[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002075007A2 - Metodo para hacer compuestos cupricos coloidales y sus usos - Google Patents

Metodo para hacer compuestos cupricos coloidales y sus usos Download PDF

Info

Publication number
WO2002075007A2
WO2002075007A2 PCT/MX2002/000022 MX0200022W WO02075007A2 WO 2002075007 A2 WO2002075007 A2 WO 2002075007A2 MX 0200022 W MX0200022 W MX 0200022W WO 02075007 A2 WO02075007 A2 WO 02075007A2
Authority
WO
WIPO (PCT)
Prior art keywords
solution
colloidal
copper
precipitate
citrate
Prior art date
Application number
PCT/MX2002/000022
Other languages
English (en)
French (fr)
Other versions
WO2002075007A3 (es
Inventor
Julio Huato
Tetsuya Ogura
Original Assignee
Dermet S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dermet S.A. De C.V. filed Critical Dermet S.A. De C.V.
Priority to MXPA03008469A priority Critical patent/MXPA03008469A/es
Priority to AU2002246445A priority patent/AU2002246445A1/en
Publication of WO2002075007A2 publication Critical patent/WO2002075007A2/es
Publication of WO2002075007A3 publication Critical patent/WO2002075007A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/10Sulfates

Definitions

  • the invention pertains to novel colloidal copper compounds suitable as fungicides and a method of making colloidal copper compounds.
  • the pathogenic fungus causes a substantial reduction in expected crop yields. Other losses also result from the creation of fungi during crop storage. Although there are more than 100,000 species of fungi, it is known that no more than 200 cause serious diseases in plants.
  • Classes of fungi associated with important diseases in crops include: Phytomycetes, Asomycetes, Basidiomycetes and
  • phytomycetes examples include Phytophthora infestans (potato mildew) and viticultural Plasmopara (grape mildew).
  • Asomycetes include Erysiphe graminis (wheat / barley oidium), Podosphaera leucotricha (apple oidium) and Pyricularia oryzae (rice anublo).
  • Basidiomycetes include Puccinia spp. (brown rust of wheat and oats), Rhizoctonia spp. (wilting of the rice pod) and Ustiliago spp. (corn coals).
  • Examples of Deuteromycetes include Alternar ⁇ a spp.
  • Botrytis spp. (gray mold of grapes), Cercospora spp. (leaf spot of sugar beet), Fusarium spp. (wilt of wheat), Helminthosporium spp. (corn leaf spot), Pseudocercosporella herpotrichoides (parasitic wheat bed), Septoria nodorum (wheat fall) and Septoria tritici (wheat leaf fall).
  • Fungicides can be classified into systemic and non-systemic fungicides.
  • Systemic fungicides can penetrate into the seed or plant and then redistribute into the non-sprayed or newly growing parts, which provides protection against fungal attacks or eradicates a fungus already present.
  • Fungicides not Systemic have a protective mode of action and should be applied on the surface of the plant, usually before the infection takes place.
  • inorganic salts are classified as non-systemic fungicides.
  • copper as a fungicide is well known. Copper sulfate was used from the treatment of wheat anublo disease generated in the seed (Tilletia spp.) In the early 18th century.
  • Sensitive fungi are affected by the absorption of copper salts and their subsequent accumulation, which then creates compounds with the amino, sulfhydryl, hydroxyl or carboxyl groups of enzymes that result in the inactivity of the fungus.
  • Fungicides are described in the Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition (1994), Volume 12, on pages 204-227. The most common copper fungicide is the Bordeaux mixture
  • the standard formula for the Bordeaux mixture is 1.81 kg of copper sulfate, 1.81 kg of hydrated lime and 189.2 I of water. 1.81 kg of lime are mixed in 15.14 I of water. The same should be done with copper sulfate. Filter the lime mixture through a cheesecloth, add it to 158.9 I of water and then add the sulfate mixture. Use immediately. Small amounts can be made by mixing 113 g of hydrated lime in 7.57 I of water. Mix 113 g of copper sulfate in 3.78 I of water. Empty the copper sulfate mixture into the lime mixture. Bordeaux mixture can cause damage to plants if not used properly. The damage is caused more in humid climates and when the mixture does not dry quickly. The Bordeaux mix will leave a blue-white deposit on the floor.
  • the Bordeaux mixture is not stable.
  • the poorly stirred Bordeaux mixture has little value because the active copper compound was not finely divided properly.
  • other materials are added in the Bordeaux mixture in order to increase stability. If other materials are used in the mixture, then they can be added with greater agitation.
  • the white oil can be used for approximately 500 ml / 100 I of dew or similar amounts of calcium caseinate (500 g / 100 I) molasses (500 ml / 100 I) can be used.
  • White oil or dew summer oil can be used at a rate of 500 ml / 100 I of dew to improve the penetration of dew below the scales.
  • calcium caseinate and molasses are recommended in seasons for certain crops. They have registered that they improve the ability of atmospheric alteration of the dew by producing a layer in the upper leaves, which protects the copper particles from being dropped by rain or irrigation.
  • Fungicides such as the Bordeaux mixture are also characterized by their poor adhesion in plants.
  • the adhesion ability of the Bordeaux mixture can also be improved by the addition of polymers.
  • polymer additives tend to be expensive.
  • the slaked lime is replaced with a completely soluble crystalline soda (calcium carbonate).
  • the procedure is exactly the same and the final results are similar, although it is believed that the mixture adheres better than the Bordeaux mixture, but it also tends to burn the sensitive foliage.
  • the main advantage of the Burgundy mixture is the ease of use of the soda in crystals compared to the lime turned off. In case of using fresh soda, the old material may have less crystallization water and it is difficult to determine the required amount.
  • the Cheshunt mixture which can be used to protect seedlings against seedling rot.
  • This fungicide is a mixture of copper sulfate and ammonium carbonate. Make the mixture one day before use. Always dissolve in plastic, never in steel or galvanized pails. Grind together 50 g of copper sulfate and 275 g of ammonium carbonate (rock ammonia), then store for at least 24 hours in a tightly closed glass jar.
  • the dissolved cupric species is cytotoxic to kill microbes.
  • a second measurement is required, that the surface of the plant must be covered with copper salt in order to protect the plant. If the surface is filled with fine particles and another with thick particles that form a single layer, the thickness of the layer is proportional to the particle size. Therefore, the area covered by a certain particle size is inversely proportional to the particle size, that is, the colloidal, fine particles can cover a wider area than the thicker particles, using the same weight. In case the microbiocidal effect is achieved by the dissolved cupric ion, the colloid particles will have a higher velocity of dissolve than conventional particles, taking into account that the surface area is proportional to the square of the particle diameter.
  • a systemic microbiocidal effect can be expected for a colloidal cupic salt, since the pore size of the stomata in the leaves is approximately a couple of ⁇ m.
  • the colloid particle has a diameter range of 1-0.1 ⁇ m, which allows the particle to pass through the pore into the plant.
  • a colloidal system is an intimate mixture of two substances, one of which, called the dispersed phase (or colloid) is evenly distributed in a state finely divided through the second substance, called the dispersion medium (or dispersing medium).
  • the dispersion medium or dispersed phase may be a gas, liquid or solid.
  • a colloid is the phase of a colloidal system made of particles that have dimensions of 10-10,000 angstroms (1-1,000 nm) and that are dispersed in a different phase. See McGraw-Hill, Dictionary of Scientific and Technical Terms, Fifth Edition, on page 408.
  • colloids have all three dimensions within the size range of approximately 100 nm to 5 nm. In case there is only one dimension (fibrillar geometry) or two dimensions (laminar geometry) within this range, the unique properties of the highest surface area portion of the material can also be observed and even dominate the total character of the system.
  • the non-Newtonian rheological behavior of the laminar and fibrillar clay suspension, the reactivity of the catalysts, and the critical magnetic properties of multifilament superconductors are examples of many systems that are ultimately controlled by such colloidal materials.
  • the dispersion factor of a colloid is defined as the ratio of the number of atoms on the surface to the total number of atoms in the particle. Representative values for 10, 100 and 1,000 nm particles are respectively in the order of 0.15-0.30, 0.40 and 0.003-0.02, depending on the specific dimensions of the atoms or molecules that comprise the particles.
  • Colloid formation involves any of the nucleation and growth phenomenon or subdivision processes.
  • the previous case requires a change in the phase, while the last case belongs to fragmentation or atomization of coarse particles (solids) or drops (liquids). There are many chemical reactions in bulk in solution that influence colloidal stability.
  • the fungicide / bactericide of patents '253 and' 738 is made by forming a homogeneous aqueous paste containing between about 5% and 20% by weight (based on the total weight of the dry ingredients) of a first dispersant selected from the group consisting of a partially neutralized polyacrylic acid having a pH of 5-10 and an average molecular weight of between 1,000 and 10,000 and a lignin sulphonate.
  • a second dispersant is used for bentonite clay.
  • a paste is formed with phosphate stabilized cupric hydroxide and the paste is dried with dew to form a free flowing fungicidal / bactericidal dry product.
  • the '253 patent and the J38 patent do not indicate the presence of a colloid. Although phosphate stabilized cupric hydroxide is mentioned, this solution is obtained from an aqueous paste that uses a polyacrylic acid as dispersant.
  • the '681 patent of Pasek belongs to a method of producing a copper oxide.
  • the copper carrier material, aqueous ammonia and a sufficient amount of ammonium salts to double the proportion of copper oxide production in the absence of the salt are placed in a single container.
  • the container is closed and oxygen is supplied into the container.
  • the mixture was stirred and heated at a temperature between about 70 ° and 130 ° C to dissolve the copper carrier material within the aqueous ammoniacal copper ion.
  • the aqueous ammoniacal copper ion is reacted with the oxygen in the vessel to form solid copper oxide particles, which are then recovered.
  • the '681 patent is a process based on ammoniacal copper. The presence of a colloid is not indicated.
  • the '533 patent of Browne pertains to a method for producing copper compounds, which involves contacting the metallic copper with oxygen or an oxygen-containing gas, with an aqueous solution that It consists essentially of water in solution, in which a soluble ammonium salt NH 4 X is found, wherein X is the anion of the salt and with ammonia in an amount such that the solution is initially alkaline.
  • an aqueous solution that It consists essentially of water in solution, in which a soluble ammonium salt NH 4 X is found, wherein X is the anion of the salt and with ammonia in an amount such that the solution is initially alkaline.
  • the metallic copper initially dissolves to form a 4 X Cu (NH 3 ) copper amine and the formation of an amine continues until the saturation concentration of the amine is reached.
  • the amine is continuously fractionated to form 3Cu (OH) 2 CuX 2 and the water-soluble products of the decomposition of the amine continuously reform the amine by another reaction with the metallic copper and oxygen in the gas containing oxygen.
  • the '533 patent is a production of copper compounds that uses ammoniacal copper. The presence of colloids is not indicated. The presence of a citrate or phosphate is also not indicated.
  • the '935 patent of Langner et al (United States Patent No. 4,944,935) pertains to a process for producing blue copper hydroxide, wherein the copper metal is treated with an aqueous ion-containing ammonium solution, with stirring and with a simultaneous introduction of gas with oxygen content and ye! Reaction product is separated from copper metal.
  • a floating, particulate copper (II) hydroxide is produced since the material containing the copper metal is treated at a temperature of 0 or 40 ° C with a solution containing 0.1 to 10 g / l of ammonium salt ( calculated as NH 4 ), 0 to 10 g / l of ammonium hydroxide (calculated as NH 3 ) and if desired, 0 to 5 g / l of copper salt and the resulting copper (II) hydroxide is separated.
  • the '935 patent pertains to the production of copper hydroxide using ammonium-based compounds.
  • Example 6 describes the ammonium salts selected from chlorides, sulfates, phosphates, nitrate and acetate. However, no citrate or colloid is described.
  • the '406 Brinkman patent (US Pat. North America No. 4,808,406) belongs to a method for producing a stable, finely divided hydrochloric composition of a low apparent density comprising contacting solutions of an alkali metal carbonate or bicarbonate and a copper salt, precipitating copper sulfate with base of basic copper carbonate at a minimum pH, within the range greater than 5 to about 6, contact the precipitate with the alkali metal hydroxide and convert the basic copper sulfate into cupric hydroxide, within the pH range of 7 to 11.
  • the '406 patent pertains to the production of cupric hydroxide from a mixture of a basic copper carbonate and a basic copper sulfate. Phosphates, citrates or colloids are not present in the '406 patent technology.
  • the '337 patent of Nakaji et al. (United States Patent No. 4,940,337) provides a stirring apparatus for mixing, with the metallic iron masses, a highly concentrated acidic ferric chloride waste fluid with iron content, and one or more heavy metals, in the which nickel content is the highest, the stirring apparatus is characterized in that it comprises a rotation mechanism for rotating a container, and a passage arranged in a rotating arrow and through which the excess gas and the generated liquid are discharged during stirring outwards.
  • the '337 patent pertains to the separation of metals from the waste of ionic chloride. The production of a pure copper fungicide is not described.
  • the '169 patent of Ploss et al. (United States Patent of
  • North America No. 4,404,169 relates to a process for producing cupric hydroxides that have stability during storage in case phosphate ions are added in a suspension of copper oxychloride in an aqueous phase.
  • the copper oxychloride is then reacted with the alkali metal hydroxide or alkali earth metal hydroxide and the copper hydroxide precipitate as a result of the suspension is washed and then resuspended and subsequently stabilized by the addition of a phosphate acid to adjust it to a pH value of 7.5 to 9,
  • Preferably suspended copper oxychloride is reacted in the presence of phosphate ions in an amount of 1 to 4 grams per liter of the suspension and at a temperature from 20 ° to 25 ° C and the resulting cupric hydroxide is stabilized with phosphate ions in an amount of 3 to 6 grams per liter of the suspension.
  • the '169 patent reacts with the copper oxide oxychloride in the presence of phosphate.
  • Grubhofer's' 011 patent belongs to a synergistic immunological adjuvant that uses N-acetylnuramyl-L-alanyl-D-isoglutamine (MDP) or N-acetl-glucosaminyl-N-acetyl -muramil-L-alanyl-D-isoglutamine (GMDP) at low dose intervals in a combination with zinc-L-proline complex and with an immunostimulant lipid in doses that synergistically accentuate the effect of each single component, whereby the Zinc-L-proline complex contains an excess of L-proline or 5-oxo-L-proline that serves as a solubilizer and dispersing agent for the lipid component.
  • the '011 patent uses copper in the production of an immune adjuvant. This patent has no direct support in the invention in addition to the presence of copper citrate in the colloid.
  • the '821 patent and the' 698 patent both by Rounds et al. belong to a water purification system with a buffer compound, an oxidizing / clarifying compound and a biocide compound in multiple packages, so that The biocidal compound and the oxidizing / clarifying compound are contained in different packages.
  • the composition purifies and clarifies the water while maintaining the pH of the existing water.
  • the composition may also include a filtration aid, an algaecide, a calcium releasing source, a chelator and a sequestering agent.
  • Algaecide is copper citrate and is present from about 1.5 to about 2 percent by weight. Copper citrate can be formed in situ by combining copper sulfate and sodium citrate in the composition with a molar ratio of about 1 to 1. However, colloidal copper citrate is not mentioned in the '821 or' 698 patents.
  • the '707 and Saxton' 162 patent (United States Patent No. 5,824,707 and United States Patent No. 5,549,162) belong to a method and composition to improve weight gain and effectiveness in the conversion of pig and poultry feed, which includes feeding the animal with an effective amount of copper citrate.
  • Copper citrate is prepared by reacting either copper or copper hydroxide with citric acid.
  • Copper citrate can also be prepared by reacting sodium citrate (trisodium citrate) with copper sulfate. The resulting reaction produces copper citrate in an aqueous medium. Copper citrate, which is a solid, will precipitate from the aqueous phase and can be separated by simple filtration and drying.
  • colloidal copper citrate is not mentioned in the '707 or in the' 162 patent.
  • North America No. 5,632,904 belongs to metal-ligand complexes produced by coordinated chemistry for use as a biocide and a method for detoxifying water or effluent is discussed.
  • Metal biocides bind with acceptable complexing agents as a type of compound by coordination to protect the metal ions of other reagents in the water supply to be treated, while maintaining the metal ions available for the biocidal action.
  • pre-mixed solutions of metal-ligand complexes are added as a water disinfectant containing ions such as calcium, iron, carbonates, chlorides, nitrates, phosphates and sulfates.
  • Example 1 describes a biocidal solution composed of citric acid (the ligand or complexing agent) and copper.
  • colloidal copper citrate is not mentioned in the '904 patent.
  • North America No. 5,369,091 belongs to a process for producing YBCO powders by pyrolysis, which involves preparing a clear aqueous solution containing yttrium, barium and copper ions, in the desired final proportions for the powder, in the form of complex compounds. , preferably, complex citrus compounds and in the presence of a detonating system as a combination of ammonium ions and nitrate ions. The clear solution is then concentrated by evaporation, until a violent combustion is carried out which is carried out at high temperatures, greater than 250 ° C and preferably, greater than 850 ° C. Citric acid is used as a combustion moderator. However, in the '091 patent no citrate of colloidal copper
  • the invention belongs in part to a stable colloidal colloidal solution.
  • the invention in part, relates to a colloidal cupric solution essentially free of ferrous, ferric and aluminum ions.
  • the invention in part, relates to a colloidal basic dical salt obtained from an aqueous solution, in which a water-soluble organic solvent has been mixed.
  • the invention also partly belongs to a colloidal cupric compound with reactive organic acids such as citric acid or amino acids with a cupric solution essentially free of ferrous, ferric or aluminum ions.
  • the invention partly relates to a method for treating fungi in plants that uses a colloidal salt.
  • Copper can be taken in the oxidation states Cu + and Cu 2 + cupric.
  • the cupric compounds of the invention are represented by the formula I: CuAxBy wherein A and B are anions, 0 ⁇ x ⁇ _2; and 0 ⁇ and ⁇ 2.
  • the anion A can be Cl, Br, I, F, N0 3 , S0 4 2 " , P0 4 3" or RCOO, where R is H or a C 1 -C 20 straight or branched chain hydrocarbon as methyl , ethyl, propyl, butyl isopropyl, isobutyl, terbutyl, pentyl, isopentyl, etc. It can also be an aromatic group such as benzyl, thiolyl, naphthyl, etc.
  • the anion A can also be an anion of an organic acid such as tartrate 2 " , citrate 3" , or an amino acid residue such as methionine.
  • the cupric compound of formula I is produced either as a stable colloid solution or a solid colloid compound.
  • An initial cupric solution is purified to remove impurities as the factor that flocculates colloidal particles.
  • Aluminum, ferrous or ferric ions are removed by adding phosphoric acid or a phosphate ion. If the ferrous ion or other reduced species are present, they are oxidized by using an oxidizing agent such as hydrogen peroxide, hypochlorite ion, chlorine, ozone injection, etc.
  • cupric compounds such as cupric citrate from Cu (OH) 2
  • metal ions especially Fe (ll) ion
  • the CuO formed catalyzes the same dehydration reaction. Therefore, inhibition of this reaction is necessary to obtain a stable product.
  • the process for making colloidal compounds such as cupric citrate from Cu (OH) 2 uses ions especially Fe (lll) and Al (lll) ions, to flocculate the desired colloidal particles.
  • the aqueous cupric solution is adjusted to a pH of about 5 per base.
  • the base is a weak base such as ammonia, sodium carbonate, sodium bicarbonate, lime, etc.
  • the colloidal cupic solution depends on the ion count in the initial cupric solution.
  • the colloidal cupric solution include solutions of basic cupric sulfate or cupric oxychloride.
  • a colloid solution is produced by reacting citric acid, tartaric acid, amino acids, etc. to the purified cupric solution free of iron and aluminum and a colloidal solution of the corresponding salt is produced.
  • Solid colloids are produced by adding a water-miscible organic solvent to the corresponding colloid solution.
  • the water-miscible organic solvent may be methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol acetone, tetrahydrofuran, ethanol, glycol, polyglycols, glycol ethers, etc.
  • Solid colloidal salts can also be prepared by reacting an organic solution such as copper salt such as cupric chloride (cuCI2) in methanol with citric acid, tartaric acid, amino acids, etc., in water or an organic solvent.
  • organic solution such as copper salt such as cupric chloride (cuCI2)
  • CuCI2 cupric chloride
  • EXAMPLE 1 Removal of Fe 2+ , Fe 3+ and Al 3+ from a solution of CuS0 4 after oxidation by H 2 0 2 .
  • EXAMPLE 3 Removal of Fe 2+ , Fe 3+ and Al 3+ from a mother liquor after oxidation with H 2 0 2 .
  • EXAMPLE 4 Removal of Fe 2+ , Fe 3+ and Al 3+ from a mother liquor after chlorine oxidation.
  • Example 1 The solution obtained in Example 1 was adjusted to contain 0.1M of a copper ion solution. To this solution was added 0.3 M Na 2 C0 3 drip with vigorous stirring until a pH of 8 was reached. A light blue solution of colloidal Cu (OH) 2 was obtained . No precipitate was observed in this solution after remaining at room temperature for 24 hours.
  • Example 3 The solution obtained in Example 3 was adjusted to contain 1M of a copper ion solution. To 100 ml of this solution was added 29.9 g of methionine (Hmet) (0.2 mol of amino acid). The pH was adjusted to 6 by adding Na 2 C0 3 drip with vigorous stirring. A light blue solution of colloidal Cu (Met) 2 was obtained . No precipitate was observed in this solution after remaining at room temperature for 24 hours.
  • Hmet methionine
  • a colloid solution was obtained by adding the precipitate in pure water.
  • EXAMPLE 8 Cu 2 Citrate (OH) The solution obtained in Example 4 was adjusted to contain 1M of copper ion. To 100 ml of this solution was added 10.5 g (0.05 mol) of crystalline citric acid monohydrate. The pH was adjusted to 5 by adding 3M Na 2 C0 3 with vigorous stirring. A light blue solution of colloidal Cu 2 (OH) citrate was obtained. No precipitate was observed in this solution after remaining at room temperature for 24 hours.
  • a colloid solution was obtained by adding the precipitate in pure water.
  • 0.3 ml of 0.02 M of a colloidal copper citrate solution was sprayed on a silicon plate with a diameter of 6 cm at a temperature of 50 ° C with good ventilation.
  • the plate was dried and then heated at 300 ° C under vacuum for 1 hour.
  • the copper citrate in the plate became a thin film of metallic copper. The copper film was so active that occasionally it was observed that it was turned on when air was introduced when the plate was hot.
  • EXAMPLE 10 Colloidal copper citrate against Furasium spp in tomato seedlings.
  • Tray 1 Mold. The plants were watered every morning for 24 days.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Las soluciones coloides de cobre estables se preparan a partir de soluciones purificadas de sulfato de cobre. El sulfato de cobre se purifica al añadir un agente oxidante y añadir ácido fosfórico o ion de fosfato para precipitar el hierro o aluminio. El ajustar el pH produce una solución coloidal. Una sal sólida se hace a partir de la solución coloidal al mezclar la solución coloidal con un solvente orgánico miscible en agua como el metanol o la acetona. Las soluciones coloidales de cobre han demostrado ser fungicidas efectivos contra el furasium.

Description

MÉTODO PARA HACER COMPUESTOS CÚPRICOS
COLOIDALES Y SUS USOS
CAMPO DE LA INVENCIÓN
La invención pertenece a compuestos coloidales de cobre novedosos adecuados como fungicidas y un método para hacer compuestos de cobre coloidales.
ANTECEDENTES DE LA INVENCIÓN
El hongo patogénico provoca una reducción sustancial en las producciones esperadas de cosechas. También otras pérdidas resultan de la creación de hongos durante el almacenamiento de las cosechas. Aunque existen más de 100,000 especies de hongos, es sabido que no más de 200 provocan enfermedades graves en las plantas.
Las clases de hongos asociadas con enfermedades importantes en cosechas incluyen: Fitomicetos, Asomicetos, Basidiomicetos y
Deuteromícetos. Los ejemplos de Fitomicetos incluyen Phytophthora infestans (mildíu de la papa) y Plasmopara vitícola (mildíu de la uva). Los ejemplos de Asomicetos incluyen Erysiphe graminis (oidio del trigo/cebada), Podosphaera leucotricha (oidio de la manzana) y Pyricularia oryzae (anublo del arroz). Los ejemplos de Basidiomicetos incluyen Puccinia spp. (roya parda del trigo y avena), Rhizoctonia spp. (marchitez de la vaina del arroz) y Ustiliago spp. (carbones del maíz). Los ejemplos de Deuteromicetos incluyen Alternaría spp. (alternariosis del tabaco), Botrytis spp. (moho gris de las uvas), Cercospora spp. (mancha foliar de la remolacha azucarera), Fusarium spp. (marchitez del trigo), Helminthosporium spp. (mancha foliar del maíz), Pseudocercosporella herpotrichoides (encamado parasitario del trigo), Septoria nodorum (caída del trigo) y Septoria tritici (caída de la hoja del trigo).
Los fungicidas se pueden clasificar en fungicidas sistémicos y no sistémicos. Los fungicidas sistémicos pueden penetrar dentro de la semilla o planta y después se redistribuyen dentro de las partes no rociadas o de nuevo crecimiento, lo cual proporciona protección contra los ataques fúngicos o erradica un hongo ya presente. Los fungicidas no sistémicos tienen un modo de acción protectora y se deben aplicar en la superficie de la planta, generalmente antes de que tome lugar la infección. En general, las sales inorgánicas se clasifican como fungicidas no sistémicos. El uso de cobre como fungicida es bien conocido. El sulfato de cobre fue utilizado a partir del tratamiento de la enfermedad de anublo del trigo generada en la semilla (Tilletia spp.) a principios del siglo XVIII. En 1882, se observó que los viñedos que habían sido recubiertos con una mezcla de sulfato de cobre y cal para impedir el robo de la vid, no estaban infectados con mildíu de la uva (Plasmopara vitícola). Esta observación dio como resultado el desarrollo de un fungicida llamado mezcla Bordeaux. Los fungicidas de cobre disponibles en la actualidad para una amplia variedad de aplicaciones incluyen sulfatos (mezcla Bordeaux), óxidos y oxicloruros y una variedad de sales orgánicas como los naftenatos de cobre y quinolinatos de cobre. Las cosechas protegidas que utilizan compuestos de cobre incluyen viñedos, frutales, café, cacao y vegetales. La mayoría de los fungicidas de cobre funcionan al inhibir la germinación de esporas fúngicas. Los hongos sensibles son afectados por la absorción de sales de cobre y su subsecuente acumulación, la cual después crea compuestos con los grupos amino, sulfhidrilo, hidroxilo o carboxilo de enzimas que resultan en la inactividad del hongo. Los fungicidas se describen el Kirk-Othmer Encyclopedia of Chemical Technology, Cuarta edición (1994), Volumen 12, en las páginas 204-227. El fungicida de cobre más común es la mezcla Bordeaux
(CuS04.3Cu(OH)2.3CaS04). La fórmula estándar para la mezcla Bordeaux son 1.81 kg de sulfato de cobre, 1.81 kg de cal hidratada y 189.2 I de agua. 1.81 kg de cal se mezclan en 15.14 I de agua. Se debe hacer lo mismo con el sulfato de cobre. Filtrar la mezcla de cal a través de una estopilla, añadirla a 158.9 I de agua y después añadir la mezcla de sulfato. Usarse inmediatamente. Se pueden hacer pequeñas cantidades al mezclar 113 g de cal hidratada en 7.57 I de agua. Mezclar 113 g de sulfato de cobre en 3.78 I de agua. Vaciar la mezcla de sulfato de cobre dentro de la mezcla de cal. La mezcla Bordeaux puede provocar un daño en las plantas si no se utiliza adecuadamente. El daño se provoca más en climas húmedos y cuando la mezcla no se seca rápidamente. La mezcla Bordeaux dejará un depósito azul-blanquecino en la planta.
Una vez preparada, la mezcla Bordeaux no es estable. La mezcla Bordeaux mal agitada tiene poco valor debido a que el compuesto activo de cobre no se dividió finamente en forma adecuada. Con frecuencia, se añaden otros materiales en la mezcla Bordeaux con el fin de aumentar la estabilidad. En caso de que se utilicen otros materiales en la mezcla, entonces se pueden añadir con mayor agitación. El aceite blanco se puede utilizar por aproximadamente 500 ml/100 I de rocío o se pueden utilizar cantidades similares de caseinato calcico (500 g/100 I) melaza (500 ml/100 I). El aceite blanco o el aceite de verano por rocío se puede utilizar en una proporción de 500 ml/100 I de rocío para mejorar la penetración del rocío por debajo de las escamas. De forma similar, el caseinato calcico y la melaza son recomendados en temporadas para ciertas cosechas. Estos han registrado que mejoran la habilidad de alteración atmosférica del rocío al producir una capa en las hojas superiores, la cual protege las partículas de cobre de que se caigan por la lluvia o el riego.
Los fungicidas como la mezcla Bordeaux también están caracterizados por su deficiente adhesión en las plantas. La habilidad de adhesión de la mezcla Bordeaux también se puede mejorar por la adición de polímeros. Sin embargo, los aditivos de polímero tienden a ser costosos.
Para la mezcla Burgundy, la cal apagada se reemplaza con una sosa en cristales totalmente soluble (carbonato de calcio). En otros aspectos, el procedimiento es exactamente el mismo y los resultados finales son similares, aunque se cree que la mezcla se adhiere mejor que la mezcla Bordeaux, pero también tiende a quemar el follaje sensible. La principal ventaja de la mezcla Burgundy es la facilidad de uso de la sosa en cristales comparada con la cal apagada. En caso de utilizar sosa fresca, el material viejo puede tener menos agua de cristalización y es difícil determinar la cantidad requerida.
Para hacer una mezcla Burgundy equivalente a la antes descrita para la mezcla Bordeaux, se debe reemplazar 1 kg de cal apagada con 1.5 kg de sosa en cristales. En caso de que la sosa en cristales cristalina tenga una apariencia blanca y polvosa, utilizar solamente 1 kg y después verificar el pH de la mezcla terminada antes de utilizarse. También relacionada con la mezcla Bordeaux, se encuentra la mezcla Cheshunt, la cual se puede utiliza para proteger semilleros contra la podredumbre de las plántulas. Este fungicida es una mezcla de sulfato de cobre y carbonato de amonio. Hacer la mezcla un día antes de su uso. Siempre disolverla en plástico, nunca en cubetas de acero o galvanizadas. Triturar juntos 50 g de sulfato de cobre y 275 g de carbonato de amonio (amoníaco en roca), después almacenar por al menos 24 horas en un frasco de cristal herméticamente cerrado. Disolver 50 g de la mezcla en 100 a 200 mi de agua caliente y después diluir en 20 I de agua fría. El agua sobre el lecho de semillas en 1.0 l/metro cuadrado, después lavar las hojas. Se pueden llevar a cabo más tratamientos, según sea requerido, hasta dos veces por semana.
Una desventaja adicional asociada con la tecnología convencional, surge a partir de cualquier ion de cobre presente en una cierta concentración, que es tóxica para cualquier ser viviente incluyendo microorganismos y la planta portadora. De este modo, en caso de aplicarse una solución cúprica para matar a un fitopatógeno, también mata la planta portadora. Las sales de cobre convencionales como el hidróxido cúprico, sulfato básico cúprico, oxicloruro cúprico, la mezcla Bordeaux, etc., son prácticamente insolubles, pero exhiben un excelente efecto antimicrobiano para los fitopatógenos. Se proponen dos soluciones mícrobiocidas.
La especie cúprica disuelta es citotóxica para matar microbios.
2) Los microbios se adhieren a los sólidos cúpricos tóxicos presentes en la superficie de la planta.
Se requiere realizar una segunda medida, que la superficie de la planta debe ser cubierta con la sal de cobre con el fin de proteger a la planta. Si la superficie se llena con partículas finas y otra con partículas gruesas que forman una capa única, el espesor de la capa es proporcional al tamaño de la partícula. Por lo tanto, el área cubierta por un cierto tamaño de partículas es inversamente proporcional al tamaño de partícula, es decir, las partículas coloidales, finas pueden cubrir un área más amplia que las partículas más gruesas, utilizando el mismo peso. En caso de que se logre el efecto microbiocida por el ion cúprico disuelto, las partículas coloides tendrán una mayor velocidad de disolverse que las partículas convencionales, tomando en cuenta que el área superficial es proporcional al cuadrado del diámetro de partícula. Además, se puede esperar un efecto microbiocida sistémico para una sal cúprica coloidal, ya que el tamaño del poro de las estomas en las hojas es de aproximadamente un par de μm. Por otra parte, la partícula coloide tiene un intervalo de diámetro de 1-0.1 μm, que permite que la partícula pase a través del poro hacia el interior de la planta.
Un sistema coloidal es una mezcla íntima de dos sustancias, una de las cuales, llamada la fase dispersa (o coloide) se distribuye uniformemente en un estado dividido finamente a través de la segunda sustancia, llamada el medio de dispersión (o medio dispersante). El medio de dispersión o fase dispersada puede ser un gas, líquido o sólido. Un coloide es la fase de un sistema coloidal hecho de partículas que tienen dimensiones de 10-10,000 angstroms (1-1,000 nm) y que se dispersa en una fase diferente. Consultar McGraw-Hill, Dictionary of Scientific and Technical Terms, Quinta edición, en la página 408.
La mayoría de los coloides tienen todos tres dimensiones dentro del intervalo de tamaño de aproximadamente 100 nm a 5 nm. En caso de que solamente exista una dimensión (geometría fibrilar) o dos dimensiones (geometría laminar) dentro de este intervalo, las propiedades únicas de la porción de área superficial más alta del material también se podrá observar y aún dominar el carácter total del sistema. El comportamiento reológico no Newtoniano de la suspensión de arcilla laminar y fibrilar, la reactividad de los catalizadores, y las propiedades magnéticas críticas de los superconductores multifilamentosos son ejemplos de muchos sistemas que son controlados finalmente por tales materiales coloidales.
El factor de dispersión de un coloide se define como la relación del número de átomos en la superficie con el número total de átomos en la partícula. Los valores representativos para 10, 100 y 1,000 nm partículas, están respectivamente dentro del orden de 0.15-0.30, 0.40 y 0.003-0.02, dependiendo de las dimensiones específicas de los átomos o moléculas que comprenden las partículas.
La formación coloide involucra cualquiera de la nucleación y fenómeno del crecimiento o procesos de subdivisión. El caso anterior requiere de un cambio en la fase, mientras que el último caso pertenece a la fragmentación o atomización de las partículas gruesas (sólidos) o gotas (líquidos). Existen muchas reacciones químicas a granel en solución que influencian la estabilidad coloidal.
Aunque la técnica convencional reconoce la capacidad de aplicación de los compuestos de cobre como fungicidas, la técnica convencional también reconoce que los fungicidas de cobre tienen desventajas que necesitan solucionarse. Dentro de la tecnología convencional del cobre, es típico lo descrito en la patente '253 de LeFiles et al. (Patente de Estados Unidos de Norteamérica No. 5,298,253) y la patente '738 de LeFiles et al. (Patente de Estados Unidos de Norteamérica No. 5,462,738), la cual pertenece a un fungicida/bactericida en seco, que puede fluir de hidróxido de cobre y un método para hacer y utilizar el mismo. El fungicida/bactericida de las patentes '253 y '738 está hecho al formar una pasta acuosa homogénea que contiene entre aproximadamente 5% y 20% en peso (con base en el peso total de los ingredientes en seco) de un primer dispersante seleccionado del grupo que consiste de un ácido poliacr í I ico parcialmente neutralizado que tiene un pH de 5-10 y un peso molecular promedio de entre 1,000 y 10,000 y un sulfonato de lignina. Un segundo dispersante se utiliza para la arcilla de bentonita. Se forma una pasta con el hidróxido cúprico estabilizado con fosfato y la pasta se seca con rocío para así formar un producto en seco fungicida/bactericida granular, de flujo libre. La patente '253 y la patente J38 no indican la presencia de un coloide. Aunque se menciona el hidróxido cúprico estabilizado con fosfato, esta solución se obtiene de una pasta acuosa que utiliza un ácido poliacrílico como dispersante.
La patente '681 de Pasek (Patente de Estados Unidos de Norteamérica No. 5,492,681) pertenece a un método para producir un óxido de cobre. En el método, el material portador de cobre, amoniaco acuoso y una cantidad suficiente de sales de amonio para duplicar la proporción de producción de óxido de cobre en ausencia de la sal se colocan en un único recipiente. El recipiente se cierra y se suministra oxígeno dentro del recipiente. La mezcla se agitó y calentó a una temperatura entre aproximadamente 70° y 130°C para disolver el material portador de cobre dentro del ion de cobre amoniacal acuoso. El ion de cobre amoniacal acuoso se hace reaccionar con el oxígeno en el recipiente para formar partículas de óxido de cobre sólidas, que después se recuperan. La patente '681 es un proceso con base en el cobre amoniacal. No se indica la presencia de un coloide.
La patente '533 de Browne (Patente de Estados Unidos de Norteamérica No. 5,310,533) pertenece a un método para producir compuestos de cobre, el cual involucra hacer contacto del cobre metálico con oxígeno o un gas con contenido de oxígeno, con una solución acuosa que consiste esencialmente de agua en solución, en la cual se encuentra una sal de amonio soluble NH4X, en donde X es el anión de la sal y con amoníaco en una cantidad tal que la solución es inicialmente alcalina. Como resultado del contacto, el cobre metálico inicialmente se disuelve para formar una amina de cobre Cu(NH3)4X y la formación de una amina continúa hasta que se alcanza la concentración por saturación de la amina. Subsecuentemente, la amina se fracciona en forma continua para formar 3Cu(OH)2 CuX2 y los productos solubles en agua de la descomposición de la amina continuamente reforman la amina por otra reacción con el cobre metálico y el oxígeno en el gas con contenido de oxígeno. La patente '533 es una producción de compuestos de cobre que utiliza el cobre amoniacal. No se indica la presencia de coloides. Tampoco se indica la presencia de un citrato o un fosfato.
La patente '935 de Langner et al (Patente de Estados Unidos de Norteamérica No. 4,944,935) pertenece a un proceso para producir hidróxido de cobre azul, en donde el metal de cobre se trata con una solución acuosa de amonio con contenido de iones, con agitación y con una introducción simultánea de gas con contenido de oxígeno y e! producto de reacción se separa del metal de cobre. Un hidróxido de cobre (II) flotante, particulado se produce ya que el material que contiene el metal de cobre se trata a una temperatura de 0o a 40°C con una solución que contiene 0.1 a 10 g/l de sal de amonio (calculada como NH4), 0 a 10 g/l de hidróxido de amonio (calculado como NH3) y si se desea, de 0 a 5 g/l de sal de cobre y el hidróxido de cobre (II) resultante se separa. La patente '935 pertenece a la producción de hidróxido de cobre usando compuestos con base de amonio. El ejemplo 6 describe las sales de amonio seleccionadas de cloruros, sulfatos, fosfatos, nitrato y acetato. Sin embargo, no se describe ningún citrato o coloide.
La patente '406 de Brinkman (Patente de Estados Unidos de Norteamérica No. 4,808,406) pertenece a un método para producir una composición hidróxida cúprica estable, dividida finamente de una densidad aparente baja que comprende poner en contacto soluciones de un carbonato o bicarbonato de metal alcalino y una sal de cobre, precipitar el sulfato de cobre con base de carbonato de cobre básico a un pH mínimo, dentro del intervalo mayor que 5 a aproximadamente 6, poner en contacto el precipitado con el hidróxido de metal alcalino y convertir el sulfato de cobre básico en hidróxido cúprico, dentro del intervalo de pH de 7 a 11. La patente '406 pertenece a la producción de hidróxido cúprico a partir de una mezcla de un carbonato básico de cobre y un sulfato básico de cobre. Los fosfatos, citratos o coloides no están presentes en la tecnología de la patente '406.
La patente '337 de Nakaji et al. (Patente de Estados Unidos de Norteamérica No. 4,940,337) proporciona un aparato de agitación para mezclar, con las masas de hierro metálico, un fluido de desperdicio de cloruro férrico acídico fuertemente concentrado con contenido de hiero, y uno o más metales pesados, en los cuales el contenido de níquel es el más alto, el aparato de agitación está caracterizado porque comprende un mecanismo de rotación para girar un contenedor, y un pasaje dispuesto en una flecha giratoria y a través de la cual se descarga el exceso de gas y el líquido generado durante la agitación hacia el exterior. La patente '337 pertenece a la separación de metales del desperdicio de cloruro iónico. La producción de un fungicida cobre puro no se describe. La patente '169 de Ploss et al. (Patente de Estados Unidos de
Norteamérica No. 4,404,169) se relaciona con un proceso para producir hidróxidos cúpricos que tienen estabilidad durante el almacenamiento en caso de que se añadan iones de fosfato en una suspensión de oxicloruro de cobre en una fase acuosa. El oxicloruro de cobre después se hace reaccionar con el hidróxido de metal alcalino o hidróxido de metal de tierra alcalina y el precipitado de hidróxido cúprico como resultado de la suspensión se lava y después se vuelve a suspender y subsecuentemente se estabiliza por la adición de un fosfato ácido para ajusfarlo a un valor pH de 7.5 a 9, El oxicloruro de cobre suspendido de preferencia, se hace reaccionar en presencia de iones de fosfato en una cantidad de 1 a 4 gramos por litro de la suspensión y a una temperatura de 20° a 25°C y el hidróxido cúprico resultante se estabiliza con iones de fosfato en una cantidad de 3 a 6 gramos por litro de la suspensión. La patente '169 reacciona con el oxicloruro de óxido de cobre en presencia de fosfato. Sin embargo, un citrato o coloide no está presente en la tecnología de la patente '169.
La patente '011 de Grubhofer (Patente de Estados Unidos de Norteamérica No. 5,773,011) pertenece a un adyuvante ¡nmunológico sinergístico que utiliza N-acetilnuramil-L-alanil-D-isoglutamina (MDP) o N-acet¡lglucosaminil-N-acetil-muramil-L-alanil-D-isoglutamina (GMDP) en intervalos de dosis bajas en una combinación con complejo de zinc-L- prolina y con un lípido inmunoestimulante en dosis que acentúan sinergísticamente el efecto de cada componente único, por lo cual el complejo de zinc-L-prolina contiene un exceso de L-prolina o 5-oxo-L- prolina que sirve como un solubilizador y agente dispersante para el componente lípido. La patente '011 utiliza cobre en la producción de un adyuvante inmunológico. Esta patente no tiene ningún sustento directo en la invención además de la presencia de citrato de cobre en el coloide.
La patente '821 y la patente '698 ambas de Rounds et al. (Patente de Estados Unidos de Norteamérica No. 6,149,821 y Patente de Estados Unidos de Norteamérica No. 6,120,698) pertenecen a un sistema de purificación de agua con un compuesto tampón, un compuesto oxidante/aclarador y un compuesto biocida en múltiples paquetes, de modo que el compuesto biocida y el compuesto oxidante/aclarador quedan contenidos en diferentes paquetes. La composición purifica y aclara el agua mientras que mantiene el pH del agua existente. La composición también puede incluir un cooperador de filtración, un algicida, una fuente liberadora de calcio, un quelante y un agente secuestrante. El algicida es citrato de cobre y está presente de aproximadamente 1.5 hasta aproximadamente 2 por ciento en peso. El citrato de cobre puede formarse in situ al combinar sulfato de cobre y citrato de sodio en la composición con una relación molar de aproximadamente 1 a 1. Sin embargo, el citrato de cobre coloidal no se menciona en las patentes '821 ó '698.
La patente '707 y la patente '162 de Saxton (Patente de Estados Unidos de Norteamérica No. 5,824,707 y Patente de Estados Unidos de Norteamérica No. 5,549,162) pertenecen a un método y composición para mejorar la ganancia de peso y la efectividad en la conversión de alimentación de cerdos y aves de corral, el cual abarca alimentar al animal con una cantidad efectiva de citrato de cobre. El citrato de cobre se prepara al hacer reaccionar, ya sea cobre o hidróxido de cobre con ácido cítrico. El citrato de cobre también se puede preparar al hacer reaccionar citrato de sodio (citrato trisódico) con sulfato de cobre. La reacción resultante produce citrato de cobre en un medio acuoso. El citrato de cobre, que es un sólido, se precipitará de la fase acuosa y se puede separar por una simple filtración y secado. Sin embargo, el citrato de cobre coloidal no se menciona en la patente '707 o en la patente '162.
La patente '904 de Samad et al. (Patente de Estados Unidos de
Norteamérica No. 5,632,904) pertenece a complejos metal-ligandos producidos por química coordinada para usarse como un biocida y se expone un método para destoxificar el agua o el efluente. Los biocidas metálicos se enlazan con agentes de complejación aceptables como un tipo de compuesto por coordinación para proteger los iones metálicos de otros reactivos en el suministro de agua a ser tratado, mientras se mantienen los iones metálicos disponibles para la acción biocida. En particular, las soluciones pre-mezcladas de complejos metal-ligandos se añaden como un desinfectante de agua que contiene iones como el calcio, hierro, carbonatos, cloruros, nitratos, fosfatos y sulfatos. El ejemplo 1 describe una solución biocida compuesta de ácido cítrico (el ligando o el agente de complejación) y cobre. Sin embargo, en la patente '904 no se menciona el citrato de cobre coloidal. La patente '091 de Fortunati et al. (Patente de Estados Unidos de
Norteamérica No. 5,369,091) pertenece a un proceso para producir polvos de YBCO por pirólisis, el cual involucra preparar una solución acuosa clara que contiene iones de itrio, bario y cobre, en las proporciones finales deseadas para el polvo, en la forma de compuestos complejos, de preferencia, compuestos complejos cítricos y en presencia de un sistema detonante como una combinación de iones de amonio y iones de nitrato. La solución clara después se concentra por evaporación, hasta que se acciona una combustión violenta que se lleva a cabo a altas temperaturas, mayores que 250°C y de preferencia, mayores que 850°C. El ácido cítrico se usa como un moderador de combustión. Sin embargo, en la patente '091 no se menciona citrato de cobre coloidal.
Como se ha mostrado, existen desventajas importantes asociadas con los fungicidas y químicos agrícolas con base de cobre. Estas desventajas incluyen la deficiente estabilidad de los fungicidas de cobre como la mezcla Bordeaux. La actividad de estos fungicidas se impide por el compuesto de cobre activo que no está lo suficientemente dividido finamente. Las desventajas adicionales surgen de la deficiente habilidad de adhesión de los fungicidas de cobre, lo cual da como resultado que se requieran altas dosis de fungicida. Estas desventajas se pueden solucionar con el desarrollo de compuestos de cobre adheribles y altamente estables.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La invención, pertenece en parte a una solución cúprica coloidal estable.
La invención, en parte, se relaciona con una solución cúprica coloidal esencialmente libre de iones ferrosos, férricos y de aluminio. La invención, en parte se relaciona con una sal básica cúprica coloidal obtenida de una solución acuosa, en la cual se ha mezclado un solvente orgánico soluble en agua.
La invención, también en parte pertenece a un compuesto cúprico coloidal con ácidos orgánicos reactivos como el ácido cítrico o aminoácidos con una solución cúprica esencialmente libre de iones ferrosos, férricos o de aluminio.
La invención, en parte se relaciona con un método para tratar hongos en las plantas que utiliza una sal cúprica coloidal.
Se debe entender que tanto la descripción general anterior y la siguiente descripción detallada son ejemplificativas y explicativas y tienen el propósito de proporcionar mayor explicación como se reivindica.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Las ventajas de la presente invención serán evidentes a partir de la siguiente descripción detallada proporcionada a continuación. Sin embargo, se debe entender que la descripción detallada y los ejemplos específicos, aunque indican las modalidades preferidas de la invención, se proporcionan únicamente a manera de explicación, ya que varios cambios y modificaciones dentro del espíritu y alcance de la invención serán evidentes para las personas experimentadas en la técnica a partir de esta descripción detallada.
El cobre se puede tomar en los estados de oxidación Cu+ y Cu2 + cúprico. Los compuestos cúpricos de la invención están representados por la fórmula I: CuAxBy en donde A y B son aniones, 0 ± x ±_2 ; y 0 < y < 2.
La relación entre x y y también se explica por la Ecuación II: mx + ny = 2 en donde m y n son coeficientes iguales a los números de oxidación de los aniones A y B, respectivamente.
El anión A puede ser Cl, Br, I, F, N03, S04 2", P04 3" o RCOO, en donde R es H o un hidrocarburo de cadena lineal o ramificada de C1-C20 como el metilo, etilo, propilo, butil isopropilo, isobutilo, terbutilo, pentilo, isopentilo, etc. También puede ser un grupo aromático como bencilo, tiolilo, naftilo, etc. El anión A también puede ser un anión de un ácido orgánico como tartrato2", citrato3", o un residuo amino ácido como la metionina. El compuesto cúprico de la fórmula I se produce ya sea como una solución coloide estable o un compuesto sólido coloide. Una solución cúprica inicial se purifica para retirar las impurezas como el factor que flocula las partículas coloidales. Los iones de aluminio, ferrosos o férricos se retiran al añadir ácido fosfórico o un ion de fosfato. En caso de que el ion ferroso u otra especie reducida estén presentes, se oxidan al utilizar un agente oxidante como peróxido de hidrógeno, ion de hipoclorito, cloro, inyección de ozono, etc.
En el proceso de hacer compuestos cúpricos como el citrato cúprico a partir de Cu(OH)2, iones metálicos, especialmente ion de Fe(ll), cataliza la siguiente reacción: Cu(OH)2 CuO + H20 Los inventores encontraron que las especies catalíticas verdaderas es Fe2+ ocluidas (intersticialmente) en la estructura reticular del cristal para formar un producto más estable CuO. A su vez, el CuO formado cataliza la misma reacción de deshidratación. Por lo tanto, la inhibición de esta reacción es necesaria para obtener un producto estable.
El proceso para hacer compuestos coloidales como el citrato cúprico a partir de Cu(OH)2 utiliza iones especialmente iones de Fe(lll) y Al(lll), para flocular las partículas coloidales deseadas.
Después de la purificación, la solución cúprica acuosa se ajusta a un pH de aproximadamente 5 por una base. De preferencia, la base es una base débil como el amoníaco, carbonato sódico, bicarbonato sódico, cal, etc.
La solución cúprica coloidal depende en la cuenta de iones en la solución cúprica inicial. Los ejemplos de la solución cúprica coloidal incluye soluciones de sulfato cúprico básico o oxicloruro cúprico. Una solución coloide se produce al hacer reaccionar ácido cítrico, ácido tartárico, amino ácidos, etc. a la solución cúprica purificada libre de hierro y aluminio y se produce una solución coloide de la sal correspondiente. Los coloides sólidos se producen al añadir un solvente orgánico miscible en agua a la solución coloide correspondiente. El solvente orgánicos miscible en agua puede ser metanol, etanol, propanol, isopropanol, butanol, isobutanol, ter-butanol acetona, tetrahidrofurano, et i len g I icol , pro pilenglicol , poliglicoles, éteres de glicol, etc.
Las sales coloides sólidas también se pueden preparar al hacer reaccionar una solución orgánica como sal de cobre como cloruro cúprico (cuCI2) en metanol con ácido cítrico, ácido tartárico, aminoácidos, etc., en agua o un solvente orgánico.
EJEMPLO 1. Retiro de Fe2 + , Fe3+ y Al3+ a partir de una solución de CuS04 después de la oxidación por H202.
10 mi de 50% de H202 y 10 mi de 70% de H3P04 se añadieron por goteo en 11 de una solución de sulfato de cobre 1M, que ha sido preparada por CuS04 5H20 cristalino. El pH de la solución se ajustó a 3 usando una solución de Na2C03 acuosa 3M, y la solución se calentó a 100°C en una placa caliente ajustada con un agitador magnético. Cuando la solución alcanzó 100°C, el pH se volvió a ajusfar a 3 y se dejó la noche a 100°C. El precipitado sólido se retiró por filtración. EJEMPLO 2. Retiro de Fe2 + , Fe3+ y Al3+ de una solución de CuS04 después de la oxidación con cloro.
10 mi de cloro con un contenido activo de 6% y 10 mi de 70% de H3P0 se añadieron por goteo en 11 de una solución de sulfato de cobre 1M, que ha sido preparada por CuS04 5H20 cristalino. El pH de la solución se ajustó a 3 usando 15N de una solución de NH3 acuosa, y la solución se calentó a 100°C en una placa caliente ajustada con un agitador magnético. Cuando la solución alcanzó 100°C, el pH se volvió a ajustar a 3 y se dejó la noche a 100°C. El precipitado sólido se retiró por filtración.
EJEMPLO 3. Retiro de Fe2 + , Fe3+ y Al3+ de un licor madre después de la oxidación con H202.
10 mi de 50% de H202 y 10 mi de H3P04 se añadieron por goteo en 11 de un licor madre después de la cristalización de sulfato de cobre con un contenido de ion Cu2+ 1M 200 ppm Fe y 200 ppm de Al. El pH de la solución se ajustó a 3 usando 15 N de una solución acuosa de NH3, y la solución se calentó a 100°C en una placa caliente ajustada con un agitador magnético. Cuando la solución alcanzó 100°C, el pH se volvió a ajustar a 3 y se dejó la noche a 100°C. El precipitado sólido se retiró por filtración.
EJEMPLO 4. Retiro de Fe2 + , Fe3+ y Al3+ de un licor madre después de la oxidación con cloro.
10 mi de cloro con un contenido de 6% de clorina activa y 10 mi de 70% de H3P04 se añadieron por goteo en 11 de un licor madre después de la cristalización de sulfato de cobre. El licor madre contenía originalmente un ion de Cu2+ 1M ppm Fe y 200 ppm de Al. El pH de la solución se ajustó a 3 usando 3M de una solución de Na2C03, y la solución se calentó a 100°C en una placa caliente ajustada con un agitador magnético. Cuando la solución alcanzó 100°C, el pH se volvió a ajustar a 3 y se dejó la noche a 100°C. El precipitado sólido se retiró por filtración.
EJEMPLO 5. Retiro de Fe2 + , Fe3+ y Al3+ de una solución de CuCI2 después de la oxidación con cloro.
10 mi de cloro con un contenido de 6% de clorina activa y 10 mi de 70% de H3P04 se añadieron por goteo en 11 de una solución de cloruro de cobre que ha sido preparada a partir de CuSo4 5H20 de grado reactivo. El pH de la solución se ajustó a 3 usando 15N de una solución de NH3, y la solución se calentó a 100°C en una placa caliente ajustada con un agitador magnético. Cuando la solución alcanzó 100°C, el pH se volvió a ajustar a 3 y se dejó la noche a 100°C. El precipitado sólido se retiró por filtración.
EJEMPLO 6. Cu(OH)2 coloidal
La solución obtenida en el Ejemplo 1 se ajustó para contener 0.1M de una solución de ion de cobre. A esta solución se le añadió 0.3 M de Na2C03 por goteo con una agitación vigorosa hasta que se alcanzó un pH de 8. Se obtuvo una solución azul claro de Cu(OH)2 coloidal. No se observó ningún precipitado en esta solución después de permanecer a temperatura ambiente por 24 horas.
20 mi de una solución de Cu(OH)2 coloidal se añadieron en 200 mi de metanol con agitación vigorosa. El precipitado formado se recolectó por filtrado a través de un filtro de cristal sinterizado y se secó por flujo de nitrógeno. Una microscopía de electrones por exploración mostró que el precipitado fueron partículas no cristalinas con diámetros no mayores a 1 μm. Se obtuvo una solución coloide al añadir el precipitado en agua pura. EJEMPLO 7. Cu(C5H 10NO2S)2
La solución obtenida en el Ejemplo 3 se ajustó para contener 1M de una solución de ion de cobre. A 100 mi de esta solución se le añadieron 29.9 gr de metionina (Hmet) (0.2 mol de amino ácido). El pH se ajustó a 6 al añadir Na2C03 por goteo con una agitación vigorosa. Se obtuvo una solución azul claro de Cu(Met)2 coloidal. No se observó ningún precipitado en esta solución después de permanecer a temperatura ambiente por 24 horas.
20 mi de una solución de Cu(Met)2 coloidal se añadieron en 200 mi de metanol de grado reactivo con agitación vigorosa. El precipitado formado se recolectó por filtrado a través de un filtro de cristal sinterizado y se secó por flujo de nitrógeno. Una microscopía de electrones por exploración mostró que el precipitado fueron partículas no cristalinas con diámetros no mayores a 1 μm.
Se obtuvo una solución coloide al añadir el precipitado en agua pura.
EJEMPLO 8. Citrato de Cu2(OH) La solución obtenida en el Ejemplo 4 se ajustó para contener 1M de ion de cobre. A 100 mi de esta solución se le añadieron 10.5 g (0.05 moles)de monohidrato de ácido cítrico cristalino. El pH se ajustó en 5 al añadir 3M de Na2C03 con una agitación vigorosa. Se obtuvo una solución azul claro de citrato de Cu2(OH) coloidal. No se observó ningún precipitado en esta solución después de permanecer a temperatura ambiente por 24 horas.
20 mi de una solución de citrato de Cu2(OH) coloidal se añadieron en 200 mi de acetona de grado reactivo con agitación vigorosa. El precipitado formado se recolectó por filtrado a través de un filtro de cristal sinterizado y se secó por flujo de nitrógeno. Una microscopía de electrones por exploración mostró que el precipitado fueron partículas no cristalinas con diámetros no mayores a 1 μm.
Se obtuvo una solución coloide al añadir el precipitado en agua pura.
EJEMPLO 9. Cu a partir de citrato de Cu2(OH)
0.3 mi de 0.02 M de una solución de citrato de cobre coloidal se rociaron en una placa de silicio con un diámetro de 6 cm a una temperatura de 50°C con buena ventilación. La placa se secó y después se calentó a 300°C bajo vacío durante 1 hora. El citrato de cobre en la placa se convirtió en una película delgada de cobre metálico. La película de cobre fue tan activa que ocasionalmente, se observó que se encendía cuando se le introdujo aire cuando la placa estaba caliente.
EJEMPLO 10. Citrato de cobre coloidal contra Furasium spp en semilleros de tomate.
Cuatro charolas de semillas con 500 divisiones que contenían se plantaron con semillas de tomate (variedad: Catalina Criollo). Cada división se mantuvo a 25 +_ 3° con riego cada mañana. Todas las plantas de tomate crecieron bien a 18 + 2 cm después de 45 días. Las charolas con las plantas de tomate se trataron en la siguiente forma:
Charola 1: Molde. Las plantas se regaron cada mañana por 24 días.
Charola 2. Furasium spp. En el día 48, las plantas en esta charola se rociaron con esporas de 50 x 106 de cepa de furasium suspendidas en 100 mi de agua. El patógeno se aisló de la planta de tomate enferma con putrefacción del tallo. Charola 3. Coloide de citrato de cobre. 100 mi de una solución coloide de citrato de cobre (50 mg Cu/L) se rociaron en el día 45 y se continuó con el rocío cada semana durante 25 días.
Charola 4. Coloide de citrato de cobre y furasium. 100 mi de una solución coloide de citrato de cobre se rociaron en el día 45 y se continuó rociando una vez por semana por 325 días. En el día 48, las plantas en esta charola se rociaron con esporas 50 x 106 de una cepa de furasium como se utilizó en la Charola 2.
Las plantas en la charola 2 se murieron (50%) en el día 65 y prácticamente todas las plantas murieron en el día 69 por el furasium.
Las plantas en las charolas 3 y 4 resistieron el ataque de furasium y solamente un 5% mostró enfermedad de furasium en las hojas. No se observó toxicidad debida al citrato de cobre.
Se debe entender que las anteriores descripciones y modalidades específicas mostradas aquí son únicamente ilustrativas del mejor modo de la invención y los principios de la misma, y que las modificaciones y adiciones se pueden llevar a cabo fácilmente por las personas experimentadas en la técnica sin apartarse del espíritu y alcance de la invención, la cual se debe entender que quedará limitada únicamente por el alcance de las reivindicaciones anexas.

Claims

REIVINDICACIONES
1. Un compuesto cúprico coloidal de la fórmula (I): CuAxBy (I) en donde A y B son aniones;
0 < x < 2, y 0 < y < 2. la relación entre x y y también se aclara por la Ecuación II: mx + ny = 2 (II) en donde m y n son coeficientes iguales a los números de oxidación del anión A y N, respectivamente, el anión A representa, Cl, Br, I, F, N03, S04 2", P04 3", RCOO, en donde R es H, un hidrocarburo de cadena lineal o ramificada de C1-C20, o un grupo aromático tartrato2", citrato3", o un residuo amino ácido; el compuesto cúprico coloidal puede hacerse por un proceso que comprende: purificar una solución de Cu2 + ; y elevar el pH de la solución.
2. El compuesto cúprico coloidal de conformidad con la reivindicación 1, caracterizado porque la solución de Cu2+ se prepara de CuS04 5H20.
3. El compuesto cúprico coloidal de conformidad con la reivindicación 1, caracterizado porque la purificación de la solución de Cu2* se lleva a cabo por: añadir un agente oxidante y H3P04 a la solución; ajustar el pH a 3; calentar la solución; y retirar los sólidos.
4. El compuesto cúprico coloidal de conformidad con la reivindicación 3, caracterizado porque el agente oxidante es H202 o cloro.
5. El compuesto cúprico coloidal de conformidad con la reivindicación 3, caracterizado porque ajustar el pH a 3 se lleva a cabo al añadir una solución de Na2C03.
6. El compuesto cúprico coloidal de conformidad con la reivindicación 1, caracterizado porque el proceso también comprende: añadir la solución a un solvente orgánico para formar un precipitado; y recolectar el precipitado.
7. El compuesto cúprico coloidal de conformidad con la reivindicación 6, caracterizado porque el solvente orgánico es metanol o acetona.
8. El compuesto cúprico coloidal de conformidad con la reivindicación 6, caracterizado porque el precipitado se seca por flujo de nitrógeno.
9. Un proceso para producir un compuesto cúprico coloidal de la fórmula (I): CuAxBy (I) en donde A y B son aniones; 0 < x < 2, y
0 < y < 2. la relación entre x y y también se aclara por la Ecuación II: mx + ny = 2 (II) en donde m y n son coeficientes ¡guales a los números de oxidación del anión A y N, respectivamente, el anión A representa, Cl, Br, I, F, N03, S04 2", P04 3", RCOO, en donde R es H, un hidrocarburo de cadena lineal o ramificada de C -C20, o un grupo aromático tartrato2", citrato3", o un residuo amino ácido; el proceso que comprende: purificar una solución de Cu2 + ; y elevar el pH de la solución.
10. El proceso de conformidad con la reivindicación 9, caracterizado porque la solución de Cu2* se prepara de CuS04 5H20.
11. El proceso de conformidad con la reivindicación 9, caracterizado porque la purificación de la solución de Cu2+ se lleva a cabo al: añadir un agente oxidante y H3P04 a la solución; ajustar el pH a 3; calentar la solución; y retirar los sólidos.
12. El proceso de conformidad con la reivindicación 11, caracterizado porque el agente oxidante es H202 o cloro.
13. El proceso de conformidad con la reivindicación 11, caracterizado porque ajustar el pH a 3 se lleva a cabo por añadir una solución de Na2C03.
14. El proceso de conformidad con la reivindicación 9, caracterizado porque el proceso también comprende: añadir la solución a un solvente orgánico para formar un precipitado; y recolectar el precipitado.
15. El proceso de conformidad con la reivindicación 14, caracterizado porque el solvente orgánico es metanol o acetona.
16. El proceso de conformidad con la reivindicación 14, caracterizado porque además comprende secar el precipitado por flujo de nitrógeno.
17. Un método para controlar las enfermedades fúngicas en plantas, caracterizado porque comprende el paso de aplicar a las plantas un fungicida que comprende un compuesto cúprico coloidal de conformidad con la reivindicación 1.
18. Un método para controlar enfermedades fúngicas en plantas caracterizado porque comprende el paso de aplicar a las plantas un fungicida hecho de conformidad con el proceso de la reivindicación 9.
19. El método de conformidad con la reivindicación 17, caracterizado porque el fungicida es un citrato de cobre coloidal.
20. El método de conformidad con la reivindicación 18, caracterizado porque el fungicida es citrato de cobre coloidal.
21. El método de conformidad con la reivindicación 17, caracterizado porque el fungicida es una solución de citrato de cobre coloidal que contiene aproximadamente 50 mg/L de cobre.
22. El método de conformidad con la reivindicación 18, caracterizado porque el fungicida es una solución de citrato de cobre coloidal que contiene aproximadamente 50 mg/L de cobre.
PCT/MX2002/000022 2001-03-20 2002-03-20 Metodo para hacer compuestos cupricos coloidales y sus usos WO2002075007A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MXPA03008469A MXPA03008469A (es) 2001-03-20 2002-03-20 Metodo para hacer compuestos cupricos coloidales y sus usos.
AU2002246445A AU2002246445A1 (en) 2001-03-20 2002-03-20 Method for producing colloidal copper compounds and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/811,610 US20020136781A1 (en) 2001-03-20 2001-03-20 Method for making colloidal cupric compounds and their uses
US09/811,610 2001-03-20

Publications (2)

Publication Number Publication Date
WO2002075007A2 true WO2002075007A2 (es) 2002-09-26
WO2002075007A3 WO2002075007A3 (es) 2002-11-28

Family

ID=25207039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2002/000022 WO2002075007A2 (es) 2001-03-20 2002-03-20 Metodo para hacer compuestos cupricos coloidales y sus usos

Country Status (3)

Country Link
US (1) US20020136781A1 (es)
AU (1) AU2002246445A1 (es)
WO (1) WO2002075007A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3583C2 (ro) * 2008-02-12 2008-12-31 Георге ДУКА Procedeu de obţinere a compoziţiei fungicide ultradisperse
CN111670907A (zh) * 2020-06-18 2020-09-18 湖南国发精细化工科技有限公司 一种仲丁威农药稳定剂及仲丁威农药

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192766B2 (en) * 2006-04-25 2012-06-05 Albaugh, Inc. Copper-based fungicide/bactericide
US8221796B2 (en) 2006-04-25 2012-07-17 Albaugh, Inc. Copper-based fungicide/bactericide
WO2007123531A1 (en) * 2006-04-25 2007-11-01 Albaugh, Inc. Copper-based fungicide/bactericide
KR102068016B1 (ko) * 2017-07-14 2020-01-21 씨제이제일제당 주식회사 메티오닌-금속 킬레이트 및 이의 제조방법
WO2023160700A1 (en) * 2022-02-28 2023-08-31 The Chinese University Of Hong Kong Colloidal mof for arteriosclerosis treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681630A (en) * 1982-09-27 1987-07-21 Learonal, Inc. Method of making copper colloid for activating insulating surfaces
US5004562A (en) * 1989-02-01 1991-04-02 Union Oil Company Of California Latex/sol or gel systems
WO1996010918A1 (en) * 1994-10-07 1996-04-18 Punto Quimica Copper amine fungicidal composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635668A (en) * 1969-03-21 1972-01-18 Cities Service Co Copper hydrate production
US6596246B2 (en) * 2001-03-20 2003-07-22 Dermet Sa De Cv Process for producing stable cupric hydroxide and basic cupric salts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681630A (en) * 1982-09-27 1987-07-21 Learonal, Inc. Method of making copper colloid for activating insulating surfaces
US5004562A (en) * 1989-02-01 1991-04-02 Union Oil Company Of California Latex/sol or gel systems
WO1996010918A1 (en) * 1994-10-07 1996-04-18 Punto Quimica Copper amine fungicidal composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [Online] DOC. NO. 127:253517 NGUYEN ET AL.: 'Influence of critic acid and pH on the zeta potential of Cu(II) and Cr(III) hydroxide sols', XP002956138 Retrieved from STN Database accession no. 1997:526861 & TAP CHI HOA HOC vol. 35, no. 1, 1997, pages 8 - 10 AND 19 *
DATABASE CAPLUS [Online] DOC. NO. 32:36846 CASALE: 'New remedies against vine disease', XP002956139 Retrieved from STN Database accession no. 1938:36846 & RICERCA SCI. vol. 7, no. II, 1936, pages 605 - 609 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3583C2 (ro) * 2008-02-12 2008-12-31 Георге ДУКА Procedeu de obţinere a compoziţiei fungicide ultradisperse
CN111670907A (zh) * 2020-06-18 2020-09-18 湖南国发精细化工科技有限公司 一种仲丁威农药稳定剂及仲丁威农药
CN111670907B (zh) * 2020-06-18 2021-06-15 湖南国发精细化工科技有限公司 一种仲丁威农药稳定剂及仲丁威农药

Also Published As

Publication number Publication date
WO2002075007A3 (es) 2002-11-28
AU2002246445A1 (en) 2002-10-03
US20020136781A1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
AU783229B2 (en) Metal-containing compositions, preparations and uses
JP5639586B2 (ja) 抗菌性銀溶液
WO2002076378A2 (es) Proceso para producir un hidróxido cúprico estable y sales cúpricas básicas
US20120328713A1 (en) Articles of Manufacture with Improved Anti-microbial Properties
ES2208235T3 (es) Tratamiento fitosanitario de planta y composiciones que se pueden utilizar para el mismo.
JP2011507834A (ja) 植物病原体の防除及び作物肥料としての使用のための組成物
WO2002075007A2 (es) Metodo para hacer compuestos cupricos coloidales y sus usos
KR102040711B1 (ko) 규산보르도액 및 그 제조방법
JPH0474784A (ja) 液肥
MXPA03008469A (es) Metodo para hacer compuestos cupricos coloidales y sus usos.
WO1999009833A1 (fr) Solutions antibacteriennes et antimoisissure contenant des sels mineraux de complexes d&#39;argent, et procede de production associe
CN111689565A (zh) 一种底泥钝化剂及制备方法、水体的处理方法
EP4260705A1 (en) Solid composition as a soluble precursor of an eco-friendly and effective metal-based biocide, process and use thereof
EP4451872A1 (en) Pesticides containing metals
KR101313261B1 (ko) 작물용 구리제 및 그 제조방법
EP4339178A1 (en) Compound liquid fertilizer
GB2177003A (en) Algaecidal and herbicidal composition
JPH082761B2 (ja) 切り花の保存剤
CN1307806A (zh) 含有三唑酮成分的具有杀菌活性的混合组合物
JP2005053793A (ja) 無機系抗菌剤を含有した水性懸濁状農薬製剤の調製方法
SK281447B6 (sk) Spôsob výroby meďnatých fungicídnych prípravkov
CN1273242A (zh) 二氯异氰尿酸钾
PL223968B1 (pl) Wodne roztwory cytrynianowo-boranowych kompleksów srebra(I), miedzi(II) i cynku(II) oraz sposób otrzymywania wodnych roztworów cytrynianowo-boranowych kompleksów srebra(I), miedzi(II) i cynku(II)
PL378952A1 (pl) Preparaty srebra do nadawania materiałom właściwości bakteriobójczych i grzybobójczych oraz sposób nadawania materiałom właściwości bakteriobójczych i grzybobójczych
PL227761B1 (pl) Wodne roztwory cytrynianowo-boranowych kompleksów srebra (I) i miedzi (II) oraz sposób otrzymywania wodnych roztworów cytrynianowo-boranowych kompleksów srebra (I) i miedzi (II)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/008469

Country of ref document: MX

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP