WO2002095099A1 - Fonctionnalisation non covalente de la paroi laterale de nanotubes en carbone - Google Patents
Fonctionnalisation non covalente de la paroi laterale de nanotubes en carbone Download PDFInfo
- Publication number
- WO2002095099A1 WO2002095099A1 PCT/US2002/021626 US0221626W WO02095099A1 WO 2002095099 A1 WO2002095099 A1 WO 2002095099A1 US 0221626 W US0221626 W US 0221626W WO 02095099 A1 WO02095099 A1 WO 02095099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- swnt
- noncovalently
- molecules
- carbon nanotube
- sidewall
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 40
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 40
- 238000007306 functionalization reaction Methods 0.000 title description 9
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 96
- 108090000623 proteins and genes Proteins 0.000 claims description 36
- 102000004169 proteins and genes Human genes 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 18
- 238000011534 incubation Methods 0.000 claims description 9
- 238000010534 nucleophilic substitution reaction Methods 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 230000001588 bifunctional effect Effects 0.000 claims description 5
- 230000003100 immobilizing effect Effects 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 4
- 125000001725 pyrenyl group Chemical group 0.000 claims description 3
- 239000000427 antigen Substances 0.000 claims description 2
- 102000036639 antigens Human genes 0.000 claims description 2
- 108091007433 antigens Proteins 0.000 claims description 2
- 238000003795 desorption Methods 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims 1
- 239000002071 nanotube Substances 0.000 abstract description 13
- 238000005442 molecular electronic Methods 0.000 abstract description 3
- 238000001338 self-assembly Methods 0.000 abstract description 2
- 239000000725 suspension Substances 0.000 abstract description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical group N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 2
- 102000008857 Ferritin Human genes 0.000 description 2
- 108050000784 Ferritin Proteins 0.000 description 2
- 238000008416 Ferritin Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- LWISPDYGRSGXME-YDHLFZDLSA-N biotin peg2 amine Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCOCCOCCN)SC[C@@H]21 LWISPDYGRSGXME-YDHLFZDLSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- -1 succinimidyl Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/14—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
Definitions
- the present invention relates generally to carbon nanotubes and more particularly to functionalization of carbon nanotubes and related applications. Background
- Carbon nanotubes exhibit interesting and useful electrical properties, and may be utilized for a variety of devices.
- Single- walled carbon nanotubes having single- molecule-thick walls, have been found to be particularly useful in a variety of implementations, including integrated molecular electronic devices and chemical sensors. These devices may be implemented, for example, in chemical and biological species detection and identification, microelectronics circuitry, medical devices, environmental monitoring, medical/clinical diagnosis and biotechnology for gene mapping and drug discovery.
- SWNTs Single- walled carbon nanotubes
- nanotube devices exhibiting both high functionality and high flexibility are desirable. For instance, in electrical applications, the ability to manipulate electrical characteristics of a device to target the device's electrical behavior to a particular implementation increases the device's functionality and flexibility. Similarly, in chemical sensors, the ability to tailor a sensor for sensing a particular molecular species is also advantageous. In previous carbon nanotube implementations, however, achieving such high functionality and flexibility has been challenging. Summary
- the present invention is directed to the above-mentioned challenges and applications and others that relate to carbon nanotube devices and their implementation.
- the present invention is exemplified in a number of implementations and applications, some of which are summarized below.
- the present invention is directed to a carbon nanotube device having a functionalized carbon nanotube sidewall, with molecules noncovalently bonded to the sidewall.
- the present invention involves functionalizing a single-walled carbon nanotube (SWNT) by noncovalently bonding a first type of molecule to the SWNT sidewall, the noncovalently-bonded molecules being irreversibly adsorbed onto the sidewall of the SWNT.
- SWNT single-walled carbon nanotube
- the functionalized SWNT can be used to immobilize another molecule, such as a protein, various biological substances, polymerizable molecules and inorganic nanoparticles.
- electrical responses of the SWNT can be used to characterize the immobilized molecule.
- FIG. 1 is a carbon nanotube having molecules noncovalently bonded thereto, according to an example embodiment of the present invention
- FIG. 2 is a flow diagram for noncovalent sidewall functionalization and subsequent protein immobilization of a SWNT, according to another example embodiment of the present invention
- FIG. 3 is a system for functionalizing SWNTs and immobilizing molecules therewith, according to another example embodiment of the present invention.
- FIG. 4 is circuit arrangement having a functionalized carbon nanotube, according to another example embodiment of the present invention. While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
- a carbon nanotube is functionalized by noncovalently bonding molecules to a sidewall of the carbon nanotube, such as a SWNT.
- a sidewall of the carbon nanotube such as a SWNT.
- Such noncovalent SWNT sidewall functionalization preserves the sp 2 (electron spin) nanotube structure and thus preserves electronic characteristics of the SWNT.
- the present invention is particularly useful for a variety of nanotube implementations, including soluble nanotubes, nanotubes self-assembled on surfaces, nanotubes for immobilization of molecules, nanotubes for chemical sensors and nanotubes for molecular electronics.
- the noncovalent sidewall functionalization is used for self-assembly of nanotubes with unperturbed sp 2 (electron spin) structures and electronic properties.
- FIG. 1 shows a SWNT 105 having a plurality of noncovalently-bonded molecules 110, 112, 114 and 116, according to another example embodiment of the present invention.
- the noncovalently-bonded molecules are configured and arranged for bonding to additional molecules, such as biomolecules such as antibodies, antigens and DNA, polymerizable molecules, inorganic particles and proteins (e.g., metallothionein, streptavidin, ferritin, biotinyl-3, 6-dioxaoctanediamine (biotin-PEO-amine)), and various inorganic molecules that are electrically semi-conductive and therefore have interesting and useful electrical properties.
- biomolecules such as antibodies, antigens and DNA
- polymerizable molecules e.g., polymerizable molecules
- inorganic particles and proteins e.g., metallothionein, streptavidin, ferritin, biotinyl-3, 6-dioxaoctanediamine (biotin-PEO
- molecule 116 is functionalized with a bifunctional molecule from a succinimidyl ester group that is highly reactive to nucleophilic substitution by primary and secondary amines that exist in abundance on the surface of most proteins. More specifically, the molecule 116 can be 1-pyrenebutanoic acid, succinimidyl ester (hereinafter referred to as "the first example combination"), available from Molecular Probes, Inc., USA, and is irreversibly adsorbed onto a hydrophobic surface 108 of the SWNT 105.
- the bifunctional molecule 116, from the pyrenyl group is highly aromatic in nature and strongly interacts with the sidewalls of the SWNT, which makes the molecule highly stable against desorption in aqueous solutions. Generally, molecules are irreversibly adsorbed onto the sidewall of the SWNT by one or more of various non-covalent forces such as van der Waals
- FIG. 2 is a flow diagram for immobilizing a protein with a SWNT, according to another example embodiment of the present invention.
- a SWNT is incubated in a solution to noncovalently bond a bifunctional molecule thereto, thus functionalizing the SWNT (e.g., similar to SWNT 105 of FIG. 1).
- the functionalization is achieved using one or more of a variety of incubation solutions, such as an organic solvent dimethylformamide (DMF) or methanol, with a functionalizing reagent therein.
- DMF organic solvent dimethylformamide
- methanol a functionalizing reagent
- SWNT 105 with molecule 116 in FIG. 1 can be achieved via incubation in a 1-pyrenebutanoic acid, succinimidyl ester solution (about 6 mM of the first example combination in DMF or about 1 mM in methanol) for 1 hour at room temperature.
- the functionalized SWNT is then rinsed at block 220 using, for example, pure DMF or methanol to wash away excess reagent.
- the functionalized SWNT is incubated in an aqueous solution of protein at block 230, subsequently rinsed at block 240 and dried at block 250.
- the protein 120 immobilization can be achieved via incubation at block 230 for about 18 hours at room temperature. After the protein immobilization, the SWNT 105 is rinsed thoroughly in pure water for about 6 hours, and then dried.
- biotin-PEO-amine (available from Pierce Chemical, USA) is immobilized onto a SWNT at block 230.
- the incubation is carried out using an aqueous solution of biotin-PEO-amine (about 20 mg/mL) for about 18 hours to covalently link the biotin group to via an amide-forming reaction mechanism, similar to that discussed above.
- the SWNT is then exposed to a solution of streptavidin- Au conjugate to achieve streptavidin-biotin coupling, and subsequently rinsed and dried at blocks 240 and 250, respectively.
- SWNTs formed using laser ablation are deposited onto a SiO 2 substrate from suspension in 1 ,2-dichloroethane (e.g., about 1 mg of SWNT/10 mL of solvent).
- the substrate is then incubated in the first example combination (6 mM, in DMF) for 1 hour, rinsed thoroughly in pure DMF, exposed to a dilute
- ferritin solution e.g., about 10 ⁇ g/mL in a 15 ⁇ M NaCl solution
- This approach is effective in providing bonding to the SWNT and not to the substrate.
- a bundle of SWNTs is functionalized at block 210.
- the SWNT bundle is similarly used to immobilize a protein at block 230. Because of concave regions formed between neighboring individual SWNTs, proteins can be readily anchored (or immobilized) via noncovalent bonds with one or more SWNTs in the SWNT bundle.
- FIG. 3 shows one such protein immobilization system 300, according to another example embodiment of the present invention.
- the system 300 includes four chambers 310, 320, 330 and 340, with each chamber being arranged to hold a plurality of SWNTs, such as an array of SWNTs formed on a grid of catalyst over a substrate.
- Incubation station 310 is arranged to hold an aqueous solvent with a reagent suspended therein, which noncovalently bonds to and functionalizes the SWNTs.
- station 320 is arranged to rinse SWNTs using, for example, a solvent as discussed above.
- Station 330 also is arranged to hold an aqueous solution with molecules for immobilization using the functionalized SWNTs rinsed at station 320.
- station 340 is arranged for rinsing the functionalized SWNTs with immobilized molecules from station 330.
- FIG. 4 is a circuit arrangement 400 with a functionalized SWNT 410, according to another example embodiment of the present invention.
- the circuit arrangement includes circuitry 440 coupled via interconnects 430 and 432 to the SWNT 410 via electrodes 420 and 422.
- the electrodes are coupled to opposite ends of the SWNT 410, which is functionalized by molecules 412 that are noncovalently bonded thereto.
- the noncovalently bonded molecules 412 may, for example, be bonded to the SWNT using one or more of the implementations discussed herein.
- the functionalized SWNT 410 exhibits electrical characteristics that are a function of the noncovalently-bonded molecules 412. In this regard, the selection of the molecules 412 is tailored to a desired electrical characteristic for the circuit arrangement.
- the circuit arrangement 400 further includes immobilized molecules coupled to the noncovalently-bonded molecules 412 of the functionalized SWNT 410.
- the immobilized molecules alter an electrical characteristic of the SWNT, thus altering an electrical characteristic of the circuit arrangement 400.
- the type of immobilized molecule is selected for achieving the desired characteristics for the SWNT.
- the circuit arrangement 400 is part of a sensor for detecting and identifying molecules via immobilization with the functionalized SWNT.
- the noncovalently-bonded molecules 412 have a composition that selectively immobilizes one or more types of molecules.
- the circuitry 440 coupled across the SWNT 410 at electrodes 420 and 422, detects an electrical characteristic, or a change thereof, for the SWNT 410 in response to the immobilized molecule.
- the detected electrical characteristic is used to identify the composition of the immobilized molecule (e.g., by comparing the detected characteristic to a known response of the SWNT to particular molecules).
- U.S. Provisional Patent Application Serial No. 60/335,306 STFD.023P1/S01-208
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/473,101 US8029734B2 (en) | 2001-03-29 | 2002-03-29 | Noncovalent sidewall functionalization of carbon nanotubes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28060501P | 2001-03-29 | 2001-03-29 | |
US60/280,605 | 2001-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002095099A1 true WO2002095099A1 (fr) | 2002-11-28 |
Family
ID=23073803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/021626 WO2002095099A1 (fr) | 2001-03-29 | 2002-03-29 | Fonctionnalisation non covalente de la paroi laterale de nanotubes en carbone |
Country Status (2)
Country | Link |
---|---|
US (1) | US8029734B2 (fr) |
WO (1) | WO2002095099A1 (fr) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004020450A1 (fr) * | 2002-08-30 | 2004-03-11 | Commonwealth Scientific And Industrial Research Organisation | Procedes de modification chimique et physique de nanotubes, procedes de liaison de nanotubes, procedes de positionnement dirige de nanotubes, et utilisations associees |
WO2004044586A1 (fr) * | 2002-11-08 | 2004-05-27 | Nanomix, Inc. | Detection electronique de molecules biologiques fondee sur des nanotubes |
EP1426470A1 (fr) * | 2002-12-03 | 2004-06-09 | Motorola, Inc. | Liaison de carbon nanomorphique avec acides nucléiques |
US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
WO2006128828A1 (fr) | 2005-05-31 | 2006-12-07 | Thales | Reseau de transistors fet a nanotube ou nanofil semi-conducteur et dispositif electronique correspondant, pour la detection d'analytes |
US7178378B2 (en) | 2002-08-29 | 2007-02-20 | Bioscale, Inc. | Resonant sensor and sensing system |
US7226818B2 (en) | 2004-10-15 | 2007-06-05 | General Electric Company | High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing |
US7244407B2 (en) | 2002-05-02 | 2007-07-17 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US7344691B2 (en) | 2001-05-17 | 2008-03-18 | Zyvek Performance Materials, Llc | System and method for manipulating nanotubes |
US7374649B2 (en) * | 2002-11-21 | 2008-05-20 | E. I. Du Pont De Nemours And Company | Dispersion of carbon nanotubes by nucleic acids |
US7385266B2 (en) | 2003-05-14 | 2008-06-10 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
US7479516B2 (en) | 2003-05-22 | 2009-01-20 | Zyvex Performance Materials, Llc | Nanocomposites and methods thereto |
US7522040B2 (en) | 2004-04-20 | 2009-04-21 | Nanomix, Inc. | Remotely communicating, battery-powered nanostructure sensor devices |
US7547931B2 (en) | 2003-09-05 | 2009-06-16 | Nanomix, Inc. | Nanoelectronic capnometer adaptor including a nanoelectric sensor selectively sensitive to at least one gaseous constituent of exhaled breath |
WO2011072228A1 (fr) | 2009-12-11 | 2011-06-16 | Massachusetts Institute Of Technology | Imagerie spectrale de matériaux photoluminescents |
US8246995B2 (en) | 2005-05-10 | 2012-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells |
WO2013019722A1 (fr) | 2011-08-01 | 2013-02-07 | Massachusetts Institute Of Technology | Capteurs à base de nanostructures photoluminescentes |
US8535726B2 (en) | 2007-07-27 | 2013-09-17 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
US8765488B2 (en) | 2004-07-22 | 2014-07-01 | The Board Of Trustees Of The University Of Illinois | Sensors employing single-walled carbon nanotubes |
US8778226B2 (en) | 2010-09-30 | 2014-07-15 | Ut-Battelle, Llc | Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface |
WO2015021063A1 (fr) | 2013-08-05 | 2015-02-12 | Northeastern University | Biocapteur à nanotube de carbone simple paroi (swcnt) destiné à détecter du glucose, du lactate et de l'urée |
US8993346B2 (en) | 2009-08-07 | 2015-03-31 | Nanomix, Inc. | Magnetic carbon nanotube based biodetection |
US9103775B2 (en) | 2002-01-16 | 2015-08-11 | Nanomix, Inc. | Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices |
WO2015191389A2 (fr) | 2014-06-13 | 2015-12-17 | Massachusetts Institute Of Tecnology | Nanocapteurs optiques sensibles au saccharide |
US9291613B2 (en) | 2002-06-21 | 2016-03-22 | Nanomix, Inc. | Sensor having a thin-film inhibition layer |
WO2016100581A1 (fr) * | 2014-12-16 | 2016-06-23 | Northeastern University | Biocapteur à base de nanotubes pour la détection de pathogènes |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7301199B2 (en) * | 2000-08-22 | 2007-11-27 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
US20060175601A1 (en) * | 2000-08-22 | 2006-08-10 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
KR100995457B1 (ko) * | 2000-08-22 | 2010-11-18 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 제조 방법 |
KR100991573B1 (ko) * | 2000-12-11 | 2010-11-04 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 |
US6896864B2 (en) * | 2001-07-10 | 2005-05-24 | Battelle Memorial Institute | Spatial localization of dispersed single walled carbon nanotubes into useful structures |
US7776444B2 (en) * | 2002-07-19 | 2010-08-17 | University Of Florida Research Foundation, Inc. | Transparent and electrically conductive single wall carbon nanotube films |
WO2004010552A1 (fr) | 2002-07-19 | 2004-01-29 | President And Fellows Of Harvard College | Composants optiques coherents nanometriques |
DE10247679A1 (de) * | 2002-10-12 | 2004-04-22 | Fujitsu Ltd., Kawasaki | Halbleitergrundstruktur für Molekularelektronik und Molekularelektronik-basierte Biosensorik |
US20090227107A9 (en) * | 2004-02-13 | 2009-09-10 | President And Fellows Of Havard College | Nanostructures Containing Metal Semiconductor Compounds |
WO2006107312A1 (fr) * | 2004-06-15 | 2006-10-12 | President And Fellows Of Harvard College | Nanocapteurs |
WO2007044034A2 (fr) * | 2004-12-06 | 2007-04-19 | President And Fellows Of Harvard College | Unite de stockage de donnees a base de fils a l'echelle nanometrique |
US20100227382A1 (en) * | 2005-05-25 | 2010-09-09 | President And Fellows Of Harvard College | Nanoscale sensors |
WO2006132659A2 (fr) * | 2005-06-06 | 2006-12-14 | President And Fellows Of Harvard College | Heterostructures nanofils |
KR100682381B1 (ko) | 2005-11-16 | 2007-02-15 | 광주과학기술원 | 단일벽 탄소 나노튜브-난백 단백질 복합체 및 그 제조 방법 |
KR100779008B1 (ko) * | 2005-11-16 | 2007-11-28 | 광주과학기술원 | pH-감응 발광성 단일벽 탄소 나노튜브 유도체 및 그 제조방법 |
AU2007309660A1 (en) * | 2006-06-12 | 2008-05-02 | President And Fellows Of Harvard College | Nanosensors and related technologies |
US8058640B2 (en) | 2006-09-11 | 2011-11-15 | President And Fellows Of Harvard College | Branched nanoscale wires |
US20080213189A1 (en) * | 2006-10-17 | 2008-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Multifunctional metal-graphite nanocrystals |
US20090166560A1 (en) * | 2006-10-26 | 2009-07-02 | The Board Of Trustees Of The Leland Stanford Junior University | Sensing of biological molecules using carbon nanotubes as optical labels |
TWI463713B (zh) | 2006-11-09 | 2014-12-01 | Nanosys Inc | 用於奈米導線對準及沈積的方法 |
US8575663B2 (en) * | 2006-11-22 | 2013-11-05 | President And Fellows Of Harvard College | High-sensitivity nanoscale wire sensors |
US7959969B2 (en) | 2007-07-10 | 2011-06-14 | California Institute Of Technology | Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion |
CN101643702B (zh) * | 2008-08-09 | 2014-09-10 | 清华大学 | 细胞定向培养系统、细胞定向培养基板及培养定向细胞的方法 |
WO2010087971A2 (fr) | 2009-01-27 | 2010-08-05 | California Institute Of Technology | Administration de médicament et transfert de substance facilités par un dispositif nano-amélioré comprenant des nanotubes de carbone alignés saillant à la surface du dispositif |
EP2425486A4 (fr) | 2009-04-30 | 2017-05-03 | University of Florida Research Foundation, Inc. | Cathodes à air à base de nanotubes de carbon monofeuillets |
JP2012528020A (ja) | 2009-05-26 | 2012-11-12 | ナノシス・インク. | ナノワイヤおよび他のデバイスの電場沈着のための方法およびシステム |
US9297796B2 (en) | 2009-09-24 | 2016-03-29 | President And Fellows Of Harvard College | Bent nanowires and related probing of species |
US8916606B2 (en) * | 2009-10-27 | 2014-12-23 | William Marsh Rice University | Therapeutic compositions and methods for targeted delivery of active agents |
US9115424B2 (en) | 2010-04-07 | 2015-08-25 | California Institute Of Technology | Simple method for producing superhydrophobic carbon nanotube array |
WO2012031164A2 (fr) * | 2010-09-02 | 2012-03-08 | California Institute Of Technology | Administration de médicaments par réseaux de nanotubes de carbone |
WO2012079066A2 (fr) | 2010-12-10 | 2012-06-14 | California Institute Of Technology | Procédé de production d'oxyde de graphène avec écartement accordable |
CN103403935B (zh) | 2010-12-17 | 2016-08-24 | 佛罗里达大学研究基金会有限公司 | 基于碳膜的氢的氧化和产生 |
US8976507B2 (en) | 2011-03-29 | 2015-03-10 | California Institute Of Technology | Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles |
BR112013025503A2 (pt) | 2011-04-04 | 2016-12-27 | Univ Florida | dispersantes de nanotubos e películas de nanotubos sem dispersantes a partir das mesmas |
US9164053B2 (en) | 2011-09-26 | 2015-10-20 | The Regents Of The University Of California | Electronic device for monitoring single molecule dynamics |
WO2014022314A1 (fr) | 2012-07-30 | 2014-02-06 | California Institute Of Technology | Systèmes composites de nano tri-carbone et fabrication |
KR20160033118A (ko) * | 2013-07-25 | 2016-03-25 | 도레이 카부시키가이샤 | 카본 나노 튜브 복합체, 반도체 소자 및 그것을 사용한 센서 |
JP6106339B2 (ja) * | 2013-08-01 | 2017-03-29 | エルジー・ケム・リミテッド | 分散剤、その製造方法およびこれを含む炭素系素材の分散組成物 |
CN105764838B (zh) | 2013-11-20 | 2019-03-01 | 佛罗里达大学研究基金会有限公司 | 含碳材料上的二氧化碳还原 |
KR101624389B1 (ko) * | 2013-12-24 | 2016-05-25 | 주식회사 포스코 | 비공유결합 개질된 탄소구조체 및 이를 포함하는 탄소구조체/고분자 복합체 |
US20180088079A1 (en) * | 2015-04-03 | 2018-03-29 | President And Fellows Of Harvard College | Nanoscale wires with external layers for sensors and other applications |
WO2019075050A1 (fr) | 2017-10-10 | 2019-04-18 | Thermo Electron Scientific Instruments Llc | Dispositif à base de nanotubes de carbone servant à détecter une interaction moléculaire |
WO2022035907A1 (fr) | 2020-08-13 | 2022-02-17 | R.D. Abbott Company, Inc. | Procédé de fabrication d'une matrice composite par incorporation de nanotubes de carbone |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159742A (en) * | 1998-06-05 | 2000-12-12 | President And Fellows Of Harvard College | Nanometer-scale microscopy probes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5866434A (en) * | 1994-12-08 | 1999-02-02 | Meso Scale Technology | Graphitic nanotubes in luminescence assays |
US6683783B1 (en) * | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
AU3529299A (en) * | 1998-05-07 | 1999-11-23 | Centre National De La Recherche Scientifique-Cnrs | Method for immobilising and/or crystallising biological macromolecules on carbonnanotubes and uses |
US20020102617A1 (en) * | 2000-08-03 | 2002-08-01 | Macbeath Gavin | Protein microarrays |
KR100991573B1 (ko) * | 2000-12-11 | 2010-11-04 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 |
US20020172767A1 (en) * | 2001-04-05 | 2002-11-21 | Leonid Grigorian | Chemical vapor deposition growth of single-wall carbon nanotubes |
US20030113940A1 (en) * | 2001-07-16 | 2003-06-19 | Erlanger Bernard F. | Antibodies specific for nanotubes and related methods and compositions |
-
2002
- 2002-03-29 US US10/473,101 patent/US8029734B2/en not_active Expired - Fee Related
- 2002-03-29 WO PCT/US2002/021626 patent/WO2002095099A1/fr not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159742A (en) * | 1998-06-05 | 2000-12-12 | President And Fellows Of Harvard College | Nanometer-scale microscopy probes |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7344691B2 (en) | 2001-05-17 | 2008-03-18 | Zyvek Performance Materials, Llc | System and method for manipulating nanotubes |
US9103775B2 (en) | 2002-01-16 | 2015-08-11 | Nanomix, Inc. | Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices |
US7241496B2 (en) | 2002-05-02 | 2007-07-10 | Zyvex Performance Materials, LLC. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7244407B2 (en) | 2002-05-02 | 2007-07-17 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7547472B2 (en) | 2002-05-02 | 2009-06-16 | Zyvex Performance Materials, Inc. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7544415B2 (en) | 2002-05-02 | 2009-06-09 | Zyvex Performance Materials, Inc. | Polymer and method for using the polymer for solubilizing nanotubes |
US9291613B2 (en) | 2002-06-21 | 2016-03-22 | Nanomix, Inc. | Sensor having a thin-film inhibition layer |
US7178378B2 (en) | 2002-08-29 | 2007-02-20 | Bioscale, Inc. | Resonant sensor and sensing system |
WO2004020450A1 (fr) * | 2002-08-30 | 2004-03-11 | Commonwealth Scientific And Industrial Research Organisation | Procedes de modification chimique et physique de nanotubes, procedes de liaison de nanotubes, procedes de positionnement dirige de nanotubes, et utilisations associees |
WO2004044586A1 (fr) * | 2002-11-08 | 2004-05-27 | Nanomix, Inc. | Detection electronique de molecules biologiques fondee sur des nanotubes |
US7374649B2 (en) * | 2002-11-21 | 2008-05-20 | E. I. Du Pont De Nemours And Company | Dispersion of carbon nanotubes by nucleic acids |
EP1426470A1 (fr) * | 2002-12-03 | 2004-06-09 | Motorola, Inc. | Liaison de carbon nanomorphique avec acides nucléiques |
WO2004050967A1 (fr) * | 2002-12-03 | 2004-06-17 | Motorola Inc | Liaison de carbone nanomorphe a un acide nucleique |
US8310015B2 (en) | 2003-05-14 | 2012-11-13 | Nantero Inc. | Sensor platform using a horizontally oriented nanotube element |
US7385266B2 (en) | 2003-05-14 | 2008-06-10 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
US7780918B2 (en) | 2003-05-14 | 2010-08-24 | Nantero, Inc. | Sensor platform using a horizontally oriented nanotube element |
US7479516B2 (en) | 2003-05-22 | 2009-01-20 | Zyvex Performance Materials, Llc | Nanocomposites and methods thereto |
US7547931B2 (en) | 2003-09-05 | 2009-06-16 | Nanomix, Inc. | Nanoelectronic capnometer adaptor including a nanoelectric sensor selectively sensitive to at least one gaseous constituent of exhaled breath |
US7522040B2 (en) | 2004-04-20 | 2009-04-21 | Nanomix, Inc. | Remotely communicating, battery-powered nanostructure sensor devices |
US10712347B2 (en) | 2004-07-22 | 2020-07-14 | The Board Of Trustees Of The University Of Illinois | Sensors employing single-walled carbon nanotubes |
US8765488B2 (en) | 2004-07-22 | 2014-07-01 | The Board Of Trustees Of The University Of Illinois | Sensors employing single-walled carbon nanotubes |
US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US7226818B2 (en) | 2004-10-15 | 2007-06-05 | General Electric Company | High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing |
US8795734B2 (en) | 2005-05-10 | 2014-08-05 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells |
US8246995B2 (en) | 2005-05-10 | 2012-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells |
US8115198B2 (en) | 2005-05-31 | 2012-02-14 | Thales and Ecole Polytechnique | Array of differentiated FETS having a nanotube or nanowire channel and corresponding electronic device, for the detection of analytes |
WO2006128828A1 (fr) | 2005-05-31 | 2006-12-07 | Thales | Reseau de transistors fet a nanotube ou nanofil semi-conducteur et dispositif electronique correspondant, pour la detection d'analytes |
US8535726B2 (en) | 2007-07-27 | 2013-09-17 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
US9233166B2 (en) | 2007-07-27 | 2016-01-12 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
US8993346B2 (en) | 2009-08-07 | 2015-03-31 | Nanomix, Inc. | Magnetic carbon nanotube based biodetection |
WO2011072228A1 (fr) | 2009-12-11 | 2011-06-16 | Massachusetts Institute Of Technology | Imagerie spectrale de matériaux photoluminescents |
US8778226B2 (en) | 2010-09-30 | 2014-07-15 | Ut-Battelle, Llc | Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface |
WO2013019722A1 (fr) | 2011-08-01 | 2013-02-07 | Massachusetts Institute Of Technology | Capteurs à base de nanostructures photoluminescentes |
EP3030891A4 (fr) * | 2013-08-05 | 2017-05-10 | Northeastern University | Biocapteur à nanotube de carbone simple paroi (swcnt) destiné à détecter du glucose, du lactate et de l'urée |
US10031102B2 (en) | 2013-08-05 | 2018-07-24 | Northeastern University | Single-walled carbon nanotube biosensor for detection of glucose, lactate, and urea |
WO2015021063A1 (fr) | 2013-08-05 | 2015-02-12 | Northeastern University | Biocapteur à nanotube de carbone simple paroi (swcnt) destiné à détecter du glucose, du lactate et de l'urée |
WO2015191389A2 (fr) | 2014-06-13 | 2015-12-17 | Massachusetts Institute Of Tecnology | Nanocapteurs optiques sensibles au saccharide |
WO2016100581A1 (fr) * | 2014-12-16 | 2016-06-23 | Northeastern University | Biocapteur à base de nanotubes pour la détection de pathogènes |
Also Published As
Publication number | Publication date |
---|---|
US8029734B2 (en) | 2011-10-04 |
US20050100960A1 (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8029734B2 (en) | Noncovalent sidewall functionalization of carbon nanotubes | |
JP5743974B2 (ja) | Dna検出用ナノチューブセンサー装置 | |
Veetil et al. | Development of immunosensors using carbon nanotubes | |
US7786540B2 (en) | Sensor platform using a non-horizontally oriented nanotube element | |
Radi | Electrochemical Aptamer‐Based Biosensors: Recent Advances and Perspectives | |
JP4618886B2 (ja) | サンプル中の標的の検出 | |
US20040132070A1 (en) | Nonotube-based electronic detection of biological molecules | |
KR20050105205A (ko) | 나노실린더-변형된 표면 | |
US20100047901A1 (en) | System and method for electronic sensing of biomolecules | |
US20070178477A1 (en) | Nanotube sensor devices for DNA detection | |
US20020179434A1 (en) | Carbon nanotube devices | |
EP1558933A1 (fr) | Detection electronique de molecules biologiques fondee sur des nanotubes | |
KR20070099462A (ko) | 나노선을 이용한 바이오센서 및 이의 제조 방법 | |
JP2008525822A (ja) | ポリヌクレオチド配列のdna検出/認識用ナノ電子装置 | |
KR100680132B1 (ko) | 자기성 물질을 이용한 탄소나노튜브 어레이의 제조방법 | |
US20060194263A1 (en) | Small molecule mediated, heterogeneous, carbon nanotube biosensing | |
KR100244202B1 (ko) | 생물전자소자의 인터페이스 감지막 및 그 제조방법 | |
Lenihan et al. | Protein immobilization on carbon nanotubes through a molecular adapter | |
Filik et al. | Electrochemical immunosensors based on nanostructured materials for sensing of prostate-specific antigen: a Review | |
Byon et al. | Label-free biomolecular detection using carbon nanotube field effect transistors | |
JP2007520887A (ja) | 基板上に導体構造部を配置するための方法及び該導体構造部を備えた基板 | |
KR20160086668A (ko) | 나노센서 트랜스듀서의 제조방법 | |
Li | Applications Biosensors | |
Lee | WALLED-CARBON NANOTUBE (MWCNT) NANOELECTRODE | |
Do Hyun Kim¹ et al. | WALLED-CARBON NANOTUBE (MWCNT) NANOELECTRODE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10473101 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |