[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002085085A1 - Procede de connexion pour structure a electrodes implantable - Google Patents

Procede de connexion pour structure a electrodes implantable Download PDF

Info

Publication number
WO2002085085A1
WO2002085085A1 PCT/FR2002/001269 FR0201269W WO02085085A1 WO 2002085085 A1 WO2002085085 A1 WO 2002085085A1 FR 0201269 W FR0201269 W FR 0201269W WO 02085085 A1 WO02085085 A1 WO 02085085A1
Authority
WO
WIPO (PCT)
Prior art keywords
pads
pad
stud
circuit
studs
Prior art date
Application number
PCT/FR2002/001269
Other languages
English (en)
Inventor
Thierry Herve
Original Assignee
Microvitae Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microvitae Technologies filed Critical Microvitae Technologies
Priority to US10/474,332 priority Critical patent/US7090505B2/en
Priority to EP02732808A priority patent/EP1378151A1/fr
Priority to JP2002582674A priority patent/JP4075615B2/ja
Publication of WO2002085085A1 publication Critical patent/WO2002085085A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/363Assembling flexible printed circuits with other printed circuits by soldering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/221Arrangements of sensors with cables or leads, e.g. cable harnesses
    • A61B2562/222Electrical cables or leads therefor, e.g. coaxial cables or ribbon cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/053Tails
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09472Recessed pad for surface mounting; Recessed electrode of component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10439Position of a single component
    • H05K2201/10477Inverted
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10666Plated through-hole for surface mounting on PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0455PTH for surface mount device [SMD], e.g. wherein solder flows through the PTH during mounting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Definitions

  • the present invention relates to structures carrying electrodes intended to measure the electrical activity of an organ or to stimulate it, and in particular the connection of these structures to a circuit.
  • a structure 1 with electrodes is intended to be connected to a downstream circuit 2.
  • the structure 1 comprises a flexible insulating support film 3.
  • On the film 3 are deposited electrodes 4 connected by conductive tracks 5 to pads of connection 6.
  • the electrodes, the pads and the tracks which connect them are produced by depositing and etching a conductive layer on the film 3.
  • a thin insulating layer, not shown, covers the structure, with the exception of the electrodes and pads.
  • Structure 1 is a flexible structure of small thickness (a few micrometers to a few tens of micrometers), the electrodes of which are intended to be placed in contact with an organ such as a nerve or the skin in order to measure the electrical activity of 1 ' organ or to stimulate it.
  • the structure 1 must be connected to the circuit 2.
  • the circuit 2 comprises pads 7 whose arrangement corresponds to that of the pads 6. Each pad 7 is connected to a conductive track 8 for the conduction of the signal supplied to or by the electrodes 4.
  • a hole 10 which passes right through the structure.
  • the downstream circuit 2 is partially shown and a single contact pad 7 is visible.
  • the structure 1 is shown here with the support film 3, a single pad 6 and an upper insulating layer 11.
  • the thickness of the circuit 2, of the order of one to two millimeters, is significant compared to that of the structure 1 which is at most a few tens of micrometers.
  • the structure 1 is placed on the circuit 2 so that each of the holes 10 is located above a stud 7.
  • the surface of each stud 7 is greater than that of a hole 10.
  • a drop of solder 12 which fills the hole 10 by overflowing on the stud 6.
  • the drop of solder 12 provides electrical contact between the studs 6 and 7.
  • the drilling of the studs 6 is generally carried out using a laser beam, which has the effect of partially bursting the metal layer forming the stud, which then no longer has a uniform surface.
  • the drilling of the studs 6 can also be carried out by etching, which requires an additional mask, hence a cost problem, and greatly increases the time for piercing the stud.
  • the impedance presented by this type of contact is relatively high.
  • the surface of the pad 6 allowing the passage of an electrical signal between the pads 6 and 7 is a substantially annular surface 13 delimited by the base of the drop of solder 12 and the circumference of the hole 10.
  • the surface of the pad 7 allowing the passage of the electrical signal is a substantially circular surface 14 and equal to the surface of the hole 10.
  • the surfaces 13 and 14 have been shown in bold lines in FIG. 2. In order not to reduce the impedance of the contact between the pads 6 and 7 too much, the surfaces 13 and 14 must be substantially equal. As a result, at most, the surface allowing the passage of an electric current between the pads 6 and 7 is equal to half the surface of the pad 6, which means that the impedance of the contact between the pads 6 and 7 is relatively high.
  • the weld 12 forms a fragile dome of relatively high height, typically of the order of 50 micrometers. This may present discomfort for the encapsulation of the circuit.
  • German patent application DE 195 30 353 A1 generally describes a method for connecting contact pads of a flexible film to a printed circuit.
  • the printed circuit has studs pierced with metallized holes, the metallization extending somewhat on the rear face of the printed circuit, not carrying the studs.
  • the parts of the film and of the circuit to be connected face each other and solder is deposited therebetween.
  • Heat is supplied to the rear face of the circuit, while a relatively high pressure is applied to the assembly formed by the film and the circuit. The heat supplied melts the solder which forms a relatively thick bonding layer between the film and the circuit. The excess weld is absorbed by the metallized hole.
  • An object of the present invention is to provide a connection between an electrode structure intended to measure or stimulate an activity of physiological origin and a circuit, without high pressure being exerted between the parts to be connected.
  • Another object of the present invention is to provide a connection between an electrode structure intended to measure or stimulate an activity of physiological origin and a circuit, without a high temperature being applied to one of the parts to be connected .
  • Another object of the present invention is to provide an easy connection between an electrode structure intended to measure or stimulate an activity of physiological origin and a circuit.
  • Another object of the present invention is to provide a connection between an electrode structure intended to measure or stimulate an activity of physiological origin and a circuit allowing optimal use of the surface of the structure and / or of the circuit.
  • the present invention provides a method for connecting first pads of a structure carrying electrodes suitable for measuring or stimulating an activity of physiological origin at second pads of at least one downstream circuit, each second pad being crossed by an opening perforating the downstream circuit, comprising the following steps: a) placing the downstream circuit on said structure, so that the opening of a second pad is opposite a first pad; and b) depositing in the opening of the second pad a conductive material ensuring the connection between the second pad and the first facing pad.
  • the opening made in the second stud has a surface substantially equal to the surface of the first opposite stud.
  • the part of said structure comprising the first pads is cut so as to form tongues, and the connection of the second pads to the first pads is such that the first pads of at least two adjacent tabs are connected to second pads of different downstream circuits, arranged substantially one above the other.
  • the opening perforating the downstream circuit is a metallized hole.
  • connection of the first pads to the second pads is carried out using a conductive adhesive, a conductive paste or a solder.
  • the second pad has a thickness of the order of 20 to 50 micrometers and the first pad has a thickness equal to at most a few micrometers.
  • the invention also provides a structure carrying electrodes suitable for measuring or stimulating an activity of physiological origin having first pads which can be connected to second pads of downstream circuits by a method according to the present invention.
  • the part of said structure peddling the first studs is cut so as to form tongues carrying each of the first studs.
  • the invention also provides a structure carrying electrodes suitable for measuring or stimulating an activity of physiological origin having first pads which can be connected to second pads of at least one downstream circuit by a method according to the present invention, first pads being connected to the electrodes by conductive tracks.
  • Said conductive tracks are arranged on at least two superposed levels separated by insulating layers, and at least one conductive track passes under a first pad.
  • the invention also provides an assembly formed by a structure carrying electrodes suitable for measuring or stimulating an activity of physiological origin and a downstream circuit, in which the structure carrying electrodes and the downstream circuit are connected by a method -above.
  • the part of the electrode-carrying structure which comprises studs and at least the part of the downstream circuit which is connected to said structure are covered with a biocompatible sheath.
  • FIG. 1, previously described represents an electrode structure and a downstream circuit
  • FIG. 2 represents a known type of connection between an electrode structure and a downstream circuit
  • FIG. 3A represents the connection of an electrode structure and a downstream circuit according to a first embodiment of the present invention
  • FIG. 3B represents the connection of an electrode structure and a downstream circuit according to a second embodiment of the present invention
  • FIGS. 4A and 4B respectively represent a new electrode structure and its mode of connection to a downstream circuit according to a third embodiment of the present invention
  • FIG. 5 represents a new structure of electrodes illustrating an advantage of the connection according to the present invention
  • Figures 6 and 7 show examples of application of a connection according to the present invention.
  • FIG. 3A shows a first embodiment of the present invention.
  • the end of an electrode structure 1 of the aforementioned type comprises an insulating support film 3, a pad 16 and an upper insulating layer 11.
  • a circuit 2 comprising a pad 17 to be connected to the pad 16 is placed here above the structure 1.
  • the circuit 2 has an opening 15 which passes completely through it, located substantially in the center of the pad 17.
  • the opening 15 has a size substantially equal to that of the pad 16.
  • the opening 15 is filled with a material 18 ensuring the electrical connection of the pads 16 and 17.
  • the material 18 is preferably a conductive paste or glue, but it can also be soldering. For example, a drop of conductive glue is deposited in the opening 15 and hardened using ultraviolet rays.
  • the material 18 fills the opening 15 and has a substantially flat surface which protrudes very little from the surface of the circuit 2.
  • circuit 2 which is placed above the structure 1, and not the reverse as in FIG. 2.
  • circuit 2 which is circuit 2 which is pierced in the present invention, and not structure 1.
  • circuit 2 is generally much thicker than structure 1 (typically a hundred times more) and it is much easier to regularly pierce the circuit 2 than the structure 1.
  • the conductive layer forming the pads 17 is often much thicker than the conductive layer forming the pads 16, and it is therefore much less fragile (typically, the thickness of a pad 17 is of the order of 20 to 50 micrometers, while the thickness of a pad 16 is a few micrometers at most, or even less than a micrometer).
  • the holes in circuit 2 can be made using various techniques, such as using conventional mechanical drilling techniques, and they are more regular.
  • the holes of the circuit 2 can also be made before the deposition of the conductive layer forming the pads 17. This allows, for example, to use a laser beam drilling without risking damaging the pads 17.
  • the thickness of the pad 17 is generally much greater than that of the pad 16 plays a role in the impedance of the connection.
  • the surface of the cylindrical crown 19 (in bold lines in FIG. 3A) corresponding, in the opening 15, to the thickness of the stud 17 is large and contributes significantly to the passage of the electric current.
  • R the radius of the stud 17
  • the surface of the pad 16 participating in the conduction of the current is 0.75. ⁇ R 2 .
  • the cylindrical surface 19 represents about l, 7. ⁇ Re, therefore l, 7. ⁇ R 2 , or more than twice as much.
  • connection material 18 does not need to spread largely on the pad 17 and the pad 17 does not need to be very extensive on the surface, which optimizes the surface used.
  • the material 18 can largely overflow on the conductive track which, in the circuit 2, leads to the pad 17.
  • the pad 17 can, if desired, be simply made by a part of a conductive track of circuit 2, pierced by an opening 15.
  • connection material 18 fills the hole defined by the opening 15, which is generally a deep hole, in contrast to the hole 10 in FIG. 2.
  • a sufficient quantity of material connection is systematically used and forms solid connections, without forming a large dome as in FIG. 2. It will also be noted that it is possible to scrape the material 18 on the surface of circuit 2 and to obtain a surface of circuit 2 practically flat.
  • connection of FIG. 3A did not require any application of excessive pressure or heat. Indeed, the structure 1 and the circuit 2 are simply placed one against the other during the connection and kept in place without excessive pressure during the connection. If necessary, the structure 1 can be bonded to the circuit 2 using a thin insulating layer of insulating glue which does not cover the studs 16.
  • FIG. 3B shows a second embodiment of the present invention.
  • a conductive track 20 of the circuit 2 leads to the opening 15 of the stud 17.
  • the hole defined by the opening 15 is metallized.
  • a conductive layer 22 covers the walls of the opening 15. The layer
  • FIGS. 4A and 4B illustrate a third embodiment of the present invention, which allows great flexibility of use as well as make 17 large studs.
  • FIG. 4A represents a new electrode structure 1 '.
  • the end of the structure 1 ' comprises eight studs 16-i, i ranging from 1 to 8.
  • the end of the structure is cut by three longitudinal openings 24 separating the studs 16-i in groups of two.
  • the openings 24 thus divide the end of the structure 1 'into four longitudinal tabs A, B, C, D, arranged in this order and comprising two pads each.
  • Figure 4B illustrates how to connect the structure 1 '.
  • the structure 1 ' is connected to two downstream circuits 2a and 2b.
  • the non-adjacent tabs A and C are connected to the circuit 2a in the manner described in relation to FIG. 3A or 3B.
  • the non-adjacent tabs B and D are connected to the circuit 2b in the manner described in relation to FIG. 3A or 3B.
  • the circuits 2a and 2b are arranged one above the other.
  • the insulating support film of the structure 1 can alone provide electrical insulation between the circuits 2a and 2b, or an additional insulator such as an insulating sheet will separate the circuits 2a and 2b.
  • the pads 17 of each of the circuits 2a or 2b can have a double surface of the pads 16-i and extend over the width of two tabs A, B, C, D.
  • the pad 17 connected to the pad 16-1 of the tab A can occupy a surface corresponding to stud 16-1 and stud 16-3 of tongue B. It will easily have an opening 15 of the same surface as stud 16-1.
  • circuits 2a and 2b is meant either two separate downstream circuits coupled or not, or simply two superimposed elements of a three-dimensional connector with several stages, associated with a single downstream circuit.
  • the present invention is susceptible of various variants and modifications which will appear to those skilled in the art.
  • the electrode-carrying structure has been described in an elongated shape, with electrodes at one end and studs at the other end.
  • the structure can be of any shape, for example circular, and the electrodes and the studs of the structure can be arranged in any part of the structure.
  • the number of studs in the structure can be arbitrary, for example several hundred.
  • connection method of the present invention is applicable for very different thicknesses of the electrode-carrying structure and of the circuit 2. It will also be noted that the shape of the pads 17 can be arbitrary.
  • the structure can be cut into a number of tabs different from four and the number of downstream circuits or elements superposed on a connector of the downstream circuit can be greater than two.
  • each of the tongues of FIG. 4A is shown with a single row of studs, the tongues may comprise several rows of studs, for example two.
  • the tongues A and D of FIG. 4B can be connected to the circuit 2a and the tongues B and C to the circuit 2b, providing the same advantages as those cited in connection with FIG. 4B.
  • connection method according to the present invention will appear to one skilled in the art.
  • the structure comprises not one layer of electrodes, but several, the present invention has an important advantage.
  • FIG. 5 represents a structure 1 "with two layers of electrodes.
  • the support film 3 of the structure 1" is covered with a first conductive layer 30.
  • the layer 30 is etched to form, at one end of the structure, a pad 16a connected by a conductive track 31 to an electrode not shown.
  • the layer 30 On the layer 30 is an insulating layer 32. On the layer 32, is disposed a second conductive layer 34. The layer 34 is etched to form a pad 16b, connected by a conductive track 35 to an electrode not shown. The layer 34 is surmounted by an insulating layer 36. The layers 32 and 36 are suitably etched to reveal the studs 16a and 16b. The pad 16a and the track 31 are located at a level below the pad 16b and the track 35. In the prior art described in relation to FIG. 2, as the pads 16a and 16b must be pierced with perforating holes, the track 31 cannot be located under the pad 16b, unless the track 31 is complicated and the use of a complex mask for its etching. The area required to make the track 31 can then be relatively large. In the invention, the track 31 can pass under the pad 16b and be rectilinear. The surface of the structure is better used and the mask used for etching the layer 31 is simpler.
  • the electrode structure can be connected to another flexible structure, and not to a rigid downstream circuit.
  • an electrode structure 1 the layer 38 of which carries electrodes and connection pads is shown in bold lines, is connected to a flexible film 40, acting as a downstream circuit.
  • the film 40 has an insulating base 41 and, on its upper face, a conductive layer 42 in which the pads to be connected to the pads of the layer 38 are formed.
  • the connection between the structure 1 and the film 40 is made using of the connection method according to the present invention, the studs of the structure 1 and of the film 40 not being shown for the sake of simplicity.
  • a biocompatible sheath 46 surrounds the film 40, or at least the part of the film 40 intended to come into contact with one or more members, and the part of the structure 1 comprising the studs.
  • the structure 1, to be placed in contact with an organ is biocompatible and its cost price is high.
  • the manufacture of the structure 1 is carried out by depositing layers on a mother wafer, and it is advantageous to produce as many as possible simultaneously.
  • it is advantageous to produce relatively short structures 1 typically, of the order of 2 centimeters.
  • the organ which must be tested or stimulated is located at a non-negligible depth from the surface of the body. For example, in surgery of the base of the skull (retrosigmoid approach), the auditory nerve is located at a depth of 5 centimeters and a short electrode structure does not reach it.
  • the assembly constituted by the structure 1 and the film 40 can be relatively long, by example up to 20 cm, and the biocompatible sheath 46 allows the introduction of the assembly to the desired depth. Furthermore, the assembly in FIG. 6 is relatively inexpensive. Indeed, the materials covered by the biocompatible sheath do not need to be biocompatible and are of lower cost.
  • the structure 1 and the film 40 can be arranged directly against each other, without an adhesive layer between them, the pads of the structure 1 and of the film 40 being on faces. opposed.
  • This has an advantage over the documents of the prior art cited above, DE 195 30 353 and JP 09 312 53.
  • the pads to be connected together face each other, unlike the present invention, and a layer of solder constituting a relatively thick bonding layer is located between the thin structure and the thick structure.
  • the assembly of structure 1 and of film 40 has a thickness of 23 microns.
  • a bonding layer as in documents DE 195 30 353 and JP 09 312 53, between the structure 1 and the film 40 would considerably increase the thickness of the assembly formed by the structure and the film, this which can make it ineffective in certain applications.
  • the presence of a rigid and brittle bonding layer can constitute a drawback (lack of flexibility, risk of breaking the connection).
  • the face of the structure comprising the studs faces the face of the downstream circuit not comprising the studs leaves the face of the downstream circuit which comprises the studs free. This allows for example that the downstream circuit has many pads and many connecting tracks without running the risk that they perform unwanted contacts with the studs and / or tracks of the structure.
  • FIG. 7 illustrates another example of application of the connection method according to the present invention.
  • an electrode structure 1 having a layer 38 carrying electrodes and connection pads, is connected to one end of a rigid element 50, carrying, at its upper face 52, connection pads and metal tracks.
  • the other end of the rigid element 50 is connected to a flexible thin film 56, which carries connection pads on its upper surface 58.
  • the connections between the rigid element 50 and, respectively, the structure 1 and the film 56 are produced according to the method of the present invention.
  • the rigid element 50 can be relatively short, for example 5 mm.
  • a biocompatible sheath 60 surrounds the film 56, the rigid element 50 and the part of the structure 1 carrying the studs. As in FIG.
  • the sheath 60 makes it possible to connect the structure 1 to a relatively long flexible film, the assembly being biocompatible and relatively inexpensive.
  • the element 50 can have various functions. For example, the surgeon can grasp it using pliers to more easily introduce the structure.
  • the element 50 can also be used, after the establishment of the structure, to fix the assembly to the drape of the operating field.
  • the element 50 need not be made of biocompatible material. It can be of various thicknesses, for example of the order of 50 micrometers.
  • the masks for manufacturing the element 50 need not be as precise as those used for manufacturing the structure 1 and they are therefore less expensive. It has already been pointed out that no high pressure needs to be exerted for the connection according to the present invention of an electrode structure to a downstream circuit. This is particularly advantageous in certain cases, for example where the electrode structure has elements in relief at the studs, for example elements of 20 microns of thickness or more, made of relatively soft insulating material, which would collapse upon application of high pressure.
  • FIGS. 4A and 5 can also be connected by any other method without departing from the scope of the present invention.
  • an electrode structure resulting from a combination of the structures of FIGS. 4A and 5, for example a structure in which one or more tongues have studs connected to superimposed tracks, is part of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

L'invention concerne un procédé pour connecter des premiers plots (16) d'une structure (1) proteuse d'electrodes (4) propres à mesurer ou à stimuler une activité d'origine physiologique à des seconds plots (17) d'au moins un circuit aval (2), chaque second plot (17) étant traversé par une ouverture (15) perforant le circuit aval. Le procédé comporte les étapes suivantes : a) placer le circuit aval sur ladite structure, de sorte que l'ouverture (15) d'un second plot (17) se trouve en face d'un premier plot (16); et b) déposer dans l'ouverture (15) du second plot (17) un matériau conducteur (18) assurant la connexion entre le second plot et le premier plot en regard.

Description

PROCEDE DE CONNEXION POUR STRUCTURE A ELECTRODES IMPLANTABLE
La présente invention concerne des structures portant des électrodes destinées à mesurer l'activité électrique d'un organe ou à le stimuler, et en particulier la connexion de ces structures à un circuit. En figure 1, une structure 1 à électrodes est destinée à être raccordée à un circuit aval 2. La structure 1 comporte un film support souple isolant 3. Sur le film 3 sont déposées des électrodes 4 reliées par des pistes conductrices 5 à des plots de connexion 6. Les électrodes, les plots et les pistes qui les relient sont réalisés par dépôt et gravure d'une couche conductrice sur le film 3. Une couche isolante mince, non représentée, recouvre la structure, à l'exception des électrodes et des plots. La structure 1 est une structure souple de faible épaisseur (quelques micromètres à quelques dizaines de micromètres) , dont les électrodes sont destinées à être placées au contact d'un organe comme un nerf ou la peau afin de mesurer 1 'activité électrique de 1 'organe ou à le stimuler.
La structure 1 doit être connectée au circuit 2. Le circuit 2 comporte des plots 7 dont la disposition correspond à celle des plots 6. Chaque plot 7 est relié à une piste conductrice 8 en vue de la conduction du signal fourni aux ou par les électrodes 4. Pour connecter un plot 6 à un plot 7, on pratique, dans chacun des plots 6, un trou 10 qui traverse la structure de part en part.
En figure 2, le circuit aval 2 est représenté partiellement et un seul plot de contact 7 est visible. La structure 1 est représentée ici avec le film support 3, un seul plot 6 et une couche isolante supérieure 11. L'épaisseur du circuit 2, de l'ordre d'un à deux millimètres, est importante devant celle de la structure 1 qui est au plus de quelques dizaines de micromètres. La structure 1 est placée sur le circuit 2 de sorte que chacun des trous 10 se trouve au-dessus d'un plot 7. La surface de chaque plot 7 est supérieure à celle d'un trou 10. On dépose alors, par une technique classique de liaison bien connue en microélectronique, une goutte de soudure 12 qui remplit le trou 10 en débordant sur le plot 6. La goutte de soudure 12 assure le contact électrique entre les plots 6 et 7.
Cette façon de procéder présente plusieurs inconvénients .
Il faut percer la structure porteuse d'électrodes au milieu de chaque plot 6. Cette opération est délicate du fait de la fragilité de la structure et cela suppose que les plots 6 sont assez gros, ce qui limite leur nombre. Le perçage des plots 6 est en général réalisé à l'aide d'un faisceau laser, ce qui a pour effet de faire partiellement éclater la couche métallique formant le plot, qui ne présente plus alors une surface uniforme. Le perçage des plots 6 peut aussi être réalisé par gravure, ce qui nécessite un masque supplémentaire, d'où un problème de coût, et augmente beaucoup le temps de perçage du plot.
De plus, 1 ' impédance présentée par ce type de contact est relativement élevée. En effet, la surface du plot 6 permettant le passage d'un signal électrique entre les plots 6 et 7 est une surface 13 sensiblement annulaire délimitée par la base de la goutte de soudure 12 et la circonférence du trou 10. La surface du plot 7 permettant le passage du signal électrique est une surface 14 sensiblement circulaire et égale à la superficie du trou 10. Les surfaces 13 et 14 ont été représentées en traits gras en figure 2. Pour ne pas trop diminuer l'impédance du contact entre les plots 6 et 7, les surfaces 13 et 14 doivent être sensiblement égales. Il en résulte qu'au maximum, la surface permettant le passage d'un courant électrique entre les plots 6 et 7 est égale à la moitié de la surface du plot 6, ce qui fait que l'impédance du contact entre les plots 6 et 7 est relativement élevée.
En outre, la soudure 12 forme un dôme fragile de hauteur relativement élevée, typiquement de l'ordre de 50 micromètres. Cela peut présenter une gêne pour 1 ' encapsulâtion du circuit.
La demande de brevet allemand DE 195 30 353 Al décrit de façon générale un procédé pour connecter des plages de contact d'un film flexible à un circuit imprimé. Dans ce document, le circuit imprimé présente des plots percés de trous métallisés, la métallisation se prolongeant quelque peu sur la face arrière du circuit imprimé, ne portant pas les plots. Les parties du film et du circuit à connecter se font face et de la soudure est déposée entre celles-ci. De la chaleur est fournie à la face arrière du circuit, tandis qu'une pression relativement élevée est appliquée sur l'ensemble formé par le film et le circuit. La chaleur fournie fait fondre la soudure qui forme une couche de collage relativement épaisse entre le film et le circuit. L'excédent de soudure est absorbé par le trou métallisé .
L'abrégé du brevet japonais JP 09 312453 décrit une technique similaire à celle décrite dans la demande DE 195 30 353. Les techniques décrites dans les deux documents ci- dessus requièrent l'application d'une température et d'une pression élevée. Si l'on cherche à appliquer ces techniques pour connecter une structure portant des électrodes destinées à mesurer l'activité électrique d'un organe ou à le stimuler, on se heurte à plusieurs problèmes. En effet, les structures à électrodes sont très minces et très fragiles. L'application d'une pression, même modérée, écrase la structure et peut l'endommager. En outre, l'application d'une température élevée, nécessaire pour faire fondre la soudure, peut détruire la structure. On verra par la suite que la surépaisseur créée par la couche de soudure peut aussi présenter un inconvénient.
Un objet de la présente invention est de réaliser une connexion entre une structure d'électrodes destinée à mesurer ou à stimuler une activité d'origine physiologique et un circuit, sans qu'une pression élevée soit exercée entre les parties à connecter.
Un autre objet de la présente invention est de réaliser une connexion entre une structure d'électrodes destinée à mesurer ou à stimuler une activité d'origine physiologique et un circuit, sans qu'une température élevée soit appliquée à l'une des parties à connecter.
Un autre objet de la présente invention est de réaliser une connexion aisée entre une structure d'électrodes destinée à mesurer ou à stimuler une activité d'origine physiologique et un circuit.
Un autre objet de la présente invention est de réaliser une connexion permettant d'optimiser l'impédance de contact entre une structure d'électrodes destinée à mesurer ou à stimuler une activité d'origine physiologique et un circuit. Un autre objet de la présente invention est de réaliser une connexion sensiblement plane entre une structure d'électrodes destinée à mesurer ou à stimuler une activité d'origine physiologique et un circuit.
Un autre objet de la présente invention est de réaliser une connexion entre une structure d'électrodes destinée à mesurer ou à stimuler une activité d'origine physiologique et un circuit permettant une utilisation optimale de la surface de la structure et/ou du circuit.
Pour atteindre ces objets ainsi que d'autres, la présente invention prévoit un procédé pour connecter des premiers plots d'une structure porteuse d'électrodes propres à mesurer ou à stimuler une activité d'origine physiologique à des seconds plots d'au moins un circuit aval, chaque second plot étant traversé par une ouverture perforant le circuit aval, comportant les étapes suivantes : a) placer le circuit aval sur ladite structure, de sorte que l'ouverture d'un second plot se trouve en face d'un premier plot ; et b) déposer dans l'ouverture du second plot un matériau conducteur assurant la connexion entre le second plot et le premier plot en regard.
Selon un mode de réalisation de la présente invention, l'ouverture pratiquée dans le second plot a une surface sensiblement égale à la surface du premier plot en regard. Selon un mode de réalisation de la présente invention, la partie de ladite structure comportant les premiers plots est découpée de façon à former des languettes, et la connexion des second plots aux premiers plots est telle que les premiers plots de deux languettes adjacentes au moins sont connectés à des seconds plots de circuits aval différents, disposés sensiblement les uns au-dessus des autres.
Selon un mode de réalisation de la présente invention, l'ouverture perforant le circuit aval est un trou métallisé.
Selon un mode de réalisation de la présente invention, la connexion des premiers plots aux seconds plots est réalisée à l'aide d'une colle conductrice, d'une pâte conductrice ou d'une soudure .
Selon un mode de réalisation de la présente invention, le second plot a une épaisseur de l'ordre de 20 à 50 micromètres et le premier plot a une épaisseur égale au plus à quelques micromètres.
L' invention prévoit aussi une structure porteuse d'électrodes propres à mesurer ou à stimuler une activité d'origine physiologique présentant des premiers plots pouvant être connectés à des seconds plots de circuits aval par un procédé selon la présente invention. La partie de ladite structure colportant les premiers plots est découpée de façon à former des languettes portant chacune des premiers plots.
L' invention prévoit aussi une structure porteuse d'électrodes propres à mesurer ou à stimuler une activité d'origine physiologique présentant des premiers plots pouvant être connectés à des seconds plots d'au moins un circuit aval par un procédé selon la présente invention, les premiers plots étant reliés aux électrodes par des pistes conductrices. Lesdites pistes conductrices sont disposées sur au moins deux niveaux superposés séparés par des couches isolantes, et au moins une piste conductrice passe sous un premier plot.
L ' invention prévoit aussi un ensemble formé par une structure porteuse d'électrodes propres à mesurer ou à stimuler une activité d'origine physiologique et un circuit aval, dans lequel la structure porteuse d'électrodes et le circuit aval sont connectés par un procédé ci-dessus.
Dans un mode de réalisation de la présente invention, la partie de la structure porteuse d'électrodes qui comporte des plots et au moins la partie du circuit aval qui est connectée à ladite structure sont recouvertes d'une gaine biocompatible.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente une structure d'électrodes et un circuit aval ; la figure 2 représente un type connu de connexion entre une structure d'électrodes et un circuit aval ; la figure 3A représente la connexion d'une structure d'électrodes et d'un circuit aval selon un premier mode de réalisation de la présente invention ; la figure 3B représente la connexion d'une structure d'électrodes et d'un circuit aval selon un deuxième mode de réalisation de la présente invention ; les figures 4A et 4B représentent respectivement une nouvelle structure à électrodes et son mode de connexion à un circuit aval selon un troisième mode de réalisation de la présente invention ; la figure 5 représente une nouvelle structure d'électrodes illustrant un avantage de la connexion selon la présente invention ; et les figures 6 et 7 représentent des exemples d'application d'une connexion selon la présente invention.
Sur les figures, de mêmes signes de référence représentent de mêmes éléments. Les échelles, notamment en ce qui concerne les épaisseurs, n'ont pas été respectées.
La figure 3A représente un premier mode de réalisation de la présente invention. L'extrémité d'une structure d'électrodes 1 du type susmentionné comporte un film support isolant 3, un plot 16 et une couche isolante supérieure 11. Un circuit 2 comportant un plot 17 à relier au plot 16 est placé ici au- dessus de la structure 1. Le circuit 2 comporte une ouverture 15 qui le traverse totalement, située sensiblement au centre du plot 17. Dans l'exemple représenté, l'ouverture 15 a une taille sensiblement égale à celle du plot 16. L'ouverture 15 est remplie d'un matériau 18 assurant la connexion électrique des plots 16 et 17. Le matériau 18 est de préférence une pâte ou une colle conductrice, mais il peut s'agir aussi de soudure. Par exemple, une goutte de colle conductrice est déposée dans l'ouverture 15 et durcie à l'aide de rayons ultraviolets. Le matériau 18 remplit l'ouverture 15 et a une surface sensiblement plane qui dépasse très peu de la surface du circuit 2.
Selon la présente invention, c'est le circuit 2 qui est placé au-dessus de la structure 1, et non l'inverse comme en figure 2. Cela présente de nombreux avantages . D'abord, c'est le circuit 2 qui est percé dans la présente invention, et non la structure 1. Or, le circuit 2 est généralement beaucoup plus épais que la structure 1 (typiquement cent fois plus) et il est beaucoup plus facile de percer de façon régulière le circuit 2 que la structure 1. En outre, la couche conductrice formant les plots 17 est souvent beaucoup plus épaisse que la couche conductrice formant les plots 16, et elle est par conséquent beaucoup moins fragile (typiquement, l'épaisseur d'un plot 17 est de l'ordre de 20 à 50 micromètres, alors que l'épaisseur d'un plot 16 est de quelques micromètres au plus, voire inférieure à un micromètre) . Les trous du circuit 2 peuvent être réalisés à l'aide de techniques variées, comme à l'aide de techniques classiques de perçage mécanique, et ils sont plus réguliers. Les trous du circuit 2 peuvent aussi être réalisés avant le dépôt de la couche conductrice formant les plots 17. Cela permet, par exemple, d'utiliser un perçage par faisceau laser sans risquer de détériorer les plots 17.
Ensuite, le fait que l'épaisseur du plot 17 est généralement beaucoup plus importante que celle du plot 16 joue un rôle au niveau de l'impédance de la connexion. En effet, la surface de la couronne cylindrique 19 (en traits gras sur la figure 3A) correspondant, dans l'ouverture 15, à l'épaisseur du plot 17 est importante et participe de façon non négligeable au passage du courant électrique. A titre d'exemple, on suppose que les plots 16 et 17 ont un même rayon R et que l'épaisseur e du plot 17 est aussi égale à R. Si on choisit une ouverture 15 qui représente 75 % de la surface du plot 17, la surface du plot 16 participant à la conduction du courant est 0,75.πR2. La surface cylindrique 19 représente quand à elle environ l,7.πRe, donc l,7.πR2, soit plus de deux fois plus. Comme en général les plots
16 et 17 sont de faible rayon (typiquement une dizaine de micromètres) , l'épaisseur e est généralement supérieure au rayon des plots et, en ce qui concerne le plot 17, c'est elle qui participe principalement au passage du courant. Il en résulte que le matériau de connexion 18 n'a pas besoin de s'étaler largement sur le plot 17 et le plot 17 n'a pas besoin d'être très étendu en surface, ce qui optimise la surface utilisée. En outre, si besoin est, le matériau 18 peut largement déborder sur la piste conductrice qui, dans le circuit 2, mène au plot 17. Aussi, le plot 17 peut, si cela est souhaité, être simplement réalisé par une partie d'une piste conductrice du circuit 2, percée par une ouverture 15.
De plus, dans la présente invention, le matériau de connexion 18 remplit le trou défini par l'ouverture 15, qui est généralement un trou profond, contrairement au trou 10 de la figure 2. Il en résulte qu'une quantité suffisante de matériau de connexion est systématiquement utilisée et forme des connexions solides, sans former un dôme important comme en figure 2. On notera d'ailleurs qu'il est possible de racler le matériau 18 à la surface du circuit 2 et d'obtenir une surface du circuit 2 pratiquement plane.
Par rapport aux connexions décrites dans les documents DE 195 30 353 et JP 09 312453, la connexion de la figure 3A n'a nécessité aucune application de pression ou de chaleur excessives. En effet, la structure 1 et le circuit 2 sont simplement placés l'un contre l'autre au cours de la connexion et maintenus en place sans pression excessive au cours de la connexion. Si besoin est, la structure 1 peut être collée au circuit 2 à l'aide d'une mince couche isolante de colle isolante ne recouvrant pas les plots 16.
La figure 3B représente un deuxième mode de réalisation de la présente invention. En figure 3B, une piste conductrice 20 du circuit 2 aboutit à l'ouverture 15 du plot 17. Le trou défini par l'ouverture 15 est métallisé. Une couche conductrice 22 recouvre les parois de l'ouverture 15. La couche
22 peut, comme cela est représenté, déborder un peu à la surface du circuit 2, mais cela n'est pas nécessaire. Le plot 17 est ainsi défini par la couche conductrice 22, reliée à la piste 20. Dans ce mode de réalisation, la surface du plot 17 participant à la conduction du courant électrique est très grande. Le matériau de connexion 18 n'a pas besoin de remplir la totalité de 1 ' ouverture 15 pour assurer une bonne résistance mécanique et une bonne conduction de la connexion. La surface du circuit 2 reste plane. Ce mode de réalisation permet une diminution particulièrement importante de 1 ' impédance de la connexion réalisée et le plot 17 n'occupe pas plus de place que le plot 16 en regard. Cela présente un avantage important, notamment lorsque de nombreux plots 16 sont disposés sur une surface réduite de la structure 1. Les figures 4A et 4B illustrent un troisième mode de réalisation de la présente invention, qui permet une grande souplesse d'utilisation ainsi que de réaliser des plots 17 de grande taille.
La figure 4A représente une nouvelle structure d'élec- trodes l'. En figure 4A, l'extrémité de la structure l' comporte huit plots 16-i, i allant de 1 à 8. L'extrémité de la structure est découpée par trois ouvertures longitudinales 24 séparant les plots 16-i en groupes de deux. Les ouvertures 24 divisent ainsi 1 'extrémité de la structure 1 ' en quatre languettes longitu- dinales A, B, C, D, rangées dans cet ordre et comportant deux plots chacune.
La figure 4B illustre la façon de connecter la structure 1 ' . La structure 1 ' est connectée à deux circuits aval 2a et 2b. Les languettes non adjacentes A et C sont connectées au circuit 2a de la manière décrite en relation avec la figure 3A ou 3B. De même, les languettes non adjacentes B et D sont connectées au circuit 2b de la manière décrite en relation avec la figure 3A ou 3B.
Les circuits 2a et 2b sont disposés l'un au-dessus de 1 'autre. Le film support isolant de la structure 1 peut assurer à lui seul l'isolement électrique entre les circuits 2a et 2b, ou un isolant supplémentaire comme une feuille isolante séparera les circuits 2a et 2b.
En procédant ainsi, on réalise un empilement des circuits 2a et 2b. Les plots 17 de chacun des circuits 2a ou 2b peuvent avoir une surface double des plots 16-i et s'étendre sur la largeur de deux languettes A, B, C, D. Ainsi, par exemple, le plot 17 connecté au plot 16-1 de la languette A pourra occuper une surface correspondant au plot 16-1 et au plot 16-3 de la languette B. Il présentera aisément une ouverture 15 de même surface que le plot 16-1.
Ce mode de connexion est avantageux. Par exemple, les plots de la structure l' peuvent être deux fois plus petits et donc deux fois plus nombreux que dans l'art antérieur, ou bien la largeur de la structure l' peut être deux fois plus faible. L'ensemble obtenu forme un ensemble compact, pratique à mettre en place, très souple d'emploi. Par circuits 2a et 2b, on entend soit deux circuits aval distincts couplés ou non, soit simplement deux éléments superposés d'un connecteur tridimensionnel à plusieurs étages, associé à un circuit aval unique.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, la structure porteuse d'électrodes a été décrite de forme allongée, avec des électrodes à une extrémité et des plots à l'autre extrémité. Cependant, la structure peut être de forme quelconque, par exemple circulaire, et les électrodes et les plots de la structure peuvent être disposés en une partie quelconque de la structure. Aussi, le nombre des plots de la structure peut être quelconque, par exemple de plusieurs centaines.
On notera que le procédé de connexion de la présente invention s'applique pour des épaisseurs très diverses de la structure porteuse d'électrodes et du circuit 2. On notera également que la forme des plots 17 peut être quelconque.
Aussi, dans le mode de connexion illustré en relation avec les figures 4A et 4B, la structure peut être découpée en un nombre de languettes différent de quatre et le nombre de circuits aval ou d'éléments superposés d'un connecteur du circuit aval peut être supérieur à deux. Aussi, bien que chacune des languettes de la figure 4A soit représentée avec une seule rangée de plots, les languettes peuvent comporter plusieurs rangées de plots, par exemple deux. Aussi, il n'est pas nécessaire que toutes les languettes adjacentes soient connectées à des circuits aval différents. Par exemple, les languettes A et D de la figure 4B peuvent être connectées au circuit 2a et les languettes B et C au circuit 2b, en procurant les mêmes avantages que ceux cités en relation avec la figure 4B.
On notera aussi que d'autres avantages du procédé de connexion selon la présente invention apparaîtront à 1 'homme de 1 'art . Par exemple, dans le cas où la structure comporte non pas une couche à électrodes, mais plusieurs, la présente invention présente un avantage important.
La figure 5 représente une structure 1" à deux couches d'électrodes. Le film support 3 de la structure 1" est recouvert d'une première couche conductrice 30. La couche 30 est gravée pour former, à une extrémité de la structure, un plot 16a relié par une piste conductrice 31 à une électrode non représentée.
Sur la couche 30 se trouve une couche isolante 32. Sur la couche 32, est disposée une deuxième couche conductrice 34. La couche 34 est gravée pour former un plot 16b, relié par une piste conductrice 35 à une électrode non représentée. La couche 34 est surmontée d'une couche isolante 36. Les couches 32 et 36 sont convenablement gravées pour faire apparaître les plots 16a et 16b. Le plot 16a et la piste 31 sont situés à un niveau inférieur au plot 16b et à la piste 35. Dans l'art antérieur décrit en relation avec la figure 2, comme les plots 16a et 16b doivent être percés de trous perforants, la piste 31 ne peut pas se trouver sous le plot 16b, à moins d'un cheminement compliqué de la piste 31 et de l'utilisation d'un masque complexe pour sa gravure. La surface nécessaire pour réaliser la piste 31 peut alors être relativement importante. Dans l'invention, la piste 31 peut passer sous le plot 16b et être rectiligne. La surface de la structure est mieux utilisée et le masque utilisé pour la gravure de la couche 31 est plus simple.
Enfin, les applications de la connexion selon la présente invention sont diverses et variées. Par exemple, comme cela est illustré en figure 6, la structure à électrodes peut être reliée à une autre structure flexible, et non à un circuit aval rigide.
En figure 6, une structure à électrodes 1, dont la couche 38 porteuse d'électrodes et de plots de connexion est représentée en traits gras, est reliée à un film souple 40, faisant office de circuit aval. Le film 40 comporte une base isolante 41 et, à sa face supérieure, une couche conductrice 42 dans laquelle sont formés les plots à connecter aux plots de la couche 38. La liaison entre la structure 1 et le film 40 est réalisée à l'aide du procédé de connexion selon la présente invention, les plots de la structure 1 et du film 40 n'étant pas représentés par souci de simplicité. Une gaine biocompatible 46 entoure le film 40, ou du moins la partie du film 40 destinée à entrer en contact avec un ou plusieurs organes, et la partie de la structure 1 comportant les plots.
L'exemple de la figure 6 est particulièrement avantageux. En effet, la structure 1, devant être placée au contact d'un organe, est biocompatible et son prix de revient est élevé. En outre, la fabrication de la structure 1 est réalisée par dépôt de couches sur une plaquette mère, et il est avantageux d'en réaliser simultanément le plus grand nombre possible. Ainsi, il est avantageux de réaliser des structures 1 relativement courtes (typiquement, de l'ordre de 2 centimètres) .Or, dans certaines applications, l'organe qui doit être testé ou stimulé se trouve à une profondeur non négligeable de la surface du corps. Par exemple, en chirurgie de la base du crâne (approche rétrosigmoîde) , le nerf auditif est situé à une profondeur de 5 centimètres et une structure à électrodes courte ne 1 ' atteint pas . En figure 6, 1 ' ensemble constitué par la structure 1 et le film 40 peut être relativement long, par exemple aller jusqu'à 20 cm, et la gaine biocompatible 46 permet l'introduction de l'ensemble à la profondeur souhaitée. Par ailleurs, l'ensemble de la figure 6 est relativement bon marché. En effet, les matériaux recouverts par la gaine biocompatible n'ont pas besoin d'être biocompatibles et sont d'un moindre coût.
Dans l'exemple de la figure 6, il est avantageux de garder une épaisseur de 1 'ensemble formé par la structure 1 et le film 40 aussi faible que possible. Avec le procédé de connexion selon la présente invention, la structure 1 et le film 40 peuvent être disposés directement l'un contre l'autre, sans couche de collage entre eux, les plots de la structure 1 et du film 40 étant sur des faces opposées. Cela présente un avantage par rapport aux documents de 1 'art antérieur cité précédemment, DE 195 30 353 et JP 09 312 53. En effet, dans ces deux documents, les plots à connecter ensemble se font face, contrairement à la présente invention, et une couche de soudure constituant une couche de collage relativement épaisse se trouve entre la structure mince et la structure épaisse. Dans la présente invention, si l'on utilise par exemple une structure 1 de 3 microns, et un film 40 de 20 microns, l'ensemble de la structure 1 et du film 40 a une épaisseur de 23 microns. L'addition d'une couche de collage, comme dans les documents DE 195 30 353 et JP 09 312 53, entre la structure 1 et le film 40 augmenterait considérablement l'épaisseur de l'ensemble formé par la structure et le film, ce qui peut le rendre inopérant dans certaines applications. En outre, la présence d'une couche de collage rigide et cassante peut constituer un inconvénient (manque de souplesse, risque de rupture de la connexion) . Par ailleurs, le fait que, dans la présente invention, la face de la structure comportant les plots fait face à la face du circuit aval ne comportant pas les plots laisse libre la face du circuit aval qui comporte les plots. Cela permet par exemple que le circuit aval comporte de nombreux plots et de nombreuses pistes de liaison sans courir le risque que ceux-ci réalisent des contacts non souhaités avec les plots et/ou pistes de la structure .
La figure 7 illustre un autre exemple d'application du procédé de connexion selon la présente invention. En figure 7, une structure à électrodes 1, présentant une couche 38 porteuse d'électrodes et de plots de connexion, est reliée à une extrémité d'un élément rigide 50, portant, à sa face supérieure 52, des plots de connexion et des pistes métalliques. L'autre extrémité de l'élément rigide 50 est connectée à un film flexible de faible épaisseur 56, qui porte des plots de connexion sur sa surface supérieure 58. Les connexions entre l'élément rigide 50 et, respectivement, la structure 1 et le film 56 sont réalisées selon le procédé de la présente invention. L'élément rigide 50 peut être relativement court, par exemple de 5 mm. Une gaine biocompatible 60 entoure le film 56, l'élément rigide 50 et la partie de la structure 1 portant les plots. Comme en figure 6, la gaine 60 permet de relier la structure 1 à un film souple relativement long, l'ensemble étant biocompatible et relativement bon marché. L'élément 50 peut avoir diverses fonctions. Par exemple, le chirurgien peut le saisir à 1 'aide d'une pince pour introduire plus facilement la structure. L'élément 50 peut aussi servir, après la mise en place de la structure, à fixer l'ensemble au drap du champ opératoire. L'élément 50 n'a pas besoin d'être en matériau biocompatible. Il peut être de diverses épaisseurs, par exemple de l'ordre de 50 micromètres. Par ailleurs, les masques de fabrication de l'élément 50 n'ont pas besoin d'être aussi précis que ceux utilisés de la fabrication de la structure 1 et ils sont par conséquent moins onéreux. On a déjà signalé qu'aucune pression élevée n'a besoin d'être exercée pour la connexion selon la présente invention d'une structure à électrodes à un circuit aval. Cela est particulièrement avantageux dans certains cas, par exemple là où la structure à électrodes présente des éléments en relief au niveau des plots, par exemple des éléments de 20 microns d'épaisseur ou plus, en matériau isolant relativement mou, qui s'écraserait lors de l'application d'une pression élevée.
Enfin, on notera que les structures à électrodes décrites en relation avec les figures 4A et 5 peuvent aussi être connectées par tout autre procédé sans sortir du cadre de la présente invention. Aussi, une structure à électrodes résultant d'une combinaison des structures des figures 4A et 5, par exemple une structure dans laquelle une ou plusieurs languettes comportent des plots reliés à des pistes superposées, fait partie de la présente invention.

Claims

REVENDICATIONS
1. Procédé pour connecter des premiers plots (16) d'une structure (1, l', 1") porteuse d'électrodes (4) propres à mesurer ou à stimuler une activité d'origine physiologique à des seconds plots (17) d'au moins un circuit aval (2, 2a, 2b, 40, 50) , chaque second plot (17) étant traversé par une ouverture (15) perforant le circuit aval, comportant les étapes suivantes : a) placer le circuit aval sur ladite structure, de sorte que la face du circuit aval ne comportant pas les seconds plots soit en contact avec la structure et que l'ouverture (15) d'un second plot (17) se trouve en face d'un premier plot (16) ; et b) déposer dans l'ouverture (15) du second plot (17) un matériau conducteur (18) assurant la connexion entre le second plot et le premier plot en regard.
2. Procédé selon la revendication 1, dans lequel l'ouverture (15) pratiquée dans le second plot (17) a une surface sensiblement égale à la surface du premier plot (16) en regard.
3. Procédé selon la revendication 1, dans lequel la partie de ladite structure comportant les premiers plots est découpée de façon à former des languettes (A, B, C, D) , et dans lequel la connexion des second plots (17) aux premiers plots est telle que les premiers plots (16-i) de deux languettes adjacentes au moins sont connectés à des seconds plots de circuits aval différents (2a, 2b) , disposés sensiblement les uns au-dessus des autres.
4. Procédé selon 1 'une quelconque des revendications 1 à 3, dans lequel l'ouverture (15) perforant le circuit aval est un trou métallisé.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la connexion des premiers plots aux seconds plots est réalisée à l'aide d'une colle conductrice, d'une pâte conductrice ou d'une soudure.
6. Procédé selon 1 'une quelconque des revendications 1 à 5, dans lequel le second plot (17) a une épaisseur de l'ordre de 20 à 50 micromètres et dans lequel le premier plot (16) a une épaisseur égale au plus à quelques micromètres.
7. Structure (l1) porteuse d'électrodes (4) propres à mesurer ou à stimuler une activité d'origine physiologique présentant des premiers plots (16-i) pouvant être connectés à des seconds plots (17) de circuits aval (2a, 2b) par un procédé selon la revendication 3, caractérisée en ce que la partie de ladite structure comportant les premiers plots est découpée de façon à former des languettes (A, B, C, D) portant chacune des premiers plots.
8. Structure (1") porteuse d'électrodes propres à mesurer ou à stimuler une activité d'origine physiologique présentant des premiers plots (16a, 16b) pouvant être connectés à des seconds plots (17) d'au moins un circuit aval (2, 2a, 2b) par un procédé selon 1 'une quelconque des revendications 1 à 6, les premiers plots (16a, 16b) étant reliés aux électrodes par des pistes conductrices (31, 35) , dans lequel lesdites pistes conductrices (31, 32) sont disposées sur au moins deux niveaux superposés séparés par des couches isolantes (32) , caractérisée en ce qu'au moins une piste conductrice (31) passe sous un premier plot (16b) .
9. Ensemble formé par une structure (1, 1 ' , 1") porteuse d'électrodes (4) propres à mesurer ou à stimuler une activité d'origine physiologique et un circuit aval (2, 2a, 2b, 40, 50) , caractérisé en ce que la structure porteuse d'électrodes et le circuit aval sont connectés par un procédé selon une des revendications 1 à 6.
10. Ensemble selon la revendication 9, caractérisé en ce que la partie de la structure porteuse d'électrodes qui comporte des plots et au moins la partie du circuit aval qui est connectée à ladite structure sont recouvertes d'une gaine biocompatible (46, 60) .
PCT/FR2002/001269 2001-04-12 2002-04-11 Procede de connexion pour structure a electrodes implantable WO2002085085A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/474,332 US7090505B2 (en) 2001-04-12 2002-04-11 Connecting method for structure with implantable electrodes
EP02732808A EP1378151A1 (fr) 2001-04-12 2002-04-11 Procede de connexion pour structure a electrodes implantable
JP2002582674A JP4075615B2 (ja) 2001-04-12 2002-04-11 埋込型電極を備える構造体のための接続方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/05053 2001-04-12
FR0105053A FR2823633B1 (fr) 2001-04-12 2001-04-12 Procede de connexion pour structure a electrodes implantable

Publications (1)

Publication Number Publication Date
WO2002085085A1 true WO2002085085A1 (fr) 2002-10-24

Family

ID=8862294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001269 WO2002085085A1 (fr) 2001-04-12 2002-04-11 Procede de connexion pour structure a electrodes implantable

Country Status (5)

Country Link
US (1) US7090505B2 (fr)
EP (1) EP1378151A1 (fr)
JP (1) JP4075615B2 (fr)
FR (1) FR2823633B1 (fr)
WO (1) WO2002085085A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070273672A1 (en) * 2002-11-18 2007-11-29 Hong Hee J Touch screen system and display device using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400513B2 (en) * 2003-04-22 2008-07-15 Nihon Dempa Kogyo Co., Ltd. Conductive printed board, multicore cable and ultrasonic probe using the same
JP4983259B2 (ja) * 2007-01-09 2012-07-25 船井電機株式会社 フレキシブル基板の接続構造

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538143A (en) * 1981-06-24 1985-08-27 Clarion Co., Ltd. Light-emitting diode displayer
US4815990A (en) * 1987-04-10 1989-03-28 Rogers Corporation Flexible circuit having termination features and method of making the same
US5260518A (en) * 1990-04-23 1993-11-09 Nippon Mektron, Ltd. Multilayer circuit board for mounting ICs and method of manufacturing the same
DE4327560A1 (de) * 1993-08-17 1995-02-23 Hottinger Messtechnik Baldwin Verfahren zum Kontaktieren von Leiterbahnanordnungen und Kontaktanordnung
DE19530353A1 (de) * 1995-08-18 1997-02-20 Vdo Schindling Verfahren zum Lötverbinden der Leiterbahnen mit einer flexiblen gedruckten Leitung oder Schaltung mit den zugeordneten Anschlußflächen einer Leiterplatte
JPH09276236A (ja) * 1996-04-19 1997-10-28 Tokai Rika Co Ltd 医療用圧力プローブにおける配線フィルムの接続構造
JPH09312453A (ja) * 1996-05-20 1997-12-02 Nikon Corp 熱圧着用回路基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353372A (en) * 1980-02-11 1982-10-12 Bunker Ramo Corporation Medical cable set and electrode therefor
US6024702A (en) * 1997-09-03 2000-02-15 Pmt Corporation Implantable electrode manufactured with flexible printed circuit
US6245047B1 (en) * 1998-12-10 2001-06-12 Photoelectron Corporation X-Ray probe sheath apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538143A (en) * 1981-06-24 1985-08-27 Clarion Co., Ltd. Light-emitting diode displayer
US4815990A (en) * 1987-04-10 1989-03-28 Rogers Corporation Flexible circuit having termination features and method of making the same
US5260518A (en) * 1990-04-23 1993-11-09 Nippon Mektron, Ltd. Multilayer circuit board for mounting ICs and method of manufacturing the same
DE4327560A1 (de) * 1993-08-17 1995-02-23 Hottinger Messtechnik Baldwin Verfahren zum Kontaktieren von Leiterbahnanordnungen und Kontaktanordnung
DE19530353A1 (de) * 1995-08-18 1997-02-20 Vdo Schindling Verfahren zum Lötverbinden der Leiterbahnen mit einer flexiblen gedruckten Leitung oder Schaltung mit den zugeordneten Anschlußflächen einer Leiterplatte
JPH09276236A (ja) * 1996-04-19 1997-10-28 Tokai Rika Co Ltd 医療用圧力プローブにおける配線フィルムの接続構造
JPH09312453A (ja) * 1996-05-20 1997-12-02 Nikon Corp 熱圧着用回路基板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 04 31 March 1998 (1998-03-31) *
See also references of EP1378151A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070273672A1 (en) * 2002-11-18 2007-11-29 Hong Hee J Touch screen system and display device using the same

Also Published As

Publication number Publication date
US7090505B2 (en) 2006-08-15
JP4075615B2 (ja) 2008-04-16
FR2823633B1 (fr) 2003-09-12
FR2823633A1 (fr) 2002-10-18
US20040163841A1 (en) 2004-08-26
EP1378151A1 (fr) 2004-01-07
JP2004521507A (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
EP0207853B1 (fr) Procédé de montage d'un circuit intégré sur un support, dispositif en résultant et son application à une carte à microcircuits électroniques
EP0709886B1 (fr) Film conducteur anisotrope pour la microconnectique
EP0094716A1 (fr) Procédé pour connecter un semi-conducteur à des éléments d'un support, notamment d'une carte portative
EP1008176B1 (fr) Procede de fabrication d'un film conducteur anisotrope a inserts conducteurs
EP0254640A1 (fr) Procédé de réalisation d'une carte à mémoire électronique et carte telle qu'obtenue par ce procédé
EP2038929A2 (fr) Procédé pour la réalisation d'une matrice de composants électroniques individuels et matrice réalisée par ce procédé
FR2653588A1 (fr) Resistance electrique sous forme de puce a montage de surface et son procede de fabrication.
FR2641646A1 (fr) Cellule solaire et son procede de fabrication
FR2971081A1 (fr) Procédé de fabrication de deux substrats relies par au moins une connexion mécanique et électriquement conductrice obtenue
FR3072772B1 (fr) Capteur monolithique integre biocompatible, notamment pour dispositif medical implantable actif
FR2584236A1 (fr) Procede de montage d'un circuit integre sur un support, dispositif en resultant et son application a une carte a microcircuits electroniques
EP3700619A1 (fr) Implant souple en diamant
WO2002085085A1 (fr) Procede de connexion pour structure a electrodes implantable
EP1518145B1 (fr) Cellule d affichage, notamment a cristal liquide, ou cellule photovoltaique comprenant des moyens pour sa connexion a un circuit electronique de commande
FR2643753A1 (fr) Procede d'interconnexion de composants electriques au moyen d'elements conducteurs, deformables et sensiblement spheriques
EP1186048A1 (fr) Puce et procede de garniture d'une puce comprenant une pluralite d'electrodes
EP1938863A1 (fr) Procédé d'assemblage mécanique et d'interconnexion électrique des éléments fonctionnels d'un dispositif médical implantable actif
FR2940521A1 (fr) Procede de fabrication collective de modules electroniques pour montage en surface
EP3171395B1 (fr) Realisation d'interconnexions par recourbement d'elements conducteurs sous un dispositif microelectronique tel qu'une puce
EP0798772A1 (fr) Procédé de réalisation d'un dépÔt sur un support amovible, et dépÔt réalisé sur un support
EP0687047A1 (fr) Pile de barrettes de diodes laser, et son procédé d'assemblage
EP0793269A1 (fr) Dispositif semiconducteur incluant une puce munie d'une ouverture de via et soudée sur un support, et procédé de réalisation de ce dispositif
EP1647053A2 (fr) Procede de fabrication de film conducteur anisotrope
EP0418345A1 (fr) Procede de realisation d'une connexion a plat
EP1363699B1 (fr) Structure d'electrodes implantable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002582674

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002732808

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002732808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10474332

Country of ref document: US