WO2002030546A2 - Catalytic material and method for abatement of nitrogen oxides - Google Patents
Catalytic material and method for abatement of nitrogen oxides Download PDFInfo
- Publication number
- WO2002030546A2 WO2002030546A2 PCT/US2001/031331 US0131331W WO0230546A2 WO 2002030546 A2 WO2002030546 A2 WO 2002030546A2 US 0131331 W US0131331 W US 0131331W WO 0230546 A2 WO0230546 A2 WO 0230546A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalytic material
- lanthanum
- praseodymium
- catalytic
- gas stream
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 163
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 122
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 21
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 48
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 43
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims abstract description 35
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 20
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 18
- 229910052788 barium Inorganic materials 0.000 claims abstract description 17
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims abstract description 16
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 42
- 239000003054 catalyst Substances 0.000 claims description 40
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 238000011068 loading method Methods 0.000 claims description 8
- 230000006872 improvement Effects 0.000 claims description 2
- -1 e.g. Substances 0.000 abstract description 19
- 239000002245 particle Substances 0.000 abstract description 11
- 229910052697 platinum Inorganic materials 0.000 abstract description 6
- 229910052703 rhodium Inorganic materials 0.000 abstract description 6
- 239000010948 rhodium Substances 0.000 abstract description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 20
- 239000000203 mixture Substances 0.000 description 15
- 239000000446 fuel Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 7
- 150000001342 alkaline earth metals Chemical class 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000007717 exclusion Effects 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- GMTXBUZKCHNBCH-UHFFFAOYSA-L [K].[Pt](Cl)Cl Chemical compound [K].[Pt](Cl)Cl GMTXBUZKCHNBCH-UHFFFAOYSA-L 0.000 description 1
- RHBRWKIPYGZNMP-UHFFFAOYSA-N [O--].[O--].[O--].[Al+3].[Cr+3] Chemical compound [O--].[O--].[O--].[Al+3].[Cr+3] RHBRWKIPYGZNMP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- HVXCTUSYKCFNMG-UHFFFAOYSA-N aluminum oxygen(2-) zirconium(4+) Chemical compound [O-2].[Zr+4].[Al+3] HVXCTUSYKCFNMG-UHFFFAOYSA-N 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002604 lanthanum compounds Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- NFOHLBHARAZXFQ-UHFFFAOYSA-L platinum(2+);dihydroxide Chemical compound O[Pt]O NFOHLBHARAZXFQ-UHFFFAOYSA-L 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention pertains to the catalytic abatement of nitrogen oxides and, in particular, to a catalytic material effective for the conversion of NO x and a method for its use.
- One unwanted component of the exhaust gases of combustion processes such as the combustion of gasoline in automotive engines, is NO x or nitrogen oxides. It is known to treat gas streams that contain NO x with catalysts that comprise palladium to convert or reduce the NO x to gaseous nitrogen.
- TWC catalyst three-way catalyst
- Catalysts for the abatement of NO x , carbon monoxide and hydrocarbons typically comprise a catalytic material comprising a refractory support material on which is dispersed a catalytic metal component that comprises one or more platinum group metals.
- a catalytic base metal component such as a transition metal of Group Nffl of the Periodic Table of Elements, e.g., iron, nickel, manganese or cobalt on the support, although in some cases the base metal component may be admixed with the support material in bulk form.
- the support material preferably has a high surface area to enhance the effectiveness of the catalytic metal component dispersed thereon.
- the catalytic material is normally provided as a thin coating or "washcoat" adhered to the walls of a refractory carrier substrate.
- a refractory carrier substrate often takes the form of a body made from a suitable material such as cordierite, mullite or the like, which is formed to have a plurality of parallel, fine gas flow passages extending therethrough. Typically, there may be from about 150 to 600 or more such gas flow passages per square inch of end face area of the substrate.
- the catalyst includes rhodium and at least one other platinum group metal dispersed on a high surface area support and a rare earth oxide, the rhodium being deposited on particles that are substantially free of the rare earth oxide.
- At least two different types of particles comprise the catalyst.
- the first type comprises the rhodium on the support that is substantially free of rare earth oxides.
- the second type comprises platinum and/or palladium dispersed on high surface area alumina which may optionally include rare earth oxides.
- a third type of particle comprising bulk rare earth oxide that may optionally have platinum and/or palladium dispersed thereon may be included.
- U.S. Patent 5,075,276 to Ozawa et al, dated December 24, 1991 and entitled "Catalyst For Purification Of Exhaust Gases”, discloses a catalyst for the purification of exhaust gases.
- the catalyst disclosed therein comprises ceria, but not lanthana (see column 2, lines 10-20).
- the oxides of rare earth elements that may be used in the disclosed invention are listed at column 3, lines 32-42, and do not include lanthana.
- none of the example catalytic materials or the comparative materials comprised lanthana or a combination of lanthana and praseodymia.
- the first layer comprises at least palladium and, optionally, other platinum group metals and may also include a stabilizer and a rare earth metal component selected from ceria, neodymia and lanthana (see page 11, lines 10-13, and page 13, lines 18-21).
- the second layer comprises platinum, rhodium and a second oxygen storage composition that may comprise ceria and, optionally, one or more of lanthana, neodymia, yttria or mixtures thereof (see page 11, lines 13-18, and page 12, lines 1- 12).
- U.S. patent application No. 08/722,761 filed September 27, 1996, now U.S. Patent 5,898,014, issued April 27, 1999, and commonly assigned to the assignee of the present application, discloses a catalyst composition which, in a particular embodiment, comprises platinum group metals on a support material and an oxygen storage component that may comprise neodymia and/or praseodymia and at least one of lanthanum and neodymium.
- Example 3 describes a catalyst composition containing lanthana, praseodymia and neodymia.
- the present invention provides a catalytic material effective at least for conversion of nitrogen oxides in gas stream.
- the catalytic material consists essentially of a refractory support material on which is dispersed catalytically effective amounts of a platinum group metal component, lanthanum and praseodymium.
- the lanthanum and praseodymium may be present in the catalytic material in atomic proportions in the range of about 1 :9 to 9: 1 , for example, in the range of 1 : 5 to 5 : 1.
- the lanthanum and palladium may be present in an atomic ratio of about 1:1.
- the catalytic material may be substantially free of barium and, optionally, the lanthanum may comprise at least about one percent of the catalytic material by weight.
- the platinum group metal component comprises palladium.
- This invention also provides an improved catalyst member effective at least for conversion of nitrogen oxides in a gas stream.
- the catalyst member comprises a catalytic coating deposited onto a carrier substrate, and the improvement is that the catalytic coating comprises at least one catalytic material as described above.
- the catalytic material may contain palladium at a loading of from about 30 to 500 grams per cubic foot.
- the praseodymium and lanthanum may be present at a combined loading in the range of from about 0.03 grams per cubic inch to 0.5 grams per cubic inch.
- This invention also relates to a method for treating a gas stream containing NO x , comprising contacting the gas stream with a catalytic material as described above.
- the method may comprise contacting the gas stream with the catalytic material at a temperature of at least about 200°C, preferably at high temperature, e.g., at a temperature of about 500°C.
- the gas stream may be substantially free of SO 2 .
- lanthanum in a catalytic material should be interpreted to refer to all forms of lanthanum in the catalytic material, elemental, oxide, etc., but a reference to lanthana indicates only lanthanum oxide(s).
- Figure 1 is a perspective view of a catalyst member comprising a catalytic material coated onto a honeycomb-type carrier member in accordance with one embodiment of the present invention.
- Figure 1 A is a partial cross-sectional view enlarged relative to Figure 1 and taken along a plane parallel to the end faces of the carrier of Figure 1.
- the present invention arises from the discovery that combining praseodymium and lanthanum species in a platinum group metal-based catalytic material in the absence of neodymium yields unexpectedly superior NO x -conversion activity at high temperatures relative to the performance of similar materials that contain other combinations of rare earth metal species and to the performance of praseodymium and lanthanum employed separately.
- the invention provides a catalytic material containing a platinum group metal component dispersed on a refractory support with lanthanum and praseodymium, typically in their oxide forms, with the substantial exclusion of neodymium.
- me tefhi consisting essentially of therefore signifies the substantial exclusion of neodymium from the defined catalytic material and any other component which defeats the synergy of the combination of lanthanum and praseodymium disclosed herein. This may not necessarily require the complete elimination of all traces of neodymium or other such element(s), but simply the absence of quantities of these materials that would defeat the improved catalytic performance illustrated in the Examples below.
- a catalytic material according to various optional embodiments of the present invention may also be substantially free of cerium and/or optionally substantially free of rare earth metals besides neodymium and/or substantially free of alkaline earth metals (such as barium) and/or their oxides as well.
- a gas stream containing NO x is treated according to the present invention by flowing the stream into contact with the catalytic material described herein, preferably at high temperatures, i.e., temperatures in the range of 200°C to 650°C, e.g., 250°C to 600°C, although the catalytic material and method of this invention is effective over a broader range, i.e., from about 150°C to 900°C.
- the catalytic material may also be effective for the oxidation of hydrocarbons and carbon monoxide in the NO x -containing gas stream, as are typically present in engine exhaust gases.
- a catalytic material in accordance with the claimed invention provides synergistic performance when used to treat NO x in a gas stream and provides performance which is better than catalytic materials with other binary rare earth metal combination for treatment of NO x in a gas stream that is substantially free of SO 2 , e.g., that contains less than about 5 pp SO 2 .
- the improved NO x conversion at low sulfur levels is especially advantageous because of the current trend of regulatory agencies towards lowering the limits of permissible limits on sulfur content in fuels such as gasoline and lowering the permissible sulfur oxides and NO x emissions from combustion process using hydrocarbon fuels, such as the emissions from internal combustion engines.
- Suitable support materials generally comprise bulk (i.e., solid) refractory inorganic metal oxides such as, for example, alumina, titania, zirconia, ceria, silica-alumina, alumino silicates, aluminum-zirconium oxide, aluminum-chromium oxide, etc.
- the support may optionally be in the form in which the catalytic material will be used, e.g., in the form of pellets or tablets to be rendered in a catalyst bed, or molded or extruded in the form of a flow- through monolith, e.g., a honeycomb monolith. It is generally preferable, however, to employ particulate support materials, which can easily be applied onto a carrier member such as a honeycomb monolith, either before or after the catalytic components are dispersed onto it. Most preferred are high surface area materials such as activated alumina, which primarily comprises one or more of gamma-, theta- and delta-aluminas.
- high surface area support materials are subject to surface area degradation at high temperatures, which results in a diminution of catalytic performance.
- the loss of catalytic performance that occurs with loss of surface area has been attributed to the occlusion of catalytically active species dispersed on the surface of the support material.
- It is known to stabilize high surface area support materials against thermal degradation by impregnating the high surface area material with a salt solution of a stabilizing species. The impregnated material is dried and calcined in the presence of oxygen, e.g., in air, so the stabilizing species is converted into its oxide form within the interstices of the support material.
- the stabilizing oxide helps to stabilize the high surface area support material against thermal surface area degradation.
- the stabilizer can comprise an alkaline earth metal component (subject to the substantial exclusion of barium), which may be derived from one or more alkaline earth metals such as magnesium, calcium and strontium.
- the alkaline earth metal component comprises one or more alkaline earth metal oxides.
- the alkaline earth metal component can be applied to the support material in a soluble form, e.g., as a compound dissolved in a solvent, e.g., water, that is then impregnated into the support material. Upon calcination under oxidizing conditions, the solvent is driven from the support material and the alkaline earth metal compound is converted to the oxide.
- soluble calcium may be provided as calcium nitrate or calcium hydroxide and soluble strontium may be provided as strontium nitrate or strontium acetate, all of which become the corresponding metal oxides upon calcination.
- high surface area support materials such as gamma-alumina can be stabilized against thermal degradation by impregnating the material with a solution of a rare earth metal (other than those excluded in accordance with various embodiments of the present invention) and then calcining the impregnated material to remove the solvent and convert the rare earth metal to a rare earth metal oxide.
- the stabilizing species may be present in an amount of up to about, e.g., 5 percent by weight of the support material.
- the platinum group metal component may be dispersed onto the support material in a conventional manner, e.g., by dissolving a soluble salt compound of each platinum group metal to be used into a suitable solvent and impregnating the support material with the solution.
- the term "compound”, as in “platinum group metal compound” means any compound, complex, or the like of one or more platinum group metals (the “platinum group metal component”) which, upon calcination r upon use of the catalyst, decomposes or otherwise converts to a catalytically active form, which is often, but not necessarily, an oxide.
- the platinum group metal component comprises palladium, optionally, to the substantial exclusion of other platinum group metals.
- the compounds or complexes of one or more platinum group metals may be dissolved or suspended in any liquid which will wet or impregnate the support material, which does not adversely react with other components of the catalytic material and which is capable of being removed from the catalyst by volatilization or decomposition upon heating and/or the application of a vacuum.
- Compounds of particular platinum group metals in the finished catalytic material are referred to herein simply as the metal.
- the catalytic material of the present invention preferably comprises palladium.
- aqueous solutions of impregnated species e.g., solutions of water-soluble salts, are preferred.
- palladium may be dispersed onto the support material by impregnating the support material with an aqueous solution of palladium chloride, palladium nitrate, etc.
- other platinum group metals may be dispersed onto the support material in a similar manner, e.g., by impregnating the support material with aqueous solutions of chloroplatinic acid, potassium platinum chloride, arnine- solubilized platinum hydroxide, rhodium chloride, rhodium nitrate, etc.
- the compound- containing liquid is impregnated into the pores of bulk support material, and the impregnated support material is dried and preferably calcined to remove the liquid and bind the platinum group metal into the support material.
- the impregnation may optionally be achieved using an incipient wetness method by which the catalytic compound containing liquid is slowly added to a mass of the support particles to permit the particles to substantially completely absorb the liquid, as is well known in the art.
- impregnation may also be achieved by methods well known in the art, e.g., by immersing the support into the liquid, by spraying the liquid onto the support, etc.
- the completion of removal of the liquid may not occur until the catalyst is placed into use and subjected to the high temperature exhaust gas.
- these catalytically active species are converted into a catalytically active form on the support material.
- the calcination is performed in the presence of oxygen, e.g., by calcining the impregnated support material in air, to convert the catalytically active species into their oxide forms.
- a catalytic material in accordance with the present invention may optionally comprise promoter components, i.e., catalytically active species other than platinum group metal compounds to enhance the catalytic activity of the platinum group metal compounds.
- promoter components i.e., catalytically active species other than platinum group metal compounds to enhance the catalytic activity of the platinum group metal compounds.
- Such optional promoters may include non-excluded compounds of alkaline earth metals, rare earth metals, alkali metal and/or transition metals such as iron, nickel, magnesium, manganese, etc. Promoters may be incorporated into the catalytic material by wet impregnation followed by drying as described above.
- the palladium and/or other platinum group metals may comprise from 1 to 15 weight percent of the catalytic material, e.g., from 2 to 10 weight percent. In a typical embodiment, a catalytic material according to the present invention may comprise about 5 percent of the platinum group metals by weight.
- the praseodymium and lanthanum species may be dispersed onto the support material in the same manner as, and preferably after, the platinum group metal species are dispersed thereon.
- the lanthanum and praseodymium are added in quantities that provide a lanthanum to praseodymium atomic ratio of at least 1:9, for example, in the range of 1:9 to 9:1 or, typically, in the range of 1 : 5 or 5 : 1 or, preferably, about 1:1.
- the lanthanum is present in an amount of at least about 1 percent of the catalytic material, by weight (measured as metal oxides), typically at least about 10 percent or, in a particular embodiment, 15 percent by weight.
- Particulate catalytic materials of the present invention are typically rendered in the micron-sized range, e.g., 2 to 20 micrometers in diameter, by ball milling or continuous milling so that they can be formed into a slurry and applied as a washcoat on a carrier member, as is well-known in the art.
- a carrier member such as a honeycomb- type carrier of the type having a plurality of fine, parallel gas-flow passages extending therethrough from an inlet to an outlet face of the carrier.
- the passages are defined by walls on which a coating (sometimes referred to as a "washcoat") of the catalytic material is applied so that the gases flowing through the passages contact the catalytic material.
- Such structures may contain from about 60 to about 1000 or more passages ("cells") per square inch of cross section ("cpsi”), more typically 200 to 600 cpsi.
- honeycomb-type carrier may be made of any suitable refractory material, for example, it may be formed from a ceramic-like material such as cordierite, cordierite-alpha-alumina, silicon nitride, zirconium mullite, spodumene, etc.
- a honeycomb-type carrier may be made of a refractory metal such as a stainless steel or other suitable iron-based, corrosion-resistant alloys.
- a variety of deposition methods is known in the art for depositing a coating of catalytic material on a carrier substrate and most of these can be used with a carrier prepared according to the present invention. These include, for example, disposing the catalytic material in a liquid vehicle to form a slurry and wetting the carrier substrate with the slurry by dipping the carrier into the slurry, spraying the slurry onto the carrier, etc. The liquid medium of the slurry is then removed to leave a washcoat of the catalytic material, or a precursor thereof, on the carrier substrate. The removal procedure may entail, for example, heating the wetted carrier and/or subjecting the wetted carrier to a vacuum to remove the solvent via evaporation.
- a catalytic material in accordance with the present invention may be used in combination with other catalytic materials.
- the materials may be combined as constituents of a single washcoat slurry.
- a quantity of particulate support material may be impregnated with the palladium and with a solution of soluble salts comprising praseodymium and lanthanum compounds to produce a first constituent catalytic material in accordance with this invention, and another quantity of particulate support material may be impregnated with catalytically active metals and any desired promoters, stabilizers, etc., to produce a second constituent catalytic material.
- the second constituent catalytic material may be substantially free of neodymium and/or free of any other species that may be excluded from the first constituent catalytic material.
- Constituent catalytic materials may be intermixed and applied as a single washcoat of catalytic material on a carrier or they may be applied as separate layers on the carrier.
- the palladium-, lanthanum- and praseodymium- bearing particles of the invention which are substantially free of neodymium may be applied onto a carrier as a bottom coat and a layer of another catalytic material may be applied as a top coat on top of the bottom coat.
- platinum and rhodium are typically present in about a 5:1 weight ratio.
- a carrier may be pre-coated with a binder coat such as a washcoat of alumina before the particulate catalytic material is deposited thereon.
- the binder coat may be applied to the carrier in any of the same manners useful for depositing the catalytic material onto the carrier.
- the carrier may have an anchor layer applied thereto before the catalytic material and optional binder coat are deposited on the carrier.
- the anchor layer may be applied to the carrier by thermally spraying a metal feedstock in the form of molten or vaporized metal onto the surface of the carrier substrate.
- the coated carrier i.e., the catalyst member
- the coated carrier is typically disposed in a canister configured to protect the catalyst member and to facilitate establishment of a gas flow path through the catalyst member, as is well-known in the art.
- Figure 1 shows generally at 10 a refractory honeycomb monolith-type carrier member of generally cylindrical shape having a cylindrical outer surface 12, one end face 14 and an opposite end face, not visible in Figure 1, which is identical to end face 14.
- Carrier member 10 has a plurality of fine, parallel gas flow passages 16 formed therein, better seen in Figure 1 A.
- Gas flow passages 16 are formed by walls 18 and extend through carrier 10 from end face 14 to the opposite end face thereof, the passages 16 being unobstructed so as to permit the flow of a fluid, e.g., a gas stream, longitudinally through carrier 10 via gas flow passages 16 thereof.
- a layer 20 (illustrated in exaggerated thickness), which in the art and sometimes herein is referred to as a "washcoat”, is adhered to the walls 18 and, in the particular embodiment of the invention shown in Figure 1A, may be comprised of a single layer comprising the catalytic material in accordance with the present invention.
- the carrier member alternatively may comprise a body of beads, pellets, tablets or particles (collectively referred to as "carrier beads") made of a suitable refractory material such as gamma-alumina, and coated with the catalytic material.
- a body of such carrier beads may be contained within a suitable perforated container which permits the passage of the exhaust gas therethrough, as is known in the art.
- the loading of the platinum group metals and other catalytically active species in the catalytic material is chosen to provide a desired degree of conversion, taking into consideration the quantity of catalytic material to be employed, the flow rate of the gas stream to be treated, the NO x , carbon monoxide and hydrocarbon content of the gas stream, etc., in a manner well- known to those of ordinary skill in the art.
- the amounts of the various catalytic components of the catalytic material are often presented based on grams per volume basis, e.g., grams per cubic foot (g/ft 3 ) for platinum group metal components and grams per cubic inch (g/in 3 ) for catalytic materials generally, as these measures accommodate different gas-flow passage cell sizes in different honeycomb-type carrier substrates.
- the catalyst member generally comprises from about 0.5 to about 6 g/in 3 , preferably from about 1 to about 5 g/in 3 of catalytic material washcoat on the carrier.
- the loading of palladium is in the range of about 30 g/ft 3 to 500 g/ft 3 .
- the loading of praseodymium plus lanthanum should be in the range of from about 0.03 g/in 3 to 0.5 g/in 3 , e.g., about 0.3 g/in 3 , such as 0.15 g/in 3 of each, measured as the oxide.
- Each of the other optional compounds, e.g., the alkaline earth metal component may constitute, for example, from about 0.02 to 0.4 g/in 3 of the washcoat.
- Example 1 Seven catalytic materials (A-G), including one comprising a ternary mixture of the rare earth metal oxides of La, Nd and Pr, three comprising binary mixtures thereof and three comprising singular rare earth metal components were prepared by preparing and modifying a common base material.
- the base material comprised 92.5% high porosity alumina, 2.87% zirconia impregnated into the alumina and 4.6% PdO dispersed thereon. Samples of the base material were modified by the impregnation of soluble salt solutions of La, Nd and/or Pr for a total of 15 weight percent rare earth metal oxide in each sample, in the combinations shown in TABLE I.
- the catalytic materials were substantially free of barium and of rare earth metals other than those indicated in TABLE I.
- the catalytic materials were coated onto honeycomb- type carriers, which were then dried and calcined to provide 160 grams palladium per cubic foot on each resulting catalyst member.
- Each catalyst member was engine-aged in two eight- chamber reactors for fifty hours at 900°C.
- Each aged catalyst member was then evaluated in a modal gas reactor using a gas stream comprising 0.2% CO; 0.05% H 2 ; 0.4% O 2 ; 16.3% CO 2 ; 235 ppm propylene; 235 ppm propane; 1400 ppm NO x ; 10% H 2 O, balance N 2 , flowing at a rate of 26,000/hr VHSN at a temperature of 500°C, once with 45 ppm SO 2 and once without.
- the test gas was composed to simulate a stoichiometric air/fuel mixture with a A/F ratio perturbation of ⁇ 0.5 at a frequency of 0.5 hertz.
- a stoichiometric mixture there is sufficient oxygen to fully combust the hydrocarbons without leaving unreacted oxygen. This generally allows for the complete combustion of the carbonaceous components of the fuel to proceed substantially simultaneously with the reduction of ⁇ O x .
- the conventional air/fuel ratio index variable ⁇ is used to relate a given air/foel mixture to a stoichiometric air/fuel mixture, which has an air/fuel weight ratio of 14.65 for a fuel with H C ratio of 1.90.
- ⁇ 1.
- ⁇ 1.
- sample C which comprised a combination of lanthanum and praseodymium according to the present invention, provided surprisingly superior NO x reduction in the absence of SO 2 relative to the other samples combining La or Pr with neodymium.
- the data also show that a synergistic effect is achieved by combining lanthanum with praseodymium (88.1 %) relative to comparable quantities of either lanthanum or praseodymium (83.4% and 81.5%).
- Example 2 Six other catalytic materials (H-M) were prepared and coated onto honeycomb-type carriers in substantially the same manner as those in Example 1.
- the catalytic materials of this Example all included barium in addition to one or more of the rare earth oxides of lanthanum, neodymium and praseodymium.
- the total loading of barium plus the rare earth oxides in each catalytic material comprised about 15 percent by weight of the catalytic material.
- the resulting catalyst members were engine-aged and tested as described above in Example 1. The results are set forth in the following TABLE H.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01977562A EP1324816A2 (en) | 2000-10-11 | 2001-10-05 | Catalytic material and method for abatement of nitrogen oxides |
JP2002533982A JP2004523336A (en) | 2000-10-11 | 2001-10-05 | Catalyst materials and methods for reducing nitrogen oxides |
KR10-2003-7005094A KR20030061376A (en) | 2000-10-11 | 2001-10-05 | Catalytic Material and Method for Abatement of Nitrogen Oxides |
AU2001296672A AU2001296672A1 (en) | 2000-10-11 | 2001-10-05 | Catalytic material and method for abatement of nitrogen oxides |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68656000A | 2000-10-11 | 2000-10-11 | |
US09/686,560 | 2000-10-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002030546A2 true WO2002030546A2 (en) | 2002-04-18 |
WO2002030546A3 WO2002030546A3 (en) | 2002-05-30 |
Family
ID=24756810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/031331 WO2002030546A2 (en) | 2000-10-11 | 2001-10-05 | Catalytic material and method for abatement of nitrogen oxides |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1324816A2 (en) |
JP (1) | JP2004523336A (en) |
KR (1) | KR20030061376A (en) |
AU (1) | AU2001296672A1 (en) |
WO (1) | WO2002030546A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2876413A1 (en) * | 2004-10-07 | 2006-04-14 | Renault Sas | Particle filter for use in exhaust line of e.g. diesel engine, has caps and ceramic filtering material having porosity of specific percent, where filtering material is saturated with washcoat for retaining nitrous oxide in form of nitrates |
WO2014102586A1 (en) * | 2012-12-27 | 2014-07-03 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control catalyst, catalyst apparatus and exhaust gas control method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504598A (en) * | 1983-05-12 | 1985-03-12 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Process for producing honeycomb catalyst for exhaust gas conversion |
EP0472307A1 (en) * | 1990-08-22 | 1992-02-26 | Imperial Chemical Industries Plc | Oxidation catalysts essentially free from group VIII elements |
US5556825A (en) * | 1995-01-06 | 1996-09-17 | Ford Motor Company | Automotive catalysts with improved oxygen storage and metal dispersion |
EP0754493A2 (en) * | 1995-07-21 | 1997-01-22 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gases and process for producing the same |
US5736482A (en) * | 1995-02-03 | 1998-04-07 | Institut Francais Du Petrole | Catalysts for reducing nitrogen oxides to molecular nitrogen in a superstoichiometric medium of oxidizing compounds, process for preparation, and uses |
US5898014A (en) * | 1996-09-27 | 1999-04-27 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
WO2000044493A1 (en) * | 1999-01-28 | 2000-08-03 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
-
2001
- 2001-10-05 AU AU2001296672A patent/AU2001296672A1/en not_active Abandoned
- 2001-10-05 KR KR10-2003-7005094A patent/KR20030061376A/en not_active Application Discontinuation
- 2001-10-05 JP JP2002533982A patent/JP2004523336A/en active Pending
- 2001-10-05 EP EP01977562A patent/EP1324816A2/en not_active Withdrawn
- 2001-10-05 WO PCT/US2001/031331 patent/WO2002030546A2/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504598A (en) * | 1983-05-12 | 1985-03-12 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Process for producing honeycomb catalyst for exhaust gas conversion |
EP0472307A1 (en) * | 1990-08-22 | 1992-02-26 | Imperial Chemical Industries Plc | Oxidation catalysts essentially free from group VIII elements |
US5556825A (en) * | 1995-01-06 | 1996-09-17 | Ford Motor Company | Automotive catalysts with improved oxygen storage and metal dispersion |
US5736482A (en) * | 1995-02-03 | 1998-04-07 | Institut Francais Du Petrole | Catalysts for reducing nitrogen oxides to molecular nitrogen in a superstoichiometric medium of oxidizing compounds, process for preparation, and uses |
EP0754493A2 (en) * | 1995-07-21 | 1997-01-22 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gases and process for producing the same |
US5898014A (en) * | 1996-09-27 | 1999-04-27 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
WO2000044493A1 (en) * | 1999-01-28 | 2000-08-03 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2876413A1 (en) * | 2004-10-07 | 2006-04-14 | Renault Sas | Particle filter for use in exhaust line of e.g. diesel engine, has caps and ceramic filtering material having porosity of specific percent, where filtering material is saturated with washcoat for retaining nitrous oxide in form of nitrates |
WO2014102586A1 (en) * | 2012-12-27 | 2014-07-03 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control catalyst, catalyst apparatus and exhaust gas control method |
Also Published As
Publication number | Publication date |
---|---|
AU2001296672A1 (en) | 2002-04-22 |
JP2004523336A (en) | 2004-08-05 |
EP1324816A2 (en) | 2003-07-09 |
WO2002030546A3 (en) | 2002-05-30 |
KR20030061376A (en) | 2003-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6497848B1 (en) | Catalytic trap with potassium component and method of using the same | |
KR101712684B1 (en) | Improved lean hc conversion of twc for lean burn gasoline engines | |
EP2611535B1 (en) | Catalyst for gasoline lean burn engines with improved no oxidation activity | |
US8950174B2 (en) | Catalysts for gasoline lean burn engines with improved NH3-formation activity | |
US9242242B2 (en) | Catalyst for gasoline lean burn engines with improved NO oxidation activity | |
US8173087B2 (en) | Gasoline engine emissions treatment systems having particulate traps | |
EP2398587B1 (en) | Palladium-supported catalyst composites | |
EP2125200B1 (en) | Multilayered three-way conversion catalyst compositions | |
US8323599B2 (en) | Three-way catalyst having an upstream multi-layer catalyst | |
US8007750B2 (en) | Multilayered catalyst compositions | |
EP2611536B1 (en) | Catalyst for gasoline lean burn engines with improved nh3-formation activity | |
EP0850102A1 (en) | NO x? CATALYST AND METHOD OF USING THE SAME | |
WO2009020957A1 (en) | Multilayered catalyst compositions | |
JP2013176774A (en) | Catalytic trap | |
US20220154612A1 (en) | Catalyzed gasoline particulate filter | |
WO2002030546A2 (en) | Catalytic material and method for abatement of nitrogen oxides | |
Deeba et al. | Lean NO x catalyst/trap method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002533982 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037005094 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001977562 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001977562 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037005094 Country of ref document: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001977562 Country of ref document: EP |