[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002070423A1 - Method of producing an additive for mixed cements and device for carrying out said method - Google Patents

Method of producing an additive for mixed cements and device for carrying out said method Download PDF

Info

Publication number
WO2002070423A1
WO2002070423A1 PCT/AT2002/000043 AT0200043W WO02070423A1 WO 2002070423 A1 WO2002070423 A1 WO 2002070423A1 AT 0200043 W AT0200043 W AT 0200043W WO 02070423 A1 WO02070423 A1 WO 02070423A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
cyclone
melt
melting cyclone
weight
Prior art date
Application number
PCT/AT2002/000043
Other languages
German (de)
French (fr)
Inventor
Alfred Edlinger
Original Assignee
Tribovent Verfahrensentwicklung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tribovent Verfahrensentwicklung Gmbh filed Critical Tribovent Verfahrensentwicklung Gmbh
Priority to EP02710666A priority Critical patent/EP1360158A1/en
Publication of WO2002070423A1 publication Critical patent/WO2002070423A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/1045Forming solid beads by bringing hot glass in contact with a liquid, e.g. shattering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/109Glass-melting furnaces specially adapted for making beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • C04B18/026Melted materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/32Incineration of waste; Incinerator constructions; Details, accessories or control therefor the waste being subjected to a whirling movement, e.g. cyclonic incinerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/003Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • F23G2201/602Separating different sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/30Solid combustion residues, e.g. bottom or flyash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7005Incinerating used asbestos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a method for producing an admixture for mixed cements with good early strength and to an apparatus for performing this method.
  • the invention now aims to bring such construction demolition material and large quantities of washing sludge from gravel extraction and in particular also old refractory material to an economical use and aims in particular to create an admixture for mixed cements, which can also be used when large amounts of such Admixtures result in advantageous product properties and in particular an improved early strength.
  • he method according to the invention consists essentially in that raw material selected from the group of rubble, waste glass, clay, marl, waste material, power plant fly ash, waste pyrolyzates, slags from non-ferrous metallurgy and steel production, Eternit or asbestos panels or -fibers, harbor sludge, mining abrau, alkali-containing clinker furnace bypass dusts and / or washing sludge from the gravel extraction are melted in a melting cyclone and then subjected to granulation to form a glassy product.
  • a melting Cyclones also allow extremely fine-grained and dusty constituents to be incorporated directly into the melt, in particular asbestos waste being rapidly adsorbed on the sticky surface of the melt particles and thus being able to be safely removed from the exhaust gas stream of the melt cyclone. Dust-like and very fine-grained particles can thus be incorporated and used in the melt in a melt cyclone of this type, comparable to a wet dust wash. In contrast, the use of such fine dust in the clinker furnace would lead to an excessive load on the burner exhaust gases from the clinker furnace.
  • a glassy binder with a glass content of over 95% by weight can surprisingly be obtained, the use of which as an admixture in composite cements or mixed cements also in amounts of up to 50% by weight surprisingly gives early strength values which are significantly higher than comparison values with good blast furnace slag.
  • the melted rubble fraction results in an excellent synthetic pozzolana, low in heavy metals, which can be activated very well.
  • Such high early strength values are surprising compared to other admixtures, such as blast furnace slag, whereby the process according to the invention is characterized by particularly low specific CO 2 emissions due to the considerably lower calcination effort and low heat consumption, since the exothermic enthalpy of fusion, ie the heat of neutralization of CaO and SiO 2 can be used and a surprisingly good grindability after the glazing could be determined during the granulation with little energy expenditure.
  • the raw material melt is produced from a mixture whose basicity (CaO / Si ⁇ 2) is between 0.3 and 1.2, the Al2O3 content to 2 to 11% by weight, the total a2 ⁇ + K2O to 0.5 to 3% by weight , the MgO content was set at 3 to 15% by weight and the Fe 2 O 3 content was set at 1 to 4.5% by weight, such a mixture being able to be obtained either by suitable selection from the proposed raw materials, or directly, for example, in the composition corresponds to usual washing sludge from gravel extraction.
  • the inventive method is performed so that the melt is melted under pressure seal and is blown into the melting cyclone hot blast at temperatures of between 600 ° C and 1200 ° C, wherein slag temperatures are achieved in the order of about 1450 q C before the granulation.
  • the melt can be granulated in any manner, with fine porous material having excellent grindability being obtained when using boiling water granulation.
  • the molten material can also be granulated, for example, with 2.5 Nm.3 air per kg of melt, the material being obtained in both cases due to the low basicity when using washing sludge from the gravel extraction, X-ray amorphous and practically 100% glazed.
  • a basicity C / S of> 0.7 however, air granulation is not suitable in order to achieve the desired fineness and grain size.
  • correction substances can be added and further material with a lower melting point can be melted.
  • the device according to the invention for carrying out this method is essentially a melting cyclone or a suspended gas melter, the head of which is pressure-tightly connected to a cyclone separator via a suspended gas heat exchanger or a fluidized bed reactor and its discharge opening for the melt, with the melting cyclone or Floating-gas melter lines for blowing in granular raw material and hot wind are connected.
  • the melting cyclone or floating gas melter allows the safe incorporation of very fine dust or materials that can be easily conveyed in the gas flow, whereby the use of a floating gas heat exchanger at the top of the melting cyclone further increases the proportion of solids that is actually melted in the melting cyclone.
  • the arrangement of a suspended gas heat exchanger or a fluidized bed reactor also enables the waste heat of the process to be used further, the total heat balance being able to be improved by supplying combustion air into the riser pipe of the suspended gas heat exchanger or into the fluidized bed of the fluidized bed reactor.
  • the fine fraction of building rubble (d ⁇ 8 mm) contains up to 18% of combustible constituents, so that there is optimal burnout in the fluidized bed.
  • the coarse fraction of the rubble can be used as a substitute for gravel in the concrete.
  • the feed material can be blown into the melting cyclone in a simple manner, wherein temperatures of about 1500 ° C. can be achieved in the melting cyclone.
  • the additional use of a cyclone separator allows oversize particles to be circulated, the design advantageously being such that the cyclone separator opens a discharge lock for coarse particles. points, which is connected to the melting cyclone via a recirculation line.
  • the amount of gas drawn off from the cyclone separator can advantageously be cleaned in a simple manner, the device according to the invention advantageously being developed in such a way that the gas space of the cyclone separator is connected to a fine dust filter and that the fine dust separated in the fine dust filter is connected to the hot wind pipe of the Melt cyclone connectable discharge line is connected.
  • the material accumulating in the fine dust filter can, with appropriate dimensioning of the suspended gas heat exchanger and design of the cyclone separator depending on the selected feedstocks, result in fine dust, which is composed to a large extent of chlorides or sulfur compounds, so that it is possible to provide a corresponding bypass and to oversupply them Remove materials from the circuit.
  • the fine dust from the fine dust filter can also be returned to the melting cyclone together with the hot wind, so that the solids can be almost completely recycled and a safe exhaust gas is formed.
  • the granulation itself can be carried out by any known method, and in addition to boiling water granulation and granulation with cold air, granulation with steam or cold water can also be carried out here in order to ensure correspondingly high glazing.
  • Composite cements were subsequently produced with the product obtained, which was ground to a Blaine fineness of 4900 cm / g, for which 38 KWh / t were used, ie mixtures of the material obtained, pozzolans and / or ground waste glass, clinker and Plaster.
  • the samples for the strength tests were produced according to EN 196-1 with a water / cement ratio of 0.5.
  • the composition examined had a content of 22% by weight pozzolana, 42% by weight of the vitrified process product, 2% by weight of gypsum and the rest of the clinker. With such a composite cement was after 2 days a compressive strength of 6 N / mm 2 after 7 days 18 N / mm 2 after 28 days and 46 N / mm 2 measured, and it was therefore found a high early strength.
  • Fig. 1 denotes a melting cyclone onto which raw material is charged via lines 2 and 3, respectively. ⁇ on the line 4, and fuel delivery air is supplied, the supply of the raw material in the head 5 of the melting cyclone 1, or can be done in a processor coupled to the head 5 suspended gas heat exchanger 6 according to the type of the raw material.
  • the maximum grain size of the raw material is 2 mm.
  • a cyclone separator 7 connects to the suspended gas heat exchanger 6, from which oversize particles can be discharged via line 9 via a lock 8 and introduced into a hot wind line 10.
  • the hot wind line for the hot wind with temperatures between 600 ° and 1200 ° C is in turn connected to the head region 5 of the melting cyclone 1, hot wind being used as a transport medium for the coarse particles fed via the line 9.
  • the cyclone separator 11 gas is discharged via a line and fed to a fine dust filter 12.
  • the cleaned exhaust gas can be withdrawn via line 13 at temperatures of approximately 300 ° C. Dust is discharged from the fine dust filter via the lock 14 into a line 15, which in turn can be connected to the hot wind line 10.
  • a line 16 is arranged for the discharge of such excess amounts into a collecting container 17.
  • the melt of the melting cyclone passes into a tundish 18, the mouth of the melting cyclone opening below the bath surface 19 of the melt in the tundish 18, so that a pressure-tight closure is ensured.
  • the discharge opening for the melt 20 can be closed with a conventional stopper 21, which can be moved vertically in the direction of the double arrow 22, and opens into a granulator, indicated schematically by 23.
  • An air granulator for example that from Austrian application A403 / 2001, can advantageously also be used as the granulator, in which case the hot air can be recirculated as combustion air.
  • the granulate can be discharged from the granulator via a chute 24 into a corresponding collecting container 25.
  • the slag tundish can be heated in any way and used as a forehearth.
  • the granulator 23 can be designed in any way, and in addition to boiling water granulation or cold water granulation, it can also be granulated with cold air or steam.
  • the material drawn off via the chute 24 has a glass content of over 95% by weight.
  • FIG. 2 shows a melting cyclone 1, on which raw material is charged via lines 2 and 3. Fuel and hot wind are also supplied via line 3, depending on the nature of the raw material, the raw material can be fed into the melting cyclone 1 or into a fluidized bed reactor 26 connected to the top of the melting cyclone 1.
  • a line 27 for the supply of combustion air is connected to the fluidized bed reactor 26, so that the overall heat balance can be improved by burning the combustible components contained in the raw material.
  • a cyclone separator 7 in turn connects to the fluidized bed reactor 26, from which oversize particles are discharged via line 9 via a lock 8 and can be fed to the fluidized bed reactor 26 or the melting cyclone 1. Analogously to the design according to FIG. 1, gas can be discharged from the cyclone separator via a line 11 and fed to a further filtering.
  • the Cr (chromium) contained in it can be incorporated in the spinel ("magnetite") formed by an oxidation process in the slag tundish so that it is resistant to leaching.
  • the magnetite can also be magnetically removed from the slag dust after the slag grinding process or micro-granulation.
  • the waste heat from the hot gases can, if desired, be recovered, and the energy consumption can be reduced if asphalt from road demolition material is used.
  • the asphalt can advantageously be introduced as fuel into the fluidized bed. In this case it is also possible to mix asphalt with waste oils, waste solvents, heavy and medium-sized heating oil derivatives or oil refinery residues from petroleum distillation.
  • the asphalt can, however, also be introduced into a gasifying fluidized bed, producing hot exhaust gas which is rich in H2 / CO and which can be partly supplied to the melting cyclone as fuel. The excess energy can be used for drying or preheating the raw material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The invention relates to a method of producing an additive for mixed cements that have good early strength. To this end, raw material is selected from the group comprising building rubble, waste glass, argil, marl, waste fireproof material, flue ash from power stations, waste pyrolysates, slags from non-ferrous industry and steel production, asbestos cement or asbestos sheets or fibers, harbor sludge, excavated material from mines, alkali-containing clinker furnace bypass dusts and/or washing sludge from gravel extraction are melted in a melting cyclone and are then subjected to granulation, thereby producing a vitreous product.

Description

Verfahren zur Herstellung eines Zumischstof f es für Mischzemente sowie Vorrichtung zur Durchführung dieses VerfahrensProcess for producing an admixture for mixed cements and device for carrying out this process
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Zumischstoffes für Mischzemente mit guter Frühfestigkeit sowie auf eine Vorrichtung zur Durchführung dieses Verfahrens .The invention relates to a method for producing an admixture for mixed cements with good early strength and to an apparatus for performing this method.
Abraummaterial , Bauschutt und insbesondere beim Abbruch von Gebäuden anfallende Asbestfasern enthaltende Bestandteile werden bisher in der Regel verhaldet . Versuche, derartige Materialien in einem Drehrohrofen bei der Klinkerherstellung mit- zuverarbeiten, scheitern zumeist daran, daß überaus feinkörnige bzw. staubförmige Bestandteile nicht eingebunden werden können, sondern vielmehr mit den Brennerabgasen einen Dreh- rohrofen ungehindert passieren . Dies gilt insbesondere für Eternitabfälle bzw. zerkleinertes Abbruchmaterial , welche Asbestfasern als Beschichtung oder als Platten enthielten.Debris, building rubble and, in particular, components containing asbestos fibers that occur during the demolition of buildings have so far generally been used. Attempts to process such materials in a rotary kiln during clinker production mostly fail because extremely fine-grained or dust-like components cannot be incorporated, but rather pass through a rotary kiln with the burner exhaust gases unhindered. This applies in particular to Eternit waste or crushed demolition material that contained asbestos fibers as a coating or as plates.
Die Erfindung zielt nun darauf ab, derartiges Bauabbruchmaterial sowie in großen Mengen anfallende Waschschlämme aus der Kiesgewinnung und insbesondere auch Alt-Feuerfestmaterial einer wirtschaftlichen Verwendung zuzuführen und zielt insbesondere darauf ab , einen Zumischstof f für Mischzemente zu schaffen, welcher auch beim Einsatz von hohen Mengen derartiger Zumischstoffe vorteilhafte Produkteigenschaften und insbesondere eine verbesserte Frühfestigkeit ergibt .The invention now aims to bring such construction demolition material and large quantities of washing sludge from gravel extraction and in particular also old refractory material to an economical use and aims in particular to create an admixture for mixed cements, which can also be used when large amounts of such Admixtures result in advantageous product properties and in particular an improved early strength.
Zur Lösung dieser Aufgabe besteht das er findungs gemäße Verfahren im wesentlichen darin, daß Rohmaterial ausgewählt aus der Gruppe Bauschutt, Altglas , Ton, Mergel , Alt-Feuerfestmaterial , Kraftwerks flugasche, Müllpyrolysate, Schlacken aus der Buntmetallurgie und Stahlherstellung, Eternit- bzw. Asbestplatten oder -fasern, Hafenschlamm, Bergwerks abrau , alkalihältige Klinkerofen-Bypass-Stäube und/oder Waschschlamm aus der Kiesgewinnung in einem Schmelzzyklon aufgeschmolzen wird und anschließend einer Granulation unter Ausbildung eines glasigen Produktes unterworfen wird . Die Verwendung eines Schmelz- zyklones erlaubt es auch überaus feinkörnige und staubförmige Bestandteile unmittelbar in die Schmelze einzubinden, wobei insbesondere Asbestabfälle an der klebrigen Oberfläche der Schmelzepartikel rasch adsorbiert werden und damit aus dem Abgasstrom des Schmelzzyklones sicher entfernt werden können. Staubförmige und feinstkörnige Partikel können somit in einem derartigen Schmelzzyklon vergleichbar einer nassen Staubwäsche in die Schmelze eingebunden werden und eingesetzt werden. Demgegenüber würde der Einsatz derartigen Feinststaubes im Klinkerofen zu einer übermäßigen Belastung der Brennerabgase des Klinkerofens führen. Dadurch, daß nun die aufgeschmolzenen Partikel einer Granulation unter Ausbildung eines glasigen Produktes unterworfen werden, kann nun überraschend ein glasiges Bindemittel mit einem Glasgehalt von über 95 Gew.% erzielt werden, dessen Einsatz als Zumischstoff zu Kompositzementen bzw. Mischzementen auch in Mengen von bis zu 50 Gew.% überraschenderweise noch Frühfestigkeitswerte ergibt, welche deutlich höher liegen als Vergleichswerte mit guter Hochofenschlacke. Bereits die aufgeschmolzene Bauschuttfraktion ergibt ein hervorragendes synthetisches, schwermetallarmes Puzzolan, welches sehr gut aktiviert werden kann. Bei einer Mahlfeinheit von 4900 m^/g nach Blaine konnten in einem Gemisch von 22 Gew.% Puzzolan, 42 Gew.% des erfindungsgemäß herstellbaren Zumischstoffes, 2 Gew.% Gips und Restklinker Druckfestigkeits- werte nach 2 Tagen von 6 N/ m^ , nach 7 Tagen von 18 N/mm2 und nach 28 Tagen von 46 N/mm^ erzielt werden. Anstelle von Puzzo- lanen konnte auch gemahlenes Altglas eingesetzt werden. Derartig hohe Frühfestigkeitswerte sind im Vergleich zu anderen Zumischstoffen, wie beispielsweise Hochofenschlacke als über- raschend zu bezeichnen, wobei das erfindungsgemäße Verfahren sich durch besonders geringe spezifische Cθ2-Emission aufgrund des wesentlich geringeren Kalzinationsaufwandes und geringen Wärmeverbrauch auszeichnet, da die exotherme Schmelzenthalpie, d.h. die Neutralisationswärme von CaO und Siθ2 genutzt werden kann und eine überraschend gute Mahlbarkeit nach der Verglasung bei der Granulation mit geringem Energieaufwand festgestellt werden konnte. Die Rohmaterialschmelze wird aus einem Gemisch hergestellt, dessen Basizität (CaO/Siθ2) zwischen 0,3 und 1,2, der AI2O3- Gehalt auf 2 bis 11 Gew.%, die Summe a2θ + K2O auf 0,5 bis 3 Gew.%, der MgO-Gehalt auf 3 bis 15 Gew.% und der Fe2θ3~ Gehalt auf 1 bis 4,5 Gew.% eingestellt wurden, wobei ein derartiges Gemisch entweder durch geeignete Auswahl aus den vorgeschlagenen Rohmaterialien erhalten werden kann, oder unmittelbar beispielsweise der Zusammensetzung üblichen Wasch- Schlammes aus der Kiesgewinnung entspricht.To solve this problem, he method according to the invention consists essentially in that raw material selected from the group of rubble, waste glass, clay, marl, waste material, power plant fly ash, waste pyrolyzates, slags from non-ferrous metallurgy and steel production, Eternit or asbestos panels or -fibers, harbor sludge, mining abrau, alkali-containing clinker furnace bypass dusts and / or washing sludge from the gravel extraction are melted in a melting cyclone and then subjected to granulation to form a glassy product. The use of a melting Cyclones also allow extremely fine-grained and dusty constituents to be incorporated directly into the melt, in particular asbestos waste being rapidly adsorbed on the sticky surface of the melt particles and thus being able to be safely removed from the exhaust gas stream of the melt cyclone. Dust-like and very fine-grained particles can thus be incorporated and used in the melt in a melt cyclone of this type, comparable to a wet dust wash. In contrast, the use of such fine dust in the clinker furnace would lead to an excessive load on the burner exhaust gases from the clinker furnace. Because the melted particles are now subjected to granulation to form a glassy product, a glassy binder with a glass content of over 95% by weight can surprisingly be obtained, the use of which as an admixture in composite cements or mixed cements also in amounts of up to 50% by weight surprisingly gives early strength values which are significantly higher than comparison values with good blast furnace slag. Already the melted rubble fraction results in an excellent synthetic pozzolana, low in heavy metals, which can be activated very well. With a fineness of 4900 m ^ / g according to Blaine, in a mixture of 22% by weight pozzolana, 42% by weight of the admixture that can be produced according to the invention, 2% by weight of gypsum and residual clinker, compressive strength values of 6 N / m ^ after 2 days , after 7 days of 18 N / mm2 and after 28 days of 46 N / mm ^. Instead of puzzolans, ground waste glass could also be used. Such high early strength values are surprising compared to other admixtures, such as blast furnace slag, whereby the process according to the invention is characterized by particularly low specific CO 2 emissions due to the considerably lower calcination effort and low heat consumption, since the exothermic enthalpy of fusion, ie the heat of neutralization of CaO and SiO 2 can be used and a surprisingly good grindability after the glazing could be determined during the granulation with little energy expenditure. The raw material melt is produced from a mixture whose basicity (CaO / Siθ2) is between 0.3 and 1.2, the Al2O3 content to 2 to 11% by weight, the total a2θ + K2O to 0.5 to 3% by weight , the MgO content was set at 3 to 15% by weight and the Fe 2 O 3 content was set at 1 to 4.5% by weight, such a mixture being able to be obtained either by suitable selection from the proposed raw materials, or directly, for example, in the composition corresponds to usual washing sludge from gravel extraction.
Mit Vorteil wird das erfindungsgemäße Verfahren so durchgeführt, daß die Schmelze unter Druckabschluß erschmolzen wird und in den Schmelzzyklon Heißwind mit Temperaturen zwischen 600° C und 1200° C eingeblasen wird, wobei Schlackentemperaturen in der Größenordnung von etwa 1450q C vor der Granulation erzielt werden.Advantageously, the inventive method is performed so that the melt is melted under pressure seal and is blown into the melting cyclone hot blast at temperatures of between 600 ° C and 1200 ° C, wherein slag temperatures are achieved in the order of about 1450 q C before the granulation.
Um ein rasches und sicheres Aufschmelzen unter Nutzung der exothermen Schmelzenthalpie zu ermöglichen,, wird mit Vorteil so vorgegangen, daß das Rohmaterial auf eine maximale Korngröße von d aχ = 2mm zerkleinert eingesetzt wird. Die Schmelze kann in beliebiger Weise granuliert werden, wobei bei Verwendung einer Siedewassergranulation fein poröses Material mit hervorragender Mahlbarkeit erzielt wird. Das schmelzflüssige Material kann aber auch beispielsweise mit 2,5 Nm.3 Luft pro kg Schmelze granuliert werden, wobei aufgrund der niedrigen Basizität bei Verwendung von Waschschlamm aus der Kiesgewinnung das Material in beiden Fällen röntgenamorph und praktisch 100 % verglast anfällt. Im Falle einer Basizität C/S von > 0,7 ist aber eine Luftgranulation nicht geeignet, um die gewünschte Feinheit und Korngröße zu erzielen.In order to enable a quick and safe melting using the exothermic enthalpy of fusion, the procedure is advantageously that the raw material is used comminuted to a maximum grain size of d a χ = 2 mm. The melt can be granulated in any manner, with fine porous material having excellent grindability being obtained when using boiling water granulation. However, the molten material can also be granulated, for example, with 2.5 Nm.3 air per kg of melt, the material being obtained in both cases due to the low basicity when using washing sludge from the gravel extraction, X-ray amorphous and practically 100% glazed. In the case of a basicity C / S of> 0.7, however, air granulation is not suitable in order to achieve the desired fineness and grain size.
Mit Vorteil wird das Verfahren so durchgeführt, daß die Schmelze aus dem Schmelzzyklon in einen Schlackentundish oderThe process is advantageously carried out in such a way that the melt from the melting cyclone into a slag tundish or
Vorherd eingebracht und aus diesem der Granulation zugeführt wird, wobei in einem derartigen Schlackentundish oder Vorherd erforderlichenfalls Korrekturstoffe zugesetzt werden und weiteres Material mit niedrigerem Schmelzpunkt aufgeschmolzen werden kann.Introduced beforehand and fed to the granulation from this, in such a slag tundish or forehearth if necessary, correction substances can be added and further material with a lower melting point can be melted.
Die erfindungsgemäße Vorrichtung zur Durchführung dieses Verfahrens ist im wesentlichen durch einen Schmelzzyklon oder einen Schwebegas-Schmelzer, dessen Kopf über einen Schwebegaswärmetauscher oder einen Wirbelschichtreaktor mit einem Zyklonabscheider und dessen Austragsöffnung für die Schmelze mit einem Tundish oder Vorherd druckfest verbunden ist, wobei an den Schmelzzyklon oder Schwebegas-Schmelzer Leitungen für das Einblasen von körnigem Rohmaterial und Heißwind angeschlossen sind, gekennzeichnet. Der Schmelzzyklon oder Schwebegas-Schmelzer erlaubt hiebei die sichere Einbindung von Feinststaub bzw. im Gasstrom leicht förderbaren Materialien, wobei die Verwendung eines Schwebegaswärmetauschers am Kopf des Schmelzzyklones den Anteil an Feststoffen, welcher tatsächlich im Schmelzzyklon aufgeschmolzen wird, weiter erhöht. Die Anordnung eines Schwebegaswärmetauschers bzw. eines Wir- belschichtreaktors ermöglicht auch eine weitere Nutzung der Abwärme des Prozesses, wobei durch Zufuhr von Verbrennungsluft in das Steigrohr des Schwebegaswärmetauschers bzw. in die Wirbelschicht des Wirbelschichtreaktors die Gesa t-Wärmebilanz verbessert werden kann. Beispielsweise enthält die Fein- fraktion von Bauschutt (d < 8 mm) einen Anteil an brennbaren Bestandteilen von bis zu 18 %, sodaß ein optimaler Ausbrand in der Wirbelschicht erfolgt. Die Grobfraktion des Bauschutts kann in diesem Fall beispielsweise als Kies-Ersatz im Beton eingesetzt werden.The device according to the invention for carrying out this method is essentially a melting cyclone or a suspended gas melter, the head of which is pressure-tightly connected to a cyclone separator via a suspended gas heat exchanger or a fluidized bed reactor and its discharge opening for the melt, with the melting cyclone or Floating-gas melter lines for blowing in granular raw material and hot wind are connected. The melting cyclone or floating gas melter allows the safe incorporation of very fine dust or materials that can be easily conveyed in the gas flow, whereby the use of a floating gas heat exchanger at the top of the melting cyclone further increases the proportion of solids that is actually melted in the melting cyclone. The arrangement of a suspended gas heat exchanger or a fluidized bed reactor also enables the waste heat of the process to be used further, the total heat balance being able to be improved by supplying combustion air into the riser pipe of the suspended gas heat exchanger or into the fluidized bed of the fluidized bed reactor. For example, the fine fraction of building rubble (d <8 mm) contains up to 18% of combustible constituents, so that there is optimal burnout in the fluidized bed. In this case, the coarse fraction of the rubble can be used as a substitute for gravel in the concrete.
Das Einsatzmaterial kann bei entsprechender maximaler Korngröße von etwa 2 mm in einfacher Weise in den Schmelzzyklon eingeblasen werden, wobei im Schmelzzyklon Temperaturen von etwa 1500° C erzielt werden können. Die zusätzliche Verwendung eines Zyklonabscheiders erlaubt Überkorn im Kreislauf zu führen, wobei mit Vorteil die Ausbildung so getroffen ist, daß der Zyklonabscheider eine Austragschleuse für Grobkorn auf- weist, welche über eine Rezirkulationsleitung mit dem Schmelzzyklon verbunden ist. Die aus dem Zyklonabscheider abgezogene Gasmenge kann mit Vorteil in einfacher Weise gereinigt werden, wobei die erfindungsgemäße Vorrichtung mit Vorteil so weiter- gebildet ist, daß der Gasraum des Zyklonabscheiders mit einem Feinstaubfilter verbunden ist und daß der im Feinstaubfilter abgeschiedene Feinstaub mit einer mit der Heißwindleitung des SchmelzZyklons verbindbaren Austragsleitung in Verbindung steht. Das im Feinstaubfilter anfallende Material kann bei entsprechender Dimensionierung des Schwebegaswärmetauschers und Auslegung des Zyklonabscheiders in Abhängigkeit von den gewählten Einsatzstoffen Feinststaub ergeben, welcher sich in hohem Maße aus Chloriden oder Schwefelverbindungen zusammensetzt, sodaß die Möglichkeit geschaffen wird hier einen ent- sprechenden Bypass vorzusehen und Übermengen dieser Materialien aus dem Kreislauf zu entfernen. Prinzipiell läßt sich der Feinststaub aus dem Feinstaubfilter aber auch gemeinsam mit Heißwind wiederum in den Schmelzzyklon rückführen, sodaß die Feststoffe nahezu vollständig im Kreislauf geführt werden können und ein gefahrloses Abgas gebildet wird.With a corresponding maximum grain size of about 2 mm, the feed material can be blown into the melting cyclone in a simple manner, wherein temperatures of about 1500 ° C. can be achieved in the melting cyclone. The additional use of a cyclone separator allows oversize particles to be circulated, the design advantageously being such that the cyclone separator opens a discharge lock for coarse particles. points, which is connected to the melting cyclone via a recirculation line. The amount of gas drawn off from the cyclone separator can advantageously be cleaned in a simple manner, the device according to the invention advantageously being developed in such a way that the gas space of the cyclone separator is connected to a fine dust filter and that the fine dust separated in the fine dust filter is connected to the hot wind pipe of the Melt cyclone connectable discharge line is connected. The material accumulating in the fine dust filter can, with appropriate dimensioning of the suspended gas heat exchanger and design of the cyclone separator depending on the selected feedstocks, result in fine dust, which is composed to a large extent of chlorides or sulfur compounds, so that it is possible to provide a corresponding bypass and to oversupply them Remove materials from the circuit. In principle, the fine dust from the fine dust filter can also be returned to the melting cyclone together with the hot wind, so that the solids can be almost completely recycled and a safe exhaust gas is formed.
Die Granulation selbst kann nach beliebigen bekannten Verfahren vorgenommen werden, wobei hier neben der Siedewassergranulation und der Granulation mit Kaltluft auch eine Granu- lation mit Dampf oder Kaltwasser vorgenommen werden kann, um eine entsprechende hohe Verglasung sicherzustellen.The granulation itself can be carried out by any known method, and in addition to boiling water granulation and granulation with cold air, granulation with steam or cold water can also be carried out here in order to ensure correspondingly high glazing.
Die Erfindung wird nachfolgend anhand eines Verfahrensbeispieles näher erläutert.The invention is explained in more detail below using a process example.
Waschschlamm aus der Kiesgewinnung wurde getrocknet, kalziniert und ohne weitere Zusätze direkt verschlackt. Die 1450° C heiße Schlacke wurde in einer Siedewassergranulation zu fein porösem Material mit hervorragender Mahlbarkeit abgeschreckt. Eine weitere Teilmenge der schmelzflüssigen heißen Schlacke wurde mit 2,5 Nm^ Luft pro kg Schmelze granuliert. Die chemische Zusammensetzung der Schlacke ergab folgende Richtanalyse:Washing sludge from the gravel extraction was dried, calcined and slagged directly without further additives. The 1450 ° C hot slag was quenched in a boiling water granulation to fine porous material with excellent grindability. Another portion of the molten hot slag was granulated with 2.5 Nm ^ air per kg of melt. The chemical composition of the slag showed the following directional analysis:
Figure imgf000008_0001
Figure imgf000008_0001
Aufgrund der niedrigen C/S-Basizität erstarrte das Material in beiden Fällen röntgenamorph und praktisch 100 % glasartig.Due to the low C / S basicity, the material solidified in both cases, X-ray amorphous and practically 100% glass-like.
Mit dem erhaltenen Produkt, welches auf eine Feinheit von 4900 cm /g nach Blaine vermählen wurde, wofür 38 KWh/t aufgewandt wurden, wurden in der Folge Kompositzemente hergestellt, d.h. Mischungen aus dem erhaltenen Material, Puzzolanen und/oder gemahlenem Altglas, Klinker und Gips. Die Proben für die Festigkeitsprüfungen wurden nach EN 196-1 mit einem Wasser/Zementverhältnis von 0,5 hergestellt. Die untersuchte Zusammensetzung wies einen Gehalt an 22 Gew.% Puzzolan, 42 Gew.% des verglasten Verfahrensproduktes, 2 Gew.% Gips und Rest Klinker auf. Mit einem derartigen Kompositzement wurde nach 2 Tagen eine Druckfestigkeit von 6 N/mm2, nach 7 Tagen 18 N/mm2 und nach 28 Tagen 46 N/mm2 gemessen und es wurde daher eine hohe Frühfestigkeit festgestellt.Composite cements were subsequently produced with the product obtained, which was ground to a Blaine fineness of 4900 cm / g, for which 38 KWh / t were used, ie mixtures of the material obtained, pozzolans and / or ground waste glass, clinker and Plaster. The samples for the strength tests were produced according to EN 196-1 with a water / cement ratio of 0.5. The composition examined had a content of 22% by weight pozzolana, 42% by weight of the vitrified process product, 2% by weight of gypsum and the rest of the clinker. With such a composite cement was after 2 days a compressive strength of 6 N / mm 2 after 7 days 18 N / mm 2 after 28 days and 46 N / mm 2 measured, and it was therefore found a high early strength.
Das Verfahrensprodukt reagierte sowohl puzzolanisch als auch hydraulich, wobei bei AI2O3 -Gehalten von über 5 Gew. % auch eine sulfatische Anregung mit höheren Gipsanteilen möglich ist, wodurch der Klinkeranteil weiter reduziert werden kann. Die Erfindung wird weiters nachfolgend anhand eines in der Zeichnung schematisch dargestellten Beispieles eines zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Vorrichtung näher erläutert. In dieser zeigt Fig. 1 eine erste Ausbildung der erfindungsgemäßen Vorrichtung und Fig. 2 einen Ausschnitt der Fig. 1 in einer abgewandelten Ausbildung.The product of the process reacted both pozzolanically and hydraulically, with sulfate excitation with higher gypsum proportions also being possible with AI2O3 contents of over 5% by weight, whereby the clinker proportion can be further reduced. The invention is further explained below with reference to an example of a device suitable for carrying out the method according to the invention, which is shown schematically in the drawing. 1 shows a first embodiment of the device according to the invention and FIG. 2 shows a detail of FIG. 1 in a modified embodiment.
In Fig. 1 ist mit 1 ein Schmelzzyklon bezeichnet, auf welchen Rohmaterial über die Leitungen 2 bzw. 3 chargiert wird. Über die Leitung 4 wird Brennstoff und Förderluft zugeführt, wobei je nach Art des Rohmateriales die Zufuhr des Rohmateriales in den Kopf 5 des Schmelzzyklones 1 oder aber in einen mit dem Kopf 5 verbundenen Schwebegaswärmetauscher 6 erfolgen kann. Als maximale Korngröße des Rohmateriales wird 2 mm vorgegeben.In Fig. 1, 1 denotes a melting cyclone onto which raw material is charged via lines 2 and 3, respectively. on the line 4, and fuel delivery air is supplied, the supply of the raw material in the head 5 of the melting cyclone 1, or can be done in a processor coupled to the head 5 suspended gas heat exchanger 6 according to the type of the raw material. The maximum grain size of the raw material is 2 mm.
An den Schwebegaswärmetauscher 6 schließt ein Zyklonabscheider 7 an, aus welchem über eine Schleuse 8 Überkorn über die Leitung 9 ausgetragen und in eine Heißwindleitung 10 eingebracht werden kann. Die Heißwindleitung für den Heißwind mit Temperaturen zwischen 600° und 1200° C ist wiederum an den Kopfbereich 5 des Schmelzzyklones 1 angeschlossen, wobei Heißwind als Transportmedium für das über die Leitung 9 zugeführte Grobkorn eingesetzt wird.A cyclone separator 7 connects to the suspended gas heat exchanger 6, from which oversize particles can be discharged via line 9 via a lock 8 and introduced into a hot wind line 10. The hot wind line for the hot wind with temperatures between 600 ° and 1200 ° C is in turn connected to the head region 5 of the melting cyclone 1, hot wind being used as a transport medium for the coarse particles fed via the line 9.
Aus., dem Zyklonabscheider wird über eine Leitung 11 Gas ausgebracht und einem Feinstaubfilter 12 zugeführt. Das gereinigte Abgas kann bei Temperaturen von etwa 300° C über die Leitung 13 abgezogen werden. Aus dem Feinstaubfilter wird Staub über die Schleuse 14 in eine Leitung 15 ausgetragen, welche wiederum mit der Heißwindleitung 10 verbunden werden kann. Wenn hohe Mengen an chloridhältigem oder schwefelhaltigem Material anfallen, kann zusätzlich die Möglichkeit geschaffen werden einen entsprechenden Bypass vorzusehen, wofür eine Leitung 16 für den Austrag derartiger Übermengen in einen Auffangbehälter 17 angeordnet ist. Die Schmelze des Schmelzzyklones gelangt in einen Tundish 18, wobei die Mündung des Schmelzzyklones unterhalb der Badoberfläche 19 der Schmelze im Tundish 18 mündet, sodaß ein druckfester Verschluß gewährleistet ist. Die Austragsöffnung für die Schmelze 20 ist mit einem üblichen Stopfen 21, welcher in Richtung des Doppelpfeiles 22 höhenbeweglich ist, verschließbar und mündet in einen schematisch mit 23 angedeuteten Granulator. Als Granulator ist vorteilhafterweise auch ein Luftgranulator, beispielsweise jener aus der österreichischen Anmeldung A403/2001, verwendbar, wobei in diesem Fall die Heißluft als Verbrennungsluft rückgeführt werden kann. Aus dem Granulator kann das Granulat über eine Schurre 24 in einen entsprechenden Auffangbehälter 25 ausgebracht werden. Der Schlackentundish kann in beliebiger Weise beheizt sein und als Vorherd eingesetzt werden. Der Granulator 23 kann beliebig ausgebildet sein, wobei neben einer Siedewassergranulation oder Kaltwassergranulation auch mit Kaltluft oder Dampf granuliert werden kann. Das über die Schurre 24 abezogene Material weist einen Glasgehalt von über 95 Gew.% auf. Bei Einsatz von Waschschlamm aus der Kiesgewinnung wurde ein spezifischer Wärmeverbrauch von ca. 2,7 MJ/kg Granulat ermittelt.From., The cyclone separator 11 gas is discharged via a line and fed to a fine dust filter 12. The cleaned exhaust gas can be withdrawn via line 13 at temperatures of approximately 300 ° C. Dust is discharged from the fine dust filter via the lock 14 into a line 15, which in turn can be connected to the hot wind line 10. If large amounts of chloride-containing or sulfur-containing material are obtained, the possibility can additionally be provided of a corresponding bypass, for which purpose a line 16 is arranged for the discharge of such excess amounts into a collecting container 17. The melt of the melting cyclone passes into a tundish 18, the mouth of the melting cyclone opening below the bath surface 19 of the melt in the tundish 18, so that a pressure-tight closure is ensured. The discharge opening for the melt 20 can be closed with a conventional stopper 21, which can be moved vertically in the direction of the double arrow 22, and opens into a granulator, indicated schematically by 23. An air granulator, for example that from Austrian application A403 / 2001, can advantageously also be used as the granulator, in which case the hot air can be recirculated as combustion air. The granulate can be discharged from the granulator via a chute 24 into a corresponding collecting container 25. The slag tundish can be heated in any way and used as a forehearth. The granulator 23 can be designed in any way, and in addition to boiling water granulation or cold water granulation, it can also be granulated with cold air or steam. The material drawn off via the chute 24 has a glass content of over 95% by weight. When using washing sludge from the gravel extraction, a specific heat consumption of approx. 2.7 MJ / kg granulate was determined.
In Fig. 2 ist wiederum ein Schmelzzyklon 1 ersichtlich, auf welchen Rohmaterial über die Leitungen 2 bzw. 3 chargiert wird. Über die Leitung 3 wird auch Brennstoff und Heißwind zugeführt, wobei je nach Art des Rohmateriales die Zufuhr des Rohmateriales in den Schmelzzyklon 1 oder aber in einen mit dem Kopf des Schmelzzyklones 1 verbundenen Wirbelschicht- reaktor 26 erfolgen kann. An den Wirbelschichtreaktor 26 ist eine Leitung 27 für die Zufuhr von Verbrennungsluft angeschlossen, sodaß durch Verbrenung der im Rohmaterial enthaltenen brennbaren Anteile die Gesamt-Wärmebilanz verbessert werden kann. An den Wirbelschichtreaktor 26 schließt wiederum ein Zyklonabscheider 7 an, aus welchem über eine Schleuse 8 Überkorn über die Leitung 9 ausgetragen und dem Wirbelschichtreaktor 26 bzw. dem Schmelzzyklon 1 zugeführt werden kann. Analog zur Ausbildung gemäß Fig. 1 kann aus dem Zyklonabscheider über eine Leitung 11 Gas ausgebracht und einer weiteren Filterung zugeführt werden.2 shows a melting cyclone 1, on which raw material is charged via lines 2 and 3. Fuel and hot wind are also supplied via line 3, depending on the nature of the raw material, the raw material can be fed into the melting cyclone 1 or into a fluidized bed reactor 26 connected to the top of the melting cyclone 1. A line 27 for the supply of combustion air is connected to the fluidized bed reactor 26, so that the overall heat balance can be improved by burning the combustible components contained in the raw material. A cyclone separator 7 in turn connects to the fluidized bed reactor 26, from which oversize particles are discharged via line 9 via a lock 8 and can be fed to the fluidized bed reactor 26 or the melting cyclone 1. Analogously to the design according to FIG. 1, gas can be discharged from the cyclone separator via a line 11 and fed to a further filtering.
Falls Stahlschlacke zur C/S-Korrektur eingesetzt wird, kann das darin enthaltene Cr (Chrom) über einen Oxidationsvorgang im Schlackentundish im gebildeten Spinel ("Magnetit") auslaugbeständig eingebunden werden. Der Magnetit kann aber auch nach dem Schlacken-Mahlvorgang oder einer Mikro-Granulierung magne- tisch aus dem Schlackenstaub entfernt werden.If steel slag is used for C / S correction, the Cr (chromium) contained in it can be incorporated in the spinel ("magnetite") formed by an oxidation process in the slag tundish so that it is resistant to leaching. However, the magnetite can also be magnetically removed from the slag dust after the slag grinding process or micro-granulation.
Die Abwärme der Heißgase kann gewünschtenfalls rückgewonnen werden, wobei der Energieeinsatz verringert werden kann, wenn Asphalt aus Straßenabbruchmaterial eingesetzt wird. In vor- teilhafter Weise kann der Asphalt hierbei als Brennstoff in die Wirbelschicht eingebracht werden. Möglich ist in diesem Fall aber auch die Vermischung von Asphalt mit Altölen, Alt- Lösungsmittel, schweren und mittleren Heizöl-Derivaten oder Ölraffinerierückständen aus der Erdöl-Destillation. Der Asphalt kann aber auch in eine vergasend betriebene Wirbelschicht eingebracht werden, wobei H2/CO-reiches, heißes Abgas entsteht, welches dem Schmelzzyklon teilweise als Brennstoff zugeführt werden kann. Der Energieüberschuß kann zur Trocknung bzw. Vorwärmung des Rohmateriales verwendet werden. The waste heat from the hot gases can, if desired, be recovered, and the energy consumption can be reduced if asphalt from road demolition material is used. The asphalt can advantageously be introduced as fuel into the fluidized bed. In this case it is also possible to mix asphalt with waste oils, waste solvents, heavy and medium-sized heating oil derivatives or oil refinery residues from petroleum distillation. The asphalt can, however, also be introduced into a gasifying fluidized bed, producing hot exhaust gas which is rich in H2 / CO and which can be partly supplied to the melting cyclone as fuel. The excess energy can be used for drying or preheating the raw material.

Claims

Patentansprüche: claims:
1. Verfahren zur Herstellung eines Zumischstoffes für Mischzemente mit guter Frühfestigkeit, dadurch gekennzeichnet, daß Rohmaterial ausgewählt aus der Gruppe Bauschutt, Altglas, Ton, Mergel, Alt-Feuerfestmaterial, Kraftwerksflugasche, Müll- pyrolysate, Schlacken aus der Buntmetallurgie und Stahlherstellung, Eternit- bzw. Asbestplatten oder -fasern, Hafenschlamm, Bergwerksabraum, alkalihältige Klinkerofen-Bypass- Stäube und/oder Waschschlamm aus der Kiesgewinnung in einem Schmelzzyklon aufgeschmolzen wird, wobei die Rohmaterialschmelze aus einem Gemisch hergestellt wird, dessen Basizität (CaO/Si02) zwischen 0,3 und 1,2, der Al2θ3-Gehalt auf 2 bis 11 Gew.%, die Summe Na2θ + K2O auf 0,5 bis 3 Gew.%, der MgO- Gehalt auf 3 bis 15 Gew.% und der Fe2θ3~Gehalt auf 1 bis 4,5 Gew.% eingestellt wurden und daß die Rohmaterialschmelze anschließend einer Granulation unter Ausbildung eines glasigen Produktes unterworfen wird.1. A process for producing an admixture for mixed cements with good early strength, characterized in that raw material selected from the group of rubble, waste glass, clay, marl, refractory material, power plant fly ash, waste pyrolyzates, slags from non-ferrous metallurgy and steel production, Eternit- or Asbestos slabs or fibers, harbor sludge, mine spoil, alkali-containing clinker furnace bypass dusts and / or washing sludge from the gravel extraction are melted in a melting cyclone, the raw material melt being produced from a mixture whose basicity (CaO / Si02) is between 0.3 and 1,2, the Al2θ3 content to 2 to 11% by weight, the total Na2θ + K2O to 0.5 to 3% by weight, the MgO content to 3 to 15% by weight and the Fe2θ3 ~ content to 1 to 4.5% by weight were set and that the raw material melt is then subjected to granulation to form a glassy product.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schmelze unter Druckabschluß erschmolzen wird und in den Schmelzzyklon Heißwind mit Temperaturen zwischen 600° C und 1200° C eingeblasen wird.2. The method according to claim 1, characterized in that the melt is melted under pressure closure and is blown into the melting cyclone hot wind at temperatures between 600 ° C and 1200 ° C.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Rohmaterial auf eine maximale Korngröße von dmax = 2mm zerkleinert eingesetzt wird.3. The method according to claim 1 or 2, characterized in that the raw material is crushed to a maximum grain size of d m ax = 2mm.
4. Verfahren nach einem der Ansprüche 1, 2 oder 3 , dadurch ge- kennzeichnet, daß die Schmelze aus dem Schmelzzyklon in einen4. The method according to any one of claims 1, 2 or 3, characterized in that the melt from the melting cyclone in one
Schlackentundish oder Vorherd eingebracht und aus diesem der Granulation zugeführt wird.Slag tundish or forehearth is introduced and from this is fed to the granulation.
5. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, gekennzeichnet "durch einen Schmelzzyklon oder eine Schwebegas-Schmelzer (1) , dessen Kopf (5) über einen Schwebegaswärmetauscher (6) oder einen Wirbelschichtreaktor mit einem Zyklonabscheider (7) und dessen Austragsöffnung für die Schmelze (20) mit einem Tundish (18) oder Vorherd druckfest verbunden ist, wobei an den Schmelzzyklon oder Schwebe- gas-Scnmelzer (1) Leitungen (2,3,4) für das Einblasen von körnigem Rohmaterial und Heißwind angeschlossen sind.5. Device for performing the method according to one of claims 1 to 4, characterized "by a melting cyclone or a suspended gas melter (1), the head (5) of a suspended gas heat exchanger (6) or a fluidized bed reactor with a cyclone separator (7) and its discharge opening for the melt (20) with a tundish (18) or forehearth is connected pressure-tight, with lines (2, 3, 4) for the Blowing in granular raw material and hot wind are connected.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Zyklonabscheider (7) eine Austragschleuse (8) für Grobkorn aufweist, welche über eine Rezirkulationsleitung (10) mit dem Schmelzzyklon (1) verbunden ist.6. The device according to claim 5, characterized in that the cyclone separator (7) has a discharge lock (8) for coarse grain, which is connected via a recirculation line (10) with the melting cyclone (1).
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Gasraum des Zyklonabscheiders (7) mit einem Feinstaubfilter (12) verbunden ist und daß der im Fein- Staubfilter (12) abgeschiedene Feinstaub mit einer mit der Heißwindleitung (10) des SchmelzZyklons (1) verbindbaren Aus- tragsleitung (15) in Verbindung steht. 7. Device according to one of claims 1 to 6, characterized in that the gas space of the cyclone separator (7) is connected to a fine dust filter (12) and that the fine dust separated in the fine dust filter (12) with a with the hot wind pipe (10) of the discharge line (15) which can be connected to the melting cyclone (1).
PCT/AT2002/000043 2001-02-06 2002-02-06 Method of producing an additive for mixed cements and device for carrying out said method WO2002070423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02710666A EP1360158A1 (en) 2001-02-06 2002-02-06 Method of producing an additive for mixed cements and device for carrying out said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0018601A AT409860B (en) 2001-02-06 2001-02-06 METHOD FOR PRODUCING A ADMINISTER FOR MIXING CEMENTS AND DEVICE FOR CARRYING OUT THIS METHOD
ATA186/2001 2001-02-06

Publications (1)

Publication Number Publication Date
WO2002070423A1 true WO2002070423A1 (en) 2002-09-12

Family

ID=3663361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000043 WO2002070423A1 (en) 2001-02-06 2002-02-06 Method of producing an additive for mixed cements and device for carrying out said method

Country Status (3)

Country Link
EP (1) EP1360158A1 (en)
AT (1) AT409860B (en)
WO (1) WO2002070423A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060855A1 (en) * 2008-11-28 2010-06-03 Polysius Ag Method and plant for the production of cement
US8066813B2 (en) 2008-02-29 2011-11-29 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Cementitious compositions containing feldspar and pozzolanic particulate material, and method of making said composition
CN104962112A (en) * 2015-07-10 2015-10-07 天津中海油服化学有限公司 Device and method for modifying borosilicate hollow glass beads as cementing slurry lightening admixture
CN111925138A (en) * 2020-08-17 2020-11-13 康亚男 Environment-friendly building cement and preparation method thereof
CN113915618A (en) * 2021-11-01 2022-01-11 重庆三颗草科技有限公司 Method and system for cooperatively treating oil-based drilling cuttings by using cement pit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110883050B (en) * 2019-11-13 2023-08-25 蚌埠学院 High-water-content household garbage rapid recycling cleaning treatment method and system
CN111892342B (en) * 2020-08-18 2022-04-15 新沂市锡沂高新材料产业技术研究院有限公司 Preparation method of high-strength low-shrinkage cement composite material
CN113816623A (en) * 2021-09-30 2021-12-21 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 Cementitious material, composite filler material, concrete and filler
CN114704834A (en) * 2022-03-31 2022-07-05 中国大唐集团科学技术研究院有限公司中南电力试验研究院 System and method for integrally heat-treating municipal sludge by using boiler slag drying machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2010872A1 (en) * 1970-03-07 1971-09-16 Babcock & Wilcox Ag Sulphide iron ore conversion oxidation to iron - oxide
DE3514717A1 (en) * 1985-04-24 1986-10-30 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and apparatus for obtaining zinc oxides from fine granular sulphidic zinc concentrate by means of a pyrometallurgical smelting treatment
DE3934611A1 (en) * 1989-10-17 1991-04-18 Kloeckner Humboldt Deutz Ag Solid residue obtd. by heating communal mud - is made into cement by grinding with cement clinker
EP0712811A2 (en) * 1994-11-09 1996-05-22 Klöckner-Humboldt-Deutz Aktiengesellschaft Method for thermal treating of waste materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742214C2 (en) * 1997-09-24 2000-04-27 Nymic Anstalt Schaan Process for recycling old cars
EP0913363A1 (en) * 1997-11-03 1999-05-06 DBI DEUTSCHES BRENNSTOFFINSTITUT ROHSTOFF &amp; ANLAGENTECHNIK GmbH Method and apparatus for thermal transforming of waste materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2010872A1 (en) * 1970-03-07 1971-09-16 Babcock & Wilcox Ag Sulphide iron ore conversion oxidation to iron - oxide
DE3514717A1 (en) * 1985-04-24 1986-10-30 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and apparatus for obtaining zinc oxides from fine granular sulphidic zinc concentrate by means of a pyrometallurgical smelting treatment
DE3934611A1 (en) * 1989-10-17 1991-04-18 Kloeckner Humboldt Deutz Ag Solid residue obtd. by heating communal mud - is made into cement by grinding with cement clinker
EP0712811A2 (en) * 1994-11-09 1996-05-22 Klöckner-Humboldt-Deutz Aktiengesellschaft Method for thermal treating of waste materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066813B2 (en) 2008-02-29 2011-11-29 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Cementitious compositions containing feldspar and pozzolanic particulate material, and method of making said composition
WO2010060855A1 (en) * 2008-11-28 2010-06-03 Polysius Ag Method and plant for the production of cement
CN104962112A (en) * 2015-07-10 2015-10-07 天津中海油服化学有限公司 Device and method for modifying borosilicate hollow glass beads as cementing slurry lightening admixture
CN104962112B (en) * 2015-07-10 2017-07-21 天津中海油服化学有限公司 The reforming apparatus and method of a kind of cementing slurry palliative borosilicic acid salt hollow glass micropearl
CN111925138A (en) * 2020-08-17 2020-11-13 康亚男 Environment-friendly building cement and preparation method thereof
CN113915618A (en) * 2021-11-01 2022-01-11 重庆三颗草科技有限公司 Method and system for cooperatively treating oil-based drilling cuttings by using cement pit
CN113915618B (en) * 2021-11-01 2024-03-15 重庆三颗草科技有限公司 Method and system for cooperatively disposing oil-based drilling cuttings in cement kiln

Also Published As

Publication number Publication date
EP1360158A1 (en) 2003-11-12
ATA1862001A (en) 2002-04-15
AT409860B (en) 2002-12-27

Similar Documents

Publication Publication Date Title
DE102011014498B4 (en) Process for the production of a clinker substitute, clinker substitute, use of the clinker substitute, cement clinker, cement, mortar or concrete, process for the production of the cement clinker or a building material and building
EP3077343B1 (en) Method for producing a pozzolanic or latent-hydraulic cement clinker substitute
CH649233A5 (en) METHOD FOR THE DISPOSAL AND FINAL STORAGE OF WASTE MATERIALS.
DE2758820A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF CEMENT CLINKERS USING THE FLIGHT BAG OF POWER PLANTS AND MUEL COMBUSTION PLANTS
PT801636E (en) PROCESS FOR THE PRODUCTION OF CEMENT CLINKER AS WELL AS INSTALLATION FOR THE REALIZATION OF THE SAME
EP0402746B1 (en) Process for the recycling of muddy or dusty accumulated special waste
WO2015090533A1 (en) Method for producing binders containing wollastonite
EP0041269B1 (en) Process for the production of possibly pulverous clinker materials that contain calcium silicate and/or calcium aluminate
AT409860B (en) METHOD FOR PRODUCING A ADMINISTER FOR MIXING CEMENTS AND DEVICE FOR CARRYING OUT THIS METHOD
DE2632691A1 (en) CEMENT, PROCESS FOR THE PRODUCTION THEREOF AND DEVICE FOR CARRYING OUT THE PROCESS
DE2749029A1 (en) METHOD FOR MANUFACTURING HYDRAULIC CEMENT AND PRE-CEMENT PRODUCTS
EP0059444A2 (en) Hydraulically setting construction brick, and method for its production
AT525816B1 (en) Pozzolanic or latent hydraulic additive
EP2686281B1 (en) Process for the production of binders
DE19537246C1 (en) Cupola furnace slag
DE19825780B4 (en) Process for the production of melt products from cyclone dusts of the cement industry
DE19537247C1 (en) Cupola furnace slag for use as ballast material in road and street building
DE3906617C1 (en)
EP1402077B1 (en) Method for compacting rolling-mill scale
DE2843128A1 (en) METHOD FOR MANUFACTURING PORTLAND CEMENT CLINKERS
DE2949528A1 (en) Aggregate made from garbage etc, and used in concrete or mortar - where garbage is roasted to from ash, which is melted and granulated in water, and then crushed
DE19533998C1 (en) Broken up cupola furnace slag as additive in cement and lime bonded construction material
WO2010083801A1 (en) Method for producing a sulfate-resistant hydraulic binding agent having a high alite content and the use thereof
AT408653B (en) METHOD FOR PRODUCING MERCHANT SLAG
DE10352323B4 (en) Process for producing a mineral melt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002710666

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWW Wipo information: withdrawn in national office

Ref document number: 2002710666

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002710666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP