[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002100136A1 - Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil - Google Patents

Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil Download PDF

Info

Publication number
WO2002100136A1
WO2002100136A1 PCT/JP2002/005179 JP0205179W WO02100136A1 WO 2002100136 A1 WO2002100136 A1 WO 2002100136A1 JP 0205179 W JP0205179 W JP 0205179W WO 02100136 A1 WO02100136 A1 WO 02100136A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper foil
composite
foil
alloy support
Prior art date
Application number
PCT/JP2002/005179
Other languages
French (fr)
Japanese (ja)
Inventor
Naonori Michishita
Mikio Hanafusa
Original Assignee
Nikko Materials Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Company, Limited filed Critical Nikko Materials Company, Limited
Publication of WO2002100136A1 publication Critical patent/WO2002100136A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper

Definitions

  • the present invention improves the handleability of an ultra-thin copper foil, prevents contaminants such as resin powder of a pre-prepared sheet from adhering to the surface of the copper foil, and furthermore, copper or a copper alloy which is effective in preventing scratches and dents due to foreign matter. And a printed circuit board using the composite copper foil.
  • the copper-clad laminate used in Agata and printed corridors is made of copper-foil paper-phenol machine! ⁇ It is formed by laminating on a glass-epoxy shelf and heating it with a press. Pressing it, or by continuously laminating and heating a copper foil roll and resin.
  • a circuit network is formed on the copper-clad laminate through processes such as etching, and a semi-difficult element is mounted to produce a port for electrons ⁇ .
  • the aluminum foil used is usually manufactured by rolling, and the rolling oil used at that time remains and is transferred to the copper foil at the time of bonding, and this causes the resist adhesion during the production of the printed circuit board. The problem of deterioration occurred.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to improve the handleability of ultra-thin copper foil and to prevent contamination of the copper foil surface such as resin powder of a pre-preda sheet on the copper foil surface. Equipped with a copper or copper alloy support (carrier) that can prevent foreign matter from being attached and prevent scratches and dents due to foreign matter, and can also effectively prevent scratches, wrinkles, and breaks during cutting, packing, and transportation. It is an object to obtain a composite copper foil and a printed circuit board using the composite copper foil.
  • Composite copper provided with a copper or copper alloy support, which has a nickel layer covered with an oxide film on the support side between the copper or copper alloy support and the ultra-thin copper foil And a printed circuit board using the composite copper foil.
  • a composite copper foil provided with a copper or copper alloy support as described in 1 above, having a nickel layer of 0.05 to 5.0 m, and a printed circuit board using the composite copper foil.
  • the composite copper foil provided with the copper or copper alloy support according to 1 or 2 above, wherein the thickness of the oxide film of the nickel layer is 25 to 50 OA, and the composite copper foil is used.
  • Printed circuit board provided with the copper or copper alloy support according to 1 or 2 above, wherein the thickness of the oxide film of the nickel layer is 25 to 50 OA, and the composite copper foil is used.
  • the copper or copper alloy support is an electrolytic copper foil or a rolled copper foil.
  • the composite copper foil provided with the copper or copper alloy support of the present invention and the printed substrate using the composite copper foil are first provided with a surface of the copper or copper alloy having a thickness of 0.05 to 5.0 m.
  • a nickel plating layer is formed. Preferred examples of conditions for forming the nickel plating layer are shown below.
  • Nickel concentration 10 to 80 gZL
  • Electrolyte temperature 20-80 ° C
  • An oxidation film is further formed on the surface of the nickel layer.
  • the thickness of this oxide film is desirably 25 to 50 OA.
  • the oxide film can significantly improve the peelability of the ultra-thin copper foil.
  • Anodization is a means for forming an oxide film on this nickel layer. A preferred example of the conditions for forming the oxide film is shown below.
  • Electrolyte temperature 20-50 ° C
  • an ultra-thin copper foil is formed on the oxide film.
  • the thickness of the ultra-thin copper foil is desirably 0.5 to 12 / m.
  • the ultra-thin copper foil is formed by electroplating. One example of preferable conditions for the copper plating is shown below.
  • a composite copper foil provided with a copper or copper alloy support is obtained. Further, the laminated composite copper foil and the resin base material are laminated by pressing or laminating to form a copper-clad laminate. The composite copper foil provided with the copper or copper alloy support is handled. Due to its extremely good properties, it is possible to effectively prevent the occurrence of wrinkles, breaks, and the like, and it is possible to prevent foreign substances from directly adhering to the copper foil surface by covering with a copper or copper alloy support.
  • the copper or copper alloy support is peeled off from the nickel layer portion having an oxide film, and a circuit network is formed by a process such as etching.
  • a copper or copper alloy support which is effective in preventing scratches and dents due to foreign matter on copper-clad laminates, and is also effective in cutting, packing, transporting scratches, wrinkles, breaks, etc. Can be prevented.
  • an electrolytic copper foil or a rolled copper foil can be used as the copper or copper alloy support used in the copper foil of the present invention. Its preferred thickness is between 15 and 70 / m. It is desirable to use thinner electrolytic copper foil or rolled copper foil in terms of cost, but if it is too thin, it cannot be used as a support (carrier) due to its strength, so a certain thickness or more is necessary.
  • the peel strength between the ultra-thin copper foil and the nickel layer having an oxide film layer formed on the surface is 0.002 to 0.5 kg Z cm 2 , and it can be easily peeled.
  • the peel strength in this case indicates a value when the composite copper foil is laminated on a substrate at 150 ° C. or more on the ultra-thin copper foil side.
  • the copper foil surface on which the nickel layer is formed is preferably applied to the glossy surface (S), but may be applied to another surface, that is, the roughened surface (M surface). Also, it may be applied to the copper foil surface which has been subjected to another surface treatment such as plating.
  • copper foil for printed wiring boards is generally subjected to formation of roughened particles, formation of an oxide film, formation of a heat-resistant film, anti-reflection treatment, etc., and these treatments can be applied to the present invention. It encompasses all of these.
  • the copper foil laminating step for example 1 0 ⁇ 3 0 kg / cm 2 about the pressing pressure, pressing temperature 1 7 0 ° C before and after 6 0-1 8 0 min, laminated added heat and pressure I do.
  • the joining between the copper foil and the pre-preda sheet can be sufficiently performed.
  • the composite copper foil provided with a copper or copper alloy support has extremely good nodling properties, so that wrinkles, breaks, and the like do not occur.
  • the present invention is not limited to the above-described pressing step, and has an effect that scratches, foreign substances, wrinkles, breaks, and the like do not occur during normal cutting and packing, and during transportation.
  • the copper or copper alloy support having the nickel layer provided with the oxide film can be easily removed and removed from the ultra-thin copper foil.
  • the foil or sheet as support for copper or copper alloy for the carrier can be recycled.
  • Nickel plating with a thickness of 0.1 zm was performed on the surface of the electrolytic copper foil S having a thickness of 35 m as a support copper metal layer under the conditions of the nickel plating described above. Then, an oxide film of 45 A was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodic oxidation was 10 seconds. Measurement of oxide film thickness was measured with S i 0 2 conversion using Oje electron spectroscopy (hereinafter, the measurement of the oxide film thickness was the same). Further, on the nickel film having an oxide film formed on the support copper metal, copper having a thickness of 5 am was deposited under the conditions of the copper plating.
  • this composite copper foil was laminated on a pre-predator FR-4 and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate.
  • Table 1 shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 1 thus obtained. As shown in Table 1, the exfoliation property between the ultra-thin copper foil and the copper or copper alloy support having a nigger coating was good, wrinkles did not occur, and the handling property was good.
  • Example 2 nickel plating having a thickness of 0.5 ⁇ was performed on the surface of the electrolytic copper foil S having a thickness of 35 m as a support copper metal layer under the above-described nickel plating conditions. Then, an oxide film of 5OA was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodizing was 30 seconds. Further, on the nickel film having an oxide film formed on the support copper metal, copper having a thickness of 7 iim was deposited under the conditions of the copper plating.
  • Example 3 the composite copper foil was laminated on a pre-predator FR-4, and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate.
  • Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 2 thus obtained.
  • the peelability between the ultra-thin copper foil and the copper or copper alloy support having a nickel coating was good, no wrinkles were generated, and the eight-handling property was good. (Example 3)
  • Example 2 In the same manner as in Example 1, a 0.1 m-thick nickel plating was performed on the 35 m-thick electrolytic copper foil S surface as a support copper metal layer under the above-described nickel plating conditions. Then, a 25 A oxide film was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodization was 1 second. Further, on the nickel film having an oxide film formed on the support copper metal, copper having a thickness of 5 m was deposited under the conditions of the copper plating.
  • this composite copper foil was laminated on a pre-predator FR-4, and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate.
  • Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 3 thus obtained. As shown in Table 1, the peelability between the ultra-thin copper foil and the copper or copper alloy support having a nickel coating was good, wrinkles did not occur, and the handling property was good.
  • Example 2 In the same manner as in Example 1, a 0.1 m-thick nickel plating was performed on the 35 / zm-thick electrolytic copper foil S surface as the support copper metal layer under the above-described nickel plating conditions. An oxide film of 46 OA was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodic oxidation was 60 seconds. Further, on the nickel film having an oxidation film formed on the support copper metal, copper having a thickness of 5 m was deposited under the conditions of the copper plating.
  • Example 1 In the same manner as in Example 1, this composite copper foil was laminated on a pre-predator FR-4, and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate.
  • Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 4 obtained in this manner. As shown in Table 1, the releasability between the ultra-thin copper foil and the copper or copper alloy support having the nigger coating was good, wrinkles did not occur, and the handling property was good. (Comparative Example 1)
  • Nickel plating with a thickness of 0.1 m was performed on the surface of the electrolytic copper foil S having a thickness of 35 ⁇ m as a support copper metal layer under the conditions of the nickel plating. Then, a copper having a thickness of 5 m was deposited on the surface of the nickel plating without performing anodic oxidation under the conditions for the copper plating. The thickness of the nickel oxide film without anodic oxidation was 2 OA.
  • Example 1 the composite copper foil was laminated on the pre-predeer FR-4 in the same manner as in Example 1, and pressed at 175 ° C for 30 minutes at 35 kg / cm 2 to obtain a copper-clad laminate.
  • Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Comparative Example 1 thus obtained.
  • Comparative Example 1 had good handling properties and no wrinkles were observed. However, when a peeling test was performed by applying an adhesive tape and peeling it off, it was impossible to peel. Bad result.
  • a nickel plating layer is formed on the surface of the copper or copper alloy support of the present invention, and an oxidation film is further formed on the surface of the nickel layer.
  • the copper-clad laminate printed circuit board
  • the copper-clad laminate is excellent in that a composite copper foil provided with a copper or copper alloy support formed with a foil, and the laminated composite copper foil and a resin base material are laminated by pressing or laminating. It can be seen that it has characteristics. The invention's effect
  • a composite copper foil of the present invention comprising a copper or copper alloy support, a nickel layer provided with an oxide film between the copper or copper alloy support and the ultra-thin copper foil, and the composite copper foil.
  • the printed circuit board used improves the handling of ultra-thin copper foil, prevents contaminants such as resin powder of prepreg from adhering to the copper foil surface, and is effective in preventing scratches and dents due to foreign matter. In addition, it has an excellent effect of preventing the occurrence of scratches, foreign substances, wrinkles, breaks, and the like during normal cutting, packing, and transportation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

A composite copper foil having a copper or copper alloy support body, characterized by comprising a nickel layer covered with oxide film between the copper or copper alloy support body and a very thin copper foil on the support body side, and a printed circuit board using the composite copper foil, whereby the easiness of handling of the very thin copper foil can be improved, contaminants such as resin powder of a prepreg sheet can be prevented from adhering to the surface of the copper foil, damage and dents by foreign matter can be effectively prevented from occurring, and damage, entry of foreign matter, wrinkles, and bending during normal cutting, packaging, and transportation can be prevented from occurring.

Description

明 細 書 銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用したプリント基板 技 分野  Description: Composite copper foil provided with copper or copper alloy support and printed circuit board using the composite copper foil
本発明は、 極薄銅箔のハンドリング性を向上させ、 銅箔表面にプリプレダシート の樹脂粉等の汚染物が付着しないようにし、 さらに異物による傷、 打痕防止に有効 な銅又は銅合金の支持体付複合銅箔及び該複合銅箔を使用したプリント基板に関 する。 背景技術  The present invention improves the handleability of an ultra-thin copper foil, prevents contaminants such as resin powder of a pre-prepared sheet from adhering to the surface of the copper foil, and furthermore, copper or a copper alloy which is effective in preventing scratches and dents due to foreign matter. And a printed circuit board using the composite copper foil. Background art
縣、 プリント回魁板に使用される銅張り積層板は、 銅箔を紙—フエノール機!^ 浸¾ やガラス—エポキシ棚^ 謝に積層し、 プレス装置を用いて加熱.加圧して 形成されたり、銅箔ロールと樹脂謝を連続的にラミネート、加熱して形成されている。 さらにこの銅張り積層板は、 エッチング等の処理を経て回路網を形成し、 さらに半難 装 の素子を搭載することにより電子 β用のポードが作製されている。  The copper-clad laminate used in Agata and printed corridors is made of copper-foil paper-phenol machine! ^ It is formed by laminating on a glass-epoxy shelf and heating it with a press. Pressing it, or by continuously laminating and heating a copper foil roll and resin. In addition, a circuit network is formed on the copper-clad laminate through processes such as etching, and a semi-difficult element is mounted to produce a port for electrons β.
一般に、 プレスやラミネート装置を用いて銅箔を加圧する際に、銅箔の光沢面(S面〉 等に銅箔の切断時に発生した銅の切屑やプリプレダの観^等の異物が付着していると、 前記光沢面が傷付いたり、 異物が接着してしまうという問題があった。 また、 積層後で も装置から綱長り積層板を取り出す 重ね合わせる時などに、 光沢面相互が擦り合わ されて 寸く場合もあった。  In general, when pressing a copper foil using a press or a laminating device, foreign matter such as copper chips generated when cutting the copper foil or the appearance of a pre-preda is attached to the glossy surface (S side) of the copper foil. In addition, there is a problem that the glossy surface may be damaged or foreign matter may adhere to the glossy surface. It was sometimes small.
近年、 電子機器の小型ィ匕の要請から回路幅が著しく小さくなり、 それに伴って銅 張り積層板に使用される銅箔の厚さも 1 2 以下になるなど、 厚さを減少させた 銅箔の需要が大きくなつてきている。  In recent years, the circuit width has become significantly smaller due to the demand for smaller electronic devices, and the thickness of copper foil used for copper-clad laminates has been reduced to 12 or less. Demand is growing.
ところが、銅箔の厚さが 1 2 m以下に減少するとハンドリング性が極めて悪化 する。 上記に述べたプレス及びラミネート工程に限らず、 通常の切断や梱包さらに は運搬中に傷が付いたり、 異物が混入したり、 しわ、 折れ等が発生することが多く なり、 特に銅箔の光沢面ではその影響を強く受けやすいという問題がある。 このように傷、 しわ、 折れ等が発生したものは、 特に光沢面側に発生した場合、 回路の断線や短絡の原因となり、 それはさらにプリント回路基板や電子機器の欠陥 につながり大きな問題となってきている。 However, when the thickness of the copper foil is reduced to 12 m or less, handling becomes extremely poor. Not only in the press and lamination processes described above, but also during normal cutting, packing and transporting, scratches, foreign substances are mixed, wrinkles, breaks, etc. often occur, especially the gloss of copper foil On the other hand, there is a problem that the system is easily affected by the influence. Such scratches, wrinkles, and breaks, especially when they occur on the glossy side, can cause circuit breaks and short circuits, which can lead to defects in printed circuit boards and electronic equipment, which is a major problem. ing.
以上のような銅箔表面の傷、 しわ、 折れ等を防止し、 ハンドリング性を向上させ ようとして、 いくつかの提案がなされている。 その一例を挙げると、 例えばプレス 成形時の加熱温度 (約 1 7 0 ° C) に耐えるポリアミド等の樹脂フィルムを、 接着 剤を用いて銅箔に接着しょうとする提案がある。  Several proposals have been made to prevent the above-mentioned scratches, wrinkles, and breaks on the copper foil surface and to improve the handleability. For example, there is a proposal to bond a resin film made of polyamide or the like that can withstand the heating temperature (about 170 ° C.) during press molding to a copper foil using an adhesive.
しかし、 このような樹脂フィルムでは相当厚いフィルムを使用しない限り、銅箔 のハンドリング性を向上させるほどの強度を得ることができないために、 しわや折 れを効果的に防止できず、 また榭脂ゃ接着剤の熱による膨張 ·収縮により変形する おそれがあり、 さらにフィルムの接着に使用する接着剤が銅箔に残存して汚染の原 因になる場合があり、 必ずしも良好な改善策とは言えなかった。  However, with such a resin film, wrinkles and folds cannot be effectively prevented because a strength sufficient to improve the handleability of the copper foil cannot be obtained unless a considerably thick film is used.ゃ The adhesive may be deformed due to expansion and contraction due to heat, and the adhesive used for bonding the film may remain on the copper foil and cause contamination, which is not necessarily a good improvement measure. Did not.
また、樹脂フィルムの代わりにアルミニウム箔を使用し、 接着剤を用いて銅箔に 接着しょうとする提案もなされている。  It has also been proposed to use an aluminum foil instead of a resin film and bond it to a copper foil using an adhesive.
しかし、 使用されるアルミニウム箔は通常圧延で製造されており、その際使用さ れる圧延油が残留し、 接着時に銅箔に転写して、 プリント基板の作製時に、 これが 原因でレジストの密着性が劣化するという問題が発生した。  However, the aluminum foil used is usually manufactured by rolling, and the rolling oil used at that time remains and is transferred to the copper foil at the time of bonding, and this causes the resist adhesion during the production of the printed circuit board. The problem of deterioration occurred.
アルミニウム箔を脱脂したり、高温で焼鈍することで圧延油を除去することは可 能だが、 コストアップとなる問題がある。 また、 高温で焼鈍するとアルミニウム箔 が軟化し強度が低下するため、 キャリアとして使用するためには厚みをかなり厚く する必要があり、 コストアップや重量増の問題が発生する。 このような圧延油残留 問題以外にも、 アルミニウム箔には表面のアルミニウム粉がプレス時に銅箔に転写 し、 回路の断線や短絡の原因となる問題点があった。  Although it is possible to remove rolling oil by degreasing aluminum foil or annealing at high temperatures, there is a problem that costs increase. Also, annealing at high temperatures softens the aluminum foil and lowers its strength, so it must be considerably thicker in order to be used as a carrier, resulting in increased costs and increased weight. In addition to such a problem of rolling oil residue, aluminum foil had another problem that aluminum powder on the surface was transferred to the copper foil during pressing, causing disconnection and short circuit of the circuit.
さらに、 有機系及びニッケルを剥離層とした複合銅箔の提案もある。 しかし、 こ の場合は樹脂との積層プレス時に、剥離層が銅又は銅合金の支持体及び極薄銅箔に 拡散し、 銅又は銅合金の支持体との剥離に問題があるという欠点があつた。 発明の開示 Furthermore, there is a proposal of a composite copper foil using an organic and nickel as a release layer. However, in this case, there is a disadvantage that the peeling layer diffuses into the copper or copper alloy support and the ultra-thin copper foil during lamination pressing with the resin, and there is a problem in peeling from the copper or copper alloy support. Was. Disclosure of the invention
本発明は上記のような問題点に鑑みてなされたものであり、その目的とするとこ ろは、 極薄銅箔のハンドリング性を向上させ、 銅箔表面にプリプレダシートの樹脂 粉等の汚染物が付着しないようにし、 異物による傷、 打痕防止、 さらには切断、 梱 包、 運搬中の傷、 しわ、 折れ等を効果的に防止できる銅又は銅合金の支持体 (キヤ リァ) を備えた複合銅箔及び該複合銅箔を使用したプリント基板を得ようとするも のである。  The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to improve the handleability of ultra-thin copper foil and to prevent contamination of the copper foil surface such as resin powder of a pre-preda sheet on the copper foil surface. Equipped with a copper or copper alloy support (carrier) that can prevent foreign matter from being attached and prevent scratches and dents due to foreign matter, and can also effectively prevent scratches, wrinkles, and breaks during cutting, packing, and transportation. It is an object to obtain a composite copper foil and a printed circuit board using the composite copper foil.
以上から、 本発明は  From the above, the present invention
1 . 銅又は銅合金の支持体と極薄銅箔との間の支持体側に、 酸化膜で覆われた二 ッケル層を有することを特徴とする銅又は銅合金の支持体を備えた複合銅箔及び 該複合銅箔を使用したプリント基板。  1. Composite copper provided with a copper or copper alloy support, which has a nickel layer covered with an oxide film on the support side between the copper or copper alloy support and the ultra-thin copper foil And a printed circuit board using the composite copper foil.
2. 0 . 0 5〜5. 0 mのニッケル層を有することを特徴とする上記 1記載の 銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用したプリント基板。 2. A composite copper foil provided with a copper or copper alloy support as described in 1 above, having a nickel layer of 0.05 to 5.0 m, and a printed circuit board using the composite copper foil.
3 . ニッケル層の酸化膜の厚さが 2 5〜5 0 O Aであることを特徴とする上記 1 又は 2記載の銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用した プリント基板。 3. The composite copper foil provided with the copper or copper alloy support according to 1 or 2 above, wherein the thickness of the oxide film of the nickel layer is 25 to 50 OA, and the composite copper foil is used. Printed circuit board.
4. 銅又は銅合金の支持体の厚さが 1 5〜7 0 mであることを特徵とする上記 1〜 3のそれぞれに記載の銅又は銅合金の支持体を備えた複合銅箔及び該複合銅 箔を使用したプリント基板。  4. The composite copper foil provided with the copper or copper alloy support according to any one of the above 1 to 3, wherein the thickness of the copper or copper alloy support is 15 to 70 m, Printed circuit board using composite copper foil.
5 . 銅又は銅合金の支持体が電解銅箔又は圧延銅箔であることを特徴とする上記 1〜 4のそれぞれに記載の銅又は銅合金の支持体を備えた複合銅箔及び該複合銅 箔を使用したプリント基板。  5. The composite copper foil provided with the copper or copper alloy support according to any one of the above 1 to 4, wherein the copper or copper alloy support is an electrolytic copper foil or a rolled copper foil. Printed circuit board using foil.
6 . 銅又は銅合金の支持体に支持される極薄銅箔の厚さが 0 . 5〜1 2 ^mであ ることを特徴とする上記 1〜 5のそれぞれに記載の銅又は銅合金の支持体を備え た複合銅箔及び該複合銅箔を使用したプリント基板。  6. The copper or copper alloy according to any one of the above items 1 to 5, wherein the thickness of the ultrathin copper foil supported on the copper or copper alloy support is 0.5 to 12 ^ m. And a printed circuit board using the composite copper foil.
7 . 極薄銅箔とニッケル層との剥離強度が 0 . 0 0 2〜0 . 5 k g Z c mである ことを特徴とする上記 1〜 6のそれぞれに記載の銅又は銅合金の支持体を備えた 複合銅箔及び該複合銅箔を使用したプリント基板。  7. The copper or copper alloy support according to any one of 1 to 6 above, wherein the peel strength between the ultra-thin copper foil and the nickel layer is 0.02 to 0.5 kg Z cm. The composite copper foil provided and a printed circuit board using the composite copper foil.
を提供する。 発明の実施の形態 I will provide a. Embodiment of the Invention
本発明の銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用したプ リント基板は、 まず銅又は銅合金の支持体の表面に、 0. 05〜5. 0 mのニッ ケルめっき層を形成する。 , このニッケルめっき層を形成する条件の好ましい一例を下記に示す。  The composite copper foil provided with the copper or copper alloy support of the present invention and the printed substrate using the composite copper foil are first provided with a surface of the copper or copper alloy having a thickness of 0.05 to 5.0 m. A nickel plating layer is formed. Preferred examples of conditions for forming the nickel plating layer are shown below.
ニッケルめっき Nickel plating
ニッケル濃度 : 10〜80 gZL  Nickel concentration: 10 to 80 gZL
電解液温度 : 20〜80° C  Electrolyte temperature: 20-80 ° C
0. SOAZdm2 0. SOAZdm 2
pH 1. 0〜5. 0  pH 1.0-5.0
このニッケル層の表面にさらに酸ィ匕膜を形成する。 この酸化膜の厚さは 25〜5 0 OAであることが望ましい。酸化膜は極薄銅箔の剥離性を著しく向上させること ができる。 このニッケル層の上に酸化膜を形成する手段として陽極酸化があり、 こ の酸化膜形成を形成する条件の好ましい一例を下記に示す。  An oxidation film is further formed on the surface of the nickel layer. The thickness of this oxide film is desirably 25 to 50 OA. The oxide film can significantly improve the peelability of the ultra-thin copper foil. Anodization is a means for forming an oxide film on this nickel layer. A preferred example of the conditions for forming the oxide film is shown below.
酸化膜形成 Oxide film formation
NaOH濃度 : 0. 5〜20 g/L  NaOH concentration: 0.5-20 g / L
電解液温度 : 20〜50° C  Electrolyte temperature: 20-50 ° C
電流密度 : l〜10AZdm2 Current density: l ~ 10AZdm 2
そしてこの酸化膜の上に極薄銅箔を形成する。 極薄銅箔の厚さは 0. 5〜12/ mであることが望ましい。 極薄銅箔を形成は電気めつきによって形成するが、 その 銅めつきの好ましい条件の一例を下記に示す。  Then, an ultra-thin copper foil is formed on the oxide film. The thickness of the ultra-thin copper foil is desirably 0.5 to 12 / m. The ultra-thin copper foil is formed by electroplating. One example of preferable conditions for the copper plating is shown below.
銅めつき Copper plating
銅濃度 : 30〜120 g/L  Copper concentration: 30-120 g / L
H2S04濃度 : 20〜: L 20 g/L H 2 S0 4 concentration: 20~: L 20 g / L
20〜80 ° C  20-80 ° C
10〜: L 00 AZdm2 これによつて、 銅又は銅合金の支持体を備えた複合銅箔が得られる。 さらに、 こ の積層された複合銅箔と樹脂基材をプレス又はラミネートにより積層して、 銅張積 層板が形成されるが、 この銅又は銅合金の支持体を備えた複合銅箔はハンドリング 性が極めて良好な為、 しわ、 折れ等の発生を効果的に防止でき、 また銅又は銅合金 の支持体による覆いにより銅箔の面に直接異物が付着するのを防止できる。 10 ~: L 00 AZdm 2 As a result, a composite copper foil provided with a copper or copper alloy support is obtained. Further, the laminated composite copper foil and the resin base material are laminated by pressing or laminating to form a copper-clad laminate. The composite copper foil provided with the copper or copper alloy support is handled. Due to its extremely good properties, it is possible to effectively prevent the occurrence of wrinkles, breaks, and the like, and it is possible to prevent foreign substances from directly adhering to the copper foil surface by covering with a copper or copper alloy support.
さらに積層後、酸化膜を有するニッケル層の部分から銅又は銅合金の支持体を剥 離し、 エッチング等の処理により回路網が形成されるが、 回路形成の直前まで酸化 膜を備えたニッケル層を有する銅又は銅合金の支持体で保護されているため、 銅張 積層板の異物による傷、打痕防止に有効であり、さらには切断、梱包、運搬中の傷、 しわ、 折れ等を効果的に防止できる。  Further, after lamination, the copper or copper alloy support is peeled off from the nickel layer portion having an oxide film, and a circuit network is formed by a process such as etching. Protected by a copper or copper alloy support, which is effective in preventing scratches and dents due to foreign matter on copper-clad laminates, and is also effective in cutting, packing, transporting scratches, wrinkles, breaks, etc. Can be prevented.
本発明の銅箔に使用する銅又は銅合金の支持体は電解銅箔又は圧延銅箔を使用 することができる。 その好適な厚さは 1 5〜 7 0 / mである。 コスト面からはより 薄い電解銅箔又は圧延銅箔を用いるのが望ましいが、 あまり薄いと強度的に支持体 (キャリア) として使用できないため、 ある程度以上の厚みは必要である。  As the copper or copper alloy support used in the copper foil of the present invention, an electrolytic copper foil or a rolled copper foil can be used. Its preferred thickness is between 15 and 70 / m. It is desirable to use thinner electrolytic copper foil or rolled copper foil in terms of cost, but if it is too thin, it cannot be used as a support (carrier) due to its strength, so a certain thickness or more is necessary.
極薄銅箔と表面に酸化膜層を形成したニッケル層との剥離強度が 0 . 0 0 2〜0 . 5 k g Z c m2であり、 容易に剥離することができる。 なお、 この場合の剥離強度 は、 前記複合銅箔を極薄銅箔側に 1 5 0 ° C以上で基材に積層した場合の値を示す。 ニッケル層を形成する銅箔面は光沢面 (S ) 面に施すのが良いが、 他の面すなわ ち粗化面 (M面) に施しても良い。 また、 他のめっき等の表面処理を行った銅箔面 に施しても良い。 The peel strength between the ultra-thin copper foil and the nickel layer having an oxide film layer formed on the surface is 0.002 to 0.5 kg Z cm 2 , and it can be easily peeled. The peel strength in this case indicates a value when the composite copper foil is laminated on a substrate at 150 ° C. or more on the ultra-thin copper foil side. The copper foil surface on which the nickel layer is formed is preferably applied to the glossy surface (S), but may be applied to another surface, that is, the roughened surface (M surface). Also, it may be applied to the copper foil surface which has been subjected to another surface treatment such as plating.
例えば、 一般にプリント配線板用銅箔には粗化粒子形成、 酸化膜形成、 耐熱性膜 の形成、 防鑌処理等が施されるが、 本発明にはこれらの処理が適用でき、 本発明は これらの全てを包含するものである。  For example, copper foil for printed wiring boards is generally subjected to formation of roughened particles, formation of an oxide film, formation of a heat-resistant film, anti-reflection treatment, etc., and these treatments can be applied to the present invention. It encompasses all of these.
銅箔の積層工程の例を示すと、例えばプレス圧力を 1 0〜3 0 k g/ c m2程度、 プレス温度 1 7 0 ° C前後で 6 0〜1 8 0分間、 加熱及び圧力を加えて積層する。 これにより、 銅箔とプリプレダシートとの接合が十分に行うことができる。 また、 銅又は銅合金の支持体を備えた複合銅箔はノ、ンドリング性が極めて良好なので、 し わ、 折れ等が発生することがなくなる。 特に、 極薄銅箔の厚さが 1 2 以下である場合のハンドリング性の向上が著し い。 更に、 上記プレス工程に限らず、 通常の切断や梱包、 さらには運搬中に傷がつ いたり、 異物が混入したり、 しわ、 折れ等が発生することがなくなるという効果が ある。 By way of example of the copper foil laminating step, for example 1 0~3 0 kg / cm 2 about the pressing pressure, pressing temperature 1 7 0 ° C before and after 6 0-1 8 0 min, laminated added heat and pressure I do. Thereby, the joining between the copper foil and the pre-preda sheet can be sufficiently performed. In addition, the composite copper foil provided with a copper or copper alloy support has extremely good nodling properties, so that wrinkles, breaks, and the like do not occur. In particular, when the thickness of the ultra-thin copper foil is 12 or less, the handling property is remarkably improved. Further, the present invention is not limited to the above-described pressing step, and has an effect that scratches, foreign substances, wrinkles, breaks, and the like do not occur during normal cutting and packing, and during transportation.
これによつて、 プリント回路基板の回路の切断や短絡が減少し、 さらに電子機器 の欠陥を抑制でき、 製品の歩留まりが向上する効果がある。  This has the effect of reducing cuts and short circuits in the circuit of the printed circuit board, suppressing defects in electronic equipment, and improving product yield.
上記積層後、 極薄銅箔から酸化膜を備えたニッケル層を有する銅又は銅合金の支 持体を容易に剥離除去することができる。 キャリア用の銅又は銅合金の支持体とし ての箔又はシ一ト (板) はリサイクルすることができる。  After the lamination, the copper or copper alloy support having the nickel layer provided with the oxide film can be easily removed and removed from the ultra-thin copper foil. The foil or sheet as support for copper or copper alloy for the carrier can be recycled.
これによつて、 極薄銅箔のハンドリング性を向上させ、 銅箔表面にプリプレダシ ートの樹脂粉等の汚染物を付着させず、 異物による傷、 打痕防止、 さらには切断、 梱包、 運搬中の傷、 しわ、 折れ等を発生させずにプリント回路基板を容易に得るこ とができる。 実施例及び比較例  This improves the handling of ultra-thin copper foil, prevents contaminants such as resin powder of pre-preducted resin from adhering to the copper foil surface, prevents scratches and dents due to foreign matter, and further cuts, packs, and transports A printed circuit board can be easily obtained without causing scratches, wrinkles, or breaks in the inside. Examples and comparative examples
次に、 本発明の実施例及び比較例について説明する。 なお、 本実施例はあくまで 一例であり、 本発明はこの例に制限されない。 すなわち、 本発明の技術思想の範囲 で、 本実施例以外の態様あるいは変形を全て包含するものである。  Next, examples of the present invention and comparative examples will be described. Note that the present embodiment is merely an example, and the present invention is not limited to this example. That is, all aspects or modifications other than the present embodiment are included within the technical idea of the present invention.
(実施例 1 )  (Example 1)
支持体銅金属層として厚さ 3 5 mの電解銅箔 S面に、 上記ニッケルめっきの条 件で厚さ 0 . 1 zmのニッケルめっきを行った。 そしてこのニッケルめっきの表面 に、 上記条件で陽極酸化により 4 5 Aの酸化膜を形成した。 なお、 この陽極酸化の 時間は 1 0秒であった。 酸化皮膜厚の計測はォージェ電子分光を用い S i 02換算 で計測した (以下、 酸化皮膜厚の計測は同様に行った) 。 さらに、 この支持体銅金 属に形成した酸化膜を有するニッケル被膜の上に、 前記銅めつきの条件で厚さ 5 a mの銅を析出させた。 Nickel plating with a thickness of 0.1 zm was performed on the surface of the electrolytic copper foil S having a thickness of 35 m as a support copper metal layer under the conditions of the nickel plating described above. Then, an oxide film of 45 A was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodic oxidation was 10 seconds. Measurement of oxide film thickness was measured with S i 0 2 conversion using Oje electron spectroscopy (hereinafter, the measurement of the oxide film thickness was the same). Further, on the nickel film having an oxide film formed on the support copper metal, copper having a thickness of 5 am was deposited under the conditions of the copper plating.
次に、 この複合銅箔をプリプレダ F R— 4に積層し、 1 7 5 ° Cで 3 0分、 3 5 k g / c m2の条件でプレスを行い、 銅張り積層板を得た。 このようにして得た本実施例 1の銅又は銅合金の支持体を備えた複合銅箔のし わ発生の観察及び剥離強度を調べた結果を表 1に示す。 表 1に示す通り、 極薄銅箔 とニッゲル被膜を有する銅又は銅合金の支持体との剥離性は良好であり、 しわの発 生がなくハンドリング性は良好であつた。 Next, this composite copper foil was laminated on a pre-predator FR-4 and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate. Table 1 shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 1 thus obtained. As shown in Table 1, the exfoliation property between the ultra-thin copper foil and the copper or copper alloy support having a nigger coating was good, wrinkles did not occur, and the handling property was good.
Figure imgf000008_0001
(実施例 2 )
Figure imgf000008_0001
(Example 2)
実施例 1と同様に、 支持体銅金属層として厚さ 3 5 mの電解銅箔 S面に、 上記 ニッケルめっきの条件で厚さ 0. 5 μπιのニッケルめっきを行った。 そしてこの二 ッケルめっきの表面に、 上記条件で陽極酸化により 5 O Aの酸化膜を形成した。 な お、 この陽極酸ィ匕の時間は 3 0秒であった。 さらに、 この支持体銅金属に形成した 酸化膜を有するニッケル被膜の上に、 前記銅めつきの条件で厚さ 7 iimの銅を析出 させた。  In the same manner as in Example 1, nickel plating having a thickness of 0.5 μπι was performed on the surface of the electrolytic copper foil S having a thickness of 35 m as a support copper metal layer under the above-described nickel plating conditions. Then, an oxide film of 5OA was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodizing was 30 seconds. Further, on the nickel film having an oxide film formed on the support copper metal, copper having a thickness of 7 iim was deposited under the conditions of the copper plating.
次に、この複合銅箔を実施例 1と同様に、プリプレダ F R— 4に積層し、 1 7 5 ° Cで 3 0分、 3 5 k g/ c m2の条件でプレスを行い、 銅張り積層板を得た。 この ようにして得た本実施例 2の銅又は銅合金の支持体を備えた複合銅箔のしわ発生 の観察及び剥離強度を調べた結果を同様に、 表 1に示す。 表 1に示す通り、 極薄銅 箔とニッケル被膜を有する銅又は銅合金の支持体との剥離性は良好であり、 しわの 発生がなく八ンドリング性は良好であった。 (実施例 3 ) Next, as in Example 1, the composite copper foil was laminated on a pre-predator FR-4, and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate. I got Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 2 thus obtained. As shown in Table 1, the peelability between the ultra-thin copper foil and the copper or copper alloy support having a nickel coating was good, no wrinkles were generated, and the eight-handling property was good. (Example 3)
実施例 1と同様に、 支持体銅金属層として厚さ 35 mの電解銅箔 S面に、 上記 ニッケルめっきの条件で厚さ 0. 1 mのニッケルめっきを行った。そしてこの二 ッケルめっきの表面に、 上記条件で陽極酸化により 25 Aの酸化膜を形成した。 な お、 この陽極酸化の時間は 1秒であった。 さらに、 この支持体銅金属に形成した酸 化膜を有するニッケル被膜の上に、前記銅めつきの条件で厚さ 5 mの銅を析出さ せた。  In the same manner as in Example 1, a 0.1 m-thick nickel plating was performed on the 35 m-thick electrolytic copper foil S surface as a support copper metal layer under the above-described nickel plating conditions. Then, a 25 A oxide film was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodization was 1 second. Further, on the nickel film having an oxide film formed on the support copper metal, copper having a thickness of 5 m was deposited under the conditions of the copper plating.
次に、この複合銅箔を実施例 1と同様に、プリプレダ FR— 4に積層し、 175° Cで 30分、 35 kg/cm2の条件でプレスを行い、 銅張り積層板を得た。 この ようにして得た本実施例 3の銅又は銅合金の支持体を備えた複合銅箔のしわ発生 の観察及び剥離強度を調べた結果を同様に、 表 1に示す。 表 1に示す通り、 極薄銅 箔とニッケル被膜を有する銅又は銅合金の支持体との剥離性は良好であり、 しわの 発生がなくハンドリング性は良好であった。 Next, in the same manner as in Example 1, this composite copper foil was laminated on a pre-predator FR-4, and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate. Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 3 thus obtained. As shown in Table 1, the peelability between the ultra-thin copper foil and the copper or copper alloy support having a nickel coating was good, wrinkles did not occur, and the handling property was good.
(実施例 4)  (Example 4)
実施例 1と同様に、 支持体銅金属層として厚さ 35 /zmの電解銅箔 S面に、 上記 ニッケルめっきの条件で厚さ 0. 1 mのニッケルめっきを行った。 そしてこの二 ッケルめっきの表面に、 上記条件で陽極酸化により 46 OAの酸化膜を形成した。 なお、 この陽極酸化の時間は 60秒であった。 さらに、 この支持体銅金属に形成し た酸ィ匕膜を有するニッケル被膜の上に、 前記銅めつきの条件で厚さ 5 mの銅を析 出させた。  In the same manner as in Example 1, a 0.1 m-thick nickel plating was performed on the 35 / zm-thick electrolytic copper foil S surface as the support copper metal layer under the above-described nickel plating conditions. An oxide film of 46 OA was formed on the surface of the nickel plating by anodic oxidation under the above conditions. The time of this anodic oxidation was 60 seconds. Further, on the nickel film having an oxidation film formed on the support copper metal, copper having a thickness of 5 m was deposited under the conditions of the copper plating.
次に、この複合銅箔を実施例 1と同様に、プリプレダ FR— 4に積層し、 175° Cで 30分、 35 kg/cm2の条件でプレスを行い、 銅張り積層板を得た。 この ようにして得た本実施例 4の銅又は銅合金の支持体を備えた複合銅箔のしわ発生 の観察及び剥離強度を調べた結果を同様に、 表 1に示す。 表 1に示す通り、 極薄銅 箔とニッゲル被膜を有する銅又は銅合金の支持体との剥離性は良好であり、 しわの 発生がなくハンドリング性は良好であった。 (比較例 1 ) Next, in the same manner as in Example 1, this composite copper foil was laminated on a pre-predator FR-4, and pressed at 175 ° C. for 30 minutes under a condition of 35 kg / cm 2 to obtain a copper-clad laminate. Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Example 4 obtained in this manner. As shown in Table 1, the releasability between the ultra-thin copper foil and the copper or copper alloy support having the nigger coating was good, wrinkles did not occur, and the handling property was good. (Comparative Example 1)
支持体銅金属層として厚さ 3 5 ^mの電解銅箔 S面に、 上記ニッケルめっきの条 件で厚さ 0. 1 mのニッケルめっきを行った。 そしてこのニッケルめっきの表面 に陽極酸化を行わずに、前記銅めつきの条件で厚さ 5 mの銅を析出させた。なお、 陽極酸化を行わない場合のニッケルの酸化皮膜厚は 2 O Aであった。  Nickel plating with a thickness of 0.1 m was performed on the surface of the electrolytic copper foil S having a thickness of 35 ^ m as a support copper metal layer under the conditions of the nickel plating. Then, a copper having a thickness of 5 m was deposited on the surface of the nickel plating without performing anodic oxidation under the conditions for the copper plating. The thickness of the nickel oxide film without anodic oxidation was 2 OA.
次に、この複合銅箔を実施例 1と同様に、プリプレダ F R— 4に積層し、 1 7 5 ° Cで 3 0分、 3 5 k g/c m2の条件でプレスを行い、 銅張り積層板を得た。 この ようにして得た比較例 1の銅又は銅合金の支持体を備えた複合銅箔のしわ発生の 観察及び剥離強度を調べた結果を同様に表 1に示す。 Next, the composite copper foil was laminated on the pre-predeer FR-4 in the same manner as in Example 1, and pressed at 175 ° C for 30 minutes at 35 kg / cm 2 to obtain a copper-clad laminate. I got Table 1 also shows the results of observing the occurrence of wrinkling and examining the peel strength of the composite copper foil provided with the copper or copper alloy support of Comparative Example 1 thus obtained.
表 1から明らかなように、 比較例 1はハンドリング性良好で、 しわの発生は見ら れないが、 粘着テープを貼り付け、 これを引き剥がすピーリング (剥離) テストを 行ったところ剥離不能で、 悪い結果となった。  As is evident from Table 1, Comparative Example 1 had good handling properties and no wrinkles were observed. However, when a peeling test was performed by applying an adhesive tape and peeling it off, it was impossible to peel. Bad result.
以上の比較例の結果に対して、 実施例 1及び実施例 2では上記の通り、 ハンドリ ング性が良好でしわの発生がなく、 また実施例 1及び実施例 2のピール強度はいず れも 0. 0 2 5 k gZ c mであり、 良好な剥離性を示した。  In contrast to the results of the above comparative examples, in Examples 1 and 2, as described above, the handleability was good and no wrinkles occurred, and the peel strengths of Examples 1 and 2 were all 0. 0.25 kg g cm, showing good peelability.
このように、 本発明の銅又は銅合金の支持体の表面にニッケルめっき層を形成し、 このニッケル層の表面にさらに酸ィ匕膜を形成した後、 この酸化膜の上に極薄の銅箔 を形成した銅又は銅合金の支持体を備えた複合銅箔、 及びこの積層された複合銅箔 と樹脂基材をプレス又はラミネートにより積層して、 銅張積層板 (プリント基板) は優れた特性を有することが分かる。 発明の効果  Thus, a nickel plating layer is formed on the surface of the copper or copper alloy support of the present invention, and an oxidation film is further formed on the surface of the nickel layer. The copper-clad laminate (printed circuit board) is excellent in that a composite copper foil provided with a copper or copper alloy support formed with a foil, and the laminated composite copper foil and a resin base material are laminated by pressing or laminating. It can be seen that it has characteristics. The invention's effect
銅又は銅合金の支持体を備え、 該銅又は銅合金の支持体と極薄銅箔との間に、 酸 化膜を備えたニッケル層を有する本発明の複合銅箔及び該複合銅箔を使用したプ リント基板は、 極薄銅箔のハンドリング性を向上させ、 銅箔表面にプリプレダシ一 トの樹脂粉等の汚染物が付着しないようにし、 また異物による傷、 打痕防止に有効 であり、 さらには通常の切断、 梱包、 運搬中の傷、 異物の混入、 しわ、 折れ等の発 生を防止できるという優れた効果を有する。  A composite copper foil of the present invention comprising a copper or copper alloy support, a nickel layer provided with an oxide film between the copper or copper alloy support and the ultra-thin copper foil, and the composite copper foil. The printed circuit board used improves the handling of ultra-thin copper foil, prevents contaminants such as resin powder of prepreg from adhering to the copper foil surface, and is effective in preventing scratches and dents due to foreign matter. In addition, it has an excellent effect of preventing the occurrence of scratches, foreign substances, wrinkles, breaks, and the like during normal cutting, packing, and transportation.

Claims

請 求 の 範 囲 1. 銅又は銅合金の支持体と極薄銅箔との間の支持体側に、 酸化膜で覆われたニッ ゲル層を有することを特徴とする銅又は銅合金の支持体を備えた複合銅箔及ぴ該 複合銅箔を使用したプリント基板。  Scope of the claim 1. A copper or copper alloy support, characterized by having a nickel layer covered with an oxide film on the support side between the copper or copper alloy support and the ultra-thin copper foil And a printed circuit board using the composite copper foil.
2. 0. 05〜5. 0 mのニッケル層を有することを特徴とする請求の範囲第 1 項記載の銅又は銅合金の支持体を備えた複合銅箔及び該複合銅箔を使用したプリ ン卜基板。  2. A composite copper foil provided with a copper or copper alloy support according to claim 1 having a nickel layer of 0.05 to 5.0 m, and a preform using the composite copper foil. Board.
3. ニッケル層の酸化膜の厚さが 25〜50 OAであることを特徴とする請求の範 囲第 1項又は第 2項記載の銅又は銅合金の支持体を備えた複合銅箔及び該複合銅 箔を使用したプリント基板。  3. The composite copper foil provided with a copper or copper alloy support according to claim 1 or 2, wherein the thickness of the oxide film of the nickel layer is 25 to 50 OA. Printed circuit board using composite copper foil.
4. 銅又は銅合金の支持体の厚さが 15〜70 /mであることを特徴とする請求の 範囲第 1項〜第 3項のそれぞれに記載の銅又は銅合金の支持体を備えた複合銅箔 及び該複合銅箔を使用したプリント基板。  4. The copper or copper alloy support according to any one of claims 1 to 3, wherein the copper or copper alloy support has a thickness of 15 to 70 / m. A composite copper foil and a printed circuit board using the composite copper foil.
5. 銅又は銅合金の支持体が電解銅箔又は圧延銅箔であることを特徴とする請求の 範囲第 1項〜第 4項のそれぞれに記載の銅又は銅合金の支持体を備えた複合銅箔 及び該複合銅箔を使用したプリント基板。  5. A composite comprising a copper or copper alloy support according to any one of claims 1 to 4, wherein the copper or copper alloy support is an electrolytic copper foil or a rolled copper foil. A copper foil and a printed circuit board using the composite copper foil.
6. 銅又は銅合金の支持体に支持される極薄銅箔の厚さが 0. 5〜12 mである ことを特徴とする請求の範囲第 1項〜第 5項のそれぞれに記載の銅又は銅合金の 支持体を備えた複合銅箔及び該複合銅箔を使用したプリント基板。 6. The copper according to any one of claims 1 to 5, wherein the thickness of the ultra-thin copper foil supported on the copper or copper alloy support is 0.5 to 12 m. Or a composite copper foil provided with a copper alloy support and a printed circuit board using the composite copper foil.
7. 極薄銅箔とニッケル層との剥離強度が 0. 002〜0. 5 kg/cmであるこ とを特徴とする請求の範囲第 1項〜第 6項のそれぞれに記載の銅又は銅合金の支 持体を備えた複合銅箔及び該複合銅箔を使用したプリント基板。 7. The copper or copper alloy according to any one of claims 1 to 6, wherein the peel strength between the ultra-thin copper foil and the nickel layer is 0.002 to 0.5 kg / cm. And a printed circuit board using the composite copper foil.
PCT/JP2002/005179 2001-06-04 2002-05-29 Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil WO2002100136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001168090A JP4672907B2 (en) 2001-06-04 2001-06-04 Composite copper foil provided with copper or copper alloy support and printed circuit board using the composite copper foil
JP2001-168090 2001-06-04

Publications (1)

Publication Number Publication Date
WO2002100136A1 true WO2002100136A1 (en) 2002-12-12

Family

ID=19010371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005179 WO2002100136A1 (en) 2001-06-04 2002-05-29 Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil

Country Status (3)

Country Link
JP (1) JP4672907B2 (en)
TW (1) TW573079B (en)
WO (1) WO2002100136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203326A (en) * 2008-09-05 2011-09-28 古河电气工业株式会社 Ultrathin copper foil with carrier, and copper laminated board or printed wiring board

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351928B1 (en) 2007-12-28 2014-01-21 일진머티리얼즈 주식회사 Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
WO2012132572A1 (en) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit
JP5481553B1 (en) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
KR20150077943A (en) * 2013-12-30 2015-07-08 일진머티리얼즈 주식회사 Copper foil, electric component and battery comprising the foil
JP6842232B2 (en) * 2015-03-31 2021-03-17 Jx金属株式会社 Manufacturing method of metal foil with carrier, laminate, printed wiring board, electronic device, metal foil with carrier and manufacturing method of printed wiring board
JP6821370B2 (en) * 2016-09-29 2021-01-27 Jx金属株式会社 Metal foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic equipment
KR102018942B1 (en) 2016-09-29 2019-09-05 제이엑스금속주식회사 Metal foil with carrier, laminate, method of manufacturing printed wiring board, method of manufacturing electronic device and method of manufacturing metal foil with carrier
JP7409602B2 (en) * 2019-05-09 2024-01-09 ナミックス株式会社 composite copper parts
JP7456579B2 (en) * 2019-05-09 2024-03-27 ナミックス株式会社 Method for manufacturing a metal member having a metal layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998601A (en) * 1973-12-03 1976-12-21 Yates Industries, Inc. Thin foil
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292788A (en) * 2001-03-30 2002-10-09 Nippon Denkai Kk Composite copper foil and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998601A (en) * 1973-12-03 1976-12-21 Yates Industries, Inc. Thin foil
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203326A (en) * 2008-09-05 2011-09-28 古河电气工业株式会社 Ultrathin copper foil with carrier, and copper laminated board or printed wiring board

Also Published As

Publication number Publication date
TW573079B (en) 2004-01-21
JP2002368365A (en) 2002-12-20
JP4672907B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US8624125B2 (en) Metal foil laminated polyimide resin substrate
JP5959149B2 (en) Ultra-thin copper foil with carrier and copper-laminated laminate or printed wiring board
JP5830635B1 (en) Ultra-thin copper foil with carrier, and copper-clad laminate, printed wiring board and coreless board manufactured using the same
US20090246554A1 (en) Laminate having peelability and production method therefor
TWI503060B (en) Method of manufacturing multi-layer printed wiring board and multi-layer printed wiring board obtained by the manufacturing method
JP2021035755A (en) Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board
US20090280339A1 (en) Polyimide film, polyimide metal laminate using same, and method for manufacturing same
WO2002100136A1 (en) Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil
US11999131B2 (en) Roll-bonded laminate and method for producing the same
WO2009122589A1 (en) Two-layered laminate having metal foil cladded on its one surface, method for production of the laminate, single-sided printed wiring board, and method for production of the wiring board
TW200822832A (en) Manufacturing method for both-side flexible-copper-laminated board and carrier-attached both-side flexible-copper-laminated board
WO2021039759A1 (en) Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board
JP3854207B2 (en) Composite copper foil provided with copper or copper alloy support and printed circuit board using the composite copper foil
JP4231511B2 (en) Polyimide film, polyimide metal laminate and method for producing the same
JP4686106B2 (en) Polyimide metal foil laminate
JP3664708B2 (en) Polyimide metal laminate and manufacturing method thereof
JP4715681B2 (en) Manufacturing method and transfer method of ultra-thin copper foil laminated film
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP2003198084A (en) Composite foil for printed circuit board and its manufacturing method
JP3210796B2 (en) High temperature stretched copper foil for printed circuits
JP2006240074A (en) Composite copper foil and its production method
TW202400848A (en) Metal laminate, method for manufacturing same, and printed wiring board
WO2023189565A1 (en) Carrier-attached metal foil, metal-clad laminate, and printed wiring board
JP2003340962A (en) Polyimide copper-clad laminate using extra-thin copper foil and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase