is preferably different from that of the first stage, as a result of which polymers are formed which have a block-like structure.
  • Block-like structure here means the following: for example, the first stage produces an oligomer with the sequence B (AB) n , where A and B stand for the two monomer units used, B represents the monomer that is used in excess and n the average length represents these oligomers. Then, for example, a monomer C is then added so that the total number of reactive end groups is balanced. This ultimately leads to a polymer which mainly has the following sequences: (C [B (AB) n ]) m, where m is the average chain length of the polymer defined in this way. That is, blocks with the structure B (AB) n alternate with C, the polymer has a block-like structure.
  • the described method can of course also be used to display further block-like structures, depending on the sequence of the monomer addition.
  • the process according to the invention enables the production of high molecular weight polymers of this block-like form because, in contrast to the processes known hitherto, it acts particularly gently on the reactive groups containing boron, halogen or sulfonyloxy in the absence of the corresponding countergroups.
  • polyarylenes such as those in EP-A-842.208, WO 00/22026, WO 00/46321, WO 99/54385, WO 00/55927, WO 97/31048, WO 97/39045, WO 92/18552, WO 95/07955, EP-A-690.086, WO 02/044060 and the not yet published application DE 10143353.0.
  • the polymers produced by the process according to the invention frequently have advantages over the information in this cited literature, for example with regard to freedom from defects, the molecular weight, the molecular weight distribution and thus often also with regard to the corresponding application properties.
  • the polymers according to the invention can be used in electronic components such as organic light-emitting diodes (OLEDs), organic integrated circuits (O-ICs), organic field-effect transistors (OFETs), organic thin-film transistors (OTFTs), organic solar cells (O-SCs), organic laser diodes (O-Laser), organic color filters for liquid crystal displays or organic photoreceptors. These are also part of the present invention.
  • OLEDs organic light-emitting diodes
  • O-ICs organic integrated circuits
  • OFETs organic field-effect transistors
  • OFTs organic thin-film transistors
  • O-SCs organic solar cells
  • O-Laser organic laser diodes
  • O-Laser organic color filters for liquid crystal displays or organic photoreceptors.
  • 2,2 ', 7,7, tetrakis (biphenyl-4-yl) -9,9'-spirobifluorene implementation 2,2,, 7,7'-tetrabromo-9,9'-spirobifluorene (158.0 g , 250 mmol), biphenyl-4-boronic acid (239.0 g, 1200 mmol) and potassium phosphate (447 g, 2100 mmol) were suspended in a mixture of 700 mL toluene, 700 mL dioxane and 1000 mL water and argon was passed through for 30 minutes headed the solution.
  • Tris-o- tolylphosphine (0.459 g, 1.5 mmol) and 5 min. later 58 mg (0.25 mmol) of palladium acetate were added and the reaction mixture was heated to 87.degree. After 8 hours the mixture was cooled to room temperature and the precipitated solid was filtered off and washed with water and then with toluene. This gave 222 g (96% of theory) of the desired product, which, according to HPLC, had a purity of 99.6% without further purification.
  • Example P1 Use of a dioxane / toluene mixture with 0.025 mol% Pd. Copolyme ⁇ sation of 50 mol% 2 ', 3', 6 ', 7'-tetra (2-methylbutyloxy) spirobifluoren-2,7-bisboronic acid ethylene glycol ester (MI), 50 mol% 2,7-dibromo-9- (2', 5 '-dimethyl-phenyl) -9- [3 ", 4" -bis (2-methyl-butyloxy) phenyl] fluorene (M2) (polymer P1).
  • MI ethylene glycol ester
  • M2 2,7-dibromo-9- (2', 5 '-dimethyl-phenyl) -9- [3 ", 4" -bis (2-methyl-butyloxy) phenyl] fluorene
  • the reaction solution was diluted with 200 mL toluene, the solution was stirred with 100 mL 1% aqueous NaCN for 3 h.
  • the organic phase was washed 3 times with H 2 O and precipitated by adding 500 mL of methanol.
  • the polymer was dissolved in 600 mL THF at 50 ° C for 1 h, precipitated with 1200 mL MeOH, washed and dried in vacuo. In 600 mL THF / 1200 mL methanol was reprecipitated, suction filtered and dried to constant mass. 5.16 g (8.78 mmol, 87.8%) of the polymer P1 were obtained as a colorless solid.
  • Example P2 Use of a dioxane / toluene mixture with 0.0125 mol% Pd. Copolymerization of 50 mol% 2 ', 3', 6 ', 7'-tetra (2-methylbutyloxy) spirobifluoren-2,7-bisboronic acid ethylene glycol ester (MI), 40 mol% 2,7-dibromo-9- (2', 5 '-dimethyl-phenyl) -9- [3 ", 4" -bis (2-methyl-butyloxy) phenyl] fluorene (M2) and 10 mol% N, N'-bis (4-brQmophenyl) -N, N' -bis (4-tert-butylphenyl) benzidine (M3) (polymer P2).
  • MI ethylene glycol ester
  • M2 2,7-dibromo-9- (2', 5 '-dimethyl-phenyl) -9- [3 ", 4"
  • Bromobenzene was added and the mixture was heated under reflux for a further 15 minutes.
  • reaction solution was diluted with 500 ml of toluene and stirred with 100 ml of 2% aqueous NaCN for 3 h.
  • the organic phase was washed 3 times with H 2 O and precipitated by adding it to 2500 ml of methanol.
  • the polymer was dissolved in 1500 mL
  • Mw 630000 g / mol
  • Mn 240000 g / mol.
  • Example P3 Use of a toluene / dioxane mixture and 0.1 mol% Pd with thiophene-containing monomers. Copolymerization of 50 mol% 2 ', 3', 6 ', 7'-tetra (2-methylbutyloxy) spirobifluoren-2, 7-bisboronic acid ethylene glycol ester (M1), 35 mol% 4,7-dibromo-benzo [1,2,5 ] thiadiazole (M4), 10 mol% N, N'-bis (4-bromophenyl) -N, N'- bis (4-tert-butylphenyl) benzidine (M3) and 5 mol% bis-4, 7- (2 '-bromo-5'-thienyl) -2, 1,3-benzothiadiazole (M5) (polymer P3)
  • the suspension was stirred vigorously under an argon blanket at an internal temperature of 87 ° C. (slight reflux). After 30 minutes a further 40 mL toluene and after 90 minutes 30 mL toluene were added due to the high viscosity. After 6 hours a further 0.2 g of M1 was added. After heating for a further 30 minutes, 0.3 ml of bromobenzene were added and the mixture was heated under reflux for a further 15 minutes.
  • reaction solution was diluted with 200 ml of toluene and stirred with 100 ml of 2% aqueous NaCN for 3 h.
  • the organic phase was washed 3 times with H 2 O. and precipitated by adding in 1000 mL methanol.
  • the polymer was dissolved in 600 mL THF
  • Alkyl H including at 1.24 t-butyl).
  • Example P4 Copolymer in 2 stages to the polymer with a block-like structure. 1st stage copolymerization of 12.5 mol% 2 ', 3' l 6 ', 7'-tetra (2-methylbutyloxy) spirobifluorene-2,7-bisboronic acid ethylene glycol ester (M1) and 10 mol% N, N'-bis (4-bromophenyl ) - N, N'-bis (4-tert-butylphenyl) benzidine (M3).
  • the reaction solution was diluted with 200 mL toluene, the solution was stirred with 100 mL 1% aqueous NaCN for 3 h.
  • the organic phase was 3x with H 2 O washed and precipitated by adding in 400 mL methanol.
  • the polymer was dissolved in 300 mL THF at 50 ° C for 1 h, precipitated with 600 mL MeOH, washed and dried in vacuo.
  • the mixture was reprecipitated again in 300 mL THF / 600 mL methanol, suction filtered and dried to constant mass. 4.23 g (7.10 mmol, 88.7%) of the polymer P4 were obtained as a slightly yellowish solid.
  • Example P5 Use of a dioxane / toluene mixture with 0.0125 mol% Pd, purer batch of the monomer MI. Copolymerization of 50 mol% 2 ', 3', 6 ', 7'-tetra (2-methylbutyloxy) spirobifluoren-2, 7-bisboronic acid ethylene glycol ester (M1), 40 mol% 2, 7-dibromo-9- (2' l 5 '-dimethyl-phenyl) -9- [3 ", 4" -bis (2-methyl-butyloxy) phenyl] fluorene (M2) and 10 mol% of N, N'-bis (4-bromophenyl) -N, N' -bis (4-tert-butylphenyl) benzidine (M3) (polymer P5).
  • M1 7-bisboronic acid ethylene glycol ester
  • M2 7-bisboronic acid ethylene glycol ester
  • M2 40
  • the polymer was dissolved in 300 mL THF at 50 ° C for 1 h, precipitated with 600 mL MeOH, washed and dried in vacuo. It was reprecipitated once more in 300 mL THF / 600 mL methanol, suctioned off and dried to constant mass. 4.44 g (7.45 mmol, 93.0%) of the polymer P5 were obtained as a slightly yellow, yellowish solid.
  • Comparative Example V1 Use of toluene and triphenylphosphine as ligand, ethanol as phase transition reagent. Copolymerization of 50 mol% 2 ', 3', 6 ', 7'-tetra (2-methylbutyloxy) spirobifluoren-2, 7-bisboronic acid ethylene glycol ester (M1), 40 mol% 2, 7-dibromo-9- (2 5'- dimethyl-phenyl) -9- [3 ", 4" -bis (2-methylbutyloxy) phenyl] fluorene (M2) and 10 mol% N, N'-bis (4-bromophenyl) -N, N'-bis (4-tert-butylphenyl) benzidine (M3) (polymer V1).
  • the reaction solution was diluted with 120 ml of toluene and stirred with 100 ml of 2% aqueous NaCN for 3 h.
  • the organic phase was washed 3 ⁇ with H 2 O and precipitated by adding 200 mL of methanol.
  • the polymer was dissolved in 100 mL THF, precipitated with 200 mL MeOH, washed and dried in vacuo.
  • 100 ml of THF / 200 ml of methanol the mixture was reprecipitated once more, filtered off with suction and dried to constant mass. 2.07 g (3.48 mmol, 69.6%) of polymer V1 were obtained as a yellow solid.
  • Comparative Example V2 Use of toluene as solvent, triphenylphosphine as ligand and tetraethylammonium hydroxide as base according to WO 00/53656. Copolymerization of 50 mol% 2 ! , 3 ', 6', 7'-tetra (2-methylhutyloxy) spirobifluorene-2,7-bisboronic acid ethylene glycol ester (M1) and 50 mol% 2, 7-dibromo-9- (2 ', 5'-dimethylphenyl) - 9- [3 ", 4" -bis (2-methylbutyloxy) phenyl] fluorene (M2) (polymer V2).
  • LEDs were produced using the general process outlined below. Of course, this had to be done in individual cases depending on the circumstances (e.g. B. polymer viscosity and optimal layer thickness of the polymer in the device).
  • the LEDs described below were each two-layer systems, ie substrate // ITO // PEDOT // polymer // cathode.
  • PEDOT is a polythiophene derivative.
  • ITO-coated substrates e.g. glass substrates, PET film
  • ITO-coated substrates e.g. glass substrates, PET film
  • cleaning steps e.g. soap solution, Millipore water, isopropanol
  • N 2 gun e.g. a cleaning step
  • desiccator e.g. a desiccator
  • they are treated with an ozone plasma device for about 20 minutes.
  • a solution of the respective polymer (generally with a concentration of 4-25 mg / mL in, for example, toluene, chlorobenzene, xylene: cyclohexanone (4: 1)) is made up and dissolved by stirring at room temperature.
  • the polymer can also be advantageous to stir at 50 - 70 ° C for some time.
  • the polymer When the polymer has completely dissolved, it is filtered through a 5 ⁇ m filter and spun on at variable speeds (400-6000) with a spin coater. The layer thicknesses can be varied in the range of approx. 50 and 300 nm.
  • a conductive polymer preferably doped PEDOT or PANI, is usually applied to the (structured) ITO beforehand. Electrodes are also applied to the polymer films. This is usually done by thermal evaporation (Balzer BA360 or Pfeiffer PL S 500). Then the transparent ITO electrode as the anode and the metal electrode (e.g.
  • Viscosity of the polymer solutions at 10 mg / mL in toluene was measured at 40 s "1 in a Brookfield LVDV-III rheometer (CP-41)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

Diese Erfindung bezieht sich auf die Herstellung Aryl-Aryl gekoppelter Verbindungen und Materialien. Diese Materialien spielen eine bedeutende Rolle in der Industrie, so als Flüssigkristalle, Pharmaka und Agrochemikalien, um nur ein Paar Anwendungsfelder zu nennen. Vor allem auch in dem stark wachsenden Feld für organische Halbleiter (z.B. Anwendungen in organischen bzw. Polymeren Leuchtdioden, organischen Solarzellen, organischen ICs) sind gerade diese Verbindungen von herausragender Bedeutung.

Description

Beschreibung
Prozeß zur Herstellung von Aryl-Aryl gekoppelten Verbindungen
Diese Erfindung bezieht sich auf die Herstellung Aryl-Aryl gekoppelter Verbindungen und Materialien. Diese Materialien spielen eine bedeutende Rolle in der Industrie, so als Flüssigkristalle, Pharmaka und Agrochemikalien, um nur ein Paar Anwendungsfelder zu nennen. Vor allem auch in dem stark wachsenden Feld für organische Halbleiter (z. B. Anwendungen in organischen bzw. polymeren Leuchtdioden, organischen Solarzellen, organischen ICs) sind gerade diese Verbindungen von herausragender Bedeutung.
Für die Darstellung solcher Verbindungen sind verschiedenartigste Alternativen bekannt, die jedoch nicht für alle Fälle eine - z. B. technisch, ökonomisch und ökologisch - befriedigende Lösung anbieten. Bei vielen Verfahren treten Fehlprodukte bzw. Fehlreaktionen auf, die abgetrennt und aufwendig entsorgt werden müssen, oder die nicht entfernt werden können und dann zu Problemen in der Verwendung des Materials führen können.
Besonders wichtig ist die Effizienz (Umsatzgrad) des Verfahrens, wenn es sich um die Umsetzung einer oder mehrerer multifunktioneller Verbindung(en) handelt. Ein Beispiel dieser Art Reaktion ist die Umsetzung einer multifunktionellen Verbindung mit einer monofunktionellen Verbindung, was zu einem diskreten Molekül führt. Ein weiteres Beispiel ist eine Polymerisation, wobei eine oder mehrere multifunktionelle Verbindung(en) mit einer oder mehreren weitere(n) multifunktionellen Verbindung(en) umgesetzt werden. Bei vielen Anwendungen der Polymere ist ein hohes Molekulargewicht erforderlich, um die gewünschten physikalischen Eigenschaften, z.B. Filmbildung, Flexibilität, mechanische Stabilität und weitere zu erreichen. Besonders bei organischen Halbleitern werden die elektrischen Eigenschaften stark durch das Molekulargewicht beeinflußt - meistens ist ein sehr hohes Molekulargewicht erforderlich, um u.a. Defekte wie Kurzschlüsse im elektrischen Device zu verhindern. Für diese Anwendung ist weiterhin eine hohe Reproduzierbarkeit des Prozesses erforderlich. Der Polymerisationsgräd (DP, durchschnittliche Zahl der Wiederholeinheiten in der Kette) eines durch schrittweises Wachstum aufgebauten Polymers hängt mit dem Umsatzgrad der Reaktion (p) folgendermaßen zusammen:
1
DP =
\-p
Wenn ein hoher DP angestrebt wird, braucht man eine sehr effiziente Reaktion, z.B. p = 0.95, DP = 20 oder p=0.99, DP = 100.
Die sogenannte Suzuki-Reaktion (Synthetic Communications, 11(7), 513, (1981)) hat sich als eine geeignete Reaktion zur Herstellung Aryl-Aryl gekoppelter Verbindungen erwiesen. Hierbei handelt es sich um die Heterokupplung von einer Halogenid- bzw. Sulfonoxy-funktionellen aromatischen Verbindung mit einer Aryl-Bor Funktionalität enthaltenden Verbindung in Gegenwart einer Base, einer Palladiumverbindung und eines Lösungsmittels.
Es sind mehrere Variationen der Reaktionsparameter schon bekannt. Es ist in der Regel üblich die Reaktion zweiphasig durchzuführen; eine wäßrige Phase enthält den größten Teil einer Base und eine organische Phase enthält den größten Teil der Arylverbindungen. Es wird oft als organisches Lösungsmittel ein unpolares aromatisches Lösungsmittel verwendet, z.B. Benzol, Toluol, Xylole (z.B., Chem. Commun., 1598, (1997)). Es ist auch bekannt, die Reaktion in einem Gemisch aus einem aromatischen Lösungsmittel wie z.B. Benzol oder Toluol und einem Alkohol wie z.B. Methanol oder Ethanol (siehe z.B. J. Med. Chem., 40(4), 437, (1997)) durchzuführen. Diese wasser-mischbaren Lösungsmittel dienen als Reaktionsbeschleuniger, indem sie den Kontakt zwischen der Base und der aromatischen Borverbindung verbessern. Allerdings haben wir überraschend festgestellt, daß die Gegenwart solcher α-H-funktionellen Alkohole zu unerwünschten Nebenprodukten und damit zu einer Verringerung der Reaktionseffizienz führt.
EP-A-0694530 lehrt, daß ein Prozeß basiert auf einer Kombination von wasserlöslichen Komplexliganden, einer in der organischen Phase löslichen Palladiumverbindung, und soviel Wasser, daß die Reaktionsmischung eine wäßrige Phase ausbildet, Vorteile besonders für elektrophile Gruppen enthaltende Arylverbindungen anbietet. Allerdings weist dieser Prozeß mehrere Mängel auf:
• Erstens stellen wasser-lösliche Liganden Probleme für hoch unpolare Substrate dar, denn die Konzentrationen von sowohl dem aktiven Katalysator (in Wasser löslicher Palladium-Phosphinkomplex) als auch den hoch unpolaren Edukten ist in der gleichen Phase nicht ausreichend hoch, um die Reaktionsgeschwindigkeit auf ein vernünftiges Niveau zu bringen. Dieses Problem mit der Reaktionsgeschwindigkeit führt dazu, daß Nebenreaktionen zu einem höheren Grad auftreten, und dadurch die Effizienz der Reaktion verringert wird.
• Zweitens führt der Prozeß in der Regel zu Ausbeuten nur in der Höhe von 90 bis 95%, die zwar für die Zwecke der Herstellung eines einfachen Moleküls (d.h. ein Molekül, das nur eine Aryl-Aryl gekoppelte Einheit aufweist) befriedigend sein könnte, allerdings für die Herstellung mehrfach gekoppelter Einzelmoleküle oder Polymere nicht ausreichend ist.
• Drittens wird das Verfahren mit relativ hohen Mol-Verhältnisse von Palladium (ca. 1 mol-%) durchgeführt, was zu hohen Kosten und zu einer aufwendigen Reinigung führt.
• Viertens wird normalerweise auch ein Überschuß an aromatischer Borverbindung eingesetzt, um die als Nebenreaktion auftretende Hydrolyse der Aryl-Bor Bindung auszugleichen. Dies ist von Nachteil zum einen wegen Materialverschwendung, aber auch besonders bei einer Polymerisation, weil hier ein Molverhälnis von exakt 1 :1 benötigt wird, um hohe Molekulargewichte zu erreichen und dieses Molverhältnis durch die Hydrolyse beeinträchtigt wird.
In JP-A-2001/089404 wird ein Prozeß zur Herstellung von polycyclischen Aromaten beschrieben, wobei eine aromatische Borverbindung mit einer aromatischen Halogenverbindung in Anwesenheit von einer Carbonylverbindung gekoppelt wird. Da die Umsetzung in Anwesenheit einer Base durchgeführt wird, führt dies zu Problemen mit unerwünschten chemischen Reaktionen zwischen der Base und der Carbonylverbindung. Diese Nebenreaktionen stören nicht nur die Effizienz der Hauptreaktion sondern führen zur Bildung größerer Mengen an Verunreinigungen. Bekannt sind auch Verfahren, bei denen ein Phasentransferreagenz eingesetzt wird, um den Kontakt zwischen der Base und der aromatischen Borverbindung zu verbessern:
1. US-A-5777070 (WO 99/20675) beschreibt ein Polymerisationsverfahren zur Umsetzung einer bifunktionellen aromatischen Borverbindung mit einem bifunktionellen Arylhalogenid in Gegenwart eines organischen Lösungsmittels, einer wäßrigen Lösung einer anorganischen Base und einer katalytischen Menge eines Palladiumkomplexes, wobei ein Phasentransferkatalysator (z.B. ein Tetraalkylammoniumsalz) in einem Mol-Verhältnis von mindestens 0.01 % (und bevorzugt weniger als 10 mol-%) bezogen auf die aromatische Borverbindung eingesetzt wird. Dieser Prozeß weist jedoch mehrere Probleme auf, die z. B. auch in WO 00/53656 kritisiert werden:
• Erstens verläuft die Reaktion relativ langsam und das hergestellte Polymer weist Verfärbung auf.
• Zweitens ist die Reaktion bezüglich des Molekulargewichts nicht reproduzierbar.
• Drittens wird während der Reaktion Schaumbildung beobachtet und es kommt zur Ablagerung von Nebenprodukten an der Reaktorwand; dies führt zu einem Prozeß, der nur mit Schwierigkeit vergrößert werden kann.
2. Über einen verwandten Prozeß wird in WO 00/53656 berichtet. Hier wird als Base eine organische Verbindung (z.B. ein Tetraalkylammoniumhydroxid) eingesetzt, die effektiv die Konzentration der Base in der organischen Phase vergrößert; dies führt dazu, daß die Reaktion viel schneller verläuft. Wir haben aber festgestellt, daß dieses Verfahren mit Nachteilen behaftet ist:
• Wenn die Reaktion nach dem beschriebenen Verfahren in einem unpolaren Lösungsmittel - wie Toluol - durchgeführt wird, fällt weißer Feststoff aus der Reaktionsmischung aus, welcher sich nur schwer wieder löst (nach 20 Stunden ist die Reaktionsmischung immer noch trüb). Es ist zu vermuten, daß dieser Feststoff ein Salz des Typs R4N+[ArBR'2(OH)]" ist. Die Reaktion verläuft deswegen langsam und bleibt nach längerer Zeit immer noch heterogen, was dazu führt, daß keine Endläufigkeit erreicht wird. Dieses führt u. a. dazu, daß bei Polymeren kein wirklich hohes Molekulargewicht erreicht wird. • Zweitens führt die Reaktion unter unterschiedlichen Bedingungen zu unterschiedlichen Arten von Verfärbung; wird die Reaktion in Gegenwart eines unpolaren Lösungsmittels, wie Toluol, durchgeführt, so wird das Polymer leicht grau-schwarz verfärbt, wohingegen sich in Gegenwart eines polaren Lösungsmittels (z.B. THF oder Dioxan) das Polymer gelb verfärbt. Die grauschwarze Farbe ist auf Zersetzung des Palladiumkatalysators zurückzuführen, wobei Palladium sich kolloidal abscheidet. Die gelbe Farbe deutet auf Zersetzung der Base bzw. des daraus entstehenden Salzes hin. Diese Verunreinigungen sind besonders bei elektronischen Anwendungen (z.B. als organische Halbleiter in Leuchtdioden) unerwünscht, denn sie führen zu erheblicher Beeinträchtigung der Qualität.
• Des weiteren hat die Verwendung dieser Basen weitere Nachteile:
Die beschriebenen Basen (und die daraus entstehenden Boratsalze) sind aufgrund ihrer Natur Phasenübergangskatalysatoren und lassen sich daher nur mit größerem Aufwand vom Produkt abtrennen. Dies führt dazu, daß die
Aufarbeitung länger und dadurch teurer wird, und eventuell nicht entfernte
Reste in der Anwendung stören können.
Außerdem sind derartige organische Basen in der Regel einen Faktor 5 bis
10 teurer als die sonst verwendeten Mineralbasen (wie z. B. Carbonate oder
Phosphate der Alkalimetalle).
Weiterhin führt diese Art Basen in manchen Fällen auch zur Schaumbildung.
• Viertens wird relativ viel Katalysator (ca. 0.15 mol-% bezogen auf die Menge an Aryl-halogen-Gruppen) gebraucht, was im Rohpolymer zu Palladium- Konzentrationen im Bereich von 100 bis 1000 ppm führt, was wiederum zur oben schon mehrfach diskutierten Problematik bzgl. Aufreinigung bzw. Restverunreinigung führt.
Aus dieser Kritik am Stand der Technik ist es klar, daß es immer noch Bedarf an hoch-effizienten Verfahren gibt, die bei geringer Katalysator-Konzentration zu Aryl- Aryl gekoppelten Verbindungen, mit möglichst wenigen Fehlreaktionen führen. Wir haben nun überraschend festgestellt, daß durch Verwendung von bestimmten Lösungsmittelgemischen in Gegenwart von sehr niedrigen Konzentrationen von Palladiumverbindungen, die kein Triphenylphosphin enthalten, die Suzuki-Reaktion bei besonders hoher Reaktionseffizienz verläuft.
Gegenstand der Erfindung ist somit ein Verfahren zur Umsetzung einer Halogenoder Sulfonyloxy-funktionellen Aryl- oder Heteroarylverbindung mit einer aromatischen oder heteroaromatischen Borverbindung in Gegenwart einer katalytischen Menge einer Palladiumverbindung, einer Base und eines Lösungsmittelgemisches, unter Bildung einer Aryl-Aryl- bzw. Aryl-Heteroaryl- oder Heteroaryl-Heteroaryl-C-C-Bindung, dadurch gekennzeichnet, a. daß das Lösemittelgemisch jeweils mindestens 0.1 Vol% einer Verbindung der folgenden Gruppen i) mit Wasser mischbare organische Lösungsmittel ii) mit Wasser unmischbare organische Lösungsmittel iii) Wasser enthält, mit der Maßgabe, daß sowohl Alkohole als auch
Carbonylverbindungen, die α-Wasserstoff-Atome enthalten, ausgeschlossen sind; b. daß die Palladiumverbindung kein Triphenylphosphin enthält bzw. der Reaktionsmischung dieses nicht gezielt zugesetzt wird.
Die erfindungsgemäße Reaktion kann nun (je nach genauer Zusammensetzung und Temperatur) entweder ein- oder auch mehrphasig ablaufen, bzw. dies auch während der Reaktionsdurchführung ändern. Bevorzugt läuft die erfindungsgemäße Reaktion jedoch mehrphasig ab.
Aryl- bzw. Heteroarylverbindungen bzw. die aromatischen oder heteroaromatischen Reste der entsprechenden Borverbindungen, sind Aromaten bzw. Heteroaromaten mit 2 bis 40 C-Atomen, welche mit einem oder auch mehreren linearen, verzweigten oder cyclischen Alkyl- bzw. Alkoxyresten mit 1 bis 20 C-Atomen, bei denen wiederum eine oder mehrere CH2-Gruppen, die nicht aufeinander folgen, durch O, S, C=O, oder eine Carboxygruppe ersetzt sein können, substituierten oder unsubstituierten C-2 bis C-20 Aryl- oder Heteroarylresten, Fluor, Cyano, Nitro, Sulfonsäurederivaten substituiert sein können bzw. auch unsubstituiert sein können. Einfache Verbindungen, die bevorzugt verwendet werden können, sind die entsprechenden substituierten oder unsubstituierten Derivate von Benzol, Naphthalin, Anthracen, Pyren, Biphenyl, Fluoren, Spiro-9,9'-bifluoren, Phenanthren, Triptycen, Pyridin, Furan, Thiophen, Benzothiadiazol, Pyrrol, Chinolin, Chinoxalin, Pyrimidin und Pyrazin.
Weiterhin sind ausdrücklich entsprechende (im Sinne des obigen Textes) multifunktionelle Verbindungen mit umfaßt, ebenso die bei einer Polymerisation auftretenden Oligomeren mit funktionellen Aryl- bzw. Heteroaryl-Enden.
Die Ausgangsverbindungen für das erfindungsgemäße Verfahren sind zum einen Halogen- oder Sulfonyloxy-funktionalisierte Aryl- oder Heteroarylverbindungen der Formel (I),
Ar-(X)„ (I)
worin Ar ein Aryl- bzw. Heteroarylrest wie oben definiert ist, X -Cl, -Br, -I, -OS(O)2R1 bedeutet, und R1 ein Alkyl-, Aryl- oder fluorierte Alkylrest ist und n mindestens 1 , bevorzugt 1 bis 20, besonders bevorzugt 1 , 2, 3, 4, 5 oder 6 bedeutet.
Die zweite Klasse Ausgangsverbindungen für das erfindungsgemäße Verfahren sind aromatische bzw. heteroaromatische Borverbindungen der allgemeinen Formel (II)
Figure imgf000008_0001
worin Ar ein Aryl- bzw. Heteroarylrest wie oben definiert ist, Q-* und Q2 gleich oder verschieden bei jedem Auftreten -OH, Cι-C4-A!koxy, Cι-C -Aryloxy, C C4-Alkyl, oder Halogen bedeuten, oder Q-i und Q2 zusammen eine C1-C4-Alkylendioxy-Gruppe, die gegebenenfalls durch ein oder mehrere C1-C4-Alkylgruppen substituiert sein kann, bilden, oder Q-i und Q2 und das Boratom zusammen Teil eines Boroxinrings der Formel (III), bzw. ähnlicher Boronsäureanhydride bzw. Teilanhydride, sind,
Figure imgf000008_0002
und m mindestens 1 , bevorzugt 1 bis 20, besonders bevorzugt 1 , 2, 3, 4, 5 oder 6 bedeutet.
Für die Darstellung linearer Polymere wird nun bevorzugt für n und m gleichzeitig der Wert 2 gewählt.
Die Palladiumverbindung besteht aus einer Palladiumquelle und eventuell einer oder mehrerer zusätzlicher Komponenten.
Die Pailadiumquelle kann entweder eine Palladiumverbindung oder metallisch sein. Geeignete Palladiumquellen sind Salze des Palladium(ll)s oder Palladium(0)verbindungen bzw. Komplexe. Bevorzugte Palladiumquellen sind Palladium(ll)halogenide, Palladium(ll)carboxylate, Palladium(ll)ß-diketonaten, Tris(dibenzylidenaceton)dipalladium(0) (Pd2dba3),
Dichlor(bisbenzonitril)palladium(ll), Dichlor(1 ,5-cyclooctadien)palladium(ll), Tetrakis(triarylphosphino)palladium(0) oder auch diskrete Verbindungen von Palladium mit den folgenden beschriebenen zusätzlichen Komponenten. Zusätzliche Komponenten, die zur Bildung der aktiven Palladiumverbindung verwendet werden können, sind im breitesten Sinne Liganden, die an dem Palladiummetallzentrum koordinieren können.
Bevorzugte Varianten sind Phosphin-Liganden aus der Gruppe der Tri-Aryl- Phosphine, Di-Aryl-Alkyl-Phosphine, Aryl-Dialkyl-Phosphine, Trialkyl-Phosphine, Tri- Heteroaryl-Phosphine, Di-Heteroaryl-Alkyl-Phosphine, Heteroaryl-Dialkyl-Phosphine, wobei die Substituenten am Phosphor gleich oder verschieden, chiral oder achiral sein können wobei ein oder mehrere der Substituenten die Phosphorgruppen mehrerer Phosphine verknüpfen können und wobei ein Teil dieser Verknüpfungen auch ein oder mehrere Metallatome sein können, mit der Ausnahme von Triphenylphosphin.
Des weiteren können noch Halogen-Phosphine, Dihalogen-Phosphine, Alkoxy- bzw. Aryloxy-Phosphine, Dialkoxy- bzw. Diaryloxy-Phosphine verwendet werden.
Ganz besonders bevorzugt sind u. a. substituierte Triphenylphosphine, gemäß Formel (IV),
Figure imgf000010_0001
wobei gilt,
Y-1 bis Y15 sind gleich oder verschieden Wasserstoff, Alkyl-, Aryl-, Alkoxy-, Dialkylamino-, Chlor-, Fluor-, Sulfonsäure-; Cyano-, Nitroreste, mit der Maßgabe, daß mindestens 1 , bevorzugt aber 3 oder mehr der Substituenten Y-i bis Y15 ungleich Wasserstoff sind.
Beispiele der ganz besonders bevorzugten Varianten sind Tris(o- oder m- oder p- tolyl)phosphin, Tris(o- oder m- oder p-anisyl)phosphin, Tris(o- oder m- oder p- fluorphenyl)phosphin, Tris(o- oder m- oder p-chlorphenyl)phosphin, Tris(2,6- dimethylphenyl)phosphin, Tris(2,6-dimethoxyphenyl)phosphin, Tris(mesityl)phosphin, Tris(2,4,6-trimethoxyphenyl)phosphin, Tris(pentafluorphenyl)phosphin. Weitere bevorzugte Liganden sind Terf-butyl-di-o-tolylphosphin, Di-fert-butyl-o- tolylphosphin, Dicyclohexyl-2-biphenylphosphin, Di-fetf-butyl-2-biphenylphosphin, Triethylphosphin, Tri-/so-propyl-phosphin, Tri-cyclohexylphosphin, Tri-terf- butylphosphin, Tri-ferf-pentylphosphin, Bis(di-te/ -butylphosphino)methan, 1 ,1 '-Bis(di-te/ -butylphosphino)ferrocen.
Triphenylphosphin ist nun aus dieser Erfindung ausgeschlossen, weil überraschend festgestellt wurde, daß dieses zu einem besonders hohen Niveau von Fehlreaktionen führt. Die Verwendung der anderen wie oben beschriebenen erfindungsgemäßen Liganden vermeidet diese Nachteile.
Die Palladiumverbindung kann entweder als Feststoff (d.h. heterogen) oder gelöst vorliegen, im letzteren Fall entweder in der organischen oder in der wäßrigen Phase gelöst.
Bei dem erfindungsgemäßen Verfahren wird die Palladiumverbindung in der Regel in einer Menge von 0.00001 mol% bis 5 mol% (Palladium) bezogen auf die Menge zu schließender C-C-Verknüpfungen eingesetzt. Bevorzugt ist hier der Bereich von
0.001% bis 2%, besonders bevorzugt der Bereich von 0.001% bis 1%.
Die zusätzliche Komponente (Ligand) wird in der Regel im Bereich von 10:1 bis 1:2, bevorzugt im Bereich von 8:1 bis 1:1, bezogen auf den Gehalt an Palladium zugesetzt.
Die Basen werden z. B. analog der o. g. Anmeldung US-A-5,777,070 verwendet. Es werden z. B. Alkali- und Erdalkalimetallhydroxide, -carboxylate, -carbonate, -fluoride und -phosphate wie Natrium- und Kaliumhydroxid, -acetat, -carbonat, -fluorid und - phosphat oder auch Metall-Alkoholate verwendet, bevorzugt entsprechende Phosphate bzw. Carbonate. Gegebenenfalls können Mischungen der Basen verwendet werden.
Im Sinne dieser Anmeldung bedeutet "Wasser mischbares organisches Lösungsmittel", ein Lösungsmittel, welches sowohl beim Vorliegen von mindestens 5 Gewichts-% Wasser im Lösungsmittel, als auch beim Vorliegen von mindestens 5 Gewichts-% Lösungsmittel in Wasser bei Raumtemperatur eine klare einphasige Lösung bildet.
Bevorzugte Lösungsmittel dieses Typs sind organische Ether, Ester, Nitrile, tertiäre Alkohole, Sulfoxide, Amide und Carbonate, besonders bevorzugt Ether und ganz besonders bevorzugt Dioxan, Tetrahydrofuran, Ethylenglycolether, DME und verschiedene Polyethylenglycolether.
Bevorzugt werden im erfindungsgemäßen Verfahren ein oder mehrere Lösemittel, ausgewählt aus dieser Klasse in einem Bereich (bezogen auf das Volumen des Gesamtreaktionsgemisches) von 1 bis 90%, besonders bevorzugt in einem Bereich von 10 bis 75%, ganz besonders bevorzugt in einem Bereich von 25 bis 75% verwendet.
Im Sinne dieser Anmeldung bedeutet "Wasser unmischbares organisches Lösungsmittel", ein Lösungsmittel, welches bereits beim Vorliegen von weniger als 5 Gewichts-% Wasser im Lösungsmittel, oder bereits beim Vorliegen von weniger als 5 Gewichts-% Lösungsmittel in Wasser bei Raumtemperatur keine klare einphasige Lösung mehr bildet, d. h. hier bereits eine Phasentrennung zu erkennen ist. Bevorzugte mit Wasser nicht mischbare Lösungsmittel sind aromatische und aliphatische Kohlenwasserstoffe, unpolare Ether, chlorhaltige Kohlenwasserstoffe, bevorzugt aromatische Kohlenwasserstoffe, ganz besonders bevorzugt Toluol, Xylole oder Anisol.
Bevorzugt werden im erfindungsgemäßen Verfahren ein oder mehrere Lösemittel ausgewählt aus dieser Klasse in einem Bereich (bezogen auf das Volumen des Gesamtreaktionsgemisches) von 1 bis 70%, besonders bevorzugt in einem Bereich von 10 bis 50%, ganz besonders bevorzugt in einem Bereich von 15 bis 50% verwendet.
Wasser wird in der Regel in normaler Qualität, d. h. Leitungswasser, eventuell entionisiert, verwendet. Für besondere Anforderungen können hier natürlich auch besser gereinigte bzw. entsalzte Qualitäten eingesetzt werden. Bevorzugt wird im erfindungsgemäßen Verfahren Wasser in einem Bereich (bezogen auf das Volumen des Gesamtreaktionsgemisches) von 1 bis 50%, besonders bevorzugt in einem Bereich von 5 bis 35% verwendet.
Das erfindungsgemäße Verfahren ist in der Regel schwach exotherm, benötigt allerdings meist eine leichte Aktivierung. Häufig wird das Verfahren deshalb bei Temperaturen oberhalb von Raumtemperatur durchgeführt. Ein bevorzugter Temperaturbereich ist deshalb der Bereich zwischen Raumtemperatur und dem Siedepunkt der Reaktionsmischung, besonders bevorzugt der Temperaturbereich zwischen 40 und 120°C, ganz besonders bevorzugt der Bereich zwischen 40 und 100°C. Es kann aber auch sein, daß die Reaktion schon bei Raumtemperatur genügend schnell verläuft, so daß keine aktive Erwärmung benötigt wird. Die Reaktion erfolgt unter Rühren, wobei je nach Viskosität der Reaktionsmischung einfache Rührer oder Hochviskositätsrührer angewandt werden können. Bei hohen Viskositäten können auch Stromstörer verwendet werden.
Die Konzentration der Reaktionskomponenten hängt nun sehr stark von der jeweiligen Reaktion ab. Während man Polymerisationen häufig (wegen der dabei auftretenden Viskositätserhöhung) bei Konzentrationen im Bereich von weniger als 1 mol/l (bezogen auf zu schließende C-C-Bindungen) durchführt, kann dies bei der Synthese von definierten Einzelmolekülen auch in einem höheren Konzentrationsbereich geschehen.
Die Reaktionszeit ist prinzipiell frei wählbar und wird sich an der jeweiligen Reaktionsgeschwindigkeit orientieren. Ein technisch sinnvoller Rahmen ist sicherlich im Bereich von wenigen Minuten bis zu 100 Stunden, bevorzugt im Bereich von 15 Minuten bis 24 Stunden zu sehen.
Die Reaktion an sich läuft unter Normaldruck ab. Technisch kann es aber auch durchaus sinnvoll sein unter erhöhtem oder erniedrigtem Druck zu arbeiten. Dies hängt nun sehr stark von der Einzelreaktion und vor allem vom zur Verfügung stehenden Equipment ab.
Die Vorteile des beschriebenen erfindungsgemäßen Verfahrens sind u. a. die folgenden:
• Herausragende Effizienz (Umsatzgrad), wodurch Materialien entstehen, die sehr wenige Fehlstellen enthalten. Besonders bei multifunktionellen Verbindungen, ist das erfindungesgemäße Verfahren von Vorteil, denn der Effizienzeffekt ist dann potenziert. Ganz besonders bei Polymerisationen, wobei die Edukte in der Regel zwei zu reagierende Gruppen enthalten und die Aryl-Aryl-Kopplung mehrmals hintereinander zu einem kettenförmigen Molekül stattfindet, führt das erfindungsgemäße Verfahren zu außergewöhnlich hohen Kettenlängen und Molekulargewichten.
• Ein besondere Vorteil der vorliegenden Erfindung ist, daß wegen der verbesserten Effizienz der Suzuki-Reaktion, die eingesetzte Menge an teuerem Palladium-Katalysator verringert werden kann. Dies hat zur Folge, daß die Herstellungskosten reduziert werden, und zusätzlich die Restmengen Palladiums im Produkt drastisch verringert wird. Dies bringt technische Vorteile, z.B. Vermeidung von Beeinträchtigung der Farbe des Produkts, aber besonders bei organischen Halbleitern ist die Verringerung von solchen Verunreinigungen vorteilhaft, denn die Anwesenheit von Metallresten führt zu Beeinträchtigungen in der Anwendung. • Die weiteren Nachteile, wie sie oben für die Anmeldungen WO 00/53656 und US-A-5777070 (WO 99/20675) beschrieben wurden, sind entweder gänzlich überwunden (z. B. teuere Basen bzw. Phasentransferkatalysatoren) oder zumindest deutlich abgemildert (Schaumbildung).
Da das erfindungsgemäße Verfahren - w. o. beschrieben - eine sehr hohe Effizienz aufweist, ist eine bevorzugte Ausführung die Umsetzung von multifunktionellen Molekülen, entweder zu definierten Einzelmolekülen oder zu Polymeren. Multifunktionell im Sinne dieser Anmeldung soll bedeuten, daß eine Verbindung mehrere (z. B. zwei, drei, vier, fünf, usw.) gleiche oder gleichartige funktionelle Einheiten enthält, die in der entsprechenden Umsetzung (hier Suzuki-Reaktion) alle in der gleichen Weise zu einem Produktmolekül reagieren. Multifunktionell soll auch Moleküle mit einbeziehen, die mehrere miteinander reagierende funktioneile Gruppen enthalten (z.B. ein Molekül, das sowohl mindestens eine aromatische Halogengruppe, als auch mindestens eine aromatische Borgruppe enthält; ein sogenanntes AB-Monomer). Mit der Umsetzung von multifunktionellen Verbindungen ist hier zunächst die Umsetzung einer multifunktionellen Verbindung mit mehreren monofunktionellen Verbindungen zu einer definierten "niedermolekularen" Verbindung gemeint. Werden hingegen (mindestens) zwei verschiedene multifunktionelle Verbindungen miteinander in Reaktion gebracht, wird das Produkt polymeren Charakter aufweisen. Auch dies stellt ausdrücklich eine Suzuki-Reaktion im Sinne dieser Erfindung dar.
Wie aus diesem Zusammenhang erkennbar, bezeichnet "niedermolekular" im Rahmen der vorliegenden Erfindung Moleküle mit einer definierten molaren Masse, die immer <10000 g/mol, bevorzugt auch <2000 g/mol liegen wird. Polymerer Charakter liegt gemäß der vorliegenden Erfindung dann vor, wenn beim Hinzufügen bzw. Weglassen einer einzelnen Wiederholeinheit, sich die maßgeblichen Eigenschaften (∑. B. Löslichkeit, Schmelzpunkt, Glastemperatur, etc.) nicht oder nur unwesentlich ändern. Eine einfachere Definition (vor allem im Gegensatz zu den Angaben bzgl. "niedermolekular") ist die Angabe des Molekulargewichts, wonach dann "polymerer Charakter" bei einem Molekulargewicht von >10000 g/mol zu definieren ist. Wie oben beschrieben ist eine bevorzugte Ausführungsform des erfindungsgemäßen
Verfahrens dessen Verwendung zur Verknüpfung einer multifunktionellen
Verbindung mit mehreren monofunktionellen Verbindungen.
Die dadurch erzeugten Verbindungen zeichnen sich durch die Abwesenheit (bzw. den sehr geringen Anteil) von - durch die Reaktion erzeugten - strukturellen
Defekten aus.
Diese Verbindungen, erzeugt durch das erfindungsgemäße Verfahren, weisen damit deutliche Verbesserungen gegenüber dem Stand der Technik auf und sind somit ebenfalls Gegenstand der Erfindung.
Wie oben beschrieben ist eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dessen Verwendung während einer Polymerisation. Die dadurch erzeugten Polyarylene (dieser Begriff soll hier auch Copolymere, welche nicht Arylen- bzw. Heteroarylen-Einheiten in der Hauptkette enthalten, umfassen) zeichnen sich durch hohes (aber auch gut einstellbares) Molekulargewicht und die Abwesenheit (bzw. den sehr geringen Anteil) von - durch die Polymerisation erzeugten - strukturellen Defekten aus. Diese Polymere, erzeugt durch das erfindungsgemäße Verfahren, weisen damit deutliche Verbesserungen gegenüber dem Stand der Technik auf und sind somit ebenfalls Gegenstand der Erfindung.
Dieses Verfahren ermöglicht die Herstellung von Poly-arylenen bzw. -heteroarylenen mit höheren Molekulargewichten als bisher bekannt. Der höchste bisher veröffentlichte Gewichtsmittel-Polymerisationsgrad (durch GPC gemessene Mw geteilt durch das durchschnittliche Molekulargewicht der Wiederholungseinheit(en)) beträgt ca. 950 und das erfindungsgemäßes Verfahren liefert Polymere mit teilweise deutlich höheren Werten (siehe Beispiel 5). Daher sind Poly-arylene bzw. - heteroarylene mit einem Gewichtsmittel-Polymerisationsgrad DPW von über 1000 ebenfalls Gegenstand dieser Erfindung.
Ein bevorzugtes erfindungsgemäßes Polymerisationsverfahren ist wie folgt zu beschreiben:
• Als "Wasser mischbares organisches Lösungsmittel" wird Dioxan bzw. THF im Bereich von 25 bis 75% (bezogen auf das Gesamtlösungsvolumen) verwendet. • Als "Wasser unmischbares organisches Lösungsmittel" wird ein Aromat, beispielsweise Toluol, ein Xylol, Chlorbenzol, oder Anisol, bevorzugt Toluol oder ein Xylol im Bereich von 15 bis 50% verwendet.
• Wasser wird im Bereich von ca. 5 bis 50% zugesetzt.
• Die Monomere werden im Konzentrationsbereich von 20 bis 200 mmol/l verwendet. Es werden entweder von Beginn an die beiden verschiedenen Funktionalitäten (Halogenid bzw. Sulfonyloxy gegenüber Bor-gruppen) im Verhältnis 1 : 1 (möglichst genau) vorgelegt, oder dieses Verhältnis im Laufe der Reaktion durch fortlaufende (entweder kontinuierliche oder chargenweise) Zugabe einer der beiden Funktionalitäten zu einem Überschuß der anderen Funktionalität erreicht.
• Gegebenenfalls werden geringe Mengen monofunktioneller Verbindungen („Endcapper") oder tri- oder multifunktioneller Gruppen („Verzweiger") zugesetzt.
• Die Palladium-Verbindung wird im Verhältnis 1 : 10000 bis 1 :50, bevorzugt 1 :5000 bis 1:100 bezogen auf die Anzahl der zu schließenden Bindungen zugegeben. Hier ist beispielsweise bevorzugt die Verwendung von Palladium-(ll)-salzen, wie PdAc2 oder Pd2dba3 und die Addition von Liganden wie P(o-Tol)3, und diese im Verhältnis von 1:1 bis 1:10, bezogen auf Pd.
• Als Base findet z. B. K3PO4 eine bevorzugte Verwendung. Diese wird bevorzugt im Verhältnis von 0.8:1 bis 5:1 bezogen auf die Anzahl der zu schließenden Bindungen zugegeben.
• Die Reaktion wird unter heftigem Rühren am Rückfluß gehalten und innerhalb eines Zeitraums von ca. 1 bis 24 Stunden durchgeführt.
• Es hat sich als sinnvoll herausgestellt, am Ende der Reaktion ein sogenanntes End-Capping durchzuführen, d. h. monofunktionelle Verbindungen zuzugeben, die eventuelle reaktive Endgruppen in den Polymeren abfangen.
• Am Ende der Reaktion kann nun das Polymer durch gängige Reinigungsverfahren, wie z. B. Ausfällen, Umfallen, Extraktion u. ä. weiter aufgereinigt werden. Für die Verwendung in hochwertigen Anwendungen (z. B. Polymere Leuchtdioden) muß i. d. R. die Verunreinigung mit organischen (z. B. Oligomeren) und anorganischen Substanzen (z. B. Pd-Reste, Basen-Reste) auf ein möglichst geringes Maß gebracht werden. Dies kann für Pd auf verschiedenste Art und Weise erreicht werden, z. B. durch lonen- Austauscher, flüssig-flüssig-Extraktion, Extraktion mit Komplexbildnern und anderen Verfahren, für die Entfernung von niedermolekularen Anteilen z. B. durch fest-flüssig- oder flüssig-flüssig-Extraktion oder auch mehrfaches Umfallen geschehen, für die Entfernung von weiterer anorganischer Verunreinigung z. B. durch die bereits für Pd und die niedermolekularen Anteile beschriebenen Verfahren, aber auch durch Extraktion mit beispielsweise anorganischen Mineralsäuren geschehen.
Eine weitere mögliche Ausführung der oben beschriebenen Polymerisation ist deren Durchführung in mindestens zwei Stufen, wobei in der ersten Stufe ein Überschuß an einem der Monomeren eingesetzt wird, so daß ein kurzkettiges Polymer mit einer ersten Zusammensetzung gebildet wird. Kurzkettig meint hier, daß zunächst nur ein Oligomer, welches wenige (z. B. zwischen 3 und 20) Wiederholeinheiten besitzt, gebildet wird. Darauf folgend wird in einer oder mehrerer weiteren Stufe(n) die restlichen Monomere zugegeben, so daß schließlich das Verhältnis der Bor-haltigen reaktiven Gruppen und Halogen- bzw. Sulfonyloxy-haltigen reaktiven Gruppen 1:1 beträgt.
Bevorzugt ist die Monomerzusammensetzung der zweiten bzw. weiterer Stufen unterschiedlich zu derjenigen der ersten Stufe, wodurch Polymere entstehen, die eine blockartige Struktur aufweisen.
Blockartige Struktur bedeutet hier das folgende: durch die erste Stufe entsteht beispielsweise ein Oligomer mit der Abfolge B(AB)n, wobei A und B für die beiden verwendeten Monomereinheiten steht, B das Monomer darstellt, daß im Überschuß eingesetzt wird und n die mittlere Länge dieser Oligomere darstellt. Daraufhin wird dann beispielsweise ein Monomer C so zugegeben, daß die Gesamtzahl der reaktiven Endgruppen ausgeglichen ist. Dies führt schließlich zu einem Polymer, welches hauptsächlich folgende Sequenzen hat: (C[B(AB)n])m, wobei m die mittlere Kettenlänge des so definierten Polymers ist. D. h. es wechseln sich Blöcke mit der Struktur B(AB)n mit C ab, das Polymer hat eine blockartige Struktur. Durch das beschriebene Verfahren sind natürlich auch weitere blockartige Strukturen darstellbar, je nach Abfolge der Monomerzugabe. Das erfindungsgemäße Verfahren ermöglicht die Herstellung hochmolekularer Polymere dieser blockartigen Form, weil es im Gegensatz zu den bisher bekannten Prozessen besonders schonend auf die Bor-, Halogen- bzw. Sulfonyloxy-haltigen reaktiven Gruppen in der Abwesenheit der entsprechenden Gegengruppen wirkt. Mit dem hier beschriebenen Verfahren können nun beispielsweise Polyarylene, wie diese in EP-A-842.208, WO 00/22026, WO 00/46321 , WO 99/54385, WO 00/55927, WO 97/31048, WO 97/39045, WO 92/18552, WO 95/07955, EP-A-690.086, WO 02/044060 und der noch nicht offengelegten Anmeldeschrift DE 10143353.0 beschrieben werden, hergestellt werden. Häufig weisen die Polymere, hergestellt durch das erfindungsgemäße Verfahren, Vorteile gegenüber den Angaben in dieser zitierten Literatur auf, so zum Beispiel bezüglich der Defektfreiheit, des Molekulargewichts, der Molekulargewichtsverteilung und damit häufig auch bezüglich der entsprechenden Anwendungseigenschaften.
Die erfindungsgemäßen Polymere können in elektronischen Bauteilen, wie organische Leuchtdioden (OLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (OFETs), organischen Dünnfilmtransistoren (OTFTs), organischen Solarzellen (O-SCs), organischen Laserdioden (O-Laser), organischen Farbfilter für Liquid-Crystal-Displays oder organischen Photorezeptoren, Verwendung finden. Diese sind ebenfalls Bestandteil der vorliegenden Erfindung.
Die beschriebene Erfindung wird durch die Beschreibung und die nachfolgend aufgeführten Beispiele erläutert, ist aber keinesfalls auf diese beschränkt, sondern kann durch den Fachmann natürlich einfach auf die oben aufgezeigten bzw. in der zitierten Literatur beschriebenen Systeme übertragen werden.
Teil A. Beispiele des erfindungsgemäßen Verfahrens
A1 : Herstellung von multifunktionellen Verbindungen
Herstellung von 2,2',7,7,-Tetrakis(biphenyl-4-yl)-9,9'-spirobifluoren Durchführung: 2,2,,7,7'-Tetrabrom-9,9'-spirobifluoren (158.0 g, 250 mmol), Biphenyl-4-boronsäure (239.0 g, 1200 mmol) und Kaliumphosphat (447 g, 2100 mmol) wurden in einem Gemisch aus 700 mL Toluol, 700 mL Dioxan und 1000 mL Wasser suspendiert und es wurde 30 Minuten Argon durch die Lösung geleitet. Anschließend wurde Tris-o- tolylphosphin (0.459 g, 1.5 mmol) und 5 min. später 58 mg (0.25 mmol) Palladiumacetat zugegeben und die Reaktionsmischung auf 87°C erhitzt. Nach 8 Stunden wurde das Gemisch auf Raumtemperatur abgekühlt und der ausgefallene Feststoff abfiltriert und mit Wasser und anschließend Toluol nachgewaschen. Es ergab sich dabei 222 g (96% der Theorie) des gewünschten Produkts, welches laut HPLC ohne weitere Aufreinigung eine Reinheit von 99.6% aufwies. 1H NMR (CDCI3): 7.98 (d, 4 H, H-4), 7.72 (dd, 4 H, H-3), 7.54 (m, 24 H, Phenyl-H), 7.40 (m, 8 H, Phenyl-H), 7.31 (m, 4 H, Phenyl-H), 7.10 (d, 4 H, H-1).
A2: Herstellung von Polymeren
Die Synthese der in dieser Anmeldung verwendeten Monomeren wurden in der Anmeldeschrift WO 02/077060 beschrieben. Die verwendeten Monomere sind im folgenden wiedergegeben:
Figure imgf000019_0001
M1 M2
Beispiel P1: Verwendung von Dioxan/Toluol Gemisch mit 0.025 mol% Pd. Copolymeήsation von 50 mol% 2',3',6', 7'-Tetra(2-methylbutyloxy)spirobifluoren-2,7- bisboronsäureethylenglycolester(MI), 50 mol% 2,7-Dibrom-9-(2',5'-dimethyl- phenyl)-9-[3",4"-bis(2-methyl-butyloxy)phenyl]flυoren (M2) (Polymer P1). 3.3827 g (5.00 mmol) 2 (99.85%ig), 4.0033 g (5.00 mmol) M1 (99.4%ig), 4.89 g (21.25 mmol) K3PO4Η2O, 15.6 mL Toluol, 46.9 mL Dioxan, und 8.5 mL Wasser wurden 30 min durch Durchleiten von Argon entgast. Anschließend wurde 4.56 mg (15 μmol) Tris-o-tolylphosphin und 5 Minuten später 0.56 mg (2.5 μmol) Palladiumacetat unter Schutzgas zugegeben. Die Suspension wurde unter Argon- Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) kräftig gerührt. Nach 2 Stunden wurden weitere 15.6 mL Toluol und 46.9 mL Dioxan auf Grund der hohen Viskosität zugegeben. Nach 6 Stunden wurden weitere 0.30 g W11 zugesetzt. Nach weiteren 1h Erhitzen wurden 0.3 mL Brombenzol zugesetzt und noch 1h zum Rückfluß erhitzt.
Die Reaktionslösung wurde mit 200 mL Toluol verdünnt, die Lösung wurde mit 100 mL 1%iger wäßriger NaCN 3h ausgerührt. Die organische Phase wurde 3x mit H2O gewaschen und durch Zusetzen in 500 mL Methanol gefällt. Das Polymer wurde in 600 mLTHF 1h bei 50°C gelöst, mit 1200 mL MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 600 mL THF/ 1200 mL Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 5.16 g (8.78 mmol, 87.8 %) des Polymeren P1 als farblosen Feststoff. 1H NMR (C2D2CI4): 7.8-7.1 (m, 9 H, Fluoren, Spiro); 6.6 (br. s, 1 H, Fluoren), 6.21 (br s, 1H, Spiro); 4.0-3.4 (3 x m, 6 H, OCH2), 2.16 (s, 1.5 H, CH3); 1.9-0.7 (m, Alkyl H). GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion: Mw = 814000 g/mol, Mn = 267000 g/mol.
Beispiel P2: Verwendung von Dioxan/Toluol Gemisch mit 0.0125 mol% Pd. Copolymerisation von 50 mol% 2',3',6',7'-Tetra(2-methylbutyloxy)spirobifluoren-2,7- bisboronsäureethylenglycolester (MI), 40 mol% 2,7-Dibrom-9-(2',5'-dimethyl- phenyl)-9-[3",4"-bis(2-methyl-butyloxy)phenyl]fluoren (M2) und 10 mol% N,N'-Bis(4- brQmophenyl)-N,N'-bis(4-tert-butylphenyl)benzidin (M3) (Polymer P2). 13.5308 g (20.00 mmol) 2 (99.85%ig), 20.0164 g (25 mmol) M1 (99.4%ig), 3.7932 g (5.00 mmol) 3 (99.5%ig), 24.47 g (106.25 mmol) K3PO4 H2O, 78 mL Toluol, 234 mL Dioxan, und 44 mL Wasser wurden 30 min durch Durchleiten von Argon entgast. Anschließend wurde 11.4 mg (37 μmol) Tris-o-tolylphosphin und 5 Minuten später 1.40 mg (6.25 μmol) Palladiumacetat unter Schutzgas zugegeben. Die Suspension wurde unter Argon-Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) kräftig gerührt. Nach 2 Stunden wurden noch weitere 39 mL Toluol und 117 mL Dioxan auf Grund der hohen Viskosität zugegeben. Nach 6 Stunden wurden weitere 0.36 g M1 zugesetzt. Nach weiteren 30 Minuten Erhitzen wurden 0.5 mL
Brombenzol zugesetzt und noch 15 Minuten zum Rückfluß erhitzt.
Die Reaktionslösung wurde mit 500 mL Toluol verdünnt und mit 100 mL 2%iger wäßriger NaCN 3h ausgerührt. Die organische Phase wurde 3 x mit H2O gewaschen und durch Zusetzen in 2500 mL Methanol gefällt. Das Polymer wurde in 1500 mL
THF 1h bei 50°C gelöst, mit 3000 mL MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 1500 mL THF/ 3000 mL Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 27.005 g (45.3 mmol, 90.6 %) des Polymeren P2 als leicht gelblichen Feststoff.
1H NMR (C2D2CI4): 7.9-6.8 (m, 10.4 H, Fluoren, Spiro, TAD); 6.6 (br. s, 0.8H,
Fluoren), 6.21 (m, 1H, Spiro); 4.0-3.4 (3 x m, 5.6 H, OCH2), 2.16 (s, 1.2 H, CH3);
1.9-0.7 (m, Alkyl H, darunter bei 1.30 t-Butyl).
GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion:
Mw = 630000 g/mol, Mn = 240000 g/mol.
Beispiel P3: Verwendung von Toluol/Dioxan Gemisch und 0.1 mol% Pd mit Thiophen-haltigen Monomeren. Copolymehsation von 50 mol% 2',3',6',7'-Tetra(2- methylbutyloxy)spirobifluoren-2, 7-bisboronsäureethylenglycolester (M1), 35 mol% 4,7-Dibrom-benzo[1,2,5]thiadiazol (M4), 10 mol% N,N'-Bis(4-bromophenyl)-N,N'- bis(4-tert-butylphenyl)benzidin (M3) und 5 mol% Bis-4, 7-(2'-brom-5'-thienyl)-2, 1,3- benzothiadiazol (M5) (Polymer P3)
8.0065 g (10.00 mmol) M1 (99.4%ig), 2.0578 g (7 mmol) M4 (99.8%ig), 1.5173 g (2.00 mmol) M3 (99.5%ig), 0.4582 g (1.00 mmol) M5 (99.8%ig), 10.13 g (44.00 mmol) K3PO4Η2O, 25 mL Toluol, 75 mL Dioxan, und 50 mL Wasser wurden 30 min durch Durchleiten von Argon entgast. Anschließend wurde 36.5 mg (120 μmol) Tris- o-tolylphosphin und 5 Minuten später 4.49 mg (20 μmol) Palladiumacetat unter Schutzgas zugegeben. Die Suspension wurde unter Argon-Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) kräftig gerührt. Nach 30 Minuten wurden noch weitere 40 mL Toluol und nach 90 Minuten noch 30 mL Toluol auf Grund der hohen Viskosität zugegeben. Nach 6 Stunden wurden weitere 0.2 g M1 zugesetzt. Nach weiteren 30 Minuten Erhitzen wurden 0.3 mL Brombenzol zugesetzt und noch 15 Minuten zum Rückfluß erhitzt.
Die Reaktionslösung wurde mit 200 mL Toluol verdünnt und mit 100 mL 2%iger wäßriger NaCN 3h ausgerührt. Die organische Phase wurde 3 x mit H2O gewaschen und durch Zusetzen in 1000 mL Methanol gefällt. Das Polymer wurde in 600 mL THF
1h bei 50°C gelöst, mit 1200 mL MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 600 mL THF/ 1200 mL Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 8.65 g (18.8 mmol,
94.2 %) des Polymeren P3 als tief roten Feststoff.
1H NMR (CDCI3): 8.2-6.8 (m, 7.4 H, Spiro, TAD, Benzothiadiazol und Thiophen); 6.6
(br. s, 0.8H, Fluoren), 6.21 (m, 1H, Spiro); 4.0-3.4 (2 x m, 4 H, OCH2); 1.9-0.7 (m,
Alkyl H, darunter bei 1.24 t-Butyl).
GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion:
Mw = 470000 g/mol, Mn = 163000 g/mol.
Beispiel P4: Copolymer in 2 Stufen zum Polymer mit blockförmiger Struktur. 1. Stufe Copolymerisation von 12.5 mol% 2',3'l6', 7'-Tetra(2-methylbutyloxy)spirobifluoren- 2,7-bisboronsäureethylenglycolester (M1) und 10 mol% N,N'-Bis(4-bromophenyl)- N,N'-bis(4-tert-butylphenyl)benzidin (M3). 2. Stufe Zugabe von 37.5 mol% 2',3',6' '- Tetra(2-methylbutyloxy)spirobifluoren-2, 7-bisboronsäureethylenglycolester (M1) und 40 mol% 2, 7-Dibrom-9-(2s,5'-dimethyl-phenyl)-9-[3",4"-bis(2-methyl- butyloxy)phenyl]fluoren (M2) (Polymer P4)
0.8007 g (1.00 mmol) M1 (99.4%ig), 0.6069 g (0.80 mmol) WI3 (99.5%ig), 3.91 g (17.00 mmol) K3PO Η2O, 2.5 mL Toluol, 7.5 mL Dioxan, und 8.5 mL Wasser wurden 30 min durch Durchleiten von Argon entgast. Anschließend wurden 3.65 mg (12 μmol) Tris-o-tolylphosphin und 5 Minuten später 0.45 mg (2.0 μmol) Palladiumacetat unter Schutzgas zugegeben. Die Suspension wurde unter Argon-Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) 2 Stunden kräftig gerührt. Laut NMR waren noch 20%o der ursprünglichen Boronsäureethylenglykolester-Gruppen noch vorhanden (Signal bei 4.28 ppm in CDCI3), was durch die Stöchiometrie auch erwartet wurde. Dann wurde noch 2.4020 g (3.00 mmol) M1 (99.4%ig), 2.1649 g (3.2 mmol) 2 (99.85%ig), 10 mL Toluol und 30 mL Dioxan zugegeben. Nach 2 Stunden wurden weitere 12.5 mL Toluol und 37.5 mL Dioxan auf Grund der hohen Viskosität zugegeben. Nach 6 Stunden wurden weitere 0.30 g M1 zugesetzt. Nach weiteren 1 h Erhitzen wurden 0.3 mL Brombenzol zugesetzt und noch 1 h zum Rückfluß erhitzt.
Die Reaktionslösung wurde mit 200 mL Toluol verdünnt, die Lösung wurde mit 100 mL 1%iger wäßriger NaCN 3h ausgerührt. Die organische Phase wurde 3x mit H2O gewaschen und durch Zusetzen in 400 mL Methanol gefällt. Das Polymer wurde in 300 mL THF 1 h bei 50°C gelöst, mit 600 mL MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 300 mL THF/ 600 mL Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 4.23 g (7.10 mmol, 88.7 %) des Polymeren P4 als leicht gelblichen Feststoff. 1H NMR (C2D2CI4): 7.8-7.7 (m, 1 H, Spiro); 7.7-7.1 (m, 9.4 H, Fluoren, Spiro, TAD); 6.6 (br. s, 0.8H, Fluoren), 6.21 (m, 1H, Spiro, zeigt zusätzliches großes Signal bei 6.27 ppm was TAD-Spiro-TAD Einheiten zuzuordnen ist, Beweis von blockförmigen Strukturen); 4.0-3.4 (3 x m, 5.6 H, OCH2), 2.16 (s, 1.2 H, CH3); 1.9-0.7 (m, Alkyl H, darunter bei 1.30 t-Butyl).
GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion: Mw = 480000 g/mol, Mn = 150000 g/mol.
Beispiel P5: Verwendung von Dioxan/Toluol Gemisch mit 0.0125 mol% Pd, reinere Charge des Monomers MI. Copolymerisation von 50 mol% 2',3',6', 7'-Tetra(2- methylbutyloxy)spirobifluoren-2, 7-bisboronsäureethylenglycolester (M1), 40 mol% 2, 7-Dibrom-9-(2'l5'-dimethyl-phenyl)-9-[3",4"-bis(2-methyl-butyloxy)phenyl]fluoren (M2) und 10 mol% N,N'-Bis(4-bromophenyl)-N,N'-bis(4-tert-butylphenyl)benzidin (M3) (Polymer P5).
2.1649 g (3.20 mmol) 2 (99.85%ig), 3.2026 g (4.00 mmol) M1 (99.8%ig), 0.6069 g (0.80 mmol) M3 (99.5%ig), 3.91 g (17.0 mmol) K3PO4 H2O, 12.5 mL Toluol, 37.5 mL Dioxan, und 6.8 mL Wasser wurden 30 min durch Durchleiten von Argon entgast. Anschließend wurde 3.65 mg (12 μmol) Tris-o-tolylphosphin und 5 Minuten später 0.45 mg (2 μmol) Palladiumacetat unter Schutzgas zugegeben. Die Suspension wurde unter Argon-Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) kräftig gerührt. Nach 2 Stunden wurden noch weitere 12.5 mL Toluol und 37.5 mL Dioxan auf Grund der hohen Viskosität zugegeben. Nach 6 Stunden wurden weitere 0.03 g M1 zugesetzt. Nach weiteren 30 Minuten Erhitzen wurden 0.1 mL Brombenzol zugesetzt und noch 15 Minuten zum Rückfluß erhitzt. Die Reaktionslösung wurde mit 80 mL Toluol verdünnt und mit 100 mL 2%iger wäßriger NaCN 3h ausgerührt. Die organische Phase wurde 3x mit H2O gewaschen und durch Zusetzen in 400 mL Methanol gefällt. Das Polymer wurde in 300 mL THF 1 h bei 50°C gelöst, mit 600 mL MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 300 mL THF/ 600 mL Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 4.44 g (7.45 mmol, 93.0 %) des Polymeren P5 als leicht gelben gelblichen Feststoff. 1H NMR (C2D2CI4): 7.9-6.8 (m, 10.4 H, Fluoren, Spiro, TAD); 6.6 (br. s, 0.8H, Fluoren), 6.21 (m, 1 H, Spiro); 4.0-3.4 (3 x m, 5.6 H, OCH2), 2.16 (s, 1.2 H, CH3); 1.9-0.7 (m, Alkyl H, darunter bei 1.30 t-Butyl).
GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion: Mw = 1400000 g/mol, Mn = 410000 g/mol, entspricht Gewichtsmittel- Polymerisationsgrad DPW von 2350.
Teil B Vergleichsbeispiele, nicht Gegenstand dieser Erfindung.
Vergleichsbeispiel V1: Verwendung von Toluol und Triphenylphosphin als Ligand, Ethanol als Phasenübergangsreagenz. Copolymerisation von 50 mol% 2',3',6', 7'- Tetra(2-methylbutyloxy)spirobifluoren-2, 7-bisboronsäureethylenglycolester (M1), 40 mol% 2, 7-Dibrom-9-(2 5'-dimethyl-phenyl)-9-[3",4"-bis(2-methyl- butyloxy)phenyl]fluoren (M2) und 10 mol% N,N'-Bis(4-bromophenyl)-N,N'-bis(4-tert- butylphenyl)benzidin (M3) (Polymer V1).
2.000g (2.4979 mmol) M1 (99.4%ig), 1.3519 g (1.9983 mmol) M2 (99.85%ig), 0.3789 g (0.4995 mmol) M3 (99.5%ig), 2.07 g (8.994 mmol) K3PO4-H2O, 6 mL Toluol, 3.8 mL H2O, 0.2 mL Ethanol wurden 30 min durch Durchleiten von Argon entgast. Anschließend wurde 58 mg (0.0499 mmol) Tetrakis(triphenylphosphino)palladium(0) unter Schutzgas zugegeben. Die Suspension wurde unter Argon-Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) kräftig gerührt. Nach 7 Tagen war die Reaktion dunkelgrau und es wurden weitere 0.2 g M1 zugesetzt. Nach weiteren 2 Stunden Erhitzen wurden 0.3 mL Brombenzol zugesetzt und noch 1 Stunde zum Rückfluß erhitzt.
Die Reaktionslösung wurde mit 120 mL Toluol verdünnt und mit 100 mL 2%iger wäßriger NaCN 3h ausgerührt. Die organische Phase wurde 3 x mit H2O gewaschen und durch Zusetzen in 200 mL Methanol gefällt. Das Polymer wurde in 100 mL THF gelöst, mit 200 mL MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 100 mL THF/ 200 mL Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 2.07 g (3.48 mmol, 69.6 %) des Polymeren V1 als gelben Feststoff. 1H NMR (C2D2CI4): 7.9-6.8 (m, 10.4 H, Fluoren, Spiro, TAD); 6.6 (br. s, 0.8H, Fluoren), 6.21 (m, 1 H, Spiro); 4.0-3.4 (3 x m, 5.6 H, OCH2), 2.16 (s, 1.2 H, CH3); 1.9-0.7 (m, Alkyl H, darunter bei 1.30 t-Butyl).
GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion: Mw = 25000 g/mol, Mn = 10400 g/mol.
Vergleichsbeispiel V2: Verwendung von Toluol als Lösungsmittel, Triphenylphosphin als Ligand und Tetraethylammoniumhydroxid als Base gemäß WO 00/53656. Copolymerisation von 50 mol% 2!,3',6', 7'-Tetra(2-methylhutyloxy)spirobifluoren-2,7- bisboronsäureethylenglycolester (M1) und 50 mol% 2, 7-Dibrom-9-(2',5'-dimethyl- phenyl)-9-[3",4"-bis(2-methyl-butyloxy)phenyl]fluoren (M2) (Polymer V2). 3.3827 g (5.00 mmol) M2 (99.85%ig), 4.0033 g (5.00 mmol) M1 (99.4%ig), 17.3 mg (15 μmol) Tetrakis(triphenylphosphino)palladium(0) und 62.5 mL Toluol wurden 10 min durch Durchleiten von Argon entgast. Anschließend wurde 8.32 g (22.5 mmol) 40%ige wässrige Tetraethylammoniumhydroxidlösung und 8.32 mL Wasser unter Schutzgas zugegeben. Die Suspension wurde unter Argon-Überlagerung auf 87°C Innentemperatur erwärmt, wobei ein weißer Feststoff ausfiel, welcher nach wenigen Minuten bis auf einen Rest am Kolbenrand wieder in Lösung ging. Nach 2 Stunden Rückfluß wurde 1 mL Brombenzol zugesetzt. Nach einer weiteren Stunde wurde 1.5 g Phenylboronsäure zugesetzt und noch 1h zum Rückfluß erhitzt. Die Reaktionslösung wurde in 400 mL Methanol gefällt, abfiltriert und mit Wasser und Methanol nachgewaschen. Das Polymer wurde in 200 mL Toluol gelöst und in 400 mL MeOH gefällt, gewaschen und im Vakuum bis zur Massenkonstanz getrocknet. Man erhielt 5.52 g (9.39 mmol, 93.9 %) des Polymeren V2 als gelbgrauen Feststoff.
1H NMR (C2D2CI4): 7.8-7.1 (m, 9 H, Fluoren, Spiro); 6.6 (br. s, 1 H, Fluoren), 6.21 (m, 1 H, Spiro); 4.0-3.4 (3 x m, 6 H, OCH2), 2.16 (s, 1.5 H, CH3); 1.9-0.7 (m, Alkyl H). GPC: THF; 1 mL/min, PLgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, R! Detektion: Mw = 149000 g/mol, Mn = 44000 g/mol.
Teil C: Herstellung und Charakterisierung von LEDs:
Die Herstellung von LEDs erfolgte nach dem im folgenden skizzierten allgemeinen Verfahren. Dieses mußte natürlich im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Polymerviskosität und optimale Schichtdicke des Polymers im Device) angepaßt werden. Die im nachfolgenden beschriebenen LEDs waren jeweils Zweischichtsysteme, d. h. Substrat//ITO//PEDOT//Polymer//Kathode. PEDOT ist ein Polythiophen-Derivat.
Allgemeines Verfahren zur Herstellung von hocheffizienten, langlebigen LEDs:
Nachdem man die ITO-beschichteten Substrate (z. B. Glasträger, PET-Folie) auf die richtige Größe zugeschnitten hat, werden sie in mehreren Reinigungsschritten im Ultraschallbad gereinigt (z.B. Seifenlösung, Millipore-Wasser, Isopropanol). Zur Trocknung werden sie mit einer N2-Pistole abgepustet und in einem Exsikkator gelagert. Vor der Beschichtung mit dem Polymer werden sie mit einem Ozon- Plasma-Gerät für ca. 20 Minuten behandelt. Von dem jeweiligen Polymer wird eine Lösung (in der Regel mit einer Konzentration von 4-25 mg/mL in beispielsweise Toluol, Chlorbenzol, Xylol:Cyclohexanon (4:1)) angesetzt und durch Rühren bei Raumtemperatur gelöst. Je nach Polymer kann es auch vorteilhaft sein, für einige Zeit bei 50 - 70°C zu rühren. Hat sich das Polymer vollständig gelöst, wird es durch einen 5μm Filter filtriert und bei variablen Geschwindigkeiten (400-6000) mit einem Spin-coater aufgeschleudert. Die Schichtdicken können dadurch im Bereich von ca. 50 und 300nm variiert werden. Vorab wird meist auf das (strukturierte) ITO ein leitfähiges Polymer, bevorzugt gedoptes PEDOT oder PANI aufgebracht. Auf die Polymerfilme werden noch Elektroden aufgebracht. Dies geschieht in der Regel durch thermisches Verdampfen (Balzer BA360 bzw. Pfeiffer PL S 500). Anschließend wird die durchsichtige ITO-Elektrode als Anode und die Metallelektrode (z. B. Ba, Yb, Ca) als Kathode kontaktiert und die Device-Parameter bestimmt. Die Lebensdauer wird definiert als die Zeit zur Erreichung von 50% der ursprünglichen Helligkeit und wird bei 100 cd/m2 gemessen. Die mit den beschriebenen Polymeren erhaltenen Resultate sind in der Tabelle 1 zusammengefaßt.
Figure imgf000027_0001
GPC Messungen THF; 1 mL/min, Plgel 10μm Mixed-B 2 x 300 x 7.5 mm2, 35°C, Rl Detektion wurde gegen Polystyrol geeicht
** Zur Herstellung der Polymer LEDs, siehe Teil C
*** Viskosität der Polymerlösungen bei 10mg/mL in Toluol wurde bei 40 s"1 in einem Brookfield LVDV-III Rheometer (CP-41) gemessen

Claims

Ansprüche:
1. Verfahren zur Umsetzung einer Halogen- oder Sulfonyloxy-funktionellen Aryl- oder Heteroarylverbindung mit einer aromatischen oder heteroaromatischen Borverbindung in Gegenwart einer katalytischen Menge einer Palladiumverbindung, einer Base und eines mehrphasigen Lösungsmittelgemisches, unter Bildung einer Aryl-Aryl- oder Aryl-Heteroaryl- oder Heteroaryl-Heteroaryl-C-C-Bindung, dadurch gekennzeichnet, a. daß das Lösemittelgemisch jeweils mindestens 0.1 Vol% einer Verbindung der folgenden Gruppen i) mit Wasser mischbare organische Lösungsmittel ii) mit Wasser unmischbare organische Lösungsmittel iii) Wasser enthält, mit der Maßgabe, daß sowohl Alkohole als auch
Carbonylverbindungen, die α-Wasserstoff-Atome enthalten, ausgeschlossen sind; b. und daß die Palladiumverbindung kein Triphenylphosphin enthält bzw. der Reaktionsmischung dieses nicht extra zugesetzt wird.
2. Verfahren gemäß Anspruch 1 dadurch gekennzeichnet, daß die Aryl- bzw. Heteroarylverbindungen bzw. die aromatischen oder heteroaromatischen Reste der entsprechenden Borverbindungen, Aromaten bzw. Heteroaromaten mit 2 bis 40 C- Atomen, welche mit einem oder auch mehreren linearen, verzweigten oder cyclischen Alkyl- bzw. Alkoxyresten mit 1 bis 20 C-Atomen, bei denen wiederum eine oder mehrere CH2-Gruppen die nicht aufeinander folgen durch O, S, C=O, oder eine Carboxygruppe ersetzt sein können, substituierte oder unsubstituierte C-2 bis C-20 Aryl- oder Heteroarylresten, Fluor, Cyano, Nitro, Sulfonsäurederivaten substituiert sein können oder auch unsubstituiert sein können, bedeuten.
3. Verfahren gemäß Anspruch 1 und/oder 2 dadurch gekennzeichnet, daß Halogenoder Sulfonyloxy-funktionalisierte Aryl- oder Heteroarylverbindungen der Formel (I) verwendet werden,
Ar-(X)„ (I) worin
Ar ein Aryl- bzw. Heteroarylrest wie in Anspruch 2 definiert ist,
X -Cl, -Br, -I, -OS(O)2R1 bedeutet, und R1 ein Alkyl-, Aryl- oder fluorierte Alkylrest ist, und n mindestens 1 , bevorzugt 1 bis 20 bedeutet.
4. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß aromatische bzw. heteroaromatische Borverbindungen der allgemeinen Formel (II) verwendet werden,
A BQiQz)™ (II) worin
Ar ein Aryl- bzw. Heteroarylrest wie oben definiert ist,
Qi und Q2 gleich oder verschieden -OH, Cι-C -Alkoxy, C C4-Aryloxy, C*ι-C4-Alkyl, oder Halogen bedeuten, oder Q-i und Q2 zusammen eine C1-C4-Alkylendioxy- Gruppe, die gegebenenfalls durch ein oder mehrere C1-C4-Alkylgruppen substituiert sein kann, bilden, oder Q*- und Q2 und das Boratom zusammen Teil eines Boroxinrings der Formel (III), sind,
Figure imgf000029_0001
und m mindestens 1 , bevorzugt 1 bis 20 bedeutet.
5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß die Palladiumverbindung aus einer Palladiumquelle und eventuell einer oder mehrerer zusätzlicher Komponenten besteht, wobei die Palladiumquelle entweder Salze des Palladiums(ll) oder
Palladium(0)verbindungen bzw. Komplexe oder auch metallisches Palladium bedeutet, und die zusätzliche Komponente Liganden, die an das Palladiummetallzentrum koordinieren können, sind.
6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß als zusätzliche Komponente Phosphin-Liganden aus der Gruppe der Tri-Aryl-Phosphine, Di-Aryl-Alkyl-Phosphine, Aryl-Dialkyl-Phosphine, Trialkyl-Phosphine, Tri-Heteroaryl-Phosphine, Di-Heteroaryl-Alkyl-Phosphine, Heteroaryl-Dialkyl-Phosphine, wobei die Substituenten am Phosphor gleich oder verschieden, chiral oder achiral sein können, wobei ein oder mehrere der Substituenten die Phosphorgruppen mehrerer Phosphine verknüpfen können und wobei ein Teil dieser Verknüpfungen auch ein oder mehrere Metallatome sein können, verwendet werden, mit der Ausnahme, daß Triphenylphosphin nicht verwendet wird.
7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6 dadurch gekennzeichnet, daß als Wasser mischbares organisches Lösungsmittel, mindestens ein Lösungsmittel, welches sowohl beim Vorliegen von mindestens 5 Gewichts-%) Wasser im Lösungsmittel, als auch beim Vorliegen von mindestens 5 Gewichts-%) Lösungsmittel in Wasser bei Raumtemperatur eine klare einphasige Lösung bildet, eingesetzt wird.
8. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 7 dadurch gekennzeichnet, daß als Wasser unmischbares organisches Lösungsmittel, mindestens ein Lösungsmittel, welches bereits beim Vorliegen von weniger als 5 Gewichts-%) Wasser im Lösungsmittel, oder bereits beim Vorliegen von weniger als 5 Gewichts-%) Lösungsmittel in Wasser bei Raumtemperatur keine klare einphasige Lösung mehr bildet, d. h. hier bereits eine Phasentrennung zu erkennen ist, verwendet wird.
9. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 8 dadurch gekennzeichnet, daß dabei eine Umsetzung einer multifunktionellen Verbindung mit mehreren monofunktionellen Verbindungen zu einer definierten "niedermolekularen" Verbindung durchgeführt wird.
10. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 8 dadurch gekennzeichnet, daß dabei (mindestens) zwei verschiedene multifunktionelle Verbindungen miteinander in Reaktion gebracht werden und ein Produkt mit polymerem Charakter erhalten wird.
11. Verfahren gemäß Anspruch 10 dadurch gekennzeichnet, daß die Polymerisation in mindestens zwei Stufen durchgeführt wird, wobei in der ersten Stufe ein Überschuß an einem der Monomeren eingesetzt wird, so daß ein kurzkettiges Polymer mit einer ersten Zusammensetzung gebildet wird und darauf folgend in einer oder mehrerer weiteren Stufe(n) die restlichen Monomere zugegeben werden, so daß schließlich das Verhältnis der Bor-haltigen reaktiven Gruppen und Halogenbzw. Sulfonyloxy-haltigen reaktiven Gruppen 1 :1 beträgt.
12. Verfahren gemäß Anspruch 11 dadurch gekennzeichnet, daß die Monomer- zusammensetzung der zweiten bzw. weiterer Stufen unterschiedlich zu derjenigen der ersten Stufe ist, wodurch Polymere entstehen, die eine blockartige Struktur aufweisen.
13. Poly-Arylen- oder heteroarylen mit einem Gewichtsmittel-Polymerisationsgrad DPW von mindestens 1000, erhältlich durch ein Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 12.
14. Verwendung der Polymeren gemäß Anspruch 14, in elektronischen Bauteilen.
15. Elektronische Bauteile enthaltend ein oder mehrere Polymere gemäß Anspruch 13.
PCT/EP2002/013584 2001-12-06 2002-12-02 Prozess zur herstellung von aryl-aryl gekoppelten verbindungen WO2003048225A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50212243T DE50212243D1 (de) 2001-12-06 2002-12-02 Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
US10/495,003 US6956095B2 (en) 2001-12-06 2002-12-02 Process for producing aryl—aryl coupled compounds
EP02792850A EP1458783B1 (de) 2001-12-06 2002-12-02 Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
JP2003549410A JP4596779B2 (ja) 2001-12-06 2002-12-02 アリール−アリールカップリング化合物の製造方法
US11/182,964 US20050263758A1 (en) 2001-12-06 2005-07-15 Process for producing aryl-aryl coupled compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10159946.3 2001-12-06
DE10159946A DE10159946A1 (de) 2001-12-06 2001-12-06 Prozess zur Herstellung von Aryl-Aryl gekoppelten Verbindungen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/182,964 Continuation US20050263758A1 (en) 2001-12-06 2005-07-15 Process for producing aryl-aryl coupled compounds

Publications (2)

Publication Number Publication Date
WO2003048225A2 true WO2003048225A2 (de) 2003-06-12
WO2003048225A3 WO2003048225A3 (de) 2003-11-27

Family

ID=7708255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/013584 WO2003048225A2 (de) 2001-12-06 2002-12-02 Prozess zur herstellung von aryl-aryl gekoppelten verbindungen

Country Status (7)

Country Link
US (2) US6956095B2 (de)
EP (1) EP1458783B1 (de)
JP (1) JP4596779B2 (de)
KR (1) KR100937126B1 (de)
CN (1) CN1283686C (de)
DE (2) DE10159946A1 (de)
WO (1) WO2003048225A2 (de)

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
WO2005017065A1 (en) * 2003-08-19 2005-02-24 Covion Organic Semiconductors Gmbh Oligomer and polymer comprising triphenyl phosphine units
WO2005121064A1 (en) * 2004-06-10 2005-12-22 Semiconductor Energy Laboratory Co., Ltd. Benzidine derivative, and light-emitting device and electric appliance using the benzidine derivative as the hole transporting material
JP2006022089A (ja) * 2004-06-10 2006-01-26 Semiconductor Energy Lab Co Ltd ベンジジン誘導体、正孔輸送材料、及びこれらの誘導体または正孔輸送材料を用いた発光素子、発光装置、電子機器
JP2007501883A (ja) * 2003-08-12 2007-02-01 メルク パテント ゲーエムベーハー 共役コポリマー、説明とその使用
EP1754736A1 (de) 2005-08-16 2007-02-21 Merck Patent GmbH Verfahren zur Polymerisation von Thiophen- oder Selenophenderivaten
WO2007085377A2 (de) 2006-01-26 2007-08-02 Merck Patent Gmbh Elektrolumineszierende materialien und deren verwendung
WO2009053088A1 (de) 2007-10-24 2009-04-30 Merck Patent Gmbh Optoelektronische vorrichtung
DE112007000699T5 (de) 2006-05-12 2009-06-04 Merck Patent Gmbh Auf Indenofluorenpolymeren basierende organische Halbleitermaterialien
US7592622B2 (en) 2004-08-11 2009-09-22 Merck Patent Gmbh Polymers for use in organic electroluminescent devices
US7659540B2 (en) 2003-10-22 2010-02-09 Merck Patent Gmbh Materials for electroluminescence and the utilization thereof
US7666956B2 (en) 2003-05-30 2010-02-23 Merck Patent Gmbh Polymer
DE102008045662A1 (de) 2008-09-03 2010-03-04 Merck Patent Gmbh Optoelektronische Vorrichtung
DE102008045664A1 (de) 2008-09-03 2010-03-04 Merck Patent Gmbh Optoelektronische Vorrichtung
DE102008044868A1 (de) 2008-08-29 2010-03-04 Merck Patent Gmbh Elektrolumineszierende Polymere, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE102008045663A1 (de) 2008-09-03 2010-03-04 Merck Patent Gmbh Fluorverbrückte Assoziate für optoelektronische Anwendungen
US7696284B2 (en) 2003-09-20 2010-04-13 Merck Patent Gmbh White-emitting copolymers, representation and use thereof
DE102008049037A1 (de) 2008-09-25 2010-04-22 Merck Patent Gmbh Neue Polymere mit niedriger Polydispersität
US7754841B2 (en) 2003-06-23 2010-07-13 Merck Patent Gmbh Polymer
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US7767785B2 (en) 2003-09-20 2010-08-03 Merck Patent Gmbh Conjugated polymers, their preparation and use thereof
DE102009010713A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
WO2010097156A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Vernetzbare und vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
WO2010097155A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer
US7790057B2 (en) 2006-07-11 2010-09-07 Merck Patent Gmbh Electroluminescent polymers and use thereof
US7799875B2 (en) 2005-12-17 2010-09-21 Merck Patent Gmbh Triarylamine-arylvinylene moiety-containing conjugated polymers, their production and use
DE102009023156A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymere, die substituierte Indenofluorenderivate als Struktureinheit enthalten, Verfahren zu deren Herstellung sowie deren Verwendung
WO2010149258A1 (de) * 2009-06-26 2010-12-29 Merck Patent Gmbh Polymere enthaltend substituierte anthracenyleinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
DE102009034194A1 (de) 2009-07-22 2011-01-27 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE102009030848A1 (de) 2009-06-26 2011-02-03 Merck Patent Gmbh Polymere enthaltend Struktureinheiten, die Alkylalkoxygruppen aufweisen, Blends enthaltend diese Polymere sowie optoelektronische Vorrichtungen enthaltend diese Polymere und Blends
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011018144A2 (en) 2009-08-12 2011-02-17 Merck Patent Gmbh Phenanthro[1,10,9,8-c,d,e,f,g]carbazole polymers and their use as organic semiconductors
US7901766B2 (en) 2003-09-04 2011-03-08 Merck Patent Gmbh Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer
US7910687B2 (en) 2002-10-25 2011-03-22 Merck Patent Gmbh Conjugated polymers containing arylamine units, the representation thereof and the use of the same
DE102009052428A1 (de) 2009-11-10 2011-05-12 Merck Patent Gmbh Verbindung für elektronische Vorrichtungen
WO2011054442A2 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US7947382B2 (en) 2004-04-26 2011-05-24 Merck Patent Gmbh Electroluminescent polymers and the use thereof
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
DE102009059985A1 (de) 2009-12-22 2011-07-07 Merck Patent GmbH, 64293 Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
DE112009001505T5 (de) 2008-08-18 2011-07-14 Merck Patent GmbH, 64293 Indacenodithiophen- und Indacenodiselenophen-Polymere und ihre Verwendung als organische Halbleiter
WO2011085781A1 (de) 2010-01-16 2011-07-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011088877A1 (de) 2010-01-25 2011-07-28 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
DE112009001784T5 (de) 2008-09-19 2011-07-28 Merck Patent GmbH, 64293 Von Benzo-bis(siloothiophen)abgeleitete Polymere und ihre Verwendung als organische Halbleiter
DE112009001782T5 (de) 2008-09-19 2011-07-28 Merck Patent GmbH, 64293 Von Bis(Thienocyclopenta) benzothiadiazol abgeleitete Polymere und ihre Verwendung als organische Halbleiter
DE102010006280A1 (de) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 Farbkonvertierung
WO2011098205A1 (de) 2010-02-12 2011-08-18 Merck Patent Gmbh Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
WO2011098113A2 (en) 2010-02-15 2011-08-18 Merck Patent Gmbh Semiconducting polymers
WO2011103953A1 (de) 2010-02-24 2011-09-01 Merck Patent Gmbh Fluor-fluor assoziate
DE102010009903A1 (de) 2010-03-02 2011-09-08 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011116866A1 (en) 2010-03-24 2011-09-29 Merck Patent Gmbh Polymers of 8,9-dihydrobenzo[def]carbazole and their use as organic semiconductors
WO2011128017A1 (de) 2010-04-14 2011-10-20 Merck Patent Gmbh Überbrückte triarylamine und -phosphine als materialien für elektronische vorrichtungen
WO2011131280A1 (en) 2010-04-19 2011-10-27 Merck Patent Gmbh Polymers of benzodithiophene and their use as organic semiconductors
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
US8075943B2 (en) * 2005-12-27 2011-12-13 Hitachi Chemical Co., Ltd. Purification process for organic electronics material
DE102010024335A1 (de) 2010-06-18 2011-12-22 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
DE102010024542A1 (de) 2010-06-22 2011-12-22 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
WO2012003919A2 (en) 2010-07-08 2012-01-12 Merck Patent Gmbh Semiconducting polymers
WO2012013310A1 (de) 2010-07-29 2012-02-02 Merck Patent Gmbh Polymere enthaltend substituierte benzodithiopheneinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
DE102010033080A1 (de) 2010-08-02 2012-02-02 Merck Patent Gmbh Polymere mit Struktureinheiten, die Elektronen-Transport-Eigenschaften aufweisen
DE102010033777A1 (de) 2010-08-09 2012-02-09 Merck Patent Gmbh Polymere mit Carbazol-Struktureinheiten
DE102010033548A1 (de) 2010-08-05 2012-02-09 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE102010033778A1 (de) 2010-08-09 2012-02-09 Merck Patent Gmbh Polymere mit Carbazol-Struktureinheiten
WO2012028246A1 (en) 2010-09-04 2012-03-08 Merck Patent Gmbh Conjugated polymers
DE102010045369A1 (de) 2010-09-14 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2012048778A1 (de) 2010-10-14 2012-04-19 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012048780A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012052099A1 (en) 2010-10-20 2012-04-26 Merck Patent Gmbh Conjugated polymers
CN102452868A (zh) * 2010-10-15 2012-05-16 李坚 Lj反应在钯催化交叉偶联反应中的应用
WO2012079675A2 (en) 2010-12-17 2012-06-21 Merck Patent Gmbh Conjugated polymers
WO2012084114A1 (de) 2010-12-23 2012-06-28 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
DE102010056151A1 (de) 2010-12-28 2012-06-28 Merck Patent Gmbh Materiallen für organische Elektrolumineszenzvorrichtungen
DE102011011539A1 (de) 2011-02-17 2012-08-23 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2012123060A1 (en) 2011-03-11 2012-09-20 Merck Patent Gmbh Conjugated polymers
WO2012139692A1 (de) 2011-04-13 2012-10-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2012139693A1 (de) 2011-04-13 2012-10-18 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012143079A1 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012143081A1 (en) 2011-04-18 2012-10-26 Merck Patent Gmbh Conjugated polymers
WO2012149999A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012156022A1 (en) 2011-05-16 2012-11-22 Merck Patent Gmbh Conjugated polymers
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2012171609A1 (de) 2011-06-17 2012-12-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
TWI381770B (zh) * 2004-02-12 2013-01-01 Sony Chem & Inf Device Corp Electroluminescent polymers and organic electroluminescent elements
WO2013000532A1 (en) 2011-06-28 2013-01-03 Merck Patent Gmbh Indaceno derivatives as organic semiconductors
WO2013007334A2 (en) 2011-07-08 2013-01-17 Merck Patent Gmbh Conjugated polymers
WO2013010614A2 (en) 2011-07-19 2013-01-24 Merck Patent Gmbh Organic semiconductors
WO2013010615A1 (en) 2011-07-21 2013-01-24 Merck Patent Gmbh Conjugated polymers
WO2013013753A2 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Polymers and oligomers with functionalized side groups
WO2013017192A1 (de) 2011-08-03 2013-02-07 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2013017189A1 (de) 2011-07-29 2013-02-07 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013045014A1 (en) 2011-09-28 2013-04-04 Merck Patent Gmbh Conjugated polymers
WO2013056775A1 (en) 2011-10-20 2013-04-25 Merck Patent Gmbh Organic semiconductors
WO2013060418A1 (en) 2011-10-27 2013-05-02 Merck Patent Gmbh Materials for electronic devices
WO2013060411A1 (de) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperverzweigte polymere, verfahren zu deren herstellung sowie deren verwendung in elektronischen vorrichtungen
DE102011117364A1 (de) 2011-10-29 2013-05-02 Merck Patent Gmbh Hautaufheller in der Phototherapie
DE112011102301T5 (de) 2010-07-09 2013-05-16 Merck Patent Gmbh Halbleiterpolymere
DE102011121022A1 (de) 2011-12-13 2013-06-13 Merck Patent Gmbh Organische Sensibilisatoren für Up- Conversion
WO2013087142A1 (de) 2011-12-12 2013-06-20 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
DE102012022880A1 (de) 2011-12-22 2013-06-27 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend organische Schichten
US8501902B2 (en) 2005-08-16 2013-08-06 Merck Patent Gmbh Process for the polymerisation of thiophene or selenophene compounds
WO2013120591A2 (en) 2012-02-15 2013-08-22 Merck Patent Gmbh Conjugated polymers
WO2013120575A1 (en) 2012-02-16 2013-08-22 Merck Patent Gmbh Organic semiconducting polymers
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2013120590A1 (en) 2012-02-15 2013-08-22 Merck Patent Gmbh Conjugated polymers
WO2013124029A2 (de) 2012-02-22 2013-08-29 Merck Patent Gmbh Polymere enthaltend dibenzocycloheptan-struktureinheiten
WO2013135339A2 (en) 2012-03-16 2013-09-19 Merck Patent Gmbh Conjugated polymers
WO2013156129A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Polymere enthaltend substituierte oligo-triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2013159862A1 (en) 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers
WO2013159863A1 (en) 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers
DE102012011335A1 (de) 2012-06-06 2013-12-12 Merck Patent Gmbh Verbindungen für Organische Elekronische Vorrichtungen
WO2014000860A1 (de) 2012-06-29 2014-01-03 Merck Patent Gmbh Polymere enthaltend 2,7-pyren-struktureinheiten
WO2014005667A1 (en) 2012-07-02 2014-01-09 Merck Patent Gmbh Conjugated polymers
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014015938A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
WO2014029453A1 (en) 2012-08-24 2014-02-27 Merck Patent Gmbh Conjugated polymers
US8679644B2 (en) 2004-04-26 2014-03-25 Merck Patent Gmbh Electroluminescent polymers containing planar arylamine units, the preparation and use thereof
WO2014082705A1 (de) 2012-11-30 2014-06-05 Merck Patent Gmbh Elektronische vorrichtung
WO2014086457A1 (en) 2012-12-07 2014-06-12 Merck Patent Gmbh Polymer comprising a naphthalene group and its use in organic electronic devices
WO2014094955A1 (en) 2012-12-18 2014-06-26 Merck Patent Gmbh Polymer comprising a thiadiazol group, the production of such polymer and its use in organic electronic devices
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014106524A2 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014202184A1 (en) 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers
WO2015014427A1 (de) 2013-07-29 2015-02-05 Merck Patent Gmbh Elektrooptische vorrichtung und deren verwendung
WO2015014429A1 (de) 2013-07-29 2015-02-05 Merck Patent Gmbh Elekrolumineszenzvorrichtung
WO2015036075A1 (en) 2013-09-11 2015-03-19 Merck Patent Gmbh Cyclohexadiene fullerene derivatives
WO2015043722A1 (en) 2013-09-30 2015-04-02 Merck Patent Gmbh Azaborinine derivatives, their synthesis and use in organic electronic devices
WO2015058827A1 (en) 2013-10-22 2015-04-30 Merck Patent Gmbh Conjugated polymers
WO2015067336A2 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Conjugated polymers
WO2015078551A1 (en) 2013-11-28 2015-06-04 Merck Patent Gmbh Novel polycyclic polymer comprising thiophene units, a method of producing and uses of such polymer
WO2015086108A1 (de) 2013-12-12 2015-06-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US9109081B2 (en) 2005-02-16 2015-08-18 Sumitomo Chemical Company, Limited Method for producing aromatic polymer
WO2015139802A1 (en) 2014-03-17 2015-09-24 Merck Patent Gmbh Organic semiconducting compounds
WO2015149905A1 (en) 2014-03-31 2015-10-08 Merck Patent Gmbh Fused bis-aryl fullerene derivatives
EP2939283A1 (de) * 2012-12-28 2015-11-04 Merck Patent GmbH Zusammensetzung mit polymeren organischen halbleiterverbindungen
WO2015192942A1 (en) 2014-06-17 2015-12-23 Merck Patent Gmbh Fullerene derivatives
WO2016015804A1 (en) 2014-07-29 2016-02-04 Merck Patent Gmbh Tetra-heteroaryl indacenodithiophene-based polycyclic polymers and their use
WO2016074755A1 (de) 2014-11-11 2016-05-19 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016119992A1 (en) 2015-01-30 2016-08-04 Merck Patent Gmbh Materials for electronic devices
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017012694A1 (en) 2015-07-23 2017-01-26 Merck Patent Gmbh Phenyl derivatives substituted with at least two electron acceptors and at least two electron donors for use in organic electronic devices
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
EP3151297A1 (de) 2015-09-30 2017-04-05 InnovationLab GmbH Konjugierte polymere mit thermisch abspaltbaren oxalatseitengruppen
EP3173435A1 (de) 2015-11-26 2017-05-31 Merck Patent GmbH Halbleitende mischungen
WO2017157504A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2017157782A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018007431A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Fused dithienothiophene derivatives and their use as organic semiconductors
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018019688A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018019687A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Di- und oligonukleare metallkomplexe mit tripodalen bidentaten teilliganden sowie deren verwendung in elektronischen vorrichtungen
WO2018029159A1 (en) 2016-08-11 2018-02-15 Merck Patent Gmbh Organic semiconducting compounds comprising a tetraazapyrene core
WO2018041768A1 (en) 2016-08-29 2018-03-08 Merck Patent Gmbh 1,3-dithiolo[5,6-f]benzo-2,1,3-thiadiazole or 1,3-dithiolo[6,7-g]quinoxaline based organic semiconductors
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018099847A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Polymere mit asymmetrischen wiederholungseinheiten
WO2018114882A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Materialien für elektronische vorrichtungen
EP3345984A1 (de) 2013-12-06 2018-07-11 Merck Patent GmbH Verbindungen und organische elektronische vorrichtungen
WO2018134392A1 (en) 2017-01-23 2018-07-26 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3378857A1 (de) 2012-11-12 2018-09-26 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2018185115A1 (en) 2017-04-07 2018-10-11 Merck Patent Gmbh Semiconductor capacitor
EP3406675A1 (de) 2017-05-22 2018-11-28 InnovationLab GmbH Elektronische und optoelektronische vorrichtungen mit anisotropen eigenschaften und verfahren zu deren herstellung
WO2018234220A1 (de) 2017-06-21 2018-12-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019007825A1 (en) 2017-07-03 2019-01-10 Merck Patent Gmbh ORGANIC ELECTROLUMINESCENCE DEVICE
WO2019052978A1 (en) 2017-09-13 2019-03-21 Merck Patent Gmbh ELECTRODES FOR ELECTRONIC DEVICES COMPRISING AN ORGANIC SEMICONDUCTOR LAYER
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020011701A1 (de) 2018-07-11 2020-01-16 Merck Patent Gmbh Formulierung enthaltend ein hochverzweigtes polymer, hochverzweigtes polymer sowie elektrooptische vorrichtung enthaltend dieses hochverzweigte polymer
WO2020036434A1 (ko) 2018-08-16 2020-02-20 주식회사 엘지화학 폴리머, 그 정공 수송 재료로서의 사용, 및 그것을 포함하는 유기 전자 디바이스
WO2020094537A1 (de) 2018-11-07 2020-05-14 Merck Patent Gmbh Polymere mit amingruppenhaltigen wiederholungseinheiten
WO2020114742A1 (en) 2018-12-04 2020-06-11 Merck Patent Gmbh Self-assembled monolayer for electrode modification and device comprising such self-assembled monolayer
WO2020187867A1 (en) 2019-03-19 2020-09-24 Raynergy Tek Inc. Organic semiconductors
WO2020212295A1 (en) 2019-04-16 2020-10-22 Merck Patent Gmbh Formulation containing a crosslinkable polymer
WO2020225169A1 (en) 2019-05-06 2020-11-12 Merck Patent Gmbh Photoactive composition
US10862038B2 (en) 2014-12-30 2020-12-08 Merck Patent Gmbh Compositions comprising at least one polymer and at least one salt, and electroluminescent devices containing said compositions
EP4236652A2 (de) 2015-07-29 2023-08-30 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2023213759A1 (de) 2022-05-04 2023-11-09 Merck Patent Gmbh Polymere enthaltend speziell substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2024115426A1 (de) 2022-12-01 2024-06-06 Merck Patent Gmbh Polymere enthaltend spirotruxenderivate als wiederholungseinheit sowie elektrolumineszenzvorrichtungen enthaltend diese polymere

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050147534A1 (en) 1998-05-05 2005-07-07 Massachusetts Institute Of Technology Emissive sensors and devices incorporating these sensors
ATE261483T1 (de) 1998-05-05 2004-03-15 Massachusetts Inst Technology Lichtemittierende polymere und vorrichtungen, die diese enthalten
DE10318096A1 (de) * 2003-04-17 2004-11-11 Covion Organic Semiconductors Gmbh Verfahren zur Molekulargewichtskontrolle bei der Synthese von Poly(arylenvinylenen)
JP4785529B2 (ja) * 2003-06-05 2011-10-05 日立化成工業株式会社 エレクトロルミネセンス材料の精製方法、エレクトロルミネセンス材料及びエレクトロルミネセンス素子
DE10355786A1 (de) * 2003-11-26 2005-06-30 Covion Organic Semiconductors Gmbh Konjugierte Polymere, deren Darstellung und Verwendung
KR100682860B1 (ko) * 2004-01-27 2007-02-15 삼성에스디아이 주식회사 스피로플루오렌계 고분자 및 이를 이용한 유기 전계 발광소자
DE102004032527A1 (de) * 2004-07-06 2006-02-02 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere
DE102004034140A1 (de) * 2004-07-15 2006-02-23 Covion Organic Semiconductors Gmbh Verwendung von Polymeren für Up-conversion und Vorrichtungen zur Up-conversion
WO2006034081A2 (en) 2004-09-17 2006-03-30 Massachusetts Institute Of Technology Polymers for analyte detection
JP5023455B2 (ja) * 2005-03-28 2012-09-12 大日本印刷株式会社 有機薄膜太陽電池の製造方法および有機薄膜太陽電池
KR101289923B1 (ko) 2005-05-03 2013-07-25 메르크 파텐트 게엠베하 유기 전계발광 장치 및 그에 사용되는 붕산 및 보린산유도체
DE102005037734B4 (de) * 2005-08-10 2018-02-08 Merck Patent Gmbh Elektrolumineszierende Polymere, ihre Verwendung und bifunktionelle monomere Verbindungen
US7671166B2 (en) * 2005-11-22 2010-03-02 Massachusetts Institute Of Technology High internal free volume compositions for low-k dielectric and other applications
DE102005055866A1 (de) * 2005-11-23 2007-05-24 Hte Ag The High Throughput Experimentation Company Verfahren zur Herstellung von Aryl-Aryl gekoppelter Verbindungen
US7795653B2 (en) * 2005-12-27 2010-09-14 E. I. Du Pont De Nemours And Company Electronic device including space-apart radiation regions and a process for forming the same
JP5545383B2 (ja) * 2006-07-18 2014-07-09 日立化成株式会社 有機エレクトロニクス素子の製造方法及び有機エレクトロルミネッセンス素子の製造方法
JP5245285B2 (ja) * 2006-07-18 2013-07-24 日立化成株式会社 共役ポリマーの製造方法
CA2657126A1 (en) 2006-07-28 2008-01-31 Ciba Holding Inc. Novel polymers
DE102006035041A1 (de) * 2006-07-28 2008-01-31 Merck Patent Gmbh 1,4-Bis(2-thienylvinyl)benzolderivate und ihre Verwendung
US7547757B2 (en) * 2006-08-01 2009-06-16 Headwaters Technology Innovation, Llc Methods for manufacturing aryl-aryl coupled polymers
JP5256643B2 (ja) * 2006-09-12 2013-08-07 日立化成株式会社 共役ポリマーの製造方法
US8283423B2 (en) 2006-09-29 2012-10-09 Massachusetts Institute Of Technology Polymer synthetic technique
US7687601B2 (en) * 2006-10-03 2010-03-30 Headwaters Technology Innovation, Llc Methods for purifying polymers using solid scavengers
US8802447B2 (en) 2006-10-05 2014-08-12 Massachusetts Institute Of Technology Emissive compositions with internal standard and related techniques
US20090215189A1 (en) 2006-10-27 2009-08-27 Massachusetts Institute Of Technology Sensor of species including toxins and chemical warfare agents
JP5281800B2 (ja) * 2007-02-01 2013-09-04 住友化学株式会社 ブロック共重合体並びにそれを用いた組成物、液状組成物、発光性薄膜及び高分子発光素子
JP2008208358A (ja) * 2007-02-01 2008-09-11 Sumitomo Chemical Co Ltd ブロック共重合体および高分子発光素子
US20110173758A1 (en) * 2008-06-20 2011-07-21 Ricky Jay Fontaine Inflatable mattress and method of operating same
IT1393059B1 (it) * 2008-10-22 2012-04-11 Eni Spa Copolimeri pi-coniugati a basso gap contenenti unita' benzotriazoliche
WO2010136352A1 (en) 2009-05-27 2010-12-02 Basf Se A process for polymerising (hetero)aromatic compounds
CN102161750B (zh) * 2010-02-24 2013-06-12 海洋王照明科技股份有限公司 含蒽和苯并噻二唑类共聚物及其制备方法和应用
JP2012214704A (ja) * 2011-03-29 2012-11-08 Sumitomo Chemical Co Ltd 芳香族ポリマーの製造方法
JP2012214707A (ja) * 2011-03-29 2012-11-08 Sumitomo Chemical Co Ltd 芳香族ポリマーの製造方法
EP2730554A4 (de) * 2011-06-10 2015-04-15 Univ Nagoya Nat Univ Corp Verfahren zur herstellung einer mit einer arylgruppe substituierten polycyclischen aromatischen verbindung
CN102942555A (zh) * 2012-10-15 2013-02-27 安徽师范大学 一类芳香基取代噻吩的制备方法
CN105612164A (zh) * 2013-10-02 2016-05-25 默克专利有限公司 用于oled中的含硼化合物
CN107001171B (zh) 2014-11-26 2020-12-22 住友化学株式会社 化合物的制造方法
EP3455326B1 (de) 2016-05-11 2021-02-24 Merck Patent GmbH Zusammensetzungen für elektrochemische zellen
WO2018220785A1 (ja) * 2017-06-01 2018-12-06 住友化学株式会社 高分子化合物の製造方法
JP7330018B2 (ja) * 2018-12-06 2023-08-21 住友化学株式会社 高分子化合物の製造方法
JP7214497B2 (ja) * 2019-02-14 2023-01-30 国立大学法人東海国立大学機構 輪状化合物の製造方法
GB2588100B (en) * 2019-10-04 2022-09-07 Sumitomo Chemical Co Process of forming a conjugated polymer
JP7365869B2 (ja) 2019-11-21 2023-10-20 住友化学株式会社 高分子化合物を含む組成物、該高分子化合物の製造方法及び該高分子化合物を用いてなる発光素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919930A (en) * 1994-07-28 1999-07-06 Hoechst Aktiengesellschaft Process for cross-coupling aromatic boron compounds with aromatic halogen compounds or perfluoroalkylsulfonates
DE19846768A1 (de) * 1998-10-10 2000-04-20 Aventis Res & Tech Gmbh & Co Konjugierte Polymere enthaltend 2,7-Fluorenyleinheiten mit verbesserten Eigenschaften

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3719851A1 (de) * 1987-06-13 1988-12-29 Bayer Ag Vinylencopolymerisate
CA2130004C (en) * 1992-03-06 2007-04-24 Matthew L. Marrocco, Iii Rigid-rod polymers
DE4236103A1 (de) * 1992-10-26 1994-04-28 Hoechst Ag Verfahren zur Kreuzkupplung von aromatischen Boronsäuren mit aromatischen Halogenverbindungen oder Perfluoralkylsulfonaten
DE4423061C1 (de) * 1994-07-01 1996-01-18 Hoechst Ag Verfahren zur Herstellung von Biphenylen mit Palladacyclen als Katalysatoren
CN1255123A (zh) * 1997-04-09 2000-05-31 联邦科学和工业研究组织 利用二硼衍生物共价偶联有机化合物的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919930A (en) * 1994-07-28 1999-07-06 Hoechst Aktiengesellschaft Process for cross-coupling aromatic boron compounds with aromatic halogen compounds or perfluoroalkylsulfonates
DE19846768A1 (de) * 1998-10-10 2000-04-20 Aventis Res & Tech Gmbh & Co Konjugierte Polymere enthaltend 2,7-Fluorenyleinheiten mit verbesserten Eigenschaften

Cited By (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910687B2 (en) 2002-10-25 2011-03-22 Merck Patent Gmbh Conjugated polymers containing arylamine units, the representation thereof and the use of the same
US7666956B2 (en) 2003-05-30 2010-02-23 Merck Patent Gmbh Polymer
US7754841B2 (en) 2003-06-23 2010-07-13 Merck Patent Gmbh Polymer
EP1927610A2 (de) 2003-08-12 2008-06-04 Merck Patent GmbH Prozeß zur Herstellung von Aryl- oder Heteroarylamin-Boronsäurederivaten
JP2007501883A (ja) * 2003-08-12 2007-02-01 メルク パテント ゲーエムベーハー 共役コポリマー、説明とその使用
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
US7893172B2 (en) 2003-08-19 2011-02-22 Merck Patent Gmbh Oligomer and polymer comprising triphenyl phosphine units
WO2005017065A1 (en) * 2003-08-19 2005-02-24 Covion Organic Semiconductors Gmbh Oligomer and polymer comprising triphenyl phosphine units
CN1836024B (zh) * 2003-08-19 2011-03-16 默克专利有限公司 含有三苯基膦单元的低聚物和聚合物
US7901766B2 (en) 2003-09-04 2011-03-08 Merck Patent Gmbh Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer
US8044217B2 (en) 2003-09-20 2011-10-25 Merck Patent Gmbh White-emitting copolymers, representation, and use thereof
US7696284B2 (en) 2003-09-20 2010-04-13 Merck Patent Gmbh White-emitting copolymers, representation and use thereof
US7767785B2 (en) 2003-09-20 2010-08-03 Merck Patent Gmbh Conjugated polymers, their preparation and use thereof
US8173276B2 (en) 2003-10-22 2012-05-08 Merck Patent Gmbh Materials for electroluminescence and the utilization thereof
US7659540B2 (en) 2003-10-22 2010-02-09 Merck Patent Gmbh Materials for electroluminescence and the utilization thereof
EP2366752A2 (de) 2003-10-22 2011-09-21 Merck Patent GmbH Neue Materialien für die Elektrolumineszenz und deren Verwendung
TWI381770B (zh) * 2004-02-12 2013-01-01 Sony Chem & Inf Device Corp Electroluminescent polymers and organic electroluminescent elements
US7947382B2 (en) 2004-04-26 2011-05-24 Merck Patent Gmbh Electroluminescent polymers and the use thereof
US8679644B2 (en) 2004-04-26 2014-03-25 Merck Patent Gmbh Electroluminescent polymers containing planar arylamine units, the preparation and use thereof
US7488849B2 (en) 2004-06-10 2009-02-10 Semiconductor Energy Laboratory Co., Ltd. Benzidine derivative, and light-emitting device and electric appliance using the benzidine derivative as the hole transporting material
JP2006022089A (ja) * 2004-06-10 2006-01-26 Semiconductor Energy Lab Co Ltd ベンジジン誘導体、正孔輸送材料、及びこれらの誘導体または正孔輸送材料を用いた発光素子、発光装置、電子機器
WO2005121064A1 (en) * 2004-06-10 2005-12-22 Semiconductor Energy Laboratory Co., Ltd. Benzidine derivative, and light-emitting device and electric appliance using the benzidine derivative as the hole transporting material
US7592622B2 (en) 2004-08-11 2009-09-22 Merck Patent Gmbh Polymers for use in organic electroluminescent devices
US9109081B2 (en) 2005-02-16 2015-08-18 Sumitomo Chemical Company, Limited Method for producing aromatic polymer
US8501902B2 (en) 2005-08-16 2013-08-06 Merck Patent Gmbh Process for the polymerisation of thiophene or selenophene compounds
EP1754736A1 (de) 2005-08-16 2007-02-21 Merck Patent GmbH Verfahren zur Polymerisation von Thiophen- oder Selenophenderivaten
EP2273512A2 (de) 2005-12-17 2011-01-12 Merck Patent GmbH Konjugierte Polymere enthaltend Triarylamin-arylvinylen-einheiten, deren Darstellung und Verwendung
US7799875B2 (en) 2005-12-17 2010-09-21 Merck Patent Gmbh Triarylamine-arylvinylene moiety-containing conjugated polymers, their production and use
US8075943B2 (en) * 2005-12-27 2011-12-13 Hitachi Chemical Co., Ltd. Purification process for organic electronics material
WO2007085377A2 (de) 2006-01-26 2007-08-02 Merck Patent Gmbh Elektrolumineszierende materialien und deren verwendung
DE112007000699T5 (de) 2006-05-12 2009-06-04 Merck Patent Gmbh Auf Indenofluorenpolymeren basierende organische Halbleitermaterialien
US7790057B2 (en) 2006-07-11 2010-09-07 Merck Patent Gmbh Electroluminescent polymers and use thereof
US8637853B2 (en) 2007-10-24 2014-01-28 Merck Patent Gmbh Optoelectronic device
WO2009053088A1 (de) 2007-10-24 2009-04-30 Merck Patent Gmbh Optoelektronische vorrichtung
DE112009001505T5 (de) 2008-08-18 2011-07-14 Merck Patent GmbH, 64293 Indacenodithiophen- und Indacenodiselenophen-Polymere und ihre Verwendung als organische Halbleiter
DE102008044868A1 (de) 2008-08-29 2010-03-04 Merck Patent Gmbh Elektrolumineszierende Polymere, Verfahren zu ihrer Herstellung sowie ihre Verwendung
US8580395B2 (en) 2008-08-29 2013-11-12 Merck Patent Gmbh Electroluminescent polymers, method for the production thereof, and use thereof
DE102008045662A1 (de) 2008-09-03 2010-03-04 Merck Patent Gmbh Optoelektronische Vorrichtung
DE102008045664A1 (de) 2008-09-03 2010-03-04 Merck Patent Gmbh Optoelektronische Vorrichtung
DE102008045663A1 (de) 2008-09-03 2010-03-04 Merck Patent Gmbh Fluorverbrückte Assoziate für optoelektronische Anwendungen
DE112009001782T5 (de) 2008-09-19 2011-07-28 Merck Patent GmbH, 64293 Von Bis(Thienocyclopenta) benzothiadiazol abgeleitete Polymere und ihre Verwendung als organische Halbleiter
DE112009001784T5 (de) 2008-09-19 2011-07-28 Merck Patent GmbH, 64293 Von Benzo-bis(siloothiophen)abgeleitete Polymere und ihre Verwendung als organische Halbleiter
DE102008049037A1 (de) 2008-09-25 2010-04-22 Merck Patent Gmbh Neue Polymere mit niedriger Polydispersität
US9006503B2 (en) 2009-01-23 2015-04-14 Merck Patent Gmbh Organic electroluminescence devices containing substituted benzo[C]phenanthrenes
US8710284B2 (en) 2009-01-23 2014-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices containing substituted 10-benzo[c]phenanthrenes
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2010083869A2 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US9728724B2 (en) 2009-02-27 2017-08-08 Merck Patent Gmbh Polymer containing aldehyde groups, reaction and crosslinking of this polymer, crosslinked polymer, and electroluminescent device comprising this polymer
US9315617B2 (en) 2009-02-27 2016-04-19 Merck Patent Gmbh Crosslinkable and crosslinked polymers, method for the production thereof, and use thereof
US9156939B2 (en) 2009-02-27 2015-10-13 Merck Patent Gmbh Polymer containing aldehyde groups, reaction and crosslinking of this polymer, crosslinked polymer, and electroluminescent device comprising this polymer
DE102009010713A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
WO2010097156A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Vernetzbare und vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
WO2010097155A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer
DE102009010714A1 (de) 2009-02-27 2010-09-02 Merck Patent Gmbh Vernetzbare und vernetzte Polymere, Verfahren zu deren Herstellung sowie deren Verwendung
WO2010136110A2 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymere, die substituierte indenofluorenderivate als struktureinheit enthalten, verfahren zu deren herstellung sowie deren verwendung
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
DE102009023156A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymere, die substituierte Indenofluorenderivate als Struktureinheit enthalten, Verfahren zu deren Herstellung sowie deren Verwendung
DE102009030847A1 (de) 2009-06-26 2010-12-30 Merck Patent Gmbh Polymere enthaltend substituierte Anthracenyleinheiten, Blends enthaltend diese Polymere sowie Vorrichtungen enthaltend diese Polymere oder Blends
WO2010149258A1 (de) * 2009-06-26 2010-12-29 Merck Patent Gmbh Polymere enthaltend substituierte anthracenyleinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
DE102009030848A1 (de) 2009-06-26 2011-02-03 Merck Patent Gmbh Polymere enthaltend Struktureinheiten, die Alkylalkoxygruppen aufweisen, Blends enthaltend diese Polymere sowie optoelektronische Vorrichtungen enthaltend diese Polymere und Blends
US8557953B2 (en) 2009-06-26 2013-10-15 Merck Patent Gmbh Polymers comprising substituted anthracenyl units, blends comprising these polymers, and devices comprising these polymers or blends
DE102009034194A1 (de) 2009-07-22 2011-01-27 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
WO2011009522A2 (de) 2009-07-22 2011-01-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011018144A2 (en) 2009-08-12 2011-02-17 Merck Patent Gmbh Phenanthro[1,10,9,8-c,d,e,f,g]carbazole polymers and their use as organic semiconductors
WO2011054442A2 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen
DE102009053191A1 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE102009052428A1 (de) 2009-11-10 2011-05-12 Merck Patent Gmbh Verbindung für elektronische Vorrichtungen
WO2011057701A1 (de) 2009-11-10 2011-05-19 Merck Patent Gmbh Organische verbindungen für elektroluminiszenz vorrichtungen
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
DE102009059985A1 (de) 2009-12-22 2011-07-07 Merck Patent GmbH, 64293 Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer
DE102010004803A1 (de) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materialien für organische Elektrolumineszenzvorrichtungen
WO2011085781A1 (de) 2010-01-16 2011-07-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102010005697A1 (de) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Verbindungen für elektronische Vorrichtungen
WO2011088877A1 (de) 2010-01-25 2011-07-28 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2011091946A1 (de) 2010-01-30 2011-08-04 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung mit integrierter schicht zur farbkonvertierung
DE102010006280A1 (de) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 Farbkonvertierung
DE102010007938A1 (de) 2010-02-12 2011-10-06 Merck Patent Gmbh Elektrolumineszierende Polymere, Verfahren zu ihrer Herstellung sowie ihre Verwendung
WO2011098205A1 (de) 2010-02-12 2011-08-18 Merck Patent Gmbh Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
WO2011098113A2 (en) 2010-02-15 2011-08-18 Merck Patent Gmbh Semiconducting polymers
EP2631230A1 (de) 2010-02-15 2013-08-28 Merck Patent GmbH Halbleitende Polymere
WO2011103953A1 (de) 2010-02-24 2011-09-01 Merck Patent Gmbh Fluor-fluor assoziate
DE102010009193B4 (de) 2010-02-24 2022-05-19 MERCK Patent Gesellschaft mit beschränkter Haftung Zusammensetzung enthaltend Fluor-Fluor Assoziate, Verfahren zu deren Herstellung, deren Verwendung sowie organische elektronische Vorrichtung diese enthaltend
DE102010009903A1 (de) 2010-03-02 2011-09-08 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2011107186A2 (de) 2010-03-02 2011-09-09 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011116866A1 (en) 2010-03-24 2011-09-29 Merck Patent Gmbh Polymers of 8,9-dihydrobenzo[def]carbazole and their use as organic semiconductors
WO2011128017A1 (de) 2010-04-14 2011-10-20 Merck Patent Gmbh Überbrückte triarylamine und -phosphine als materialien für elektronische vorrichtungen
DE102010014933A1 (de) 2010-04-14 2011-10-20 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE112011101363T5 (de) 2010-04-19 2013-02-07 Merck Patent Gmbh Polymere des Benzodithiophens und ihre Verwendung als organische Halbleiter
EP3243818A1 (de) 2010-04-19 2017-11-15 Merck Patent GmbH Benzodithiophenpolymere und deren verwendung als organische halbleiter
WO2011131280A1 (en) 2010-04-19 2011-10-27 Merck Patent Gmbh Polymers of benzodithiophene and their use as organic semiconductors
EP3309236A1 (de) 2010-05-27 2018-04-18 Merck Patent GmbH Zusammensetzungen mit quantenpunkten
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
WO2011157346A1 (de) 2010-06-18 2011-12-22 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
DE102010024335A1 (de) 2010-06-18 2011-12-22 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2011160757A1 (de) 2010-06-22 2011-12-29 Merck Patent Gmbh Materialien für elektronische vorrichtungen
DE102010024542A1 (de) 2010-06-22 2011-12-22 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
WO2012003919A2 (en) 2010-07-08 2012-01-12 Merck Patent Gmbh Semiconducting polymers
DE112011102301T5 (de) 2010-07-09 2013-05-16 Merck Patent Gmbh Halbleiterpolymere
WO2012013310A1 (de) 2010-07-29 2012-02-02 Merck Patent Gmbh Polymere enthaltend substituierte benzodithiopheneinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
DE102010032737A1 (de) 2010-07-29 2012-02-02 Merck Patent Gmbh Polymere enthaltend substituierte Benzodithiopheneinheiten, Blends enthaltend diese Polymere sowie Vorrichtungen enthaltend diese Polymere oder Blends
DE102010033080A1 (de) 2010-08-02 2012-02-02 Merck Patent Gmbh Polymere mit Struktureinheiten, die Elektronen-Transport-Eigenschaften aufweisen
EP2889320A2 (de) 2010-08-02 2015-07-01 Merck Patent GmbH Polymers mit Struktureinheiten, die Elektronen-Transport-Eigenschaften aufweisen
WO2012016627A2 (de) 2010-08-02 2012-02-09 Merck Patent Gmbh Polymere mit struktureinheiten, die elektronen-transport-eigenschaften aufweisen
DE102010033548A1 (de) 2010-08-05 2012-02-09 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
WO2012016630A1 (de) 2010-08-05 2012-02-09 Merck Patent Gmbh Materialien für elektronische vorrichtungen
DE102010033777A1 (de) 2010-08-09 2012-02-09 Merck Patent Gmbh Polymere mit Carbazol-Struktureinheiten
WO2012019724A1 (de) 2010-08-09 2012-02-16 Merck Patent Gmbh Polymere mit carbazol-struktureinheiten
DE102010033778A1 (de) 2010-08-09 2012-02-09 Merck Patent Gmbh Polymere mit Carbazol-Struktureinheiten
WO2012019725A1 (de) 2010-08-09 2012-02-16 Merck Patent Gmbh Polymere mit carbazol-struktureinheiten
WO2012028246A1 (en) 2010-09-04 2012-03-08 Merck Patent Gmbh Conjugated polymers
DE112011102915T5 (de) 2010-09-04 2013-07-11 Merck Patent Gmbh Konjugierte Polymere
WO2012034626A1 (de) 2010-09-14 2012-03-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102010045369A1 (de) 2010-09-14 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2012048778A1 (de) 2010-10-14 2012-04-19 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102010048498A1 (de) 2010-10-14 2012-04-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
CN102452868A (zh) * 2010-10-15 2012-05-16 李坚 Lj反应在钯催化交叉偶联反应中的应用
WO2012048780A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
DE102010048607A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
CN102452868B (zh) * 2010-10-15 2016-05-18 武汉工程大学 Lj反应在钯催化交叉偶联反应中的应用
WO2012052099A1 (en) 2010-10-20 2012-04-26 Merck Patent Gmbh Conjugated polymers
DE112011103524T5 (de) 2010-10-20 2013-10-17 Merck Patent Gmbh Konjugierte Polymere
DE112011104436T5 (de) 2010-12-17 2013-09-12 Merck Patent Gmbh Konjugierte Polymere
WO2012079675A2 (en) 2010-12-17 2012-06-21 Merck Patent Gmbh Conjugated polymers
WO2012084114A1 (de) 2010-12-23 2012-06-28 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
DE102010056151A1 (de) 2010-12-28 2012-06-28 Merck Patent Gmbh Materiallen für organische Elektrolumineszenzvorrichtungen
WO2012089294A1 (de) 2010-12-28 2012-07-05 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102011011539A1 (de) 2011-02-17 2012-08-23 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
WO2012110182A1 (de) 2011-02-17 2012-08-23 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012123060A1 (en) 2011-03-11 2012-09-20 Merck Patent Gmbh Conjugated polymers
WO2012139692A1 (de) 2011-04-13 2012-10-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2012139693A1 (de) 2011-04-13 2012-10-18 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012143081A1 (en) 2011-04-18 2012-10-26 Merck Patent Gmbh Conjugated polymers
WO2012143079A1 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012149999A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012156022A1 (en) 2011-05-16 2012-11-22 Merck Patent Gmbh Conjugated polymers
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2012171609A1 (de) 2011-06-17 2012-12-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102011104745A1 (de) 2011-06-17 2012-12-20 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2013000532A1 (en) 2011-06-28 2013-01-03 Merck Patent Gmbh Indaceno derivatives as organic semiconductors
WO2013007334A2 (en) 2011-07-08 2013-01-17 Merck Patent Gmbh Conjugated polymers
WO2013010614A2 (en) 2011-07-19 2013-01-24 Merck Patent Gmbh Organic semiconductors
WO2013010615A1 (en) 2011-07-21 2013-01-24 Merck Patent Gmbh Conjugated polymers
WO2013013753A2 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Polymers and oligomers with functionalized side groups
WO2013017189A1 (de) 2011-07-29 2013-02-07 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013017192A1 (de) 2011-08-03 2013-02-07 Merck Patent Gmbh Materialien für elektronische vorrichtungen
EP3439065A1 (de) 2011-08-03 2019-02-06 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2013045014A1 (en) 2011-09-28 2013-04-04 Merck Patent Gmbh Conjugated polymers
WO2013056775A1 (en) 2011-10-20 2013-04-25 Merck Patent Gmbh Organic semiconductors
WO2013060418A1 (en) 2011-10-27 2013-05-02 Merck Patent Gmbh Materials for electronic devices
WO2013060411A1 (de) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperverzweigte polymere, verfahren zu deren herstellung sowie deren verwendung in elektronischen vorrichtungen
WO2013060407A1 (de) 2011-10-29 2013-05-02 Merck Patent Gmbh Hautaufheller in der phototherapie
DE102011117364A1 (de) 2011-10-29 2013-05-02 Merck Patent Gmbh Hautaufheller in der Phototherapie
WO2013087142A1 (de) 2011-12-12 2013-06-20 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013087162A1 (de) 2011-12-13 2013-06-20 Merck Patent Gmbh Organische sensibilisatoren für die aufwärtskonvers ion (up-conversion)
DE102011121022A1 (de) 2011-12-13 2013-06-13 Merck Patent Gmbh Organische Sensibilisatoren für Up- Conversion
DE102012022880A1 (de) 2011-12-22 2013-06-27 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend organische Schichten
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
EP3235892A1 (de) 2012-02-14 2017-10-25 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
EP3101088A1 (de) 2012-02-14 2016-12-07 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
US9178166B2 (en) 2012-02-15 2015-11-03 Merck Patent Gmbh Conjugated polymers
WO2013120591A2 (en) 2012-02-15 2013-08-22 Merck Patent Gmbh Conjugated polymers
WO2013120590A1 (en) 2012-02-15 2013-08-22 Merck Patent Gmbh Conjugated polymers
WO2013120575A1 (en) 2012-02-16 2013-08-22 Merck Patent Gmbh Organic semiconducting polymers
WO2013124029A2 (de) 2012-02-22 2013-08-29 Merck Patent Gmbh Polymere enthaltend dibenzocycloheptan-struktureinheiten
WO2013135339A2 (en) 2012-03-16 2013-09-19 Merck Patent Gmbh Conjugated polymers
WO2013156130A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Polymere enthaltend substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2013156125A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Vernetzbare sowie vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
WO2013156129A1 (de) 2012-04-17 2013-10-24 Merck Patent Gmbh Polymere enthaltend substituierte oligo-triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2013159863A1 (en) 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers
WO2013159862A1 (en) 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers
WO2013182263A1 (de) 2012-06-06 2013-12-12 Merck Patent Gmbh Phenanthrenverbindungen für organische elektronische vorrichtungen
DE102012011335A1 (de) 2012-06-06 2013-12-12 Merck Patent Gmbh Verbindungen für Organische Elekronische Vorrichtungen
WO2014000860A1 (de) 2012-06-29 2014-01-03 Merck Patent Gmbh Polymere enthaltend 2,7-pyren-struktureinheiten
WO2014005667A1 (en) 2012-07-02 2014-01-09 Merck Patent Gmbh Conjugated polymers
DE202013012401U1 (de) 2012-07-23 2016-10-12 Merck Patent Gmbh Verbindungen und Organische Elektronische Vorrichtungen
EP3424907A2 (de) 2012-07-23 2019-01-09 Merck Patent GmbH Verbindungen und organische elektronische vorrichtungen
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014015938A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
WO2014029453A1 (en) 2012-08-24 2014-02-27 Merck Patent Gmbh Conjugated polymers
EP3378857A1 (de) 2012-11-12 2018-09-26 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2014082705A1 (de) 2012-11-30 2014-06-05 Merck Patent Gmbh Elektronische vorrichtung
WO2014086457A1 (en) 2012-12-07 2014-06-12 Merck Patent Gmbh Polymer comprising a naphthalene group and its use in organic electronic devices
WO2014094955A1 (en) 2012-12-18 2014-06-26 Merck Patent Gmbh Polymer comprising a thiadiazol group, the production of such polymer and its use in organic electronic devices
EP2939283A1 (de) * 2012-12-28 2015-11-04 Merck Patent GmbH Zusammensetzung mit polymeren organischen halbleiterverbindungen
WO2014106524A2 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014202184A1 (en) 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers
WO2015014427A1 (de) 2013-07-29 2015-02-05 Merck Patent Gmbh Elektrooptische vorrichtung und deren verwendung
WO2015014429A1 (de) 2013-07-29 2015-02-05 Merck Patent Gmbh Elekrolumineszenzvorrichtung
WO2015036075A1 (en) 2013-09-11 2015-03-19 Merck Patent Gmbh Cyclohexadiene fullerene derivatives
WO2015043722A1 (en) 2013-09-30 2015-04-02 Merck Patent Gmbh Azaborinine derivatives, their synthesis and use in organic electronic devices
WO2015058827A1 (en) 2013-10-22 2015-04-30 Merck Patent Gmbh Conjugated polymers
WO2015067336A2 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Conjugated polymers
WO2015078551A1 (en) 2013-11-28 2015-06-04 Merck Patent Gmbh Novel polycyclic polymer comprising thiophene units, a method of producing and uses of such polymer
EP3345984A1 (de) 2013-12-06 2018-07-11 Merck Patent GmbH Verbindungen und organische elektronische vorrichtungen
EP3693437A1 (de) 2013-12-06 2020-08-12 Merck Patent GmbH Verbindungen und organische elektronische vorrichtungen
WO2015086108A1 (de) 2013-12-12 2015-06-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015139802A1 (en) 2014-03-17 2015-09-24 Merck Patent Gmbh Organic semiconducting compounds
WO2015149905A1 (en) 2014-03-31 2015-10-08 Merck Patent Gmbh Fused bis-aryl fullerene derivatives
WO2015192942A1 (en) 2014-06-17 2015-12-23 Merck Patent Gmbh Fullerene derivatives
EP4008708A1 (de) 2014-06-17 2022-06-08 Nano-C, Inc. Fullerenderivate für organische halbleiter
WO2016015804A1 (en) 2014-07-29 2016-02-04 Merck Patent Gmbh Tetra-heteroaryl indacenodithiophene-based polycyclic polymers and their use
WO2016074755A1 (de) 2014-11-11 2016-05-19 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10862038B2 (en) 2014-12-30 2020-12-08 Merck Patent Gmbh Compositions comprising at least one polymer and at least one salt, and electroluminescent devices containing said compositions
WO2016119992A1 (en) 2015-01-30 2016-08-04 Merck Patent Gmbh Materials for electronic devices
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017012694A1 (en) 2015-07-23 2017-01-26 Merck Patent Gmbh Phenyl derivatives substituted with at least two electron acceptors and at least two electron donors for use in organic electronic devices
EP4236652A2 (de) 2015-07-29 2023-08-30 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
EP3151297A1 (de) 2015-09-30 2017-04-05 InnovationLab GmbH Konjugierte polymere mit thermisch abspaltbaren oxalatseitengruppen
EP3173435A1 (de) 2015-11-26 2017-05-31 Merck Patent GmbH Halbleitende mischungen
WO2017088955A1 (en) 2015-11-26 2017-06-01 Merck Patent Gmbh Semiconducting mixtures
WO2017157504A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2017157782A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
EP3978477A2 (de) 2016-06-03 2022-04-06 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3792235A1 (de) 2016-07-08 2021-03-17 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
WO2018007431A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Fused dithienothiophene derivatives and their use as organic semiconductors
WO2018019687A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Di- und oligonukleare metallkomplexe mit tripodalen bidentaten teilliganden sowie deren verwendung in elektronischen vorrichtungen
WO2018019688A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
DE112017003977T5 (de) 2016-08-11 2019-07-04 Merck Patent Gmbh Organische halbleiterverbindungen umfassend einen tetraazapyren-kern
WO2018029159A1 (en) 2016-08-11 2018-02-15 Merck Patent Gmbh Organic semiconducting compounds comprising a tetraazapyrene core
WO2018041768A1 (en) 2016-08-29 2018-03-08 Merck Patent Gmbh 1,3-dithiolo[5,6-f]benzo-2,1,3-thiadiazole or 1,3-dithiolo[6,7-g]quinoxaline based organic semiconductors
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018099847A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Polymere mit asymmetrischen wiederholungseinheiten
WO2018114882A1 (de) 2016-12-22 2018-06-28 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018134392A1 (en) 2017-01-23 2018-07-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018185115A1 (en) 2017-04-07 2018-10-11 Merck Patent Gmbh Semiconductor capacitor
EP3406675A1 (de) 2017-05-22 2018-11-28 InnovationLab GmbH Elektronische und optoelektronische vorrichtungen mit anisotropen eigenschaften und verfahren zu deren herstellung
US11271158B2 (en) 2017-05-22 2022-03-08 Innovationlab Gmbh Electronic and optoelectronic devices having anisotropic properties and method for their production
WO2018215319A1 (en) 2017-05-22 2018-11-29 Innovationlab Gmbh Electronic and optoelectronic devices having anisotropic properties and method for their production
WO2018234220A1 (de) 2017-06-21 2018-12-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019007825A1 (en) 2017-07-03 2019-01-10 Merck Patent Gmbh ORGANIC ELECTROLUMINESCENCE DEVICE
WO2019052978A1 (en) 2017-09-13 2019-03-21 Merck Patent Gmbh ELECTRODES FOR ELECTRONIC DEVICES COMPRISING AN ORGANIC SEMICONDUCTOR LAYER
EP4451832A2 (de) 2017-12-20 2024-10-23 Merck Patent GmbH Heteroaromatische verbindungen
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020011701A1 (de) 2018-07-11 2020-01-16 Merck Patent Gmbh Formulierung enthaltend ein hochverzweigtes polymer, hochverzweigtes polymer sowie elektrooptische vorrichtung enthaltend dieses hochverzweigte polymer
US12071508B2 (en) 2018-08-16 2024-08-27 Lg Chem, Ltd. Polymers, use thereof as hole transport material, and organic electronic devices comprising same
WO2020036434A1 (ko) 2018-08-16 2020-02-20 주식회사 엘지화학 폴리머, 그 정공 수송 재료로서의 사용, 및 그것을 포함하는 유기 전자 디바이스
WO2020094537A1 (de) 2018-11-07 2020-05-14 Merck Patent Gmbh Polymere mit amingruppenhaltigen wiederholungseinheiten
WO2020114742A1 (en) 2018-12-04 2020-06-11 Merck Patent Gmbh Self-assembled monolayer for electrode modification and device comprising such self-assembled monolayer
WO2020187867A1 (en) 2019-03-19 2020-09-24 Raynergy Tek Inc. Organic semiconductors
WO2020212295A1 (en) 2019-04-16 2020-10-22 Merck Patent Gmbh Formulation containing a crosslinkable polymer
WO2020225169A1 (en) 2019-05-06 2020-11-12 Merck Patent Gmbh Photoactive composition
WO2023213759A1 (de) 2022-05-04 2023-11-09 Merck Patent Gmbh Polymere enthaltend speziell substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere
WO2024115426A1 (de) 2022-12-01 2024-06-06 Merck Patent Gmbh Polymere enthaltend spirotruxenderivate als wiederholungseinheit sowie elektrolumineszenzvorrichtungen enthaltend diese polymere

Also Published As

Publication number Publication date
KR20050044678A (ko) 2005-05-12
CN1610712A (zh) 2005-04-27
DE10159946A1 (de) 2003-06-18
JP2005511807A (ja) 2005-04-28
EP1458783B1 (de) 2008-05-07
US20040260090A1 (en) 2004-12-23
JP4596779B2 (ja) 2010-12-15
DE50212243D1 (de) 2008-06-19
KR100937126B1 (ko) 2010-01-18
EP1458783A2 (de) 2004-09-22
US6956095B2 (en) 2005-10-18
WO2003048225A3 (de) 2003-11-27
CN1283686C (zh) 2006-11-08
US20050263758A1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
EP1458783B1 (de) Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
EP1123337B1 (de) Konjugierte polymere enthaltend 2,7-fluorenyleinheiten mit verbesserten eigenschaften
EP1537161B1 (de) Prozess zur herstellung von aryl-aryl gekoppelten verbindungen
DE60028103T2 (de) Ein Verfahren zur Herstellung von Poly(3-substituierten)thiophenen
EP1327645B1 (de) Test
DE60035970T2 (de) Polymerherstellung
EP0699699B1 (de) Poly(4,5,9,10-tetrahydropyren-2,7-diyl)-Derivate und ihre Verwendung als Elektrolumineszenzmaterialien
WO2005014689A2 (de) Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
EP2038241B1 (de) Elektrolumineszierende polymere und ihre verwendung
EP1913797A1 (de) Elektrolumineszierende polymere und ihre verwendung
EP1159327B1 (de) Verfahren zur herstellung von derivaten des polyarylenvinylen
EP1161478A1 (de) Triptycen-polymere und -copolymere
DE102004023277A1 (de) Neue Materialmischungen für die Elektrolumineszenz
WO1996017036A1 (de) Konjugierte polymere mit hetero-spiroatomen und ihre verwendung als elektrolumineszenzmaterialien
EP0894107A1 (de) Polymere mit spiroatomen und ihre verwendung als elektrolumineszenzmaterialien
DE19846766A1 (de) Konjugierte Polymere, enthaltend spezielle Fluorenbausteine mit verbesserten Eigenschaften
WO1999024526A1 (de) Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzelementen
EP0885251A1 (de) Substituierte polythiophene, verfahren zu deren herstellung, und deren verwendung
DE4422670A1 (de) Konjugierte Polymere mit Ansateilstrukturen und ihre Verwendung als Elektrolumineszenzmaterialien
EP0894124A1 (de) Konjugierte polymere mit hetero-spiroatomen und ihre verwendung als elektrolumineszenzmaterialien
DE60007759T2 (de) Monomere und sie enthaltende polymere sowie ihre verwendung in organischen elektrolumineszenten elementen
DE60309096T2 (de) Poly(5-aminoquinoxaline); deren Herstellung und Verwendung
DE69433830T2 (de) Verfahren zur Herstellung von Polymeren aus alpha-omega-ungesättigten Verbindungen und die erhaltene hochmolekulare konjugierte Polymere
EP1623471B1 (de) Verfahren zur molekulargewichtskontrolle bei der synthese von poly(arylenvinylenen) und damit hergestellte polymere
DE112005003230B4 (de) Optische Vorrichtungen und ihre Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002792850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003549410

Country of ref document: JP

Ref document number: 20028240049

Country of ref document: CN

Ref document number: 1020047008525

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10495003

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002792850

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002792850

Country of ref document: EP