明 細 書 高透磁率かつ高飽和磁束密度の軟磁性成形体の製造 Manufacturing of soft magnetic compacts with high magnetic permeability and high saturation magnetic flux density
[技術分野] [Technical field]
本発明は、 各種トランス、 チョークコイル、 モ一夕等の電気製品の磁性材料と して広く用いられる軟磁性合金に関するものであり、 特に高透磁率かつ高飽和磁 束密度を示す F e基磁性合金組成の軟磁性成形体に関する。 [背景技術] The present invention relates to a soft magnetic alloy that is widely used as a magnetic material for electric appliances such as various transformers, choke coils, and motors. The present invention relates to a soft magnetic compact having an alloy composition. [Background technology]
各種トランス、 チョークコイル、 モ一夕等に用いられる軟磁性合金で一般的に 要求される諸特性は、 低保磁力であることに加え、 飽和磁束密度が高いこと、 透 磁率が高いこと、 加工性が良いことなどである。 工業材料の観点からは安価でか つ製造が容易であることも必須である。 The characteristics generally required for soft magnetic alloys used in various transformers, choke coils, motors, etc. are that, in addition to low coercive force, high saturation magnetic flux density, high magnetic permeability, and processing That is good. From the viewpoint of industrial materials, it is essential that they be inexpensive and easy to manufacture.
上記の用途に対しては、 従来は、 センダスト、 パ一マロイ、 けい素銅等の結晶 質合金が用いられていたが、 最近では F e基及び C o基の非晶質合金が非晶質合 金を熱処理することにより製造されるナノ結晶合金も使用されるようになってき ている。 Conventionally, crystalline alloys such as Sendust, Parmalloy, and copper silicon have been used for the above applications, but recently Fe-based and Co-based amorphous alloys have become amorphous. Nanocrystalline alloys produced by heat treating alloys are also being used.
小型トランス、 チョークコイルの場合、 電子機器の小型化に伴い、 より一層の 小型化が必要あるため、 より高性能な磁性材料が望まれている。 In the case of small transformers and choke coils, further miniaturization is required in accordance with the miniaturization of electronic devices, and magnetic materials with higher performance are desired.
さらに、 昨今の地球温暖化対策の観点から商用周波数で用いられる電力、 柱上 トランス等の電気機器では、 1 . 4 T以上の飽和磁束密度、 そして低磁心損失が 求められている。 ところが、 センダストは、 軟磁気特性には優れるものの、 飽和 磁束密度は約 1 . Τと低い欠点があり、 パーマロイも同様に軟磁気特性に優れ る組成では、 飽和磁束密度が約 0 . 8 Tと低い欠点があり、 またけい素銅は飽和 磁束密度が高いものの軟磁気特性に劣る欠点がある。 Furthermore, from the viewpoint of recent global warming countermeasures, electric power used at commercial frequencies, electrical equipment such as pole transformers, and the like, require a saturation magnetic flux density of 1.4 T or more and low core loss. However, although Sendust has excellent soft magnetic properties, it has a drawback of low saturation magnetic flux density of about 1.1 mm.Permalloy also has a composition with excellent soft magnetic properties, and has a saturation magnetic flux density of about 0.8 T. Silicon copper has a disadvantage that silicon copper has a high saturation magnetic flux density but is inferior in soft magnetic properties.
一方、 非晶質合金では、 C o基合金は軟磁気特性に優れるものの飽和磁束密度 が 1 . 0 T程度と低く不十分である。 また、 これまでに知られている F e基非晶 質合金は、 組成によっては飽和磁束密度が高く、 1 . 5 Tあるいはそれ以上のも
のが得られるが、 高い飽和磁束密度を示す合金組成系のものは磁気特性が不十分 である。 On the other hand, among amorphous alloys, the Co-based alloy has excellent soft magnetic properties, but the saturation magnetic flux density is as low as about 1.0 T, which is insufficient. In addition, the Fe-based amorphous alloys known so far have a high saturation magnetic flux density depending on the composition, and have a magnetic flux density of 1.5 T or more. However, those with alloy compositions showing high saturation magnetic flux density have insufficient magnetic properties.
ところで、 これら従来の磁性材料が有する磁気特性と実用的な磁気装置が要求 する磁気特性の関係を見ると、 トランスにおいては、 商用周波数から数 1 0 k H zで用いられるものは、 扱う電力が大きい場合が多く、 それらに用いられるコア 材の飽和磁束密度はできるだけ大きいことが望まれる。 By the way, looking at the relationship between the magnetic properties of these conventional magnetic materials and the magnetic properties required of practical magnetic devices, transformers that are used at several 10 kHz from the commercial frequency require less power to handle. In many cases, the saturation magnetic flux density of the core material used for them is desired to be as large as possible.
例えば、 近年、 柱上トランスなどにおいては、 飽和磁束密度が 1 . 4 T以上で あることが必要とされ、 実際には、 1 . 5 T以上の飽和磁束密度を有するけい素 銅、 あるいは 1 . 3 T以上の飽和磁束密度を有する F e基非晶質合金などが、 満 足ではない透磁率を有するにもかかわらず用いられている。 For example, in recent years, pole transformers and the like have been required to have a saturation magnetic flux density of 1.4 T or more, and in fact, silicon copper having a saturation magnetic flux density of 1.5 T or more, or 1. Fe-based amorphous alloys with a saturation magnetic flux density of 3 T or more are used despite their unsatisfactory magnetic permeability.
このような場合、 コア材を構成する磁性材料の透磁率が高いと、 トランスとし ての効率が良くなり、 特に 1 0 0 0 0以上の透磁率が得られるとそのメリヅトが 著しくなるが、 1 . 5 T以上の透磁率を有する実用磁性材料は見あたらないのが 実状である。 In such a case, if the magnetic material constituting the core material has a high magnetic permeability, the efficiency as a transformer is improved. In particular, if a magnetic permeability of 1000 or more is obtained, the merits become remarkable. Actually, there is no practical magnetic material with a magnetic permeability of 5 T or more.
また、 通常の軟磁性材料が用いられるのは、 周知の如く数 H z〜数 1 0 0 H z の周波数帯域であるが、 この範囲において高い飽和磁束密度と高い透磁率とを同 時に実現できる軟磁性材料が得られるならば、 トランス等の磁気部品を小型化及 び低エネルギー損失化できることは周知のことである。 即ち、 軟磁性材料の飽和 磁束密度が高くなれば、 その分だけ磁束が多くなり、 結果として磁気部品の体積 を小型にできるのである。 更に、 磁気部品のエネルギー損失の大半は熱として外 部に放出されるので、 他の機器や部品との間隔をあけたりする工夫が一般に必要 とされるが、 これが磁気部品を備えた磁気装置全体の小型化への大きな障害をな つていた。 従って、 磁気部品を小型化すれば上述の問題を解決することができ、 結果として磁気装置全体を小型化することが可能になる。 As is well known, ordinary soft magnetic materials are used in the frequency band of several Hz to several hundred Hz, but in this range, high saturation magnetic flux density and high magnetic permeability can be realized at the same time. It is well known that if a soft magnetic material can be obtained, magnetic components such as transformers can be reduced in size and reduced in energy loss. That is, the higher the saturation magnetic flux density of the soft magnetic material, the higher the magnetic flux, and consequently the volume of the magnetic component can be reduced. Furthermore, since most of the energy loss of magnetic components is released to the outside as heat, it is generally necessary to devise a space between other devices and components. This was a major obstacle to miniaturization. Therefore, if the size of the magnetic component is reduced, the above-described problem can be solved. As a result, the size of the entire magnetic device can be reduced.
ところが、 従来の軟磁性材料は、 前述した通り、 高い飽和磁束密度を有するも のは透磁率が低くなる傾向にあり、 具体的には、 実用的な F e基非晶質合金にお いて飽和磁束密度を 1 . 3〜1 . 5 Tとすると、 透磁率 1 0 0 0 0を割って 9 0 0 0程度になる傾向があり、 実用的な C o基非晶質合金において透磁率 1 0 0 0 0以上とすると、 1 . 0 Tを割る傾向にある。
近年、 F Θ基非晶質相を加熱し結晶化することにより優れた磁気特性をもつナ ノ結晶合金が見出されており、 このナノ結晶合金の製造に際しては、 液体急冷法 により非晶質単相を得ることが必須であるとされていた。 このため、 合金組成に は、 多量のアモルファス形成元素が含まれる必要が有り、 必然的に F e濃度が制 限されるため、 得られる磁性材料の飽和磁束密度に限界があるとされていた。 す なわち、 合金組成が、 約 8 0原子%の限界を超える F eを含む場合には、 液体急 冷による得られた非晶質相に結晶相が混じり、 材料が脆化し、 加工性が著しく悪 くなり、 同時に軟磁気特性も著しく劣化するという問題があることが指摘されて いた。 However, as described above, conventional soft magnetic materials having a high saturation magnetic flux density tend to have a low magnetic permeability.Specifically, saturated soft magnetic materials are saturated in practical Fe-based amorphous alloys. If the magnetic flux density is 1.3 to 1.5 T, the magnetic permeability tends to be about 900 by dividing the magnetic permeability of 10000, and the magnetic permeability of a practical Co-based amorphous alloy is 10 0 If it is more than 0000, it tends to be less than 1.0T. In recent years, nanocrystalline alloys with excellent magnetic properties have been found by heating and crystallizing the FΘ-based amorphous phase. Obtaining a single phase was considered essential. For this reason, the alloy composition must contain a large amount of amorphous forming elements, which inevitably limits the Fe concentration, and it has been said that the saturation magnetic flux density of the obtained magnetic material is limited. That is, when the alloy composition contains Fe exceeding the limit of about 80 atomic%, the crystalline phase is mixed with the amorphous phase obtained by the liquid quenching, the material becomes brittle, and the workability is reduced. It has been pointed out that there is a problem that the magnetic properties are significantly worsened and the soft magnetic properties are also significantly degraded.
一方、 アモルファス形成元素として Z rを多量に用いた F e基の軟磁性合金は、 その製造時の加熱工程に於ける Z rの酸化を防ぐために、 加熱工程における雰囲 気中の酸素ガス濃度を低く制御することが必須であるため、 真空装置を備えた装 置での製造操作が要求され、 工業的応用が不利となるという問題がある。 On the other hand, Fe-based soft magnetic alloys that use a large amount of Zr as an amorphous forming element require an oxygen gas concentration in the atmosphere during the heating process in order to prevent oxidation of Zr during the heating process during production. Therefore, it is necessary to control the temperature at a low level, so that a manufacturing operation using a device equipped with a vacuum device is required, and there is a problem that industrial application is disadvantageous.
従って、 前述したような高飽和磁束密度と高透磁率を兼ね備え、 かつ、 熱安定 性を有し、 さらには安価で製造が容易な実用的な軟磁性材料が望まれている。 従って、 本発明の目的は、 1 . 5 T以上の高飽和磁束密度と 1 0 0 0 0以上の 高透磁率を兼ね備え、 かつ工業的な製造が容易な F e系合金からなる軟磁性成形 体を提供することにある。 Therefore, a practical soft magnetic material which has high saturation magnetic flux density and high magnetic permeability as described above, has thermal stability, and is inexpensive and easy to manufacture is desired. Therefore, an object of the present invention is to provide a soft magnetic compact made of an Fe-based alloy that has both a high saturation magnetic flux density of 1.5 T or more and a high magnetic permeability of 1000 or more and is easily industrially manufactured. Is to provide.
[発明の開示] [Disclosure of the Invention]
本発明者は、 溶融状態にある F e基合金組成物を急冷凝固させて、 折曲げが可 能な非晶質の薄帯を製造し、 ついで該薄帯を加熱する操作による軟磁性成型体の 製造方法に用いる F e基合金組成物として、 F e含有比率が 8 0〜9 0原子%と 高い比率であっても、 上記の薄帯中に微細のひ一 F e結晶相の分散状態で生成さ せ、 次いで、 この薄帯をひ _ F e結晶相の結晶化温度以上の温度で加熱すること により、 周波数 1 k H zでの透磁率が 1 0, 0 0 0以上、 飽和磁束密度が 1 . 5 T以上、 そして周波数 5 0 H zにおける磁心損失が 0 . 1 5 W/k g以下の軟磁 性成形体が容易に得られることを見出し、 本発明に到達した。 The present inventor has sought to solidify a Fe-based alloy composition in a molten state by rapid cooling and solidification to produce a bendable amorphous ribbon, and then heat the ribbon to form a soft magnetic molded body. Even if the Fe content of the Fe-based alloy composition used in the production method is as high as 80 to 90 atomic%, the dispersion state of the fine crystalline Fe phase Then, the ribbon is heated at a temperature equal to or higher than the crystallization temperature of the _F e crystal phase, so that the magnetic permeability at a frequency of 1 kHz is 100,000 or higher, and the saturation magnetic flux is The present inventors have found that a soft magnetic molded body having a density of 1.5 T or more and a magnetic core loss at a frequency of 50 Hz of 0.15 W / kg or less can be easily obtained, and arrived at the present invention.
従って、 本発明は、 溶融状態にある F e含有比率が 8 0〜9 0原子%の F e基
合金組成物を急冷凝固させて、 非晶質相中に平均粒径が 1〜42 nmの範囲のひ —Fe結晶相が分散状態で形成されている混相組織を有し、 かつ 180° の折曲 げが可能な薄帯を製造する工程、 そして該薄帯を — : F e結晶相の結晶化温度よ り高い温度に加熱する工程を含むことを特徴とする、 周波数 1 k H zでの透磁率 が 10, 000以上、 飽和磁束密度が 1. 5T以上、 そして周波数 50Hzにお ける磁心損失が 0. 15Wダ kg以下の軟磁性成形体の製造方法にある。 Therefore, the present invention relates to a Fe group having a Fe content of 80 to 90 atomic% in a molten state. The alloy composition is rapidly solidified to have a mixed phase structure in which an amorphous phase is formed of a dispersed Fe-crystalline phase having an average particle size of 1 to 42 nm, and a 180 ° fold. Producing a bendable ribbon, and heating the ribbon to a temperature above the crystallization temperature of the —: Fe crystalline phase, at a frequency of 1 kHz. The method is for manufacturing a soft magnetic molded body having a magnetic permeability of 10,000 or more, a saturation magnetic flux density of 1.5 T or more, and a core loss at a frequency of 50 Hz of 0.15 W dakg or less.
本発明はまた、 Fe含有比率が 80-90原子%の Fe基合金組成物からなり、 周波数 1 kHzでの透磁率が 10, 000以上、 飽和磁束密度が 1. 5T以上、 そして周波数 50Hz (こおける磁心損失が 0. 15 W/k g以下の軚磁性成形体 に ある。 The present invention also includes an Fe-based alloy composition having an Fe content of 80 to 90 atomic%, a magnetic permeability at 1 kHz frequency of 10,000 or more, a saturation magnetic flux density of 1.5 T or more, and a frequency of 50 Hz ( Core loss of 0.15 W / kg or less.
本発明はまた、 上記の軟磁性成型体を厚さ 5〜100 mの薄帯として形成し、 これを巻き回して形成した卷磁心にもある。 The present invention also resides in a wound core formed by winding the soft magnetic molded body as a thin strip having a thickness of 5 to 100 m and winding the thin strip.
さらにまた、 本発明は、 溶融状態にある Fe含有比率が 80〜90原子%の? e基合金組成物を急冷凝固させて、 非晶質相中に平均粒径が 1〜42 nmの範囲 の o:_Fe結晶相が分散状態で形成されている混相組織を有し、 かつ 180° の 折曲げが可能な F e基合金組成物の厚さが 5〜 100 /mの薄帯を製造する方法 にもある。 Furthermore, the present invention relates to a method for producing a molten metal having a Fe content ratio of 80 to 90 atomic%. The e-base alloy composition is rapidly solidified to have a mixed phase structure in which an o: _Fe crystal phase having an average particle size in the range of 1 to 42 nm is formed in a dispersed state in an amorphous phase, and 180 ° There is also a method for producing a ribbon having a thickness of 5 to 100 / m of a Fe-based alloy composition that can be bent.
本発明はまた、 Fe含有比率が 80〜90原子%の Fe基合金組成物からなり、 非晶質相中に平均粒径が 1〜42 nmの範囲のひ— F e結晶相が分散状態で形成 されている混相組織を有し、 かつ 180° の折曲げが可能な F e基合金組成物の 厚さが 5~100〃mの薄帯にもある。 The present invention also provides an Fe-based alloy composition having an Fe content of 80 to 90 atomic%, and a crystalline phase of Fe Fe having an average particle size in the range of 1 to 42 nm is dispersed in an amorphous phase. A Fe-based alloy composition having a formed multiphase structure and capable of bending at 180 ° is also present in a ribbon having a thickness of 5 to 100 μm.
本発明の軟磁性成型体と薄帯、 そしてそれらの製造方法において好ましい態様 は次の通りである。 Preferred embodiments of the soft magnetic molded article and the ribbon according to the present invention, and the methods for producing them are as follows.
( 1 ) 薄帯中のひ一 F e結晶相の平均粒径が 1〜40 nm (特に 1〜35 nm) の範囲にある。 (1) The average grain size of the Hi-Fe crystal phase in the ribbon is in the range of 1 to 40 nm (particularly 1 to 35 nm).
(2)薄帯中の α— Fe微細結晶相の存在比率が 5〜 30体積%である。 (2) The abundance ratio of the α-Fe fine crystal phase in the ribbon is 5 to 30% by volume.
(3) 薄帯を厚さ 5〜100 mを持つように製造する。 (3) Manufacture the ribbon to have a thickness of 5 to 100 m.
(4) 薄帯を加熱する前に、 巻回、 打抜き、 エッチング、 表面研磨及びスリット 加工のうちの一もしくは二以上の加工を行なう。
(5) Fe基合金組成物が、 1〜10原子%の 1)、 W、 Ta、 Z R、 Hf、 T iそして Moからなる群より選ばれる一種または二種以上の元素、 0. 5〜25 原子%の B、 および 0. 01〜5原子%の P、 Cu、 V、 Cr、 Mn、 Al、 白 金族元素、 S c、 Y、 希土類元素、 Au、 Zn、 Sn、 Re、 A g、 C、 Ge、 Sb、 In、 As、 Be, および S iからなる群より選ばれる一種または二種以 上の元素を含む。 (4) Before heating the ribbon, perform one or more of winding, punching, etching, surface polishing, and slitting. (5) one or more elements selected from the group consisting of 1 to 10 atomic% of 1), W, Ta, ZR, Hf, Ti and Mo, wherein the Fe-based alloy composition is 0.5 to 25; Atomic% of B, and 0.01 to 5 atomic% of P, Cu, V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, Ag, Including one or more elements selected from the group consisting of C, Ge, Sb, In, As, Be, and Si.
(6) Fe基合金組成物が、 2~10原子%の Nbそして Hfからなる群より選 ばれる一種または二種以上の元素、 0. 5〜25原子%の5、 および 0. 01〜 5原子%の^:0、 P、 Cu、 および Cからなる群より選ばれる一種または二種以 上の元素を含む。 ' (6) one or more elements selected from the group consisting of 2 to 10 atomic% of Nb and Hf, 0.5 to 25 atomic% of 5, and 0.01 to 5 atomic% of the Fe-based alloy composition; % ^: Includes one or more elements selected from the group consisting of 0, P, Cu, and C. '
(7) Fe基合金組成物の F eの含有量が、 82原子%以上である。 (7) The Fe content of the Fe-based alloy composition is at least 82 atomic%.
( 8 ) 軟磁性成型体の周波数 1 k H zでの透磁率が、 15、 000以上である。 ( 9 ) 軟磁性成型体の周波数 50Hzにおける磁心損失が 0. 14 WZk g以下 である。 (8) The magnetic permeability at a frequency of 1 kHz of the soft magnetic molded body is 15,000 or more. (9) The magnetic core loss at a frequency of 50 Hz of the soft magnetic molded body is 0.14 WZkg or less.
[図面の簡単な説明] [Brief description of drawings]
第 1図は、 本発明材料に従う F e合金組成物の急冷状態での X線回折図形の例 である。 FIG. 1 is an example of an X-ray diffraction pattern of the Fe alloy composition according to the material of the present invention in a quenched state.
第 2図は、 Pを含まない Fe合金組成物の、 熱処理後の透磁率の B含有量に対 する変化の例である。 FIG. 2 shows an example of the change in the magnetic permeability after the heat treatment of the Fe alloy composition containing no P with respect to the B content.
第 3図は、 Pを 1原子%含む Fe合金組成物の、 熱処理後の透磁率の B + P含 有量に対する変化の例である。 FIG. 3 is an example of the change in the magnetic permeability after the heat treatment of the Fe alloy composition containing 1 atomic% of P with respect to the B + P content.
第 4図は、 本発明に従う F e合金組成物の X線回折図形の、 Cu含有量に対す る変化の例である。 FIG. 4 is an example of a change in the X-ray diffraction pattern of the Fe alloy composition according to the present invention with respect to the Cu content.
第 5図は、 本発明に従う F e合金組成物の熱処理後の透磁率の C u含有量に対 する変化の例である。 FIG. 5 is an example of a change in the magnetic permeability of the Fe alloy composition according to the present invention after the heat treatment with respect to the Cu content.
第 6図は、 本発明に従う F e合金組成物の X線回折図形の、 P含有量に対する 変化の例である。 FIG. 6 is an example of a change in the X-ray diffraction pattern of the Fe alloy composition according to the present invention with respect to the P content.
第 Ί図は、 本発明に従う F e合金組成物の熱処理後の透磁率の P含有量に対す
る変化の例である。 [発明の詳細な説明] FIG. 5 shows the magnetic permeability after heat treatment of the Fe alloy composition according to the present invention with respect to the P content. This is an example of a change. [Detailed description of the invention]
本発明の軟磁性成形体は、 F e基合金組成物の溶融金属を薄帯状に急冷凝固さ せて、 該薄帯に 1 8 0 ° の折曲げによっても損傷しないような高じん性を有する 平均結晶粒径が 1〜 4 2 nmの微細なひ一 F e結晶相と非晶質との混相組織を形 成させる工程と、 必要に応じてこの工程で得られた薄帯をものを、 卷回、 打抜き、 エッチング、 表面研磨及びスリツト加工などの加工処理の一もしくは二以上を施 した後、 該 F e基合金組成物の結晶化温度以上に熱処理する工程とによって得る ことができる。 The soft magnetic molded article of the present invention has a high toughness such that the molten metal of the Fe-based alloy composition is rapidly solidified in a thin strip shape, and the thin strip is not damaged by bending at 180 °. A step of forming a mixed phase structure of a fine single Fe crystal phase having an average crystal grain size of 1 to 42 nm and an amorphous phase, and, if necessary, the strip obtained in this step. After performing one or more processing operations such as winding, punching, etching, surface polishing, and slitting, a heat treatment is performed at a temperature higher than the crystallization temperature of the Fe-based alloy composition.
溶融金属の急冷凝固により形成される薄帯中の α— F e結晶相の平均結晶粒径 が 5 O nmを超えると薄帯のじん性が低下し、 以後の卷回などの加工が困難にな る If the average crystal grain size of the α-Fe crystal phase in the ribbon formed by rapid solidification of the molten metal exceeds 5 O nm, the toughness of the ribbon decreases, making it difficult to process subsequent windings. Become
本発明で用いる材料である F e基の合金組成物は、 非晶質形成元素を含むこと が必須である。 B . (ホウ素) は典型的な非晶質形成元素であり、 本発明材料の非 晶質相形成能を高める効果、 及び前記熱処理工程において磁気特性に悪影響を及 ぼす化合物相の生成を抑制する効果があると考えられる。 しかし Bを大量に含む と、 材料の F e濃度が低下するために飽和磁束密度が低下する、 あるいは熱処理 後に F eの硼化物を形成する傾向が現れて、 形成される軟磁性成形体の磁気特性 劣化の一因となるため好ましくない。 そのため、 本発明材料において好ましい B の含有量は 0 . 5〜2 5原子%、 より好ましくは 0 . 5〜1 5原子%でぁる。 ま た、 製造が容易でかつより優れた磁気特性を示す材料を得るためには、 Bの含有 量は 5〜1 2原子%であるのが好ましい。 It is essential that the Fe-based alloy composition, which is a material used in the present invention, contains an amorphous forming element. B. (boron) is a typical amorphous-forming element, and has the effect of increasing the ability to form an amorphous phase of the material of the present invention, and also suppresses the formation of a compound phase that adversely affects magnetic properties in the heat treatment step. It is thought to be effective. However, when a large amount of B is contained, the saturation magnetic flux density decreases due to a decrease in the Fe concentration of the material, or a tendency to form a boride of Fe after heat treatment appears, and the magnetic property of the soft magnetic compact formed is increased. It is not preferable because it causes deterioration of characteristics. Therefore, the preferable content of B in the material of the present invention is 0.5 to 25 atomic%, more preferably 0.5 to 15 atomic%. Further, in order to obtain a material which is easy to produce and has better magnetic properties, the B content is preferably 5 to 12 atomic%.
C u (銅) を含有させると、 急冷時に生成するひ一 F e結晶相の粒径を微細化 する効果があると考えられ、 急冷状態で高じん性を示す材料を得やすくする作用 がある。 しかし C uの含有量が多くなると急冷状態で非晶質相中に C u結晶が生 成し、 材料のじん性が低下する。 そのため本発明材料において好ましい C uの含 有量は、 1 . 5原子%以下である。 また、 より優れた磁気特性を示す材料を得る ために好ましい C uの含有量は 1原子%以下、 より好ましくは 0 . 5原子%以下
である。 The inclusion of Cu (copper) is thought to have the effect of reducing the grain size of the Fe crystalline phase formed during quenching, and has the effect of making it easier to obtain a material that exhibits high toughness in the quenched state. . However, when the content of Cu increases, Cu crystals are generated in the amorphous phase in a quenched state, and the toughness of the material decreases. Therefore, the preferable content of Cu in the material of the present invention is 1.5 atomic% or less. Further, in order to obtain a material exhibiting more excellent magnetic properties, the content of Cu is preferably 1 atomic% or less, more preferably 0.5 atomic% or less. It is.
Pも Bと同様に、 本発明材料の非晶質形成能を更に高める効果、 及び前記熱処 理工程において磁気特性に悪影響を及ぼす化合物相の生成を抑制する効果がある と考えられる。 また Bと Pを同時に含むことにより非晶質形成能が更に向上し、 より高 F e濃度の非晶質相とひ一 F e結晶相との混相組織が得やすくなると考え られ、 Pを含むことがより好ましいと考えられる。 しかし Pを大量に含むと F e 濃度の低下及び飽和磁束密度の低下を招くので好ましくない。 そのため本発明材 料において好ましい Pの含有量は 5原子%以下である。 また、 より優れた磁気特 性を示す材料を得るためには、 Pの含有量は 1. 5原子%以下であるのが好まし い o P, like B, is considered to have the effect of further increasing the ability of the material of the present invention to form an amorphous phase and the effect of suppressing the formation of a compound phase that adversely affects magnetic properties in the heat treatment step. It is considered that the simultaneous formation of B and P further enhances the ability to form an amorphous phase, and makes it easier to obtain a mixed phase structure of an amorphous phase with a higher Fe concentration and a single Fe crystal phase. Is considered more preferable. However, including a large amount of P is not preferable because it lowers the Fe concentration and the saturation magnetic flux density. Therefore, the preferable content of P in the material of the present invention is 5 atomic% or less. In order to obtain a material having better magnetic properties, the P content is preferably 1.5 atomic% or less.
本発明を種々のトランス、 チョークコイル、 モ一夕等などの磁気部品の磁心材 料として使用する場合において、 これら磁気部品の高性能化、 小型化、 高効率化 のためには、 高透磁率、 高飽和磁束密度、 そして低磁心損失などの諸特性を有す る必要がある。 具来的には、 周波数 1 kHzにおける透磁率が 10000以上、 飽和磁束密度が 1. 5 T以上、 及び周波数 50Hzにおける磁心損失が 0. 15 W/k g以下であることが好ましい。 When the present invention is used as a magnetic core material for magnetic components such as various transformers, choke coils, and motors, high permeability, high performance, small size, and high efficiency are required for these magnetic components. It is necessary to have various characteristics such as high saturation magnetic flux density, and low core loss. Specifically, it is preferable that the magnetic permeability at a frequency of 1 kHz is 10,000 or more, the saturation magnetic flux density is 1.5 T or more, and the core loss at a frequency of 50 Hz is 0.15 W / kg or less.
上記の磁気特性を実現するためには、 N bなどの元素を必須元素として含み、 さらに非晶質形成能のある Bなどの他の元素を含む、 次式で表される組成 (1) を有すること F e基合金であることが好ましい。 In order to realize the above magnetic properties, a composition expressed by the following formula (1) containing an element such as Nb as an essential element, and further containing other elements such as B capable of forming an amorphous phase, is required. Preferably, it is an Fe-based alloy.
(Fei-aMaixoO-b-c-d-e-f-s-hM5 b B。 P d C u e M" f M, : h —- (1) (Fei-aMaixoO-bcdefs-hM 5 b B. P d C u e M " f M,: h —- (1)
[但し、 Mは、 Co, N iのいずれか一方又は両方であり、 M' は Nb, W, Ta, Z r, Hf , Ti, M oからなる群から選ばれる一種又は二種以上の元素 であり、 M" は V, Cr, Mn, A1, 白金族元素, Sc, Y, 希土類元素, A u, Zn, Sn, Re, A gからなる群から選ばれる一種又は二種以上の元素で あり、 は C, Ge3 Sb, In, As, B eからなる群から選ばれる一種又 は二種以上の元素であり、 Xは S i, A 1のいずれか一方又は両方であって、 a、 b、 c、 d、 e、 f、 g、 hはそれぞれ、 0≤a≤0. 5、 1≤b≤ 1 0.
5≤c≤25, 0≤d≤ 5 0≤ e≤ 1. 5、 0≤f ≤ 2, 0≤ g≤ 3, 0≤h ≤6を満たす数値 (ただし、 Feと Mの合計量は 80〜90原子%とする) であ る。 ] [Where M is one or both of Co and Ni, and M 'is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo] And M "is one or more elements selected from the group consisting of V, Cr, Mn, A1, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag. Is a kind or two or more kinds of elements selected from the group consisting of C, Ge 3 Sb, In, As, Be, and X is one or both of S i and A 1; , B, c, d, e, f, g, h are 0≤a≤0.5, 1≤b≤10. 5≤c≤25, 0≤d≤5 0≤ e≤1.5, 0≤f≤2, 0≤g≤3, 0≤h≤6 (However, the total amount of Fe and M is 80 To 90 atomic%). ]
上記の式で、 Mは、 Co, N iのいずれか一方または両方であり、 これらの元 素を含むことにより材料の磁歪を調整したり、 あるいは磁場中熱処理などの手法 で誘導磁気異方性を付与するなどで用途に合わせた磁化曲線を実現することがで きる。 しかしこれらの元素を多量に含むと、 磁歪が極端に増加して磁気特性の劣 化を招く。 In the above formula, M is one or both of Co and Ni. Including these elements, the magnetostriction of the material is adjusted, or induced magnetic anisotropy is obtained by a method such as heat treatment in a magnetic field. By applying a magnetic field, it is possible to realize a magnetization curve according to the application. However, when these elements are contained in a large amount, magnetostriction is extremely increased and magnetic properties are deteriorated.
M' は、 Nb, W, Zr, Ta, Hf , Ti, M oからなる群から選ばれる一 種又は二種以上の元素であり、 これらの元素は高い非晶質形成能を持っため、 材 料の!1 e濃度を高めて飽和磁束密度を高めるのに有効な元素である。 しかしこれ らの元素を大量に含むと、 熱処理後に磁気特性に悪影響を及ぼす化合物相が生成 しゃすくなるため、 10原子%以下の範囲で添加するのが好ましい。 なお、 Zr を用いることにより、 比較的容易に、 目的の軟磁性特性が得られるが、 前述のよ うに、 Zrを用いる場合には、 合金の加熱工程において真空装置が必須となるた め、 Zrを使用する場合には、 その使用量を 1. 5原子%以下とすることが好ま しい。 M ′ is one or more elements selected from the group consisting of Nb, W, Zr, Ta, Hf, Ti, and Mo. These elements have high amorphous forming ability, and Of charges! It is an element effective for increasing the 1 e concentration and increasing the saturation magnetic flux density. However, if these elements are contained in large amounts, a compound phase which adversely affects the magnetic properties after the heat treatment is easily formed, so it is preferable to add the elements in a range of 10 atomic% or less. The desired soft magnetic properties can be obtained relatively easily by using Zr.However, as described above, when Zr is used, a vacuum device is indispensable in the alloy heating step. When used, it is preferable that the amount used is 1.5 atomic% or less.
M"は V, Cr, Mn, Al, 白金族元素, Sc, Y, 希土類元素, Au, Z n, Sn, Re, A gからなる群から選ばれた一種又は二種以上の元素であり、 これらは材料の耐食性ゃ耐磨耗性を向上させる、 磁歪を調整する、 ひ一 Fe相の 結晶粒径を微細化させる等の効果を有する。 しかしこれらの元素の含有量が増加 すると飽和磁束密度の低下を招くので、 使用する場合には、 その使用量を一定の 上限値以内とすることが必要である。 M "is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag; These have the effect of improving the corrosion resistance of the material ゃ abrasion resistance, adjusting magnetostriction, reducing the grain size of the Fe phase, etc. However, when the content of these elements increases, the saturation magnetic flux density When used, it is necessary to keep the usage within a certain upper limit.
Μ'"は C, Ge, Sb, In, As, Beからなる群から選ばれる一種または 二種以上の元素であり、 これらの元素は非晶質化に有効な元素であり、 B, P等 と共に添加することにより合金の非晶質化を助けると共に、 磁歪を調整する等の 効果を有する。 しかしこれらの元素の含有量が増加すると飽和磁束密度の低下を 招くので、 使用する場合には、 その使用量を一定の上限値以内とすることが必要 である。
Xは S i, A 1のいずれか一方又は両方であり、 これらは一般に良く知られて いる非晶質形成元素であり、 B, P等と共に添加することにより合金の非晶質形 成能を高める作用がある。 また、 これらの元素は熱処理後にひ一 Fe相に固溶し て、 結晶相の磁気異方性や磁歪を調節して磁気特性を改善する効果も有する。 た だし、 これらの元素の含有量が増加すると飽和磁束密度の低下を招くので、 使用 する場合には、 その使用量を一定の上限値以内とすることが必要である。 Μ '"is one or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be. These elements are effective elements for amorphization, and include B, P, and the like. It has the effect of helping to make the alloy amorphous and adjusting the magnetostriction, etc. However, an increase in the content of these elements causes a decrease in the saturation magnetic flux density. It is necessary to keep the usage within a certain upper limit. X is one or both of Si and A1, and these are generally well-known amorphous forming elements. When added together with B, P, etc., the amorphous forming ability of the alloy is increased. Has the effect of increasing. In addition, these elements form a solid solution in the Fe phase after the heat treatment, and have an effect of improving magnetic properties by adjusting the magnetic anisotropy and magnetostriction of the crystal phase. However, an increase in the content of these elements causes a decrease in the saturation magnetic flux density. Therefore, when used, it is necessary to keep the usage within a certain upper limit.
従って、 本発明の軟磁性成形体の形成に用いる Fe基合金組成物は、 下記の組 成式 (2) 'で表わされる合金材料であることが特に好ましい。 Therefore, the Fe-based alloy composition used for forming the soft magnetic molded body of the present invention is particularly preferably an alloy material represented by the following composition formula (2) ′.
(F Θ l-aMa) l O O-b-c-d-eM' bB0PdCue 一一 (2) (F Θ l- a Ma) l O Obcd-eM ' b B 0 PdCu e 11 (2)
[但し、 Mは Co, Niのいずれか一方又は両方であり、 M, は Nb, W, T a, Zr, Hf, Ti, M oからなる群から選ばれる一種又は二種以上の元素で あって、 0≤a≤0. 05、 4≤b≤7, 5≤c≤ 12, 0≤d≤ 1. 5、 0≤ e≤0. 5 (ただし、 Feと Mの合計量は 80〜90原子%とする) である。 ] その他、 H, N, 0, S等の不可避不純物については、 所望の特性が劣化しな, い程度に含有していても、 本発明の材料組成と同一と見なすことができるのは勿[However, M is one or both of Co and Ni, and M, is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo.] 0≤a≤0.05, 4≤b≤7, 5≤c≤12, 0≤d≤1.5, 0≤e≤0.5 (However, the total amount of Fe and M is 80 ~ 90 Atomic%). In addition, unavoidable impurities such as H, N, 0, S, etc. can be regarded as the same as the material composition of the present invention even if they contain the desired characteristics without deteriorating.
¾Βであ ·©。 ¾Βis · ©.
本発明の軟磁性成形体は、 前述のように、 一旦、 溶融状態にある F e基合金組 成物の急速冷却により、 非晶質体中に微細な Fe—結晶相 (微細 bccFe結晶 相) が分散された薄帯を成形したのち、 必要に応じて、 卷回などの加工処理を施 した後、 該 F e基合金組成物の結晶化温度よりも高い温度に薄帯を加熱して、 結 晶相を成長させて製造する。 溶融合金の急速冷却は、 単ロール法、 双ロール法、 遠心急冷法等を利用して実施する。 As described above, the soft magnetic molded body of the present invention is characterized in that, by rapidly cooling the Fe-based alloy composition in a molten state, a fine Fe-crystal phase (fine bccFe crystal phase) is formed in the amorphous body. After forming a ribbon in which is dispersed, if necessary, after performing a processing such as winding, the ribbon is heated to a temperature higher than the crystallization temperature of the Fe-based alloy composition, Manufactured by growing the crystal phase. Rapid cooling of the molten alloy is carried out using a single roll method, twin roll method, centrifugal quenching method, or the like.
薄帯もしくはその加工物中の微細 F e—結晶相の成長のための熱処理は、 通常 は 100〜700°Gの温度範囲内で行なう。 この熱処理は通常、 真空中または水 素ガス、 窒素ガス、 アルゴンガス等の不活性ガス雰囲気中においても行われる。 また場合によっては大気中で行っても良い。 ただし、 合金組成中に 2原子%以上 の Zr元素が含まれると、 その酸化が問題となるため、 この場合には真空中で行
なう必要がある。 また磁場中あるいは応力下で熱処理を行い、 磁気特性を調整す ることもできる。 以下本発明を実施例に従ってさらに詳細に説明するが、 本発明はこれらに限定 されるものではない。 The heat treatment for the growth of the fine Fe-crystalline phase in the ribbon or its workpiece is usually performed in the temperature range of 100-700 ° G. This heat treatment is usually performed in a vacuum or in an atmosphere of an inert gas such as hydrogen gas, nitrogen gas, or argon gas. In some cases, it may be performed in the atmosphere. However, if the alloy composition contains 2 atomic% or more of the Zr element, its oxidation becomes a problem. It is necessary to do. Also, heat treatment can be performed in a magnetic field or under stress to adjust the magnetic properties. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[実施例] [Example]
下記の実施例に示す合金は、 単ロール液体急冷法により作製した。 すなわち、 一つの回転している銅製ロール上におかれたノズル先端のスリットより、 溶融金 属を、 アルゴンガスの圧力により、 上記口一ル上に噴出させ、 急冷して薄帯を得 る。 ロール及びノズルは真空容器中に収められている。 薄帯作製時にはあらかじ め容器内を真空引き後、 アルゴンガスを導入して行った。 ロールの周速度は 30 〜40m/秒とした。 以上の様に作製した薄帯の厚さは約 20mmであった。 急 冷状態の薄帯の構造は X回折法を用いて調べた。 また薄帯のじん性を、 薄帯を 1 80° 折り曲げる密着曲げの可否 ( 180° 折り曲げても薄帯が破壊しない場合 を、 密着曲げ可能と表す) で調べた。 また、 合金組成中に 3. 5原子%の Z rを 含む試料番号 10の合金組成物以外の合金組成物の急冷操作については、 大気中 でも実施した。 The alloys shown in the following examples were produced by a single roll liquid quenching method. That is, molten metal is ejected from the slit at the tip of the nozzle placed on one rotating copper roll onto the above-mentioned nozzle by the pressure of argon gas, and rapidly cooled to obtain a ribbon. The roll and nozzle are housed in a vacuum container. When preparing the ribbon, the inside of the container was evacuated in advance, and argon gas was introduced. The peripheral speed of the roll was 30 to 40 m / sec. The thickness of the ribbon produced as described above was about 20 mm. The structure of the quenched ribbon was investigated using X-ray diffraction. In addition, the toughness of the ribbon was examined in terms of whether or not it could be folded 180 ° (the case where the ribbon did not break even if it was bent 180 ° is referred to as being able to be bent tightly). The quenching operation of alloy compositions other than the alloy composition of Sample No. 10 containing 3.5 atomic% of Zr in the alloy composition was also performed in the air.
[実施例 1 ] [Example 1]
本発明に従って F e合金組成物を急冷したのちの状態における F e—微細結晶 相が分散された非晶質相からなる薄帯の内部構造について、 F e85Nb6B9及び Fe84.9Nb6B9Cuo. i合金を例にとって説明する。 The internal structure of the ribbon F e- microcrystalline phase is an amorphous phase dispersed in the state of After quenching the F e alloy compositions in accordance with the present invention, F e 85 Nb 6 B 9 and Fe 84. 9 This will be described by taking the Nb 6 B 9 Cuo. I alloy as an example.
第 1図は、 F e85Nb6B9及び F e84.9Nb6B9Cu。. 合金の急冷状態での X線回折図形である。 X線回折図形は非晶質相に特有のハローな回折図形上に、 〇で示したひ— F e結晶相に特有の鋭い回折ビークが見られ、 薄帯は非晶質相と 一 Fe結晶相の混相であることが分かる。 — Fe結晶相の回折ピークの半値 幅からシエラ一の式を用いてひ一 F e結晶相の粒径を見積もると、 F e85Nb6 B9合金においては約 45 nmであった。 F e84.9N b 6B 9 C u。. においては、 ひ—F e結晶相の回折ピークの強度が非常に低いため粒径を求めることができな
かったが、 ピークの半値幅は非常に広く、 粒径は 10 nm以下程度に微細化して いると判断される。 Figure 1 is, F e 85 Nb 6 B 9 and F e 84. 9 Nb 6 B 9 Cu. X-ray diffraction pattern of the alloy in the quenched state. In the X-ray diffraction pattern, on the halo diffraction pattern specific to the amorphous phase, a sharp diffraction beak specific to the Fe Fe crystal phase is seen, and the ribbon is the amorphous phase and one Fe crystal. It can be seen that the phases are mixed phases. — Using the Sierra equation to estimate the grain size of the Fe Fe crystal phase from the half width of the diffraction peak of the Fe crystal phase, it was about 45 nm for the Fe 85 Nb 6 B 9 alloy. F e 84. 9 N b 6 B 9 C u. In, the particle size could not be determined because the intensity of the diffraction peak of However, the half width of the peak is very wide, and the particle size is judged to be smaller than about 10 nm.
すなわち、 0. 1原子%の Cuを添加することにより、 急冷状態での 一 F e 結晶相の粒径が微細化すると言える。 また、 この二つの合金はいずれも急泠状態 で密着曲げ (180° 曲げ) が可能であり、 高いじん性を有していた。 In other words, it can be said that by adding 0.1 atomic% of Cu, the grain size of one Fe crystal phase in the quenched state becomes fine. In addition, both of these alloys were capable of close bending (180 ° bending) in a rapid state, and had high toughness.
[実施例 2] [Example 2]
各種組成の Fe合金組成物から製造した薄帯について、 それらの合金組成、 薄 帯の板厚、 急冷状態における構造、 及び密着曲げの可否を第 1表に示す。 試料番 号 1〜10の試料では、 X線回折図形から急冷状態で非晶質相と α— Fe結晶相 の混相であることが分かつた。 ひ一 Fe結晶相の回折ビークからひ一 Fe結晶相 の粒径を見積もると、 約 30〜40 nmであった。 なお試料番号 3、 8及び 1ひ の試料では、 α— F e結晶相の回折ピークの強度が非常に低いため正確な粒径を 求めるこ,とができなかったが、 ピ一クの半値幅は非常に広く、 粒径は 10nm以 下程度に微細化していると判断される。 試料番号 1〜10の試料はいずれも、 損 傷なく密着曲げが可能であり、 高いじん性を有していることが確認された。
Table 1 shows the alloy compositions, the thicknesses of the ribbons, the structure in the quenched state, and the possibility of close bending for the ribbons produced from Fe alloy compositions of various compositions. The X-ray diffraction patterns of the samples Nos. 1 to 10 revealed that the quenched state was a mixed phase of the amorphous phase and the α-Fe crystal phase. When the grain size of the Hi-Fe crystal phase was estimated from the diffraction beak of the Hi-Fe crystal phase, it was about 30-40 nm. In the case of samples Nos. 3, 8 and 1, the intensity of the diffraction peak of the α-Fe crystal phase was so low that it was not possible to determine the exact particle size. Is very wide, and the particle size is judged to be smaller than about 10 nm. It was confirmed that all of the samples Nos. 1 to 10 could be bent tightly without damage and had high toughness.
第 1表 Table 1
BAJ料 合金組成 (原子%) a-F e結晶相 BAJ material Alloy composition (atomic%) a-F e crystalline phase
( ) 粒径 (〃m) () Particle size (〃m)
1 FessNbeBsPi 19 401 FessNbeBsPi 19 40
2 F 6 s4. 95 N b6B8PiCuo.05 21 402 F 6 s4.95 Nb 6 B 8 PiCuo.05 21 40
3 F e84. sNbeBsPiCuo.! 20 10>3 Fe 84. sNbeBsPiCuo.! 20 10>
4 F e84.5Nb6B8PiC o.5 22 40 4 F e 84. 5 Nb 6 B 8 PiC o. 5 22 40
5 Fe84Nb6.5B6.3P 3 Cu0.2 17 40
5 Fe 8 4Nb 6. 5 B 6. 3 P 3 Cu 0. 2 17 40
7 F e85. i5Nb5.5B8.25Cu0. i 22 35 7 F e 85. I 5 Nb 5. 5 B 8. 25 Cu 0. I 22 35
8 (Feo. 99 N i o. 01 ) 83. gNbeBsPiCUo.1 19 10>8 (Feo.99Nio.01) 83.gNbeBsPiCUo.1 19 10>
9 Fe84Nb5.5M01B9.5 17 40 0 Fe86Z r3.5Nb3.5B6Cui 20 10 > 9 Fe 84 Nb 5 .5M01B9.5 17 40 0 Fe 86 Z r 3. 5 Nb 3. 5 B 6 Cui 20 10>
[実施例 3 ] [Example 3]
実施例 2において作製した薄帯を用いて内径約 5 mm、 外径約 6 mmの巻磁心 を形成し、 真空中で 650°C、 5分間の熱処理を行った。 熱処理後の巻磁心に卷 き線を施し、 透磁率 (m) と B— H曲線、 磁心損失を測定した。 透磁率の測定は 印加磁界 5 mOe、 周波数 1 kHzとした。 飽和磁束密度 (B s) は最大磁界 10 Oe、 周波数 1 OHzにおける交流磁化曲線から算出した。 磁心損失の測 定は、 最大磁束密度 1. 4T、 周波数 5 OHzで行った。 透磁率、 飽和磁束密度、 磁心損失の測定結果を第 2表に示す。
第 2表 試料 合金組成 (原子%) 透磁率 飽和磁束 磁心損失A wound core having an inner diameter of about 5 mm and an outer diameter of about 6 mm was formed using the ribbon produced in Example 2, and heat-treated at 650 ° C. for 5 minutes in a vacuum. Winding was performed on the wound core after heat treatment, and the permeability (m), BH curve, and core loss were measured. The permeability was measured at an applied magnetic field of 5 mOe and a frequency of 1 kHz. The saturation magnetic flux density (B s) was calculated from the AC magnetization curve at a maximum magnetic field of 10 Oe and a frequency of 1 OHz. The core loss was measured at a maximum magnetic flux density of 1.4 T and a frequency of 5 OHz. Table 2 shows the measurement results of permeability, saturation magnetic flux density, and core loss. Table 2 Sample Alloy composition (atomic%) Permeability Saturation magnetic flux Core loss
/(1kHz)粒径( zm) W(W/kg) / (1kHz) Particle size (zm) W (W / kg)
1 Fe85Nb6B8P1 19700 1.57-1.61 0.141 Fe 85 Nb 6 B 8 P 1 19700 1.57-1.61 0.14
2 Fe84. gsNbeBeP iCuo.05 30600 1.59-1.63 0.122 Fe 84. GsNbeBeP iCuo. 05 30 600 1.59-1.63 0.12
3 F e84. sNbeBsP iCuo.! 40800 1.57-1.61 0.113 Fe 84. SNbeBsP iCuo.! 40800 1.57-1.61 0.11
4 F e84.5Nb6B8PiCuo.5 17200 1.59- 1.62 0.14 4 F e 84. 5 Nb 6 B 8 PiCuo. 5 17200 1.59- 1.62 0.14
5 F e84Nb6.5B6.3P 3 Cu0.2 22600 1.50-1.55 0.13 5 F e 84 Nb 6. 5 B 6. 3 P 3 Cu 0. 2 22600 1.50-1.55 0.13
6 F e84Nb6.5B8.5Ci 25800 1.53-1.56 0.13 6 F e 84 Nb 6. 5 B 8. 5 Ci 25800 1.53-1.56 0.13
7 F e85. isNb5.5B8.25Cu0. i 10900 1.60- 1.65 0.14 7 F e 85. IsNb 5. 5 B 8. 25 Cu 0. I 10900 1.60- 1.65 0.14
8 (Fe0.99Nio.oi) 83. sNbeBsPi Cuo. χ 23600 1.53- 1.56 0.15 8 (Fe 0. 99 Nio.oi) 83. sNbeBsPi Cuo. Χ 23600 1.53- 1.56 0.15
9 Fe84Nb5.5MoiB 9.5 21000 1.54- 1.55 0.14 0 Fe86Z r3.5Nb3. sBeCux 61000 1.54 0.07 第 2表の結果から、 本発明の Fe基合金組成物から得られる薄帯は、 熱処理後 に、 周波数 1 kH zでの透磁率が 10000以上、 飽和磁束密度が 1. 5 T以上、 周波数 50 Hzでの磁心損失が 0. 15 W/kg以下であることが確認された。 9 Fe 8 4Nb 5. 5 MoiB 9. 5 21000 1.54- 1.55 0.14 0 Fe 86 Z r 3. 5 Nb 3. From sBeCux 61000 1.54 0.07 of Table 2 results, thin obtained from Fe-based alloy compositions of the present invention After heat treatment, the band was confirmed to have a magnetic permeability of 10000 or more at a frequency of 1 kHz, a saturation magnetic flux density of 1.5 T or more, and a core loss at a frequency of 50 Hz of 0.15 W / kg or less. Was.
[実施例 4] [Example 4]
Nb含有量が 6原子%、 B含有量が 8〜; I 5原子%、 P含有量が 0又は 1原子 %、 Cu含有量が 0〜1原子%、 残部が Feからなる合金薄帯を作製し、 真空中 で 650。C、 5分間の熱処理を行った後の 1 kHzにおける透磁率を測定した。 これらの合金の透磁率の、 B含有量及び B + P含有量に対しての変化を第 2図及 び第 3図に示す。 Nb含有量が 6原子%の場合、 急冷状態で非晶質と α:— F e結 晶の混相状態は、 B+.P含有量が 10. 5 原子%以下で得られた。 第 2図より、 Pを含まない合金においては、 10000以上の高い透磁率が 8〜 15原子%の B含有量で、 更に 20000以上のより優れた透磁率が 9〜12原子%の8含有
量で得られることが分かる。 Nb content is 6 atomic%, B content is 8 ~; I 5 atomic%, P content is 0 or 1 atomic%, Cu content is 0-1 atomic%, and the balance of Fe is made of alloy ribbon. And 650 in vacuum. C, the magnetic permeability at 1 kHz after the heat treatment for 5 minutes was measured. Changes in the magnetic permeability of these alloys with respect to the B content and the B + P content are shown in FIGS. 2 and 3. When the Nb content was 6 at%, a mixed phase of amorphous and α: -Fe crystals was obtained at a B + .P content of 10.5 at% or less in the quenched state. From Fig. 2, it can be seen that in alloys that do not contain P, a high permeability of 10,000 or more has a B content of 8 to 15 at%, and a superior magnetic permeability of 20000 or more has a B content of 9 to 12 at%. It can be seen that the amount can be obtained.
また第 3図より、 Pを 1原子%含む合金においては、 10000以上の高い透 磁率が 8原子%以上の B + P含有量、 即ち 7原子%以上の B含有量で、 更に 20 000以上のより優れた透磁率が 9原子%以上の B + P含有量、 即ち 8原子%以 上の B含有量で得られることが分かる。 Also, from Fig. 3, in an alloy containing 1 atomic% of P, a high magnetic permeability of 10,000 or more has a B + P content of 8 atomic% or more, that is, a B content of 7 atomic% or more, and an additional 20 000 or more. It can be seen that better magnetic permeability can be obtained with a B + P content of 9 atomic% or more, that is, a B content of 8 atomic% or more.
高い非晶質形成能を持つ、 Nbの含有量がより多い合金、 あるいは Nbよりも 高い非晶質形成能を持つ Z r、 Hfを含む合金では、 より低い B濃度でも非晶質 相が安定して生成するため高い透磁率が得られると考えられる。 逆に Nbの含有 量がより少ない合金、 あるいは Nbよりも非晶質形成能が低い W、 Ta、 Ti、 M oを含む合金では、 より高い B濃度でも非晶質非晶質と 一 F e結晶の混相状 態が得られると考えられる。 15原子%を超える B濃度で磁気特性が劣化するの は、 主として熱処理後に F eの硼化物が形成されることよると考えられるため、 本発明においては Bの含有量を 0. 5^15原子%とすることにより、 磁気特性 を向上させることができると言える。 また Nbよりも非晶質形成能の高い Z r, Hf等を含む合金では、 より低い B含有量でも高い非晶質形成能と優れた磁気特 性が得られることを考慮すると、 本発明において Bの含有量を 5〜 12原子%に することにより、 特に優れた磁気特性が得られるものと考えられる。 In alloys with higher Nb content, or alloys containing Zr and Hf with higher amorphous formation ability than Nb, the amorphous phase is stable even at lower B concentration It is considered that a high magnetic permeability can be obtained because of the formation. Conversely, alloys with a lower Nb content or alloys containing W, Ta, Ti, and Mo, which have lower amorphous forming ability than Nb, can be regarded as amorphous amorphous even at higher B concentrations. It is considered that a mixed phase state of the crystal is obtained. It is considered that the magnetic properties deteriorate at a B concentration exceeding 15 atomic% mainly because boride of Fe is formed after the heat treatment. Therefore, in the present invention, the B content is set to 0.5 ^ 15 atomic%. %, It can be said that the magnetic characteristics can be improved. Also, considering that alloys containing Zr, Hf, etc., which have higher amorphous forming ability than Nb, can obtain high amorphous forming ability and excellent magnetic properties even at a lower B content, the present invention It is considered that by setting the B content to 5 to 12 atomic%, particularly excellent magnetic properties can be obtained.
[:実施例 5 ] [: Example 5]
合金組成 F e84— xNbsBsPiCUxにおいて、 xの値を変化させた場合の合 金薄帯の急冷状態での X線回折図形を第 4図に示す。 X線回折図形は非晶質相に 特有のハローな回折図形上に、 〇で示した 一 F e結晶相に特有の鋭い回折ピー クが見られ、 薄帯は非晶質相とひ一 Fe結晶相の混相であることが分かる。 なお、 F e84. gNbeBePiCuo. iにおいては、 ひ— F e結晶相の粒径が 10 nm以下 程度に微細化しているため、 ひ一 Fe結晶相のピークは非常に小さくはっきりと は確認できない。 これらの薄帯の、 真空中で 650°C、 5分間の熱処理を行った 後の 1 kHzにおける透磁率の Cu含有量に対する変化を第 5図に示す。 Figure 4 shows the X-ray diffraction pattern of the alloy ribbon in the quenched state when the value of x was changed in the alloy composition Fe 84 — xNbsBsPiCUx. In the X-ray diffraction pattern, on the halo diffraction pattern peculiar to the amorphous phase, a sharp diffraction peak peculiar to the single Fe crystal phase shown by 〇 is seen, and the ribbon is the same as the amorphous phase. It turns out that it is a mixed phase of a crystal phase. In the case of Fe 84 .gNbeBePiCuo.i, the peak of the Hi-Fe crystal phase is very small and cannot be clearly observed because the grain size of the Hi-Fe crystal phase has been reduced to about 10 nm or less. Figure 5 shows the change in the magnetic permeability at 1 kHz with respect to the Cu content of these ribbons after heat treatment at 650 ° C for 5 minutes in vacuum.
第 5図から、 Cu含有量を 1原子%以下にすることにより、 10000以上の 高い透磁率が得られることが分かる。 更に Cu含有量を 0. 5原子%以下とする
ことにより、 17000以上のより高い透磁率が得られることが分かる。 即ち本 発明においては、 Cuの含有量を 1原子%以下、 より好ましくは 0. 5原子%以 下にすることにより、 磁気特性を更に向上させることが可能である。 . From FIG. 5, it can be seen that a high magnetic permeability of 10,000 or more can be obtained by reducing the Cu content to 1 atomic% or less. Further, reduce the Cu content to 0.5 atomic% or less. This indicates that a higher magnetic permeability of 17 000 or more can be obtained. That is, in the present invention, the magnetic properties can be further improved by reducing the Cu content to 1 atomic% or less, more preferably 0.5 atomic% or less. .
[実施例 6 ] [Example 6]
実施例 1において作製した F e 84.9 N b 6 B 8 C u。 . i合金薄帯、 実施例 2にお いて作製した
(No. 3)合金薄帯と、 新たに作 製した Fe84.9Nb6B8.5P0.5Cu0. Fe84.9Nb6B7.5Pi.5Cu0. i , F e84.9Nb6B7P2Cuo. i合金薄帯金薄帯の急冷状態での X線回折図形を第 6図 に示す。 X線回折図形は非晶質相に特有のハローな回折図形上に、 〇で示したひ -Fe結晶相に特有の鋭い回折ピークが見られ、 薄帯は非晶質相と α— F e結晶 相の混相であることが分かる。 F e84. gNbeBsPiCuo. iにおいては前記のと おり、 一; F e結晶相の粒径が微細化しているため、 一 Fe結晶相のピークは 非常に小さくはっきりとは確認できない。 これらの薄帯の、 真空中で 650°C、 5分間の熱処理を行った後の 1 kH zにおける透磁率の P含有量に対する変化を 第 7図に示す。 F e 84 prepared in Example 1. 9 N b 6 B 8 C u. i Alloy ribbon, produced in Example 2 (No. 3) and the alloy ribbon, Fe 84 the newly-made work. 9 Nb 6 B 8. 5 P 0. 5 Cu 0. Fe 84. 9 Nb 6 B 7. 5 Pi. 5 Cu 0. I, the F e 8 4. 9 Nb 6 B 7 P 2 Cuo. i X -ray diffraction pattern in the rapid cooling of the alloy thin strap ribbon shown in Figure 6. In the X-ray diffraction pattern, a sharp diffraction peak peculiar to the --Fe crystal phase is shown on the halo diffraction pattern peculiar to the amorphous phase. It can be seen that this is a mixed phase of the crystal phase. In Fe 84 .gNbeBsPiCuo.i, as described above, the peak of the Fe crystal phase is very small and cannot be clearly observed because the grain size of the Fe crystal phase is becoming finer. Fig. 7 shows the change in the magnetic permeability at 1 kHz after the heat treatment of these ribbons in vacuum at 650 ° C for 5 minutes with respect to the P content.
第 7図から、 いずれの合金においても 10000以上の高い透磁率が得られる ことが分かる。 更に P含有量を 1. 5原子%以下とすることにより、 19000 以上のより良好な透磁率が得られることが分かる。 即ち、 Pの含有量を 1. 5原 子%以下にすることにより、 磁気特性を更に向上させることが可能である。 From FIG. 7, it can be seen that a high magnetic permeability of 10,000 or more can be obtained in any of the alloys. Further, it can be seen that by setting the P content to 1.5 atomic% or less, a better magnetic permeability of 19,000 or more can be obtained. That is, the magnetic properties can be further improved by reducing the P content to 1.5 atomic% or less.
[産業上の利用可能性] [Industrial applicability]
本発明により、 従来の実用合金では達成できなかった、 1. 5 T以上の高飽和 磁束密度と 10000以上の高透磁率、 さらには周波数 50 H zにおける 0. 1 5W/k g以下の低磁心損失を兼備した軟磁性成形体を得ることができる。 従つ て、 本発明の軟磁性成形体はより一層の小型化、 高性能化、 高効率化が望まれて いるトランスやチヨ一クコイル、 モ一夕などの磁心形成用材料として好適である。 また、 本発明の軟磁性成形体製造用の薄帯は、 高いじん性を示すため、 良好な加 ェ性をも有しており、 工業的応用は容易であり、 その効果は著しい。
請 求 の 範 囲 According to the present invention, high saturation magnetic flux density of 1.5 T or more, high magnetic permeability of 10,000 or more, and low core loss of 0.15 W / kg or less at a frequency of 50 Hz, which could not be achieved with conventional practical alloys Can be obtained. Therefore, the soft magnetic molded article of the present invention is suitable as a material for forming a magnetic core, such as a transformer, a choke coil, and a motor, for which further miniaturization, higher performance, and higher efficiency are desired. Further, the ribbon for producing a soft magnetic molded article of the present invention has a high toughness and therefore also has a good additivity, is easily applied to industrial applications, and its effect is remarkable. The scope of the claims
1. 溶融状態にある Fe含有比率が 80〜90原子%の Fe基合金組成物を急 冷凝固させて、 非晶質相中に平均粒径が 1~43nmの範囲のひ一 Fe結晶相が 分散状態で形成されている混相組織を有し、 かつ 180° の折曲げが可能な薄帯 を製造する工程、 そして該薄帯を — F e結晶相の結晶化温度より高い温度に加 熱する工程を含むことを特徴とする、 周波数 1 kHzでの透磁率が 10, 000 以上、 飽和磁束密度が 1. 5 T以上、 そして周波数 50 H zにおける磁心損失が 0. 15 W/ kg以下の軟磁性成形体の製造方法。 1. Rapid solidification of a molten Fe-based alloy composition with an Fe content of 80-90 at.% In the molten state to form a single-crystal Fe phase with an average particle size in the range of 1-43 nm in the amorphous phase. Manufacturing a ribbon having a mixed phase structure formed in a dispersed state and capable of bending at 180 °, and heating the ribbon to a temperature higher than the crystallization temperature of the Fe phase Soft core with a permeability of 10,000 or more at a frequency of 1 kHz, a saturation magnetic flux density of 1.5 T or more, and a core loss of 0.15 W / kg or less at a frequency of 50 Hz. A method for producing a magnetic molded body.
2. 薄帯中のひ一 F e結晶相の平均粒径が 1〜 40 nmの範囲にある請求項 1 に記載の軟磁性成形体の製造方法。 2. The method for producing a soft magnetic molded article according to claim 1, wherein the average particle size of the Hi-Fe crystal phase in the ribbon is in the range of 1 to 40 nm.
3. 薄帯を厚さ 5〜100 mを持つように製造する請求項 1もしくは 2に記 載の軟磁性成形体の製造方法。 3. The method for producing a soft magnetic molded body according to claim 1, wherein the ribbon is produced to have a thickness of 5 to 100 m.
4. 薄帯を加熱する前に、 卷回、 打抜き、 エッチング、 表面研磨及びスリット 加工のうちの一もしくは二以上の加工を行なう請求項 1乃至 3のうちのいずれか の項に記載の軟磁性成形体の製造方法。 ' 4. The soft magnetic material according to any one of claims 1 to 3, wherein at least one of winding, punching, etching, surface polishing, and slitting is performed before heating the ribbon. A method for producing a molded article. '
5. Fe基合金組成物が、 1〜: L 0原子%の]^ゎ、 W、 Ta、 Zr、 : Bf、 T iそして Moからなる群より選ばれる一種または二種以上の元素、 0. 5〜25 原子%の B、 および 0. 01〜5原子%の卩、 Cu、 V、 Cr、 Mn、 Al、 白 金族元素、 S c、 Y、 希土類元素、 Au、 Zn、 Sn、 Re、 Ag、 C、 Ge、 Sb、 In、 As、 Be、 および S iからなる群より選ばれる一種または二種以 上の元素を含む請求項 1乃至 4のうちのいずれかの項に記載の軟磁性成形体の製 法 ο
5. The Fe-based alloy composition comprises 1 to: 0 atomic% of L] ^ ゎ, W, Ta, Zr,: one or more elements selected from the group consisting of Bf, Ti and Mo. 5 to 25 atomic% of B, and 0.01 to 5 atomic% of uranium, Cu, V, Cr, Mn, Al, platinum group element, Sc, Y, rare earth element, Au, Zn, Sn, Re, The soft magnetism according to any one of claims 1 to 4, comprising one or more elements selected from the group consisting of Ag, C, Ge, Sb, In, As, Be, and Si. Molded body production ο