WO2002031721A1 - Purchase motive extracting method, fit commodity/fit customer extracting method, and device therefor - Google Patents
Purchase motive extracting method, fit commodity/fit customer extracting method, and device therefor Download PDFInfo
- Publication number
- WO2002031721A1 WO2002031721A1 PCT/JP2000/009244 JP0009244W WO0231721A1 WO 2002031721 A1 WO2002031721 A1 WO 2002031721A1 JP 0009244 W JP0009244 W JP 0009244W WO 0231721 A1 WO0231721 A1 WO 0231721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- purchase
- customer
- list
- product
- products
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/04—Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
Definitions
- the present invention relates to a method for converting a purchase result t ⁇ of a purchase to a future sale.
- the merchandise is extremely numerous. “Customers often find it difficult to fit their self. Retailers are often troubled with the type of purchase and the appearance of the purchase. Product suppliers often have trouble predicting what their customers want in a product view, making it difficult to find products.
- a variety of marketing leaks are being developed for the future by analyzing purchased fibers, which are also difficult to set development goals.
- This invention #W is a technology that enables analysis that reflects the individuality of each customer, instead of ⁇ !
- the customer purchases the product ABC and the customer buys the product: DEF.
- Useful information such as recommending a product that matches the individuality to the customer who purchased the product ABC, or telling the retailer to specify the new product G based on the personality of the retailer's customer group I don't know how to get useful information to determine the amount of input.
- the above information that is, the customer purchases the product ABC and the customer purchases the product DEF, and converts the past sales performance information into useful information while reflecting the difference in the customer's life I do.
- the present invention uses the edge theory.
- the edge theory has been developed by the present inventors, and can be roughly described as follows.
- Jageri refers to the group of factors that are evaluated by the fiber that the customer selects for specialty purchase as the edge group.
- edge map has been constructed, various concealments are possible.
- a customer who has purchased a product ABC in the past may have a personality that prefers products that are “highly valued” or “stimulated instinct to fight” from the edge map, While it is expected that Jg is not recommended when recommended, it has a personality that does not fibrate "woven” or "manufacturer", and it is clear that selecting products from that perspective is also satisfactory.
- the new product has the P, q, r, etc. of the purchase, and that the new customers X have strong luck with the rinsing customers C;
- the apparatus has a pager storage means 100 as shown in FIG.
- one parameter is set as a list of similar polysaccharide products.
- ⁇ In Fig. 1, the horizontal axis indicates the parameter set as Ochihachi, ⁇ ⁇ 'as the parameter set. ing. The thick arrow in the figure indicates that the same kind of data continues.
- Another parameter in the edge map 102 is a list of groups of movements that can be used to recite the purchase of a particular product from a group of such products.
- Figure 1 ⁇ ", the vertical axis shows the purchase tree ⁇ group a, b-' I have.
- a is “really high in etc.”
- b is “stimulates the instinct of struggle”
- c low price
- d high in manufacturer”.
- the page map 102 states that each product customer purchases that product.
- the business port ⁇ « ⁇ is an example of the case where a is purchased because of a and sometimes g because of purchase of g, but it is almost always purchased from b to f.
- Fig. 1 shows an example of a group of products that share mm (this ⁇ a and g). I have. The lotus F that shares i, a and g, the view DE that shares a, and the G that shares g are extracted. In addition, the example shows that the ACE that shares two purchase motives cf out of the purchases (here: ⁇ a b c f g) was extracted for the ceremony F. 110 illustrates an example in which a merchandise item ADEF having a is extracted for a purchase a, and a merchandise C F is extracted for a purchase cf (A ⁇ condition).
- edge map 102 is constructed, and the content of the edge map 102 is determined by the purchase of a particular product. Then, a group of similar merchandise outlets 208 that are similar in purchasing and power are extracted from among many similar products.
- the conditions for defining the edge map are the same as those of the device of claim 1: ⁇ , and the description is omitted below. (Equipment of claim 3)
- this device also has an edge map storage means 300 that stores the edge map 302, as in the device of the enclosure 1 shown in FIG. 3.
- This device has a storage means 303 of an emotional personality map 305 which stores a special purchase fiber in a purchase sickle group corresponding to a personality at the time of purchase. This differs from the Contract 1 equipment. For example, there are people who buy game software overnight, ⁇ , and others who purchase as a character's fan, and others who play game ⁇ 3 ⁇ 4 in the front and make purchases.
- the present invention has a memory means 303 of the emotional personality map 305 which stores the special purchase of the purchase group ⁇ in correspondence with the personality at the time of purchase. is there.
- the same person purchases as a fan, and the game 3 ⁇ 4 ⁇ comes to the forefront to make purchases, and there is a personality in the same person.
- the stored contents of the edge-muff storage means 300 are stored in the memory 302, and the means 304 for browsing using the purchase corresponding to the case as a key. For example, a group of merchants with purchase motives such as “Personality who appears to purchase as a fan, or personality who tries to expand the game in the foreground” is extracted.
- the edge map 3 0 2 is constructed 4 000, and the emotional personality map that takes into account the purchase motives ⁇ f in the group f corresponding to the personality at the time of purchase is considered.
- This device is a device that manifests a purchase 1 item that a customer performs when selecting a product. As shown in FIG. 5, the device stores an edge map 13 'consideration means 500 and a purchase product list for each customer. Means for storing the purchased product list 5.12 and means for accumulating the purchase motives corresponding to the products included in the purchased product list for each customer 5 14 Power.
- the purchase SJW to be processed at the time of selection of one item or the customer is revealed from the past purchase responsibilities and output.
- This device is a device that extracts and presents a business customer expected to be unsatisfied with the customer to a customer who is uncertain about product selection.
- the edge map storage means 60 a purchase merchandise list storage means 6 1 2 that stores a purchase merchandise list for each customer, and a purchase page corresponding to a quotient lot included in the purchase merchandise list for each customer.
- the means 6 14 for calculating the correspondence map 6 16 and the unpurchased merchant rolls of the special H customers ⁇ Purchasing of the I group S) W are converted to the purchases included in the customer one edge correspondence map 6 16
- a product (applicable product of the customer 6 18) which has the means of rising 6104 and shares the purchase included in the customer page correspondence map 6 16 of the customer is extracted.
- the customer-edge correspondence map 6 16 shows the purchase SJ that the customer performs when selecting a product. This is based on past sales humility and is objective.
- the purchase of an unpurchased lolo heavy group by a special customer Since the customer has a means of searching using the dynamic »contained in the correspondence map 6 16 as a key, the customer has a purchase fiber similar to the purchase of the product purchased by the customer in 3i. @ Types are extracted.
- the quotient extracted in this way is a product that is expected to have a high S for the customer. In fact, it is said that the products extracted in this way have high manpower.
- This method is shown in FIG. 7 in percentage terms;
- an edge map 600 is constructed 700, a purchase commodity list is compiled for each customer 712, and a purchase fiber corresponding to a commercial class included in the purchase commodity list for each customer.
- merchandise items sharing the purchase j ⁇ included in the customer page correspondence map 616 of the customer are extracted.
- This device extracts the quotient response that is expected to be satisfactory to the customer who is uncertain about the product selection. In this respect, it corresponds to the device of the woven fiber enclosure 6. However, the device of the fiber wrapping system 8 responds to the fact that more than one person is involved in the same person, and when the customer's specific personality ffflB ffflB, it is expected that the customer will not be fully loaded. Extract the kind.
- this device is included in the edge purchase list, the purchase item list that stores the purchase item list for each customer, and the customer purchase item list.
- This method is renewed primarily with the device of the fiber 8 shown in FIG.
- 900 to build a page map and a list of purchased products for each customer are compiled: C3 ⁇ 4912, and purchases corresponding to business 1 included in the purchased product list for each customer are accumulated.
- group purchase are associated with the ranks of the customer included in the customer page correspondence map 8 16.
- a product type 920 matching the purchase 3 ⁇ 4 ⁇ corresponding to the specific personality of the customer is extracted.
- this apparatus has an edge map 3ft means 100, a purchased goods list storage means 1002 for storing a purchased goods list for each customer, and a purchased goods list for each customer.
- the means of searching for the purchase of specialty products in Hejiang 1102 2 » is used as a key 100 0 4
- the customers that match the purchase incentives of the specialty type 1 0 2 2 1 0 2 4 Is extracted.
- This method is carried out on the apparatus of the fiber enclosure 10 shown in FIG.
- This method consists of accumulating 1 1 0 0 that constructs an edge map, n 2 1 1 1 2 that fibres the purchase merchandise list for each customer, and purchasing fibres corresponding to the merchandise cards included in the purchase merchandise list for each customer. Then, the customer-page correspondence map is calculated.
- ⁇ L 1 14 and the loyalty rule «Purchasing magic of the unpurchased customer group of 1 1 2 2» Use «as a key Perform ⁇ Ml 104.
- customers 1 1 2 4 conforming to the purchase of the specific merchant account D c «l 1 2 2 are generated.
- This device extracts customers who will have a high degree of satisfaction with new products or 3 ⁇ 4) «products. This device extracts the customers who will have a high degree of satisfaction with a single personality, in response to the fact that there is also a personality of the same person.
- this device is composed of an edge map, a storage means, a purchase goods list taking into account a purchase goods list for each customer, and a purchase goods list for each customer. Purchasing corresponding to the products included in the list! It describes how to build a customer-edge-compatible map 1 2 1 6 by using ⁇ 1 2 1 4 and a special purchase magic machine in the Purchasing Egoura group corresponding to the personality at the time of purchase.
- the emotional personality map is stored by associating the emotional personality map storage means 1 203 with the purchase 1 of the unpurchased customer group of the special type 1 2 2 2 with the personality conforming to the specialty 1 2 2 2. It has a means 1 2 1 4 to marry the purchase behavior »recorded in the three measures as a key. This device extracts customers 1 2 2 4 who have personalities that match the purchase motive of the 1 2 2 2.
- This method is executed by the apparatus of the fiber enclosure 12 shown in FIG.
- This method builds an edge map: 3 ⁇ 4 1300, collects a list of purchased items for each customer ® 1 312, and purchase behaviors corresponding to the quotients contained in the list of purchased items for each customer.
- I 3 1 4 that accumulates machines and builds a customer page correspondence map, and an emotional personality map that takes into account the purchase of special knowledge in the purchasing sickle group according to the personality at the time of purchase
- Figure 2 Illustration of the method described in claim 2.
- Figure 3 Illustration of the device according to claim 3.
- Figure 4 Illustration of the method according to claim 4.
- FIG. 5 Explanatory drawing of the device described in claim 5.
- Figure 6 Illustration of the device according to claim 6.
- Figure 7 Illustration of the method according to claim 7.
- Figure 8 Illustration of the device according to claim 8.
- Figure 9 Illustration of the method according to claim 9.
- FIG. 10 Explanatory drawing of the device described in claim 10.
- Figure 11 Illustration of the method described in Claim 11.
- FIG. 12 Explanatory drawing of the device described in claim 12.
- Figure 13 Illustration of the method described in Claim 13.
- Figure 14 Diagram showing the system configuration of the device of the present invention.
- Figure 16 An example of the result of ⁇ edge map with purchase as the key.
- Figure 17 Diagram showing an example of the emotional personality map.
- Fig. 18 A diagram showing an example of a product similar to product F when viewed from personality.
- Figure 19 A diagram illustrating an example of purchase product type data for each customer.
- Fig. 20 Expanded purchases corresponding to merchandise weights included in the purchased merchandise list for each customer.
- Fig. 21 Diagram of cumulative purchases shown in Fig. 20 for each customer.
- Fig. 23 ( ⁇ ) and ( ⁇ ) Diagram showing extraction of products that will satisfy customer ⁇ ⁇ .
- Fig. 24 A diagram illustrating the customer's personality through the customer-edge correspondence map shown in Fig. 22 ( ⁇ ).
- Figure 25 Personality: Figure showing how ⁇ comes to the forefront and selects products suitable for customers who return products.
- Figure 26 Diagram showing an example of a page map.
- Figure 27 Diagram showing a list of purchased products by customer.
- Figure 28 Diagram showing customer-to-edge correspondence maps obtained from Figures 26 and 27.
- Figure 29 Diagram showing the details of how to obtain Figure 28.
- Figure 31 Diagram showing how to extract products that fit customers from the cft-converted customer-to-edge correspondence map.
- Fig. 3 3 Diagram showing how to identify customers that match the product.
- Figure 36 Upper row: Similar product groups extracted by edge theory and cMs where buyers of specific products are purchasing similar products. Lower: Purchasing products belonging to the same genre 3 ⁇ 4 Indicates ⁇
- Figure 37 Personality is identified from the customer-edge correspondence map, and Table 1 is a table that summarizes whether or not products corresponding to the identified personality are actually purchased.
- Figure 38 Personality is identified from the customer-to-edge correspondence map, and Table 2 shows whether the product corresponding to the identified personality is actually purchased.
- Figure 39 Personality is identified from the customer-edge correspondence map, and whether or not the product corresponding to the identified personality is actually purchased is part 3 of the table.
- Figure 40 Personality is identified from the customer-to-edge correspondence map, and Table 4 shows whether the product corresponding to the identified personality is actually purchased or not.
- Figure 41 1 Personality is identified from the customer page correspondence map, and Table 5 shows whether the product corresponding to the identified personality is actually purchased or not. Best practice for carrying out the invention
- FIG. 14 shows a system configuration of the apparatus of the present invention, in which a small product for selling a product (the product is not limited to a tangible object, but includes a woman's product, that is, for example, various periods. Deposits, etc. are similar products mentioned here, and time deposits for each period are It is a product of a lot of goods, and the store of ts ⁇ is a small part.), An analysis center that has many small items, a product supplier, a sales promotion activity, and a customer are involved. Each subject is equipped with a device that is used at the No. 1 personal convenience store, a small device is provided with a small information device 1402, and a product supplier is provided with a product supplier device 1404.
- a small product for selling a product the product is not limited to a tangible object, but includes a woman's product, that is, for example, various periods. Deposits, etc. are similar products mentioned here, and time deposits for each period are It is a product of a lot of goods, and the store of
- the sales promotion source has sales promotion source information mm i 406, the customer has a customer's planning device (sometimes a mobile sis compatible with ⁇ mode), and the analysis center has an analysis. It is equipped with Senyuki Yuki device 1 4 1 2. All of the Oki g3 ⁇ 4a devices are started by a computer network typified by a computer network typified by In-Yu-Ichi-Net, which constitutes each weight device of the present invention as a whole ⁇ s' mmi 4 o 2 is connected to the in-store regis- ter, so that every time a customer purchases, which customer purchased which product «! Enter ⁇ to send to the analysis center.
- Analytical Sensing "If the device 1 4 1 2 collects the" t * f "of which customer purchased which type from a small customer by customer and" customer-to-purchase product type list 1 4 1 Create 4 ”. While most retailers subscribe to the system in Figure 14 while customers may purchase at different churn, aggregating at the analysis center will create a near-customer-to-purchase product plan. List 1 4 1 4 "is put together.
- the analysis sensor device 1 4 1 2 is equipped with an extract base (hereinafter, referred to as D / B) 1 16 from the two factories.
- D / B extract base
- One is the age map 14 18 and the other is the emotional personality map 14 20.
- the page map 1 4 18 shows one parameter set as a similar multi-lingual list and another parameter set as a specific restaurant from a group of similar products.
- a group list that can be used to purchase the merchandise of a particular type, and a two-dimensional map that uses the two types of parameters is used to record the purchases of that type of merchandise for each type of merchandise.
- the emotional personality map 1440 corresponds to the personality at the time of purchase, and the special character [@buy! It is marked with ⁇ .
- the Edge Map 1 4 1 8 and the Emotional Personality Map 1 4 2 0 are prepared by a sales 51 * who has deep product knowledge and customer knowledge in contact with many products and many customers, and a deep doctor This is equivalent to an expert who performed MS on the relationship between symptoms and causes.
- the analysis device " ⁇ 1" device 1 4 1 2 creates a similar product image group list 1 4 2 4 based on the edge map 1 4 1 8 based on the purchase map.
- the customer creates an analysis list 1 4 2 8 of the purchase orders that the customer processes at the time of purchase.Furthermore, from this Purchasing by customer »List 1 4 2 8, the customer list 1 4 3 0 that matches the product and the Create a list of suitable products 1 4 3 2. Furthermore, create various types of products 1 4 3 4, for example, a version that requires a customer's fiber that fits a certain product.
- the data is according to customer's request, 3 ⁇ 4fl® device 1408, small ' «1 device 1402, goods supply! ⁇ ' Suiyuki 3 ⁇ 40 « place 1404, foot Domoto 'Kiyoyuki «sent equipment to 1 4 0 6.
- This ⁇ information that is not sent information to be transmitted in accordance with enough demand of consideration to the protection of the individual is defined go-between by the pre-lawyers.
- plows and cranes are used to pay for data, etc.
- Communication between devices uses comfort technology to ensure high information security.
- game software computer game software
- Fig. 15 is a diagram illustrating an edge map that is an exotic D / B.
- the game software AB C ⁇ ⁇ It is often purchased or hardly purchased depending on the fiber.
- the inventors of the present invention have repeated the I-mochi using the above-described technique for making opacity possible, and have finally arrived at the page theory.
- the edge theory has been developed by the present inventors and can be roughly described as follows.
- a group of factors that a customer weighs at a wisteria that intersects a particular customer is called a purchase sickle group.
- the dynamics that make it difficult to purchase a specific type of product from a certain type of product group are taken as a parameter.
- the horizontal axis uses a multi-product list ABC C '' as a parameter.
- An edge map shown in FIG. 15 (B) can be obtained by picking up a purchase! ⁇ For each product by a product sales expert. This map will expand as new products are introduced.
- FIG. 15 (C) illustrates the results of the extraction.
- product A has purchase motives a and g
- product F has the two purchase motives (degree of agreement 100% )
- the product IDE G has one of the purchases (50% agreement), indicating that the product BC is not quite similar.
- product F with purchased fiber ab e f gh product C shares three purchases (50% of the total), and the product of 0 fe is a single fiber.
- Two S3 ⁇ 4 in the figure indicate common purchasing motivation (edge).
- product F has the same purchase as product A
- various things become possible. For example, recommending product F to a customer who has product A but not product F can probably be expected to be satisfactory. Based on the sales performance of product A in the past, small can show the purchase amount of product F.
- the sales activity plan of product F can be i ⁇ based on the degree of effectiveness of past sales and release activities of product A. Manufacturers can also make ⁇ S for product F with reference to past sales of product A.
- ⁇ S for product F with reference to past sales of product A.
- Figure 16 shows an example of the result of using an edge map with the purchased fiber set to Tsuru-Ki.
- the set of purchased items commonly shared by heat products ⁇ It becomes.
- quality and F are heat products: It is understood that products that combine t and purchase cfh are accepted by many customers.
- Figure 17 shows the ⁇ (columns) of the emotional personality maps 30.5 and 1440.
- buy game software ⁇ . Game; Some people come to the forefront of trying KM.
- Personality indicates the purchase motivation that is weighed when purchasing as a fan. This ⁇ indicates that purchase ethics are important and purchase ethics are not weighed.
- the personality ⁇ indicates the personality of 3 ⁇ 4 ⁇ , who makes the purchase by trying out the game ⁇ ⁇ ⁇ . In this case, the purchase ab d e f is emphasized, and the procurement c is not considered.
- Fig. 18 shows an example of a product similar to product F when viewed from personality (measures the purchase cfh), where rn ⁇ r and product C have 100% 1! ⁇ .
- Fig. 15 (C) when comparing one product with another product without assuming a specific personality, product C has a 50% coincidence with product F, whereas personality a Return the product to the scale: ⁇ shows that Product C matches 100% of Product F.
- the matching degree of the merchant account Q cr ⁇ products in Fig. 15 is 33%, so there are some products that are eligible products.
- the degree of coincidence of ⁇ ⁇ ⁇ is 0%, which indicates that it is not actually a conforming product.
- Fig. 19 shows an example of the "(" column of purchased goods for each customer.
- Fig. 20 shows the edge map shown in Fig. 15 (B) and the purchased goods list by customer shown in Fig. 19
- Fig. 21 is an expanded view of the purchase ⁇ corresponding to the business unit Q c «included in the purchase merchandise list for each customer.
- Fig. 21 is a diagram showing the purchase edition of Fig. 20 for each customer. For example, it can be seen that the customer selects the product by ftf processing the purchased fiber ab fgh i and selects the product without paying attention to the purchase and c.
- Figure 22 shows that a customer who satisfies the new product X (or may be in stock, but the stock: ⁇ has not purchased the product yet! / Find Hi?
- A shows an edge map of the product X.
- B shows the purchase re A list, that is, a customer page correspondence map is shown.
- the edge corresponding to the edge map of the product X has a double circle.
- the six purchases that are important to the customer three out of six purchases are satisfied with item X and the satisfaction is 50%, while the five purchases that are important to the customer are It can be seen that the four items are satisfied and the satisfaction is 80%.
- Product X fits better with the customer than the customer.
- Figure 23 shows the selection of products that customer ⁇ ⁇ ⁇ ⁇ will probably be satisfied with from products that have not yet been purchased by customers B: B to F and X to Z.
- A shows a customer page correspondence map of the customer.
- B shows an edge map of an unpurchased product.
- the edge corresponding to the customer-to-edge map of customer ⁇ is marked with a double circle.
- F and Y up to five out of the six purchasing motivations that the product has are in agreement with the customer's purchased fiber, and the conformity is 83%. Obviously, it can be expected that the customer will have high satisfaction with product F and product Y.
- FIG. 24 explains the manner in which the customer's personality is ⁇ ! From the customer-to-edge map shown in FIG. 22B.
- the product C FYZ is well suited to personality. Therefore, in order to extract customers that fit the product C FYZ, it can be seen that it is sufficient to extract customers who are known to have personality as shown in Figure 24.
- FIG. 26 shows an example of converting the edge map into a 3 ⁇ 4M.
- Figure 28 shows the edge map visualized in Figure 26 and the customer-to-edge map obtained from the purchased product list by customer in Figure 27. The details of how to obtain it are shown in Figure 29. It is simply an averaging, for example, a customer purchases a product A with an edge of a of 3 and a product B with an edge of a of 2; ⁇ It is calculated as having weight. In Figure 28, it has been transformed into a single building.
- Figures 30 and 31 show how to extract products suitable for customers from the quantified customer-to-edge map.
- heavy engineering is used.
- the heavy industry is a buyer who is particularly valued.
- a customer i's purchased fiber a has a value of 1; i is calculated as 1 because one of the 10 purchased items happens to have a purchase motivation a of 10!
- ⁇ of the 10 purchased items may have a concession of 1 in the purchase a.
- a heavy industrial machine is used.
- the customer indicates that the purchased heavy fiber b is a heavy duty.
- -Goods also have heavy jobs, for example, most of the customers who purchase product B are purchased with the purchase » « b fti, so "b" is the heavy edge for product B.
- products matching the customer are extracted. 3 ⁇ 4 ⁇
- products with matching heavy edges are preferentially found. This: t, the product BD G matches, and the product ACE F does not match.
- the product with the highest number of matching pages is determined as the product with the matching degree.
- zero is a non-detailed purchase. Therefore, when comparing the customer-to-page map (A) and the edge map (B) in Fig. 30, the number of columns (the number of pages) that both have zero percent and a direct count are counted. For example, it can be seen that Product B shares four edges with the customer and Product D shares three edges with the customer.
- the deviation refers to the sum of deviations of the corresponding edges other than the heavy engineering edge at the corresponding edge, and is exemplified in FIG. 30 (C).
- the column referred to as cross hatch in (C) corresponds to a column with no heavy industry or no page. No deviation is calculated in these columns.
- the customer whose heavy edge coincides is found first.
- the customer aka is matched and the customer is not matched.
- the former is regarded as a customer with a high degree of conformity.
- the number of matching edges Customers with high relevance.
- the edge map (A) and the customer-to-edge correspondence map (B) show that the customer aka shares four edges with product B, the customer a has four edges, and the customer It can be seen that ⁇ shares three edges.
- Figures 34 and 35 list game software products of the same variety ⁇ by genre. Things.
- the genre is changed from A to W ⁇ ⁇ .
- ⁇ S ⁇ I contains multiple items or items.
- a specific product or view is indicated by a genre symbol and a Kato number.
- the first product in the power battle, Digimon Field Digi-Like Battle, is denoted by A1.
- Fig. 36 shows a group of similar products for which similarity was found by the edge theory to the product shown at the top.
- “1” indicates the number of common edges in the 72 edge groups. For example, a product of A1 and a product of D22 have 26 edges (showing that they share purchases. The figure shows the top 20 similar products with the highest number of matches. However, if there is a similar product with the same number of matches, ⁇ indicates the product of the same rank, and 20 or more similar products are listed: ⁇ According to page theory, For example, from a purchase perspective, it can be seen that product A 1 belonging to force battle is similar to product D 2 2 belonging to the genre of RPG and product H 1 belonging to simulation RPG.
- the view column shows the number of customers who have purchased similar products listed among the 1 1 2 people who purchased product A 1. For example, it indicates that 32 out of 1 1 2 people who purchased the product A 1 purchased the product D 2 2, and 7 people purchased the product H 1.
- This one night is a five-year purchase record of a group of 18 game software stores and 105 members.
- Fig. 36 shows purchased fibers by genre. For example, out of 1 1 2 people who purchased product A 1, a total of 77 customers purchased A 2 1 from other products A 2 belonging to the same genre.
- the upper and lower rows have the same number of products.
- Fig. 37 and subsequent figures show the results of extracting personality by the method of Fig. 17 and extracting the products that match the personality by the method of Fig. 18 and the results of comparing actual purchases. Obviously, it is considered that the products extracted by the method in Fig. 18 are very high in the actual purchase. As a result, it can be seen that if an unpurchased product is included in the product group extracted by the method in FIG. 18, the product will be almost satisfied if the product is recommended. .
- the present invention is based on the idea that the edge theory is used to convert the purchased fiber data into individual customers.
- the product supply can be beneficial to the main actors and the like, and can suppress ⁇ and muta produced at the »stage from product sales.
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Engineering & Computer Science (AREA)
- Marketing (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Technology Law (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
A group of commodities fitted to the purchase motives of a customer according to the past purchase record of the customer is extracted, and information useful for selection of commodity by the customer is provided. A device comprises edge map storage means (600) where stored is an edge map that contains motives deciding purchase of each type of commodity and which has a same-kind multiple-type commodity list as a parameter and a motive candidate list including motive candidates potentially being motives deciding purchase of a specific type of commodity from the same kind of commodities as another parameter, purchased commodity list storage means (612) where stored is a purchased commodity list of each customer, means (614) for calculating a customer-edge correspondence map by accumulating purchase motives for each commodity type of the purchased commodity list, means (604) for searching for purchase motives of an unpurchased commodity type of a specific customer by using motives contained in the customer edge correspondence map of the specific customer as search keys. The commodity types sharing the common purchase motives contained in the customer-edge correspondence map of the specific customer are extracted.
Description
明 細 書 購買 KM在化方法と、 適合商品.適合顧 由出方法と、 その為の装置 技術分野 Description Purchasing KM localization method and compatible products; Conformity provision method and equipment Technical field
本発明は、 の購買実績 t^を '障幸 »1して将来の販売. ^ 動に有益な '隱艮に 変換する 方法とその為の情報タ !κι装置に関する。 The present invention relates to a method for converting a purchase result t ^ of a purchase to a future sale.
'目〕 'Eye〕
多觀が被する商品、 たとえば通 皆楽 CD、 コンピュータゲームソフト、 翻 '車等の ί胎、顧客は同類多麵品群のなかから特定觀を選択して購買する。商品禾戯首、 は極めて多《顧客は自己に適合する «の還尺に困ることが多い。販売店は仕入種類 や仕入觸の貌に困ることが多い。商品供給元は、顧客が求める商品觀の予測がつ かず、 の に困ることが多い。 また、 開発目標を することにも困ってい の購買纖を分析して、 将来に備える様々なマーケティング漏が開発されてい る。纖もっとも進んでいると思われる技術では、 ίϋ¾の「顧客一購買した商口 の購買情幸艮を「顧客の属性(年齢、 、 mk 年収等)」をキーとして分析して、 「顧 客の属性一その属性の顧客に多く購買される商!^顧群」のデータを得、 その顧客に対 してはその顧客が属する属性に対応する商口 顧群を提示して商品選択の補助隱を提 供し、 販^ sに対しては特定の商口 類を好む属性を表示して販 ©i活動を展開すベ き顧客邀尺のための補助情報を »し、商品供給元には「顧客の属性一その属性の顧客 に多く購買される商品種類群一過去の購買 ¾a」のデータを«して生産数量や開発目 標の のための補助情報を提供することができる。 発明の開示 Products that are often overlooked, such as music, music CDs, computer game software, vehicles such as translators, and customers select and purchase a particular view from a group of similar products. The merchandise is extremely numerous. “Customers often find it difficult to fit their self. Retailers are often troubled with the type of purchase and the appearance of the purchase. Product suppliers often have trouble predicting what their customers want in a product view, making it difficult to find products. In addition, a variety of marketing leaks are being developed for the future by analyzing purchased fibers, which are also difficult to set development goals. In the technology that seems to be the most advanced, the analysis of ίϋ¾'s “customer-purchased purchases of merchant outlets” using “customer attributes (age, mk annual income, etc.)” as a key, and “ Attribute-Seller that is often purchased by the customer of that attribute! ^ Customer group 'data is obtained, and the customer is presented with a group of merchant clients corresponding to the attribute to which the customer belongs, to assist in product selection. And provide the sales ^ s with an attribute that favors a particular business unit and display the auxiliary information for customer interception to develop sales © i activities. It is possible to provide auxiliary information for the production quantity and the development target by referring to the data of the attribute of the customer—the product type group frequently purchased by the customer of the attribute—the past purchase ¾a ’. Disclosure of the invention
しかしながら、 の購買 '隱艮分析 は、顧客の属性をキーとして分析するにとど まり、 顧客 © 々0«生にまでは踏み込んでいない。そのために、 分析して得られる情 報の M生力5 ί氐く、例えば顧客が「顧客の属性—その属性の顧客に多く購買される商品
禾顧群」の分析結果に基づいて用意された 1«¾品觀を信じて購入したときに、 その 顧客にとってはその商品^!の満足度力 δいといったことがよくおこる。 However, the analysis of purchases by Okikura is based only on the attributes of customers as keys, and does not go deeper into customers. For this reason, analysis and M raw force 5 of the information obtained by ί氐Ku, for example, the customer is "customer attributes - instruments that are more purchase to the customer of that attribute When a customer believes and believes in 1 «¾ quality of view prepared based on the result of the analysis of the“ Housou group, ”the customer often satisfies the product ^! Δ.
この発明は、顧客を属性によって^!してしまうのではなく、 一人一人の個性を反映 した分析を可能とする技術を #Wするものである。 This invention #W is a technology that enables analysis that reflects the individuality of each customer, instead of ^!
例えば、 コンピュータゲ一ムソフトを考える。纖、 日本におよそ 1 0 0万人の購買 層が存在し、 約 1 0 0 0觀の商品が械する。過去の一人あたりの購買 約 5個 であり、都合 5 0 0万個の「顧客一購買商品禾纖 のデータが存在する。 これを一人一 人の個性を反映しながら分析するというのは、 言うは易いものの行ないがたく、 どうし てよいのかわからない。 For example, consider computer game software. Fiber, there are about 100,000 buyers in Japan, and about 100,000 products are manufactured. In the past, there were about 5 purchases per capita, and there were 500,000 data for "customer-purchase merchandise. There are data for each customer. Analyzing this while reflecting each person's individuality says that Although it is easy to do, it is hard to do, and I do not know what to do.
顧客ァは商品 AB Cを購買し、 顧客ィは商品: D E Fを購買したといった購買鐘'髒 g が 1 0 0万人分あったときに、顧客ァと顧客ィ 性の相違を反映しながら、 有益な情 報、例えば 1¾品 AB Cを購買した顧客ァにはその個性に適合する商品を勧めたり、 ある いは販売店にはその販売店の顧客群の個性に基づいて新製品 Gの仕入量を決定したりす るために有益な情報を、 どうしたら得られるのかが判らない。 The customer purchases the product ABC and the customer buys the product: DEF. When there are 100,000 purchase bells' 髒 g, reflecting the difference between the customer and the customer, Useful information, such as recommending a product that matches the individuality to the customer who purchased the product ABC, or telling the retailer to specify the new product G based on the personality of the retailer's customer group I don't know how to get useful information to determine the amount of input.
本発明では、 上記の情報、 すなわち、顧客ァは商品 AB Cを購買し、顧客ィは商品 D E Fを購買したといった過去の販売実績情報から、 顧客 生の相違を反映しながら有 益な情報に変換する。 In the present invention, the above information, that is, the customer purchases the product ABC and the customer purchases the product DEF, and converts the past sales performance information into useful information while reflecting the difference in the customer's life I do.
このために本発明ではエッジ理論を用いる。エッジ理論は本発明者らによって開発さ れたものであり、 おおよそ以下のように説明することができる。 For this purpose, the present invention uses the edge theory. The edge theory has been developed by the present inventors, and can be roughly described as follows.
( 1 )顧客が、 多禾廳を持つ同類商品、例えば、 コンピュータゲームソフト、 m 乗 用車等のなかから特定禾顧を還尺する で考量する因 は有限であり、 商品販売の 専門家は因子群をリストアッフ きる。例えば、 コンピュータゲームソフトの:^ r、 「雑 誌などで謹か い」から購買する i 、 「闘争: ΦΙを刺激される」から購買する i 、 「低 «」だから購買する i 、 「メーカ力 «できる」から購買する などがあり、 多くの商品と多くの顧客に接している商品販売の専門家は、 顧客が購買禾顧を貌する 纖で考量する因子をほぼ漏れなくリスト化することができる。例えば、 コンピュータ ゲームソフトの; ^には 5 7種の因子があり、 およそ大部分の顧客は 5 7種の因子を考 量して特定觀を遠尺することが聽、されている。ェヅジ理 は、 顧客が特 顧を 選択する纖で考量する因子群を購買謹鎌群(エッジ群) という。
( 2 ) 個々の商 «は、購買動 »1群のなかの t、くつかの購買動機を備えており 、 購買 ¾«ϋ群リスト力导られると、商品販売の専門家は個々の商品について、 その 商品の購買を する を特定できる。 (1) There are a limited number of factors that customers can weigh in determining the size of a particular product from similar products with multiple locations, such as computer game software and m-passenger cars. The list of factors can be restored. For example, computer game software: ^ r, i buy from "no luck in magazines", i buy from "struggle: stimulating ΦΙ", i buy from "low« "," maker power " Product sales professionals who are in contact with many products and many customers, such as purchasing from `` can do it '', can list almost all factors that customers weigh with the fiber that appears to buy and sell. it can. For example, there are 57 factors in computer game software; ^, and almost all customers are listening to 57 types of factors, and have been told that they will not be able to view a particular view. Jageri refers to the group of factors that are evaluated by the fiber that the customer selects for specialty purchase as the edge group. (2) Individual quotients «have purchase motives» t in a group, have several purchase motives, and when purchasing ¾ ϋ ϋ 导 リ ス ト リ ス ト ϋ 専 門 専 門 商品, And the purchase of the product can be specified.
例えば、商品 Αは、 「艦、などで藤が高い」から購買する顧客と、 「闘争 を刺激 される」から購買する顧客が し、 「低 «¾」だから購買する顧客や、 「メーカ力 できる」から購買する顧客はほとんど存在しないといったことを正確に特定できる。ェ ヅジ理 ϋ ま、 商口口 πί重類に対応付けて、 その商口 の購買を貌する I»を記憶し ているデ一夕ベースをエッジマップという。 For example, for product 、, there are customers who purchase from “high wisteria in ships, etc.” and customers who purchase from “stimulated struggle”, customers who purchase because of “low ¾”, and “ Can be accurately specified that there are few customers to purchase from. In addition, a data base that stores I », which represents the purchase of the merchant mouth, in association with the merchant mouth πί heavy is called an edge map.
( 3 ) 上記の情報は、例えば、 纖の豊富な医師が患者の症状から原因を特定するた めに必要な多くの知識を備えており、 それをデータベース化してエキスノ、'一トデ一夕べ ースを用意することによって、 «の浅い医師か »の深い医師と同一レベルで診断で きるようになるのとほ〖 ォ応しており、商品販売のエキスノ ートデータペースに相当す る。 (3) The above information is provided, for example, by a wealth of physicians who have a lot of knowledge necessary to identify the cause from the patient's symptoms. It is almost in line with the fact that the preparation of medical tools will enable the same level of diagnosis to be made for doctors with “shallow physicians” or “deep physicians”, which is equivalent to the note data pace of product sales.
(4) 一旦エッジマップが構築されると、 様々な '瞎隱が可能となる。例えば、過 去に商品 AB Cを購買した顧客ァは、 エッジマップから 「 などで謹が高い」商品 や「闘争本能を刺激される」商品を好む個性を持ち、 それらの購買謹を有する商品を 推薦すると満^ Jgが いと期待できる一方、 「織」や「メーカ」を纖しない個性を持 ち、 その観点から商品を選択しても満^ 氏いことがわかる。あるいは、 新商品 は 購買誦の P、 q、 r等を持ち、 この新商品 Xに ί濯客 C;、 Dが強い満搬を持つこと 等が判る。 (4) Once the edge map has been constructed, various concealments are possible. For example, a customer who has purchased a product ABC in the past may have a personality that prefers products that are “highly valued” or “stimulated instinct to fight” from the edge map, While it is expected that Jg is not recommended when recommended, it has a personality that does not fibrate "woven" or "manufacturer", and it is clear that selecting products from that perspective is also satisfactory. Alternatively, it can be seen that the new product has the P, q, r, etc. of the purchase, and that the new customers X have strong luck with the rinsing customers C;
本発明では、 ェヅジ理論を下記の方法又 置に具現化することによって有益な '瞎 S を作り出す。 In the present invention, a useful theory is created by embodying the page theory in the following method or apparatus.
(請求の範囲 1の装置) (Claim 1)
この装置は、 図 1に示すように、 ェヅジマヅフ 憶手段 1 0 0を持っている。 ここに 記憶されているエッジマップ 1 0 2は、 一つのパラメ一夕を同類多禾麟品リストとする ο 図 1の 、 横軸にパラメ一夕として商口 應八, Β · 'が示されている。図中の太 い矢印は、 さらに同種のデ一夕が続くことを示している。エッジマップ 1 0 2の他の一 つのパラメ一夕は、 その類の商品群から特定翻の商品の購買を する誦となり得 る動衛^ f群リストである。図 1の:^"、 縦軸に購買動樹^群 a, b - 'が示されて
いる。 ここで、 例えば aは「 などで謹か高い」であり、 bは「闘争本能を刺激さ れる」であり、 cは「低価格」であり、 dは「メーカの «が高い」である。 The apparatus has a pager storage means 100 as shown in FIG. In the edge map 102 stored here, one parameter is set as a list of similar polysaccharide products. Ο In Fig. 1, the horizontal axis indicates the parameter set as Ochihachi, Β · 'as the parameter set. ing. The thick arrow in the figure indicates that the same kind of data continues. Another parameter in the edge map 102 is a list of groups of movements that can be used to recite the purchase of a particular product from a group of such products. In Figure 1: ^ ", the vertical axis shows the purchase tree ^ group a, b-' I have. Here, for example, a is “really high in etc.”, b is “stimulates the instinct of struggle”, c is “low price”, and d is “high in manufacturer”.
ェヅジマップ 1 0 2は、 商品禾顧ごとにその商品麵の購買を する «を言膽 している。図 1の i½、商口 ^«ΙΑは aだから購買される と gだから購買される場 合があるものの、 bから fの,で購買されることが殆どな tヽことを例示している。 請纖囲 1の装置は、 ェヅジマツフ 憶手段 1 0 0の記 ft内容 1 0 2を、 特^ |重類の The page map 102 states that each product customer purchases that product. In Figure 1, i½, the business port ^ «ΙΑ, is an example of the case where a is purchased because of a and sometimes g because of purchase of g, but it is almost always purchased from b to f. The device of 纖 纖 纖 1 、 、 装置 装置 装置 装置 装置 装置 装置
Ml 0 6をキ一として嫌する手段 1 0 4を持っている 図 1の 1 0 8は、商口 顧八に対して、 mm (この^ aと g) を共有する商品 群を例示している。 この i 、 aと gを共有する禾簾 Fと、 aを共用する觀 DEと、 gを共有する Gが抽出される。 また、禾顧 Fに対して、 購買誦(この:^ a b c f g )の内 2個の購買動機 c fを共有する禾顧 ACEが抽出されたことを例示している。 1 1 0は購買誦 aに対して、 aを持つ商品禾麵 AD E Fが抽出さ 購買議 c f (A Νϋ条件) に対して商品 C Fが抽出された を例示している。 Fig. 1 shows an example of a group of products that share mm (this ^ a and g). I have. The lotus F that shares i, a and g, the view DE that shares a, and the G that shares g are extracted. In addition, the example shows that the ACE that shares two purchase motives cf out of the purchases (here: ^ a b c f g) was extracted for the ceremony F. 110 illustrates an example in which a merchandise item ADEF having a is extracted for a purchase a, and a merchandise C F is extracted for a purchase cf (A Νϋ condition).
置によると、 同類多«品のなかから購買 ®J¾が類似する商!^重類群を抽出する ことができる。 According to the quotation, similar «products are similar in purchasing ®J¾! ^ Heavy groups can be extracted.
機置を させてみると、 全く予想もされない商品禾顧同士が実際には良く似た購 買 を有していることが判明することがある。たとえば、 「みんなのゴルフ 2」と「ダ ンスダンスレボリューション」 というジャンルの相違する 2つのコンビュ一夕ゲームソ フトが、 「 などで讓か ぃ」「友人に薦められた」「纖できるメーカだから」「誰 かと対戦できるから」「ゲーム が身近だから」「為になりそうだから」 という多くの 購買 を共有していることが判明する。 このようにして判明する類似商品群は、 実際 に多くの顧客が両方とも購買していることが多い。 また、一方を購買して他方を購買し ていない顧客に未購買商品を纖すると満搬か Ί¾いことが薦されている。すなわち 、 購買謹力 H似する商品、 換言すれば、 購買する顧客 ®f@I性のもとで類似する商口 ¾1重 類であること力 されている。 Attempting to do so may reveal that completely unexpected merchants actually have very similar purchases. For example, two different game softwares of different genres, “Golf for Everyone 2” and “Dance Dance Revolution,” are “a maker that can be used by a friend”, “recommended by a friend,” It turns out that they share many purchases because they can play against them, because they are close to the game, and because they are likely to be useful. Many of the similar products found in this way are actually purchased by many customers. It is also recommended that customers who purchase one and not purchase the other be fully loaded with unpurchased products. In other words, it is emphasized that purchasing merchandise H is a similar product, in other words, it is a single merchant that is similar under the f @ I property of the purchasing customer.
このようにして類似商品が抽出されると、顧客にたいしては満足度の高い商品禾廳を ■することができ、 販売店には仕入量を的確に するために有用な'隱 ¾を でき 、 商品供給元には銷量を過不足なく、^するために有用な'瞎 βと H¾目標を!^する
ために有用な を でき、 販^ ί©1活動に従事する者には) ¾の販^ ί©1活動の類 似データを抽出するのに有用なデータを提供することができ、 極めて有効である。 (請求の範囲 2の方法) When similar products are extracted in this way, it is possible to set up a product shop that is highly satisfying to customers, and to provide retailers with a useful “hidden store” that can be used to make accurate purchases. For the product supplier, we have useful 'sir β and H¾ targets to help us to increase or decrease the sales volume! ^ It is possible to provide useful data to extract similar data of 販 sales ^ ί © 1 activities. is there. (Method of Claim 2)
この方法は、 » 的に図 2に示さ 請纖囲 1の装置で新される。 この方法では 、 エッジマップ 1 0 2を構築する 2 0 0と、 エッジマップ 1 0 2の内容を特定禾顧 の商品の購買 t«Xは特^ i買 II ^をキーとして する ® 2 0 4を^ して、 同類 多 品のなかから購買,力 似する商口 通群 2 0 8を抽出する。エッジマップを 定義する条件は請求範囲 1の装置の:^と同じなので、 以下では説明を省略する。 (請求の範囲 3の装置) This method will be renewed with the equipment shown in Fig. 2 and shown in Fig. 2. In this method, the edge map 102 is constructed, and the content of the edge map 102 is determined by the purchase of a particular product. Then, a group of similar merchandise outlets 208 that are similar in purchasing and power are extracted from among many similar products. The conditions for defining the edge map are the same as those of the device of claim 1: ^, and the description is omitted below. (Equipment of claim 3)
この装置も、.図 3に示すように、 図 1に示した請雜囲 1の装置と同様に、 エッジマ ヅプ 3 0 2を言 3憶しているエッジマツフ 憶手段 3 0 0を持つ。 As shown in FIG. 3, this device also has an edge map storage means 300 that stores the edge map 302, as in the device of the enclosure 1 shown in FIG.
この装置は、 購買 時の人格に対応させて購買賺鎌群のなかの特^ 買纖を 記憶しているェモ一ショナル人格マヅプ 3 0 5の記憶手段 3 0 3を持つ。 これは請 囲 1の装置と相違している。例えば、 コンビュ一夕ゲームソフトを購買する ί 、 登場 キャラクタのファンとして購買 する人や^もあれば、 ゲーム ί¾を試すことが前 面に出て購買を する人や;^もある。 This device has a storage means 303 of an emotional personality map 305 which stores a special purchase fiber in a purchase sickle group corresponding to a personality at the time of purchase. This differs from the Contract 1 equipment. For example, there are people who buy game software overnight, ビ, and others who purchase as a character's fan, and others who play game ί¾ in the front and make purchases.
この ί給、 ファンとして購買 されることが多 Vヽ商ロ 顧群のなかで類似商品を抽 出するためには、 ゲーム技量を試すことが主体となるときの購買動機の類似不一致はあ まり問題とならない。 そこで、 この発明では、購買貌時の人格に対応させて購買應 β群のなかの特^ 買赚を記憶しているェモ一ショナル人格マップ 3 0 5の記憶手 段 3 0 3を持つのである。 なお、 同一人が、 ファンとして購買 する i½も、 ゲーム ¾βを試すことが前面に出て購買を^ ¾する^もあり、 同一人物のなかに徹の人格 が存在する。 In order to extract similar products from the group of customers who are often paid or purchased as a fan, there is not much similarity in purchasing motivation when testing game skills is the main subject. No problem. Therefore, the present invention has a memory means 303 of the emotional personality map 305 which stores the special purchase of the purchase group β in correspondence with the personality at the time of purchase. is there. In addition, the same person purchases as a fan, and the game ¾β comes to the forefront to make purchases, and there is a personality in the same person.
この装置では、 エッジマヅフ 憶手段 3 0 0の記憶内容 3 0 2を、 格に対応す る購買,をキーとして錦する手段 3 0 4とを持っているために 同類多 品のな かから 格(たとえばファンとして購買を貌する人格、 あるいはゲーム擴を試 すことが前面に出て購買を する人格) に»する購買動機を持つ商口口 «I群が抽出 される。 In this device, the stored contents of the edge-muff storage means 300 are stored in the memory 302, and the means 304 for browsing using the purchase corresponding to the case as a key. For example, a group of merchants with purchase motives such as “Personality who appears to purchase as a fan, or personality who tries to expand the game in the foreground” is extracted.
このために、 ファンとして購買 されるときの類似商品、 あるいは、 その人格に適
応する商品觀が抽出さ さらに有益な情報が入手される。 For this reason, similar products when purchased as a fan, or suitable for their personality The corresponding product view is extracted and more useful information is obtained.
(請求の範囲 4の方法) (Method of Claim 4)
この方法は、 的に図 4に示さ 請纖囲 3の装置で菊亍される。 この方法では 、 エッジマップ 3 0 2を構築する 4◦ 0と、購買 時の人格に対応させて購買動 機^ f群のなかの特^ §買 を記慮しているェモ一ショナル人格マヅプ 3 0 5を構築 する ¾4 0 3と、 エッジマップ 3 0 2の内容を、 格に対応する購買!^をキ一 として検索する 4 0 4を実行して、 同類多種商品のなかから 格に M する購 買 «を持つ商品 «群 4 0 8を抽出する。 This method is typically performed using the device of the fiber 3 shown in FIG. In this method, the edge map 3 0 2 is constructed 4 000, and the emotional personality map that takes into account the purchase motives ^ f in the group f corresponding to the personality at the time of purchase is considered. Build 3 0 5 ¾ 4 0 3 and the contents of the edge map 3 0 2 ^ Running 4 0 4 to search for as keys, to extract the goods «group 4 0 8 with purchasing« to M to rank among the likes of various goods.
(請求の範囲 5の装置) (Equipment of claim 5)
この装置は、顧客が商品選択に際して樹処する購買 1¾»を顕在化する装置であり、 図 5に示すように、 エッジマヅフ °13'慮手段 5 0 0と、顧客毎の購買商品リストを記憶し ている購買商品リスト記憶手段 5. 1 2と、顧客毎の購買商品リストに含まれる商品禾顧 に対応する購買動機を累積する手段 5 1 4を持ち、 顧客別購買動 »リスト 5 1 6を出 力する。 This device is a device that manifests a purchase 1 item that a customer performs when selecting a product. As shown in FIG. 5, the device stores an edge map 13 'consideration means 500 and a purchase product list for each customer. Means for storing the purchased product list 5.12 and means for accumulating the purchase motives corresponding to the products included in the purchased product list for each customer 5 14 Power.
この装置によると、 顧客ごとに、過去の購買歸責から、 その顧客か 1¾品選択に際して 樹処する購買 SJWが顕在化されて出力される。 According to this device, for each customer, the purchase SJW to be processed at the time of selection of one item or the customer is revealed from the past purchase responsibilities and output.
(請求の範囲 6の装置) (Equipment of claim 6)
この装置は、 商品選択に迷いを持っている顧客に、 その顧客にとって満足度か いと 予想される商口 顧を抽出して提示する装置であり、 図 6に示すように、 エッジマヅプ 記憶手段 6 0 0と、顧客毎の購買商品リストを記憶している購買商品リスト記憶手段 6 1 2と、顧客毎の購買商品リストに含まれる商ロ 簾に対応する購買誦を凝貴して顧 客一ェヅジ対応マヅプ 6 1 6を算出する手段 6 1 4と、 特^ H客の未購買商ロロ «I群の 購買 S)Wを、 その顧客の顧客一エッジ対応マップ 6 1 6に含まれる購買 をキ一 として騰する手段 6 0 4を持ち、 その顧客の顧客一ェヅジ対応マヅプ 6 1 6に含まれ る購買,を共有する商品(その顧客の適合商品 6 1 8 ) を抽出する。 This device is a device that extracts and presents a business customer expected to be unsatisfied with the customer to a customer who is uncertain about product selection. As shown in FIG. 6, the edge map storage means 60 0, a purchase merchandise list storage means 6 1 2 that stores a purchase merchandise list for each customer, and a purchase page corresponding to a quotient lot included in the purchase merchandise list for each customer. The means 6 14 for calculating the correspondence map 6 16 and the unpurchased merchant rolls of the special H customers 購 Purchasing of the I group S) W are converted to the purchases included in the customer one edge correspondence map 6 16 A product (applicable product of the customer 6 18) which has the means of rising 6104 and shares the purchase included in the customer page correspondence map 6 16 of the customer is extracted.
請纖囲 5で説明したように、顧客—エッジ対応マップ 6 1 6には、 その顧客が商品 選択に際して樹処する購買 SJ»力 される。 これは、過去の販売謙に基づくもの であり、 客観的なものである。 As described in the section 5 of the paper, the customer-edge correspondence map 6 16 shows the purchase SJ that the customer performs when selecting a product. This is based on past sales humility and is objective.
この装置では、 特¾|1客の未購買商ロロ重類群の購買 を、 その顧客の顧客一エツ
ジ対応マップ 6 1 6に含まれる動 »をキーとして検索する手段 6 0 4を持っているた めに、 その顧客が 3i¾に購買した商品麵の購買謹に類似する購買纖を持つ商ロロ p@ 類が抽出される。 このようにして抽出される商! はその顧客にとって満 Sが高い と予測される商品である。実際に、 このようにして抽出される商品は高い満 J¾¾力 ら れることが 、されている。 With this device, the purchase of an unpurchased lolo heavy group by a special customer Since the customer has a means of searching using the dynamic »contained in the correspondence map 6 16 as a key, the customer has a purchase fiber similar to the purchase of the product purchased by the customer in 3i. @ Types are extracted. The quotient extracted in this way is a product that is expected to have a high S for the customer. In fact, it is said that the products extracted in this way have high manpower.
(請求の範囲 7の方法) (Method of Claim 7)
この方法は、% 的に図 7に示さ;^ 請纖囲 6の装置で実行される。 この方法では 、 エッジマップ 6 0 2を構築する 7 0 0と、 顧客毎に購買商品リストを纏するェ 程 7 1 2と、顧客毎の購買商品リストに含まれる商 重類に対応する購買纖を累積し て顧客一ェッジ対応マヅプ 6 1 6を構築する: ¾ 7 1 4と、 特¾11客の未購買商品禾顧 群の購買 を、 その顧客の顧客一ェヅジ対応マップ 6 1 6に含まれる購買 を キ一として する: Eg7 0 4を菊亍する。 この方法によって、 その顧客の顧客一ェヅ ジ対応マヅプ 6 1 6に含まれる購買 j ^を共有する商品禾藤が抽出される。 This method is shown in FIG. 7 in percentage terms; In this method, an edge map 600 is constructed 700, a purchase commodity list is compiled for each customer 712, and a purchase fiber corresponding to a commercial class included in the purchase commodity list for each customer. To build the customer-edge correspondence map 6 16: ¾ 7 14 and the purchase of the unpurchased goods group of 11 special customers are included in the customer's customer-edge correspondence map 6 16 Purchasing as a key: Eg704 is added. By this method, merchandise items sharing the purchase j ^ included in the customer page correspondence map 616 of the customer are extracted.
(請求の範囲 8の装置) (Claim 8)
この装置は、 商品選択に迷いを持っている顧客に、 その顧客にとって満足度か いと 予想される商ロ 應を抽出する装置である。 この点において請纖囲 6の装置に一致す る。 ただし、 請纖囲 8の装置では、 同一人物のなかにも複数の人格が械する事実に 対応し、 その顧客の特定の人格から ffflBしたときに、 満搬か いと予想される商ロロ pf重 類を抽出する。 This device extracts the quotient response that is expected to be satisfactory to the customer who is uncertain about the product selection. In this respect, it corresponds to the device of the woven fiber enclosure 6. However, the device of the fiber wrapping system 8 responds to the fact that more than one person is involved in the same person, and when the customer's specific personality ffflB ffflB, it is expected that the customer will not be fully loaded. Extract the kind.
この装置は、 図 8に示すように エッジマツフ Έ己憶手段 8 0◦と、 顧客毎の購買商品 リストを記憶している購買商品リスト言 3ft手段 8 1 2と、顧客 購買商品リストに含 まれる商品觀に対応する購買應を纖して顧客一エッジ対応マップ 8 1 6を構築す る手段 8 1 4と、 購買貌時の人格に対応させて購買画鎌群のなかの特^ 買纖 を記慮しているェモ一ショナル人格マツフ。 iai手段 8 0 3と、 特¾¾客の未購買商ロ¾|重 類群の購買 Ιίί»を、 その顧客の顧客一ェヅジ対応マヅプ 8 1 6に含まれる購買 |¾» のうちの特^格に対応づけてェモ一ショナル人格マヅフ 憶手段 8 0 3に言 3慮されて いる購買 Si»をキ一として嫌する手段 8 0 4を持ち、 その顧客の特^ Λ格に対応す る購買 i)¾に適合する商品 8 2 0を抽出する。 As shown in Fig. 8, this device is included in the edge purchase list, the purchase item list that stores the purchase item list for each customer, and the customer purchase item list. A method for constructing a customer-to-edge map 8 1 6 by fibrillating the purchase process corresponding to the product view 8 1 4 and the features of the purchase scythe group according to the personality at the time of purchase Emotional personality Matsuf who is taking note of it. iai means 803 and special customers' unpurchased merchandise | weight group purchasing Ιίί 、 、 顧客 顧客 顧客 購 に 含 ま に 購 購 に にCorresponding emotional personality memory Means 8 0 3 Purchasing which is considered 3 Si has a means 8104 that dislikes Si »as a key, and purchasing i corresponding to the customer's specialty i ) Extract products 8 0 that fit ¾.
この装置によると、顧客の特定の人格から謹したときに、 満足度が高い商口口 が
抽出される。 According to this device, when a customer is respected from a specific personality, a business outlet with a high degree of satisfaction is Is extracted.
(請求の範囲 9の方法) (Method of Claim 9)
この方法は、 « 的に図 9に示さ^ 請纖囲 8の装置で新される。 この方法では 、 ェヅジマヅプを構築する 9 0 0と、 顧客毎の購買商品リストを纏する: C¾ 9 1 2と、 顧客毎の購買商品リス卜に含まれる商 惠1に対応する購買謹を累積して顧客 —エッジ対応マップ 8 1 6を構築する 9 1 4と、 購買貌時の人格に対応させて購 買動衞^ f群のなかの特定購買動機を記億しているェモーショナル人格マヅプを構築す る: ES9 0 3と、 特^ I客の未購買商品 ¾|群の購買戴 «を、 その顧客の顧客一ェヅ ジ対応マップ 8 1 6に含まれる のうちの 格に対応づけてェモ一ショナル人 格マップに ΐ3ϋされている購買 ®f»をキーとして嫁する 04を実行して、 そ の顧客の特定人格に対応する購買 ¾ ^に適合する商品種類 9 2 0を抽出する。 This method is renewed primarily with the device of the fiber 8 shown in FIG. In this method, 900 to build a page map and a list of purchased products for each customer are compiled: C¾912, and purchases corresponding to business 1 included in the purchased product list for each customer are accumulated. Build a customer-edge correspondence map 8 1 6 and build an emotional personality map that records specific purchase motivation in the purchasing group according to the personality at the time of purchase. The ES900 and the unpurchased goods of the special customer ¾ | group purchase are associated with the ranks of the customer included in the customer page correspondence map 8 16. By executing the marriage 04 using the purchase ®f »in the motion personality map as a key, a product type 920 matching the purchase ¾ ^ corresponding to the specific personality of the customer is extracted.
(請求の範囲 1 0の装置) (Apparatus of claim 10)
この装置は、 新商品又は ¾JW品に対して、 その商品に高い満足度を持つであろう顧 客を抽出する装置である。 この装置によって、効率的な販^ ¾1活動が新可能となる 。 This is a device that extracts customers who will have a high level of satisfaction with new products or @JW products. This device enables new efficient sales activities.
この装置は、 図 1 0に示すように、 エッジマツフ 3ft手段 1 0 0 0と、顧客毎の購買 商品リストを記臆している購買商品リスト記憶手段 1 0 1 2と、顧客毎の購買商品リス トに含まれる商品画に対応する購買謹を して顧客一ェヅジ対応マップ 1 0 1 6 を算出する手段 1 0 1 4と、特 品« 1 0 2 2の未購買顧客群の購買動 »を、 そ の特 ¾¾品禾疆 1 0 2 2の購買動 »をキーとして検索する手段 1 0 0 4を持ち、 その •特 ¾¾品種類 1 0 2 2の購買動機に適合する顧客 1 0 2 4を抽出する。 As shown in FIG. 10, this apparatus has an edge map 3ft means 100, a purchased goods list storage means 1002 for storing a purchased goods list for each customer, and a purchased goods list for each customer. The means for calculating the customer page correspondence map 1 0 16 by making purchases corresponding to the product images included in the list and the purchase behavior of the unpurchased customer group of the special product «1 0 2 2» The means of searching for the purchase of specialty products in Hejiang 1102 2 »is used as a key 100 0 4 The customers that match the purchase incentives of the specialty type 1 0 2 2 1 0 2 4 Is extracted.
この装置によると、 績品又は; W商品から邀尺される特¾¾品に対して、 その商品 に高ヽ満足度を持つであろう顧客が抽出される。 According to this device, customers who will have a high degree of satisfaction with the product or special product intercepted from the W product are extracted.
(請求の範囲 1 1の方法) (Method of Claim 1 1)
この方法は、 »的に図 1 1に示さ 請纖囲 1 0の装置で実行される。 この方法 は、 エッジマップを構築する 1 1 0 0と、顧客毎の購買商品リストを纖する n¾ 1 1 1 2と、顧客毎の購買商品リストに含まれる商口 簾に対応する購買纖を累積し て顧客一ェヅジ対応マップを算出する ^ l 1 1 4と、 特誠ロロ « 1 1 2 2の未購買 顧客群の購買魔»を、 その特^品禾】顏 1 1 2 2の購買魔 «をキーとして する
^Ml 1 0 4を実行する。その結果、 特定商口 Dc« l 1 2 2の購買,に適合する顧客 1 1 2 4がキ由出される。 This method is carried out on the apparatus of the fiber enclosure 10 shown in FIG. This method consists of accumulating 1 1 0 0 that constructs an edge map, n 2 1 1 1 2 that fibres the purchase merchandise list for each customer, and purchasing fibres corresponding to the merchandise cards included in the purchase merchandise list for each customer. Then, the customer-page correspondence map is calculated. ^ L 1 14 and the loyalty rule «Purchasing magic of the unpurchased customer group of 1 1 2 2» Use «as a key Perform ^ Ml 104. As a result, customers 1 1 2 4 conforming to the purchase of the specific merchant account D c «l 1 2 2 are generated.
(請求の範囲 1 2の装置) (Apparatus according to claims 1 and 2)
この装置は、 新商品又は ¾)«品に対して、 その商品に高い満足度を持つであろう顧 客を抽出する。 この装置では、 同一人物のなかにも徵の人格が存在する事実に対応し 、 一つの人格によって高い満足度を持つであろう顧客を抽出する。 This device extracts customers who will have a high degree of satisfaction with new products or ¾) «products. This device extracts the customers who will have a high degree of satisfaction with a single personality, in response to the fact that there is also a personality of the same person.
この装置によって、 効率的な販¾^1活動が実行可能となる。 With this device, efficient sales activities can be performed.
この装置は、 図 1 2に示すように、 エッジマツフ 3憶手段 1 2 0 0と、顧客毎の購買 商品リストを記慮している購買商品リスト Bit手段 1 2 1 2と、顧客毎の購買商品リス 卜に含まれる商品禾顧に対応する購買! ^を して顧客一エッジ対応マヅプ 1 2 1 6 を構築する手段 1 2 1 4と、購買 時の人格に対応させて購買動衞艮浦群のなかの特 買魔機を記 Itしているェモーショナル人格マップ記憶手段 1 2 0 3と、 特 ロ 重 類 1 2 2 2の未購買顧客群の購買 1»を、 その特^口 廳 1 2 2 2に適合する人格 に対応づけてェモーショナル人格マツフ 3慮手段に記噫されている購買動 »をキ一と して嫁する手段 1 2 1 4を持っている。 この装置は、 その特誠ロ 醒 1 2 2 2の購 買動機に適合する人格を持つ顧客 1 2 2 4を抽出する。 As shown in Fig. 12, this device is composed of an edge map, a storage means, a purchase goods list taking into account a purchase goods list for each customer, and a purchase goods list for each customer. Purchasing corresponding to the products included in the list! It describes how to build a customer-edge-compatible map 1 2 1 6 by using ^ 1 2 1 4 and a special purchase magic machine in the Purchasing Egoura group corresponding to the personality at the time of purchase. The emotional personality map is stored by associating the emotional personality map storage means 1 203 with the purchase 1 of the unpurchased customer group of the special type 1 2 2 2 with the personality conforming to the specialty 1 2 2 2. It has a means 1 2 1 4 to marry the purchase behavior »recorded in the three measures as a key. This device extracts customers 1 2 2 4 who have personalities that match the purchase motive of the 1 2 2 2.
(請求の範囲 1 3の方法) (Method of Claim 13)
この方法は、 I ^的に図 1 3に示さ 請纖囲 1 2の装置で実行される。 This method is executed by the apparatus of the fiber enclosure 12 shown in FIG.
この方法は、 エッジマヅプを構築する:! ¾1 3 0 0と、顧客毎の購買商品リストを収 集する ® 1 3 1 2と、顧客毎の購買商品リストに含まれる商ロ 藤に対応する購買動 機を累積して顧客一ェヅジ対応マップを構築する i 3 1 4と、 購買 時の人格に 対応させて購買麵鎌群のなかの特識買纏を記慮しているェモ一ショナル人格マ ヅプを構築する:^ 1 3 0 3と、 特定商品禾應 1 3 2 2の未購買顧客群の購買 を 、 その特定商口。 π«1 3 2 2に適合する人格に対応づけてェモ一ショナル人格マヅフ 3 憶手段に記憶されている購買 ftWをキーとして髓する; ¾ 1 3 0 4を実行する。 こ の方法によって、 その特^口 α«| 1 3 2 2の購買動機に適合する人格を持つ顧客 1 3 2 4が抽出される。 図面の簡単な説明
図 1 :請求の範囲 1に記載の装置の説明図。 This method builds an edge map: ¾ 1300, collects a list of purchased items for each customer ® 1 312, and purchase behaviors corresponding to the quotients contained in the list of purchased items for each customer. I 3 1 4 that accumulates machines and builds a customer page correspondence map, and an emotional personality map that takes into account the purchase of special knowledge in the purchasing sickle group according to the personality at the time of purchase Build a map: ^ 13 0 3 and the purchase of a group of unpurchased customers of a specific product 1 32 2, the specific business outlet.ェ モ 3 と し て 対 応 と し て ェ ェ «ェ ェ ェ 購 ェ ェ ェ ェ 購 ェ 購 ェ 購 購 購 購 購 購 ェ ェ 購 ェ 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 購 ェ ェ 購 購 購 購 実 行 購. By this method, customers 1 3 2 4 having a personality that matches the purchase motivation of the feature α 1 2 3 are extracted. BRIEF DESCRIPTION OF THE FIGURES FIG. 1: Explanatory drawing of the device described in claim 1.
図 2 :請求の範囲 2に記載の方法の説明図。 Figure 2: Illustration of the method described in claim 2.
図 3 :請求の範囲 3に記載の装置の説明図。 Figure 3: Illustration of the device according to claim 3.
図 4:請求の範囲 4に記載の方法の説明図。 Figure 4: Illustration of the method according to claim 4.
図 5 :請求の範囲 5に記載の装置の説明図。 FIG. 5 : Explanatory drawing of the device described in claim 5.
図 6 :請求の範囲 6に記載の装置の説明図。 Figure 6: Illustration of the device according to claim 6.
図 7:請求の範囲 7に記載の方法の説明図。 Figure 7: Illustration of the method according to claim 7.
図 8 :請求の範囲 8に記載の装置の説明図。 Figure 8: Illustration of the device according to claim 8.
図 9 :請求の範囲 9に記載の方法の説明図。 Figure 9: Illustration of the method according to claim 9.
図 1 0:請求の範囲 1 0に記載の装置の説明図。 FIG. 10: Explanatory drawing of the device described in claim 10.
図 1 1 :請求の範囲 1 1に記載の方法の説明図。 Figure 11: Illustration of the method described in Claim 11.
図 1 2 :請求の範囲 1 2に記載の装置の説明図。 FIG. 12: Explanatory drawing of the device described in claim 12.
図 1 3 :請求の範囲 1 3に記載の方法の説明図。 Figure 13: Illustration of the method described in Claim 13.
図 1 4:本発明の装置を構成するシステム構成を示した図。 Figure 14: Diagram showing the system configuration of the device of the present invention.
図 1 5 (A) から (C):エッジマヅプの説明図。 Fig. 15 (A) to (C): Explanatory diagrams of edge maps.
図 1 6 :購買 をキ一としてエッジマップを^^した結果を例示した図。 Figure 16: An example of the result of ^^ edge map with purchase as the key.
図 1 7 :ェモーショナル人格マップの一例を示した図。 Figure 17: Diagram showing an example of the emotional personality map.
図 1 8 :人格ァから見たときの商品 Fに類似する商品例を示した図。 Fig. 18: A diagram showing an example of a product similar to product F when viewed from personality.
図 1 9 :顧客ごとの購買商品種類デ一夕の一例を例示した図。 Figure 19: A diagram illustrating an example of purchase product type data for each customer.
図 2 0 :顧客毎の購買商品リストに含まれる商口 重類に対応する購買,を展開した図 図 2 1 :図 2 0に示す購買謹を顧客ごとに累積した図。 Fig. 20: Expanded purchases corresponding to merchandise weights included in the purchased merchandise list for each customer. Fig. 21: Diagram of cumulative purchases shown in Fig. 20 for each customer.
図 2 2 (A) と (B):新製品 Xに適合する顧客を見つけ出 Τ¾子を示した図。 Fig. 22 (A) and (B): Diagrams of finding and finding customers that fit new product X.
図 2 3 (Α) と (Β):顧客ゥが満足するであろう商品を抽出する を示した図。 図 2 4:図 2 2 (Β)の顧客一エッジ対応マップから、 顧客の人格を通する鮮を説 明した図。 Fig. 23 (Α) and (Β): Diagram showing extraction of products that will satisfy customer 満 足. Fig. 24: A diagram illustrating the customer's personality through the customer-edge correspondence map shown in Fig. 22 (Β).
図 2 5 :人格: κが前面に出て商品還尺する顧客に適合する商品を抽出する様子を示した 図。 Figure 25: Personality: Figure showing how κ comes to the forefront and selects products suitable for customers who return products.
図 2 6 :ェヅジマヅプを 化した例を示した図。
図 2 7 :顧客別購買商品リストを示した図。 Figure 26: Diagram showing an example of a page map. Figure 27 : Diagram showing a list of purchased products by customer.
図 2 8 :図 2 6と図 2 7から得られた顧客一エッジ対応マップを示した図。 Figure 28: Diagram showing customer-to-edge correspondence maps obtained from Figures 26 and 27.
図 2 9:図 2 8の求め方の詳細を示した図。 Figure 29: Diagram showing the details of how to obtain Figure 28.
図 3 0 (A)から (C):麵匕された顧客一エッジ対応マップから、顧客に適合する商品 を抽出する様子を示した図。 FIG. 30 (A) to (C): Diagrams showing how a product suitable for the customer is extracted from the mapped customer-edge correspondence map.
図 3 1 : cft化された顧客一エッジ対応マップから、顧客に適合する商品を抽出する様 子を示した図。 Figure 31: Diagram showing how to extract products that fit customers from the cft-converted customer-to-edge correspondence map.
図 3 2 (A) から (C):商品に適合する顧客を抽出する様子を示した図。 Fig. 32 (A) to (C): Diagrams showing how to extract customers that fit the product.
図 3 3:商品に適合する顧客を抽出する様子を示した図。 Fig. 3 3: Diagram showing how to identify customers that match the product.
図 3 4:ジャンル別の商品一覧のその 1 Figure 3 4: Product List by Genre 1
図 3 5 :ジャンル別の商品一覧のその 2 Figure 35: Product List by Genre No.2
図 3 6 :上段;エッジ理論で抽出される類似商品群と、 特定商品の購買者が類似商品を 購買している cMを示す。下段:同一ジャンルに属する商品を購買している ¾を示す ο Figure 36: Upper row: Similar product groups extracted by edge theory and cMs where buyers of specific products are purchasing similar products. Lower: Purchasing products belonging to the same genre ¾ Indicates ο
図 3 7:顧客一エッジ対応マップから人格を特定し、特定された人格に対応する商品が実 際に購買されているか否かを整理した表のその 1。 Figure 37: Personality is identified from the customer-edge correspondence map, and Table 1 is a table that summarizes whether or not products corresponding to the identified personality are actually purchased.
図 3 8:顧客一エッジ対応マップから人格を特定し、特定された人格に対応する商品が実 際に購買されているか否かを した表のその 2。 Figure 38. Personality is identified from the customer-to-edge correspondence map, and Table 2 shows whether the product corresponding to the identified personality is actually purchased.
図 3 9:顧客一エッジ対応マップから人格を特定し、特定された人格に対応する商品が実 際に購買されているか否かを,した表のその 3。 Figure 39: Personality is identified from the customer-edge correspondence map, and whether or not the product corresponding to the identified personality is actually purchased is part 3 of the table.
図 4 0:顧客一エッジ対応マップから人格を特定し、特定された人格に対応する商品が実 際に購買されて Vヽるか否かを した表のその 4。 Figure 40: Personality is identified from the customer-to-edge correspondence map, and Table 4 shows whether the product corresponding to the identified personality is actually purchased or not.
図 4 1:顧客一ェヅジ対応マップから人格を特定し、特定された人格に対応する商品が実 際に購買されて Vヽるか否かを した表のその 5。 発明を実施するための最良の开$態 Figure 41 1: Personality is identified from the customer page correspondence map, and Table 5 shows whether the product corresponding to the identified personality is actually purchased or not. Best practice for carrying out the invention
図 1 4は、 本発明の装置を構成するシステム構成を示し、商品を販売する小^ g (こ こいう商品とは有体物に限られず、婦の商品、 すなわち離を含む。例えば様々な期 間の 預金等がここで言う同類の商品であり、個々の期間の定期預金が一つ一つの商
品禾簾であり、 ts亍の店舗が小離となる) と、 多くの小 を¾1る分析センタ一と 、 商品供給元と、 販促活動元と、 顧客が関与する。各主体は、 ノ 一ソナルコンビユー夕 に ¾¾される'瞎«装置を備えており、 小 は小 情 装置 1 4 0 2を備え 、商品供給元は商品供給元髒薩装置 1 4 0 4を備え、 販促活動元は販促活動元情報 mm i 4 0 6を備え、顧客は顧客'髒画装置( ιモード対応の携帯 sisであるこ ともある) 1 4 0 8を備え、 分析セン夕一は分析セン夕 幸 装置 1 4 1 2を備え ている。すべての'隱 g¾a装置は、 イン夕一ネットに代表されるコンピュータネットヮ 一ク通儘罔 1 4 1 0によって されており、 全体として本発明の各禾重装置を構築する ^ s' m m i 4 o 2は店頭レジス夕と接続されており、 顧客が購買するたび に、 どの顧客がどの商品 «を購買したかの!^を ΙΚ¾して分析セン夕 ~<隋幸 謹装置 1 4 1 2に送る。 FIG. 14 shows a system configuration of the apparatus of the present invention, in which a small product for selling a product (the product is not limited to a tangible object, but includes a woman's product, that is, for example, various periods. Deposits, etc. are similar products mentioned here, and time deposits for each period are It is a product of a lot of goods, and the store of ts 亍 is a small part.), An analysis center that has many small items, a product supplier, a sales promotion activity, and a customer are involved. Each subject is equipped with a device that is used at the No. 1 personal convenience store, a small device is provided with a small information device 1402, and a product supplier is provided with a product supplier device 1404. Provided, the sales promotion source has sales promotion source information mm i 406, the customer has a customer's planning device (sometimes a mobile sis compatible with ι mode), and the analysis center has an analysis. It is equipped with Senyuki Yuki device 1 4 1 2. All of the Oki g¾a devices are started by a computer network typified by a computer network typified by In-Yu-Ichi-Net, which constitutes each weight device of the present invention as a whole ^ s' mmi 4 o 2 is connected to the in-store regis- ter, so that every time a customer purchases, which customer purchased which product «! Enter ^ to send to the analysis center.
分析セン夕" If幸麵装置 1 4 1 2は、 小離から送られる 「どの顧客がどの種類を 購買したかの t*f 」を顧客別に集約して「顧客一購買商品種類リスト 1 4 1 4」を作成 する。顧客は異なる小離で購買することがあるのに対し、 図 1 4のシステムには大半 の小売店が加入しているので、 分析センターで集約することによって、 ほぼ な「顧 客一購買商品画リスト 1 4 1 4」が纏される。 Analytical Sensing "If the device 1 4 1 2 collects the" t * f "of which customer purchased which type from a small customer by customer and" customer-to-purchase product type list 1 4 1 Create 4 ”. While most retailers subscribe to the system in Figure 14 while customers may purchase at different churn, aggregating at the analysis center will create a near-customer-to-purchase product plan. List 1 4 1 4 "is put together.
分析セン夕ー髒麵装置 1 4 1 2は、 2禾廳のエキスノ一トデ一夕ベース(以下 D/ Bと示す) 1 1 6を備えている。一つはェヅジマヅプ 1 4 1 8であり、他の一つはェ モ一ショナル人格マップ 1 4 2 0である。ェヅジマップ 1 4 1 8は、 図 1 5 (B) に例 示されるように、 一つのパラメ一夕を同類多翻品リストとし、他の一つのパラメ一夕 をその類の商品群から特定禾廳の商品の購買を する謹となり得る 群リス トとし、 その 2種のパラメ一夕を用いる 2次元のマップに、 商口 簾ごとにその商口口重 類の購買を する購買 を記噫している。ェモ一ショナル人格マップ 1 4 2 0は 、 図 1 7に例示されるように、 商 買 時の人格に対応させて、 購買纏鎌群の なかの特¾[@買!^を記 Itしている。エッジマヅプ 1 4 1 8と、 ェモーショナル人格マ ヅプ 1 4 2 0は、 多くの商品と多くの顧客に接して深い商品知識と顧客知識を有する販 51*門家によって用意されており、 の深い医師が症状と原因の隨系を MSしたェキ スパート] Bに相当する。
分析セン夕" ^幸»1装置 1 4 1 2は、 エッジマップ 1 4 1 8に基づいてヽ 購買議 から見て類似する商品画群リスト 1 4 2 4を f乍成する。 また、 エッジマップ 1 4 1 8 とェモ一ショナル人格マップ 1 4 2 0に基づいて、 購買 時に現れる一つの人格に適 合する商品 群リスト 1 4 2 6を作成する。 また、顧客の ¾の購買 «からその顧 客が ロ 買時に樹処する購買纏の分析リスト 1 4 2 8を作成する。 さらに、 この顧 客別購買 »リスト 1 4 2 8から、 商品に適合する顧客リスト 1 4 3 0や、 顧客に適合 する商品リスト 1 4 3 2を作成する。 さらには、 各種の編十デ一夕 1 4 3 4、例えば、 ある商品に適合する顧客の纖を求めた編 '一夕等を作成する。 これらのデータは、 求めに応じて、 顧客情幸 ¾fl®装置 1 4 0 8、 小 ' «1装置 1 4 0 2、 商品供!^ '隋幸 ¾0«置 1 4 0 4、 足活動元'清幸«装置 1 4 0 6に送られる。 この^"、個人 の保護に充分に配慮さ 求めに応じて送る情報と送らない情報が予め法律家によ つて定められている。 また、 データの ¾a等に対して鋤、の鶴が払わ 装 置間の通信には慰开 技術が駆使さ^ 高い情報安全性が確保されている。 The analysis sensor device 1 4 1 2 is equipped with an extract base (hereinafter, referred to as D / B) 1 16 from the two factories. One is the age map 14 18 and the other is the emotional personality map 14 20. As shown in Fig. 15 (B), the page map 1 4 18 shows one parameter set as a similar multi-lingual list and another parameter set as a specific restaurant from a group of similar products. A group list that can be used to purchase the merchandise of a particular type, and a two-dimensional map that uses the two types of parameters is used to record the purchases of that type of merchandise for each type of merchandise. I have. As shown in Fig. 17, the emotional personality map 1440 corresponds to the personality at the time of purchase, and the special character [@buy! It is marked with ^. The Edge Map 1 4 1 8 and the Emotional Personality Map 1 4 2 0 are prepared by a sales 51 * who has deep product knowledge and customer knowledge in contact with many products and many customers, and a deep doctor This is equivalent to an expert who performed MS on the relationship between symptoms and causes. The analysis device "^ 1" device 1 4 1 2 creates a similar product image group list 1 4 2 4 based on the edge map 1 4 1 8 based on the purchase map. Based on 1 4 1 8 and the emotional personality map 1 4 2 0, create a product group list 1 4 2 6 that matches one personality that appears at the time of purchase. The customer creates an analysis list 1 4 2 8 of the purchase orders that the customer processes at the time of purchase.Furthermore, from this Purchasing by customer »List 1 4 2 8, the customer list 1 4 3 0 that matches the product and the Create a list of suitable products 1 4 3 2. Furthermore, create various types of products 1 4 3 4, for example, a version that requires a customer's fiber that fits a certain product. The data is according to customer's request, ¾fl® device 1408, small '«1 device 1402, goods supply! ^' Suiyuki ¾0« place 1404, foot Domoto 'Kiyoyuki «sent equipment to 1 4 0 6. This ^", information that is not sent information to be transmitted in accordance with enough demand of consideration to the protection of the individual is defined go-between by the pre-lawyers. In addition, plows and cranes are used to pay for data, etc. Communication between devices uses comfort technology to ensure high information security.
以下には、 本発明の装置と方法を、 コンピュータゲームソフト (以下ゲームソフトと いう) の販売に麵した例に基づ ヽて説明する。 Hereinafter, the apparatus and method of the present invention will be described based on an example in which computer game software (hereinafter referred to as game software) is sold.
図 1 5は、エキスノ "ト D/Bであるエッジマップを説明する図である。 Ϊ赃、おびた だしい禾疆 ( 1 0 0 0種以上)のゲームソフト AB C · ·が市場に置かれており、 禾纖 によっては多く購買されたり、 ほとんど購買されなかったりする。 Fig. 15 is a diagram illustrating an edge map that is an exotic D / B. The game software AB C · · It is often purchased or hardly purchased depending on the fiber.
ある商品が市場に受け入れられるのかあるいは受け入れられないかを予測することは 極めて困難であり、 小離の仕入担当者を悩ませている。 また、 メーカが生産 を決 定するのが困難となっている。多くのマ一ケット手法が開発さ^ 例えば「顧客の属性 —その属性の顧客に多く購買される商 παβ!群」のデータ力 られるために、 その属性 の顧客にはその属性の顧客に多く購買される商品禾 群を販売 {©1するによって効率的 に販^ ί©1活動を展開することが可能となっているが、 精度 氐ぃ上に、新商品には応 用することができず、 実際には、 仕入担当者の勘によって仕入 が貌さ メーカ の販売担当者 と期待で^ ¾数量が されることが多い。 したがって勘が外れるこ とが多く、 羅! と欠品が多く «する。 またメーカは市場に受け入れられる商品を 開発するために多大の努力を払っているものの、 市場に受け入れられるための 牛がは つきりしないままに ^しなけばならないことが多く、 目論見がはずれることも多い。
さらに顧客にとっても満足できる βを選択することが困難となっており、 m tti の商品を選択してしまうことも多い。 It is extremely difficult to predict whether a product will or will not be accepted in the marketplace, which has plagued small-office purchasers. It is also difficult for manufacturers to determine production. Many market methods have been developed ^ For example, the data of “customer attributes — quotients π α β! Selling a lot of merchandise purchased in large quantities {© 1 enables efficient sales ^ 販 © 1 Activities can be developed, but accuracy can be applied to new products In fact, the purchaser appears to be in the hands of the purchaser's intuition. Therefore, the intuition is often lost, and there are many missing items. Also, while manufacturers are making great efforts to develop products that are acceptable to the market, cows often have to stay out of the way to be accepted in the market, which can lead to disappointment. Many. In addition, it is difficult for customers to select β that satisfies them, and they often select mtti products.
本発明者らは上記の不透明性を繊可能にする手法にっ ヽて I餅を重ね、 ついにェヅ ジ理論にたどり着いた。エッジ理論は本発明者らによって開発されたものであり、 おお よそ、 以下のように説明することができる。 The inventors of the present invention have repeated the I-mochi using the above-described technique for making opacity possible, and have finally arrived at the page theory. The edge theory has been developed by the present inventors and can be roughly described as follows.
( 1)顧客が、 同類商品、 例えばゲームソフトのなかから特定 を選択する で考 量する因 は有限であり、商品販売の専門家は因子群をリストアヅフ きる。例えば 、 ゲームソフ卜の ¾^r、 「¾ϋ¾などで謝面か高い」から購買する^、 「闘争: を刺激 される」から購買する ί 、 「低価格」だから購買する: ¾^、 「メーカ 謹できる」か ら購買する:^ ·などがあり、 多くの商品と多くの顧客に接している商品販売の専門家は 、 顧客が購買觀を する纖で考量する因子群をほぼ漏れなくリスト化することが できる。 コンピュータゲームソフトの i給 5 7種の因子があり、 およそ大部分の顧客は 5 7種の因子を考量して特 廳を選択することが麵されている。エッジ理 は、 顧客が特定禾顧を邀尺する藤で考量する因子群を購買纏鎌群という。 図 1 5 (Β ) の縦軸には、 ある類の商品群から特定種類の商品の購買を^ ¾する難となり得る動 »ϋ群リス'卜 ab c · · ·をパラメ一夕として采用している。 また、横軸には多 S¾ 品リスト AB C ' 'をパラメータとして采用している。 (1) There are a finite number of factors that customers consider when selecting a particular product from similar products, such as game software, and a product sales expert can restore the factor group. For example, purchase from game software ゲ ー ム ^ r, “Thank you very much for ¾ϋ¾, etc.” ^, Purchase from “Struggle: stimulated” ί, purchase from “low price”: ¾ ^, “Manufacturer Buy from "friendly": ^ · There are many products and many customers in contact with the product sales specialists, the list of factors that the customer weighs with the fiber to watch the purchase is almost complete can do. There are 57 factors for computer game software, and almost all customers choose a specialty restaurant after considering 57 factors. According to Edge Science, a group of factors that a customer weighs at a wisteria that intersects a particular customer is called a purchase sickle group. On the vertical axis of Fig. 15 (、), the dynamics that make it difficult to purchase a specific type of product from a certain type of product group are taken as a parameter. ing. In addition, the horizontal axis uses a multi-product list ABC C '' as a parameter.
( 2)個々の商品觀(例えば A)は、
c · · 'のなかのいく つかの購買^ i ^を備えており、購買^ 群リスト力 られると、商品販売 の専門家は、 個々の商品についてその商品の購買を する j»を特定できる。 例えば、 商品 Aは、 購買纖 aの「«などで議が高い」から購買する顧客と、購 買謹 gの「誰かと対戦できるから」から購買する顧客が存在し、 購買謹 cの「低価 格」だから購買する顧客や、購買纖 の「メーカ^ (謹できる」から購買する顧客は ほとんど存在しないことを正確に特定できる。図 1 5 (B) には、 横軸には多難品リ スト AB C■ 'をパラメ一夕として採用し、 縦軸には購買謹鎌群リスト ab c · - •をパラメ一夕として採用している 2次元のマヅプに、 商品 βに対応付けてその商品 觀の購買を する購買議を記憶しているエッジマップ力刺示されている。図中の 太い矢印は、 同種の情報がさらに遍していることを示す。 (2) Individual product views (for example, A) It has several purchases in c · · ', and when a purchase group list is entered, a product sales expert can identify j »for each product to purchase that product. For example, for product A, there are customers who purchase from the purchase fiber a “highly debated” etc. and customers who purchase from the purchase g “can compete with someone”, and purchase “c” It is possible to accurately specify that there are almost no customers who purchase from the “price” or purchasing customers from “manufacturers of the purchased fiber” (Fig. 15 (B)). The list AB C ■ 'is used as a parameter, and the vertical axis is a two-dimensional map that uses the purchase sickle group list abc ·-• as a parameter. An edge map that stores a purchase request to purchase a product view is indicated by a thick arrow, indicating that the same type of information is more ubiquitous.
( 3) 一旦、 図 1 5 (Β) に例示されるエッジマップが構築されると、様々な情幸
理が可能となる。例えば、 に商品 AB Cを購買した顧客ァは、 エッジマップから 「 H Sなどで謹が高い」商品や「誰かと対戦できる」商品を好む個性を持ち、 それらの 購買戴磯を有する商品を漏すると満 J か いと期待できる一方、 「«」や「メーカ 」 を重視しない個性を持ち、 その |¾¾から商品を選択しても満 いことがわかる o (3) Once the edge map shown in Fig. 15 (Β) is constructed, Management becomes possible. For example, a customer who purchased a product ABC would have a personality that prefers products that are “highly valued by HS” or “compete against someone” from the edge map, and leaks a product with those purchases. It can be expected that you will be satisfied with J, but you also have a personality that does not emphasize “« ”and“ manufacturer ”, and you can see that it is satisfactory even if you select a product from | ¾¾
最初に図 1 5 (B) に例示されるエッジマヅプから、 購買編が類似する商口口遍類群 を抽出する技術を説明する。 First, a technique for extracting merchant-mouth horoscopes with similar purchases from the edge map illustrated in Fig. 15 (B) will be described.
商品販売の専門家が一つ一つの商品にっ ヽて購買 !^をピックァヅプすることで 、 図 1 5 (B)のエッジマップが得られる。新商品が投入されるごとに、 このマップは 拡張されていぐ。 An edge map shown in FIG. 15 (B) can be obtained by picking up a purchase! ^ For each product by a product sales expert. This map will expand as new products are introduced.
一旦このエッジマップ力乍成されると、 様々な有用なデータ 导られる。購買動機が 類似する商 應群を抽出する ί½、 二つの方法が取りえる。第 1は、 商品を指定して その商品の購買謹に類似する購買纖を有する商品を嫌する方法である。図 1 5 ( C )は、 その抽出結果を例示しており、例えば、商品 Aは aと gの購買赚を持ち、商品 F はその二つの購買動機を持っており (一致度 1 0 0 %)、商品 IDE Gはいずれか一方の購 買垂を持っており (一致度 5 0 %)、 商品 B Cは全く類似していないことが分かる。 同様に、 購買纖 a b e f ghを有する商品 Fには、 商品 Cが 3つの購買謹を共有 しており (ー雜 5 0 %)、 そ 0 feの商品は一繊カ牴いことカ汾かる。図中の二 S¾が 共通する購買動機(エッジ) を示す。 Once this edge mapping is performed, a variety of useful data can be obtained. Extracting business groups with similar purchase motives. There are two methods. The first method is to specify a product and dislike products with purchased fibers that are similar to the purchase of the product. Figure 15 (C) illustrates the results of the extraction. For example, product A has purchase motives a and g, and product F has the two purchase motives (degree of agreement 100% ), The product IDE G has one of the purchases (50% agreement), indicating that the product BC is not quite similar. Similarly, for product F with purchased fiber ab e f gh, product C shares three purchases (50% of the total), and the product of 0 fe is a single fiber. Two S¾ in the figure indicate common purchasing motivation (edge).
例えば、 商品 Aに対して商品 Fが同一の購買 を有していることが分かると様々な ことが可能となる。例えば、 商品 Aを持っていて商品 Fを持っていない顧客に商品 Fを 推薦すると、 おそらく、満足されるものと期待できる。過去の商品 Aの販売実績を に して小 は商品 Fの仕入量を貌することができる。 同様に、 過去の商品 Aの販離 進活動の効果度合いを にして商品 Fの販 活動計画を i ^できる。 メーカも、 過去の商品 Aの販売 を参考にして商品 Fの^ Sを することができる。 さらに 、 過去のヒット商品を集中的に分析することによって、 ヒット商品に共通する購買魔機 の組^:を発見することもでき、 メーカには開発目標が明確となる。 For example, if it is found that product F has the same purchase as product A, various things become possible. For example, recommending product F to a customer who has product A but not product F can probably be expected to be satisfactory. Based on the sales performance of product A in the past, small can show the purchase amount of product F. Similarly, the sales activity plan of product F can be i ^ based on the degree of effectiveness of past sales and release activities of product A. Manufacturers can also make ^ S for product F with reference to past sales of product A. In addition, by intensively analyzing past hit products, it is possible to find a set of purchasing magic machines ^: common to hit products, and the maker will have clear development goals.
図 1 6は、 購買纖を鶴キ一としてエッジマップを纖した結果を例示しており、 このリストを参照することによってヒヅト商品が共通に持つ購買 1¾¾の組^:が明らか
になってくる。例えば 品〇と Fがヒヅト商品である: t 、 購買謹の c f hの を 兼ね備えた商品が多くの顧客に受け入れられることがわかる。 Figure 16 shows an example of the result of using an edge map with the purchased fiber set to Tsuru-Ki. By referring to this list, it is clear that the set of purchased items commonly shared by heat products ^: It becomes. For example, quality and F are heat products: It is understood that products that combine t and purchase cfh are accepted by many customers.
図 1 7は、 ェモ一ショナル人格マップ 3 0 5、 1 4 2 0の^ (列を示す。例えばゲーム ーソフトを購入する:^^、 登場キャラクタのファンとして購買 する人や^もあれば 、 ゲーム; KMを試すことが前面に出て購買を する人や もある。 Figure 17 shows the ^ (columns) of the emotional personality maps 30.5 and 1440. For example, buy game software: ^^. Game; Some people come to the forefront of trying KM.
人格 はファンとして購買^するときに考量される購買動機を示し、 この;^には 、 購買謹 a c gh iが重視さ 購買謹 b等は考量されないことを例示している。 人格^はゲーム ¾βを試すことが前面に出て購買を する ¾ ^の人格を示し、 この場 合には、購買應 ab d e fが重視さ 購買議 c等は考量されないことを例示して いる。 Personality indicates the purchase motivation that is weighed when purchasing as a fan. This ^ indicates that purchase ethics are important and purchase ethics are not weighed. The personality ^ indicates the personality of ¾ ^, who makes the purchase by trying out the game 試 す β. In this case, the purchase ab d e f is emphasized, and the procurement c is not considered.
図 1 8は、 人格ァ (購買謹 c f hを考量する) から見たときの商品 Fに類似する商 品例を示し、 この rn^r、商品 Cが 1 0 0 %の一!^を持つことが分かる。図 1 5 (C) に示したように、 特定人格を想定せずに商品一商品を比較すると、 商品 Fに対して商品 Cは 5 0 %の一致度であるのに対し、 人格ァか にでて商品還尺をする: ^には、商 品 Fに対して商品 Cが 1 0 0 %—致することが分かる。一方、商品 A, Eは、 図 1 5の 商口 Qcr^品の一致度では 3 3 %であるために適合商品である可會 生があるが、 人格ァが 前面にでて商品選択をする^ Γの一致度はゼロ%であり、 実際には適合商品でないこど が判る。 Fig. 18 shows an example of a product similar to product F when viewed from personality (measures the purchase cfh), where rn ^ r and product C have 100% 1! ^. I understand. As shown in Fig. 15 (C), when comparing one product with another product without assuming a specific personality, product C has a 50% coincidence with product F, whereas personality a Return the product to the scale: ^ shows that Product C matches 100% of Product F. On the other hand, for products A and E, the matching degree of the merchant account Q cr ^ products in Fig. 15 is 33%, so there are some products that are eligible products. The degree of coincidence of ^ す る is 0%, which indicates that it is not actually a conforming product.
図 1 9は、 顧客ごとの購買商品禾顧デ一夕の "(列を例示している。図 2 0は、 図 1 5 (B) のエッジマップと、 図 1 9の顧客別購買商品リストと力ら、 顧客毎の購買商品リ ストに含まれる商口 Qc«に対応する購買 «を展開した図である。 図 2 1は、 図 2 0の 購買編を顧客ごとに赚した図である。例えば、 顧客ァは、購買纖 ab f gh iに ftf処して商品を選択し、購買, cには注意を払わないで商品を選択していること等が 分かる。 Fig. 19 shows an example of the "(" column of purchased goods for each customer. Fig. 20 shows the edge map shown in Fig. 15 (B) and the purchased goods list by customer shown in Fig. 19 Fig. 21 is an expanded view of the purchase 商 corresponding to the business unit Q c «included in the purchase merchandise list for each customer. Fig. 21 is a diagram showing the purchase edition of Fig. 20 for each customer. For example, it can be seen that the customer selects the product by ftf processing the purchased fiber ab fgh i and selects the product without paying attention to the purchase and c.
図 2 1の「顧客別購買 リスト」はそれ自体でも有用であるが、 次に述べるよう に、 各種アプリケーションの扁となる。 The “purchase list by customer” in Fig. 21 is useful by itself, but as described below, it is a flat application for various applications.
図 2 2は、 新商品 X (あるいは在 品でも良い、 在庫品の:^にはその商品をまだ 購買していな!/、顧客のみが以下の嫁タ豫とされる) に適合する顧客を見つけ出 Hi? を示す。 (A) には、商品 Xのエッジマップが示される。 (B)には、顧客別購買 リ
スト、 すなわち、顧客ーェヅジ対応マップが示される。 (B) には、商品 Xのエッジマヅ プに対応するエッジに二重丸を付している。顧客ァにとっては重要な 6個の購買 ¾¾の うちの 3個が 品 Xによって満たされて満足度が 5 0 %であるのに対し、顧客ィにとつ ては重要な 5個の購買 のうちの 4個が満たされて満足度が 8 0 %であることが分か る。明らかに、 商品 Xは、 顧客ァゃゥよりも顧客ィによく適合していることが分かる。 図 2 3は、顧客ゥがまだ購買していない商品: Bから Fと Xから Zまでの商品のなかか ら、顧客ゥがおそらくは満足するであろう商品を抽出する羅を示している。 (A)には 、 顧客ゥの顧客一ェヅジ対応マップが示される。 (B )には、未購買商品のエッジマップ が示される。 (B)には、顧客ゥの顧客一エッジ対応マップに対応するエッジに二重丸を 付している。商品 Fと Yは、 その商品力 ¾えている 6個の購買動機のうちの 5個までが 顧客ゥの購買纖に一致しており、適合度が 8 3 %であることカ汾かる。.明らかに、顧 客ゥは、 商品 Fと商品 Yに高い満足度を覚えるであろうことが予測できる。 Figure 22 shows that a customer who satisfies the new product X (or may be in stock, but the stock: ^ has not purchased the product yet! / Find Hi? (A) shows an edge map of the product X. (B) shows the purchase re A list, that is, a customer page correspondence map is shown. In (B), the edge corresponding to the edge map of the product X has a double circle. Of the six purchases that are important to the customer, three out of six purchases are satisfied with item X and the satisfaction is 50%, while the five purchases that are important to the customer are It can be seen that the four items are satisfied and the satisfaction is 80%. Obviously, Product X fits better with the customer than the customer. Figure 23 shows the selection of products that customer お そ ら く will probably be satisfied with from products that have not yet been purchased by customers B: B to F and X to Z. (A) shows a customer page correspondence map of the customer. (B) shows an edge map of an unpurchased product. In (B), the edge corresponding to the customer-to-edge map of customer ゥ is marked with a double circle. For products F and Y, up to five out of the six purchasing motivations that the product has are in agreement with the customer's purchased fiber, and the conformity is 83%. Obviously, it can be expected that the customer will have high satisfaction with product F and product Y.
図 2 4は、 図 2 2の (B)の顧客一エッジ対応マップから、顧客の人格を^!する様 子を説明する。 FIG. 24 explains the manner in which the customer's personality is ^! From the customer-to-edge map shown in FIG. 22B.
図 1 7に示したように、 例えば人格 αは a c gh iの 5個の購買謹に樹処すること が分かっている。 図 2 4の:^"、 顧客一エッジ対応マップから、顧客ィは人格/?が前面 にでて商品選択をし、顧客ゥは人格ひと人格ァか 面に出て商品選択をしていることが 分かる。 すなわち顧客ゥは商品選択に際して二重の人格を有していることが分かる。 図 2 5は、 人格ァが前面に出て商品邀尺する顧客に適合する商品を抽出する »を示 している。人格ァを持つ顧客ゥには、 商品 Cと Fと Yと Zが適合していることがわかる 。 これを図 2 3の結果と比べると明らかに、 人格を導入することで、 適合商品が広くな る (この^^、商品 Zが適合商品であることが新たに分かる)。 また適合度が向上し、 さ らに確実に適合商品を抽出できることが分かる。 As shown in Fig. 17, for example, it is known that the personality α is applied to five purchases of acgh i. In Figure 24: ^ ", from the customer-to-edge map, the customer has the personality /? In front of him to select a product, and the customer て has the personality / personality key to select the product. In other words, it can be seen that customer ゥ has a dual personality in selecting the product.Figure 25 shows that the personality is in front and extracts products that match the customer who intersects the product » Customers with personality can see that products C, F, Y, and Z are compatible.Comparing this with the results in Figure 23, it is clear that by introducing personality, Compatible products will be expanded (this ^^, it is newly found that product Z is a compliant product.) Also, it can be seen that the conformity is improved, and the compliant products can be more reliably extracted.
逆に、 商品 C FY Zは人格ァに良く適合していること力 かる。 そこで商品 C FYZ に適合する顧客を抽出するには、 図 2 4のようにして人格ァを有することが分かってい る顧客を抽出すればよいことが分かる。 Conversely, the product C FYZ is well suited to personality. Therefore, in order to extract customers that fit the product C FYZ, it can be seen that it is sufficient to extract customers who are known to have personality as shown in Figure 24.
図 2 6は、 エッジマップを ¾M化した例を示す。今までは、購買!^に樹処するか否 かで していたのに対し、 今回は銜処の搬を数値化する。 この数値もまた、商品販 売の専門家によって客観的に作成される。
図 2 8は、 図 2 6の觀化されたエッジマップと、 図 2 7の顧客別購買商品リストか ら得られた顧客一エッジ対応マップを示す。その求め方の詳細は図 2 9に示される。簡 単にいうと平均化 であり、例えば顧客ァが aのエッジが 3である商品 Aと aのエツ ジが 2である商品 Bを購買している;^ ·、顧客ァはェヅジ aに 2.5の重みを持つと計算 するのである。 図 2 8では四 ί舎五入して^ 化している。 Fig. 26 shows an example of converting the edge map into a ¾M. Until now, purchasing! In contrast to whether or not to plant the tree in ^, this time we will digitize the carrying of the bite. This figure is also made objectively by product sales experts. Figure 28 shows the edge map visualized in Figure 26 and the customer-to-edge map obtained from the purchased product list by customer in Figure 27. The details of how to obtain it are shown in Figure 29. It is simply an averaging, for example, a customer purchases a product A with an edge of a of 3 and a product B with an edge of a of 2; ^ It is calculated as having weight. In Figure 28, it has been transformed into a single building.
図 3 0と 3 1は、 数量化された顧客一エッジ対応マップから、顧客に適合する商品を 抽出する様子を示す。 Figures 30 and 31 show how to extract products suitable for customers from the quantified customer-to-edge map.
ここでは、 β化されたデータのほか、 重工ヅジを用いる。重工ヅジとは、 とりわけ 重視される購買雄である。例えば、 顧客ァの購買纖 aの数値が 1である i 、 購買 した 1 0個の商品のたまたま 1個が購買動機 aに 1 0の! ¾点を持っていたために 1と 計算される もあれば、 購買した 1 0個の商品の^^が購買垂 aに 1の譲点を持 つていることもある。 この差を明らかにするために、 この 例では、 重工ヅジを用い る。 図 3 0の ί 、 顧客ァは購買重纖 bが重工ヅジであることを示す。 - 商品も同様に重工ヅジを持ち、 例えば商品 Bを購買する大部分の顧客は購買 »«bに fti処して購買しているために、 B商品については" bが重エッジとされる。 Here, in addition to the β-converted data, heavy engineering is used. The heavy industry is a buyer who is particularly valued. For example, a customer i's purchased fiber a has a value of 1; i is calculated as 1 because one of the 10 purchased items happens to have a purchase motivation a of 10! For example, ^^ of the 10 purchased items may have a concession of 1 in the purchase a. In order to clarify this difference, in this example, a heavy industrial machine is used. In FIG. 30, the customer indicates that the purchased heavy fiber b is a heavy duty. -Goods also have heavy jobs, for example, most of the customers who purchase product B are purchased with the purchase »« b fti, so "b" is the heavy edge for product B.
図 3 1に示すように顧客に適合する商品を抽出する ¾ ^、 まず、 重エッジが一致す る商品を優先的に見つける。 この: t 、商品 BD Gがー致し、 商品 ACE Fが不一致で あり、 まず、 前者を適合度が ぃ商品とする。次いで、 一致ェヅジ数が高い商品を適合 度か ぃ商品とする。 図 3 0の顧客—エッジ対応マップ(A) とエッジマップ(B) に おいて、 ゼロはィ細しない購買誦である。そこで、 図 3 0の顧客一ェヅジ対応マップ (A) とエッジマップ(B) を比較するにあたって、 共にゼロ% ·®ί直を持っている欄 の数(ェヅジ数) をカウントする。例えば、 商品 B Gi纖客ァに対して 4個のエッジを 共有し、 商品 Dは顧客ァに対して 3個のエッジを共有していることが分かる。 As shown in Fig. 31, products matching the customer are extracted. ¾ ^ First, products with matching heavy edges are preferentially found. This: t, the product BD G matches, and the product ACE F does not match. Next, the product with the highest number of matching pages is determined as the product with the matching degree. In the customer-edge map (A) and the edge map (B) in Figure 30, zero is a non-detailed purchase. Therefore, when comparing the customer-to-page map (A) and the edge map (B) in Fig. 30, the number of columns (the number of pages) that both have zero percent and a direct count are counted. For example, it can be seen that Product B shares four edges with the customer and Product D shares three edges with the customer.
するエッジ数が等しい;!^、 さらに、 偏差の少ない商品を適合度が いとする。 ここで、偏差とは、 重工ヅジ以外の一致するエッジの対応糰での偏差を商品について合 計したものをいい、 図 3 0 (C)に例示されている。 (C)でクロスハッチカ咐されてい る欄は、 重工ヅジかあるいはェヅジが いな欄に対応する。 これらの欄では偏差を計 算しない。 Have the same number of edges; ^, Furthermore, a product with a small deviation is regarded as having a low fitness. Here, the deviation refers to the sum of deviations of the corresponding edges other than the heavy engineering edge at the corresponding edge, and is exemplified in FIG. 30 (C). The column referred to as cross hatch in (C) corresponds to a column with no heavy industry or no page. No deviation is calculated in these columns.
以上の論理、 すなわち、
( 1 )重工ヅジが一致する商品は一致しない商品よりも適合度が高い。 The above logic, that is, (1) Products with matching heavy engineering pages have higher fitness than products without matching.
( 2 )重工ヅジがー致する商品同士、 あるいは不一致商品同士では、 一致エッジ数が多 いものを適合度が高いとする。 (2) For products matching heavy engineering pages or between non-matching products, products with a large number of matching edges are regarded as having high fitness.
( 3) それでも差がない商品同士は、 図 3 0 (C) の偏差が少ない商品の適合度が高い とする。 (3) If there is still no difference between products, it is assumed that the product with a small deviation in Fig. 30 (C) has a high fitness.
図 3 0の ί給、 図 3 1の譲によって、 適合度の高い商品は順に、 GBD FEAC ( ACは同位)であることが分かる。 According to the supply of Fig. 30 and the transfer of Fig. 31, it can be seen that the products with higher relevance are GBD FEAC (AC is equal) in order.
このようにして抽出される適合度の高い商品は実際に顧客に高い満足度で受け入れら れることか ¾ ^されている。 Products that have high relevance extracted in this way are actually accepted by customers with high satisfaction.
ほぼ同様の言侖理で、 商品に適合する顧客を抽出することができる。 この ¾r、 図 3 2 、 3 3に示されるように、 まず重エッジが一致する顧客を優先的に見つける。 この 、 顧客ァカがー致し、 顧客ィゥェォが不一致であり、 まず、 前者を適合度が高い顧客と する。次いで、 一致エッジ数が!^い顧客を適合度が高い顧客とする。 図 3 2のエッジマ ヅプ (A) と顧客一エッジ対応マップ(B) において顧客ァカは商品 Bに対して 4個の エッジを共有し、 顧客ェォは 4個のェヅジを し、顧客ィゥは 3個のエッジを共有し ていることが分かる。 With almost the same language, it is possible to extract customers that fit the product. First, as shown in Fig. 32 and Fig. 33, the customer whose heavy edge coincides is found first. In this case, the customer aka is matched and the customer is not matched. First, the former is regarded as a customer with a high degree of conformity. Next, the number of matching edges! Customers with high relevance. In Figure 32, the edge map (A) and the customer-to-edge correspondence map (B) show that the customer aka shares four edges with product B, the customer a has four edges, and the customer It can be seen that ゥ shares three edges.
共有するエッジ数が等しい;^ r、 さらに、 偏差の少ない顧客を適合度か いとする。 偏差は、 図 3 2 (C) に例示されている。 The number of shared edges is equal; ^ r, and customers with small deviations are judged as good fitness. The deviation is illustrated in Figure 32 (C).
以上の論理、 すなわち、 The above logic, that is,
( 1 )重エッジが一致する顧客は一致しない顧客よりも適合度が高い。 (1) Customers with matching heavy edges have higher fitness than customers without matching edges.
( 2)重工ヅジがー致する顧客同士、 あるいは不一致な顧客同士では、 一致ェヅジ数が 多 ヽ顧客の適合度が高 1、とする。 (2) It is assumed that the number of matching pages is high between customers who match heavy industries or between customers who do not match each other, and the degree of conformity of the customers is high.
( 3) それでも差がない顧客同士は、 図 3 2 (C) の偏差が少ない顧客の適合度が高い とする。 (3) If there is still no difference between the customers, it is assumed that the customer with a small deviation in Fig. 32 (C) has a high fitness.
図 3 2の ί給、 図 3 3の麵によって、 適合度の高い顧客は順に、 ァカオェウイであ ることが分かる。 According to the supply shown in Fig. 32 and the item shown in Fig. 33, it can be seen that the customers with higher relevance are Aka Oewi in order.
このようにして抽出される適合度の高ヽ顧客は、 その商品を高 Lヽ満足度で受け入れる ことが されている。 The customers with high relevance extracted in this way are expected to accept the product with high L 高 satisfaction.
図 3 4と 3 5は、 ゲームソフトという同類多 βの商品をジャンル別に一覧表示した
ものである。 ここではジャンルを Aから Wに^ ϋしている。 ^S^Iの中に複数の商品な いしは觀が属している。以下、 特定の商品ないしは觀をジャンル記号と禾藤番号で 示す。例えば、 力一ドバトルの 1番目の商品であるデジモンヮ一ルドデジ夕ルカ一ドバ トルは A 1で示される。 Figures 34 and 35 list game software products of the same variety β by genre. Things. Here, the genre is changed from A to W ^ ϋ. ^ S ^ I contains multiple items or items. Hereinafter, a specific product or view is indicated by a genre symbol and a Kato number. For example, the first product in the power battle, Digimon Field Digi-Like Battle, is denoted by A1.
図 3 6の上段は、 最上段に示される商品に対して、 エッジ理論によって類似性が発見 された類ィ以商品群を示す。一 ¾とは、 7 2個のエッジ群の中で共通するエッジの数を 示す。例えば、 A 1の商品に対して D 2 2の商品は 2 6個のエッジ (購買 を共有 していることを示す。 図には一致数の高い上位 2 0個の類似商品を示している。 ただし 、 一致数が同位の «の類似商品が存在する^には同位商品の^を表示しており、 2 0個以上の類似商品がリストアップされている:^が する。ェヅジ理論によると、 例えば、力一ドバトルに属する商品 A 1が、購買 からみると、 RP Gのジャンルに属 する商品 D 2 2やシミュレーション RP Gに属する商品 H 1に類似していることがわか る The upper part of Fig. 36 shows a group of similar products for which similarity was found by the edge theory to the product shown at the top. “1” indicates the number of common edges in the 72 edge groups. For example, a product of A1 and a product of D22 have 26 edges (showing that they share purchases. The figure shows the top 20 similar products with the highest number of matches. However, if there is a similar product with the same number of matches, ^ indicates the product of the same rank, and 20 or more similar products are listed: ^ According to page theory, For example, from a purchase perspective, it can be seen that product A 1 belonging to force battle is similar to product D 2 2 belonging to the genre of RPG and product H 1 belonging to simulation RPG.
観の欄は、 商品 A 1を購買した 1 1 2人のうち、 リストアップされた類似商品を購 買している顧客数を示す。例えば、商品 A 1を購買した 1 1 2人のうちの 3 2人が商品 D 2 2を購買しており、 7人が商品 H 1を購買していることを示す。 The view column shows the number of customers who have purchased similar products listed among the 1 1 2 people who purchased product A 1. For example, it indicates that 32 out of 1 1 2 people who purchased the product A 1 purchased the product D 2 2, and 7 people purchased the product H 1.
このデ一夕は、 ゲームソフトの店舗数 1 8、会員数 1 0 5 9人のグループの 5年間 の購買実績を したものである。 This one night is a five-year purchase record of a group of 18 game software stores and 105 members.
図 3 6の下段は、 ジャンル別の購買纖を示す。例えば、 商品 A 1を購買した 1 1 2 人のうち、 同じジャンルに属する他の商品 A 2から A 2 1を購買した顧客が延べ 7 7人 であることを示している。 なお、 上段と下段では、 商品数がそろえてある。 The lower part of Fig. 36 shows purchased fibers by genre. For example, out of 1 1 2 people who purchased product A 1, a total of 77 customers purchased A 2 1 from other products A 2 belonging to the same genre. The upper and lower rows have the same number of products.
数量の合計数を上下 it すると明らかに、 ェ、ソジ理論で柚,屮, れか類似商品の方が冬
Clearly, if you change the total quantity up or down it, it will be clearer that the yu, br
(現に B 1を購買した 1 1 5人のうち、 B 2〜: B 2 2を所有しているのは延べ 7 0人に 過ぎない)のに対し、上^ 示される類似商品は延べ 1 2 1人が所有しており、こちらの 類似商品を勧めたほうが満足される確率が高いことが判る。 (Of the 115 people who actually bought B1, only B7 ~: B22 owned by only 70 people), whereas similar products shown above were a total of 1 2 It can be seen that the property owned by one person is more likely to be satisfied when recommending this similar product.
図 3 7以降は、図 1 7の方法で人格を抽出し、図 1 8の方法でその人格に »する商品 を抽出した結果と、実際の購買謙を対比した結果を示している。明らかに図 1 8の方法 で抽出された商品が実際に購買されている醇が非常に高いことが β、される。 この結 果、図 1 8の方法で抽出される商品群の中に未購買商品が していれば、その商品を勧 めた場合にその商品はほほ ¾実に満足されるであろうことが判る。 Fig. 37 and subsequent figures show the results of extracting personality by the method of Fig. 17 and extracting the products that match the personality by the method of Fig. 18 and the results of comparing actual purchases. Obviously, it is considered that the products extracted by the method in Fig. 18 are very high in the actual purchase. As a result, it can be seen that if an unpurchased product is included in the product group extracted by the method in FIG. 18, the product will be almost satisfied if the product is recommended. .
上記で説明した難の形態はあくまで本発明の 列を紹介したものにすぎず、 本発明 の 範囲は! 例に IS¾されな ヽ。特許請求の範囲に言 の 想のなかで当業者 は種々の形態で本発明を することができる。 The difficult modes described above are merely introductions of the columns of the present invention, and the scope of the present invention is not limited to the examples. Those skilled in the art can implement the present invention in various forms within the spirit of the claims.
本発明は、 エッジ理論を活用することによって、 »の購買纖デ一夕から個々の顧 客 ®ί固性に inuした正^有益な†i¾に変換することに 力したために、 m , 小離 、 商品供給 販¾©1活動主体等に有益な' を樹共でき、 商品銷から、»段階で 生じる βや無馬太を抑制することができる。
The present invention is based on the idea that the edge theory is used to convert the purchased fiber data into individual customers. In addition, the product supply can be beneficial to the main actors and the like, and can suppress β and muta produced at the »stage from product sales.
Claims
1 一つのパラメ一夕を同類多 @ϊ¾品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定觀の商品の購買を する纖となり得る應鎌群リストとし、 商品 種類ごとにその商品 «の購買を する魔 J»を記憶しているエッジマツフ¾1手段 と、 1 One parameter set is a list of many similar items, and the other parameter set is a list of groups that can be used as a fiber for purchasing a particular item from a group of such items. Edge Matsuf¾1 means that memorizes the product «Purchasing the magic J»
ェヅジマヅフ 3憶手段の言 3魔内容を、特定 の商品の購買 ¾¾Xは特^ t買 を キーとして する手段とを持ち、 ヅ 手段 ヅ ヅ 憶 ヅ ヅ ヅ ヅ ヅ 購 購 購 購 ¾¾ ¾¾ 購 X
同類多種商品のなかから購買 が類似する商品 群を抽出する装置。 A device that extracts a group of products with similar purchases from a variety of similar products.
2 —つのパラメ一夕を同類多種商品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定觀の商品の購買を貌する謹となり得る薩^ i群リストとし、 商品 種類ごとにその商品種類の購買を する戴 »を記慮しているエッジマヅプを清築す る: mと、 2—One paramete list is a list of similar and diverse products, and another paramete is a list of groups that can be used to show the purchase of a particular item from a group of such products. Build an edge map that allows you to make purchases of that product type:
ェヅジマヅプの内容を、 特定禾簾の商品の購買 ¾¾Χは特趨買誦をキーとして検 索する工程とを実行して、 A step of searching for the contents of the page in the purchase of the goods of the particular model by using
同類多種商品のなかから購買,が類似する商品種類群を抽出する方法。 A method of extracting a product type group with similar purchases from a variety of similar products.
3 一つのパラメ一夕を同類多種商品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定禾顧の商品の購買を する垂となり得る薩鎌群リストとし、 商品3 One parameter set is a list of similar and diverse products, and the other parameter set is a list of Satsuma groups that can be used to purchase products of a particular customer from a group of such products.
«ごとにその商ロロ c«の購買を する戴 «を記慮しているエッジマヅフ sti手段 と、 An edge map sti means taking into account the purchase of «the quota Lolo c« for each «
購買^ ¾時の人格にタ寸応させて、購買動«»のなかの特定購買動機を記 I意してい るェモ一ショナル人格マッフ 3憶手段と、 According to the personality of the purchase ¾, the emotional personality map that remembers the specific purchase motivation in the purchase behavior «»
エッジマヅフ "13憶手段の言 Hi内容を、 特¾^格に対応する購買 をキーとして する手段とを持ち、 EdgeMuff "13. Means of Hiragana, with means to use key purchases corresponding to special
同類多種商品のなかから 格に適応する購買動機を持つ商品 群を抽出する装
4 一つのパラメ一夕を同類多種商品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定禾戴の商品の購買を貌する纖となり得る謹鎌群リストとし、 商品 種類ごとにその商口 ¾Mの購買を する戴)»を言 31意しているェッジマヅプを構築す る:!^と、 A device that extracts a group of products with purchasing incentives that suit the case from a variety of similar products 4 One parameter set is a list of similar and various products, and the other parameter set is a list of scythes that can be used as a fiber to show the purchase of a particular product from a group of such products. Construct an edge map that says:
購買 時の人格に対応させて、購買 群のなかの特^ ϋ買截機を言 31意してい るェモーショナル人格マップを構築する: ¾と、 According to the personality at the time of purchase, build a emotional personality map that describes the characteristics of the purchase group.
ェッジマヅプの内容を、 格に対応する購買議をキ一として輔する; ¾を実 行して、 The content of the edge map is supported by a key purchase request;
同類多種商品のなかから特^ Λ格に «する購買 SJ ^を持つ商品禾顧群を抽出する方 法。 A method of extracting a group of merchandise that has a specially purchased SJ from a variety of similar products.
5 一つのパラメ一夕を同類多禾脑品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定觀の商品の購買を する画となり得る纏^ i群リストとし、 商品 種類ごとにその商口 ac«の購買を する戴«を記憶しているエツジマヅフ 3憶手段 と、 5 One parameter set is a list of similar multi-products, and the other parameter set is a list of groups that can be used to purchase a particular item from a group of products. Etsujimuff remembers the purchase of the business account a c «every time,
顧客毎の購買商品リストを記憶している購買商品リスト記慮手段と、 A purchase product list storage means for storing a purchase product list for each customer;
顧客毎の購買商品リストに含まれる商品禾簾に対応する購買 «を累積する手段を持 ち、 It has means to accumulate purchases «corresponding to merchandise included in the purchased merchandise list for each customer,
顧客別購買 リストを出力する装置。 A device that outputs a purchase list for each customer.
6 一つのパラメ一夕を同類多種商品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定禾顧の商品の購買を する纖となり得る謹^ i群リストとし、 商品. @ ^ごとにその商品種類の購買を する を記慮しているエツジマヅフ¾[1手段 と、 6 One parameter set is a list of similar and diverse products, and the other parameter set is a list of groups that can be used as a fiber for purchasing specific products from a group of products. Each month, you have to make sure that you buy the product type.
顧客毎の購買商品リストを記憶している購買商品リスト記憶手段と、 A purchased product list storage means for storing a purchased product list for each customer;
顧客毎の購買商品リストに含まれる商品禾顧に対応する購買 を累積して顧客一ェ ヅジ対応マップを算出する手段と、 Means for accumulating the purchases corresponding to the merchandise customers included in the purchase merchandise list for each customer and calculating a customer page correspondence map;
特¾11客の 買商口 ¾群の購買 ijWを、 その顧客の顧客一エツジ対応マヅプに 含まれる購買 ii»をキーとして ί鏡する手段を持ち、
顧客の顧客ーェヅジ対応マヅプに含まれる購買,を共有する商ロロ顧を抽出する装 There is a means to mirror the purchase ijW of the special merchant's buying and selling mouth group of customers with the purchase ii »included in the customer's customer-edge map as a key, A device for extracting a business partner who shares a purchase included in a customer's customer service correspondence map.
7 一つのパラメ一夕を同類多種商品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定禾履の商品の購買を する垂となり得る應鎌群リストとし、 商品7 One parameter set is a list of similar and various products, and the other parameter set is a list of groups that can be used to purchase products of a specific garment from a group of such products.
«ごとにその商口 類の購買を する awを言 atしているエッジマヅプを構築す る: ¾と、 Build an edge map that says aw to buy the business unit every time:
顧客毎の購買商品リストを «する ®と、 When you ® を the list of purchased products for each customer,
顧客毎の購買商品リストに含まれる商品禾顧に対応する購買 »を累積して顧客一ェ ッジ対応マップを構築する と、 By accumulating the purchases »corresponding to the commodities included in the purchase commodity list for each customer, and constructing a customer-edge correspondence map,
特¾¾客の未購買商口 αβι群の購買 i»を、 その顧客の顧客一エツジ対応マヅプに 含まれる購買 Ιδ»をキーとして!^する ®を実行して、 A non-purchase quotient opening α βι group of purchasing i »of special ¾¾ customers, running the customer included in the customer one edge corresponding Madzupu purchase Ιδ» as a key! ^ To ®,
顧客の顧客一ェヅジ対応マップに含まれる購買 を共有する商口 應を抽出する方 Those who extract business contacts that share purchases included in the customer's customer page correspondence map
8 一つのノ、"ラメ一夕を同類多種商品リストとし、 他の一つのノ、。ラメ一夕をその類の商 品群から特定禾顧の商品の購買を ¾ ^する賺となり得る薩鎌群リストとし、 商品 禾 sごとにその商品 の購買を する截«を記憶しているエッジマツフ 3慮手段 と、 8 One of the items, "Lame Ichiyu, is a list of many similar products, and the other, I. Lame Izu is a Satsuma that can be used as a feature to purchase products of a particular customer from a group of such products. An edge mapf that stores a group list and stores a cut for purchasing the product for each product;
顧客毎の購買商品リストを記憶している購買商品リスト記憶手段と、 A purchased product list storage means for storing a purchased product list for each customer;
顧客 購買商品リストに含まれる商品禾顧に対応する購買動機を累積して顧客一ェ ヅジ対応マヅプを構築する手段と、 Means for accumulating the purchase motivation corresponding to the commodity customer included in the customer purchase commodity list and constructing a customer page correspondence map;
購買 時の人格に対応させて、購買動機 gffi群のなかの特^買動機を記憶してい るェモ一ショナル人格マッフ Έ3憶手段と、 Motivational personality map that memorizes the special purchase motives in the gffi group according to the personality at the time of purchase.
特¾11客の 買商口口 p«群の購買 1»を、 その顧客の顧客一エツジ対応マヅプに 含まれる購買 S«©うちの特定人格に対応づけてェモーショナル人格マヅフ Bft手段 に記憶されている購買 をキーとして觀する手段を持ち、 The special merchant mouth p «Group purchase 1» of the special 11 customers is stored in the emotional personality map Bft means in association with the specific personality of the purchase S «© included in the customer's customer correspondence map. Have a way to view purchasing as a key,
その顧客の 格に適合する購買動機を有する商品種類を抽出する装置。
9 一つのパラメ一夕を同類多種商品リストとし、 他の一つのパラメ一夕をその類の商 品群から特定禾簾の商品の購買を游する垂となり得る薩鎌群リストとし、 商品 種類ごとにその商^重類の購買を する魔 «を記 11しているェヅジマップを糖築す る と、 A device that extracts product types that have purchasing incentives that match the customer's rating. 9 One parameter set is a list of similar and diverse products, and the other parameter set is a list of Satsuma groups that can be used as a drop-off for purchasing products of a particular lotus from a group of such products. If you build a page map that describes the magic of purchasing the quotient in 11
顧客毎の購買商品リストを する と、 By listing the purchased products for each customer,
顧客毎の購買商品リストに含まれる商品禾 菌、に対応する購買動機を累積して顧客一ェ ヅジ対応マヅプを構築する:! と、 By accumulating the purchase motivation corresponding to the commodity bacteria included in the purchase commodity list for each customer, a customer page correspondence map is constructed :! When,
購買 時の人格に対応させて、購買動 のなかの特定購買動機を記慮してい るェモーショナル人格マヅプを構築する ¾と、 Build an emotional personality map that takes into account specific purchasing motives in purchasing behaviors, corresponding to the personality at the time of purchase.
特 w客の 貿商品禾 iwの購買 s»を、 その顧客の顧客一エツジ対応マヅプに 含まれる購買 1»のうちの 格に対応づけてェモ一ショナル人格マヅプに記憶さ れている購買 1¾»をキーとして する π¾を実行して、 The purchases stored in the emotional personality map by associating the purchase s »of the special merchant's trade product iw with the rank of the purchase 1» included in the customer's customer correspondence map. Execute π¾ with »as the key, and
その顧客の 格に適合する購買動機を有する商品禾顧を抽出する方法。 A method of extracting merchandise customers with purchasing motivation that matches the customer's case.
1 0 一つのパラメ一夕を同類多菌品リストとし、他の一つのパラメ一夕をその類の 商品群から特定禾應頁の商品の購買を する議となり得る醒^ i群リストとし、 商 品觀ごとにその商品觀の購買を貌する を記憶しているエッジマツフ 3憶手 段と、 1 0 One parameter is a list of similar bacteria and another parameter is a list of awake ^ i groups that can be used to purchase products of a specific page from a group of products of that type. Edge Matsufou remembers the purchase of the product view for each view,
顧客毎の購買商品リストを記憶している購買商品リスト記憶手段と、 A purchased product list storage means for storing a purchased product list for each customer;
顧客毎の購買商品リストに含まれる商品 に対応する購買動機を累積して顧客一ェ ヅジ対応マヅプを算出する手段と、 Means for accumulating the purchase motivation corresponding to the products included in the purchase product list for each customer to calculate a customer page correspondence map;
特越品觀の未購買顧客^ ω購買重膽を、 その特越口。通の購買 をキ一 として する手段を持ち、 Unpurchased customers of special order ^ ω purchase prudent, its special order. Have the means to make regular purchases key,
その特定商品種類の購買動機に適合する顧客を抽出する装置。 A device that extracts customers who meet the purchase motivation for that particular product type.
1 1 一つのパラメ一夕を同類多種商品リストとし、他の一つのパラメ一夕をその類の 商品群から特定觀の商品の購買を貌する謹となり得る! 群リストとし、 商 品 «ごとにその商品禾 の購買を する SWを記憶しているェヅジマップを構築 する と、 -
顧客毎の購買商品リストを ί ^する工程と、 1 1 One parameter overnight can be a list of many similar products, and the other parameter overnight can be a purchase of a particular item from a group of such products. When a group map is created and a page map is stored that stores a SW for purchasing the product for each product, The process of を ^ of the purchase product list for each customer,
顧客毎の購買商品リストに含まれる商品画に対応する購買謹を累積して顧客一ェ ヅジ対応マヅプを算出する と、 By accumulating the purchases corresponding to the product images included in the purchase product list for each customer and calculating the customer page correspondence map,
特^品 の^買顧客群の購買 を、 その特^ BDC»の購買 1?»をキー として;!^する を実行して、 The purchase of ^ Offer customer group of special ^ goods, the special ^ B D C »of purchasing 1» as a key;?! Running to ^,
その特^品種類の購買動機に適合する顧客を抽出する方法。 A method of extracting customers who meet the purchasing motivation of the special product type.
1 2 一つのパラメ一夕を同類多猶品リストとし、他の一つのパラメ一夕をその類の 商品群から特定翻の商品の購買を する謹となり得る應鎌群リストとし、商 品禾顧ごとにその商品 の購買を する |¾»を記憶しているエッジマヅフ記憶手 段と、 1 2 One parameter set is a similar long list, and the other parameter set is a list of potential groups that can purchase products of a particular type from a group of similar products. An edge-muff memory means that stores | ¾ »
顧客毎の購買商品リストを記憶している購買商品リスト言 3慮手段と、 A purchase product list that stores a purchase product list for each customer.
顧客毎の購買商品リストに含まれる商品 f藤:!に対応する購買動機を累積して顧客ーェ ヅジ対応マヅプを構築する手段と、 Products included in the purchased product list for each customer f Fuji :! Means for accumulating purchasing incentives corresponding to each customer and building a customer-page correspondence map;
購買決定時の人格に対応させて、購買動機 ^ffi群のなかの特定購買動機を ΐ3ϋしてい るェモ一ショナル人格マヅフ 慮手段と、 According to the personality at the time of the purchasing decision, the motivational personality 手段 which considers the specific purchasing motivation in the group
特定商品 の 買顧客群の購買 を、 その特 に適合する人格に対 応づけてェモーショナル人格マヅフ Έ3憶手段に記慮されている購買 i¾»をキーとして する手段を持ち、 It has a means to purchase a group of buyers of a specific product according to the personality that fits the particular product and use the purchase i ェ »as a key in the emotional personality map.
その特¾¾品禾顧の購買謹に適合する人格を持つ顧客を抽出する装置。 A device that extracts customers who have the personality that matches the purchase of the special product.
1 3 一つのパラメ一夕を同類多 @¾品リストとし、他の一つのパラメ一夕をその類の 商品群から特定禾顧の商品の購買を貌する謹となり得る! 群リストとし、商 品種類ごとにその商品 の購買を する戴 «を記憶しているエツジマヅプを構築 する ^と、 . 1 3 One parameter overnight can be a list of many @@ items, and the other parameter can be a purchase of a particular product from a group of such products. Build a group list and build an ET map that remembers the purchase of the product for each product type ^,.
顧客毎の購買商品リストを!^する工程と、 Purchase product list for each customer! ^
顧客毎の購買商品リストに含まれる商品禾應に対応する購買動機を累積して顧客一ェ ヅジ対応マヅプを構築する ®と、 Accumulate the purchase motivation corresponding to the products included in the purchased product list for each customer to build a customer page correspondence map;
購買 時の人格に対応させて、購買 S«i群のなかの特¾¾買 を言 3ftしてい
るェモ一ショナル人格マヅプを構築する:! ¾と、 According to the personality at the time of purchase, the special purchase in the purchase S <i Build a emotional personality map :! ¾ and
特¾¾品,の未購買顧客群の購買 »»を、 その特^ @|に適合する人格に対 応づけてェモーショナル人格マップに言 311されている購買 |¾»をキーとして する ®を実行して、 Purchasing an unpurchased customer group of specialty items »», and matching the personality that matches the specialty ^ @ | with the purchase | ¾ »key 311 described in the emotional personality map. hand,
その特 品 βの購買動機に適合する人格を持つ顧客を抽出する方法。
A method of extracting customers with personalities that match the purchase motivation of the special feature β.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309559A JP2002117048A (en) | 2000-10-10 | 2000-10-10 | Purchase motive manifesting method, and method and device for adaptive article and customer extraction |
JP2000/309559 | 2000-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002031721A1 true WO2002031721A1 (en) | 2002-04-18 |
Family
ID=18789703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/009244 WO2002031721A1 (en) | 2000-10-10 | 2000-12-25 | Purchase motive extracting method, fit commodity/fit customer extracting method, and device therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002117048A (en) |
WO (1) | WO2002031721A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4706688B2 (en) * | 2007-10-26 | 2011-06-22 | 日本電気株式会社 | Data processing apparatus, computer program thereof, and data processing method |
JP5044035B1 (en) * | 2011-07-29 | 2012-10-10 | 楽天株式会社 | Information providing apparatus, information providing method, information providing program, and computer-readable recording medium storing the program |
JP5696025B2 (en) * | 2011-11-22 | 2015-04-08 | 日本電信電話株式会社 | Product information recommendation device, method and program |
JP5860828B2 (en) * | 2013-03-05 | 2016-02-16 | 日本電信電話株式会社 | Action probability estimation device, method, and program |
JP2015094992A (en) * | 2013-11-08 | 2015-05-18 | 株式会社アンテリオ | Medicine sales support system |
JP6611131B2 (en) * | 2016-04-22 | 2019-11-27 | Zホールディングス株式会社 | Information processing apparatus, information processing method, and program |
JP7545675B2 (en) * | 2019-07-29 | 2024-09-05 | 株式会社プロフィールド | Information processing device, information processing method, and program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000003394A (en) * | 1998-06-16 | 2000-01-07 | Hitachi Ltd | Personal merchandising system |
JP2000172697A (en) * | 1998-12-03 | 2000-06-23 | Sony Corp | Method and device for customer information retrieval, data generating method, and data base |
JP2000200260A (en) * | 1998-07-21 | 2000-07-18 | Toyota Motor Corp | Commodity sales quantity prediction system |
JP2000315212A (en) * | 1999-04-30 | 2000-11-14 | Ntt Data Corp | Method, system for sorting information and recording medium |
-
2000
- 2000-10-10 JP JP2000309559A patent/JP2002117048A/en active Pending
- 2000-12-25 WO PCT/JP2000/009244 patent/WO2002031721A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000003394A (en) * | 1998-06-16 | 2000-01-07 | Hitachi Ltd | Personal merchandising system |
JP2000200260A (en) * | 1998-07-21 | 2000-07-18 | Toyota Motor Corp | Commodity sales quantity prediction system |
JP2000172697A (en) * | 1998-12-03 | 2000-06-23 | Sony Corp | Method and device for customer information retrieval, data generating method, and data base |
JP2000315212A (en) * | 1999-04-30 | 2000-11-14 | Ntt Data Corp | Method, system for sorting information and recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP2002117048A (en) | 2002-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Examining customer channel selection intention in the omni-channel retail environment | |
Tsao et al. | Intensifying online loyalty! The power of website quality and the perceived value of consumer/seller relationship | |
JP4763642B2 (en) | Sales promotion support method and sales promotion support program | |
US7373317B1 (en) | Method and apparatus for facilitating sales of goods by independent parties | |
US9141989B2 (en) | Systems and methods for using a social network to provide product related information | |
JP5297501B2 (en) | Information creation device, information creation method, recommendation device, recommendation method, and program | |
US20100241525A1 (en) | Immersive virtual commerce | |
Alreck et al. | Time pressure, time saving and online shopping: Exploring a contradiction | |
US20140025539A1 (en) | Adjustable priority retailer ranking system | |
WO2012151401A1 (en) | Item discovery tools and methods for shopping in an electronic commerce environment | |
Cao et al. | The impact of limited supply on a firm's bundling strategy | |
WO2021133625A1 (en) | Determining recommended items for a shopping list | |
JP2014115951A (en) | Apparatus, program and method for optimizing attribute information, apparatus, program and method for selecting recommendation object | |
Serrano-Cinca et al. | Internet positioning and performance of e-tailers: An empirical analysis | |
WO2002031721A1 (en) | Purchase motive extracting method, fit commodity/fit customer extracting method, and device therefor | |
Hou | Service quality of online apparel retailers and its impact on customer satisfaction, customer trust and customer loyalty | |
KR20090000649A (en) | Method, system and computer-readable recording medium for providing popular goods by using evaluation data on goods | |
WO2001016818A1 (en) | System for collecting commodity specifications and related customer information | |
JP2002099764A (en) | Method and device for providing information | |
Sari | The Impact of Perceived Risk, Perceived Benefit, and Trust on Customer Intention To Use Tokopedia Apps | |
Fazlollahtabar | Intelligent marketing decision model based on customer behavior using integrated possibility theory and K-means algorithm | |
US11907313B2 (en) | Recommending recipes using time-horizon based user ingredient pool | |
Heiman et al. | REDUCING PURCHASING RISK WITH DEMONSTRATIONS AND MONEY-BACK GUARANTEES. | |
JP6809148B2 (en) | Program and combination extraction system | |
KR102645427B1 (en) | System for trading pc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |