WO2002079212A1 - Phosphonium phosphinate compounds and their preparation - Google Patents
Phosphonium phosphinate compounds and their preparation Download PDFInfo
- Publication number
- WO2002079212A1 WO2002079212A1 PCT/US2002/006104 US0206104W WO02079212A1 WO 2002079212 A1 WO2002079212 A1 WO 2002079212A1 US 0206104 W US0206104 W US 0206104W WO 02079212 A1 WO02079212 A1 WO 02079212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphonium
- tetradecyl
- trihexyl
- compound
- formula
- Prior art date
Links
- SZGFTJKRZLDFRR-UHFFFAOYSA-N [PH4+].[O-][PH2]=O Chemical class [PH4+].[O-][PH2]=O SZGFTJKRZLDFRR-UHFFFAOYSA-N 0.000 title abstract description 36
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 20
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- 239000001257 hydrogen Substances 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 239000002904 solvent Substances 0.000 claims description 32
- -1 n-tetradecyl Chemical group 0.000 claims description 29
- 125000004432 carbon atom Chemical group C* 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 150000001768 cations Chemical class 0.000 claims description 6
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 claims description 3
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 239000002608 ionic liquid Substances 0.000 abstract description 41
- 229910052760 oxygen Inorganic materials 0.000 abstract description 6
- 150000004714 phosphonium salts Chemical class 0.000 abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 abstract description 5
- 239000002798 polar solvent Substances 0.000 abstract description 4
- PYVOHVLEZJMINC-UHFFFAOYSA-N trihexyl(tetradecyl)phosphanium Chemical compound CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC PYVOHVLEZJMINC-UHFFFAOYSA-N 0.000 description 32
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 22
- 239000003054 catalyst Substances 0.000 description 18
- 239000012044 organic layer Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 17
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 16
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 16
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 16
- 239000008346 aqueous phase Substances 0.000 description 15
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 15
- 239000011541 reaction mixture Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 13
- XPYRLSOSTBBOGC-UHFFFAOYSA-M dicyclohexylphosphinate;trihexyl(tetradecyl)phosphanium Chemical compound C1CCCCC1P(=O)([O-])C1CCCCC1.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC XPYRLSOSTBBOGC-UHFFFAOYSA-M 0.000 description 13
- JCQGIZYNVAZYOH-UHFFFAOYSA-M trihexyl(tetradecyl)phosphanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC JCQGIZYNVAZYOH-UHFFFAOYSA-M 0.000 description 13
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 12
- KAKQVSNHTBLJCH-UHFFFAOYSA-N trifluoromethanesulfonimidic acid Chemical compound NS(=O)(=O)C(F)(F)F KAKQVSNHTBLJCH-UHFFFAOYSA-N 0.000 description 12
- 235000010290 biphenyl Nutrition 0.000 description 11
- 239000004305 biphenyl Substances 0.000 description 11
- HQIPXXNWLGIFAY-UHFFFAOYSA-M decanoate;trihexyl(tetradecyl)phosphanium Chemical compound CCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC HQIPXXNWLGIFAY-UHFFFAOYSA-M 0.000 description 11
- 238000009815 homocoupling reaction Methods 0.000 description 11
- GJEGLSXURCDNRF-UHFFFAOYSA-M trifluoromethanesulfonate;trihexyl(tetradecyl)phosphanium Chemical compound [O-]S(=O)(=O)C(F)(F)F.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC GJEGLSXURCDNRF-UHFFFAOYSA-M 0.000 description 11
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 10
- OVJFGYWYBOKNNF-UHFFFAOYSA-M bis(2-methylpropyl)phosphinate;trihexyl(tetradecyl)phosphanium Chemical compound CC(C)CP([O-])(=O)CC(C)C.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC OVJFGYWYBOKNNF-UHFFFAOYSA-M 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 239000012074 organic phase Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000002411 thermogravimetry Methods 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000005191 phase separation Methods 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- UMJXWRGUKRAFGF-UHFFFAOYSA-N 2,4,4-trimethyl-1-phosphorosooxypentane Chemical compound CC(C)(C)CC(C)COP=O UMJXWRGUKRAFGF-UHFFFAOYSA-N 0.000 description 5
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- QUXFOKCUIZCKGS-UHFFFAOYSA-N bis(2,4,4-trimethylpentyl)phosphinic acid Chemical compound CC(C)(C)CC(C)CP(O)(=O)CC(C)CC(C)(C)C QUXFOKCUIZCKGS-UHFFFAOYSA-N 0.000 description 5
- 238000005810 carbonylation reaction Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 4
- IMRWILPUOVGIMU-UHFFFAOYSA-N 2-bromopyridine Chemical compound BrC1=CC=CC=N1 IMRWILPUOVGIMU-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 150000005347 biaryls Chemical class 0.000 description 4
- 230000006315 carbonylation Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- CLAVZIBZAONSLR-UHFFFAOYSA-N [PH2](OCC(CC(C)(C)C)C)=O Chemical compound [PH2](OCC(CC(C)(C)C)C)=O CLAVZIBZAONSLR-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- ZKQLVOZSJHOZBL-UHFFFAOYSA-M bis(2,4,4-trimethylpentyl)phosphinate;trihexyl(tetradecyl)phosphanium Chemical compound CC(C)(C)CC(C)CP([O-])(=O)CC(C)CC(C)(C)C.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC ZKQLVOZSJHOZBL-UHFFFAOYSA-M 0.000 description 3
- AGRZMISFMOWGQL-UHFFFAOYSA-M bis(2-methylpropyl)-sulfanylidene-sulfido-$l^{5}-phosphane;trihexyl(tetradecyl)phosphanium Chemical compound CC(C)CP([S-])(=S)CC(C)C.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC AGRZMISFMOWGQL-UHFFFAOYSA-M 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000012038 nucleophile Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 3
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001502 aryl halides Chemical class 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- PTZADPBANVYSTR-UHFFFAOYSA-N bis(2-methylpropyl)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)CP(S)(=S)CC(C)C PTZADPBANVYSTR-UHFFFAOYSA-N 0.000 description 2
- DRDKFCAHTAHYER-UHFFFAOYSA-N bis(2-methylpropyl)phosphinic acid Chemical compound CC(C)CP(O)(=O)CC(C)C DRDKFCAHTAHYER-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- ILYLJTAIQODOTI-UHFFFAOYSA-N cyclohexylphosphinic acid Chemical compound OP(=O)C1CCCCC1 ILYLJTAIQODOTI-UHFFFAOYSA-N 0.000 description 2
- NPEWVJINTXPNRF-UHFFFAOYSA-N dicyclohexylphosphinic acid Chemical compound C1CCCCC1P(=O)(O)C1CCCCC1 NPEWVJINTXPNRF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- DJFBJKSMACBYBD-UHFFFAOYSA-N phosphane;hydrate Chemical compound O.P DJFBJKSMACBYBD-UHFFFAOYSA-N 0.000 description 2
- OJNSBQOHIIYIQN-UHFFFAOYSA-M sodium;bis(2-methylpropyl)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Na+].CC(C)CP([S-])(=S)CC(C)C OJNSBQOHIIYIQN-UHFFFAOYSA-M 0.000 description 2
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004679 31P NMR spectroscopy Methods 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 238000007341 Heck reaction Methods 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- XJTXBUKLGQCZHC-UHFFFAOYSA-N Steganacin Natural products C1=C2C=3C(OC)=C(OC)C(OC)=CC=3CC3C(=O)OCC3C(OC(C)=O)C2=CC2=C1OCO2 XJTXBUKLGQCZHC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- CZAVUHAYANOAQJ-UHFFFAOYSA-N [PH4+].[O-][PH2]=S Chemical class [PH4+].[O-][PH2]=S CZAVUHAYANOAQJ-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XJTXBUKLGQCZHC-GCKMJXCFSA-N steganacin Chemical compound C1=C2C=3C(OC)=C(OC)C(OC)=CC=3C[C@@H]3C(=O)OC[C@H]3[C@H](OC(C)=O)C2=CC2=C1OCO2 XJTXBUKLGQCZHC-GCKMJXCFSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 125000004149 thio group Chemical group *S* 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/30—Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B37/00—Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
- C07B37/04—Substitution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Definitions
- Ionic liquids provide an attractive potential alternative to traditional organic solvents for chemical reactions for many reasons.
- the low vapour pressure of ionic liquids is a very important feature. They are essentially non-volatile, a property that eliminates many of the containment problems typically encountered with traditional organic solvents. Since ionic liquids are often composed of poorly coordinating ions, they have the potential to provide a highly polar yet poorly coordinating solvent. Moreover, many of these solvents are immiscible with traditional organic solvents and therefore provide a non-aqueous polar alternative to two-phase systems.
- Ionic liquids provide solvents with a wide liquid range and a high degree of thermal stability. However, there remains a need for increasing the solvent options available to chemists by developing novel ionic liquids with distinctive physical and chemical properties.
- the current invention provides novel phosphonium phosphinate compounds and methods of preparing these compounds.
- the phosphonium phosphinate compounds can have a broad range of phosphonium cations and a broad range of phosphinate and dithiophosphinate anions .
- novel phosphonium phosphinates have the general formula (I) :
- each of R lf R 2 , R 3 , R 4 , R 5 , and R 6 is independently a hydrogen atom or a hydrocarbyl group, provided that not more than two of R x to R 4 and not more than one of R 5 and R 6 are hydrogen;
- Y x is O or S
- Y 2 is 0 or S.
- each of R x to R 6 is a hydrocarbyl group.
- the invention provides a process for preparing a phosphonium phosphinate compound of formula (I) , as defined above, wherein:
- M k+ is H + or a metal cation with valency "k” .
- X ' is a leaving group other than OH "
- the reaction is carried out in the presence of a base.
- a base is not needed if X ⁇ is OH ⁇ and M k+ is H + . If M k+ is a metal cation with valency "k” , then X " is a leaving group other than OH " .
- R x to R 4 are as defined above for formula (I) and
- X " is a leaving group, for example hydroxide (OH ⁇ ) , acetate, sulfate, or a halide, preferably chloride, bromide or iodide,
- R 5; R 6 , Yi and Y 2 are as defined above for formula (I) , and
- a base for example a hydroxide or a carbonate of an alkali metal or alkaline earth metal.
- compounds according to formula (I) can also be prepared by reacting a compound of the formula (II) , as defined above, with ii) a compound of the formula (IV) : Formula (IV)
- R 5 , R 6 , Yi and Y 2 are as defined above for formula (I) , and
- M is ammonium or a metal and k is the valency of the metal .
- Appropriate metals are any metals that form water- soluble salts with anions, for example, alkali metals, preferably Na + or K + .
- the compounds according to formula (I) are useful as ionic solvents.
- Figure 1 shows the results of a TGA assay on trihexyl (tetradecyl) phosphonium bis (2,4, 4'-trimethyl- pentyl ) phosphinate .
- Figure 2 shows the results of a TGA assay on trihexyl (tetradecyl) phosphonium diisobutylphosphinate.
- Figure 3 is a 31 P NMR spectrum of trihexyl (tetradecyl) phosphonium dicyclo-hexylphosphinate.
- Figure 4 shows the results of a thermogravimetric analysis (TGA) assay on trihexyl (tetradecyl) phosphonium dicyclohexylphosphinate .
- Figure 5 is a 31 P NMR spectrum of trihexyl- (tetradecyl) phosphonium diisobutyldithiophosphinate.
- Figure 6 shows the results of a TGA assay on trihexyl (tetradecyl) phosphonium diisobutyldithiophosphinate .
- the current invention concerns compounds of the general formula (I) , as defined above, wherein: each of Ri, R 2 , R 3 , R 4 , R 5 , and R e is independently a hydrogen or hydrocarbyl group; Yi is O or S; and Y 2 is O or S. It is possible for the groups R x to R s to bear substituents, or to include heteroatoms, provided that the substituents or heteroatoms do not interfere with the preparation of the compounds of the invention, and do not adversely affect the desired properties of the compound. Acceptable substituents include alkoxy, alkylthio, acetyl, and hydroxyl groups, and acceptable heteroatoms include oxygen and sulphur.
- each of R 1# R 2 , R 3 , R 4 , Rs, and R 6 is independently an alkyl group of 1 to 30 carbon atoms, a cycloalkyl group of 3 to 7 carbon atoms, an alkenyl group of 2 to 30 carbon atoms, an alkynyl group of 2 to 30 carbon atoms, an aryl group of 6 to 18 carbon atoms, or an aralkyl group.
- Alkyl groups that exceed 18 carbon atoms, especially those that exceed 20 carbon atoms, are likely to increase costs. Since cost is a significant factor in producing a solvent, it is contemplated that, for practical purposes, the alkyl groups will typically not exceed 20 carbon atoms.
- each of Ri, R 2 , R 3 , R , Rs, and R 6 is independently an alkyl group of 5 to 20 carbon atoms.
- R 1# R 2/ R 3 , R 4 , R 5 , and R 6 may be n-butyl, isobutyl, n-pentyl, cyclopentyl, isopentyl, n-hexyl, cyclohexyl, (2,4,4'- trimethyl)pentyl, cyclooctyl, tetradecyl, etc., although it is preferred that at least one of Ri to R 4 contains a higher number of carbon atoms, for example 14 or more.
- Ri to R 4 shall not be identical.
- at least one of R x to R 4 shall contain a significantly higher number of carbon atoms than the others of Ri to R 4 .
- Compounds in which R 2 to R 4 are not identical are referred to as asymmetric.
- Y x and Y 2 are both O.
- Yi and Y 2 are both 0 because the presence of thio groups in the phosphinate anion may interfere with the action of the catalyst.
- Phosphonium thiophosphinate compounds find utility as solvents for chemical reactions that do not involve metal catalysts.
- Preferred compounds include compounds according to formula (I) wherein each of Ri, R 2 , R 3 , R 4 , R 5 , and R 6 , is independently an aryl group or substituted aryl group.
- R if R 2 , R 3/ R 4/ Rs, and R 6 may be phenyl, phenethyl, xylyl, or naphthyl.
- compounds according to formula (I) that are hydrophobic or "water immiscible” are preferred.
- water immiscible is intended to describe compounds that form a two phase system when mixed with water but does not exclude ionic liquids that dissolve in water nor ionic liquids that will dissolve water, provided that the two phase system forms. Therefore, compounds that have a large total number of carbons, equal to or greater than 20 and in particular greater than 25 or 26, or have at least one aryl group are preferred because they are more hydrophobic.
- Water immiscibility is a desirable feature of phosphonium phosphinates not only because it renders the compounds useful for biphasic reactions with an aqueous phase, but also because it facilitates purification and isolation of the phosphonium phosphinate when prepared according to certain methods.
- a material that is a liquid at room temperature is very valuable.
- Preferred compounds are those in which the particular groups Rj . to R 6 are selected to yield compounds that are liquid at room temperature. Selection of particular values for Ri to R 6 to achieve particular melting points and degrees of water immiscibility is within the competence of a person skilled in the art, although it may require some routine experimentation.
- the degree of asymmetry and branching of the hydrocarbyl groups R ⁇ to R 6 of the phosphonium cation or phosphinate anion are important determinants of the melting point: the melting point tends to decrease as the degree of asymmetry and branching is increased. Branching can occur at the alpha or omega carbon or at any intermediate point .
- Examples of preferred compound according to formula (I) include those in which:
- each of R l f R 2 , and R 3 is n-hexyl and R is n- tetradecyl and
- R 5 and R s are 2 ,4 , 4'-trimethylpentyl and Y x and Y 2 are
- R 5 and R 6 are isobutyl and Yi and Y 2 are 0; or
- R 5 and R 6 are cyclohexyl and Yi and Y 2 are 0; or
- R 5 and R e are isobutyl and Y x and Y 2 are S.
- the current invention also provides methods for preparing the phosphonium phosphinate compounds according to formula (I) .
- phosphonium phosphinates can be prepared by reacting a phosphonium salt of formula (II) with either: 1) a phosphinic acid of formula (III) and a base, or 2) a phosphinate salt of formula (IV) .
- phosphonium phosphinates can be prepared by reacting a phosphonium hydroxide of formula (II) with a phosphinic acid.
- the temperature of the reaction is not critical, but the reaction is conveniently done at elevated temperature, up to about 100° C, preferably in the range of 45-70° C. Use of a higher temperature facilitates phase separation.
- a phosphonium phosphinate is immiscible with water, it can be prepared by first mixing a phosphonium salt of formula (II) with a phosphinic acid compound of formula (III) and water, with stirring or other means of mixing, then adding a base. The mixture is stirred for an additional period. When mixing is stopped, the reaction mixture will separate into an organic phase that contains the phosphonium phosphinate product and an aqueous phase. The aqueous phase can be decanted, and the organic phase can then be washed with water to remove the salt byproducts formed by the reaction (for example, sodium chloride) . If desired, residual water can be removed from the organic layer by, for example, vacuum-stripping.
- the phosphonium salt and water are mixed together first, then sodium hydroxide is added, and the phosphinic acid is added last.
- the reaction mixture will separate into an aqueous phase and organic phase that can be processed further as described in the method above.
- Phosphonium phosphinates according to formula (I) that are immiscible with water can also be prepared by mixing a phosphonium salt of formula (II) with a phosphinate salt of formula (IV) and water, with stirring. The mixture is stirred for an additional period, say one hour. When mixing is stopped, the reaction mixture will separate into aqueous and organic layers. The aqueous layer can be decanted, and the organic layer can be washed several times with water, to remove any remaining [M + ] [X " ]*. If desired, dissolved water can be removed from the organic layer by, for example, vacuum- stripping.
- Phosphonium phosphinates according to formula (I) can be prepared by reacting a phosphonium hydroxide of formula (II), i.e. a compound of formula (II) in which X " is OH " , with a phosphinic acid of formula (III) to produce a phosphonium phosphinate and water.
- a phosphonium hydroxide of formula (II) i.e. a compound of formula (II) in which X " is OH "
- a phosphinic acid of formula (III) a phosphinic acid of formula (III)
- this method can be used to prepare phosphonium phosphinates that are either miscible or immiscible with water. This method is preferred for preparing phosphonium phosphinates that have a small total number of carbons, of the order of 7 to 10 carbons.
- the compounds of formula (I) contain up to six hydrocarbyl groups Ri to R 6 .
- the particular properties of a compound of formula (I) depend upon the values taken by these six groups. Selection of different values for these groups therefore permits fine tailoring of the properties of the compound of the invention.
- compounds can be designed to be liquid at a particular temperature and to be water- immiscible. Change in the value of one or more of the groups Ri to R 6 can effect change in these properties.
- the presence of six groups for this purpose is advantageous when compared with known ionic liquids based on dialkylimidazolium cations, which have only two groups that can be varied.
- compounds of the invention have a density less than 1. Consequently, they form the upper phase of two phase systems with water. In this respect, they differ from known ionic liquids based on dialkyl imidazolium cations, which tend to have a density greater than 1 and therefore form the lower phase of two phase systems with water.
- phosphonium phosphinate salts of the current invention may be used as polar solvents.
- phosphonium phosphinates of the current invention can be used as polar solvents for chemical reactions such as Michael additions, aryl coupling, Diels-Alder, alkylation, biphasic catalysis, Heck reactions, hydrogenation, or for enzymatic reactions, for example lipase reactions.
- the phosphonium phosphinates of the current invention are suitable solvents for the synthesis of biphenyl via homo-coupling of bromobenzene or iodobenzene.
- Biaryls are of great importance in synthetic organic chemistry, as they have found many industrial and pharmacological applications. Elaboration of liquid crystals, for example, often relies on the synthesis of a biaryl framework. Among the natural products biophenomycin and steganacin posses this biaryl molecular substructure. Hence, their production in a cost- effective fashion is especially important.
- the Ullman Synthesis of biaryls typically demands high temperature conditions (200° C) and requires equimolar amounts of copper.
- the use of palladium catalysts and an appropriate ionic solvent, such as the phosphonium phosphinates of the current invention, may avoid the need for stoichiometric amounts of metal and high temperature .
- Example 8 the suitability of the phosphonium phosphinates as solvents for palladium catalyzed carbonylation is demonstrated.
- the palladium catalyzed carbonylation reactions of aryl-X derivatives constitute a powerful method of C-C coupling reaction for the synthesis of various aromatic carboxylate acid derivatives such as amides and esters.
- the aryl palladium species formed as the intermediate undergoes the facile CO insertion, followed by the nucleophilic attack of alcohol, water, and amines to give the acid, esters and amides respectively.
- This reaction can be carried out using aryl halide with carbon monoxide and a nucleophile in the presence of catalytic amount of a palladium compound.
- Other metal catalysts derived from Co and Ni have also been used as catalysts .
- yields vary with choice of solvent in the various reactions.
- the phosphonium phosphinates of the present invention give good, or best, results. Hence they provide a valuable enhancement in methods of synthesis.
- Trihexyl (tetradecyl) phosphonium bis (2, 4 ,4'-trimethyl- pentyl) phosphinate was prepared according to the following method. A 5 liter stirred jacketed reactor was charged with:
- the agitation was then turned off and the reaction mixture was allowed to separate into a two-phase system consisting of an upper organic phase and a lower aqueous phase (phase separation took about 2 minutes) .
- the lower aqueous phase was decanted and the upper organic layer was washed three times with about 1300 g of distilled water per wash, by stirring for one hour at 55° C.
- the amount of time required for bulk phase separation increased with each successive wash: 2 minutes, 30 minutes, then for the final wash, 8 minutes was required to achieve bulk separation but 22 hours was required for the organic layer to clear.
- the organic layer was then vacuum stripped to remove dissolved water. Approximately 230 g of water (13.2 % by weight) was removed after vacuum stripping to 125° C under 4 mmHG pressure. The final organic layer was perfectly clear.
- the aqueous phase was analyzed for chloride ion (see Table 1).
- the first decant removed 82.9 % of the chloride ion.
- the first, second, and third washes additionally removed
- Trihexyl (tetradecyl) phosphonium diisobutylphosphinate was prepared according to the following method. A 5 liter stirred jacketed reactor was charged with:
- the organic layer was then vacuum stripped to remove dissolved water. Approximately 13.4 % water by weight was removed after vacuum stripping to 135° C under 4 mmHG pressure. The final organic layer was perfectly clear.
- the decanted aqueous phases were analyzed for chloride ion (see Table 2).
- the first decant removed 63.7 % of the chloride ion.
- the first, second, and third washes additionally removed 5.3 %, 0.3 %, and 0.2 % of the chloride ion, respectively, for a total of 69.5 %.
- Trihexyl (tetradecyl) phosphonium dicyclohexylphosphinate was prepared according to the following method. A stirred jacketed reactor was charged with:
- the agitation was then turned off and the reaction mixture was allowed to separate into a two-phase system consisting of an upper organic phase and a lower aqueous phase (phase separation took about 4 minutes) .
- the lower aqueous phase was decanted and the upper organic layer was washed three times by stirring with 1300 g of distilled water.
- the organic layer was then vacuum stripped to remove dissolved water. Approximately 210 g of water (14 % water by weight) was removed after vacuum stripping to 138° C under 4 mmHG pressure. The final organic layer was perfectly clear.
- the decanted aqueous phases were analyzed for chloride ion.
- the first decant removed 82.2 % of the chloride ion, and the first, second, and third washes additionally removed 14.7 %, 1.7 %, and 0.2 % of the chloride ion, respectively, for a total of 98.8 % (see Table 3).
- Trihexyl (tetradecyl) phosphonium diisobutyl dithiophosphinate was prepared according to the following method. A stirred jacketed reactor was charged with: 1.91 moles of trihexyl (tetradecyl) phosphonium chloride
- This mixture was heated to 50° C and stirred for 30 minutes. The agitation was then turned off and the reaction mixture was allowed to separate into a two-phase system consisting of an upper organic phase and a lower aqueous phase (phase separation took about 4 minutes) .
- the lower aqueous phase was decanted and the upper organic layer was washed three times by stirring with 1400 g of distilled water at 50° C.
- the organic layer was then vacuum stripped to 125° C at 1.2 mmHg pressure. Only 25 g of water was removed. The final organic layer was perfectly clear.
- the final product was a liquid at room temperature.
- the chloride content was 0.0099 %.
- the 31 P NMR spectrum indicated two distinct signals: +33.37 ppm, phosphonium cation; and +65.81 ppm, dithiophosphinate anion ( Figure 5) .
- Example 5 Biphenyl synthesis via homo-coupling of bromobenzene using Pd(QAc) 2 in various phosphonium ionic liquids
- R H, alkyl, ether
- a phosphonium ionic liquid solvent selected from the group consisting of:
- reaction mixture was allowed to cool, poured into 50 ml water, and the total reaction mixture was extracted with petroleum ether (at 45-60° C) .
- the ionic liquid formed a middle layer that could be recovered.
- the petroleum ether layer was washed with water, then with brine, and then concentrated. The residue was distilled to obtain the required biaryl compound.
- Example 6 Biphenyl synthesis via homo-coupling of iodobenzene in various ionic liquids using Pd(OAc) 2 as catalyst
- a phosphonium ionic liquid solvent selected from the group consisting of:
- trihexyl (tetradecyl) phosphonium chloride trihexyl (tetradecyl) phosphonium triflate
- Example 7 Heck coupling of iodobenzene and methylacrylate in various ionic liquids using Pd(OAc) 2 catalyst
- the reaction mixture was heated at 80° C for 14 hours in 2.0 g of a phosphonium ionic liquid solvent selected from the group consisting of:
- Example 8 Carbonylation of iodobenzene in various ionic liquids using Pd(OAc) catalyst
- the phosphonium ionic liquid solvent selected from the group consisting of:
- Example 9 Bipyridine synthesis via the homo-coupling of bromopyridine in various ionic liquids using Pd(OAc) 2 catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/473,271 US20040106823A1 (en) | 2001-03-30 | 2002-02-28 | Novel phosphonium phosphinate compounds and their methods of preparation |
KR10-2003-7012520A KR20030093282A (en) | 2001-03-30 | 2002-02-28 | Phosphonium phosphinate compounds and their preparation |
EP02707923A EP1373280A1 (en) | 2001-03-30 | 2002-02-28 | Phosphonium phosphinate compounds and their preparation |
BR0208199-7A BR0208199A (en) | 2001-03-30 | 2002-02-28 | Compound, Method for Preparing a Phosphonium Phosphinate Compound, and Using the Compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002343456A CA2343456A1 (en) | 2001-03-30 | 2001-03-30 | Novel phosphonium phosphinate compounds and their methods of preparation |
CA2,343,456 | 2001-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002079212A1 true WO2002079212A1 (en) | 2002-10-10 |
Family
ID=4168780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/006104 WO2002079212A1 (en) | 2001-03-30 | 2002-02-28 | Phosphonium phosphinate compounds and their preparation |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1373280A1 (en) |
KR (1) | KR20030093282A (en) |
CN (1) | CN1297560C (en) |
BR (1) | BR0208199A (en) |
CA (1) | CA2343456A1 (en) |
RU (1) | RU2003131897A (en) |
WO (1) | WO2002079212A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004016631A1 (en) * | 2002-08-16 | 2004-02-26 | Cytec Canada Inc. | Phosphonium and imidazolium salts and methods of their preparation |
WO2004094438A1 (en) * | 2003-03-31 | 2004-11-04 | Cytec Canada Inc. | Phosphonium salts and methods of their preparation |
WO2005021484A3 (en) * | 2003-08-27 | 2005-05-26 | Roland Kalb | Method for producing ionic liquids, ionic solids or mixtures thereof |
GB2433069A (en) * | 2005-12-06 | 2007-06-13 | Ngimat Co | Ionic liquids comprising carboxylate anions and their preparation using a cationic support resin |
WO2008075016A1 (en) * | 2006-12-19 | 2008-06-26 | Castrol Limited | Lubricating oil compositions and uses |
US7886577B2 (en) * | 2006-03-30 | 2011-02-15 | Oakland University | Devices with surface bound ionic liquids and method of use thereof |
US8375768B2 (en) | 2006-03-30 | 2013-02-19 | Oakland University | Ionic liquid thin layer sensor for electrochemical and/or piezoelectric measurements |
WO2016100769A1 (en) * | 2014-12-19 | 2016-06-23 | Eastman Chemical Company | Quaternary phosphinates with co-solvents for extracting c1 to c4 carboxylic acids from aqueous streams |
US9611209B1 (en) | 2015-12-18 | 2017-04-04 | Eastman Chemical Company | Quaternary arylcarboxylate compositions for extracting C1 to C4 carboxylic acids from aqueous streams |
EP3470444A1 (en) | 2017-10-13 | 2019-04-17 | Basf Se | Method for the production of polyisocyanates comprising isocyanurate groups and their use |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006007703A1 (en) * | 2004-07-16 | 2006-01-26 | Simon Fraser University | Phosphonium ionic liquids as recyclable solvents for solution phase chemistry |
CN108767314A (en) * | 2018-04-16 | 2018-11-06 | 兰州大学 | A kind of preparation of fire-retardant ionic liquid and application process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1442581A (en) * | 1975-01-28 | 1976-07-14 | Du Pont | Antistatic filaments |
WO2001087900A1 (en) * | 2000-05-18 | 2001-11-22 | Cytec Technology Corp. | Phosphonium salts |
-
2001
- 2001-03-30 CA CA002343456A patent/CA2343456A1/en not_active Abandoned
-
2002
- 2002-02-28 BR BR0208199-7A patent/BR0208199A/en not_active Application Discontinuation
- 2002-02-28 EP EP02707923A patent/EP1373280A1/en not_active Withdrawn
- 2002-02-28 CN CNB028074505A patent/CN1297560C/en not_active Expired - Fee Related
- 2002-02-28 KR KR10-2003-7012520A patent/KR20030093282A/en not_active Application Discontinuation
- 2002-02-28 WO PCT/US2002/006104 patent/WO2002079212A1/en not_active Application Discontinuation
- 2002-02-28 RU RU2003131897/04A patent/RU2003131897A/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1442581A (en) * | 1975-01-28 | 1976-07-14 | Du Pont | Antistatic filaments |
WO2001087900A1 (en) * | 2000-05-18 | 2001-11-22 | Cytec Technology Corp. | Phosphonium salts |
Non-Patent Citations (4)
Title |
---|
COMYNS C ET AL: "CLEAN CATALYSIS WITH CLEAN SOLVENTS - PHOSPHONIUM TOSYLATES FOR TRANSFER HYDROGENATION REACTIONS", CATALYSIS LETTERS, BALTZER, SCIENTIFIC PUBL, BASEL, CH, vol. 67, no. 2-4, 2000, pages 113 - 115, XP001008262, ISSN: 1011-372X * |
KARODIA ET AL: "Clean catalysis with ionic solvents - phosphonium tosylates for hydroformylation", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, GB, no. 21, 1998, pages 2341 - 2342, XP002172927, ISSN: 1359-7345 * |
LUDLEY P ET AL: "Phosphonium tosylates as solvents for the Diels-Alder reaction", TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 42, no. 10, 4 March 2001 (2001-03-04), pages 2011 - 2014, XP004316777, ISSN: 0040-4039 * |
WELTON T: "Room-temperature ionic liquids. Solvents for synthesis and catalysis", CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY. EASTON, US, vol. 99, 1999, pages 2071 - 2083, XP002162959, ISSN: 0009-2665 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004016631A1 (en) * | 2002-08-16 | 2004-02-26 | Cytec Canada Inc. | Phosphonium and imidazolium salts and methods of their preparation |
US7638636B2 (en) | 2002-08-16 | 2009-12-29 | Cytec Technology Corp. | Phosphonium and imidazolium salts and methods of their preparation |
KR101074256B1 (en) | 2003-03-31 | 2011-10-14 | 사이텍 캐나다 인코포레이티드 | Phosphonium salts and methods of their preparation |
WO2004094438A1 (en) * | 2003-03-31 | 2004-11-04 | Cytec Canada Inc. | Phosphonium salts and methods of their preparation |
US8748668B2 (en) * | 2003-03-31 | 2014-06-10 | Cytec Technology Corp. | Phosphonium salts and methods of their preparation |
US20110021838A1 (en) * | 2003-03-31 | 2011-01-27 | Cytec Canada Inc. | Phosphonium salts and methods of their preparation |
WO2005021484A3 (en) * | 2003-08-27 | 2005-05-26 | Roland Kalb | Method for producing ionic liquids, ionic solids or mixtures thereof |
US8075803B2 (en) | 2003-08-27 | 2011-12-13 | Roland Kalb | Method for producing ionic liquids, ionic solids or mixtures thereof |
EP2295398A1 (en) * | 2003-08-27 | 2011-03-16 | proionic Production of Ionic Substances GmbH & Co KG | Method for producing ionic liquids, ionic solids or mixtures thereof |
GB2433069A (en) * | 2005-12-06 | 2007-06-13 | Ngimat Co | Ionic liquids comprising carboxylate anions and their preparation using a cationic support resin |
US8375768B2 (en) | 2006-03-30 | 2013-02-19 | Oakland University | Ionic liquid thin layer sensor for electrochemical and/or piezoelectric measurements |
US7886577B2 (en) * | 2006-03-30 | 2011-02-15 | Oakland University | Devices with surface bound ionic liquids and method of use thereof |
EP1970432A1 (en) * | 2006-12-19 | 2008-09-17 | Castrol Limited | Lubricating oil compositions and uses |
WO2008075016A1 (en) * | 2006-12-19 | 2008-06-26 | Castrol Limited | Lubricating oil compositions and uses |
WO2016100769A1 (en) * | 2014-12-19 | 2016-06-23 | Eastman Chemical Company | Quaternary phosphinates with co-solvents for extracting c1 to c4 carboxylic acids from aqueous streams |
US9573078B2 (en) | 2014-12-19 | 2017-02-21 | Eastman Chemical Company | Quaternary carboxylate compositions for extracting C1 to C4 carboxylic acids from aqueous streams |
US9616358B2 (en) | 2014-12-19 | 2017-04-11 | Eastman Chemical Company | Quaternary phosphinates with co-solvents for extracting C1 to C4 carboxylic acids from aqueous streams |
US9611209B1 (en) | 2015-12-18 | 2017-04-04 | Eastman Chemical Company | Quaternary arylcarboxylate compositions for extracting C1 to C4 carboxylic acids from aqueous streams |
EP3470444A1 (en) | 2017-10-13 | 2019-04-17 | Basf Se | Method for the production of polyisocyanates comprising isocyanurate groups and their use |
Also Published As
Publication number | Publication date |
---|---|
KR20030093282A (en) | 2003-12-06 |
CN1297560C (en) | 2007-01-31 |
BR0208199A (en) | 2004-03-02 |
RU2003131897A (en) | 2005-01-10 |
EP1373280A1 (en) | 2004-01-02 |
CA2343456A1 (en) | 2002-09-30 |
CN1529708A (en) | 2004-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1587813B1 (en) | Phosphonium and imidazolium salts and methods of their preparation | |
WO2002079212A1 (en) | Phosphonium phosphinate compounds and their preparation | |
KR20070101301A (en) | Base stable ionic liquids | |
US20040106823A1 (en) | Novel phosphonium phosphinate compounds and their methods of preparation | |
JPH03500881A (en) | Method for producing bidentate ligands | |
RU2503683C2 (en) | Diarylalkylphosphonates and methods for production thereof | |
WO2003051894A1 (en) | Preparation of ionic liquids | |
EP0271310B1 (en) | Ruthenium-phosphine complexes | |
Park et al. | Novel regioselectivity and carbon-fluorine bond cleavage in the reactions of alkylplatinum (II) complexes with amide and alkoxide anions | |
Greiner et al. | Solid–liquid two‐phase alkylation of tetraethyl methylenebisphosphonate under microwave irradiation | |
AU2002242292A1 (en) | Phosphonium phosphinate compounds and their preparation | |
CN102844293A (en) | A process for the hydrogenation of ketoesters | |
Crossey et al. | Exploiting the use of ionic liquids to access phosphorodiamidites | |
US6815558B1 (en) | Process for preparing (metal) alkylphosphonites II | |
US20170158719A1 (en) | Process for reducing the chlorine content of organotetraphosphites | |
US3636144A (en) | Dithiophosphoric acid salts and process for making same | |
TWI298070B (en) | Novel phosphonium phosphinate compounds and their methods of preparation | |
US2848474A (en) | Method of producing and recovering trimethyl phosphite | |
CN1163498C (en) | Prepn. method for high-purity bisalkyl phosphate | |
WO2008131270A1 (en) | Method for generating alkali metal phosphides through reduction of tri-substituted phosphines with alkali metal porous oxide compositions | |
CA1087204A (en) | Preparation of 0-(1-alkoxycarbonyl-1-propen-2-yl)-phosphorohalidates | |
EP3896055A1 (en) | Ammonium salt having saccharin anion | |
WO2024213474A1 (en) | Processes for producing alkyl acrylate dimers | |
CN100554253C (en) | The synthesis technique of antihypertensive medicine Lacidipine (62 | |
CN115724887A (en) | Process for the synthesis of chiral alpha-phosphorus compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 01080/KOLNP/2003 Country of ref document: IN Ref document number: 1081/KOLNP/2003 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002707923 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002242292 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10473271 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037012520 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 028074505 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002707923 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002707923 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |