[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002075806A1 - Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus - Google Patents

Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus Download PDF

Info

Publication number
WO2002075806A1
WO2002075806A1 PCT/JP2001/002131 JP0102131W WO02075806A1 WO 2002075806 A1 WO2002075806 A1 WO 2002075806A1 JP 0102131 W JP0102131 W JP 0102131W WO 02075806 A1 WO02075806 A1 WO 02075806A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
observation
recipe
wafer
sample holder
Prior art date
Application number
PCT/JP2001/002131
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Mizuno
Tsuyoshi Ohnishi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2001/002131 priority Critical patent/WO2002075806A1/en
Priority to JP2002574123A priority patent/JPWO2002075806A1/en
Publication of WO2002075806A1 publication Critical patent/WO2002075806A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to an in-line inspection for inspecting the thickness of a deposited film, a pattern dimension, a pattern overlay accuracy, a hole conduction state, and the like of a wafer being manufactured in the manufacture of a semiconductor device, an imaging device, and a display device.
  • the density of semiconductor devices has been increasing at a rate of approximately 2.5 times Z three years, and the transistor density of AS ICs listed in the Semiconductor Technology Portfolio is 1999 of 20M T from r ⁇ Roh cm 2, in 2002 54MT r. / cm 2, 2005 years in the 1 33 MT r. / cm ⁇ and in 201 one year 81 1 MT r. become Roh cm 2 and the prediction It has been.
  • the structure of MOS transistors is expected to shift from current planar transistors to vertical transistors. As shown in FIG. 17, the vertical transistor has a structure in which source, gate and drain are arranged in a vertical direction.
  • the measurement of gate length that is, the measurement of the most important parameter that determines transistor performance, is changed to measurement of film thickness instead of measurement of pattern dimensions.
  • Future candidates for more accurate film thickness measurement methods include: (1) an ellipsometer that uses UV light as the irradiation light, (2) a method of irradiating X-rays to the measurement location and measuring reflected X-rays, etc. ) A method of irradiating a measurement location with a laser beam to measure elastic waves, etc., and (4) A technique of irradiating a measurement location with a medium-speed ion beam to measure scattered ions and the like.
  • the gate length measurement accuracy required for a vertical transistor with a gate length of 50 nm is less than 1 nm, which is required.
  • the only methods with spatial resolution that can achieve film thickness measurement accuracy are atomic force microscope (AFM) and transmission electron microscope (TEM) or scanning transmission electron microscope (STEM) that form transmission electron images. is there.
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • an object of the present invention is to provide in-line inspection means using TEM or STEM for enabling highly accurate film thickness measurement in a local region of about several hundred nm. Disclosure of the invention
  • TEM or STEM is the only solution that can achieve high-accuracy film thickness measurement in an extremely small area.
  • increasing throughput is the biggest challenge.
  • the focused ion beam system F IB device
  • the actual time required for the inline inspection is determined by the time required to prepare the sample in the FIB apparatus.
  • the FIB device cuts out samples from multiple specified locations on the wafer according to a pre-registered sample preparation recipe.
  • the position is automatically positioned, the sample is automatically cut out, and the cut sample is automatically mounted on an observation sample holder used for TEM or STEM, and a recipe for observing the sample with TEM or STEM is created.
  • TEM or STEM in order to enable sample observation in a short time, multiple samples mounted on the observation sample holder are prepared according to the observation recipe input to the TEM or STEM by the FIB device. Automatically align the observation area and acquire a predetermined sample image.
  • the parallelism between the electron beam incident direction and the observation film surface can be confirmed and corrected.
  • a cross-sectional observation sample composed of a plurality of pattern groups whose observation patterns are slightly shifted in the direction perpendicular to the processing cross section is used so that an observation cross section accurately formed at a predetermined position can be obtained.
  • FIB device targets a plurality of specified locations on a wafer according to a pre-registered sample preparation recipe.
  • the observation area is automatically set for multiple samples mounted on the observation sample holder according to the observation recipe created by the FIB device and input to the TEM or STEM.
  • High-precision in-line film thickness measurement for a local region of several hundred nm by acquiring a predetermined sample image and obtaining observation data. It becomes possible.
  • inspected samples can be stored, they can be removed from storage and re-examined in the event of a yield or reliability problem at a later date. This simplifies failure analysis, which is difficult without physical components.
  • the wafer inspection method, focused ion beam device, and transmitted electron beam device according to the present invention are as follows.
  • a step of automatically positioning the sample on the observation sample holder according to the read observation recipe And a step of acquiring predetermined observation data from the positioned sample according to the observation recipe.
  • rapid sample preparation becomes possible by appropriately using a shaped beam, a variable shaped beam, or a cell projection beam as a focused ion beam.
  • a cell projection can be composed of at least a C-shape and a spot.
  • TEM or STEM can be used as the transmission electron beam device. It is preferable that the transmission of the observation recipe between the focused ion beam apparatus that executes the sample preparation step and the transmission electron beam apparatus that executes the sample observation step is performed online via a LAN or the like.
  • the step of creating an observation recipe includes the steps of reading a code written on the observation sample holder, and mounting the code on the observation sample holder using the code as a key.
  • a method for inspecting a wafer comprising creating a recipe for a transmission electron beam apparatus for observing a sample that has been etched.
  • the code on the sample which is the unique number of the sample attached to the sample using the FIB, is used as a key, and the recipe for the transmitted electron beam device for observing the sample is automatically set. Alternatively, it may be created semi-automatically.
  • Obtained observation data includes film thickness measurement, pattern shape / dimension measurement, pattern overlay measurement, wiring connection conduction state measurement, particle size measurement, dopant concentration profile measurement, and defects compared to a predetermined reference image. Can be used for measurement.
  • the measured data can be used for process management and device characteristic analysis.
  • a sample stage that can hold and move a wafer, a stage driving unit that drives the sample stage, a unit that forms a focused ion beam, and that the focused ion beam is placed on a wafer held by the sample stage.
  • the focused ion beam apparatus including a deflector for scanning, a detector for detecting a sample signal generated from the sample by the focused ion beam irradiation, a sample manipulator for sample handling, and a control unit, The stage driving unit and / or the stage driving unit according to a pre-registered sample preparation recipe.
  • a function of controlling the deflector to automatically position a sample cutting portion on a wafer a function of controlling a predetermined sample using the focused ion beam; and a function of controlling the sample manipulator to cut the sample.
  • a focused ion beam apparatus having a function of creating an observation recipe to be used in the observation apparatus using the read information stored in advance.
  • the cut sample may be marked with a code for identifying the sample with a focused ion beam.
  • the sample cut from the wafer is once fixed to a sample manipulator, and then moved to one or both of the sample manipulator and the observation sample holder to be mounted on a predetermined address position of the observation sample holder.
  • the sample can be fixed to the sample manipulator using the ion beam assisted film deposition method or the electrostatic adsorption between the manipulator and the sample.
  • a sample stage that holds and moves an observation sample holder on which a sample is mounted, a stage drive unit that drives the sample stage, and a unit that irradiates the sample by narrowing down the electron beam.
  • a transmission electron beam device including a deflector for deflecting the electron beam, a transmission electron detector for detecting an electron beam transmitted through a sample, and a control unit, wherein the control unit is a focused ion beam device.
  • the control unit is a focused ion beam device.
  • Observation data can include sample image data, composition analysis data, structural analysis data, electronic state analysis data, and the like.
  • the transmission electron beam apparatus can include a characteristic X-ray analyzer, an Auger electron spectrometer, and an energy analyzer for characteristic loss electrons.
  • the composition analysis data can be obtained by equipping the transmission electron beam device with, for example, a characteristic X-ray analyzer or an energy spectrometer, and the structural analysis data can be obtained by equipping a transmission electron two-dimensional array detector.
  • the electronic state analysis data can be obtained by providing a transmission electron energy spectrometer.
  • the obtained measurement data can be used for process management and device characteristic analysis.
  • Observation data, measurement data, process management data, etc. can be output as electronic data.
  • the process management data to be output can be, for example, a wafer map describing pass / fail of the inspection, or data summarized as an inspection failure rate, the number of inspection failures, and a defect classification result.
  • the transmitted electron beam device preferably has a function of calibrating the observation magnification by a crystal lattice image.
  • (6) means for loading / unloading the sample holder, storage means for storing a sample observation recipe, sample holder identification means for identifying the sample holder, and control means, wherein the control means Reading an observation recipe corresponding to the sample holder from the storage unit based on the identification result by the sample holder identification unit, and controlling each unit based on the observation recipe to observe the sample.
  • Transmission electron beam device means for loading / unloading the sample holder, storage means for storing a sample observation recipe, sample holder identification means for identifying the sample holder, and control means, wherein the control means Reading an observation recipe corresponding to the sample holder from the storage unit based on the identification result by the sample holder identification unit, and controlling each unit based on the observation recipe to observe the sample.
  • Transmission electron beam device means for loading / unloading the sample holder, storage means for storing a sample observation recipe, sample holder identification means for identifying the sample holder, and control means, wherein the control means Reading an observation recipe corresponding to the sample holder from the storage
  • the cross-section observation sample prepared by the focused ion beam apparatus can be prepared so that the observation pattern is composed of a plurality of pattern groups that are slightly shifted in a direction perpendicular to the processing cross section.
  • the most appropriate pattern is selected by using the pattern with the largest dimension as the pattern to be inspected.
  • the angle of incidence between the cross-section and the observation beam can be obtained from the transmission image.
  • the information on the incident angle of the observation beam can be used to control the tilt angle of the sample or to control the incident beam by a deflector to control the beam incident angle to a predetermined value.
  • the measurement data can be corrected based on the obtained incident angle.
  • FIG. 1 is a diagram showing a schematic configuration of an example of a FIB device according to the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of a TEM or STEM according to the present invention.
  • FIG. 3 is a conceptual diagram of an inline inspection in a semiconductor device manufacturing process according to the present invention.
  • FIG. 4 is a flowchart illustrating a process for preparing an observation sample holder.
  • FIG. 5 is a flowchart illustrating a sample preparation process and an observation recipe generation process.
  • FIG. 6 is an explanatory diagram of a step of cutting out a sample from a wafer using a focused ion beam.
  • FIG. 7 is a diagram showing an example of a cell projection aperture for obtaining a shaped ion beam.
  • FIG. 8 is a schematic diagram showing an example of a sample fixed to an observation sample holder.
  • FIG. 9 is a diagram showing an example of items described in the observation recipe.
  • FIG. 10 is a diagram for explaining an example of how to cut out a sample using the FIB apparatus.
  • FIG. 11 is a diagram showing an example of a cross-sectional sample with a step.
  • FIG. 12 is a diagram showing an example of a transmission image of a stepped cross-sectional sample.
  • FIG. 13 is a flowchart showing a process flow in TEM or STEM according to the present invention.
  • FIG. 14 is a diagram for explaining an application example of the inspection in the present invention.
  • FIG. 15 is a diagram illustrating an output example of the inspection result.
  • FIG. 16 is a diagram showing an example of the arrangement of the sample storage.
  • FIG. 17 is a diagram schematically illustrating the structure of a vertical MOS transistor. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of an example of the FIB device according to the present invention.
  • the FIB device is totally controlled by a control unit 31.
  • the ion beam 12 extracted from the ion gun 11 is focused by the converging lens 13 and the objective lens 14, and is focused on the XY stage 22 in the sample chamber 21. Irradiation is performed on the mounted wafer 23 surface.
  • the XY stage 22 is controlled by the stage drive unit 32 under the control of the control unit 31. Driven.
  • the ion beam 12 irradiated on the wafer 23 is deflected by the deflector 15 and scanned on the wafer 23.
  • a stop 16 for cell projection is provided below the converging lens 13.
  • secondary electrons 24 are emitted from the wafer portion irradiated by the ion beam 12.
  • the secondary electrons 24 are detected by a secondary electron detector 25, subjected to signal processing such as amplification and A / D conversion in a signal amplification / processing section 33, and then stored in a memory 34.
  • the image signal stored in the memory 34 is supplied to a display 35 scanning in synchronization with ion beam scanning, and a sample image is displayed on the display 35. This sample image is called a SIM image.
  • a wafer held in the wafer carrier 41 is loaded into or unloaded from the XY stage 22.
  • An observation sample holder opening-donor unloading section 43 for loading / unloading a holder for holding an observation sample, a sample manipulator driving section 44, and a reactive gas introducing section 45 are provided.
  • the sample chamber is also provided with an optical microscope 26.
  • the control unit 31 sets a sample cutting-out position for TEM or STEM observation based on the obtained sample image according to the read sample preparation recipe 37, and monitors the ion beam while monitoring the sample image. Perform processing.
  • the processed sample is cut out from the wafer and used for observation by TEM or STEM.
  • the control section 31 controls each section to control the cutout of the observation sample, and creates an observation recipe 88 described later.
  • the created observation recipe 88 is temporarily stored in the memory 34 and output to the TEM or STEM for sample observation and the database via the LAN. The observation recipe will be described later.
  • FIG. 2 shows a schematic configuration of a TEM or STEM according to the present invention.
  • the device is generally controlled by a control unit 81.
  • the electron beam 62 emitted from the electron gun 61 is accelerated to a predetermined energy, then narrowed down by the converging lens 63, and the sample surface on the sample holder 66 mounted on the XY stage 65 Is irradiated.
  • the XY stage 65 is driven by the stage drive unit 82 under the control of the control unit 81.
  • the transmitted electrons 71 transmitted through the sample are detected by the transmitted electron detector 73 through the objective lens 72, and the signal T / JP01 / 02131 Amplification.
  • Amplification and signal processing such as A / D conversion in the processing unit 83 are stored in the memory 84.
  • the image signal stored in the memory 84 is supplied to a display 85 that is being scanned in synchronization with electron beam scanning, and a sample image is displayed on the display 85.
  • the sample holder 66 holding the sample is loaded or unloaded on the XY stage 65 by the sample holder loading / unloading unit 86 under the control of the control unit 81.
  • a transmitted electron image can be obtained.
  • the irradiation electron beam is scanned by the deflector 64 and a time-change signal of the transmitted electrons 71 is obtained, a scanned transmitted electron image can be obtained.
  • an X-ray detector 75 that detects characteristic X-rays 74 generated from a sample by electron beam irradiation, or an energy spectrometer 76 that performs energy spectroscopy of transmitted electrons 71, etc. Is provided.
  • the observation of the sample is performed in accordance with the observation recipe 88 created by the FIB device and transmitted, for example, via the LAN.
  • FIG. 3 is a diagram showing the concept of in-line inspection in a semiconductor device manufacturing process according to the present invention.
  • An in-line inspection process is provided in the middle of the wafer process and the semiconductor process processes 91 and 92 before and after the illustrated process.
  • the in-line inspection process is roughly divided into two processes: a sample preparation process in a FIB device and a sample inspection process in a TEM / S TEM.
  • sample preparation process of the FIB device In the sample preparation process of the FIB device, according to the pre-registered sample preparation recipe 37, a plurality of specified locations on the wafer were targeted, the sample extraction locations were automatically positioned, and the sample was automatically extracted and extracted.
  • the sample is automatically mounted on the sample holder for observation used in TEMZSTEM, and an observation recipe 88 for observing the sample by TEM / STEM is created.
  • the observation area is automatically aligned for multiple samples mounted on the observation sample holder in accordance with the observation recipe 88 prepared by the FIB device and input to the TE MZS TEM. Then, by acquiring a predetermined sample image, the inspection is performed on a local region of about several hundred nm. Each is described below.
  • FIG. 4 is a flowchart illustrating a process for preparing an observation sample holder for loading a sample cut by the FIB apparatus.
  • a sample holder carrier containing an empty observation sample holder is mounted on the observation sample holder load / unload section 43 of the FIB device.
  • Step 12 the observation sample holder is taken out of the sample holder carrier, and after confirming that it is empty by the detector attached to the mouth-to-door port 43, Step 1 Proceed to 3, and the holder number written on the holder is read by the holder number reader attached to the load / unload section.
  • the observation sample holder is transported and loaded at a predetermined position in the sample chamber 21 of the FIB device in step 14.
  • the holder number of the observation sample holder is a code unique to each observation sample holder, and is used to identify each observation sample holder.
  • the main body of the sample holder for observation can be reused repeatedly.
  • FIG. 5 is a flowchart showing the flow of the sample preparation processing and the observation recipe preparation processing.
  • the wafer carrier 41 containing the wafer to be inspected is mounted on the wafer unloading unit 42.
  • the wafer to be inspected is taken out of the wafer carrier, and in step 23, it is conveyed to the bri-alignment unit and pre-aligned.
  • the pre-alignment is an operation for detecting an orientation flat or a notch of the wafer, and adjusting the mounting direction of the wafer to the direction of the XY stage 22 of the FIB apparatus based on the detected orientation flat or notch.
  • the wafer number formed on the wafer is read by a wafer number reader (not shown) incorporated in the FIB apparatus.
  • the wafer number is a unique code for each wafer, and is used to identify the individual wafer or the name of the wafer or the name of the in-process process.
  • Step 25 Using the read wafer number as a key, a sample preparation recipe 37 corresponding to this wafer registered in advance is read.
  • the sample preparation recipe 37 defines a sample extraction procedure, extraction conditions, and extraction result output conditions from a wafer, and is generally set for each type of product to which the wafer belongs and the name of the in-process process. Subsequent operations are performed automatically or semi-automatically according to this recipe 37.
  • step 26 the wafer is transferred to and loaded on the XY stage 22 in the sample chamber 21.
  • step 27 the wafer 23 loaded on the XY stage 22 is used by using the optical microscope 26 mounted on the upper surface of the sample chamber 21 and the alignment pattern formed on the wafer 23. , Will be aligned.
  • the alignment is an operation for aligning the coordinate system of the wafer 23 with the coordinate system of the Y stage 22.
  • the optical microscope image of the alignment pattern is compared with a previously registered alignment pattern reference image.
  • the stage position coordinates are corrected so that the field of view is exactly overlapped with the field of view of the reference image.
  • step 28 the wafer 23 after the alignment is moved to the stage at a predetermined sample cutout position, and the cutout position is positioned using the SIM image.
  • FIG. 6 is a view for explaining a step of cutting out and retrieving a sample from the wafer 23 using a focused ion beam.
  • a diaphragm 16 for cell projection as shown in FIG. 7 is used in order to achieve both high-speed machining and finishing with high positioning accuracy.
  • the aperture 16 for cell projection includes a C-shaped cell portion 101 having a C-shaped beam transmitting portion 102 and a spot beam portion 105.
  • the central portion 103 is a cut-out sample portion
  • the beam-shaped portion 104 connecting the central portion 103 to a peripheral portion is a sample support portion during processing.
  • the C-shaped cell portion 101 on the left side of the beam stop 16 is irradiated with a focused ion beam to form a C-shaped beam.
  • finish processing is performed as shown in Fig. 6 (b).
  • an observation sample part 106 is formed corresponding to the central part 103 of the C-shaped cell part 101 of the beam stop 16, and corresponding to the beam part 104.
  • a support 107 is formed.
  • a reactive gas for assisting ion etching is introduced from the reactive gas introduction part 45 in order to obtain a high processing speed and a smooth processing section, and the vicinity of the ion beam irradiation point is changed to a reactive gas atmosphere.
  • a fluorine-based gas is introduced into the vicinity of the processing location for processing a silicon oxide film and a chlorine-based gas for processing metal wiring.
  • a section or a plane is selected as the section according to the observation purpose.
  • the sample is fixed to the sample manipulator 108 after cutting the lower portion of the sample piece by tilting the wafer.
  • the sample is fixed to the sample manipulator 108 by, for example, bringing the tip of the manipulator into contact with the top surface of the sample in an atmosphere of a tungsten compound gas and irradiating the contact portion with an ion beam to form the tungsten film 109.
  • the sample is supported by the tungsten film 109 and fixed to the sample manipulator 108 as shown in FIG. 6 (d). After that, as shown in FIG. 6 (e), the support portion 107 is cut by the focused ion beam to cut out the sample 110.
  • the sample was fixed to the manipulator by bringing the tip of the manipulator into contact with the sample surface, controlling the manipulator drive unit 44, applying a voltage to the manipulator, and utilizing the electrostatic action between the sample and the sample.
  • the manipulator may be electrostatically attracted and fixed.
  • FIG. 8 is a schematic diagram showing an example of a sample fixed to the observation sample holder 66.
  • Fig. 8 (a) is a top view of the observation sample holder loaded with the sample
  • Fig. 8 (b) is a cross-sectional view along AA '.
  • the sample holder for observation 66 shown in the figure has a carbon thin film 123 supported on one end of a cylindrical main body 121 by a metal mesh 122, and is provided in each section defined by the metal mesh 122. An address has been assigned.
  • the cut-out samples 13 1 to 13 4 are specified in the sample preparation recipe 37 on the observation sample holder or based on the sample preparation recipe. Is loaded into a pre-registered address position read from the memory. On the other hand, in step 31, the control unit 31 of the FIB apparatus stores information such as the name of the sample, the name of the in-process process, the address number of the die to which the sample belongs, the address position on the observation sample holder, and the inspection contents. Is used to create an observation recipe 88 with the same holder number. Observation recipe 8 8 defines the observation procedure, observation conditions, and observation result output conditions for the sample mounted on the observation sample holder.
  • the TEM / STEM recipe for the holder number of the observation sample holder carried into the sample chamber 21 of the FIB device has already been stored in the memory 34 of the FIB device. If it exists, it is a recipe for a previously observed sample, so delete the receiver and initialize the contents of the observation recipe.
  • step 32 for the wafer on the XY stage, it is determined whether sample cutting and removal at all locations specified in the sample preparation recipe 37 and mounting on the observation sample holder have been completed. Repeat steps 28 to 31 until all samples have been cut out.
  • step 33 the observation sample holder for which the mounting of the sample has been completed and the wafer for which the sample has been cut out are returned to the respective carriers.
  • the observation recipe 88 created in step 31 is input to the TE MZ STEM used for inspection, it is output in step 34 via a communication line or using a storage medium. You. If unprocessed wafers to be inspected remain in the wafer carrier as determined in the next step 35, the processing from step 21 is repeated for those wafers.
  • Figure 9 shows an example of the items described in the observation recipe 88.
  • information such as a product holder number, a lot name, a wafer number, a die address, and the like are described as information relating to the sample holder, and information relating to the wafer from which the sample has been cut out, as information relating to the sample holder.
  • information such as specimen address in the holder, inspection item, inspection procedure, acceleration voltage, beam current, detection signal, and detection result output are described as the inspection information.
  • the sample mounted on the sample address A-1 in the holder has a polysilicon film thickness of 100 kV by STEM and a beam current of 1 nA by the type 3 inspection procedure. Inspection results should be output as a type 2 wafer map It has been instructed.
  • types such as an inspection procedure and an inspection output mean that data whose data is registered in advance is used.
  • the sample holder number was obtained in step 14 in Fig. 4.
  • Information such as the product name, lot name, wafer number, and die address related to the wafer from which the sample was cut was used as the sample preparation recipe. It is the information described in 37.
  • the information such as the sample address in the holder, inspection items, inspection procedure, acceleration voltage, beam current, detection signal, and detection result output are the information described in the sample preparation recipe 37 or the same. Is information registered in advance and read from the memory. In this way, the control unit 31 of the FIB apparatus cuts out the sample from the specified location of the wafer specified according to the sample preparation recipe, loads the sample into the observation sample holder, and specifies the sample on the TEM / STEM side.
  • the information necessary for the observation that is, the information on the sample holder for observation loaded with the sample and the address information on the holder, and the information on the inspection method of the sample inherited from the recipe for sample preparation are combined to create an observation recipe, Output to TEM / STEM and database via LAN.
  • FIGS. 10 and 11 are diagrams illustrating an example of how to cut out a sample in the FIB apparatus.
  • a sample cut from a wafer it is necessary to make a cross section at the center of the pattern in order to perform high-precision measurements on hole patterns and the like. Even if the irradiation position accuracy of the focused ion beam is somewhat poor, as shown in Fig. 10, the observation pattern is oriented in a direction perpendicular to the processing cross section, so that a cross section is formed near the center of either pattern. It is preferable to use a cross-sectional observation sample composed of a plurality of pattern groups that are slightly shifted from each other. FIG.
  • FIG. 10 (a) is a top view of a wafer including a sample cut-out portion 140
  • FIG. 10 (b) is a cross-sectional view.
  • the test pattern 144 with the maximum lateral length appearing in the cross section is judged to be the optimum test pattern in which the cross section is made at almost the center.
  • the incident direction of the electron beam of the TEMZ STEM is parallel to the observation film surface, as shown in FIG. A continuous transmission image is obtained at the stepped portion.
  • the measured value T1 in this case accurately represents the thickness of the film 153. Therefore, by tilting the XY stage of the TEMZS TEM or adjusting the incident direction of the electron beam 62, the film thickness measurement is performed so that a TEM image or STEM image as shown in FIG. 12 (a) is formed. If this is done, it is guaranteed that the incident direction of the electron beam is parallel to the observation film surface, so that accurate film thickness measurement values can be obtained.
  • FIG. 13 is a flowchart showing the flow of processing in TEM or STEM.
  • step 41 the sample holder carrier on which the observation sample holder to be inspected is placed is transported from the FIB device to the TEM STEM by an automatic carrier or by an operator, and is mounted on the mouth-to-door portion 86 of the sample holder carrier.
  • step 42 the holder number written on the observation sample holder is read by the holder number reader attached to the load / unload section 86.
  • step 44 after taking out the observation sample holder to be measured from the holder carrier, the observation sample holder is loaded in a predetermined direction on the XY stage 65 in the sample chamber held in a vacuum.
  • step 45 the observation sample holder 66 loaded on the XY stage 65 is stage-moved to the address where the first sample specified by the observation recipe 88 is located, and the observation point is positioned.
  • the observation pattern should be
  • the test pattern with the cross section formed near the center of the pattern is selected as the observation point.
  • a step as shown in Fig. 11 is formed in the processed cross section of the sample, adjust the incident direction of the electron beam 62 or the tilt of the XY stage 65 to adjust the inclination as shown in Fig. 12 (a).
  • the electron beam and the observation film surface can be made parallel.
  • the angle between the electron beam 62 and the surface of the observation film is obtained, and the obtained angle is used to measure the film thickness. May be corrected.
  • the transmission electron image may be a projection image obtained by a normal transmission electron microscope or a scanning image obtained by a scanning transmission electron microscope. Scanned images are easier to interpret and handle than projected images, as there is no change in diffraction contrast due to slight differences in focal position.
  • the obtained transmission electron image and Z or elemental analysis information are analyzed to determine the thickness of the thin film at a predetermined portion and the shape and dimension of the pattern as shown in the cross-sectional example of the hole pattern in FIG. 14 (a).
  • the analysis of observation data may be performed in real time, or only transmission images or data of each sample may be acquired and stored, and the analysis may be performed offline. Elemental information obtained from elemental analysis and transmitted electron energy analysis not only determines compositional state, but also determines thin film thickness, pattern geometry, hole conduction / non-conduction, crystal grain size, dopant concentration profile, etc. Indispensable to do.
  • the transmission electron image and the element concentration profile are compared with the reference image of the inspection location stored in advance, and defects detected as the differences between the transmission electron image and the element concentration profile are abnormal in the film thickness, shape and dimensions, as well as in the hole filling portion and These include plug pinholes, poor coverage of deposited films, and crystal defects such as stacking faults.
  • the detected defects are classified according to a predetermined automatic defect classification algorithm.
  • the inspection of all the samples on the observation sample holder is performed by repeating the processing from Step 45 to Step 46. If it is determined in step 47 that the inspection of all the samples on the sample holder has been completed, the process proceeds to step 48 to unload the observation sample holder into the sample holder carrier. Then, the process proceeds to step 49, where an inspection result is created and output based on the measurement data obtained in step 46. If it is determined in step 50 that there is an untested observation sample holder in the sample holder carrier, the processing of steps 42 to 49 is repeated for that.
  • the output form of the inspection result in step 49 may be the sample image or the observation data as it is, but in general, a wafer map describing the pass or fail of the inspection as shown in Fig. 15 or an inspection failure rate It is output in the form of the number of inspection failures or defect classification results.
  • the sample image and raw observation data corresponding to the die can be displayed together. Not only charts such as wafer maps and charts but also processed reports can be output.
  • output to a higher-level inspection data management system via a communication line or storage medium Although it is common, it can also be output as printed matter.
  • in-line measurement data data for more advanced process management and transistor characteristic analysis can be obtained.
  • in-line measurement of gate insulating film thickness and dopant concentration profile of source / drain regions at the same time as gate length can provide data for real-time accurate prediction of transistor electrical characteristics such as threshold voltage. .
  • These data are output to a higher-level production management system, and are used to precisely control device performance reliability and yield.
  • the sample holder carrier is sent to the sample storage connected to the TEM or STEM by a transporter, and the inspected sample is stored in the sample storage while being placed on the observation sample holder.
  • These samples are kept in stock using the wafer number, product name, process in process, and holder number as keys, and can be removed at a later date if a yield or reliability problem occurs. Will be reviewed again.
  • the sample storage may be placed between the FIB device and the TEM / STEM as a buffer, as shown in Fig. 16. Good.
  • the calibration of TEM or STEM magnification is performed by observing a crystal lattice image. This results in very accurate dimensional and shape measurement data.
  • the inside of both the wafer carrier and the sample holder carrier is kept in a clean atmosphere.
  • the sample holder carrier used is designed so that the sample is not contaminated.
  • the SIM image was used to position the cutout.
  • a high-resolution optical microscope or scanning electron microscope (SEM) was built in the focused ion beam device, and the optical microscope image or SEM image was used. It is also possible to perform positioning using. Positioning using an optical microscope image or SEM image instead of the SIM image can further reduce damage to the wafer due to the positioning.
  • the observation sample holder is numbered, and the inspection by TEM / STEM is controlled using the holder number.
  • the sample number is stamped on each sample with the focused ion beam, and the sample number is
  • the observation recipe 88 may be created by using, and the inspection work may be controlled.
  • a force is shown in which a plurality of samples cut out from one wafer are placed on one observation sample holder.
  • a plurality of samples cut out from one wafer are used for a plurality of observations.
  • the sample may be placed over the sample holder, or samples cut out from a plurality of wafers may be collectively placed on one observation sample holder.
  • the inspection content it is also possible to perform multiple types of inspections on one sample, or to change the inspection content individually for the samples in the observation sample holder.
  • the specification of the sample cutout location in the FIB apparatus is determined in advance for each product name, in-process process name, but the specification of the sample cutout location in the recipe is determined by the defect position coordinate data of the defect inspection apparatus or the like. It is also possible to overwrite differently for each wafer, such as specifying the position coordinates on the wafer map of the operator. In addition to determining the cutout location for each product name and in-process process name, if defect position coordinate data can be overwritten for each wafer, it can be used for review inspection after defect inspection etc. become.
  • a tungsten support film was used for fixing the sample to the sample manipulator, but the deposition film for fixing is not limited to this.
  • the FIB device and the TEMZ STEM are both configured as a stand-alone device.
  • the FIB device and the TEMZSTEM can be configured as one device including the FIB device and the TEMZS TEM. It is also possible to connect multiple TEMZSTEMs to one FIB device.
  • the cross-section samples processed with steps can be used not only for TEM / STEM but also for various observation devices such as SEM and optical microscope.
  • the manufacture of a semiconductor device is described as an example, but the present invention can be applied to the manufacture of similar devices such as an image sensor and a display device.
  • Industrial applicability ' ⁇ EM or ST EM sample observation, combined with' FIB device sample preparation, '(1) FIB device targets specified multiple locations on wafer according to pre-registered sample preparation recipe Automatically position the sample extraction point, automatically extract the sample, automatically mount the extracted sample on the observation sample holder used in TEM / STEM, and observe the sample using TEM / STEM.
  • (2) TEMZSTEM targets multiple samples mounted on the observation sample holder according to the observation recipe created by the FIB device and input to the TEM / S TEM.
  • in-line measurement of gate insulating film thickness and dopant concentration profile of source / drain regions, as well as gate length enables accurate prediction of transistor electrical characteristics such as threshold voltage in real time.
  • data that can accurately manage the performance reliability and yield of devices, which has never been possible before, can be acquired by in-line inspection.
  • inspected samples can be stored, they can be removed from storage and re-examined in the event of a yield or reliability problem at a later date. This simplifies failure analysis, which is difficult without physical components.
  • the ability to observe the crystal lattice image makes it extremely easy to calibrate the magnification of the device. And accurate measurement data of very accurate dimensions and shapes can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A method and an apparatus for inline inspecting the thickness of a film deposited on a wafer under fabrication, pattern size, pattern registration accuracy and electrical connection state of a hole during the fabrication of a semiconductor device, an image sensor, or a display device. 'Sample observation by TEM/STEM'is combined with 'sample preparation by FIB apparatus'. The FIB apparatus selects a plurality of designated portions on a wafer as objects according to a sample preparation recipe (37) registered previously, positions a sample cut part automatically, cuts a sample automatically and mounts it automatically on a sample holder for observation used in a TEM or STEM, and prepares a recipe (88) for observing the sample by means of a TEM or STEM. The TEM or STEM automatically aligns the observation area of a plurality of samples mounted on the sample holder for observation according to the observation recipe prepared by the FIM apparatus and inputted to the TEM or STEM and acquires observation data by capturing predetermined sample image.

Description

明 細 書 ゥェハの検査方法、 集束ィォンビーム装置及び透過電子ビーム装置  Description Inspection method for wafer, focused ion beam device and transmitted electron beam device
技術分野 Technical field
本発明は、 半導体素子、 撮像素子、 表示素子の製造などにおいて、 製造途上にあ るウェハの堆積膜膜厚、 パターン寸法、 パターン重ね合わせ精度、 ホールの導通状 態などを検査するためのインライン検査方法及びその装置に関する。 背景技術  INDUSTRIAL APPLICABILITY The present invention relates to an in-line inspection for inspecting the thickness of a deposited film, a pattern dimension, a pattern overlay accuracy, a hole conduction state, and the like of a wafer being manufactured in the manufacture of a semiconductor device, an imaging device, and a display device. A method and an apparatus therefor. Background art
半導体素子や撮像素子、 表示素子の製造などにおいては、 素子の高機能化 ·高性 能化を図るために、 トランジスタなどの高密度化が不可欠である。 例えば、 半導体 素子では略 2. 5倍 Z 3年の割合で高密度化が進展しており、 半導体技術口一ドマ ップに掲げられた AS I Cのトランジスタ密度を例に採ると、 1 999年の 20M T r · ノ cm2から、 2002年には 54MT r . /cm2, 2005年には 1 33 MT r . /cm\ そして 201 1年には 81 1 MT r . ノ cm2になると予測され ている。 このような高密度化を実現して行くためには、パターンの微細化と併せて、 M O Sトランジスタの構造改良が必須である。 M O Sトランジスタの構造について は、 現行のプレーナトランジスタから、 バ一ティカルトランジスタに移行して行く ものと考えられている。 バーティカルトランジスタは、 図 17に示すように、 ソー ス .ゲート ' ドレインが縦方向に配置された構造を持つものである。 このようなバIn the manufacture of semiconductor devices, imaging devices, display devices, etc., it is indispensable to increase the density of transistors and the like in order to achieve high performance and high performance of devices. For example, the density of semiconductor devices has been increasing at a rate of approximately 2.5 times Z three years, and the transistor density of AS ICs listed in the Semiconductor Technology Portfolio is 1999 of 20M T from r · Roh cm 2, in 2002 54MT r. / cm 2, 2005 years in the 1 33 MT r. / cm \ and in 201 one year 81 1 MT r. become Roh cm 2 and the prediction It has been. In order to achieve such a high density, it is essential to improve the structure of the MOS transistor in addition to miniaturization of the pattern. The structure of MOS transistors is expected to shift from current planar transistors to vertical transistors. As shown in FIG. 17, the vertical transistor has a structure in which source, gate and drain are arranged in a vertical direction. Such a ba
—ティカルトランジスタへの変化をィンライン検査の立場から見ると、 ゲ一ト長の 測定すなわちトランジスタ性能を決める最も重要なパラメータの測定が、 パターン 寸法の測定ではなく、 膜厚の測定に変ることになる。 —From the perspective of in-line inspection of changes to physical transistors, from the standpoint of in-line inspection, the measurement of gate length, that is, the measurement of the most important parameter that determines transistor performance, is changed to measurement of film thickness instead of measurement of pattern dimensions. .
パーティカルトランジスタのゲ一ト長すなわちゲート電極膜厚の測定をィンライ ンで行うためには、 '製造途上のウェハを合理的なスループットでサンプリング検 査できること, を俞提として、 数百 nm程度の局所領域を対象とした、 測定ばらつ き n m以下での微小領域 .高精度測定を行うことが課題となる。 現在、 堆積膜や熱酸化膜などのインライン膜厚検査には、 一般的に検査専用のパ ィロットウェハを対象として、 光ビームを用いた光干渉式膜厚測定器やエリプソメ ータが用いられている。 しかし、 極近い将来に、 これら技術が益々厳しくなる精度 要求に応えられなくなることは、 周知の事実である。 より高精度な膜厚測定法の将 来候補としては、 ( 1) 照射光として UV光を用いるエリプソメータ、 (2) X線 を測定箇所に照射して反射 X線などを測定する手法、 ( 3 ) レーザ光を測定箇所に 照射して弾性波などを測定する手法、 (4) 中速イオンビームを測定箇所に照射し て散乱イオンなどを測定する手法、 などが挙げられている。 しかし、何れの方法も、 数百 n m程度の局所領域を対象とした膜厚測定を行うことは極めて困難である。. 例えば、 ゲート長 50 nmのバ一ティカルトランジスタに必要とされるゲート長 測定精度 (試料起因ばらつきや測定装置の機差など全ての測定ばらつきを含めて) は 1 nm以下であり、 要求される膜厚測定精度を達成できると思われる空間分解能 を持つ手法は、 原子間力顕微鏡 (AFM) 、 及び透過電子像を形成する透過型電子 顕微鏡 (TEM) あるいは走査型透過電子顕微鏡 (STEM) だけである。 AFM は極端にスループットが落ちるため、 現在のところ、 TEMあるいは STEMだけ がその可能性を持っている。 とは云っても、 TEMあるいは S TEMの場合にも、 ィンライン検査の前提である '製造途上のウェハを合理的なスループットでサンプ リング検査できること, ができておらず、 実用上の課題となる。 In order to measure the gate length of a particle transistor, that is, the gate electrode film thickness in-line, it is necessary to provide a sampling inspection of a wafer in process at a reasonable throughput. Small area in the local area with a measurement variation of less than nm. High-precision measurement is an issue. At present, in-line film thickness inspection of deposited films and thermal oxide films generally uses an optical interference-type film thickness measurement device using a light beam and an ellipsometer for a pilot wafer dedicated to inspection. . However, it is a well-known fact that in the very near future, these technologies will not be able to meet increasingly stringent precision requirements. Future candidates for more accurate film thickness measurement methods include: (1) an ellipsometer that uses UV light as the irradiation light, (2) a method of irradiating X-rays to the measurement location and measuring reflected X-rays, etc. ) A method of irradiating a measurement location with a laser beam to measure elastic waves, etc., and (4) A technique of irradiating a measurement location with a medium-speed ion beam to measure scattered ions and the like. However, it is extremely difficult for any of the methods to measure the film thickness in a local region of about several hundred nm. For example, the gate length measurement accuracy required for a vertical transistor with a gate length of 50 nm (including all measurement variations such as sample-induced variations and instrument differences between measuring instruments) is less than 1 nm, which is required. The only methods with spatial resolution that can achieve film thickness measurement accuracy are atomic force microscope (AFM) and transmission electron microscope (TEM) or scanning transmission electron microscope (STEM) that form transmission electron images. is there. At present, only TEM or STEM has the potential because AFM has extremely low throughput. Nevertheless, even in the case of TEM or STEM, the prerequisite for in-line inspection is that it is not possible to perform sampling inspection of wafers in process at a reasonable throughput.
本発明は、 このような状況に鑑み、 数百 nm程度の局所領域における高精度な膜 厚測定を可能とするための TEMあるいは STEMを用いたインライン検査手段を 提供することを目的とする。 発明の開示  In view of such circumstances, an object of the present invention is to provide in-line inspection means using TEM or STEM for enabling highly accurate film thickness measurement in a local region of about several hundred nm. Disclosure of the invention
TEMあるいは STEMを用いることが、 極微小領域の高精度膜厚測定を実現で きる唯一の解である。 しかし、 スループットを上げることが最大の課題となる。 高 スループット化を実現するためには、 (1) 高速で試料作製できること、 (2) 短 時間で試料観測できること、 が必須となる。 (1) については、 '集束イオンビー ムのスパッタリング作用を利用して試料を切出す方式'の集束イオンビーム装置(F I B装置) と組み合わせることが最適の選択となる。 この場合、 実質的なインライ ン検査の所要時間は、 F I B装置の試料作製時間で決まる。 そして、 F I B装置で は、 高速での試料作製と短時間での試料観測を可能とするため、 予め登録された試 料作製用レシピに従って、 ウェハ上の指定された複数箇所を対象とし、 試料切出し 個所を自動で位置決めし、 試料を自動で切出し、 切出した試料を TEMあるいは S TEMで用いる観測用試料ホルダに自動で搭載するとともに、 TEMあるいは S T E Mで該試料を観測するためのレシピを作成する。 T E Mあるいは S T E Mでは、 短時間での試料観測を可能とするため、 F I B装置で作成され、 TEMあるいは S TEMに入力された観測用レシピに従って、 観測用試料ホルダに搭載された複数の 試料を対象とし、 観測領域を自動的に位置合わせし、 所定の試料画像を取得する。 一方、 TEMあるいは STEMでの膜厚測定をより高精度なものとするため、 電 子ビームの入射方向と観測膜面との平行性を確認 ·補正できるような段差付き断面 試料、 及び観測パターンの所定位置に精度良く形成された観測断面が得られるよう に、 観測パターンが加工断面に垂直な方向に少しずつずらして配置された複数のパ ターン群から構成された断面観測用試料を用いる。 The use of TEM or STEM is the only solution that can achieve high-accuracy film thickness measurement in an extremely small area. However, increasing throughput is the biggest challenge. In order to achieve high throughput, it is essential that (1) samples can be prepared at high speed and (2) samples can be observed in a short time. As for (1), the focused ion beam system (F IB device) is the best choice. In this case, the actual time required for the inline inspection is determined by the time required to prepare the sample in the FIB apparatus. In order to enable high-speed sample preparation and sample observation in a short period of time, the FIB device cuts out samples from multiple specified locations on the wafer according to a pre-registered sample preparation recipe. The position is automatically positioned, the sample is automatically cut out, and the cut sample is automatically mounted on an observation sample holder used for TEM or STEM, and a recipe for observing the sample with TEM or STEM is created. In TEM or STEM, in order to enable sample observation in a short time, multiple samples mounted on the observation sample holder are prepared according to the observation recipe input to the TEM or STEM by the FIB device. Automatically align the observation area and acquire a predetermined sample image. On the other hand, in order to make the film thickness measurement with TEM or STEM more accurate, the parallelism between the electron beam incident direction and the observation film surface can be confirmed and corrected. A cross-sectional observation sample composed of a plurality of pattern groups whose observation patterns are slightly shifted in the direction perpendicular to the processing cross section is used so that an observation cross section accurately formed at a predetermined position can be obtained.
本発明によると、 'TEM/S TEMによる試料観測, を 'F I B装置による試 料作製' と組み合せ、 F I B装置では、 予め登録された試料作製用レシピに従って、 ウェハ上の指定された複数箇所を対象とし、 試料切出し個所を自動で位置決めし、 試料を自動で切出し、 切出した試料を TEMあるいは STEMで用いる観測用試料 ホルダに自動で搭載するとともに、 その試料を TEMあるいは S TEMで観測する ためのレシピを作成する、 一方、 TEMあるいは STEMでは、 F I B装置で作成 され TEMあるいは ST E Mに入力された観測用レシピに従って、 観測用試料ホル ダに搭載された複数の試料を対象とし、 観測領域を自動的に位置合わせし、 所定の 試料画像を取得し観測データを得ることにより、 数百 n m程度の局所領域を対象と して、 高精度なィンライン膜厚測定を行うことが可能となる。  According to the present invention, 'sample observation by TEM / S TEM' is combined with 'sample preparation by FIB device', and FIB device targets a plurality of specified locations on a wafer according to a pre-registered sample preparation recipe. A recipe for automatically positioning the sample extraction location, automatically extracting the sample, automatically mounting the extracted sample in an observation sample holder used for TEM or STEM, and observing the sample with TEM or STEM. On the other hand, in the TEM or STEM, the observation area is automatically set for multiple samples mounted on the observation sample holder according to the observation recipe created by the FIB device and input to the TEM or STEM. High-precision in-line film thickness measurement for a local region of several hundred nm by acquiring a predetermined sample image and obtaining observation data. It becomes possible.
また、 TEMあるいは STEMを用いれば、 高解像な試料画像形成に併せて、 極 微小領域の組成分析、 構造解析、 そして電子状態分析を容易に行うことができる。 これらの分析 ·解析情報を組合わせて活用できることから、 従来困難とされていた )積層膜各層の膜厚の測定、 パターンの三次元形状の測定、 パターン 重ね合わせ精度の測定、 配線接続部の導通状態の測定、 膜形成物質の粒度の測定、 膜内微量不純物の組成分布及び所定の参照像と比較しての欠陥測定などが、 正確か つ精密に行えるようになる。 In addition, the use of TEM or STEM makes it easy to perform composition analysis, structural analysis, and electronic state analysis of ultra-small regions in addition to high-resolution sample image formation. Conventionally, it was considered difficult because these analysis and analysis information can be used in combination. ) Measurement of film thickness of each layer of laminated film, measurement of three-dimensional shape of pattern, measurement of pattern overlay accuracy, measurement of conduction state of wiring connection part, measurement of particle size of film forming substance, composition distribution of trace impurities in film and Defect measurement compared to a predetermined reference image can be performed accurately and precisely.
そして、 これらインライン測定データを統合的に扱うことにより、 より高度なプ ロセス管理及びトランジスタ特性解析が実現される。 例えば、 ゲート長と同時に、 ゲ一ト絶縁膜厚及びソース/ドレイン領域のドーパント濃度プロファイルをインラ ィン測定すれば、 しきい値電圧などトランジスタの電気特性を実時間で正確に予測 することが可能となる。 すなわち、 従来は及びもっかなかったような、 デバイスの 性能ノ信頼性及び歩留を精密に管理するためのデータがィンライン検査で取得可能 となる。  By integrating these in-line measurement data, more advanced process management and transistor characteristic analysis can be realized. For example, by in-line measurement of the gate insulation thickness and the dopant concentration profile of the source / drain regions simultaneously with the gate length, it is possible to accurately predict the electrical characteristics of the transistor, such as the threshold voltage, in real time. Becomes That is, data for precisely managing device performance and reliability and yield, which has never been possible in the past, can be obtained by in-line inspection.
また、 検査済みの試料を保管しておくことができるため、 後日に歩留あるいは信 頼度上の問題が発生した場合など、 保管庫から取出して現物を再調査することがで きる。 このことは、 現物無しでの困難を強いられている不良解析を容易なものとす る。  In addition, since inspected samples can be stored, they can be removed from storage and re-examined in the event of a yield or reliability problem at a later date. This simplifies failure analysis, which is difficult without physical components.
本発明によるウェハの検査方法、 集束イオンビーム装置、 透過電子ビーム装置は 以下の通りである。  The wafer inspection method, focused ion beam device, and transmitted electron beam device according to the present invention are as follows.
( 1 ) 半導体装置の製造工程におけるウェハの検査方法において、 集束イオンビー ム装置に検査対象のウェハを装填する工程と、 予め読み込んだ試料作製用レシピに 従って前記ウェハ上の試料切出し個所を自動位置決めする工程と、 前記ウェハから 集束イオンビームによつて所定の試料を切り出す工程と、 切り出した試料を観測用 試料ホルダに搭載する工程と、 切リ出した試料の前記観測用試料ホルダ上の搭載位 置に関する情報と当該試料の検査条件に関する情報とを関連付けて記載した観測用 レシピを作成する工程と、 透過電子ビーム装置に前記観測用試料ホルダを装填する 工程と、 透過電子ビーム装置で前記観測用レシピを読み込む工程と、 読み込んだ観 測用レシピに従って前記観測用試料ホルダ上の試料を自動位置決めする工程と、 位 置決めした試料から前記観測用レシピに従つて所定の観測データを取得する工程と を含むことを特徴とするウェハの検査方法。 集束ィォンビーム装置による試料作製工程では、 集束イオンビームとして整形ビ ーム、 可変整形ビームあるいはセルプロジェクシヨンビームを適宜用いることで迅 速な試料作製が可能になる。 セルプロジェクシヨンは、 少なくとも C字及びスポッ トから構成することができる。 透過電子ビーム装置としては、 T E Mあるいは S T E Mを用いることができる。 試料作製工程を実行する集束イオンビーム装置と試料 観測工程を実行する透過電子ビーム装置との間における観測用レシピの伝送は、 L AN等を経由してオンラインで行うのが好ましい。 (1) In a method of inspecting a wafer in a semiconductor device manufacturing process, a step of loading a wafer to be inspected into a focused ion beam device and automatically positioning a sample cutting portion on the wafer according to a sample preparation recipe read in advance. A step of cutting out a predetermined sample from the wafer by using a focused ion beam; a step of mounting the cut out sample on an observation sample holder; and a mounting position of the cut sample on the observation sample holder. Creating an observation recipe in which information relating to the specimen and inspection conditions of the sample are described in association with each other; loading the observation sample holder into a transmission electron beam device; and performing the observation recipe using a transmission electron beam device. And a step of automatically positioning the sample on the observation sample holder according to the read observation recipe. And a step of acquiring predetermined observation data from the positioned sample according to the observation recipe. In the sample preparation process using a focused ion beam apparatus, rapid sample preparation becomes possible by appropriately using a shaped beam, a variable shaped beam, or a cell projection beam as a focused ion beam. A cell projection can be composed of at least a C-shape and a spot. TEM or STEM can be used as the transmission electron beam device. It is preferable that the transmission of the observation recipe between the focused ion beam apparatus that executes the sample preparation step and the transmission electron beam apparatus that executes the sample observation step is performed online via a LAN or the like.
( 2 ) ( 1 ) 記載のウェハの検査方法において、 観測用レシピを作成する工程は、 観測用試料ホルダに記された符号を読み取る工程と、 前記符号をキーとして当該観 測用試料ホルダに搭載された試料を観測するための透過電子ビーム装置用レシピを 作成することを特徴とするウェハの検査方法。  (2) In the wafer inspection method described in (1), the step of creating an observation recipe includes the steps of reading a code written on the observation sample holder, and mounting the code on the observation sample holder using the code as a key. A method for inspecting a wafer, comprising creating a recipe for a transmission electron beam apparatus for observing a sample that has been etched.
F I B装置で試料を切り出す際に F I Bを用いて試料上に付けられた試料に固有 の番号である試料上の符号をキ一として、 該試料を観測するための透過電子ビーム 装置用レシピを自動的あるいは半自動的に作成するようにしてもよい。  When cutting out a sample with the FIB device, the code on the sample, which is the unique number of the sample attached to the sample using the FIB, is used as a key, and the recipe for the transmitted electron beam device for observing the sample is automatically set. Alternatively, it may be created semi-automatically.
( 3 ) ( 1 ) 又は (2 ) 記載のウェハの検査方法において、 前記観測データを取得 する工程では試料の画像データ、 組成分析データ、 構造解析データ、 電子状態分析 データのうち少なくとも 1つのデータを取得することを特徴とするウェハの検査方 法。  (3) In the wafer inspection method according to (1) or (2), in the step of acquiring the observation data, at least one of image data, composition analysis data, structural analysis data, and electronic state analysis data of the sample is obtained. A wafer inspection method characterized by acquiring.
取得した観測データは、 膜厚測定、 パターンの形状寸法測定、 パターンの重ね合 わせ測定、 配線接続部の導通状態測定、 粒度測定、 ドーパント濃度プロファイル測 定、 所定の参照像と比較しての欠陥測定のために用いることができる。 測定データ は、 プロセス管理やデバイス特性解析を行うために利用することができる。  Obtained observation data includes film thickness measurement, pattern shape / dimension measurement, pattern overlay measurement, wiring connection conduction state measurement, particle size measurement, dopant concentration profile measurement, and defects compared to a predetermined reference image. Can be used for measurement. The measured data can be used for process management and device characteristic analysis.
( 4 ) ウェハを保持して移動可能な試料ステージと、 前記試料ステージを駆動する ステージ駆動部と、 集束イオンビームを形成する手段と、 前記集束イオンビームを 前記試料ステージに保持されたウェハ上で走査するための偏向器と、 集束イオンビ ーム照射によって試料から発生した試料信号を検出する検出器と、 試料ハンドリン グ用の試料マニピュレータと、 制御部とを含む集束イオンビーム装置において、 前 記制御部は、 予め登録された試料作製用レシピに従って前記ステージ駆動部及び/ 又は前記偏向器を制御してウェハ上の試料切出し個所を自動位置決めする機能と、 前記集束イオンビームを用いて所定の試料を切出す制御を行う機能と、 前記試料マ ニピユレータを制御して切出した試料を観測装置で用いる観測用試料ホルダに搭載 する機能と、 前記観測用試料ホルダ上の試料搭載位置と当該試料の前記試料作製用 レシピに記載されていた情報及びそれをもとにしてメモリから読み出された予め蓄 えられていた情報を用いて観測装置で使用する観測用レシピを作成する機能とを有 することを特徴とする集束イオンビーム装置。 (4) a sample stage that can hold and move a wafer, a stage driving unit that drives the sample stage, a unit that forms a focused ion beam, and that the focused ion beam is placed on a wafer held by the sample stage. In the focused ion beam apparatus including a deflector for scanning, a detector for detecting a sample signal generated from the sample by the focused ion beam irradiation, a sample manipulator for sample handling, and a control unit, The stage driving unit and / or the stage driving unit according to a pre-registered sample preparation recipe. Or a function of controlling the deflector to automatically position a sample cutting portion on a wafer; a function of controlling a predetermined sample using the focused ion beam; and a function of controlling the sample manipulator to cut the sample. The function of mounting the sample on the observation sample holder used in the observation device, the sample mounting position on the observation sample holder, the information described in the sample preparation recipe for the sample, and the information from the memory based on the information A focused ion beam apparatus having a function of creating an observation recipe to be used in the observation apparatus using the read information stored in advance.
切出した試料には、 その試料を同定するための符号を集束イオンビームで刻印す るようにしてもよい。 ウェハから切出した試料は一旦試料マニピュレ一タに固定し た後、 試料マニピュレータと観測用試料ホルダの一方又は両方を移動して、 観測用 試料ホルダの所定のァドレス位置に搭載される。 試料マニピュレータへの試料の固 定には、 イオンビームアシスト膜堆積法、 あるいはマニピュレータと試料の静電吸 着作用を用いることができる。  The cut sample may be marked with a code for identifying the sample with a focused ion beam. The sample cut from the wafer is once fixed to a sample manipulator, and then moved to one or both of the sample manipulator and the observation sample holder to be mounted on a predetermined address position of the observation sample holder. The sample can be fixed to the sample manipulator using the ion beam assisted film deposition method or the electrostatic adsorption between the manipulator and the sample.
( 5 ) 試料を搭載した観測用試料ホルダを保持して移動可能な試料ステージと、 前 記試料ステ一ジを駆動するステ一ジ駆動部と、 電子ビームを細く絞って試料に照射 する手段と、 前記電子ビームを偏向するための偏向器と、 試料を透過した電子線を 検出する透過電子検出器と、 制御部とを含む透過電子ビーム装置において、 前記制 御部は、 集束イオンビーム装置で作成された観測用レシピに従い、 前記集束イオン ビーム装置で作製された観測用試料ホルダ上の試料を対象として観測領域を自動位 置決めする制御を行う機能と、 所定の観測データを取得するための機能とを有する ことを特徴とする透過電子ビーム装置。  (5) A sample stage that holds and moves an observation sample holder on which a sample is mounted, a stage drive unit that drives the sample stage, and a unit that irradiates the sample by narrowing down the electron beam. A transmission electron beam device including a deflector for deflecting the electron beam, a transmission electron detector for detecting an electron beam transmitted through a sample, and a control unit, wherein the control unit is a focused ion beam device. According to the created observation recipe, a function of performing control for automatically positioning an observation area for a sample on the observation sample holder manufactured by the focused ion beam device, and a function for acquiring predetermined observation data A transmission electron beam device having a function.
観測データには、 試料画像データ、 組成分析データ、 構造解析データ、 電子状態 分析データなどを含むことができる。 透過電子ビーム装置は、 特性 X線分析器、 ォ ージェ電子分光器、 特性損失電子のエネルギー分析器などを備えることができる。 組成分析データは透過電子ビーム装置内に例えば特性 X線分析器やエネルギー分光 器を備えることによって取得することができ、 構造解析データは透過電子の二次元 アレイ検出器を備えることによって取得することができ、 電子状態分析データは透 過電子のエネルギー分光器を備えることによって取得することができる。 取得した観測データに基づいて、 膜厚測定、 パターンの形状寸法測定、 パターン 重ね合わせ測定、 配線接続部の導通状態測定、 粒度測定、 ドーパント濃度プロファ ィル測定、 所定の参照像と比較しての欠陥測定などを行うことができる。 得られた 測定データは、 プロセス管理やデバイス特性解析に利用することができる。 観測デ ータ、 測定データ、 プロセス管理データ等は電子データとして出力することができ る。 出力するプロセス管理データは、 例えば検査の合否を記したウェハマップ、 あ るいは検査不良率、 検査不良数、 欠陥分類結果としてまとめたデータとすることが できる。 透過電子ビーム装置は結晶格子像による観測倍率の校正機能を有するのが 好ましい。 Observation data can include sample image data, composition analysis data, structural analysis data, electronic state analysis data, and the like. The transmission electron beam apparatus can include a characteristic X-ray analyzer, an Auger electron spectrometer, and an energy analyzer for characteristic loss electrons. The composition analysis data can be obtained by equipping the transmission electron beam device with, for example, a characteristic X-ray analyzer or an energy spectrometer, and the structural analysis data can be obtained by equipping a transmission electron two-dimensional array detector. The electronic state analysis data can be obtained by providing a transmission electron energy spectrometer. Based on the acquired observation data, film thickness measurement, pattern shape / dimension measurement, pattern overlay measurement, wiring connection conduction state measurement, particle size measurement, dopant concentration profile measurement, and comparison with a predetermined reference image Defect measurement and the like can be performed. The obtained measurement data can be used for process management and device characteristic analysis. Observation data, measurement data, process management data, etc. can be output as electronic data. The process management data to be output can be, for example, a wafer map describing pass / fail of the inspection, or data summarized as an inspection failure rate, the number of inspection failures, and a defect classification result. The transmitted electron beam device preferably has a function of calibrating the observation magnification by a crystal lattice image.
( 6 ) 試料ホルダをロード/アンロードするための手段と、 試料観測用レシピを記 憶する記憶手段と、 試料ホルダを同定するための試料ホルダ同定手段と、 制御手段 とを備え、 前記制御手段は、 前記試料ホルダ同定手段による同定結果に基づき当該 試料ホルダに対応した観測用レシピを前記記憶手段から読み出し、 当該観測用レシ ピに基づいて各部を制御して試料の観測を行うことを特徴とする透過電子ビーム装 置。  (6) means for loading / unloading the sample holder, storage means for storing a sample observation recipe, sample holder identification means for identifying the sample holder, and control means, wherein the control means Reading an observation recipe corresponding to the sample holder from the storage unit based on the identification result by the sample holder identification unit, and controlling each unit based on the observation recipe to observe the sample. Transmission electron beam device.
集束イオンビーム装置で作製する断面観測用試料は、 観測パターンが加工断面に 垂直な方向に少しづつずらして構成された複数のパターン群から構成されるように 作成することができる。 この断面観測用試料の観測に当たっては、 最も寸法の大き なパターンを被検パターンとして採用するなどして最適な観測パターンを選択する。 観測用断面が少なくとも一つの段差を有している断面観測用試料を用いると、 透 過像から断面と観測ビ一ムがなす入射角を求めることができる。 この観測ビームの 入射角の情報は、 試料の傾斜角を制御して、 あるいは偏向器により入射ビームを制 御して、 ビーム入射角を所定の値に制御するために用いることができる。 あるいは、 得られた入射角に基づいて計測データを補正することも可能である。 図面の簡単な説明  The cross-section observation sample prepared by the focused ion beam apparatus can be prepared so that the observation pattern is composed of a plurality of pattern groups that are slightly shifted in a direction perpendicular to the processing cross section. When observing the cross-sectional observation sample, the most appropriate pattern is selected by using the pattern with the largest dimension as the pattern to be inspected. When a cross-section observation sample having at least one step is used for the observation cross-section, the angle of incidence between the cross-section and the observation beam can be obtained from the transmission image. The information on the incident angle of the observation beam can be used to control the tilt angle of the sample or to control the incident beam by a deflector to control the beam incident angle to a predetermined value. Alternatively, the measurement data can be corrected based on the obtained incident angle. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による F I B装置の一例の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of an example of a FIB device according to the present invention.
図 2は、 本発明による T E Mあるいは S T E Mの概略構成を示す図である。 図 3は、 本発明による半導体装置製造工程におけるインライン検査の概念図であ る。 FIG. 2 is a diagram showing a schematic configuration of a TEM or STEM according to the present invention. FIG. 3 is a conceptual diagram of an inline inspection in a semiconductor device manufacturing process according to the present invention.
図 4は、 観測用試料ホルダを準備するための処理を説明するフローチャートであ る。  FIG. 4 is a flowchart illustrating a process for preparing an observation sample holder.
図 5は、 試料作製処理及び観測用レシピ作成処理を説明するフローチャートであ る。  FIG. 5 is a flowchart illustrating a sample preparation process and an observation recipe generation process.
図 6は、 集束イオンビームを用いてウェハからの試料を切り出す工程の説明図で ある。  FIG. 6 is an explanatory diagram of a step of cutting out a sample from a wafer using a focused ion beam.
図 7は、 整形イオンビームを得るためのセルプロジェクシヨン用絞りの例を示す 図である。  FIG. 7 is a diagram showing an example of a cell projection aperture for obtaining a shaped ion beam.
図 8は、 観測用試料ホルダに固定された試料の例を示す概略図である。  FIG. 8 is a schematic diagram showing an example of a sample fixed to an observation sample holder.
図 9は、 観測用レシピの記載項目例を示す図である。  FIG. 9 is a diagram showing an example of items described in the observation recipe.
図 1 0は、 F I B装置による試料の切リ出し方の例を説明する図である。  FIG. 10 is a diagram for explaining an example of how to cut out a sample using the FIB apparatus.
図 1 1は、 段差付き断面試料の例を示す図である。  FIG. 11 is a diagram showing an example of a cross-sectional sample with a step.
図 1 2は、 段差付き断面試料の透過像の例を示す図である。  FIG. 12 is a diagram showing an example of a transmission image of a stepped cross-sectional sample.
図 1 3は、 本発明による T E Mあるいは S T E Mにおける処理の^れを示すフロ —チヤ一卜である。  FIG. 13 is a flowchart showing a process flow in TEM or STEM according to the present invention.
図 1 4は、 本発明における検査の応用例を説明するための図である。  FIG. 14 is a diagram for explaining an application example of the inspection in the present invention.
図 1 5は、 検査結果の出力例を示す図である。  FIG. 15 is a diagram illustrating an output example of the inspection result.
図 1 6は、 試料保管庫の配置の例を示す図である。  FIG. 16 is a diagram showing an example of the arrangement of the sample storage.
図 1 7は、 バ一ティカル MO Sトランジスタの構造の模式図を示す図である。 発明を実施するための最良の形態  FIG. 17 is a diagram schematically illustrating the structure of a vertical MOS transistor. BEST MODE FOR CARRYING OUT THE INVENTION
図 1に、 本発明による F I B装置の一例の概略構成を示す。 F I B装置は制御部 3 1により統括的に制御されている。 イオン銃 1 1から引出されたイオンビーム 1 2は、 所定のエネルギーに加速された後、 収束レンズ 1 3及び対物レンズ 1 4によ つて集束され、 試料室 2 1内の XYステージ 2 2上に搭載されたウェハ 2 3面上に 照射される。 X Yステージ 2 2は、 制御部 3 1の制御下にステージ駆動部 3 2によ つて駆動される。 ウェハ 2 3上に照射されたイオンビーム 1 2は、 偏向器 1 5によ つて偏向されウェハ 2 3上を走査される。 収束レンズ 1 3の下方にはセルプロジェ クシヨン用絞り 1 6が設置されている。 一方、 イオンビーム 1 2によって照射され たウェハ部分からは二次電子 2 4が放出される。 この二次電子 2 4を二次電子検出 器 2 5によリ検出し、 信号増幅 ·処理部 3 3で増幅■ A/D変換などの信号処理を した後、 メモリ 3 4に蓄える。 メモリ 3 4に蓄えられた像信号は、 イオンビーム走 査と同期して走査しているディスプレイ 3 5に供給され、 ディスプレイ 3 5上には 試料像が表示される。 この試料像を S I M像という。 FIG. 1 shows a schematic configuration of an example of the FIB device according to the present invention. The FIB device is totally controlled by a control unit 31. After being accelerated to a predetermined energy, the ion beam 12 extracted from the ion gun 11 is focused by the converging lens 13 and the objective lens 14, and is focused on the XY stage 22 in the sample chamber 21. Irradiation is performed on the mounted wafer 23 surface. The XY stage 22 is controlled by the stage drive unit 32 under the control of the control unit 31. Driven. The ion beam 12 irradiated on the wafer 23 is deflected by the deflector 15 and scanned on the wafer 23. A stop 16 for cell projection is provided below the converging lens 13. On the other hand, secondary electrons 24 are emitted from the wafer portion irradiated by the ion beam 12. The secondary electrons 24 are detected by a secondary electron detector 25, subjected to signal processing such as amplification and A / D conversion in a signal amplification / processing section 33, and then stored in a memory 34. The image signal stored in the memory 34 is supplied to a display 35 scanning in synchronization with ion beam scanning, and a sample image is displayed on the display 35. This sample image is called a SIM image.
試料室 2 1には、 ウェハキヤリア 4 1に保持されたウェハを X Yステージ 2 2に 対してロードあるいはアンロードするウェハ口一ド アン口一ド部 4 2、 F I B装 置で切り出した T E Mあるいは S T E M観察用試料を保持するホルダをロード/ァ ンロードする観察用試料ホルダ口一ドノアンロード部 4 3、 試料マニピュレータ駆 動部 4 4、 反応性ガス導入部 4 5が設けられている。 試料室には、 また光学顕微鏡 2 6も設けられている。  In the sample chamber 21, a wafer held in the wafer carrier 41 is loaded into or unloaded from the XY stage 22. An observation sample holder opening-donor unloading section 43 for loading / unloading a holder for holding an observation sample, a sample manipulator driving section 44, and a reactive gas introducing section 45 are provided. The sample chamber is also provided with an optical microscope 26.
制御部 3 1は、 読み込まれた試料作製用レシピ 3 7に従って、 得られた試料像を もとに T E Mあるいは S T E M観測用の試料切リ出し位置を設定し、 試料像をモニ タしながらイオンビーム加工を行う。 加工された試料はウェハから切出され、 T E Mあるいは S T E Mによる観測に用いられる。 制御部 3 1は、 各部を制御して観測 用試料の切り出し制御を行うと共に、 後述する観測用レシピ 8 8の作成を行う。 作 成された観測用レシピ 8 8は、 一旦メモリ 3 4に記憶され、 L AN経由で試料観測 用の T E Mあるいは S T E M及びデータベースへ出力される。 観測用レシピについ ては後述する。  The control unit 31 sets a sample cutting-out position for TEM or STEM observation based on the obtained sample image according to the read sample preparation recipe 37, and monitors the ion beam while monitoring the sample image. Perform processing. The processed sample is cut out from the wafer and used for observation by TEM or STEM. The control section 31 controls each section to control the cutout of the observation sample, and creates an observation recipe 88 described later. The created observation recipe 88 is temporarily stored in the memory 34 and output to the TEM or STEM for sample observation and the database via the LAN. The observation recipe will be described later.
図 2に、 本発明による T E Mあるいは S T E Mの概略構成を示す。 装置は制御部 8 1により統括的に制御されている。電子銃 6 1から放出された電子ビーム 6 2は、 所定のエネルギーに加速された後、 収束レンズ 6 3によって細く絞られ、 X Yステ —ジ 6 5に搭載された試料ホルダ 6 6上の試料面に照射される。 X Yステージ 6 5 は制御部 8 1の制御下にステージ駆動部 8 2により駆動される。 試料を透過した透 過電子 7 1は対物レンズ 7 2を通って透過電子検出器 7 3によって検出され、 信号 T/JP01/02131 増幅 .処理部 83で増幅 · A/D変換などの信号処理をした後、 メモリ 84に蓄え られる。 メモリ 84に蓄えられた像信号は、 電子ビーム走査と同期して走査されて いるディスプレイ 85に供給され、 ディスプレイ 85上には試料像が表示される。 試料を保持している試料ホルダ 66は、 制御部 81の制御下に試料ホルダロード/ / アンロード部 86により XYステージ 65にロードされ、 あるいはアンロードされ る。 FIG. 2 shows a schematic configuration of a TEM or STEM according to the present invention. The device is generally controlled by a control unit 81. The electron beam 62 emitted from the electron gun 61 is accelerated to a predetermined energy, then narrowed down by the converging lens 63, and the sample surface on the sample holder 66 mounted on the XY stage 65 Is irradiated. The XY stage 65 is driven by the stage drive unit 82 under the control of the control unit 81. The transmitted electrons 71 transmitted through the sample are detected by the transmitted electron detector 73 through the objective lens 72, and the signal T / JP01 / 02131 Amplification. Amplification and signal processing such as A / D conversion in the processing unit 83 are stored in the memory 84. The image signal stored in the memory 84 is supplied to a display 85 that is being scanned in synchronization with electron beam scanning, and a sample image is displayed on the display 85. The sample holder 66 holding the sample is loaded or unloaded on the XY stage 65 by the sample holder loading / unloading unit 86 under the control of the control unit 81.
電子ビーム 62を一点照射し透過電子 7 1の空間分布信号を得れば、 透過電子像 が得られる。 一方、 偏向器 64によって照射電子ビームを走査し、 透過電子 7 1の 時間変化信号を得れば、 走査透過電子像が得られる。 検出器として、 透過電子検出 器 73の他に、 電子ビーム照射によって試料から発生された特性 X線 74を検出す る X線検出器 75、 あるいは透過電子 7 1をエネルギー分光するエネルギー分光器 76等を備える。 試料の観測は、 F I B装置で作成され、 例えば LAN経由で送信 されてきた観測用レシピ 88に従って実行される。  If a spatial distribution signal of the transmitted electrons 71 is obtained by irradiating the electron beam 62 at one point, a transmitted electron image can be obtained. On the other hand, if the irradiation electron beam is scanned by the deflector 64 and a time-change signal of the transmitted electrons 71 is obtained, a scanned transmitted electron image can be obtained. As a detector, in addition to the transmitted electron detector 73, an X-ray detector 75 that detects characteristic X-rays 74 generated from a sample by electron beam irradiation, or an energy spectrometer 76 that performs energy spectroscopy of transmitted electrons 71, etc. Is provided. The observation of the sample is performed in accordance with the observation recipe 88 created by the FIB device and transmitted, for example, via the LAN.
図 3は、 本発明による半導体装置製造工程におけるインライン検査の概念を示す 図である。 ウェハ処理と図示した前後の半導体プロセス処理 91 , 92の途中にィ ンライン検査工程が設けられる。 インライン検査工程は、 F I B装置における試料 作製工程と、 TEM/S TEMにおける試料検査工程の 2工程に大別される。  FIG. 3 is a diagram showing the concept of in-line inspection in a semiconductor device manufacturing process according to the present invention. An in-line inspection process is provided in the middle of the wafer process and the semiconductor process processes 91 and 92 before and after the illustrated process. The in-line inspection process is roughly divided into two processes: a sample preparation process in a FIB device and a sample inspection process in a TEM / S TEM.
F I B装置における試料作製工程では、 予め登録された試料作製用レシピ 37に 従って、 ウェハ上の指定された複数箇所を対象とし、 試料切出し個所を自動で位置 決めし、 試料を自動で切出し、 切出した試料を TEMZSTEMで用いる観測用の 試料ホルダに自動で搭載するとともに、 T EM/S T EMにて試料を観測するため の観測用レシピ 88を作成する。  In the sample preparation process of the FIB device, according to the pre-registered sample preparation recipe 37, a plurality of specified locations on the wafer were targeted, the sample extraction locations were automatically positioned, and the sample was automatically extracted and extracted. The sample is automatically mounted on the sample holder for observation used in TEMZSTEM, and an observation recipe 88 for observing the sample by TEM / STEM is created.
TEMZS TEMにおける試料検査工程では、 F I B装置で作製され T E MZ S TEMに入力された観測用レシピ 88に従い、 観測用試料ホルダに搭載された複数 の試料を対象として、 観測領域を自動的に位置合わせし、 所定の試料画像を取得す ることにより、 数百 nm程度の局所領域を対象として、 検査を行う。 夫々について、 以下に説明する。  In the sample inspection process of the TEMZS TEM, the observation area is automatically aligned for multiple samples mounted on the observation sample holder in accordance with the observation recipe 88 prepared by the FIB device and input to the TE MZS TEM. Then, by acquiring a predetermined sample image, the inspection is performed on a local region of about several hundred nm. Each is described below.
最初に、 図 4及び図 5を参照して、 F I B装置における試料作製工程について説 明する。 この工程では、 試料切出し、 観測用試料作製、 及び T E M/ S T E Mによ る観測用レシピ 8 8の作成を行う。 First, referring to FIGS. 4 and 5, the sample preparation process in the FIB apparatus will be described. I will tell. In this step, a sample is cut out, an observation sample is prepared, and an observation recipe 88 is prepared by TEM / STEM.
図 4は、 F I B装置で切り出した試料を装填するための観測用試料ホルダを準備 するための処理を説明するフローチャートである。 まず、 ステップ 1 1にて、 空の 観測用試料ホルダを入れた試料ホルダキャリアが、 F I B装置の観察用試料ホルダ ロード/アンロード部 4 3に装着される。 次に、 ステップ 1 2において、 観測用試 料ホルダは、 試料ホルダキャリアから取り出され、 空であることを口一ドノアン口 —ド部 4 3に装着された検知器で確認された後、 ステップ 1 3に進み、 ロード/ァ ンロード部に装着されたホルダ番号読取り器によってホルダに記されたホルダ番号 が読み取られる。 その後、 観察用試料ホルダはステップ 1 4で、 F I B装置の試料 室 2 1内の所定位置に搬送 '装填される。 観察用試料ホルダのホルダ番号は、 それ ぞれの観察用試料ホルダに固有のコードであリ、 個々の観察用試料ホルダを同定す るために用いられる。 また、 観測用試料ホルダの本体自体は繰返し再生使用するこ とが可能である。  FIG. 4 is a flowchart illustrating a process for preparing an observation sample holder for loading a sample cut by the FIB apparatus. First, in step 11, a sample holder carrier containing an empty observation sample holder is mounted on the observation sample holder load / unload section 43 of the FIB device. Next, in Step 12, the observation sample holder is taken out of the sample holder carrier, and after confirming that it is empty by the detector attached to the mouth-to-door port 43, Step 1 Proceed to 3, and the holder number written on the holder is read by the holder number reader attached to the load / unload section. Thereafter, the observation sample holder is transported and loaded at a predetermined position in the sample chamber 21 of the FIB device in step 14. The holder number of the observation sample holder is a code unique to each observation sample holder, and is used to identify each observation sample holder. The main body of the sample holder for observation can be reused repeatedly.
なお、 図 4に示した観測用試料ホルダを準備するための処理は、 図 5に示した試 料作製及び観測用レシピ作成処理の空き時間を利用してステップ 3 0の前までに完 了すればよい。  The process for preparing the observation sample holder shown in Fig. 4 must be completed before step 30 using the idle time of sample preparation and observation recipe creation process shown in Fig. 5. I just need.
図 5は、 試料作製処理及び観測用レシピ作成処理の流れを示すフローチャートで ある。 ステップ 2 1において、 被検査ウェハを入れたウェハキャリア 4 1が、 ゥェ ハロ一ドノアンロード部 4 2に装着される。 ステップ 2 2において、 被検査ウェハ はウェハキヤリァから取り出され、 続くステップ 2 3でブリアライメント部に搬送 されてプリアライメントされる。 プリアライメントは、 ウェハのオリエンテ一ショ ンフラットあるいはノツチなどを検出し、 これを基準としてウェハの載置方向を F I B装置の X Yステージ 2 2の方向に合わせるための操作である。  FIG. 5 is a flowchart showing the flow of the sample preparation processing and the observation recipe preparation processing. In step 21, the wafer carrier 41 containing the wafer to be inspected is mounted on the wafer unloading unit 42. In step 22, the wafer to be inspected is taken out of the wafer carrier, and in step 23, it is conveyed to the bri-alignment unit and pre-aligned. The pre-alignment is an operation for detecting an orientation flat or a notch of the wafer, and adjusting the mounting direction of the wafer to the direction of the XY stage 22 of the FIB apparatus based on the detected orientation flat or notch.
ウェハがブリアライメントされた後、 ステップ 2 4において、 ウェハ上に形成さ れたウェハ番号が、 F I B装置に組込まれた図示しないウェハ番号読取り器によつ て読み取られる。 ウェハ番号は各ウェハに固有の符号であり、 ウェハ個々あるいは ウェハの品名 '仕掛かり工程名を同定するために用いられる。 ステップ 2 5では、 読み取られたウェハ番号をキーにして、 予め登録されていたこのウェハに対応する 試料作製用レシピ 3 7が読み出される。 試料作製用レシピ 3 7は、 ウェハからの試 料切出し手順、 切出し条件、 切出し結果出力条件を定めたものであり、 一般的には ウェハが属する品種 .仕掛かり工程名毎に設定されている。 以降の操作は、 このレ シピ 3 7に従って、 自動的あるいは半自動的に行われる。 After the wafers are aligned, in step 24, the wafer number formed on the wafer is read by a wafer number reader (not shown) incorporated in the FIB apparatus. The wafer number is a unique code for each wafer, and is used to identify the individual wafer or the name of the wafer or the name of the in-process process. In Step 25, Using the read wafer number as a key, a sample preparation recipe 37 corresponding to this wafer registered in advance is read. The sample preparation recipe 37 defines a sample extraction procedure, extraction conditions, and extraction result output conditions from a wafer, and is generally set for each type of product to which the wafer belongs and the name of the in-process process. Subsequent operations are performed automatically or semi-automatically according to this recipe 37.
レシピ読み出し後、 ステップ 2 6において、 ウェハは試料室 2 1内の X Yステー ジ 2 2上に搬送 '装填される。 X Yステージ 2 2上に装填されたウェハ 2 3は、 続 くステップ 2 7において、 試料室 2 1の上面に装着された光学顕微鏡 2 6とウェハ 2 3上に形成されたァライメントパターンを用いて、 ァライメントされる。 ァライ メントは、 ウェハ 2 3の座標系と: Yステージ 2 2の座標系とを合わせるための操 作であり、 ァライメントパターンの光学顕微鏡像が、 予め登録されていたァライメ ントパターン参照用画像と比較され、 その視野が参照用画像の視野と丁度重なるよ うにステージ位置座標が補正される。 ステップ 2 8において、 ァライメントされた 後のウェハ 2 3は所定の試料切出し箇所にステージ移動され、 S I M像を用いて切 出し個所が位置決めされる。  After reading the recipe, in step 26, the wafer is transferred to and loaded on the XY stage 22 in the sample chamber 21. In step 27, the wafer 23 loaded on the XY stage 22 is used by using the optical microscope 26 mounted on the upper surface of the sample chamber 21 and the alignment pattern formed on the wafer 23. , Will be aligned. The alignment is an operation for aligning the coordinate system of the wafer 23 with the coordinate system of the Y stage 22.The optical microscope image of the alignment pattern is compared with a previously registered alignment pattern reference image. The stage position coordinates are corrected so that the field of view is exactly overlapped with the field of view of the reference image. In step 28, the wafer 23 after the alignment is moved to the stage at a predetermined sample cutout position, and the cutout position is positioned using the SIM image.
切出し個所の位置決め後、 ステップ 2 9に進み、 ビーム形状が高速加工に適すよ うに整形された集束イオンビームを照射して所定の大きさ (例えば、 数 m角で厚 さ数 1 0 0 n m)の切片を切出し、切出した試料を試料マニピュレータに固定する。 図 6は、 集束ィォンビームによるウェハ 2 3からの試料の切リ出し工程を説明す る図である。 試料の切り出しに当たっては、 高速での耝加工と高い位置決め精度で の仕上加工を両立させるため、 例えば、 図 7に示すようなセルプロジェクシヨン用 絞り 1 6を用いる。 セルプロジェクシヨン用絞り 1 6は C字型のビーム透過部 1 0 2を有する C字セル部 1 0 1と、 スポットビーム部 1 0 5を備える。 C字セル部 1 0 1は、 その中心部 1 0 3が切り出し試料部分となり、 中心部 1 0 3を周辺部と接 続する梁状部分 1 0 4が加工時の試料支持部分となる。  After positioning the cutout, proceed to step 29 and irradiate a focused ion beam whose beam shape is shaped to be suitable for high-speed processing to a predetermined size (for example, a few hundred square meters and a thickness of several hundred nanometers). Is cut out, and the cut sample is fixed to a sample manipulator. FIG. 6 is a view for explaining a step of cutting out and retrieving a sample from the wafer 23 using a focused ion beam. In cutting out the sample, for example, a diaphragm 16 for cell projection as shown in FIG. 7 is used in order to achieve both high-speed machining and finishing with high positioning accuracy. The aperture 16 for cell projection includes a C-shaped cell portion 101 having a C-shaped beam transmitting portion 102 and a spot beam portion 105. In the C-shaped cell portion 101, the central portion 103 is a cut-out sample portion, and the beam-shaped portion 104 connecting the central portion 103 to a peripheral portion is a sample support portion during processing.
図 6 ( a ) に示すように、 ビーム絞り 1 6の左側の C字セル部 1 0 1に集束ィォ ンビームを照射して C字形状のビームを形成し、 粗削りした後、 絞り 1 6上のビ一 ム照射位置を右側のスポットビ一ム部 1 0 5に切換えて細いスポットビームを形成 し、 図 6 ( b ) に示すように仕上げ加工を行う。 ウェハの加工部には、 ビーム絞り 1 6の C字セル部 1 0 1の中心部 1 0 3に対応して観測用試料部 1 0 6が形成され、 梁状部分 1 0 4に対応して支持部 1 0 7が形成される。 切出し時には、 高い加工速 度及び平滑な加工断面を得るために、 イオンエッチングをアシストするための反応 性ガスを反応性ガス導入部 4 5から導入し、 イオンビーム照射点近傍を反応性ガス 雰囲気にする。 例えば、 シリコン酸化膜の加工にはフッ素系のガス、 金属配線の加 ェには塩素系のガスを加工箇所近辺に導入する。 切片は、 観測目的に応じて、 断面 あるいは平面が選択される。 As shown in Fig. 6 (a), the C-shaped cell portion 101 on the left side of the beam stop 16 is irradiated with a focused ion beam to form a C-shaped beam. Switch the beam irradiation position to the spot beam section 105 on the right side to form a narrow spot beam Then, finish processing is performed as shown in Fig. 6 (b). In the processed part of the wafer, an observation sample part 106 is formed corresponding to the central part 103 of the C-shaped cell part 101 of the beam stop 16, and corresponding to the beam part 104. A support 107 is formed. At the time of cutting, a reactive gas for assisting ion etching is introduced from the reactive gas introduction part 45 in order to obtain a high processing speed and a smooth processing section, and the vicinity of the ion beam irradiation point is changed to a reactive gas atmosphere. I do. For example, a fluorine-based gas is introduced into the vicinity of the processing location for processing a silicon oxide film and a chlorine-based gas for processing metal wiring. A section or a plane is selected as the section according to the observation purpose.
図 6 ( c ) に示すように、 ウェハを傾斜して試料切片の下部を切断した後、 試料 を試料マニピュレータ 1 0 8に固定する。 試料の試料マニピュレータ 1 0 8への固 定は、 例えば、 タングステン化合物ガスの雰囲気中で、 試料上面にマニピュレータ 先端部を接触させ、 接触部にイオンビームを照射して、 タングステン膜 1 0 9を形 成する。 試料は、 図 6 ( d ) に示すようにこのタングステン膜 1 0 9に支持され、 試料マニピュレータ 1 0 8に固定される。 その後、 図 6 ( e ) に示すように、 支持 部 1 0 7を集束イオンビームにより切断して試料 1 1 0の切り出しが行われる。 試 料のマニピュレータへの固定は、 試料面にマニピュレータ先端部を接触させ、 マ二 ピユレ一タ駆動部 4 4を制御してマニピュレータに電圧を印加し、 試料との間に静 電気作用を利用した引力を発生させることで、 マニピュレータに静電吸着して固定 してもよい。  As shown in FIG. 6 (c), the sample is fixed to the sample manipulator 108 after cutting the lower portion of the sample piece by tilting the wafer. The sample is fixed to the sample manipulator 108 by, for example, bringing the tip of the manipulator into contact with the top surface of the sample in an atmosphere of a tungsten compound gas and irradiating the contact portion with an ion beam to form the tungsten film 109. To achieve. The sample is supported by the tungsten film 109 and fixed to the sample manipulator 108 as shown in FIG. 6 (d). After that, as shown in FIG. 6 (e), the support portion 107 is cut by the focused ion beam to cut out the sample 110. The sample was fixed to the manipulator by bringing the tip of the manipulator into contact with the sample surface, controlling the manipulator drive unit 44, applying a voltage to the manipulator, and utilizing the electrostatic action between the sample and the sample. By generating an attractive force, the manipulator may be electrostatically attracted and fixed.
図 5に戻って、 ステップ 3 0において、 試料マニピュレータ 1 0 8に固定された 試料 1 1 0は、 試料マニピュレータ及び/又は観測用試料ホルダの移動により、 試 料室 2 1内の所定位置に装填された観測用試料ホルダ上に移される。 図 8は、 観測 用試料ホルダ 6 6に固定された試料の例を示す概略図である。 図 8 ( a ) は試料を 装填した観測用試料ホルダの上面図、 図 8 ( b ) はその A— A' 断面図である。 図 示した観測用試料ホルダ 6 6は、 円筒状本体 1 2 1の一端に金属メッシュ 1 2 2に よって支持されたカーボン薄膜 1 2 3を備え、 金属メッシュ 1 2 2で定められた各 区画にアドレスが割り当てられている。 切り出された試料 1 3 1〜 1 3 4は、 観測 用試料ホルダ上の試料作製用レシピ 3 7で指定あるいは試料作製用レシピに基づい てメモリから読み出された予め登録されたァドレス位置に装填される。 一方、 ステップ 3 1において、 F I B装置の制御部 3 1では、 この試料に係る品 名、 仕掛かり工程名、 所属するダイのアドレス番号、 観測用試料ホルダ上のアドレ ス位置、 検査内容などの情報を使用して、 ホルダ番号をキ一とした観測用レシピ 8 8が作成される。 観測用レシピ 8 8は、 観測用試料ホルダに搭載された試料の観測 手順 ·観測条件 ·観測結果出力条件を定めたものである。 なお、 ステップ 3 1にお ける観測用レシピ 8 8の作成前に、 F I B装置の試料室 2 1に搬入した観察用試料 ホルダのホルダ番号に対する T E M/ S T E M用レシピが F I B装置のメモリ 3 4 に既に存在していれば、 それは以前観測した試料に関するレシピであるので、 その レシビデ一タを消去して観測用レシピの内容を初期化しておく。 Returning to FIG. 5, in step 30, the sample 110 fixed to the sample manipulator 108 is loaded into a predetermined position in the sample chamber 21 by moving the sample manipulator and / or the sample holder for observation. The sample is transferred onto the observation sample holder. FIG. 8 is a schematic diagram showing an example of a sample fixed to the observation sample holder 66. Fig. 8 (a) is a top view of the observation sample holder loaded with the sample, and Fig. 8 (b) is a cross-sectional view along AA '. The sample holder for observation 66 shown in the figure has a carbon thin film 123 supported on one end of a cylindrical main body 121 by a metal mesh 122, and is provided in each section defined by the metal mesh 122. An address has been assigned. The cut-out samples 13 1 to 13 4 are specified in the sample preparation recipe 37 on the observation sample holder or based on the sample preparation recipe. Is loaded into a pre-registered address position read from the memory. On the other hand, in step 31, the control unit 31 of the FIB apparatus stores information such as the name of the sample, the name of the in-process process, the address number of the die to which the sample belongs, the address position on the observation sample holder, and the inspection contents. Is used to create an observation recipe 88 with the same holder number. Observation recipe 8 8 defines the observation procedure, observation conditions, and observation result output conditions for the sample mounted on the observation sample holder. Prior to the preparation of the observation recipe 88 in step 31, the TEM / STEM recipe for the holder number of the observation sample holder carried into the sample chamber 21 of the FIB device has already been stored in the memory 34 of the FIB device. If it exists, it is a recipe for a previously observed sample, so delete the receiver and initialize the contents of the observation recipe.
ステップ 3 2では、 X Yステージ上のウェハに関して、 試料作製用レシピ 3 7で 指定された全ての箇所の試料切リ出しと観測用試料ホルダへの搭載が終了したかど うかを判定し、 指定された全ての試料の切り出しが終了するまでステップ 2 8から ステップ 3 1の処理を反復する。  In step 32, for the wafer on the XY stage, it is determined whether sample cutting and removal at all locations specified in the sample preparation recipe 37 and mounting on the observation sample holder have been completed. Repeat steps 28 to 31 until all samples have been cut out.
ステップ 3 3において、 試料の搭載を終了した観測用試料ホルダ、 及び試料切出 しを完了したウェハは、 夫々のキャリアに戻される。 一方、 ステップ 3 1で作成さ れた観測用レシピ 8 8は、 検査に用いる T E MZ S T E Mに入力されるため、 ステ ップ 3 4において、 通信回線を経由してあるいは記憶媒体を用いて出力される。 次 のステップ 3 5の判定でウェハキヤリァ内に未処理の被検査ウェハが残っている場 合は、 それらのウェハに対してステップ 2 1からの処理を反復する。  In step 33, the observation sample holder for which the mounting of the sample has been completed and the wafer for which the sample has been cut out are returned to the respective carriers. On the other hand, since the observation recipe 88 created in step 31 is input to the TE MZ STEM used for inspection, it is output in step 34 via a communication line or using a storage medium. You. If unprocessed wafers to be inspected remain in the wafer carrier as determined in the next step 35, the processing from step 21 is repeated for those wafers.
図 9に、観測用レシピ 8 8の記載項目例を示す。例示した観測用レシピ 8 8には、 試料ホルダに関する情報として試料ホルダ番号、 試料を切り出したウェハに闋する 情報として、 品名、 ロット名、 ウェハ番号、 ダイのアドレス等の情報が記載されて いる。 また、 検査情報として、 ホルダ内試料アドレス、 検査項目、 検査手順、 加速 電圧、 ビーム電流、 検出信号、 検出結果出力等の情報が記載されている。 図示した 例では、 例えばホルダ内試料ァドレス A— 1に装着されている試料は、 S T E Mに より加速電圧 1 0 0 k V、 ビーム電流 1 n Aにてタイプ 3の検査手順にてポリシリ コン膜厚を検査すベきこと、 検査結果はタイプ 2のウェハマップとして出力すべき ことが指示されている。 図 9において、 検査手順や検査出力などのタイプは、 デー タが予め登録されているものを呼び出して使用することを意味する。 Figure 9 shows an example of the items described in the observation recipe 88. In the exemplified observation recipe 88, information such as a product holder number, a lot name, a wafer number, a die address, and the like are described as information relating to the sample holder, and information relating to the wafer from which the sample has been cut out, as information relating to the sample holder. In addition, information such as specimen address in the holder, inspection item, inspection procedure, acceleration voltage, beam current, detection signal, and detection result output are described as the inspection information. In the example shown in the figure, for example, the sample mounted on the sample address A-1 in the holder has a polysilicon film thickness of 100 kV by STEM and a beam current of 1 nA by the type 3 inspection procedure. Inspection results should be output as a type 2 wafer map It has been instructed. In FIG. 9, types such as an inspection procedure and an inspection output mean that data whose data is registered in advance is used.
これらの情報のうち、 試料ホルダ番号は図 4のステップ 1 4で取得されたもので あり、 試料を切り出したウェハに関する品名、 ロット名、 ウェハ番号、 ダイのアド レス等の情報は試料作製用レシピ 3 7に記載されていた情報である。 検査情報のう ちホルダ内試料アドレス、 検査項目、 検査手順、 加速電圧、 ビーム電流、 検出信号、 検出結果出力等の情報は、 試料作製用レシピ 3 7に記載されていた情報あるいはそ れをもとにしてメモリから読み出された予め登録されていた情報である。 このよう にして F I B装置の制御部 3 1は、 試料作製用レシピに従って指定されたウェハの 指定場所から試料を切り出して観察用試料ホルダに装填すると共に、 T E Mノ S T E M側でその試料を特定するために必要な情報すなわちその試料を装填した観察用 試料ホルダの情報及びホルダ上のァドレス情報と、 試料作製用レシピから受け継い だ当該試料の検査方法に関する情報とを結合して観測用レシピを作成し、 L A N経 由で T E Mノ S T E M及びデータベースへ出力する。  Of these pieces of information, the sample holder number was obtained in step 14 in Fig. 4.Information such as the product name, lot name, wafer number, and die address related to the wafer from which the sample was cut was used as the sample preparation recipe. It is the information described in 37. Among the inspection information, the information such as the sample address in the holder, inspection items, inspection procedure, acceleration voltage, beam current, detection signal, and detection result output are the information described in the sample preparation recipe 37 or the same. Is information registered in advance and read from the memory. In this way, the control unit 31 of the FIB apparatus cuts out the sample from the specified location of the wafer specified according to the sample preparation recipe, loads the sample into the observation sample holder, and specifies the sample on the TEM / STEM side. The information necessary for the observation, that is, the information on the sample holder for observation loaded with the sample and the address information on the holder, and the information on the inspection method of the sample inherited from the recipe for sample preparation are combined to create an observation recipe, Output to TEM / STEM and database via LAN.
図 1 0及び図 1 1は、 F I B装置における試料の切り出し方の例を説明する図で ある。 ウェハから切り出す試料は、 ホ一ルパターンなどに対しては、 高精度な測定 をするために、 パターンの中央で断面を作製することが必要である。 集束イオンビ ームの照射位置精度が多少悪くても、 いずれかのパターンの中央近くで断面が作製 されるようにするため、 図 1 0に示すように、 観測パターンが加工断面に垂直な方 向に少しずつずらして配置された複数のパターン群から構成される断面観測用試料 を用いるとよい。 図 1 0 ( a ) は試料切り出し部分 1 4 0を含むウェハ上面図、 図 1 0 ( b ) は断面図である。 この試料において、 断面に現れる横方向長さ最大の検 査パターン 1 4 2がほぼ中央部で断面が作製されている最適の検査パターンと判定 される  FIGS. 10 and 11 are diagrams illustrating an example of how to cut out a sample in the FIB apparatus. For a sample cut from a wafer, it is necessary to make a cross section at the center of the pattern in order to perform high-precision measurements on hole patterns and the like. Even if the irradiation position accuracy of the focused ion beam is somewhat poor, as shown in Fig. 10, the observation pattern is oriented in a direction perpendicular to the processing cross section, so that a cross section is formed near the center of either pattern. It is preferable to use a cross-sectional observation sample composed of a plurality of pattern groups that are slightly shifted from each other. FIG. 10 (a) is a top view of a wafer including a sample cut-out portion 140, and FIG. 10 (b) is a cross-sectional view. In this sample, the test pattern 144 with the maximum lateral length appearing in the cross section is judged to be the optimum test pattern in which the cross section is made at almost the center.
また、 T E M/ S T E Mでの膜厚測定をより高精度なものとするためには、 電子 ビームの入射方向を観測膜面と平行にすることが必要である。 電子ビームの入射方 向と観測膜面との平行性を確認あるいは補正できるようにするために、 図 1 1に示 すように、 試料 1 5 0の観測断面 1 5 1に段差 1 5 2を形成するとよい。 131 図 1 1に示す試料 1 50を TEM/ ST EMで観測したとき、 TEMZSTEM の電子ビームの入射方向が厚さを測定する膜 1 53の観測膜面に平行でない場合に は、 図 1 2 (b) に示すように膜が段差部 152と非段差部とで不連続になった透 過像が得られる。 この場合には、試料像上で測定した膜厚 T 2は誤差を含んでいる。 —方、 TEMZ STEMの電子ビームの入射方向が観測膜面に平行な場合には、 図 12 (a) に示すように膜 1 51の上面 1 54及び下面 1 55がそれぞれ段差部 1 52と非段差部とで連続した透過像が得られる。 この場合の測定値 T 1は正確に膜 153の膜厚を表す。 従って、 TEMZS TEMの XYステージを傾斜させること によりあるいは電子ビーム 62の入射方向を調整することにより、 図 12 (a) に 示すような TEM像あるいは STEM像カ形成されるようにして膜厚測定を行えば、 電子ビームの入射方向が観測膜面と平行なことが保証されるため、 正確な膜厚測定 値を得ることができる。 In order to measure the film thickness with TEM / STEM with higher accuracy, it is necessary to make the incident direction of the electron beam parallel to the observation film surface. In order to confirm or correct the parallelism between the electron beam incident direction and the observation film surface, as shown in Fig. 11, a step 15 2 was added to the observation cross section 15 1 of the sample 150. It is good to form. 131 When observing the sample 150 shown in Fig. 11 by TEM / STEM, if the incident direction of the electron beam of TEMZSTEM is not parallel to the observation film surface of the film 153 for measuring the thickness, As shown in b), a transmission image in which the film is discontinuous at the step 152 and the non-step is obtained. In this case, the film thickness T2 measured on the sample image includes an error. On the other hand, when the incident direction of the electron beam of the TEMZ STEM is parallel to the observation film surface, as shown in FIG. A continuous transmission image is obtained at the stepped portion. The measured value T1 in this case accurately represents the thickness of the film 153. Therefore, by tilting the XY stage of the TEMZS TEM or adjusting the incident direction of the electron beam 62, the film thickness measurement is performed so that a TEM image or STEM image as shown in FIG. 12 (a) is formed. If this is done, it is guaranteed that the incident direction of the electron beam is parallel to the observation film surface, so that accurate film thickness measurement values can be obtained.
次に、 TEMあるいは STEMでの検査と検査結果の出力方法について説明する。 図 1 3は、 TEMあるいは STEMにおける処理の流れを示すフローチャートであ る。  Next, the inspection method using TEM or STEM and the output method of the inspection result will be described. FIG. 13 is a flowchart showing the flow of processing in TEM or STEM.
ステップ 41において、 検査すべき観測用試料ホルダが載せられた試料ホルダキ ャリアを自動搬送または操作者によって、 F I B装置から TEM STEMに運び、 試料ホルダキャリアの口一ドノアン口一ド部 86に装着する。 ステップ 42におい て、 ロード アンロード部 86に装着されたホルダ番号読取り器により、 観測用試 料ホルダに記されたホルダ番号を読み取る。 ステップ 43では、 読み取られたホル ダ番号をキ一にして、 予め F I B装置で作成され TEM/STEMに転送 ·上書き 記憶されていた当該観測用試料ホルダに対応する観測用レシピ 88を読み出す。 以 降の操作は、 この観測用レシピ 88に従って、 自動的あるいは半自動的に行われる。 ステツプ 44では、 測定すべき観測用試料ホルダをホルダキヤリァから取り出し た後、 真空に保持された試料室内にある XYステージ 65上の所定位置に、 所定の 向きで装填する。 続くステップ 45において、 XYステージ 65上に装填された観 測用試料ホルダ 66は、 観測用レシピ 88によって指定された最初の試料が位置す るァドレスにステージ移動され、 観測箇所が位置決めされる。 観測箇所の位置決めに際しては、 観測パターンが図 1 0に示すような複数のバタIn step 41, the sample holder carrier on which the observation sample holder to be inspected is placed is transported from the FIB device to the TEM STEM by an automatic carrier or by an operator, and is mounted on the mouth-to-door portion 86 of the sample holder carrier. In step 42, the holder number written on the observation sample holder is read by the holder number reader attached to the load / unload section 86. At step 43, the observation recipe 88 corresponding to the observation sample holder, which has been read by the FIB apparatus and transferred to the TEM / STEM and overwritten, is read out using the read folder number as a key. Subsequent operations are performed automatically or semi-automatically according to the observation recipe 88. In step 44, after taking out the observation sample holder to be measured from the holder carrier, the observation sample holder is loaded in a predetermined direction on the XY stage 65 in the sample chamber held in a vacuum. In the following step 45, the observation sample holder 66 loaded on the XY stage 65 is stage-moved to the address where the first sample specified by the observation recipe 88 is located, and the observation point is positioned. When positioning the observation point, the observation pattern should be
―ン群から構成されている場合は、 例えば横方向の線長が最大となる検査パターン の断面を選ぶことにより、 最もパターンの中央付近で断面が形成された検査パター ンを観測箇所として選ぶ。 また、 試料の加工断面に図 1 1に示すような段差が形成 されている場合は、 電子ビーム 6 2の入射方向あるいは X Yステージ 6 5の傾きを 調整し、 図 1 2 ( a ) に示すように非段差部と段差部のなす膜上面及び膜下面の線 がー直線として観察されるようにすることにより、 電子ビームと観測膜面とを平行 にすることができる。 なお、 電子ビーム 6 2の入射方向あるいは XYステージ 6 5 の傾きを調整する代りに、 電子ビーム 6 2と観測膜面とのなす角度を求め、 得られ た角度を用いて、 膜厚の計測データを補正してもよい。 In the case of a pattern group, for example, by selecting the cross section of the test pattern with the largest horizontal line length, the test pattern with the cross section formed near the center of the pattern is selected as the observation point. If a step as shown in Fig. 11 is formed in the processed cross section of the sample, adjust the incident direction of the electron beam 62 or the tilt of the XY stage 65 to adjust the inclination as shown in Fig. 12 (a). By making the lines on the film upper surface and film lower surface formed by the non-step portion and the step portion to be observed as straight lines, the electron beam and the observation film surface can be made parallel. Instead of adjusting the incident direction of the electron beam 62 or the tilt of the XY stage 65, the angle between the electron beam 62 and the surface of the observation film is obtained, and the obtained angle is used to measure the film thickness. May be corrected.
次に、 ステップ 4 6に進み、 観測用レシピ 8 8の指示に従って、 試料に電子ビ一 ム 6 2を照射し、 透過電子像形成や特性 X線分析を用いた元素分析、 電子エネルギ 一分光器 7 6を用いた透過電子のエネルギー分析などを行う。 透過電子像は、 通常 の透過電子顕微鏡による投影像であつてもよいし、 走査形透過電子顕微鏡による走 査像であってもよい。 走査像の方が、 焦点位置の僅かな違いによる回折コントラス トの変化が無いなど、 投影像に比べて像解釈が容易であり、 扱い易い。  Next, proceed to step 46, irradiate the sample with an electron beam 62 according to the instructions of the observation recipe 88, elemental analysis using transmission electron image formation and characteristic X-ray analysis, and electron energy monochromator. Perform energy analysis of transmitted electrons using 7.6. The transmission electron image may be a projection image obtained by a normal transmission electron microscope or a scanning image obtained by a scanning transmission electron microscope. Scanned images are easier to interpret and handle than projected images, as there is no change in diffraction contrast due to slight differences in focal position.
そして、 得られた透過電子像及び Z又は元素分析情報などを解析し、 所定部の薄 膜の膜厚、 図 1 4 ( a ) のホールパターンの断面例に示すようなパターンの形状寸 法 (上面部の直径 d l、 底部の直径 d 2、 高さ h、 傾斜角 、 図 1 4 ( b ) の断 面例に示すようなパターン 1 6 1とパターン 1 6 2との重ね合わせ d 3、 図 1 4 Then, the obtained transmission electron image and Z or elemental analysis information are analyzed to determine the thickness of the thin film at a predetermined portion and the shape and dimension of the pattern as shown in the cross-sectional example of the hole pattern in FIG. 14 (a). Top diameter dl, bottom diameter d2, height h, inclination angle, superposition d3 of pattern 161 and pattern 162 as shown in the cross-section example in Fig. 14 (b), Fig. 14
( c ) の断面例に示すようなホール 1 6 3の導通、 非導通、 図 1 4 ( d ) の断面例 に示すような堆積膜の結晶の粒度 (1 6 4は結晶粒、 1 6 5は粒界)、 図 1 4 ( e ) の断面例に示すようなドーパント層 1 6 6におけるド一パントの濃度プロファイルConduction and non-conduction of the hole 163 as shown in the cross-sectional example of (c), and grain size of the deposited film as shown in the cross-sectional example of Fig. 14 (d) (164 is the crystal grain, 165 Is the grain boundary), and the dopant concentration profile in the dopant layer 166 as shown in the cross-sectional example of Fig. 14 (e).
1 6 7、 図 1 4 ( f ) の堆積膜断面例に示すような予め記憶した参照像と比較して の欠陥 1 6 8の検出 (試料像と参照像とを比較して差異部を検出し、 その差異部を 欠陥 1 6 8として出力する) など、 所定の検査データを得る。 観測データの解析は 実時間で行ってもよいし、 各試料についての透過画像あるいはデータだけを取得 · 蓄積して、 解析はオフラインで行ってもよい。 元素分析や透過電子エネルギー分析から得られる元素情報は、 単に組成状態の判 定だけではなく、 薄膜の膜厚、 パターンの形状寸法、 ホールの導通 '非導通、 結晶 粒度、 ドーパント濃度プロファイルなどを決定するために欠かせない。 例えば、 S i 0 2/ S i 3 N 4積層膜の膜厚を計測する場合、 透過電子像に現れる両者のコント ラスト差が小さいため、 透過電子像の画像解析からだけでは二つの膜の境界すなわ ち膜厚を正確に決めることが難しい。 しかし、 特性 X線、 ォージェ電子あるいは特 性エネルギー損失電子などを検出 ·比較することにより、 両者の境界をより精密に 求めることが可能になる。 16 7 、 Detection of defects 16 8 in comparison with the pre-stored reference image as shown in the cross-section example of the deposited film in Fig. 14 (f) (Detection of difference by comparing the sample image with the reference image) And outputs the difference as a defect 168). The analysis of observation data may be performed in real time, or only transmission images or data of each sample may be acquired and stored, and the analysis may be performed offline. Elemental information obtained from elemental analysis and transmitted electron energy analysis not only determines compositional state, but also determines thin film thickness, pattern geometry, hole conduction / non-conduction, crystal grain size, dopant concentration profile, etc. Indispensable to do. For example, when measuring the thickness of the S i 0 2 / S i 3 N 4 multilayer film, contrast difference between them appearing in transmission electron image is small, the boundary of the two membranes only from image analysis of transmission electron image That is, it is difficult to determine the film thickness accurately. However, by detecting and comparing characteristic X-rays, Auger electrons, or characteristic energy-loss electrons, the boundary between the two can be determined more precisely.
透過電子像や元素濃度プロファイルを予め記憶されていた当該検査箇所の参照像 と 匕較し、 それらの差異部として検出される欠陥は、膜厚や形状 ·寸法の異常の他、 ホール埋め込み部やプラグのピンホール、 堆積膜のカバレジ不良、 積層欠陥のよう な結晶欠陥などである。 検出された欠陥は所定の自動欠陥分類アルゴリズムに従つ て、 分類される。  The transmission electron image and the element concentration profile are compared with the reference image of the inspection location stored in advance, and defects detected as the differences between the transmission electron image and the element concentration profile are abnormal in the film thickness, shape and dimensions, as well as in the hole filling portion and These include plug pinholes, poor coverage of deposited films, and crystal defects such as stacking faults. The detected defects are classified according to a predetermined automatic defect classification algorithm.
図 1 3に戻って、 観測用試料ホルダ上の全ての試料の検査が、 ステップ 4 5から ステップ 4 6の処理を繰り返し行うことによって遂行される。 ステップ 4 7におい て、 試料ホルダ上の全ての試料の検査が終了したと判定された場合は、 ステップ 4 8に進み、 当該観測用試料ホルダを試料ホルダキヤリアにアンロードする。続いて、 ステップ 4 9に進み、 ステップ 4 6で得られた測定データをもとに検査結果を作成 し、 出力する。 ステップ 5 0において、 試料ホルダキャリア中に未検査の観測用試 料ホルダがあると判定されれば、 それに対してステップ 4 2からステップ 4 9の処 理が繰返し行われる。  Returning to FIG. 13, the inspection of all the samples on the observation sample holder is performed by repeating the processing from Step 45 to Step 46. If it is determined in step 47 that the inspection of all the samples on the sample holder has been completed, the process proceeds to step 48 to unload the observation sample holder into the sample holder carrier. Then, the process proceeds to step 49, where an inspection result is created and output based on the measurement data obtained in step 46. If it is determined in step 50 that there is an untested observation sample holder in the sample holder carrier, the processing of steps 42 to 49 is repeated for that.
ステップ 4 9における検査結果の出力の形態は、 試料像や観測データそのままで もよいが、 一般には、 図 1 5に例を示すように検査の合否を記したウェハマップと したり、 検査不良率、 検査不良数あるいは欠陥分類結果などの形で出力する。 ゥェ ハマップ上で検査ダイをクリックすればそのダイに対応する試料像や観測の生デー タを併せて表示するように構成することもできる。 なお、 ウェハマップやチヤ一ト などの図表だけではなく、 所定の報告書形式に加工して出力することもできる。 ま た、 通信回線や記憶媒体を経由して上位の検査データ管理システムに出力するのが 一般的であるが、 印刷物として出力することもできる。 The output form of the inspection result in step 49 may be the sample image or the observation data as it is, but in general, a wafer map describing the pass or fail of the inspection as shown in Fig. 15 or an inspection failure rate It is output in the form of the number of inspection failures or defect classification results. By clicking on the inspection die on the wafer map, the sample image and raw observation data corresponding to the die can be displayed together. Not only charts such as wafer maps and charts but also processed reports can be output. In addition, output to a higher-level inspection data management system via a communication line or storage medium Although it is common, it can also be output as printed matter.
さらに、 これらインライン測定データを統合的に扱うことにより、 より高度なプ ロセス管理及びトランジスタ特性解析のためのデータが得られる。 例えば、 ゲート 長と同時に、 ゲート絶縁膜厚及びソース/ドレイン領域のドーパント濃度プロファ ィルをインライン測定することにより、 閾値電圧などトランジスタの電気特性を実 時間で正確に予測するためのデータを提供できる。 これらのデータは、 上位の生産 管理システムに出力され、 デバイスの性能 信頼性及び歩留を精密に管理するため に用いられる。  Furthermore, by integrating these in-line measurement data, data for more advanced process management and transistor characteristic analysis can be obtained. For example, in-line measurement of gate insulating film thickness and dopant concentration profile of source / drain regions at the same time as gate length can provide data for real-time accurate prediction of transistor electrical characteristics such as threshold voltage. . These data are output to a higher-level production management system, and are used to precisely control device performance reliability and yield.
検査を終えた試料ホルダキャリアは、 T E Mあるいは S T E Mと搬送機で結ばれ た試料保管庫に送られ、 検査済みの試料が観測用試料ホルダに載せられたまま試料 保管庫内に格納される。 これらの試料は、 ウェハ番号、 品名 '仕掛かり工程名、 ホ ルダ番号などをキ一として在庫管理されており、 後日に歩留あるいは信頼度上の問 題が発生した場合などに、 取出されて再調査される。 なお、 試料保管庫の配置は、 F I B装置と TEMZS TEMとの処理時間の整合性を考慮し、 図 1 6に示すよう にバッファを兼ねて、 F I B装置と TEM/ STEMの間に配置してもよい。  After the inspection, the sample holder carrier is sent to the sample storage connected to the TEM or STEM by a transporter, and the inspected sample is stored in the sample storage while being placed on the observation sample holder. These samples are kept in stock using the wafer number, product name, process in process, and holder number as keys, and can be removed at a later date if a yield or reliability problem occurs. Will be reviewed again. In addition, considering the consistency of the processing time between the FIB device and the TEMZS TEM, the sample storage may be placed between the FIB device and the TEM / STEM as a buffer, as shown in Fig. 16. Good.
なお、 TEMあるいは STEMの倍率校正は、 結晶格子像を観測することによつ て行われる。 この結果、 非常に正確な寸法 '形状の計測データが得られる。 ウェハ キヤリァ及び試料ホルダキヤリアともに、 その内部は清浄な雰囲気に保持されてい る。 特に、 試料を組成分析するような場合には、 使用される試料ホルダキャリアは 試料が分子汚染されないように配慮されている。  The calibration of TEM or STEM magnification is performed by observing a crystal lattice image. This results in very accurate dimensional and shape measurement data. The inside of both the wafer carrier and the sample holder carrier is kept in a clean atmosphere. In particular, when analyzing the composition of a sample, the sample holder carrier used is designed so that the sample is not contaminated.
本実施例では、 切出し個所の位置決めを行うために S IM像を用いたが、 高分解 能な光学顕微鏡あるいは走査電子顕微鏡 (SEM) を集束イオンビーム装置に内蔵 させ、 光学顕微鏡像あるいは S EM像を用いて、 位置決めすることも可能である。 S I M像の代わリに光学顕微鏡像や SEM像を用いて位置決めすることにより、 位 置決めに伴なうウェハへの損傷をより軽減することができる。  In this example, the SIM image was used to position the cutout. However, a high-resolution optical microscope or scanning electron microscope (SEM) was built in the focused ion beam device, and the optical microscope image or SEM image was used. It is also possible to perform positioning using. Positioning using an optical microscope image or SEM image instead of the SIM image can further reduce damage to the wafer due to the positioning.
また、 本実施例では、 観測用試料ホルダに番号を付し、 ホルダ番号を用いて TE M/ S T EMでの検査を制御するようにしているが、ホルダ番号を用いる代わリに、 試料作製に併せて集束イオンビームで試料個々に試料番号を刻印し、 その試料番号 を用いて観測用レシピ 88を作成し、 検査作業を制御するようにしてもよい。 本実施例では、 一枚のウェハから切出した複数の試料が一つの観測用試料ホルダ 上に載置される場合を示した力^ 一枚のウェハから切出した複数の試料が複数の観 測用試料ホルダに跨って載置されてもよいし、 一つの観測用試料ホルダに複数のゥ ェハから切出された試料が纏めて載置されてもよい。 また、 検査内容については、 一つの試料に対して複数種類の検査を行うこと、 あるいは観測用試料ホルダ内の試 料に対して個々に検査内容を変えることも可能である。 Further, in this embodiment, the observation sample holder is numbered, and the inspection by TEM / STEM is controlled using the holder number. At the same time, the sample number is stamped on each sample with the focused ion beam, and the sample number is The observation recipe 88 may be created by using, and the inspection work may be controlled. In this embodiment, a force is shown in which a plurality of samples cut out from one wafer are placed on one observation sample holder. ^ A plurality of samples cut out from one wafer are used for a plurality of observations. The sample may be placed over the sample holder, or samples cut out from a plurality of wafers may be collectively placed on one observation sample holder. Regarding the inspection content, it is also possible to perform multiple types of inspections on one sample, or to change the inspection content individually for the samples in the observation sample holder.
本実施例では、 F I B装置における試料切出し個所の指定が予め品名 ·仕掛かり 工程名毎に決まっている場合を示したが、 レシピ内試料切出し箇所の指定を、 欠陥 検査装置の欠陥位置座標データや作業者のウェハマップ上での位置座標指定のよう に、 ウェハ毎に異なって上書き記入することもできる。 品名 ·仕掛かり工程名毎に 切出し個所を決めておくことに加えて、 ウェハ毎に欠陥位置座標データを上書き記 入できるようにしておくと、 欠陥検査後のレビュ一検査などに用いることが可能に なる。  In the present embodiment, the case where the specification of the sample cutout location in the FIB apparatus is determined in advance for each product name, in-process process name, but the specification of the sample cutout location in the recipe is determined by the defect position coordinate data of the defect inspection apparatus or the like. It is also possible to overwrite differently for each wafer, such as specifying the position coordinates on the wafer map of the operator. In addition to determining the cutout location for each product name and in-process process name, if defect position coordinate data can be overwritten for each wafer, it can be used for review inspection after defect inspection etc. become.
本実施例では、 試料の試料マニピュレータへの固定に、 タングステンの支持膜を 用いたが、 固定用堆積膜はこれに限られない。  In the present embodiment, a tungsten support film was used for fixing the sample to the sample manipulator, but the deposition film for fixing is not limited to this.
本実施例では、 F I B装置及び TEMZ STEMが共にスタンドアロンで構成さ れた場合を示したが、 F I B装置と TEMZS TEMとから成る一台の装置として 構成することも可能である。 また、 一台の F I B装置に複数台の TEMZSTEM を接続することも可能である。  In the present embodiment, the case where the FIB device and the TEMZ STEM are both configured as a stand-alone device has been described. However, the FIB device and the TEMZSTEM can be configured as one device including the FIB device and the TEMZS TEM. It is also possible to connect multiple TEMZSTEMs to one FIB device.
なお、 観測パターンが加工断面に垂直な方向に少しづつずらして配置された複数 のパターン群から構成される断面観測用試料や、 観測ビームの入射方向と観測膜面 との平行性を確認 ·補正できるように、 段差を加工した断面試料は、 TEM/ST EMに限られず、 S EMや光学顕微鏡などの各種観測装置にも使用できる。  Confirmation and correction of the cross-section observation sample composed of multiple pattern groups in which the observation pattern is slightly shifted in the direction perpendicular to the processing cross section, and the parallelism between the incident direction of the observation beam and the observation film surface In order to be able to do this, the cross-section samples processed with steps can be used not only for TEM / STEM but also for various observation devices such as SEM and optical microscope.
本実施例では、 半導体素子製造を例に取上げたが、 本発明は、 撮像素子や表示素 子などの類似素子の製造に適用することも可能である。 産業上の利用可能性 'Τ EMあるいは ST EMによる試料観測, を 'F I B装置による試料作製, と組 み合せ、 (1) F I B装置では、 予め登録された試料作製用レシピに従って、 ウェハ 上の指定された複数箇所を対象とし、 試料切出し個所を自動で位置決めし、 試料を 自動で切出し、 切出した試料を T EM/ S T EMで用いる観測用の試料ホルダに自 動で搭載するとともに、 T E M/ S T E Mで該試料を観測するためのレシピを作成 する、 (2) TEMZSTEMでは、 F I B装置で作成され TEM/S TEMに入力 された観測用レシピに従って、 観測用試料ホルダに搭載された複数の試料を対象と し、 観測領域を自動的に位置合わせし、 所定の試料画像を取得することにより、 数 百 nm程度の局所領域を対象として、 高精度なィンライン膜厚測定を行うことが可 倉 となる。 In this embodiment, the manufacture of a semiconductor device is described as an example, but the present invention can be applied to the manufacture of similar devices such as an image sensor and a display device. Industrial applicability 'Τ EM or ST EM sample observation, combined with' FIB device sample preparation, '(1) FIB device targets specified multiple locations on wafer according to pre-registered sample preparation recipe Automatically position the sample extraction point, automatically extract the sample, automatically mount the extracted sample on the observation sample holder used in TEM / STEM, and observe the sample using TEM / STEM. (2) TEMZSTEM targets multiple samples mounted on the observation sample holder according to the observation recipe created by the FIB device and input to the TEM / S TEM. By automatically aligning and acquiring a predetermined sample image, it is possible to perform highly accurate in-line film thickness measurement on a local region of about several hundred nm.
また、 TEM/STEMを用いれば、 高解像な試料画像形成に併せて、 極微小領 域の組成分析、構造解析、そして電子状態分析を行うことができる。これらの分析 - 解析情報を組合わせて活用できることから、 従来困難とされていたインラインでの 積層膜各層の膜厚の測定、 パターンの三次元形状の測定、 パターン重ね合わせ精度 の測定、 配線接続部の導通状態の測定、 膜形成物質の粒度の測定、 膜内微量不純物 の組成分布及び所定の参照像と比較しての欠陥測定などを、 正確かつ精密に行える ようになる。 そして、 これらインライン測定データを統合的に扱うことにより、 よ り高度なプロセス管理及びトランジスタ特性解析が実現される。 例えば、 ゲート長 と同時に、 ゲート絶縁膜厚及びソース ドレイン領域のドーパント濃度プロフアイ ルをインライン測定すれば、 閾値電圧などトランジスタの電気特性を実時間で正確 に予測することが可能となる。 すなわち、 従来はおよびもっかなかったような、 デ バイスの性能 信頼性及び歩留を精密に管理できるデータがィンライン検査で取得 可能となる。  Using TEM / STEM, it is possible to perform composition analysis, structural analysis, and electronic state analysis of ultra-small regions in addition to high-resolution sample image formation. The combination of these analysis and analysis information makes it possible to measure the thickness of each layer in the in-line film, measure the three-dimensional shape of the pattern, measure the pattern overlay accuracy, and measure the wiring connection, which has been considered difficult in the past. This makes it possible to accurately and precisely measure the conduction state of the film, measure the particle size of the film-forming substance, measure the composition distribution of trace impurities in the film, and measure the defects in comparison with a predetermined reference image. By integrating these inline measurement data, more advanced process management and transistor characteristic analysis can be realized. For example, in-line measurement of gate insulating film thickness and dopant concentration profile of source / drain regions, as well as gate length, enables accurate prediction of transistor electrical characteristics such as threshold voltage in real time. In other words, data that can accurately manage the performance reliability and yield of devices, which has never been possible before, can be acquired by in-line inspection.
また、 検査済みの試料を保管しておくことができるため、 後日に歩留あるいは信 頼度上の問題が発生した場合など、 保管庫から取出して現物を再調査することがで きる。 このことは、 現物無しでの困難を強いられている不良解析を容易なものとす る。  In addition, since inspected samples can be stored, they can be removed from storage and re-examined in the event of a yield or reliability problem at a later date. This simplifies failure analysis, which is difficult without physical components.
さらに、 結晶格子像を観測することができることにより、 装置の倍率校正が極め て正確に行えるようになり、 非常に正確な寸法 ·形状の計測データが得られる。 In addition, the ability to observe the crystal lattice image makes it extremely easy to calibrate the magnification of the device. And accurate measurement data of very accurate dimensions and shapes can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体装置の製造工程におけるウェハの検査方法において、 1. In a wafer inspection method in a semiconductor device manufacturing process,
集束ィォンビーム装置に検査対象のゥェハを装填する工程と、  Loading the focused wafer into the focused ion beam device;
予め読み込んだ試料作製用レシピに従って前記ウェハ上の試料切出し個所を自動 位置決めする工程と、  Automatically positioning a sample cutting location on the wafer according to a sample preparation recipe read in advance;
前記ウェハから集束イオンビームによって所定の試料を切り出す工程と、 切り出した試料を観測用試料ホルダに搭載する工程と、  Cutting a predetermined sample from the wafer by a focused ion beam, mounting the cut sample on an observation sample holder,
切り出した試料の前記観測用試料ホルダ上の搭載位置に関する情報と当該試料の 検査条件に関する情報とを関連付けて記載した観測用レシピを作成する工程と、 透過電子ビーム装置に前記観測用試料ホルダを装填する工程と、  Creating an observation recipe in which information relating to the mounting position of the cut sample on the observation sample holder and information relating to the inspection conditions of the sample are described; and loading the observation sample holder into a transmission electron beam apparatus. The process of
透過電子ビ一ム装置で前記観測用レシピを読み込む工程と、  Reading the observation recipe with a transmission electron beam apparatus,
読み込んだ観測用レシピに従って前記観測用試料ホルダ上の試料を自動位置決め する工程と、  Automatically positioning the sample on the observation sample holder according to the read observation recipe;
位置決めした試料から前記観測用レシピに従って所定の観測データを取得するェ 程とを含むことを特徴とするゥェハの検査方法。  Acquiring predetermined observation data from the positioned sample in accordance with the observation recipe.
2 . 請求項 1記載のウェハの検査方法において、 前記観測用レシピを作成する工程 は、 観測用試料ホルダに記された符号を読み取る工程と、 前記符号をキーとして当 該観測用試料ホルダに搭載された試料を観測するための透過電子ビーム装置用レシ ピを作成することを特徴とするウェハの検査方法。  2. The wafer inspection method according to claim 1, wherein the step of creating the observation recipe includes a step of reading a code written on the observation sample holder, and mounting the code on the observation sample holder using the code as a key. A method for inspecting a wafer, comprising preparing a recipe for a transmission electron beam apparatus for observing a sample that has been etched.
3 . 請求項 1又は 2記載のウェハの検査方法において、 前記観測データを取得する 工程では試料の画像データ、 組成分析データ、 構造解析データ、 電子状態分析デー タのうち少なくとも 1つのデータを取得することを特徴とするウェハの検査方法。 3. The wafer inspection method according to claim 1, wherein the step of acquiring the observation data acquires at least one of image data, composition analysis data, structure analysis data, and electronic state analysis data of the sample. A method of inspecting a wafer, comprising:
4 . ウェハを保持して移動可能な試料ステージと、 前記試料ステージを駆動するス テージ駆動部と、 集束イオンビームを形成する手段と、 前記集束イオンビームを前 記試料ステージに保持されたウェハ上で走査するための偏向器と、 集束イオンビー ム照射によって試料から発生した試料信号を検出する検出器と、 試料ハンドリング 用の試料マニピュレータと、 制御部とを含む集束イオンビーム装置において、 前記制御部は、 予め登録された試料作製用レシピに従って前記ステージ駆動部及 び/又は前記偏向器を制御してウェハ上の試料切出し個所を自動位置決めする機能 と、 前記集束イオンビームを用いて所定の試料を切出す制御を行う機能と、 前記試 料マニピュレータを制御して切出した試料を観測装置で用いる観測用試料ホルダに 搭載する機能と、 前記観測用試料ホルダ上の試料搭載位置と当該試料の前記試料作 製用レシピに記載されていた検査情報及び/又はレシピを基に制御部から読み出さ れ当該試料の検査情報とを関連付けて観測装置で使用する観測用レシピを作成する 機能とを有することを特徴とする集束イオンビーム装置。 4. A sample stage that can hold and move the wafer, a stage driving unit that drives the sample stage, a unit that forms a focused ion beam, and that the focused ion beam is placed on the wafer that is held on the sample stage. A focused ion beam device including: a deflector for scanning with a detector, a detector for detecting a sample signal generated from the sample by the focused ion beam irradiation, a sample manipulator for sample handling, and a controller. A controller configured to control the stage driver and / or the deflector in accordance with a pre-registered sample preparation recipe to automatically position a sample cutting position on a wafer; and a predetermined function using the focused ion beam. A function of controlling the sample to be cut out, a function of controlling the sample manipulator to mount the sample cut out on an observation sample holder used in an observation device, a sample mounting position on the observation sample holder, and the sample. And a function of creating an observation recipe read out from the control unit based on the inspection information and / or recipe described in the sample production recipe and used in the observation apparatus in association with the inspection information of the sample. A focused ion beam device characterized by the above-mentioned.
5 . 試料を搭載した観測用試料ホルダを保持して移動可能な試料ステージと、 前記 試料ステージを駆動するステージ駆動部と、 電子ビ ムを細く絞って試料に照射す る手段と、 前記電子ビームを偏向するための偏向器と、 試料を透過した電子線を検 出する透過電子検出器と、 制御部とを含む透過電子ビーム装置において、  5. A sample stage that can move while holding an observation sample holder on which a sample is mounted, a stage driving unit that drives the sample stage, a unit that squeezes an electron beam to irradiate the sample, and the electron beam. A transmission electron beam device including a deflector for deflecting the electron beam, a transmission electron detector for detecting an electron beam transmitted through the sample, and a control unit.
前記制御部は、 集束イオンビーム装置で作成された観測用レシピに従い、 前記集 束イオンビーム装置で作製された観測用試料ホルダ上の試料を対象として観測領域 を自動位置決めする制御を行う機能と、 所定の観測データを取得するための機能と を有することを特徴とする透過電子ビーム装置。  A function of performing control for automatically positioning an observation region for a sample on an observation sample holder manufactured by the focused ion beam device, according to an observation recipe created by the focused ion beam device; A transmission electron beam apparatus having a function of acquiring predetermined observation data.
6 . 試料ホルダを口一ド アンロードするための手段と、 試料観測用レシピを記憶 する記憶手段と、 試料ホルダを同定するための試料ホルダ同定手段と、 制御手段と を備え、  6. Means for unloading the sample holder, storage means for storing a sample observation recipe, sample holder identification means for identifying the sample holder, and control means,
前記制御手段は、 前記試料ホルダ同定手段による同定結果に基づき当該試料ホル ダに対応した観測用レシピを前記記憶手段から読み出し、 当該観測用レシピに基づ いて各部を制御して試料の観測を行うことを特徴とする透過電子ビーム装置。  The control unit reads out an observation recipe corresponding to the sample holder from the storage unit based on the identification result by the sample holder identification unit, and controls each unit based on the observation recipe to observe the sample. A transmission electron beam device characterized by the above-mentioned.
PCT/JP2001/002131 2001-03-16 2001-03-16 Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus WO2002075806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/002131 WO2002075806A1 (en) 2001-03-16 2001-03-16 Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus
JP2002574123A JPWO2002075806A1 (en) 2001-03-16 2001-03-16 Wafer inspection method, focused ion beam device, and transmitted electron beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002131 WO2002075806A1 (en) 2001-03-16 2001-03-16 Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus

Publications (1)

Publication Number Publication Date
WO2002075806A1 true WO2002075806A1 (en) 2002-09-26

Family

ID=11737136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002131 WO2002075806A1 (en) 2001-03-16 2001-03-16 Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus

Country Status (2)

Country Link
JP (1) JPWO2002075806A1 (en)
WO (1) WO2002075806A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179165A (en) * 2002-11-26 2004-06-24 Fei Co Ion beam for target repair
JP2004228076A (en) * 2003-01-17 2004-08-12 Fei Co Method of sample manufacture and transmissive irradiation as well as particle optical system
JP2005038853A (en) * 2003-07-14 2005-02-10 Fei Co Double beam apparatus
JP2006313852A (en) * 2005-05-09 2006-11-16 Nec Electronics Corp Semiconductor device and method for evaluating evaluation pattern
US7166141B2 (en) 2003-04-05 2007-01-23 Euan Skinner Macleod Vacuum cleaner
WO2008010777A1 (en) * 2006-07-21 2008-01-24 National University Of Singapore A multi-beam ion/electron spectra-microscope
JP2009059516A (en) * 2007-08-30 2009-03-19 Hitachi High-Technologies Corp Ion beam processing device and test piece processing method
JP2009110745A (en) * 2007-10-29 2009-05-21 Sii Nanotechnology Inc Specimen creating device and specimen posture switching method
EP2106555A2 (en) * 2006-10-20 2009-10-07 FEI Company Method for s/tem sample analysis
US7812347B2 (en) 2002-12-10 2010-10-12 International Business Machines Corporation Integrated circuit and methods of measurement and preparation of measurement structure
JP2010232185A (en) * 2010-06-03 2010-10-14 Hitachi High-Technologies Corp Specimen working device
US8183547B2 (en) 2009-05-28 2012-05-22 Fei Company Dual beam system
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
JP2015185327A (en) * 2014-03-24 2015-10-22 株式会社日立ハイテクサイエンス Focused ion beam device
KR20160031410A (en) * 2014-09-12 2016-03-22 가부시기가이샤 디스코 Laser machining apparatus
US10373881B2 (en) 2016-12-21 2019-08-06 Fei Company Defect analysis
CN113310758A (en) * 2020-02-07 2021-08-27 台湾积体电路制造股份有限公司 Method and device for preparing microscopic test piece and recording medium
WO2021171492A1 (en) * 2020-02-27 2021-09-02 株式会社日立ハイテク Semiconductor analysis system
WO2023032079A1 (en) * 2021-09-01 2023-03-09 株式会社日立ハイテクサイエンス Computer, program, and charged particle beam processing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270552A (en) * 1991-08-22 1993-12-14 Hitachi, Ltd. Method for separating specimen and method for analyzing the specimen separated by the specimen separating method
JPH09145796A (en) * 1995-11-22 1997-06-06 Advantest Corp Charged particle beam system
JPH11265679A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Process control system and focued ion beam device
US6047083A (en) * 1997-01-29 2000-04-04 Hitachi, Ltd. Method of and apparatus for pattern inspection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270552A (en) * 1991-08-22 1993-12-14 Hitachi, Ltd. Method for separating specimen and method for analyzing the specimen separated by the specimen separating method
JPH09145796A (en) * 1995-11-22 1997-06-06 Advantest Corp Charged particle beam system
US6047083A (en) * 1997-01-29 2000-04-04 Hitachi, Ltd. Method of and apparatus for pattern inspection
JPH11265679A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Process control system and focued ion beam device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179165A (en) * 2002-11-26 2004-06-24 Fei Co Ion beam for target repair
US7812347B2 (en) 2002-12-10 2010-10-12 International Business Machines Corporation Integrated circuit and methods of measurement and preparation of measurement structure
JP2004228076A (en) * 2003-01-17 2004-08-12 Fei Co Method of sample manufacture and transmissive irradiation as well as particle optical system
US7166141B2 (en) 2003-04-05 2007-01-23 Euan Skinner Macleod Vacuum cleaner
JP2005038853A (en) * 2003-07-14 2005-02-10 Fei Co Double beam apparatus
JP2011210740A (en) * 2003-07-14 2011-10-20 Fei Co Dual beam system
US8013311B2 (en) 2003-07-14 2011-09-06 Fei Company Dual beam system
JP2006313852A (en) * 2005-05-09 2006-11-16 Nec Electronics Corp Semiconductor device and method for evaluating evaluation pattern
US7947951B2 (en) 2006-07-21 2011-05-24 National University Of Singapore Multi-beam ion/electron spectra-microscope
WO2008010777A1 (en) * 2006-07-21 2008-01-24 National University Of Singapore A multi-beam ion/electron spectra-microscope
US8525137B2 (en) 2006-10-20 2013-09-03 Fei Company Method for creating S/TEM sample and sample structure
US8890064B2 (en) * 2006-10-20 2014-11-18 Fei Company Method for S/TEM sample analysis
EP2106555A2 (en) * 2006-10-20 2009-10-07 FEI Company Method for s/tem sample analysis
EP2106555A4 (en) * 2006-10-20 2011-09-21 Fei Co Method for s/tem sample analysis
US9275831B2 (en) 2006-10-20 2016-03-01 Fei Company Method for S/TEM sample analysis
US9349570B2 (en) 2006-10-20 2016-05-24 Fei Company Method and apparatus for sample extraction and handling
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
US8455821B2 (en) 2006-10-20 2013-06-04 Fei Company Method for S/TEM sample analysis
US9336985B2 (en) 2006-10-20 2016-05-10 Fei Company Method for creating S/TEM sample and sample structure
US8536525B2 (en) 2006-10-20 2013-09-17 Fei Company Method for creating S/TEM sample and sample structure
US9581526B2 (en) 2006-10-20 2017-02-28 Fei Company Method for S/TEM sample analysis
US8993962B2 (en) 2006-10-20 2015-03-31 Fei Company Method and apparatus for sample extraction and handling
US9006651B2 (en) 2006-10-20 2015-04-14 Fei Company Method for creating S/TEM sample and sample structure
JP2009059516A (en) * 2007-08-30 2009-03-19 Hitachi High-Technologies Corp Ion beam processing device and test piece processing method
JP2009110745A (en) * 2007-10-29 2009-05-21 Sii Nanotechnology Inc Specimen creating device and specimen posture switching method
US8183547B2 (en) 2009-05-28 2012-05-22 Fei Company Dual beam system
JP2010232185A (en) * 2010-06-03 2010-10-14 Hitachi High-Technologies Corp Specimen working device
JP2015185327A (en) * 2014-03-24 2015-10-22 株式会社日立ハイテクサイエンス Focused ion beam device
KR20160031410A (en) * 2014-09-12 2016-03-22 가부시기가이샤 디스코 Laser machining apparatus
KR102305378B1 (en) 2014-09-12 2021-09-24 가부시기가이샤 디스코 Laser machining apparatus
US10373881B2 (en) 2016-12-21 2019-08-06 Fei Company Defect analysis
CN113310758A (en) * 2020-02-07 2021-08-27 台湾积体电路制造股份有限公司 Method and device for preparing microscopic test piece and recording medium
WO2021171492A1 (en) * 2020-02-27 2021-09-02 株式会社日立ハイテク Semiconductor analysis system
JPWO2021171492A1 (en) * 2020-02-27 2021-09-02
TWI784404B (en) * 2020-02-27 2022-11-21 日商日立全球先端科技股份有限公司 Semiconductor Analysis System
JP7352718B2 (en) 2020-02-27 2023-09-28 株式会社日立ハイテク Semiconductor analysis system
WO2023032079A1 (en) * 2021-09-01 2023-03-09 株式会社日立ハイテクサイエンス Computer, program, and charged particle beam processing system

Also Published As

Publication number Publication date
JPWO2002075806A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
WO2002075806A1 (en) Method for inspecting wafer, focused ion beam apparatus and transmission electron beam apparatus
CN115280463A (en) Method for imaging a cross-section of an examination volume in a wafer
US20150377921A1 (en) Through process flow intra-chip and inter-chip electrical analysis and process control using in-line nanoprobing
US7081625B2 (en) Charged particle beam apparatus
CN106482991A (en) CAD auxiliary TEM prepares formula and creates
JP3677968B2 (en) Sample analysis method and apparatus
CN114391178A (en) Wafer alignment using multiple scanning electron microscopes
JP4185962B2 (en) Sample preparation equipment
JP2000146781A (en) Sample analysis method and sample preparation method and device therefor
EP0720216B1 (en) Linewidth metrology of integrated circuit structures
JP2008153239A5 (en)
JP4673278B2 (en) Wafer inspection method
US9318395B2 (en) Systems and methods for preparation of samples for sub-surface defect review
WO2001040735A1 (en) Analyzer/observer
JP3695181B2 (en) Substrate extraction method and electronic component manufacturing method using the same
JP4353962B2 (en) Sample analysis method and sample preparation method
JP4589993B2 (en) Focused ion beam device
JP4185963B2 (en) Sample analysis method and sample preparation method
JP4194529B2 (en) Electronic component manufacturing process inspection / analysis system and electronic component manufacturing process inspection / analysis method
JP4354002B2 (en) Sample preparation apparatus and focused ion beam apparatus
JP4185961B2 (en) Focused ion beam device
JP2006294632A5 (en)
JP2004343131A (en) Method and device for analyzing sample
JP4729390B2 (en) Sample preparation equipment
JP4096916B2 (en) Sample analysis method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002574123

Country of ref document: JP

122 Ep: pct application non-entry in european phase