[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002036840A1 - Tole d"acier laminee a chaud presentant une resistance elevee a la traction et procede de fabrication - Google Patents

Tole d"acier laminee a chaud presentant une resistance elevee a la traction et procede de fabrication Download PDF

Info

Publication number
WO2002036840A1
WO2002036840A1 PCT/JP2001/009469 JP0109469W WO0236840A1 WO 2002036840 A1 WO2002036840 A1 WO 2002036840A1 JP 0109469 W JP0109469 W JP 0109469W WO 0236840 A1 WO0236840 A1 WO 0236840A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
rolled steel
tensile
weight
Prior art date
Application number
PCT/JP2001/009469
Other languages
English (en)
French (fr)
Inventor
Yoshimasa Funakawa
Tsuyoshi Shiozaki
Kunikazu Tomita
Takanobu Saito
Hiroshi Nakata
Kaoru Sato
Minoru Suwa
Tetsuo Yamamoto
Yasuhiro Murao
Eeiji Maeda
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001282774A external-priority patent/JP3637885B2/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to CA002395901A priority Critical patent/CA2395901C/en
Priority to EP01980929.2A priority patent/EP1338665B1/en
Priority to BRPI0107389-3A priority patent/BR0107389B1/pt
Priority to ES01980929.2T priority patent/ES2690275T3/es
Priority to US10/108,691 priority patent/US6666932B2/en
Publication of WO2002036840A1 publication Critical patent/WO2002036840A1/ja
Priority to US10/686,357 priority patent/US20040074573A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet suitable for undercarriage members of automobiles, particularly a high-tensile hot-rolled steel sheet having a tensile strength of 550 MPa or more, and a method for manufacturing the same.
  • a high-strength hot-rolled steel sheet suitable for undercarriage members of automobiles particularly a high-tensile hot-rolled steel sheet having a tensile strength of 550 MPa or more
  • a method for manufacturing the same about the method.
  • Hot-rolled steel sheets for automobiles are being developed to have higher tensile strength and thinner wall thickness.
  • high-tensile and thin-walled hot rolled steel sheets for undercarriage members such as wheels and suspension arms, which have a large effect.
  • the undercarriage members have complicated shapes, the hot-rolled steel sheets used for them need to have high elongation as well as excellent elongation and stretch flangeability.
  • Japanese Patent Application Laid-Open No. 4-329848 discloses a composite structure steel sheet having a ferrite structure and a second phase (pearlite, bainite, martensite, retained austenite, etc.) and having excellent fatigue properties and stretch flangeability. .
  • a second phase pearlite, bainite, martensite, retained austenite, etc.
  • Japanese Patent Application Laid-Open No. Hei 6-172924 proposes a steel sheet having a high dislocation density and having a payetic ferrite structure and excellent stretch flangeability. However, sufficient elongation cannot be obtained because of the vanitic ferrite structure having a high dislocation density.
  • Japanese Patent Application Laid-Open No. 6-200351 proposes a steel sheet which is mainly made of polygonal ferrite and has excellent stretch flangeability, which is made to have a high tensile strength by utilizing precipitation strengthening by TiC and solid solution strength. ing. However, since large amounts of Ti are required, large precipitates are formed, and excellent elongation and stretch flangeability cannot be stably obtained.
  • Japanese Patent Application Laid-Open No. 7-11382 proposes a steel sheet excellent in stretch flangeability having an ashes ferrite structure in which fine TiC and NbC are precipitated. However, sufficient elongation cannot be obtained because of the high dislocation density ferrite structure.
  • Japanese Patent Application Laid-Open No. 11-152544 proposes a steel sheet having a fine grain size of 2 m or less by adding Ti, Nb, V, and Mo.
  • excellent elongation cannot be obtained due to the fine particles having a particle size of 2 m or less.
  • the present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of 550 mm or more, excellent in elongation and stretch flangeability, and suitable for a member having a complicated shape such as an undercarriage member of an automobile. It is an object of the present invention to provide a method for producing the same.
  • An object of the present invention is to provide a matrix containing a ferrite-set coagulant single phase and a particle size dispersed in the matrix, containing 0.15% by weight, Ti: 0.02-0.35%, and Mo: 0.05-0.7% by weight.
  • This is achieved by a high-tensile hot-rolled steel sheet comprising fine precipitates of less than 10 nm. More specifically, for example, it is a high-tensile hot-rolled steel sheet comprising the following components.
  • Such a high-strength hot-rolled steel sheet includes, for example, a step of hot-rolling a steel slab having the above components at an Ar3 transformation point or higher to produce a hot-rolled steel sheet, and a step of winding the hot steel sheet at 550 to 700 ° C.
  • FIG. 1 is a diagram showing a relationship between the number of fine charcoal swords per unit volume and TS.
  • FIG. 2 is a diagram showing the relationship between the particle diameter of Fe carbide and ⁇ .
  • FIG. 3 is a diagram showing the relationship between the volume fraction of Fe carbide and ⁇ .
  • FIG. 4 is a diagram showing the relationship between the amounts of Si and Mo and the surface properties.
  • FIG. 5 is a diagram showing the relationship between TS XEL / ta2 and press workability.
  • FIG. 6 is a graph showing the relationship between the amount of dissolved C and EL. MODES FOR CARRYING OUT THE INVENTION As a result of studying the elongation and stretch flangeability of a high-tensile hot-rolled steel sheet, the present inventors have obtained the following knowledge.
  • Precipitation such as charcoal nitride becomes fine by the addition of Mo.
  • the content of C ⁇ 0.15%, Ti: 0.02-0.35, Mo: 0.05-0.7% by weight% the matrix is substantially a ferrite structure single phase, and the particle size in the matrix is less than 10 nm. If fine precipitates are deposited, excellent tensile strength of 550 MPa or more and excellent It has been found that a high-strength hot-rolled steel sheet having elongation and stretch flangeability can be obtained.
  • C, Ti, and Mo amounts are limited for the following reasons.
  • the C content needs to be 0.15% or less.
  • the Ti content is less than 0.02%, the amount of fine precipitates decreases and it is difficult to obtain a tensile strength of 550 MPa or more. If the Ti content exceeds 0.35%, the ferrite fiber becomes finer and the total elongation tends to decrease. Must be -0.35%.
  • the Mo content is 0.05% or more, it forms fine composite precipitates with Ti while suppressing the pearlite transformation and strengthens the steel while maintaining excellent elongation and stretch flangeability. Can be. However, when the content exceeds 0.7%, a hard phase is formed, and the stretch flangeability decreases. Therefore, the amount of Mo needs to be 0.05-0.7%.
  • the ferrite structure single phase does not need to be 100% ferrite structure, and the object of the present invention can be achieved if the ferrite composition It is 95% or more.
  • the particle size of fine precipitates precipitated in the matrix is 10 nm or more, it is difficult to obtain a tensile strength of 550 MPa or more. Therefore, if a precipitate having a grain size of 10 nm or more is used, it is necessary to increase the volume fraction of the precipitate, which causes the ferrite fiber to become finer and the elongation to decrease. Therefore, the particle size of the fine precipitate is less than 10 nm, but more preferably 5 nm or less. In order to further increase the tension, the thickness is more preferably 3 nm or less.
  • the fine precipitate is a composite carbide containing Ti and Mo. It is considered that the growth rate of the carbide is slowed down because Mo, which has a low diffusion rate, forms a charcoal hydride together with Ti, and a fine charcoal ridge is formed.
  • steel containing C: 0.03-0.15%, Ti: 0.03-0.25%, Mo: tr.-0.7% is hot-rolled at a finishing temperature of 900 ° C. Winding at a temperature of 500-800 ° C to produce a 2.3 mm hot-rolled steel sheet, the amount of fine precipitates and the tensile strength TS The relationship was investigated. As a result, as shown in Fig.
  • TS of 550 Pa or more becomes 1 ⁇ 10 5 I m 3 or more to the 700 MPa or more TS it can be seen that 2X10 5 cells / m 3 or more to the 780 MPa or more TS can be surely obtained.
  • the high-strength hot-rolled steel sheet of the present invention may contain Fe carbide having a relatively large grain size in addition to fine precipitates having a size of less than 10 nm. Since the size of Fe charcoal with a large grain size is not favorable for stretch flangeability, the relationship between grain size (average grain size), volume fraction and stretch flangeability of Fe carbide was investigated using the above hot rolled steel sheet. . Here, the particle size (average particle size) and volume ratio of Fe carbide were observed by an electron microscope and determined by image analysis.
  • Fig. 2 shows the relationship between the particle size of Fe carbide and the hole expansion ratio
  • Fig. 3 shows the relationship between the volume ratio of Fe carbide and the hole expansion ratio.
  • the particle size of the Fe charcoal dagger exceeds 1 m or the volume fraction of the Fe carbide exceeds 1%, ⁇ is less than 80%, which indicates that the stretch flangeability is deteriorated. Therefore, it is preferable that the particle size of Fe carbide be less than 1 ⁇ m and the volume fraction be 1% or less.
  • the investigation of the paper weave and the fine precipitate in the present invention was performed by the following method.
  • Samples were prepared by electropolishing using the jet-jet method and observed at an accelerating voltage of 200 kV using a transmission electron microscope.
  • the crystal orientation of the parent phase is controlled so that the fine precipitate has a measurable contrast with respect to the parent phase, and the defocus is shifted from the normal focus to minimize the number of precipitates.
  • Observation was performed by the method.
  • the thickness of the sample in the area where the precipitate particles were measured was evaluated by measuring the intensity of the elastic scattering peak and the non-uniform scattering peak using electron energy loss spectroscopy. According to this method, the measurement of the number of particles and the measurement of the sample thickness can be performed in the same region.
  • the number of particles was measured at four locations of 0.5 ⁇ 0.5 m on the sample and calculated as the number of particles projected and observed per 1 m 2 . From this value and the sample thickness, the number of precipitate particles per 1 m 3 was calculated. In addition, chemical analysis of precipitates was also performed by energy dispersive X-ray analysis.
  • the high tensile strength hot rolled steel sheet of the present invention As a more specific example of the high tensile strength hot rolled steel sheet of the present invention, the following high tensile strength hot rolled steel sheet can be given.
  • C more than 0.06% and less than 0.15% by weight, Si ⁇ 0.5%.
  • Mn 0.5-2.0, P ⁇ 0.06, S ⁇ 0.005%, A1 ⁇ 0.1%, N ⁇ 0.006%, Ti : More than 0.10%, less than 0.35%, Mo: 0.3-0.7%, balance being Fe, and substantially ferrite; 5X10 4 fine precipitates with a particle size of less than 10 nm in the matrix of W single phase I / xm High-tensile hot-rolled steel sheet dispersed at a ratio of 3 or more.
  • (1) and (2) are high-strength hot-rolled steel sheets with a tensile strength of 780 MPa or more, and (3) are high-tensile hot-rolled steel sheets with a tensile strength of 950 MPa or more.
  • C forms charcoal swords and is effective in strengthening steel, depending on the amounts of Ti, Mo, Nb, and V described below.
  • C a steel sheet having a tensile strength of 780 MPa
  • C if the C force exceeds 0.06%, pearlite is formed or precipitates are coarsened to deteriorate elongation and stretch flangeability. Therefore, C ⁇ 0.06%.
  • C in the case of a steel sheet with a tensile strength of 980 MPa, C needs to be 0.15% or less for the same reason, but C must exceed 0.06% to obtain the desired strength. Therefore, C is set to be more than 0.06% and 0.15% or less.
  • the balance between the C amount and the Ti and Mo amounts described below is desirably 0.8 ⁇ (C 1 12) I [(Ti 1 48) + (Mo / 96)] ⁇ 1.3.
  • Si is an effective element for solid solution strengthening, but if it exceeds 0.5%, precipitation of C from ferrite is promoted, and coarse Fe carbides are easily precipitated at grain boundaries, and the stretch flangeability decreases. I do. On the other hand, when the Si content exceeds 0.5%, hot rolling of thin steel sheets with a thickness of 2.5 mm or less becomes unstable. Therefore, Si ⁇ 0.5%.
  • Mn Mn must be 0.5% or more from the viewpoint of strengthening the steel by solid solution strengthening. When the force exceeds 2.0%, segregation occurs or a hard phase is formed, and the stretch flangeability decreases. Therefore, Mn: 0.5-2.0%.
  • P is effective for solid solution strengthening, but if it exceeds 0.06%, segregation occurs and the stretch flangeability decreases. Therefore, P ⁇ 0.06%.
  • A1 is added as a deoxidizer, but if it exceeds 0.1%, both elongation and stretch flangeability decrease. Therefore, Al ⁇ 0.1%.
  • N is preferably as small as possible. If it exceeds 0.006%, coarse nitrides increase and elongation flangeability decreases. Therefore, N ⁇ 0.006%.
  • Ti As noted above, Ti forms fine composite carbides with Mo and strengthens the steel while maintaining excellent elongation and stretch flangeability.
  • Bow 1 Ti 0.02-0.10% for steel plate with 780 MPa grade tensile strength, Ti: 0.10% to 035% for steel plate with tensile strength of 950 MPa.
  • Nb 0.08% and V ⁇ 0.15% are effective for fine-grained paper weave, and form composite precipitates together with Ti and Mo to contribute to excellent elongation and improvement of stretch flangeability.
  • Nb exceeds 0.08% or V exceeds 0.15%, elongation deteriorates, so Nb ⁇ 0.08% and V ⁇ 0.15%.
  • Nb exceeds 0.08% or V exceeds 0.15%, elongation deteriorates, so Nb ⁇ 0.08% and V ⁇ 0.15%. From the viewpoint of reducing the grain size of the yarn II ⁇ with Nb or V, it is preferable to set 0.005% ⁇ Nb and 0.001% ⁇ V.
  • high-tensile hot-rolled steel sheet of the present invention in addition to the above-mentioned three types of high-tensile hot-rolled steel sheets, the following high-tensile hot-rolled steel sheets containing W can be mentioned.
  • the elongation is further improved when the solid solution C is 0.0020%, as shown in Example 7 described later.
  • Fig. 4 shows the relationship between Si and Mo contents and surface properties.
  • the results in the figure show the degree of scale defects caused by Si. ⁇ means very good degree of defects, ⁇ means good, and X means bad.
  • the high-strength hot-rolled steel sheet of (1) above is, for example, substantially as follows: weight% ⁇ 0.06%, Si ⁇ 0.5%, Mn: 0.5-2.0%, P ⁇ 0.06, S ⁇ 0.005%, Al ⁇ 0.1 %, N ⁇ 0.006%, Mo: 0.05-0.6%, Ti: 0.02-0.10%, balance of Fe, and 0.8 ⁇ (C / 12) / [(Ti / 48) + (Mo / 96)] ⁇
  • Manufacture of high-tensile hot-rolled steel sheet comprising the steps of hot-rolling a steel slab satisfying 1.3 above the Ar3 transformation point to produce a hot-rolled steel sheet and winding the hot-rolled steel sheet at 550-700 ° C It can be manufactured by a method.
  • the high-strength hot-rolled steel sheet of (2) above is, for example, substantially ⁇ 0.06% by weight, Si ⁇ 0.5%, Mn: 0.5-2.0, P ⁇ 0.06%, S ⁇ 0.005%, Al ⁇ 0.1%, N ⁇ 0.006%, Mo: 0.05-0.6%, Ti: 0.02-0.10%,) ⁇ 0.08% and V 0.15 % Of at least one element, the balance being Fe, if the steel slab is manufactured under the same hot rolling conditions as the steel sheet of (1).
  • the high-strength hot-rolled steel sheet of (3) above is, for example, substantially as follows: C: 0.06% to 0.15% by weight, Si ⁇ 0.5%, Mn: 0.5-2.0%, P. ⁇ 0.06%, S ⁇ 0.005%, Al ⁇ 0.1%, N ⁇ 0.006%, Ti: 0.10%, 0.35% or less, Mo: 0.3-0.7%, balance of Fe, and 0.8 ⁇ (C 1 12) I [(Ti / 48 ) + (Mo / 96)] ⁇ 1.3 if the steel slab is manufactured under the same hot rolling conditions as the steel sheet in (1).
  • the hot rolling is performed at a temperature lower than the Ar3 transformation point, coarse grains are generated, the elongation is reduced, and the precipitates undergo a strain-inducing phenomenon to become coarse.
  • the hot rolling is performed at a temperature higher than the Ar3 transformation point, more preferably 880%. It must be performed at ° C or higher.
  • After hot rolling it is necessary to wind at a temperature of 550 ° C or higher, more preferably 600 ° C or higher, to obtain a ferrite structure single phase.
  • the steel slab can be rolled by a direct rolling method in which hot rolling is performed immediately after fabrication or after heat is applied. Further, it is also possible to heat or keep the rolled material before or during the finish rolling, or to perform continuous rolling by joining the rolled materials after the rough rolling.
  • the high-tensile hot-rolled steel sheets (1) to (5) can be subjected to hot-dip galvanizing. In the high-tensile hot-rolled steel sheet of the present invention, since stable fine precipitates are dispersed and precipitated, the precipitates do not change even when the hot-dip galvanizing treatment is performed, and the steel sheet softens. There is no.
  • Undercarriage members such as automobile suspension arms, reinforcements, side members, seat frames, and seat rails have complex shapes, making it difficult to manufacture by press forming with conventional high-strength hot-rolled steel sheets.
  • Has good workability The use of the high-tensile hot-rolled steel sheets (1) to (5) makes it possible to manufacture such members with high quality and high yield.
  • a 80% or more hole expansion rate and 700 MPa or more tensile strength TS, TS, elongation EL (%), the plate thickness t (mm) is (TSXEL) / t 2> high tensile heat satisfies 12000 Rolled steel sheets are suitable for undercarriage members of automobiles for the following reasons.
  • TS XEL The product of TS and EL, TS XEL, is an index of the absorbed energy of the material and is effective as an index indicating the likelihood of press cracking, but the required value differs for each TS of the steel sheet. Also, since EL is a value dependent on the sheet thickness t, there is a preferred range of TS XEL expressed as a function of t for which there is no press cracking problem due to lack of EL for each TS.
  • the EL of steel sheets with different t can be converted by Oliver's formula, and is proportional to t to the power of 0.2.
  • a suspension arm was made with a 1200 ton press using a hot-rolled steel sheet containing C: 0.04%, Ti: 0.09, Mo: 0.2%, thickness: 3.5-2.7 mm, TS: 710-850 MPa. and, (S XEL) / t 2 and the press workability (without cracking: OK, cracking: NG) was investigated the relationship between.
  • the steel sheet 1-3 of the present invention fine precipitates having a particle size of less than 10 nm were uniformly dispersed in the matrix of the single-phase ferrite structure. These fine precipitates were carbides containing Ti and Mo. These steel plates 1-3 have a TS of 800 MPa or more, a high EL and ⁇ , and do not cause press cracking.
  • the steel sheet 4 as a comparative example is bainite (B) fiber, has a low EL, and causes press cracking.
  • the steel sheet 5 is ferrite + pearlite (F + P) fiber, has a low ⁇ , and causes press cracking.
  • Example 1 After heating the steel AP having the chemical composition shown in Table 3 to 1250, it was hot-rolled at a finishing temperature of 880-930, and the cooling rate and winding temperature were changed to produce a 3.2 mm thick steel plate 1-16. Was. Then, the same test as in Example 1 was performed.
  • the steel sheet 1-10 which is an example of the present invention has a single phase of a ferrite structure, the grain size of the precipitate is less than 10 nm, and the value of Mo / (Ti + Nb + V + Mo) by atomic% is 0.25 or more. , 550 MPa or higher TS, high EL and ⁇ . In addition, according to observation with an electron microscope, fine precipitates were uniformly dispersed in the ferrite structure.
  • the precipitate has a particle size of 10 nm or more, and the TS content is less than 550 MPa due to a small amount of C and a small amount of the precipitate.
  • the steel sheet 14 since the Mn content is large and segregation is remarkable, and martensite is also formed, both EL and ⁇ are low.
  • TS is less than 550 MPa because the amount of precipitates is small because the amount of Ti is small.
  • the value of Mo / (Ti + Nb + Mo) is 0.25 or more, high TS and EL are obtained, and the plate shape is good.
  • the value of Mo / (Ti + Nb + Mo) is less than 0.25, the EL is low, and the plate shape is remarkably wavy. This is because a low-temperature transformation phase was formed after rapid rolling after hot rolling to ensure strength.
  • Table 6 shows the results. 'In the steel sheet 2-4 of the present invention, a uniform material can be obtained in the width direction and the surface properties are good. In particular, in steel sheets 2 and 3 in which Si + Mo is 0.5 or less, very good surface properties can be obtained. In the steel sheet 3, according to the transmission electron microscope, fine carbides including Ti and Mo were uniformly dispersed in the ferrite structure.
  • the steel sheet 1 of the comparative example with no Mo added has a ferrite + pearlite structure, and the material variation ATS in the width direction is 30 MPa or more, and the AEL is as large as 2% or more. Further, in the steel sheet 5 of the comparative example in which the amount of Mo added is large and Ti / Mo is less than 0.1, the material variation is small, but the elongation is largely reduced.
  • the material properties in the direction are small and the surface properties are very good.
  • the steel sheet 6 of the comparative example containing no Mo is ferrite + pearlite, and the material variation ATS is 30 MPa or more, and AEL is 2% or more, which is large.
  • the steel sheet 10 of the comparative example with a large amount of Cr added the formation of the low-temperature transformation phase could not be suppressed, and the ferrite yarn was obtained! !
  • the surface properties of these steel sheets are very good because the content of Si + Mo is 0.5% or less.
  • the material variation in the width direction is small, and the surface properties are good.
  • the material variation in the width direction is small, and the surface properties are good. is there.
  • the steel sheet 16 in which Si + Mo is 0.5% or less has very good surface properties.
  • the variation in material is extremely small when the finishing temperature is 880 ° C or more.
  • the steel sheet 27-29 with the winding temperature of 550-700 ° C shows extremely small material fluctuation and large elongation.
  • the material variation is extremely small for the steel plate 32-34 whose finishing temperature is 880 ° C or more and whose winding temperature is 550-700 ° C.
  • the Mo content is large and the Ti I Mo of the precipitate is less than 0.1, and the material variation is large.
  • the winding temperature is as low as 500 ° C, bainite texture occurs, and the fluctuation of TS is particularly large.
  • F Ferrite
  • AF Ash ferrite
  • B Bainite
  • BF Binic ferrite
  • P H
  • Steel sheets 1-3 and 5-15 which are examples of the present invention, have a high EL and ⁇ since the component composition is within the range of the present invention and are ferrite in which Ti and Mo are uniformly dispersed in a carbide.
  • the steel sheet 4 as a comparative example, a bainite structure having a high dislocation density is formed due to a low winding temperature, and the EL is low.
  • the comparative steel sheets 16-18 pearlite or martensite force was formed, and both EL and ⁇ were low.
  • the carbon / nitrides of Ti and Nb are not fine, and ⁇ is low because there is almost no precipitation of Mo carbide.
  • TS and ⁇ are low because the amount of Ti added is small and the carbide of ⁇ is small.
  • Mo was not added and the amount of Ti added was large, so that the precipitates were coarse and the amount was too large, and both the EL and the fly were low.
  • Figure 6 shows the relationship between the amount of dissolved C and EL.
  • Steel AM having the chemical composition shown in Table 10 was heated to 1250 ° C, hot-rolled at a finishing temperature of 880-930 ° C, and then cooled and coiled at different temperatures. -13 was produced. Here, the winding temperature was varied in a temperature range exceeding 600 ° C. Then, a JIS No. 5 test piece and a hole expanding test piece were collected, and a tensile test and a hole expanding test were performed. Precipitates were examined by transmission electron microscopy.
  • Each of the steel sheets 1-9 of the present invention was composed of a single phase of ferrite structure, the average grain size of the precipitate was less than 10 nm, and the composition ratio of the precipitate satisfied 0.1 ⁇ Ti / Mo ⁇ 3. Therefore, TS is higher than 950 MPa and has high EL and ⁇ .
  • the amount of C is too large, pearlite is generated because Mo is not added, the precipitates are coarse, and both EL and ⁇ are low. Further, in the steel sheet 11, the precipitates were coarse due to the absence of Mo, and both EL and ⁇ were low. In steel sheet 12, segregation is remarkable because the amount of ⁇ is too large, and both EL and ⁇ are low because martensite is formed in yarn III. In steel sheet 13, although there is a composite precipitate of Ti and Mo, the amount of C is too large, pearlite is generated, and the precipitate power S is coarsened, so that both EL and ⁇ are low.
  • Heat steel A-E with the components shown in Table 12 to 1250 ° C, hot-roll at a finishing temperature of 890 ° C, wind at a winding temperature of 620 ° C, and produce steel plate 1-5 with a thickness of 3.2 mm. did. Then, the same tensile strength values and hole expansion ratios of the steel sheet as in Example 4 were examined at the center and the ends in the width direction. Precipitates were examined by transmission electron microscopy.
  • the material variation is extremely small.
  • the steel sheet 5 as a comparative example contains only Ti as a carbon / nitride forming element, EL and ⁇ are low, and the material variation is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明細書 高張力熱延鋼板およびその製造方法 技術分野 本発明は、 自動車の足回り部材などに適した高張力熱延鋼板、 特に 550 MPa以 上の引張強度を有する高張力熱延鋼板およびその製造方法に関する。 · 背景技術 環境保護につながる燃費向上の観点から、 自動車用熱延鋼板の高張力化、 薄肉化 が進められている。 特に、 その効果の大きいホイールやサスペンションアームなど の足廻り部材用熱延鋼板に対して高張力化、 薄肉化の要望が強い。 一方、 足廻り部 材は複雑な形状をしているため、 それらに用いられる熱延鋼板には、 高張力と同時 に優れた伸びや伸びフランジ性が必要である。
従来から、 足廻り部材のような自動車用部材に対して種々の高張力熱延鋼板が提 案されている。 例えば、 特開平 4-329848号公報には、 フェライト組織と第 2相 (パーライト、 ベイナイト、 マルテンサイト、 残留オーステナイトなど)からなる疲 労特性と伸びフランジ性に優れた複合組織鋼板が開示されている。 しかし、 硬質な 第 2相が存在しているため、 十分な伸びフランジ性が得られない。
特開平 6-172924号公報には、 転位密度の高いペイ二ティックフェライト組織を 有する伸びフランジ性に優れた鋼板が提案されている。 しかし、 転位密度の高いベ ィニティックフェライト組織を有するため、 十分な伸びが得られない。
特開平 6-200351号公報には、 主としてポリゴナルフェライト糸慮からなり、 TiC による析出強化や固溶強ィヒを利用して高張力化の図られた伸びフランジ性に優れた 鋼板が提案されている。 しかし、 多量の Ti添加が必要なため大きい析出物が生成 しゃすく、 優れた伸びや伸びフランジ性が安定して得られない。 特開平 7-11382号公報には、 微細な TiCや NbCが析出したァシキユラ一フェラ イト組織を有する伸びフランジ性に優れた鋼板が提案されている。 しかし、 転位密 •度の高いァシキユラ一フェライト組織を有するため十分な伸びが得られない。
特開平 11-152544号公報には、 Ti、 Nb、 V、 Mo を添加してフェライト粒径を 2 m以下に細粒ィヒした鋼板が提案されている。 しかし、 粒径が 2 m以下の細粒 であるため優れた伸びが得られない。 発明の開示 本発明は、 自動車の足廻り部材のような複雑な形状の部材に好適な、 550 Μ 以 上の引張強度を有し、 伸びおよび伸びフランジ性に優れた高張力熱延鋼板およびそ の製造方法を提供することを目的とする。 本発明の目的は、 重量%でじ≤ 0.15 %、 Ti: 0.02-0.35 %、 Mo: 0.05-0.7 %を含有 し、 実質的にフェライト組凝単相のマトリックスとマトリックス中に分散した粒径 が 10 nm未満の微細析出物とからなる高張力熱延鋼板などにより達成される。 より 具体的には、 例えば、 以下の成分からなる高張力熱延鋼板である。
(1)実質的に、 重量%で C≤ 0.06 %、 Si≤ 0.5 «%、 Mn: 0.5-2.0 %、 P≤ 0.06 %、 S ≤ 0.005 %、 Al ≤ 0.1 %、 N ≤ 0.006 %ヽ Ti: 0.02-0.10 、 Mo: 0.05-0.6 %、 残 部が Feからなり、 かつ実質的にフェライト組織単相のマトリックス中に粒径が 10 nm未満の微細析出物が 5 X 104個 / m3以上の割合で分散した高張力熱延鋼板。
(2)実質的に、 重量%で匚≤ 0.06 %、 Si≤ 0.5 %、 Mn: 0.5-2.0 %、 P≤ 0.06 %、 S ≤ 0.005 %ヽ A1 ≤ 0.1 %、 N≤ 0.006 %、 Ti: 0.02-0.10 %、 Mo: 0.05-0.6 %、 Nb ≤ 0.08 %と V≤ 0.15 %のなかから選ばれた少なくとも 1種の元素、 残部が Feか らなり、 かつ実質的にフェライ卜«単相のマトリックス中に粒径が 10 nm未満の 微細析出物が 5 X 104個 I m3以上の割合で分散した高張力熱延鋼板。
(3)実質的に、 重量%で C: 0.06 %超え 0.15 %以下、 Si ≤ 0.5 %、 Mn: 0.5- 2.0 、 P ≤ 0.06 %、 S ≤ 0.005 %、 Al ≤ 0.1 %、 N≤ 0.006 %、 Ti: 0.10 %超え 0.35 %以下、 Mo: 0.3-0.7 %、 残部が Feからなり、 かつ実質的にフェライト &戠単 相のマトリックス中に粒径が 10 nm未満の微細析出物が 5X 104個 / i m3以上の割 合で分散した高張力熱延鋼板。 こうした高張力熱延鋼板は、 例えば、 上記の成分を有する鋼スラブを Ar3変態点 以上で熱間圧延して熱延鋼板を製造する工程と、 熱 鋼板を 550-700 °Cで巻き取る 工程とを有する高張力熱延鋼板の製造方法によって製造できる。 図面の簡単な説明 図 1は、 微細炭ィ匕物の単位体積当りの個数と TSとの関係を示す図である。 図 2は、 Fe炭化物の粒径と λとの関係を示す図である。
図 3は、 Fe炭化物の体積率と λとの関係を示す図である。
図 4は、 Si、 Mo量と表面性状との関係を示す図である。
図 5は、 TS XEL/ ta2とプレス加工性との関係を示す図である。
図 6は、 固溶 C量と ELとの関係を示す図である。 発明を実施するための形態 本発明者らは、 高張力熱延鋼板の伸びおよび伸びフランジ性について検討した結 果、 以下の知見を得た。
(1) Mo添加により、 炭 '窒化物などの析出物が微細になる。
(2)転位密度が低く、 延性に富むフェライト組織単相のマトリックス中に、 Mo添 加により炭 ·窒化物などの析出物を微細に析出させると、 高張力と優れた伸びおよ び伸びフランジ性を両立できる。
こうした知見に基づき、 重量%で C≤ 0.15 %、 Ti: 0.02-0.35 、 Mo: 0.05-0.7 % を含有させ、 マトリックスを実質的にフェライト組織単相とし、 マトリックス中に 粒径が 10 nm未満の微細析出物を析出させれば、 550 MPa以上の引張強度と優れた 伸びおよび伸びフランジ性を有する高張力熱延鋼板の得られることを見出した。 C、 Ti、 Mo量の限定は、 以下の理由による。
C量が 0.15 %を超えると微細析出物が»:化し易くなり強度が低下する場合があ るので、 C量は 0.15 %以下にする必要がある。
Ti量が 0.02 %未満では微細析出物の量が少なくなり 550 MPa以上の引張強度が 得られ難く、 0.35 %を超えるとフェライト繊カ微細化し全伸びが低下し易くなる ことから、 Ti量は 0.02-0.35 %にする必要がある。
Mo量は、 0.05 %以上であるとパ一ライト変態を抑制しつつ、 Tiとの微細な複合 析出物を形成し、 優れた伸びおよび伸びフランジ性を維持しながら鋼を強ィヒするこ とができる。 しかし、 0.7 .%を超えると硬質相が形成され伸びフランジ性が低下す る。 したがって、 Mo量は 0.05-0.7 %にする必要がある。
本発明において、 フェライト組織単相とは、 100 %フェライト組織である必要は なく、 95 %以上のフェライト組 Itであれば本発明の目的を達成できる。
また、 マトリックス中に析出させる微細析出物の粒径を 10 nm以上にすると、 550 MPa以上の引張強度が得られ難くなる。 そのため、 粒径が 10 nm以上の析出物 で強ィヒしょうとすると、 析出物の体積率を上げる必要があり、 それによりフェライ ト繊が細粒化して伸びが低下する。 したがって、 微細析出物の粒径は 10 nm未満 とするが、 5 nm以下にすることがより好ましい。 より高張力化を図る場合には 3 nm以下にすることがさらに好ましい。
微細析出物は、 Tiと Moを含む複合炭化物である。 拡散速度が遅い Moが Tiと ともに炭ィ匕物を形成するために炭化物の成長體が遅くなり、 微細な炭ィ匕物が形成 されると考えられる。
Moの代わりに、 あるいは Moと一緒に、 Wを 0.01-1.5 %の範囲で含有させても、 粒径が 10 nm未満の微細析出物を析出させることができ、 優れた伸びおよび伸びフ ランジ性と 550 MPa以上の引張強度を有する高張力熱延鋼板が得られる。
微細析出物の量は強度に大きな影響を与えるので、 C: 0.03-0.15 %、 Ti: 0.03- 0.25 %、 Mo: tr.-0.7 %を含む鋼を仕上温度 900 °Cで熱間圧延し、 巻取温度 500-800 °Cで巻き取り、 板厚 2.3 mmの熱延鋼板を作製し、 微細析出物の量と引張強度 TS の関係を調査した。 その結果、 図 1に示すように、 粒径が 10 nm未満の微細析出物 の単位体積当りの個数を 5 X 104個 / m3以上にすると 550 Pa以上の TSが、 1 X105個 I m3以上にすると 700 MPa以上の TSが、 2X105個 / m3以上にする と 780 MPa以上の TSが確実に得られることがわかる。
本発明の高張力熱延鋼板には、 10 nm未満の微細析出物の他に、 比較的粒径の大 きな Fe炭化物を含む場合がある。 粒径の大きな Fe炭ィヒ物は伸びフランジ性に好ま しくないので、 上記の熱延鋼板を用いて、 Fe炭化物の粒径(平均粒径)、 体積率と 伸びフランジ性の関係を調査した。 ここで、 Fe炭化物の粒径(平均粒径) と体積率 は、 電子顕微鏡で観察し画像解析により求めた。 また、 伸びフランジ性は、 130 mm角の鋼板の中央に 10 πιιηΦのポンチによりクリアランス 12.5 %で打ち抜いた穴 を有する試験片を準備し、 60° 円錐ポンチにより打抜き穴をバリの発生してない側 から押し上げ、 割れが鋼板を貫通した時点での穴径 dを測定し、 下記の式で表され る穴広げ率 λにより評価した。
λ ( ) = [(d-10)/10]X100
図 2に Fe炭化物の粒径と穴広げ率との関係を、 図 3に Fe炭化物の体積率と穴広 げ率との関係を示す。
Fe炭ィ匕物の粒径が 1 mを超えたり、 Fe炭化物の体積率が 1 %を超えると、 λ が 80 %未満となり、 伸びフランジ性が劣化することがわかる。 したがって、 Fe炭 化物の粒径を 1 β m未満、 その体積率を 1 %以下にすることが好ましい。
重量%で表される C、 Ti、 Moの含有量が 0.8≤ (C 112) I [(Ti 148) + (Mo 196)] ≤ 1.3を満足するようにすると、 10 nm未満の微細析出物が 5X104個 I ^m3以上の 割合で、 確実に形成されるようになる。 また、 微細析出物中の原子%で表される Ti、 Moの含有量が 0.1 ≤ Ti/Mo ≤ 3を満足するようにすると、 10 nm未満の微細析 出物が 5X104個 I m3以上の割合で、 確実に形成されるようになり、 550 MPa以 上の弓 I張強度が確実に得られるようになる。 さらに、 高張力化を図る場合には、 0.5 ≤ Ti/Mo ≤ 2を満足するようにすることが望ましい。
C、 Ti、 Moに加え、 さらに重量%で Nb≤ 0.08%と V≤ 0.15%のなかから選ば れた少なくとも 1種の元素を含有させても同様な効果が得られるが、 この場合、 微 細析出物中の原子%で表される Ti、 Mo、 Nb、 Vの含有量が 0.25 ≤ Mo / (Ti + Nb + V + Mo) を満足するようにする必要がある。
同様に、 Mo の代わりに W を含有する場合は、 微細析出物中の原子%で表され る Ti、 Wの含有量が 0.1 ≤ Ti / Wを満足するようにすると、 10 nm未満の微細析 出物が 5 X 104個 / /z m3以上の割合で、 確実に形成されるようになる。
また、 Moと Wをともに含有する場合は、 0.1 ≤ Ti / (Mo + W) を満足するよう にすると、 10 nm未満の微細析出物が 5X 104個 / m3以上の割合で、 確実に形成 されるようになる。
このように微細析出物中の元素量の比を制御すると、 微細析出物の個数のみなら ず、 その分散状態もより均一化され、 鋼板内でより均一な引張特性値が得られると ともに、 圧延後の板形状も良好となる。
なお、 本発明における紙織や微細析出物の調査は、 以下の方法により行った。 ッインジエツト法を用いた電解研磨法により試料を作成し、 透過電子顕微鏡によ り加速電圧 200 kVで観察した。 このとき、 微細析出物が母相に対して計測可能な コントラストになるように母相の結晶方位を制御し、 析出物の数え落としを最低限 にするために焦点を正焦点からずらしたデフォーカス法で観察を行った。 また、 析 出物粒子の計測を行った領域の試料の厚さは電子エネルギー損失分光法を用いて、 弾性散乱ピークと非弹性散乱ピーク強度を測定することで評価した。 この方法によ り、 粒子数の計測と試料厚さの計測を同じ領域について実行することができる。 粒 子数の測定は、 試料の 0.5 X0.5 mの領域 4箇所について行い、 1 m2当たりに 投影されて観察される粒子数として算出した。 この値と試料厚さから 1 m3当た りの析出物粒子の数を算出した。 また、 エネルギー分散型 X線分析法により析出物 の化学分析も行った。
本発明である高張力熱延鋼板のより具体的な例として、 以下の高張力熱延鋼板を 上げることができる。
(1)実質的に、 重量%でじ ≤ 0.06 %、 Si≤ 0.5 %、 Mn: 0.5-2.0 %, P≤ 0.06 %、 S ≤ 0.005 、 Al≤ 0.1 ヽ N ≤ 0.006 %、 Ti: 0.02-0.10 、 Mo: 0.05-0.6 %、 残 部が Feからなり、 かつ実質的にフェライト組織単相のマトリックス中に粒径が 10 nm未満の微細析出物が 5 X 104個 I Ai m3以上の割合で分散した高張力熱延鋼板。
(2)実質的に、 重量%で C≤ 0.06 %、 Si ≤ 0.5 %、 Mn: 0.5-2.0 %、 P ≤ 0.06 %、 S ≤ 0.005 %、 A1≤ 0.1 %、 N≤ 0.006 %、 Ti: 0.02-0.10 %、 Mo: 0.05-0.6 %ヽ Nb ≤ 0.08 %と V≤ 0.15 %の かから選ばれた少なくとも 1種の元素、 残部が Feか らなり、 かつ実質的にフェライト組織単相のマトリックス中に粒径が 10 nm未満の 微細析出物が 5 X 104個 I m3以上の割合で分散した高張力熱延鋼板。
(3)実質的に、 重量%で C: 0.06 %超え 0.15 %以下、 Si ≤ 0.5 %. Mn: 0.5- 2.0 、 P ≤ 0.06 、 S ≤ 0.005 %、 A1 ≤ 0.1 %、 N ≤ 0.006 %、 Ti: 0.10 %超え 0.35 %以下、 Mo : 0.3-0.7 %、 残部が Feからなり、 かつ実質的にフェライト; W単 相のマトリックス中に粒径が lO nm未満の微細析出物が 5X 104個 I /x m3以上の割 合で分散した高張力熱延鋼板。
(1)、 (2)は引張強度が 780 MPa以上の高張力熱延鋼板、 (3)は引張強度が 950 MPa 以上の高張力熱延鋼板である。
以下に、 成分の限定理由を説明する。
C: Cは炭ィ匕物を形成し、 後述する Ti、 Mo、 Nb、 Vの量にも依存するが、 鋼を 強化するのに有効である。 しかし、 引張強度が 780 MPaグレードの鋼板の場合は、 C力 0.06 %を超えるとパーライ卜が形成されたり、 析出物が粗大ィ匕して伸びや伸び フランジ性を劣化させる。 このため、 C≤ 0.06 %とする。 一方、 引張強度が 980 MPaグレードの鋼板の場合は、 同様な理由で Cを 0.15 %以下にする必要があるが、 所望の強度を得るには Cを 0.06 %超えにする必要がある。 このため、 C : 0.06 % 超え 0.15 %以下とする。 また、 C量と後述する Ti、 Mo量のバランスは、 前述のよ うに、 0.8 ≤ (C 1 12) I [(Ti 1 48) + (Mo / 96)] ≤ 1.3とすることが望ましい。 このよ うな関係を満足させることにより、 前述のように、 Ti、 Mo を含む微細な複合炭ィ匕 物を所定の量析出させるとともに、 パーライ卜の形成や析出物の粗大化による伸び や伸びフランジ性の劣化を抑制できる。
Si: Si は固溶強ィ匕には有効な元素であるが、 0.5 %を超えるとフェライトからの C析出が促進されて粒界に粗大な Fe炭化物を析出し易くなり、 伸びフランジ性が 低下する。 また、 Siが 0.5 %を超えると板厚 2.5 mm以下の薄い鋼板の熱間圧延が 不安定になる。 このため、 Si≤ 0.5 %とする。
Mn: Mnは固溶強化により鋼を強化する観点からは 0.5 %以上にする必要がある 力 2.0 %を超えると偏析が生じたり、 硬質相が形成されて伸びフランジ性が低下 する。 このため、 Mn: 0.5-2.0 %とする。
P : Pは固溶強ィ匕に有効であるが、 0.06 %を超えると偏析が生じて伸びフランジ 性が低下する。 このため、 P≤ 0.06 %とする。
S : Sは少ないほど好ましい。 0.005 %を超えると伸びフランジ性が低下する。 こ のため、 S ≤ 0.005 %とする。
A1: A1は脱酸剤として添加されるが、 0.1 %を超えると伸びおよび伸びフランジ 性がともに低下する。 このため、 Al≤ 0.1 %とする。
N: Nは少ないほど好ましい。 0.006 %を超えると粗大な窒化物が増え、 伸びフラ ンジ性が低下する。 このため、 N≤ 0.006 %とする。
Ti :上述したように、 Tiは Moと微細な複合炭化物を形成し、 優れた伸びおよび 伸びフランジ性を維持しながら鋼を強化する。 弓 1張強度が 780 MPaグレードの鋼 板の場合は Ti: 0.02-0.10 %とし、 引張強度が 950 MPaダレ一ドの鋼板の場合は Ti : 0.10 %超え 035 %以下とする。
Mo: Tiの場合と同じ理由で、 引張強度が 780 MPaグレードの鋼板の場合は Mo : 0.05-0.6 %とし、 弓 1張強度が 950 MPaグレードの鋼板の場合は Mo: 0.3-0.7 %とす る。
引張強度が 780 MPa グレードの鋼板の場合は、 さらに Nb 0.08 %と V ≤ 0.15 %のなかから選ばれた少なくとも 1種の元素を含有させることができる。 b、 Vは紙織の細粒ィ匕に有効であり、 かつ Tiや Moとともに複合析出物を形成し優れ た伸びや伸びフランジ性の向上に寄与する。 しかし、 Nbが 0.08 %を超えたり、 V が 0.15 %を超えると伸びが劣化するため、 Nb ≤ 0.08 %、 V ≤ 0.15 %とする。 な お、 Nbや Vによる糸 II戠の細粒化を図る観点から、 0.005 % ≤ Nb、 0.001 % ≤ V とすることが好ましい。
本発明の高張力熱延鋼板のより具体的な例として、 上述した 3種の高張力熱延鋼 板の他に、 Wを含んだ以下の高張力熱延鋼板も上げられる。 (4)実質的に、 重量%で C ≤ 0.1 %、 Si ≤ 0.5 %> Mn≤ 2 %、 P≤ 0.06 %、 S ≤ 0.01 %、 Al ≤ 0.1 %, N≤ 0.006 、 Cr≤ 0.5 %、 Ti: 0.02-0.2 % Nb ≤ 0.08 %、 W : 0.01-1.5 %、 残部が Feからなり、 かつ実質的にフェライト 単相の マトリックス中に粒径が 10 nm未満であり、 析出物中の原子%で表される Ti、 Mo、 Wの含有量が 0.1 ≤ Ti / (Mo + W) を満足する微細析出物が 5 X 104個 I m3以上 の割合で分散した高張力熱延鋼板。
(5)実質的に、 重量%でじ ≤ 0.1 %、 Si≤ 0.5 %、 Mn≤ 2 %、 P ≤ 0.06 %、 S ≤ 0.01 %、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Cr≤ 0.5 > Ti: 0.02-0.2 %、 Nb ≤ 0.06 %、 Mo: 0.05-0.6 %、 W: 0.01-1.5 %、 残部が Feからなり、 かつ実質的にフエ ライト組織単相のマトリックス中に粒径が 10 nm未満の微細析出物が 5 X 104個 / ίΐ m3以上の割合で分散した高張力熱延鋼板。
上記(1)-(5) の高張力熱延鋼板において、 後述する実施例 7 に示すように、 固溶 C≤ 0.0020 %とすると伸びがさらに向上する。
図 4に、 Si、 Mo量と表面性状の関係を示す。 図の結果は、 Siに起因するスケー ル欠陥の程度を示したもので、 ◎は欠陥の程度が非常に良好、 〇は良好、 Xは劣悪 を意味する。
上記(1)- (5) の高張力熱延鋼板において、 重量%で Si + Mo ≤ 0.5 %とすると、 非常に良好な表面性状が得られる。
なお、 Q ≤ 0.15 %、 Cu ≤ 0.15 %、 Ni ≤ 0.15 %のなかから選ばれた少なくと も 1種の元素を含有させても、 本発明の効果は得られる。 上記(1) の高張力熱延鋼板は、 例えば、 実質的に、 重量%でじ≤ 0.06 %、 Si ≤ 0.5 %、 Mn: 0.5-2.0 %、 P ≤ 0.06 、 S≤ 0.005 %、 Al≤ 0.1 %、 N≤ 0.006 %、 Mo: 0.05-0.6 %、 Ti: 0.02-0.10 %、 残部が Feからなり、 かつ 0.8 ≤ (C / 12) / [(Ti / 48) + (Mo / 96)] ≤ 1.3を満足する鋼スラブを Ar3変態点以上で熱間圧延して熱延鋼 板を製造する工程と、 熱延鋼板を 550-700 °Cで巻き取る工程とを有する高張力熱延 鋼板の製造方法によつて製造できる。
上記(2) の高張力熱延鋼板は、 例えば、 実質的に、 重量%で ≤ 0.06 %、 Si ≤ 0.5 %、 Mn: 0.5-2.0 、 P ≤ 0.06 %、 S ≤ 0.005 %、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Mo: 0.05-0.6 %、 Ti: 0.02-0.10 %、 ) ≤ 0.08 %と V 0.15 %から選ばれた少な くとも 1種の元素、 残部が Feからなる鋼スラブを、 (1)の鋼板と同様な熱延条件で 製造すれば得られる。
上記 (3) の高張力熱延鋼板は、 例えば、 実質的に、 重量%で C: 0.06 %超え 0.15 %以下、 Si ≤ 0.5 %、 Mn: 0.5-2.0 %、 P .≤ 0.06 %、 S ≤ 0.005 %、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Ti: 0.10 %賴え 0.35 %以下、 Mo: 0.3-0.7 %、 残部が Feから なり、 かつ 0.8 ≤ (C 1 12) I [(Ti / 48) + (Mo / 96)] ≤ 1.3を満足する鋼スラブを、 (1) の鋼板と同様な熱延条件で製造すれば得られる。
熱間圧延は、 Ar3変態点未満の温度で行うと粗大粒が発生し、 伸びが低下すると ともに、 析出物がひずみ誘起現象を起こして粗大化するため、 Ar3変態点以上、 よ り好ましくは 880 °C以上で行う必要がある。 熱間圧延後は、 フェライ卜組織単相 とするため 550 °C以上、 より好ましくは 600 °C以上の温度で巻取る必要がある。 また、 析出物の粗大ィ匕を防止するため 700 °C以下、 より好ましくは 660 °C以下の 温度で巻取る必要がある。
なお、 鋼スラブは、 铸造後直ちにあるいは補熱を施した後に熱間圧延を行う、 直 送圧延法で圧延することもできる。 また、 仕上圧延前あるいは仕上圧延中に圧延材 を加熱または保熱したり、 粗圧延後に圧延材を接合して行う連続圧延を行うことも できる。 上記(1)-(5) の高張力熱延鋼板には、 溶融亜鉛めつき処理を施すことができる。 本発明の高張力熱延鋼板では、 安定した微細析出物が分散して析出しているため、 溶融亜鉛めつき処理を施しても析出物が変化することはなく、 鋼板が軟ィ匕すること はない。 自動車のサスペンションアーム、 リインフォ一スメント、 サイドメンバー、 シー トフレーム、 シートレールなどの足回り部材は複雑な形状を有するため、 従来の高 張力熱延鋼板ではプレス成形による製造が困難であつたが、 良好な加工性を有する 上記(l)-(5)の高張力熱延鋼板を用いれば、 高品質、 高歩留まりでこうした部材を 製造することが可能となる。
特に、 80 %以上の穴広げ率と 700 MPa以上の引張強度 TSを有し、 TS、 伸び EL (%)、 板厚 t (mm) が(TSXEL) / t 2 > 12000を満足する高張力熱延鋼板が、 以下の 理由により、 自動車の足回り部材に好適である。
TSと ELの積 TS XELは材料の吸収エネルギーの指標となり、 プレス割れの生じ 難さを表す指標として有効であるが、 鋼板の TS ごとに要求される値が異なる。 ま た、 ELは板厚 tに依存する値であるので、 TSごとに EL不足によるプレス割れの 問題が生じない tの関数として表された TS XELの好ましい範囲が存在する。 tの 異なる鋼板の ELは Oliverの式で換算でき、 tの 0.2乗に比例する。
そこで、 C: 0.04 %、 Ti: 0.09 、 Mo: 0.2 %を含み、 扳厚が 3.5-2.7 讓で、 TS が 710-850 MPaの熱延鋼板を用い、 1200 tonプレス機でサスペンションアームを作 製し、 ( S XEL) / t 2とプレス加工性(割れなし: OK、 割れ: NG) との関係を調査 した。
図 5に示すように、 (TSXEL) I t 2が 12000を超えると割れが全く生じなくなる ことがわかる。 実施例 1
表 1に示す成分組成の鋼 A-Eを、 表 1に示す条件で熱間圧延を行い、 鋼板 1-5を 作製した。 そして JIS 5号試験片による引張試験、 および上述したような方法で、 透過電子顕微鏡にょる纖および析出物の調査、 穴広げ率 (λ) の測定、 サスペン ションアームの実プレス試験を行った。 表 1には、 マトリックスの組織、 析出物の 粒径、 析出物の個数も合わせて示した。
結果を表 2に示す。
透過電子顕微鏡による観察によれば、 本発明例である鋼板 1-3は、 フェライト組 織単相のマトリックス中に粒径 10 nm未満の微細析出物が均一に分散していた。 ま た、 これらの微細析出物は Tiと Moを含む炭化物であった。 これらの鋼板 1-3は、 800 MPa以上の TS、 高い ELおよび λを有し、 プレス割れも生じない。 一方、 比較例である鋼板 4は、 ベイナイト (B)繊で、 ELが低く、 プレス割れ が生じる。 また、 鋼板 5は、 フェライト +パーライト (F + P) 纖であり、 λが低 く、 プレス割れが生じる。
表 1
Figure imgf000015_0001
F:フェライト、 B:ベイナイト、 P:パーライト
2
板厚 TS Eし A プレス加工 鋼板 鋼 TSxEL
(mm) (MPa) 備考
(%) (%) 性
1 A 3.2 821 21.1 17323 105 OK 発明例
2 B 3.2 810 23.1 18711 110 OK 発明例
3 C 3.2 815 22.3 18175 118 OK 発明例
4 D 3.2 841 16.5 13877 95 NG 比較例
5 E 3.2 856 20.7 17719 30 NG 比較例
実施例 2
表 3に示す化学成分を有する鋼 A-Pを 1250 に加熱後、 仕上温度 880-930 で 熱間圧延し、 冷却速度と巻取温度を変化させて、 板厚 3.2 mmの鋼板 1-16を作製し た。 そして、 実施例 1の場合と同様な試験を行った。
結果を表 4に示す。
本発明例である鋼板 1-10は、 フェライト組織単相であり、 析出物の粒径が 10 nm 未満で、 原子%による Mo / (Ti + Nb + V + Mo) の値が 0.25以上であり、 550 MPa以 上の TSと高い ELおよび λを有している。 また、 電子顕微鏡による観察によれば、 微細析出物がフェライト組織中に均一に分散していた。
これに対し、 比較例である Mo無添加の鋼板 11、 12では、 パ一ライトが生成し たり、 析出物が粗大化しており、 ELおよび λがともに低い。 また、 鋼板 13では、 析出物の粒径が 10 nm以上であり、 C量が少なく析出物の量が少ないため TSが 550 MPa未満である。 鋼板 14では、 Mn量が多く偏析が顕著であり、 かつマルテン サイトも形成されているため、 ELおよび λがともに低い。 鋼板 15では、 Ti量が少 ないため、 析出物の量が少ないため TSが 550 MPa未満である。 鋼板 16では、 Ti 量が多く、 Tiと Moの複合析出物は存在するが、 複合析出物中の Mo比率が低く、 また Si量も多いので、 析出物が粗大化して、 ELと λがともに低い。
Figure imgf000018_0001
4
TS 巳し λ 析出物粒径 析出物組成比 鋼板 '鋼 組織 備者
(MPa) (%) (%) ( m) Mo/(Ti+Nb+V+Mo)
1 A 806 24.6 109 F 3 0.47 発明例
2 B 807 24.4 1 1 1 F 3 0.46 発明例
3 C 795 23.3 83 F 4 0.39 発明例
4 ひ 793 24.9 108 F 4 0.48 発明例
5 E 789 24.フ 101 F 3 0.28 発明例
6 F 603 33.9 133 F 4 0.67 発明例
7 G 598 34.1 138 F 4 0.75 発明例
8 H 803 24.0 108 F 3 0.46 発明例
9 I 801 24.7 100 F 3 0.47 発明例
10 J 805 24.5 107 . F 3 0.47 発明例
1 1 K 81 1 20.5 39 F+P 16 0 比較例
12 し 786 20.7 46 F 15 0 比較例
13 M 495 36.7 121 F 1 1 0.51 比較例
14 N 802 19.3 43 F+ 5 0.49 比較例
15 0 508 37.1 125 F 6 0.83 比較例
16 P 801 20.4 78 F 12 0.01 比較例
実施例 3
表 5 に示す成分の鋼をォ一ステナイト域に加熱後、 仕上温度 880 °C以上で熱間 圧延を行い、 表 5に示す卷取温度で卷取り、 表 5に示す板厚の鋼板 17-29を作製し た。 ここで、 鋼板 17-23は 780 MPa以上の TSを、 鋼板 24-29は 590 MPa以上の TS を目標にして作製された鋼板である。 そして、 JIS 5号試験片により引張試験を行 つた。 また、 圧延後の板形状を目視で判定し、 フラットな場合を〇、 波うちが顕著 な板を Xで評価した。 さらに、 透過電子顕微鏡によって析出物を調査した。
本発明例である鋼板 17-21、 24-27では、 Mo / (Ti + Nb + Mo) の値が 0.25以上で あり、 高い TSと ELが得られ、 板形状も良好である。
一方、 比較例である鋼板 22、 23、 28、 29では、 Mo / (Ti + Nb + Mo) の値が 0.25 未満であり、 ELが低く、 板形状も波うちが顕著である。 これは、 強度を確保する ために、 熱間圧延後急冷したた に、 低温変態相が形成されたためである。
化学成分 (wt%) 析出物組成比 板厚 巻取温度 TS Eし 鋼板 C Si Mn P s Al N Mo Ti Nb Mo/(Ti+Nb+V+Mo) (mm; (°C) (MPa) (%) 形状 備考
1 7 0.055 0.12 1.81 0.005 0.001 0.045 0.0025 0.22 0.088 0.010 0.48 2.0 625 801 20.1 〇 発明例
18 〃 // II II II II II II II 〃 0.48 1.6 625 810 1 9.2 〇 発明例
19 II II 〃 II II 〃 II II II II 0.48 1 .4 625 805 18.6 〇 発明例
20 II II // II II II // II 〃 II 0.48 1.2 625 807 18.1 〇 発明例
21 〃 It II II 〃 II // II // 〃 0.45 2.0 600 795 18.9 〇 発明例
22 // n 〃 II II // 〃 II 〃 0.20 2.0 540 821 16.3 X 比較例
23 II II II 〃 II It II II II II 0.16 2.0 500 830 14.1 X 比較例
24 0.020 0.01 1.31 0.001 0.001 0.050 0.0034 0.18 0.051 0.020 0.53 2.3 640 605 35.1 〇 発明例
25 // II II 11 II // II II If 〃 0.53 1.8 640 610 33.4 〇 発明例
26 II II II II II It 〃 II // // 0.53 1.4 640 608 31.8 〇 発明例
27 〃 // II if II II II II II 〃 0.53 1.2 640 61 1 30.8 〇 発明例
28 II II II II If II 〃 II 〃 〃 0.22 1.4 540 631 28.1 X 比較例
29 II II n 〃 // II II // II 0:18 1.4 510 642 25.3 X 比較例
実施例 4
表 6に示す化学成分を有する鋼を 1250 °Cに加熱後、 仕上温度 890 °Cで熱間圧延 を行い、 卷取温度 650 °Cで巻取り、 板厚 3.2 mmの鋼板を作製した。 そして、 鋼板 の長手方向中央部で幅方向中央部および端部から 65 mmの位置から JIS 5号試験片 を採取して引張試験を、 また、 透過電子顕微鏡による析出物の調査を行った。 さら に、 Siに起因するスケール欠陥を上述した方法で評価した。
結果を表 6に示す。 ' 本発明例である鋼板 2-4では、 幅方向で均一な材質が得られ、 表面性状も良好で ある。 特に、 Si + Moが 0.5以下である鋼板 2および 3では、 非常に良好な表面性 状が得られる。 なお、 鋼板 3では、 透過電子顕微鏡によれば、 微細な Tiおよび Mo を含む炭化物がフェライト組織中に均一に分散していた。
これに対して、 Mo無添加の比較例の鋼板 1は、 フェライト +パーライト組織で あり、 幅方向の材質変動 ATSが 30 MPa以上で、 AELが 2 %以上と大きい。 また、 Mo添加量が多く、 Ti / Moが 0.1未満の比較例の鋼板 5では、 材質変動は小さいが、 伸びの低下が大きい。
本発明例である鋼板 7-9では、 方向の材質変動が小さく、 表面性状も非常に良 好である。
これに対して、 Mo無添加の比較例の鋼板 6は、 フェライト +パーライト で あり、 材質変動 ATSが 30 MPa以上、 AELが 2 %以上と大きい。 Cr添加量が多い 比較例の鋼板 10では、 低温変態相の生成が抑制できず、 ァシキユラ一フェライト 糸!!戠となったために ELの低下が著しい。 なお、 これらの鋼板では、 全て Si + Mo が 0.5 %以下であることから表面性状は非常に良好である。
本発明例である鋼板 12-14では、 幅方向の材質変動が小さく、 表面性状も良好で ある。
これに対して、 Ti無添加の比較例の鋼板 11では、 パ一ライトおよびセメンタイ トが析出し、 低 TSであるにも関わらず ELが鋼板 12と同程度で低く、 材質変動も 大きい。
本発明例である鋼板 16-18では、 幅方向の材質変動が小さく、 表面性状も良好で ある。 特に、 Si + Moが 0.5 %以下である鋼板 16では、 表面性状が非常に良好であ る。
これに対して、 Mo無添加の比較例の鋼板 15では、 材質変動が大きく、 Mo添加 量が多い比較例の鋼板 19では、 ELが低い。
表 6
Figure imgf000024_0001
実施例 5
表 7に示す成分の鋼を、 表 7に示す条件で熱間圧延を行い、 板厚 3.6 mmの鋼板 21-38を作製した。 そして、 実施例 4と同様に、 鋼板の幅方向中央部と端部の引張 特性値を調査した。 また、 透過電子顕微鏡によって析出物を調査した。
結果を表 Ίに示す。
仕上温度を変化させた鋼板 21-25を見ると、 仕上温度が 880 °C以上で材質変動が 極めて小さい。
また、 巻取温度を変化させた鋼板 26-30を見ると、 巻取温度が 550-700 °Cである 鋼板 27-29で材質変動が極めて小さく、 伸びも大きい。
これに対して、 巻取温度が 550-700 °Cから外れる鋼板 26、 30では、 材質変動が 大きい。
仕上温度と巻取温度とを変化させた鋼板 31-35を見ると、 仕上温度が 880 °C以上、 かつ巻取温度が 550-700 °Cである鋼板 32-34で材質変動が極めて小さい。
なお、 鋼板 36、 37では、 Mo含有量が多く析出物の Ti I Moが 0.1未満であり、 材質変動が大きい。 また、 鋼板 38では、 巻取温度が 500 °Cと低く、 ベイナイト組 織が生じ、 TSの変動が特に大きい。
表 7
Figure imgf000026_0001
F:フェライト、 AF:ァシキユラ一フェライト、 B:ベイナイト、 BF:べィニティックフェライト、 P:ハ°—ライ
実施例 6
表 8に示す化学成分を有する鋼 A-Tを、 表 9に示す熱延条件で熱間圧延し、 板 厚 3.2 mmの鋼板 1-23を作製した。 そして、 JIS 5号試験片および穴広げ試験片を採 取し、 弓 I張試験および穴広げ試験を行った。 また、 光学顕微鏡および走査電子顕微 鏡で金属組織を観察した。 さらに、 透過電子顕微鏡によって析出物を調査した。 な お、 本実施例では、 TSが 780 MPa以上、 ELが 20 %以上、 λが 70 %以上を良好と した。
結果を表 9に示す。
本発明例である鋼板 1-3および 5-15は、 成分組成が本発明範囲内であり、 Tiと Moを含む炭化物力均一に分散したフェライト であるので、 ELおよび λが高い。 これに対して、 比較例である鋼板 4では、 巻取温度が低いため転位密度の高いベ ィナイト組織が形成され、 ELが低い。 比較例である鋼板 16-18では、 パーライト またはマルテンサイト力形成され、 ELおよび λがともに低い。 また、 鋼板 19では、 Mo添加量が少ないため Ti、 Nbの炭 ·窒化物が微細とならず、 かつ、 Mo炭化物の 析出もほとんどないため λが低い。 鋼板 21では、 Ti添加量が少なく Ήの炭化物が 少ないため TS、 λが低い。 鋼板 22、 23では、 Mo無添加であり、 Tiの添加量が多 いため、 析出物が粗大ィヒし、 その量も過多となり、 ELおよびえがともに低い。
Figure imgf000028_0001
W
27
表 9
Figure imgf000029_0001
F:フェライト、 B:ベイナイト、 M:マルテンサイト、 P:ノ \°一ライト 実施例 7
表 8の鋼 A、 F、 および Mを 1250 °Cに加熱後、 仕上温度 890 °Cで熱間圧延し、 巻取温度 630 °Cで巻取って、 板厚 3.0讓の鋼板を作製した。 そして、 JIS 5号試験 片により弓 I張試験を行った。 また、 固溶 C量を内部摩擦測定により測定した。
図 6に、 固溶 C量と ELとの関係を示す。
固溶 C量を 0.0020 %以下にすると、 ELが良好となることが確認された。 実施例 8
表 10に示す化学成分を有する鋼 A-Mを 1250 °Cに加熱し、 仕上温度 880-930 °C で熱間圧延後、 冷却 と巻取温度を変ィ匕させて、 板厚 2.6 mmの鋼板 1-13を作製 した。 ここで、 巻取温度は、 600 °Cを超える温度範囲で変ィ匕させた。 そして、 JIS 5 号試験片および穴広げ試験片を採取し、 引張試験および穴広げ試験を行った。 また、 透過電子顕微鏡によつて析出物を調査した。
結果を表 11に示す。
本発明例である鋼板 1-9はいずれもフェライト組織単相からなり、 析出物の平均 粒径が 10 nm未満で、 析出物の組成比率も 0.1 ≤ Ti / Mo≤ 3を満足しているた め、 TSが 950 MPa以上で、 高い ELおよび λを有している。
これに対し、 比較例である鋼板 10では、 C量が多すぎ、 Mo無添加のためパーラ イトが生成し、 力 ^つ析出物が粗大化しており、 ELおよび λがともに低い。 また、 鋼板 11では、 Mo無添加のため析出物が粗大ィ匕しており、 ELおよび λがともに低 い。 鋼板 12では、 Μη量が多すぎるため偏析が顕著であり、 かつ糸 III内にマルテ ンサイ卜が形成されているため ELおよび λがともに低い。 鋼板 13では、 Tiと Mo の複合析出物は存在するものの、 C量が多すぎ、 パ一ライトが生成し、 かつ析出物 力 S粗大化するため ELおよび λがともに低い。
Figure imgf000031_0001
表 11
Figure imgf000032_0001
F:フェライト、 M:マルテンサイト、 P:パーライト
実施例 9
表 12に示す成分の鋼 A- Eを 1250 °Cに加熱し、 仕上温度 890 °Cで熱間圧延後、 巻取温度 620 °Cで卷取り、 板厚 3.2 mmの鋼板 1-5を作製した。 そして、 実施例 4 と同様な鋼板の幅方向中央部と端部の引張特性値および穴広げ率を調査した。 また、 透過電子顕微鏡によつて析出物を調査した。
結果を表 13に示す。
本発明例である鋼板 1-4では、 材質変動が極めて小さい。
一方、 比較例である鋼板 5では、 炭 ·窒化物形成元素として Tiのみしか含有さ れていないため、 ELおよび λが低く、 材質変動も大きい。
表 12
Figure imgf000034_0001
:フェライ卜
t 表 13 引張特性値 材質変動
鋼板 鋼 TS Eし , λ 備考
A TS Δ ΕΙ_
(MPa) (%) (%)
1 A 813 22 100 8 1.0 発明例
2 B 822 20 105 13 1.2 発明例
3 C 801 23 1 10 5 1.1 発明例
4 D 808 21 108 3 0.9 発明例
5 E 762 17 60 35 3.8 比較例

Claims

. 請求の範囲
1. 重量%でじ ≤ 0.15 %、 Ti: 0.02-0.35 %, Mo: 0.05-0.7 %を含有し、 実質的にフ ェライト糸 I戠単相のマトリックスと前記マトリックス中に分散した粒径が 10 nm未 満の微細析出物とからなる高張力熱延鋼板。
2.重量%で。≤ 0.15 、 Ti: 0.02-0.35 %、 W: 0.01-1.5 %を含有し、 実質的にフエ ライト組織単相のマトリックスと前記マトリックス中に分散した粒径が 10 nm未満 の微細析出物とからなる高張力熱延鋼板。
3. 重量%で C ≤ 0.15 %、 Ti: 0.02-0.35 %、 o: 0.05-0.7 %、 W: 0.01-1.5 %を含有 し、 実質的にフェライト組織単相のマトリックスと前記マトリックス中に分散した •粒径が 10 nm未満の微細析出物とからなる高張力熱延鋼板。
4.微細析出物が 5 X 104個 I m3以上の割合で分散した請求の範囲 1の高張力熱 延鋼板。
5.微細析出物が 5 X 104個 I m3以上の割合で分散した請求の範囲 2の高張力熱 延鋼板。
6.微細析出物が 5 X 104個 I m3以上の割合で分散した請求の範囲 3の高張力熱 延鋼板。 ·
7. Fe炭化物の粒径が 1 Ai m未満、 その体積率が 1 %以下である請求の範囲 1の高 張力熱延鋼板。
8. Fe炭化物の粒径が 1 /x m未満、 その体積率が 1 %以下である請求の範囲 4の高 張力熱延鋼板。
9.重量%で表される C、 Ti、 Moの含有量が 0.8≤ (C/12)/[(Ti/48) + (Mo/96)] ≤ 1.3を満足する請求の範囲 4の高張力熱延鋼板。
10. 微細析出物中の原子%で表される Ti、 Moの含有量が 0.1 ≤ Ti/Mo ≤ 3を満 足する請求の範囲 4の高張力熱延鋼板。
11.さらに、 重量%で Nb ≤ 0.08%と V ≤ 0.15%のなかから選ばれた少なくとも 1 種の元素を含有し、 かつ微細析出物中の原子%で表される Ti、 Mo、 Nb、 Vの含有 量が 0.25 ≤ Mo/(Ti+Nb + V + Mo) を満足する請求の範囲 4の高張力熱延鋼板。
12.実質的に、 重量%で ≤ 0.06%、 Si≤ 0.5%、 Mn: 0.5-2.0%、 P≤ 0.06%、 S ≤ 0.005 %、 A1 ≤ 0.1 、 N≤ 0.006 %、 Ti: 0.02-0.10 、 Mo: 0.05-0.6 、 残 部が Feからなる請求の範囲 4の高張力熱延鋼板。
13.実質的に、 重量%で ≤ 0.06%、 Si ≤ 0.5%、 Mn: 0.5-2.0%、 P≤ 0.06%、 S ≤ 0.005 %、 Al ≤ 0.1 %、 N≤ 0.006 、 Ti: 0.02-0.10 、 Mo: 0.05-0.6 %、 Nb ≤ 0.08 %と V≤ 0.15 %のなかから選ばれた少なくとも 1種の元素、 残部が Feか らなる請求の範囲 4の高張力熱延鋼板。
14.実質的に、 重量%でじ: 0.06 %超え 0.15 %以下、 Si≤ 0.5%、 Mn: 0.5-2.0 %、 P ≤ 0.06 %、 S ≤ 0.005 、 Al ≤ 0.1 、 N≤ 0.006 %、 Ti: 0.10 %超え 0.35 % 以下、 Mo: 0.3-0.7 %、 残部が Feからなる請求の範囲 4の高張力熱延鋼板。
15.実質的に、 重量%で C≤ 0.1 %、 Si ≤ 0.5 % Mn≤ 2 %、 P ≤ 0.06 %、 S ≤ 0.01 、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Cr ≤ 0.5 %、 Ti: 0.02-0.2 、 Nb ≤ 0.08 、 W: 0.01-1.5 %、 残部が Feからなり、 かつ微細析出物中の原子%で表され る Ti、 Wの含有量が 0.1 ≤ Ti/Wを満足する請求の範囲 5の高張力熱延鋼板。
16.実質的に、 重量%で C ≤ 0.1 %、 Si ≤ 0.5 %、 Mn ≤ 2 %、 P ≤ 0.06 %、 S ≤ 0.01 %、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Cr ≤ 0.5 %、 Ti: 0.02-0.2 、 Nb ≤ 0.08 、 Mo: 0.05-0.6 、 W: 0.01-1.5 %、 残部が Feからなり、 かつ微細析出物中 の原子1 ¾で表される Ti、 Mo、 Wの含有量が 0.1 ≤ Ti / (Mo + W) を満足する請求 の範囲 6の高張力熱延鋼板。
17.重量%で固溶 C ≤ 0.0020 %を満足する請求の範囲 12の高張力熱延鋼板。
18.重量%で固溶 C ≤ 0.0020 %を満足する請求の範囲 13の高張力熱延鋼板。
19.重量%で固溶 C ≤ 0.0020 %を満足する請求の範囲 14の高張力熱延鋼板。
20.重量%T^ Si + Mo ≤ 0.5 %を満足する請求の範囲 12の高張力熱延鋼板。
21.重量%で≤1 + 0≤ 0.5 %を満足する請求の範囲 13の高張力熱延鋼板。
22.重量 y^ C Si + Mo ≤ 0.5 %を満足する請求の範囲 14の高張力熱延鋼板。
23.実質的に、 重量%で ≤ 0.06 %、 Si ≤ 0.5 %、 Mn: 0.5-2.0 %, P ≤ 0.06 %、 S ≤ 0.005 ヽ A1 ≤ 0.1 、 N ≤ 0.006 %、 Mo: 0.05-0.6 、 Ti: 0.02-0.10 %、 残 部が Feからなり、 かつ 0.8 ≤ (C 1 12) / [(Ti / 48) + (Mo / 96)] ≤ 1.3を満足する鋼ス ラブを製造する工程と、
前記鋼スラブを Ar3変態点以上で熱間圧延し、 熱延鋼板を製造する工程と、 前記熱延綱板を 550-700 °Cで巻き取る工程と、
を有する高張力熱延鋼板の製造方法。
24.実質的に、 重量%で ≤ 0.06 %、 Si ≤ 0.5 %、 Mn: 0.5-2.0 %、 P ≤ 0.06 %、 S ≤ 0.005 %、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Mo: 0.05-0.6 %、 Ti: 0.02-0.10 、 Nb ≤ 0.08 ヒ ≤ 0.15 %から選ばれた少なくとも 1種の元素、 残部が Feからなる 鋼スラブを製造する工程と、
前記鋼スラブを Ar3変態点以上で熱間圧延し、 熱延鋼板を製造する工程と、 前記熱延鋼板を 550-700 °Cで巻き取る工程と、
を有する高張力熱延鋼板の製造方法。
25.実質的に、 重量%で C : 0.06 %超え 0.15 %以下、 Si≤ 0.5 %、 Mn : 0.5-2.0 %、 P ≤ 0.06 %、 S ≤ 0.005 、 Al ≤ 0.1 %、 N ≤ 0.006 %、 Ti: 0.10 %超え 0.35 % 以下、 Mo: 0.3-0.7 、 残部が Feからなり、 かつ 0.8 ≤ (C / 12) / [(Ti / 48) + (Mo / 96)] ≤ 1.3を満足する鋼スラブ 製造する工程と、
前記鋼スラブを Ar3変態点以上で熱間圧延し、 熱延鋼板を製造する工程と、 前記熱延鋼板を 550- 700 °Cで巻き取る工程と、
を有する高張力熱延鋼板の製造方法。 、
26.請求の範囲 12の高張力熱延鋼板に溶融亜鉛めつき処理を施した亜鉛めつき鋼 板。
27.請求の範囲 13 の高張力熱延鋼板に溶融亜鉛めつき処理を施した亜鉛めつき鋼 扳。
28.請求の範囲 14の高張力熱延鋼板に溶融亜鉛めつき処理を施した亜鉛めつき鋼 板。
29.請求の範囲 12の高張力熱延鋼板を用いた自動車の足回り部材。
30.請求の範囲 13の高張力熱延鋼板を用いた自動車の足回り部材。
31.請求の範囲 14の高張力熱延鋼板を用いた自動車の足回り部材。
32. 80 %以上の穴広げ率と 700 MPa以上の引張強度 TSを有し、 TS、 伸び EL (%), 板厚 t (mm) が(TS XEL) / 1 α2 > 12000を満足する請求の範囲 12の高張力熱延鋼板 を用いた自動車の足回り部材。
33. 80 %以上の穴広げ率と 700 MPa以上の引張強度 TSを有し、 TS、 伸び EL (%), 板厚 t (mm) が(TS XEL) / 1 α2 > 12000を満足する請求の範囲 13の高張力熱延鋼板 を用いた自動車の足回り部材。
34. 80 %以上の穴広げ率と 700 MPa以上の引張強度 TSを有し、 TS、 伸び EL (%)、 板厚 t (mm) 力 S (TS XEL) / t α2 > 12000を満足する請求の範囲 14の高張力熱延鋼板 を用いた自動車の足回り部材。
PCT/JP2001/009469 2000-10-31 2001-10-29 Tole d"acier laminee a chaud presentant une resistance elevee a la traction et procede de fabrication WO2002036840A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002395901A CA2395901C (en) 2000-10-31 2001-10-29 High strength hot rolled steel sheet and method for manufacturing the same
EP01980929.2A EP1338665B1 (en) 2000-10-31 2001-10-29 High tensile hot rolled steel sheet and method for production thereof
BRPI0107389-3A BR0107389B1 (pt) 2000-10-31 2001-10-29 folha de aço laminada a quente de alta resistência, método de fabricação da mesma e folha de aço galvanizado.
ES01980929.2T ES2690275T3 (es) 2000-10-31 2001-10-29 Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma
US10/108,691 US6666932B2 (en) 2000-10-31 2002-03-28 High strength hot rolled steel sheet
US10/686,357 US20040074573A1 (en) 2000-10-31 2003-10-14 High strength hot rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2000331682 2000-10-31
JP2000-331682 2000-10-31
JP2000331681 2000-10-31
JP2000-331681 2000-10-31
JP2001022726 2001-01-31
JP2001-022726 2001-01-31
JP2001044351 2001-02-20
JP2001044354 2001-02-20
JP2001-044354 2001-02-20
JP2001044352 2001-02-20
JP2001-044355 2001-02-20
JP2001-044352 2001-02-20
JP2001044355 2001-02-20
JP2001-044351 2001-02-20
JP2001282774A JP3637885B2 (ja) 2001-09-18 2001-09-18 加工性に優れた超高張力鋼板ならびにその製造方法および加工方法
JP2001-282774 2001-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/108,691 Continuation US6666932B2 (en) 2000-10-31 2002-03-28 High strength hot rolled steel sheet

Publications (1)

Publication Number Publication Date
WO2002036840A1 true WO2002036840A1 (fr) 2002-05-10

Family

ID=27573726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009469 WO2002036840A1 (fr) 2000-10-31 2001-10-29 Tole d"acier laminee a chaud presentant une resistance elevee a la traction et procede de fabrication

Country Status (8)

Country Link
US (2) US6666932B2 (ja)
EP (1) EP1338665B1 (ja)
KR (1) KR100486753B1 (ja)
CN (1) CN1153841C (ja)
BR (1) BR0107389B1 (ja)
CA (1) CA2395901C (ja)
ES (1) ES2690275T3 (ja)
WO (1) WO2002036840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749338B2 (en) 2002-12-24 2010-07-06 Nippon Steel Corporation High burring, high strength steel sheet excellent in softening resistance of weld heat affected zone and method of production of same

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106411A1 (en) * 2002-02-07 2005-05-19 Jfe Steel Corporation High strength steel plate and method for production thereof
US7220325B2 (en) * 2002-04-03 2007-05-22 Ipsco Enterprises, Inc. High-strength micro-alloy steel
FR2844281B1 (fr) * 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
JP4649868B2 (ja) * 2003-04-21 2011-03-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2006063443A (ja) * 2004-07-28 2006-03-09 Nippon Steel Corp 耐火性に優れたh形鋼およびその製造方法
US7959747B2 (en) * 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US7442268B2 (en) * 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
EP2351867A1 (en) 2005-03-28 2011-08-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
FR2885966B1 (fr) * 2005-05-23 2011-01-14 Danfoss Commercial Compressors Compresseur frigorifique a spirales
JP5124988B2 (ja) * 2005-05-30 2013-01-23 Jfeスチール株式会社 耐遅れ破壊特性に優れた引張強度900MPa以上の高張力鋼板およびその製造方法
CA2616360C (en) * 2005-08-05 2014-07-15 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
US7846275B2 (en) 2006-05-24 2010-12-07 Kobe Steel, Ltd. High strength hot rolled steel sheet having excellent stretch flangeability and its production method
JP4466619B2 (ja) * 2006-07-05 2010-05-26 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
JP4282731B2 (ja) * 2006-08-11 2009-06-24 新日本製鐵株式会社 疲労特性に優れた自動車足回り部品の製造方法
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US7608155B2 (en) * 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
EP2130938B1 (en) * 2007-03-27 2018-06-06 Nippon Steel & Sumitomo Metal Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface and burring properties and process for manufacturing the same
JP5326403B2 (ja) * 2007-07-31 2013-10-30 Jfeスチール株式会社 高強度鋼板
AU2008311043B2 (en) * 2007-10-10 2013-02-21 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP5194858B2 (ja) * 2008-02-08 2013-05-08 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5438302B2 (ja) 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5709151B2 (ja) * 2009-03-10 2015-04-30 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4998755B2 (ja) * 2009-05-12 2012-08-15 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5041084B2 (ja) * 2010-03-31 2012-10-03 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
JP5609223B2 (ja) * 2010-04-09 2014-10-22 Jfeスチール株式会社 温間加工性に優れた高強度鋼板およびその製造方法
JP5609786B2 (ja) * 2010-06-25 2014-10-22 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
PL2682495T3 (pl) * 2011-02-28 2019-06-28 Nisshin Steel Co., Ltd. Blacha stalowa powlekana zanurzeniowo systemem na bazie Zn-Al-Mg i sposób jej wytwarzania
US9689060B2 (en) * 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
JP5541263B2 (ja) * 2011-11-04 2014-07-09 Jfeスチール株式会社 加工性に優れた高強度熱延鋼板およびその製造方法
JP5321672B2 (ja) * 2011-11-08 2013-10-23 Jfeスチール株式会社 材質均一性に優れた高張力熱延鋼板およびその製造方法
US9115416B2 (en) 2011-12-19 2015-08-25 Kobe Steel, Ltd. High-yield-ratio and high-strength steel sheet excellent in workability
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP5860333B2 (ja) 2012-03-30 2016-02-16 株式会社神戸製鋼所 加工性に優れた高降伏比高強度冷延鋼板
EP2847362B1 (en) 2012-05-08 2016-11-23 Tata Steel IJmuiden BV Automotive chassis part made from high strength formable hot rolled steel sheet
MX2015009890A (es) 2013-02-11 2015-09-24 Tata Steel Ijmuiden Bv Una tira o lamina de acero de alta resistencia laminada de caliente con excelente conformabilidad y rendimiento y un metodo de fabricacion de dicha tira o lamina de acero.
CN103194675A (zh) * 2013-04-08 2013-07-10 北京科技大学 低碳热轧全铁素体基超高强超高扩孔率钢及其制备方法
KR20150025952A (ko) * 2013-08-30 2015-03-11 현대제철 주식회사 고강도 열연도금강판 및 그 제조 방법
KR101657835B1 (ko) 2014-12-24 2016-09-20 주식회사 포스코 프레스 성형성이 우수한 고강도 열연강판 및 그 제조방법
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
BR112017013229A2 (ja) 2015-02-20 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel product
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
WO2016135896A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
CN105154769B (zh) * 2015-09-18 2017-06-23 宝山钢铁股份有限公司 一种780MPa级热轧高强度高扩孔钢及其制造方法
KR102227256B1 (ko) 2016-08-05 2021-03-12 닛폰세이테츠 가부시키가이샤 강판 및 도금 강판
BR112019000422B1 (pt) 2016-08-05 2023-03-28 Nippon Steel Corporation Chapa de aço e chapa de aço galvanizada
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
CN109790595B (zh) 2016-09-22 2021-01-26 塔塔钢铁艾默伊登有限责任公司 一种具有优异的外卷边成形性和边缘疲劳性能的热轧高强度钢的制备方法
CN109957716A (zh) * 2017-12-22 2019-07-02 鞍钢股份有限公司 一种高强度高扩孔性单一铁素体析出钢板及其制备方法
CN109112422A (zh) * 2018-08-30 2019-01-01 宝山钢铁股份有限公司 一种780MPa级高疲劳高强钢及其制造方法
EP3847284B1 (de) 2018-09-06 2023-08-16 ThyssenKrupp Steel Europe AG Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
KR102218435B1 (ko) 2019-09-17 2021-02-19 주식회사 포스코 표면품질이 우수하고, 재질편차가 적은 열연강판 및 그 제조방법
KR102325472B1 (ko) 2019-12-02 2021-11-15 주식회사 포스코 구멍확장성이 우수한 열연강판 및 그 제조방법
DE102021105357A1 (de) 2021-03-05 2022-09-08 Thyssenkrupp Steel Europe Ag Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
CN114015932B (zh) * 2021-10-12 2022-11-15 北京科技大学 一种具有优异扩孔性能的800MPa级冷轧低合金高强钢的制备方法
CN118574944A (zh) 2022-01-25 2024-08-30 塔塔钢铁艾默伊登有限责任公司 热轧高强度钢带材
WO2024032949A1 (en) 2022-08-09 2024-02-15 Tata Steel Ijmuiden B.V. Hot-rolled high-strength steel strip
DE102022121780A1 (de) 2022-08-29 2024-02-29 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264185A (ja) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd 疲労特性の優れた熱延鋼板およびその製造方法
JPH0711382A (ja) * 1993-06-28 1995-01-13 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板とその製造方法
JPH0770696A (ja) * 1993-08-31 1995-03-14 Kobe Steel Ltd 伸びフランジ加工性に優れた高強度熱延鋼板とその製造方法
JPH11100641A (ja) * 1997-09-29 1999-04-13 Kawasaki Steel Corp 耐衝突特性と成形性に優れる複合組織熱延鋼板およびその製造方法
JP3039862B1 (ja) * 1998-11-10 2000-05-08 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板
JP2000144259A (ja) * 1998-11-06 2000-05-26 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板及びその製造方法
JP2000273577A (ja) * 1999-03-19 2000-10-03 Nkk Corp 伸びフランジ加工性と材質安定性に優れた高張力熱延鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339862A (ja) 1989-07-07 1991-02-20 Arusu Japan:Kk 太陽熱温水装置
JP2761121B2 (ja) 1991-05-02 1998-06-04 株式会社神戸製鋼所 疲労特性と伸びフランジ性の優れた高強度熱延鋼板
JP3219510B2 (ja) 1992-12-02 2001-10-15 株式会社神戸製鋼所 伸びフランジ加工性に優れた高強度熱延鋼板
JPH0826433B2 (ja) 1992-12-28 1996-03-13 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板
JPH10176239A (ja) * 1996-10-17 1998-06-30 Kobe Steel Ltd 高強度低降伏比パイプ用熱延鋼板及びその製造方法
JP3386726B2 (ja) 1997-09-11 2003-03-17 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板及びその製造方法並びに冷延鋼板の製造方法
JP3514182B2 (ja) * 1999-08-31 2004-03-31 住友金属工業株式会社 高温強度と靱性に優れた低Crフェライト系耐熱鋼およびその製造方法
JP3518515B2 (ja) * 2000-03-30 2004-04-12 住友金属工業株式会社 低・中Cr系耐熱鋼
JP4464524B2 (ja) * 2000-04-05 2010-05-19 新日本製鐵株式会社 耐水素疲労特性の優れたばね用鋼、およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264185A (ja) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd 疲労特性の優れた熱延鋼板およびその製造方法
JPH0711382A (ja) * 1993-06-28 1995-01-13 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板とその製造方法
JPH0770696A (ja) * 1993-08-31 1995-03-14 Kobe Steel Ltd 伸びフランジ加工性に優れた高強度熱延鋼板とその製造方法
JPH11100641A (ja) * 1997-09-29 1999-04-13 Kawasaki Steel Corp 耐衝突特性と成形性に優れる複合組織熱延鋼板およびその製造方法
JP2000144259A (ja) * 1998-11-06 2000-05-26 Kobe Steel Ltd 伸びフランジ性に優れた高強度熱延鋼板及びその製造方法
JP3039862B1 (ja) * 1998-11-10 2000-05-08 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板
JP2000273577A (ja) * 1999-03-19 2000-10-03 Nkk Corp 伸びフランジ加工性と材質安定性に優れた高張力熱延鋼板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749338B2 (en) 2002-12-24 2010-07-06 Nippon Steel Corporation High burring, high strength steel sheet excellent in softening resistance of weld heat affected zone and method of production of same

Also Published As

Publication number Publication date
US20040074573A1 (en) 2004-04-22
EP1338665A1 (en) 2003-08-27
EP1338665B1 (en) 2018-09-05
US6666932B2 (en) 2003-12-23
EP1338665A4 (en) 2005-11-23
KR100486753B1 (ko) 2005-05-03
ES2690275T3 (es) 2018-11-20
CN1394237A (zh) 2003-01-29
CA2395901A1 (en) 2002-05-10
US20030063996A1 (en) 2003-04-03
BR0107389A (pt) 2002-09-10
KR20020070282A (ko) 2002-09-05
CN1153841C (zh) 2004-06-16
BR0107389B1 (pt) 2011-02-22
CA2395901C (en) 2006-07-18

Similar Documents

Publication Publication Date Title
WO2002036840A1 (fr) Tole d"acier laminee a chaud presentant une resistance elevee a la traction et procede de fabrication
KR100968013B1 (ko) 고장력강판 및 그 제조방법
EP2554706B1 (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
KR100918321B1 (ko) 내지연파괴특성이 우수한 고장력 강재
KR100527996B1 (ko) 내충격 특성이 우수한 고강도 고가공성 냉연강판
JP5076394B2 (ja) 高張力鋼板ならびにその製造方法
KR100778264B1 (ko) 신장 특성 및 신장 플랜지 특성이 우수한 고장력열연강판과 그 제조방법
WO2010137317A1 (ja) 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
EP1028167A2 (en) High tensile strength hot-rolled steel sheet and method of producing the same
KR20010020169A (ko) 성형성이 우수한 고강도 열연강판
KR20210095189A (ko) 고강도 용융 아연 도금 강판 및 그의 제조 방법
KR102375340B1 (ko) 고강도 강판 및 그 제조 방법
JP3231204B2 (ja) 疲労特性にすぐれる複合組織鋼板及びその製造方法
WO2020075394A1 (ja) 高強度鋼板およびその製造方法
JP4924052B2 (ja) 高降伏比高張力冷延鋼板ならびにその製造方法
WO2012020847A1 (ja) 加工性に優れた高強度熱延鋼板およびその製造方法
KR100853328B1 (ko) 구멍 확장성과 연성이 우수한 고강도 박강판
JP3602350B2 (ja) 伸びフランジ性に優れた高強度熱延鋼板及びその製造方法
JP4710558B2 (ja) 加工性に優れた高張力鋼板およびその製造方法
JP3758542B2 (ja) 自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板
JPH08199291A (ja) 抵抗溶接性の良好な高強度熱延鋼板及びその製造方法
JPH08199298A (ja) 化成処理性の良好な高強度熱延鋼板及びその製造方法
JP7522980B1 (ja) 高強度熱延鋼板及びその製造方法
JP3758541B2 (ja) 自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板
WO2024111527A1 (ja) 高強度熱延鋼板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10108691

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001980929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027006320

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2395901

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018033644

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027006320

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001980929

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027006320

Country of ref document: KR