[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002066052A1 - Verwendung eines komjugats aus il-6 und einem il-6 rezeptor zur tumortherapie - Google Patents

Verwendung eines komjugats aus il-6 und einem il-6 rezeptor zur tumortherapie Download PDF

Info

Publication number
WO2002066052A1
WO2002066052A1 PCT/DE2002/000533 DE0200533W WO02066052A1 WO 2002066052 A1 WO2002066052 A1 WO 2002066052A1 DE 0200533 W DE0200533 W DE 0200533W WO 02066052 A1 WO02066052 A1 WO 02066052A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
mice
conjugate
transfected
receptor
Prior art date
Application number
PCT/DE2002/000533
Other languages
English (en)
French (fr)
Inventor
Stefan Rose-John
Andrzej Mackiewicz
Original Assignee
Stefan Rose-John
Andrzej Mackiewicz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stefan Rose-John, Andrzej Mackiewicz filed Critical Stefan Rose-John
Publication of WO2002066052A1 publication Critical patent/WO2002066052A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/204IL-6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/642Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a cytokine, e.g. IL2, chemokine, growth factors or interferons being the inactive part of the conjugate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/66Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to the use of a conjugate of IL-6 and an I -6 receptor, preferably Hyper-IL-6, for the treatment of a tumor.
  • the tumor is preferably melanoma, kidney or pancreatic carcinoma.
  • cytokine genes by appropriately transfected tumor cells has so far been tried as a strategy for increasing the immune responses to various types of cancer.
  • cytokines e.g. Tumor cells expressing TNF- ⁇ , IFN-gamma, I -2, IL-4, IL-6, IL-12, IL-18, or GM-CSF could be shown to promote or not to promote the formation of tumor-specific T lymphocytes.
  • T cell-mediated mechanisms of tumor cell killing can induce, for example Granulocyte inflammatory reactions.
  • genetically modified tumor vaccines (GMTV) based on these cytokines are in clinical investigation as specific immunotherapeutics for cancer treatment.
  • Allogeneic or autologous tumor cells were modified with the corresponding cytokine genes in order to be able to reach high concentrations of the cytokines acting as adjuvants at the vaccination site and to keep the systemic concentration low.
  • the results achieved with this approach so far do not allow a definitive conclusion to be drawn as to whether they can actually represent a sufficiently effective therapeutic approach to cancer treatment.
  • the technical problem underlying the present invention is therefore to provide a specific immunotherapeutic agent, that allows effective cancer therapy.
  • the corresponding secreted p84 glycoprotein could be detected in the supernatant of transfected cells and showed full activity on BAF / gpl30 cells which respond to IL-6 / sIL-6R but not to IL-6 alone.
  • the administration of recombinant H-IL-6 to C57BL / 6 mice led to a prolonged expression of an acute phase protein, which indicates a long systemic residence time of the fusion protein.
  • Transfected Bl ⁇ cells (B16 / H-IL-6 cells) showed morphological changes together with a dramatic growth inhibition in vitro.
  • mice The subcutaneous injection into C57BL / 6 mice resulted in a virtually complete rejection of the B16 / H-IL-6 cells, this effect being partially reversed in mice transgenic for a GM-CSF receptor antagonist. This indicates a GM-CSF-dependent rejection of cells transfected with H-IL-6.
  • APC antigen presenting cells
  • the present invention thus relates to the use of a conjugate of IL-6 and an 11-6 receptor or a DNA sequence encoding this conjugate for the treatment of a tumor.
  • conjugate of IL-6 and an IL-6 receptor refers to a polypeptide, the IL-6 (or the biologically active part of IL-6) and the IL-6 receptor (or for the ligand Binding responsible part of the receptor).
  • This polypeptide can be a polypeptide in which, for example, the two partners are linked to one another via covalent or non-covalent bonds in accordance with routine methods known to the person skilled in the art.
  • the two polypeptides can, for example, be linked to one another via a disulfide bridge.
  • the conjugate is preferably a fusion protein composed of IL-6 and an IL-6 receptor.
  • the conjugate preferably contains the soluble part of the IL-6 receptor (sIL-6R), ie the extracellular or soluble subunit of the interleukin-6 receptor.
  • sIL-6R soluble part of the IL-6 receptor
  • the two polypeptides of the fusion protein are linked via a peptide linker.
  • the conjugate is an IL-6 / SIL-6R fusion protein
  • Hyper-IL-6 i.e. a fusion polypeptide that contains a human sIL
  • IL-6 / sIL-6R fusion protein used in the present application includes the fusion protein with the amino acid sequence shown in DE 196 08 813 C2, as well as a fusion protein which is different from that in DE 196 08 813 C2 disclosed fusion protein in that it has deletions, additions or substitutions of one or more amino acids and / or (a) modified amino acid (s), wherein the biological activity is not significantly affected. Whether such a fusion protein still has the desired biological properties can be investigated using customary methods, for example using the method described in the examples below become .
  • the conjugate preferably Hyper-IL-6
  • an immunotherapeutic agent i.e. in the form of allogeneic or autologous tumor cells which are transformed with a DNA sequence which encodes the polypeptide, preferably Hyper-IL-6, and which is expressed.
  • suitable transformation systems and vectors e.g. for gene therapy, and in this connection reference is made to DE 196 08 813 C2 and the examples below.
  • the e.g. Hyper-IL-6 coding DNA sequence inserted into a vector suitable for gene therapy e.g. a vector based on a virus, for example an adenovirus, vaccinia virus or an AAV virus.
  • Retroviruses are particularly preferred. Examples of suitable retroviruses are MoMuLV, HaMuSV, MuMTV, RSV or GaLV. Other suitable viruses are fowlpox virus, canarypox virus, influenza virus or Sindbis virus as the basis of a vaccine.
  • the DNA sequence encoding Hyper-IL-6 can also be transported to the target cells in the form of colloidal dispersions. These include, for example, liposomes or lipoplexes (Mannino et al., Biotechniques 6 (1988), 682).
  • An allogeneic melanoma cell line (eg Mich-1 or Mich-2) is transduced with eg Hyper-IL-6 cDNA, preferably MSCV-based dicistronic retroviral double copy vectors being used. Two proteins are read from a transcript, this being achieved by using an "internal ribosome entry" site. After expansion, the grown cells are trypsinized, irradiated (for example with 100 Gy using Co-60 or 6 MV photons), aliquoted and frozen in liquid nitrogen. Before the
  • the cells are frozen with regard to contamination
  • Vaccination thawed The vaccination of the patients can be done subcutaneously (for example with 5 x 10 7 cells), with the patients initially being immunized four times at intervals of two weeks, then once a month for a year and then at intervals of two months. If the disease progresses, vaccination can take place more often, for example eight times in the beginning
  • conjugate defined above for the treatment of melanoma, kidney or pancreatic carcinoma.
  • the immune response against B16 cells induced by H-IL-6 depends on the presence of GM-CSF, it can be advantageous for the use according to the invention not only the IL- 6 / IL-6R conjugate but also to administer GM-CSF (eg as a substance or via transfection of the cells with a DNA sequence encoding GM-CSF).
  • GM-CSF eg as a substance or via transfection of the cells with a DNA sequence encoding GM-CSF.
  • the present invention thus also relates to the use of a conjugate of IL-6 and an 11-6 receptor in combination with GM-CSF.
  • the fusion protein cDNA contains a 39 bp stretch encoding a flexible linker between SIL-6R and IL-6.
  • H-IL-6 10 7 Bl6 / H-IL-6 cells were incubated for 24 hours in 5 ml of medium containing 0.1 FCS. 100 ul supernatant was used for the Western blot analysis with an anti-IL-6 antibody. H-IL-6 could only be detected as a protein with a relative molecular mass of 84 kD in the supernatant of transfected B16 cells. The right lanes were loaded with 200 ng recombinant IL-6 or SIL-6R.
  • Figure 2 Biological activity of Hyper-IL-6 (a) proliferation of BAF / gpl30 cells in response to increasing amounts of H-IL-6 and IL-6
  • Figure 3 Growth inhibition and morphological changes of H-IL-6 transfected Bl6 melanoma cells
  • Bl6 / H-IL-6 cells show an elongated morphology and tend to form cell protrusions.
  • FIG. 4 MHC-1 expression in unchanged Bl6 / H-IL-6 cells.
  • the surface expression of MHC-1 molecules K b and D ° B16 / H-IL-6 cells and control cells were determined by FACS using an anti-H-2K b D b -MAK.
  • FIG. 5 Tumor growth in mice to which H-IL-6 transfected, sham-transfected or parental Bl6 melanoma cells s.c. had been injected
  • Figure 6 Reduced growth inhibition of Bl6 / H-IL-6 cells in mice transgenic for a GM-CSFR antagonist
  • 5 ⁇ 10 5 parental Bl6 cells were injected into transgenic mice and wild-type mice.
  • the H-IL-6 cDNA was prepared using the vectors pCDM8-sIL-6R and pCDM8-IL-6, of which the sIL-6R and IL-6 cDNAs were generated by PCR.
  • the linker cDNA was introduced using Xhol sites at the C-terminus of SIL-6R and at the N-terminus of IL-6.
  • H-IL-6 cDNA was re-inserted into the vector pCDM8 using an N-terminal Mot1 and a C- terminal Hindlll site ligated.
  • the cell line B16 / H-IL-6 was transfected with 20 ⁇ g pCDM8-H-IL-6 DNA together with 2 ⁇ g pSV2Neo plasmid DNA (Southern and Berg, J.Mol .Appl .Genet. 1 (1982) , 327-341) (coprecipitation with calcium phosphate).
  • C Cell Culture and Assavs The cells were grown in DMEM at 5% CO 2 in a water-saturated atmosphere. All cell culture media were supplemented with 10% FCS, 100 mg / ml streptomycin and 60 mg / 1 penicillin. The proliferation of B16 and B16 / H-IL-6 cells was shown in
  • the density of the living cells was determined after 24, 48, 72, 96 and 120 hours using the MTT (3 - [4, 5 - dimethyththiazol - 2 - yl] - 2, 5 - diphenyltetrazolium bromide) assays the mitochrondrial
  • mice were used for the tumor-inducing experiments and FI crossings from mice transgenic for the FVB / N GM-CSF receptor antagonist and C57BL / 6 mice. The experiments were carried out with the tg2 strain.
  • flow cytometry analyzes were carried out using a "FACScan” device (Becton Dickinson, Mountain View, CA, USA). Debris and dead cells were separated and living cells were plotted using the "FACScan Lysis II" software (Becton Dickinson). As a control, the same experiment was carried out with an antibody specific for IgG2.
  • Bl6 cells were grown with a plasmid containing the cDNA for the fusion protein H-IL-6 under the control of the CMV promoter
  • Neo-resistant clones were evaluated for the expression of the H-
  • Il-6 protein screened by testing the activity of cell supernatants from BAF3 / gpl30 cells. For this example, two positive clones were selected and one sham-transfected clone that contained only the pSV2-neo plasmid.
  • Figure lb shows the expression of the 84 kD glycoprotein of a positive transfectant, detected by immunoprecipitation of the radioactively labeled protein from the supernatant via an anti-IL-6 antibody. Negative transfectants and parental Bl6 cells did not secrete H-IL-6 into the medium.
  • Figure lc shows a Western blot analysis of the medium of transfected and parental B16 cells after a tenfold concentration.
  • the IL-6 / sIL-6R fusion protein was detected with the anti-IL-6 antibody as efficiently as recombinant IL-6. There was no cross-reaction of the anti-IL-6 MAK with SIL6R (right lane).
  • the H-IL-6 levels in the supernatant of transfected cells were determined by measuring the biological Activity of the fusion protein determined on a BAF3 cell line (BAF3 / gpl30) transfected with gpl30 (FIG. 2b). Untransfected BAF3 cells did not express gpl30 and IL-6R and therefore do not respond to IL-6 or H-IL-6.
  • FIG. 2b Cell supernatants from transfected B16 cells were harvested after 24 hours and a dose-dependent proliferation of the BAF3 / gpl30 cells was observed.
  • the EC 50 concentration was determined to be 0.2 ⁇ l / ml (FIG. 2b). This corresponds to H-IL-6 levels of 500 pg / ml / 10 7 cells / 24 hours (FIG. 2a).
  • the biological activity of H-IL-6 in vivo and its stability were tested by injection (ip) of 2 ⁇ g recombinant H-IL-6 in C57BL / 6 mice.
  • the expression of the acute phase protein haptoglobin was analyzed after 72 hours by determining the serum level by means of Western blot analyzes (FIG. 2c).
  • H-IL-6 can induce acute phase proteins in mice at much lower doses than IL-6.
  • Figure 3a shows the proliferation of parental B16 and transfected Bl6 / H-IL-6 cells, which was measured over a period of five days at different times. Cell growth was significantly inhibited in Bl6 / H-IL-6 cells and cell densities were approximately 10% compared to the parental B16 cells at the end of the time series.
  • transfected Bl6 cells showed an altered morphology, which was caused by prolonged cell bulges, loss of Pigmentation and a contiguity in long rows was marked, which indicates a differentiation status (Figure 3b).
  • mice which had received parental B16 cells were injected ip three times a week with 3 ⁇ g recombinant H-IL-6 , After two weeks, the mice were sacrificed and the tumor weights were determined. This systemic Treatment with recombinant H-IL-6 reduced tumor growth by about 40 to 50%.
  • GM-CSF has been thought to play a key role in the rejection of tumor cells by the immune system.
  • transfected and parental Bl6 cells were injected into mice transgenic for the mutated K14E / E21K GM-CSF protein.
  • This GM-CSF mutein has recently been shown to bind to the GM-CSF receptor ⁇ chain, but not to stimulate the signal-transducing ⁇ unit of the GM-CSF receptor complex.
  • the K14E / E21K-GM-CSF protein behaves as a GM-CSF receptor antagonist.
  • mice transgenic for the K14E / E21K-GM-CSF antagonist showed levels of 2 to 15 ng / ml in the serum (FIG. 6a).
  • Transgenic and non-transgenic control mice were sacrificed after two weeks and the tumor volumes were determined as described above.
  • the tumor growth of the Bl6 / H-IL-6 cells in wild-type mice FVB / N x C57BL / 6 was comparable to that in C57BL / 6 mice with an average tumor volume of 50 to 100 mm 3 .
  • transgenic GM-CSF Kl4E / E21K mice were an order of magnitude higher than in the non-transgenic control mice (900 mm 3 ), which indicates that the rejection of the transfected tumor cells was dependent on the presence of biologically active GM-CSF ( Figure 6b).
  • Tumors produced by parental B16 cells in both transgenic and wild-type mice were comparable to those in C57BL / 6 mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Beschrieben wird die Verwendung eines Konjugats aus IL-6 und einem IL-6 Rezeptor, vorzugsweise Hyper-IL-6, zur Behandlung eines Tumors. Bei dem Tumor handelt es sich vorzugsweise um ein Melanom, ein Nieren- oder ein Pankreaskarzinom.

Description

Verwendung eines Konjugats aus IL-6 und einem IL-6 Rezeptor zur Tumortherapie
Die vorliegende Erfindung betrifft die Verwendung eines Konjugats aus IL-6 und einem I -6 Rezeptor, vorzugsweise Hyper-IL-6, zur Behandlung eines Tumors. Bei dem Tumor handelt es sich vorzugsweise um ein Melanom, ein Nieren- oder ein Pankreas-Karzinom.
Die Expression von Zytokingenen durch entsprechend transfizierte Tumorzellen wurde bisher als eine Strategie zur Erhöhung der Immunantworten gegenüber verschiedenen Krebsarten erprobt. Für Zytokine, z.B. TNF-α, IFN-gamma, I -2, IL-4, IL- 6, IL-12, IL-18 oder GM-CSF, exprimierende Tumorzellen konnte gezeigt werden, daß sie Bildung von tumorspezifischen T- Lymphozyten fördern oder nicht-T-Zell-vermittelte Mechanismen der Tumorzellenabtötung induzieren können, z.B. Granulozyten- Entzündungsreaktionen. Inzwischen befinden sich auf diesen Zytokinen basierende genetisch modifizierte Tumorvakzine (GMTV) als spezifische Immuntherapeutika zur Krebsbehandlung in der klinischen Untersuchung. Dabei wurden allogene oder autologe Tumorzellen mit den entsprechenden Zytokingenen modifiziert, um so einerseits hohe Konzentrationen der als Adjuvans wirkenden Zytokine an der Impfstelle erreichen zu können, andererseits aber die systemische Konzentration niedrig halten zu können. Allerdings lassen die bisher mit dieser Vorgehensweise erreichten Ergebnisse noch keine endgültige Schlußfolgerung darüber zu, ob sie tatsächlich einen ausreichend wirksamen therapeutischen Ansatz zur Krebsbehandlung darstellen können.
Somit liegt der vorliegenden Erfindung das technische Problem zugrunde, ein spezifisches Immuntherapeutikum bereitzustellen, das eine wirksame Krebstherapie erlaubt.
Die Lösung dieses technischen Problems erfolgte durch die Bereitstellung der in den Patentansprüchen gekennzeichneten Ausführungsformen. Es wurde überraschenderweise gefunden, daß das vorstehende technische Problem durch die Verwendung eines Konjugats aus IL-6 und einem 11-6 Rezeptor, vorzugsweise Hyper-IL-6, gelöst werden kann. Bei den zu der vorliegenden Erfindung führenden Untersuchungen wurde die niedrig- immunogene murine Melano zellinie B16 mit einem Säugerexpressionsvektor transfiziert, der die cDNA für ein sIL-6R/IL-6-Fusionsprotein (mit der Bezeichnung Hyper-Il-6 oder H-IL-6) enthielt. Das entsprechende sezernierte p84- Glykoprotein konnte im Überstand von transfizierten Zellen nachgewiesen werden und es zeigte auf BAF/gpl30-Zellen, die auf IL-6/sIL-6R reagieren nicht jedoch auf IL-6 alleine, volle Aktivität. Die Verabreichung von rekombinantem H-IL-6 an C57BL/6-Mäuse führte zur einer verlängerten Expression eines Akutphaseproteins, was auf eine lange systemische Verweildauer des Fusionsprotein hinweist. Transfizierte Blβ-Zellen (B16/H- IL-6-Zellen) zeigten morphologische Veränderungen zusammen mit einer dramatischen Wachstumshemmung in vitro. Die subkutane Injektion in C57BL/ 6-Mäuse führte zu einer praktisch vollständigen Abstoßung der B16/H-IL-6-Zellen, wobei dieser Effekt in für einen GM-CSF-Rezeptorantagonisten transgenen Mäusen zum Teil wieder aufgehoben wurde. Diese deutet auf eine GM-CSF-abhängige Abstoßung von mit H-IL-6 transfizierten Zellen hin. Die systemische Behandlung von Mäusen mit Tumoren mit rekombinantem H-IL-6 verringerte das Tumorwachstum um etwa 40 bis 60%. Diese Ergebnisse zeigen, daß H-IL-6 (vor allem in Kombination mit GM-CSF) ein hohes antitumorales Potential aufweist und daß es auch zu einer gesteigerten Bildung von antigenpräsentierenden Zellen (APC) , z.B. dentritischen Zellen, kommt, was auch ex vivo bestätigt werden konnte.
Die vorliegende Erfindung betrifft somit die Verwendung eines Konjugats aus IL-6 und einem 11-6 Rezeptor oder einer dieses Konjugat kodierenden DNA-Sequenz zur Behandlung eines Tumors. Der hier verwendete Begriff "Konjugat aus IL-6 und einem IL-6 Rezeptor" betrifft ein Polypetid, das IL-6 (oder den biologisch aktiven Teil von IL-6) und den IL-6-Rezeptor (oder den für die Liganden-Bindung verantwortlichen Anteil des Rezeptors) umfaßt. Bei diesem Polypeptid kann es sich um ein Polypetid handeln, bei dem z.B. die beiden Partner über kovalente oder nicht-kovalente Bindungen gemäß dem Fachmann bekannten Routineverfahren miteinander verknüpft sind. Die beiden Polypeptide können beispielsweise über eine Disulfidbrücke miteinander verknüpft sein. Vorzugsweise handelt es sich bei dem Konjugat um ein Fusionsprotein aus IL- 6 und einem IL-6-Rezeptor . Vorzugsweise enthält das Konjugat den löslichen Anteil des IL-6-Rezeptors (sIL-6R) , d.h. die extrazelluläre bzw. lösliche Untereinheit des Interleukin-6- Rezeptors. In einer besonders bevorzugten Ausführungsform sind die beiden Polypeptide des Fusionproteins über einen Peptidlinker verbunden.
In einer noch mehr bevorzugten Ausführungsform handelt es sich bei dem Konjugat um ein IL-6/SIL-6R Fusionsprotein
(Hyper-IL-6) , d.h. ein Fusionspolypeptid, das ein humanes sIL-
6R-Polypeptid und ein humanes IL-6-Polypeptid umfaßt, wobei die beiden Polypeptide über einen Polypeptidlinker miteinander verknüpft sind. Die Struktur von "Hyper-IL-6" sowie dessen Aminosäuresequenz sind in DE 196 08 813 C2 beschrieben sowie in Peters et al . , J. Immunol .161 (1998), 3575-3581. Der in der vorliegenden Anmeldung verwendete Ausdruck "IL-6/sIL-6R Fusionsprotein (Hyper-IL-6) " umfaßt dabei das Fusionsprotein mit der in DE 196 08 813 C2 gezeigten Aminosäuresequenz, sowie ein Fusionsprotein, das sich gegenüber dem in DE 196 08 813 C2 offenbarten Fusionsprotein dadurch unterscheidet, daß es Deletionen, Additionen oder Substitutionen von einer oder mehreren Aminosäuren und/oder (eine) modifizierte Aminosäure (n) aufweist, wobei die biologische Aktivität nicht wesentlich beeinflußt wird. Ob ein solches Fusionsprotein noch die gewünschten biologischen Eigenschaften aufweist, kann mittels üblicher Verfahren, z.B. mittels des in den nachstehenden Beispielen beschriebenen Verfahren untersucht werden .
Je nach Ausgestaltung der erfindungsgemäßen Verwendung kann es zweckmäßig sein, das Konjugat, vorzugsweise Hyper-IL-6, als Immuntherapeutikum zu verabreichen, d.h. in Form von allogenen oder autologen Tumorzellen, die mit einer DNA-Sequenz transformiert sind, die das Polypeptid, vorzugsweise Hyper-IL- 6, kodiert, und wobei dieses exprimiert wird. Der Fachmann kennt geeignete Transformationssysteme und Vektoren, z.B. zur Gentherapie, und in diesem Zusammenhang wird auf DE 196 08 813 C2 und die nachstehenden Beispiele verwiesen.
Bei Verwendung des Konjugats, vorzugsweise Hyper-IL-6, als Immuntherapeutikum, ist die z.B. Hyper-IL-6 kodierende DNA- Sequenz in einen für die Gentherapie geeigneten Vektor inseriert, z.B. einen Vektor, der auf einem Virus basiert, beispielsweise ein Adenovirus, Vaccinia-Virus oder ein AAV- Virus . Besonders bevorzugt sind Retroviren. Beispiele für geeignete Retroviren sind MoMuLV, HaMuSV, MuMTV, RSV oder GaLV. Weitere geeignete Viren sind Fowlpox-Virus, Canarypox- Virus, Influenza-Virus oder Sindbis-Virus auch als Basis einer Vakzine. Für Zwecke der Gentherapie kann die Hyper-IL-6 kodierende DNA-Sequenz auch in Form von kolloidalen Dispersionen zu den Zielzellen transportiert werden. Dazu zählen beispielsweise Liposomen oder Lipoplexe (Mannino et al., Biotechniques 6 (1988), 682).
Die für die Anwendung als Immuntherapeutikum geeigneten Bedingungen sind dem Fachmann bekannt. So kann beispielsweise folgendermaßen vorgegangen werden:
Eine allogene Melanomzellinie (z.B. Mich-1 oder Mich-2) wird mit z.B. Hyper-IL-6 cDNA transduziert, wobei vorzugsweise MSCV-basierte dicistronische retrovirale Doppelkopie-Vektoren verwendet werden. Hierbei werden von einem Transkript zwei Proteine abgelesen, wobei dies durch die Verwendung einer "Internal Ribosome Entry" Site erreicht wird. Nach Expansion werden die gezüchteten Zellen trypsiniert, bestrahlt (z.B. mit 100 Gy unter Verwendung von Co-60 oder 6 MV-Photonen) , aliquotiert und in flüssigem Stickstoff eingefroren. Vor dem
Eingefrieren werden die Zellen hinsichtlich Kontaminationen
(Bakterien, Pilze oder Mycoplasmen) getestet und kurz vor der
Vakzinierung aufgetaut. Die Vakzinierung der Patienten kann subkutan (z.B. mit 5 x 107 Zellen) erfolgen, wobei anfänglich die Patienten viermal in Abständen von zwei Wochen immunisiert, dann ein Jahr lang jeweils einmal pro Monat und danach in Abständen von zwei Monaten immunisiert werden können. Im Fall des Fortschreitens der Erkrankung kann die Vakzinierung öfter erfolgen, z.B. anfänglich achtmal in
Abständen von zwei Wochen und dann einmal pro Monat.
Besonders bevorzugt ist die Verwendung des vorstehend definierten Konjugats zur Behandlung eines Melanoms, eines Nieren- oder eines Pankreaskarzinoms .
Da es sich in den zu der vorliegenden Erfindung führenden Untersuchungen zeigte, daß die durch H-IL-6 induzierte Immunantwort gegen B16-Zellen von der Anwesenheit von GM-CSF abhängt, kann es für die erfindungsgemäße Verwendung vorteilhaft sein, nicht nur das IL-6/IL-6R-Konjugat sondern auch GM-CSF zu verabreichen (z.B. als Substanz oder über Transfektion der Zellen mit einer GM-CSF kodierenden DNA- Sequenz) . Somit betrifft die vorliegende Erfindung auch die Verwendung eines Konjugats aus IL-6 und einem 11-6 Rezeptor in Kombination mit GM-CSF.
Kurze Beschreibung der Figuren
Figur 1: Design und Expression von Hvx>er-IL-6
(a) Schematische Darstellung des für die Expression und Sezernierung von H-IL-6 in Säugerzellen entworfenen Vektors PCDM8
Die cDNA für das Fusionsprotein enthält eine Strecke von 39 bp, die einen flexiblen Linker zwischen SIL-6R und IL-6 kodieren.
(b) Nachweis von H-IL-6 im Überstand von transfizierten B16- Zellen Bl6/H-IL-6-Zellen wurden ü.N. radioaktiv markiert und H-IL-6 wurde vom Überstand mittels eines anti-IL-6-Antikörpers immunpräzipitiert . In nicht-transfizierten Zellen konnte kein H-IL-6 nachgewiesen werden. (c) Nachweis von H-IL-6 mittels Westernblot-Analvsen
107 Bl6/H-IL-6-Zellen wurden 24 Stunden in 5ml 0,1 FCS enthaltendem Medium inkubiert. 100 μl Überstand wurden für die Westernblot-Analysen mit einem anti-IL-6-Antikörper verwendet. H-IL-6 konnte als Protein mit einer relativen molekularen Masse von 84 kD nur im Überstand von transfizierten B16-Zellen nachgewiesen werden. Die rechten Spuren wurden mit 200 ng rekombinantem IL-6 bzw. SIL-6R beladen.
Figur 2: Biologische Aktivität von Hyper-IL-6 (a) Proliferation von BAF/gpl30-Zellen als Reaktion auf ansteigende Mengen an H-IL-6 und IL-6
(b) Das gleiche Experiment wie (a) . jedoch mit ansteigenden Mengen an Überständen von Bl6/H-IL-6-Zellen (siehe Figur lc) Die Daten stellen Mittelwerte ± Standardabweichung aus drei parallelen Experimenten dar.
(c) Induktion der Haptoglobin-Svnthese in vivo C57BL/6-Mäuse (neun Tiere) wurden mit 2 μg rekombinantem H-IL- 6 behandelt und 72 Stunden nach der Injektion getötet. Haptoglobin wurde in den Seren der Mäuse durch Westernblot- Analysen nachgewiesen.
Figur 3 : Wachstumshemmung und morphologische Veränderungen von mit H-IL-6 transfizierten Bl6-Melanomzellen
(a) Proliferation von B16- und Bl6/H-IL-6-Zellen nachgewiesen über MTT-Assay.
(b) Bl6/H-IL-6-Zellen zeigen eine verlängerte Morphologie und neigen zur Ausbildung von Zellprotrusionen.
Untere Abbildung: Kontrollzellen; obere Abbildung: Mit H-IL-6 transfizierte Zellen. Vergrößerung: 200fach
Figur 4: MHC-1-Expression in unveränderten Bl6/H-IL-6-Zellen Die Oberflächenexpression von MHC-1-Molekülen Kb und D° auf B16/H-IL-6-Zellen und Kontrollzellen wurde mittels FACS unter Verwendung eines anti-H-2KbDb-MAK bestimmt.
Figur 5: Tumorwachstum in Mäusen, denen H-IL-6 transfizierte, scheintransfizierte oder parentale Bl6-Melanomzellen s.c. injiziert worden waren
(a) C57BL/6-Mäusen wurden 5 x 103 H-IL-6-transfizierte, scheintransfizierte oder parentale Bl6-Zellen s.c. injiziert. Nach zwei Wochen wurden die Tiere getötet und die Tumorvolumina nach Exzision bestimmt. Das Tumorwachstum war in Tieren, die Bl6/H-IL-6-Zellen erhielten, drastisch verringert . Jeder Punkt in der Figur entspricht einem Tier.
(b) Überleben von Mäusen, denen 5 x 105 H-IL-6-transfizierte oder parentale Bl6-Zellen s.c. injiziert worden waren.
Figur 6: Reduzierte Wachstumshemmung von Bl6/H-IL-6-Zellen in für einen GM-CSFR-Antagonisten transgenen Mäusen (a) Serumspiegel des K14E/E21K GM-CSF- Pro t eins in Wildtypmäusen und transgenen Mäusen nachgewiesen über ELISA. (b) Acht transgenen Mäusen (Stamm tg2) und acht Wildtyp- FvB/BL76-Mäusen wurden s.c. 5 x 105 B16/H-IL-6-Zellen injiziert und das Tumorwachstum wurde nach zwei Wochen bestimmt. Als Kontrolle wurden transgenen Mäusen und Wildtypmäusen 5 x 105 parentale Bl6-Zellen injiziert.
Die nachstehenden Beispiele erläutern die Erfindung.
Beispiel 1 Allgemeine Verfahren
(A) Herstellung der Plasmide und Transfektionsverfahren Die H-IL-6-cDNA wurde unter Verwendung der Vektoren pCDM8-sIL- 6R und pCDM8-IL-6 hergestellt, von denen die sIL-6R und IL-6 cDNAs über PCR erzeugt wurden. Die Linker-cDNA wurde unter Verwendung von Xhol-Stellen am C-Terminus von SIL-6R und am N- Terminus von IL-6 eingeführt. H-IL-6 cDNA wurde erneut in den Vektor pCDM8 mittels einer N-terminalen Motl- und einer C- terminalen Hindlll-Stelle ligiert. Bezüglich der genaueren Schritte zur Erzeugung der H-IL-6-cDNA wird auf DE 196 08 813 C2 verwiesen. Die Zellinie B16/H-IL-6 wurde durch Transfektion mit 20 μg pCDM8-H-IL-6-DNA zusammen mit 2 μg pSV2Neo-Plasmid- DNA (Southern und Berg, J.Mol .Appl .Genet . 1 (1982), 327- 341) (Copräzipitation mit Calciumphosphat) erzeugt.
(B) Nachweis und biologische Aktivität von H-IL-6 im Überstand von Bl6/H-IL-6-Zellen 107 Bl6/H-IL-6-Zellen wurden ü.N. mit 50 μg
[35S]Methionin/Cystein in Methionin/Cystein-freiem Medium metabolisch markiert und H-IL-6 wurde mit einem an Protein A-
Sepharose gebundenen anti-IL-6-Antikörper immunpräzipitiert .
Für einen Western-Blot wurden 107 Bl6/H-IL-6-Zellen 24 Stunden mit 5 ml 0,1% FCS enthaltendem Medium inkubiert. Der Überstand wurde entfernt und zehnfach konzentriert. Für die Western- Blot-Analysen mit dem anti-IL-6-Antikörper mAB-8 (CLB, Amerstam, Niederlande) wurden 10 μg des konzentrierten Überstands verwendet.
(C) Zellkultur und Assavs Die Zellen wurden in DMEM bei 5% C02 in einer wassergesättigten Atmosphäre gezüchtet. Alle Zellkulturmedien waren mit 10% FCS, 100 mg/ml Streptomycin und 60 mg/1 Penicillin supplementiert . Die Proliferation der B16- und B16/H-IL-6-Zellen wurde in
Mi kr o t i t erp 1 a 11 en mit 96 Vertiefungen ( 10.000 Zellen/Vertiefung/O, 1 ml) gemessen. Die Dichte der lebenden Zellen wurde nach 24, 48, 72, 96 und 120 Stunden mittels des MTT ( 3 - [ 4 , 5 - D i me thy l - th i a z o l - 2 - yl ] - 2 , 5 - diphenyltetrazoliumbromid) -Assays der mitochrondrialen
Succinatdehydrogenase bestimmt (Boehringer Mannheim, Deutschland) . Morphologische Veränderungen der B16/H-I1-6- Zellen wurden nach Züchtung der Zellen auf Kammerträgern (NUNC, Naperville, IL, USA) für 24 Stunden bestimmt. Mikroaufnahmen wurden bei einer 200fachen Vergrößerung in einem CID ( "dif f erential interference contrast" ) -Modus aufgenommen. (D) Tiere C57BL/6-Mäuse wurden in einem Zyklus von 12 Stunden Licht und 12 Stunden Dunkelheit gehalten und mit Futter und Wasser nach Bedarf versorgt .
(E) Erzeugung von hinsichtlich des GM-CSF-Rezeptors transgenen Mäusen Die für murines GM-CSF kodierende cDNA (Gough et al . , Nature 309 (1984), 763-767) wurde in Übereinstimmung mit den veröffentlichten Aminosäureänderungen K14E und E12K (Altmann und Kastelein, J.Biol.Chem. 270 (1995), 2233-2240) modifiziert. Diese cDNA wurde in den Keratin 10-
Expressionsvektor (Blessing et al . , J.Cell.Biol. 135
( 1996 ), 227-239 ) inseriert und für die pronukleäre Mikroinjektion von befruchteten Eiern von Mäusen des Stamms FVB/N wie in Hogan et al . (Manipulating the Mouse Embryo. A Laboratory Manual., Cold Spring Harbor, NY (1986)) beschrieben verwendet. An den Nachkommen wurden an Ohren und Schwänzen Biopsien vorgenommen und diese wurden mittels PCR unter Verwendung eines Rinderkeratin 10-spezifischen Primers (5'-TAA CAC ATG TGG GAT ACA CCC-3 ' ) und eines murinen GM-CSF- spezifischen Oligonukleotids (5 '-CTG GCT GTC ATG TTC AAG GCG- 3'; Position 1021-1042; GenBank-Zugangsnummer X05906) analysiert. Die für die tumorinduzierenden Experimente verwendeten Mäuse waren FI-Kreuzungen von für den FVB/N GM- CSF-Rezeptorantagonisten transgenen Mäusen und C57BL/6-Mäusen. Die Experimente wurden mit dem Stamm tg2 durchgeführt.
(F) Subkutane "Challenge" Experimente Die Mäuse wurden am Rücken rasiert und subkutan wurden 105 B16 oder Bl6/H-IL-6-Zellen injiziert. Das Tumorwachstum wurde durch Messung der senkrechten Durchmesser überwacht. Die Mäuse wurden nach zwei Wochen getötet oder wenn die Tumore eine schwere Nekrose zeigten oder eine Größe von 300 mm2 erreicht hatten. Alle Tumore wurden exzisiert und durch Bestimmung des Gewichts und Volumens bewertet. (G) Durchflußzvtometrie-Analvsen B16- und Bl6/H-IL-6-Zellen wurden zweimal mit PBS (0,1% Tween) gewaschen und eine indirekte Immunfluoreszenzfärbung wurde durch Inkubation der Zellen (4°C, 30 Min.) mit einem FITC- gekoppelten monoklonalen anti-H-2KHDH-Antikörper (Cedar Lane, Hernby, Ontario, Kanada) durchgeführt. Nach zweimaligem Waschen der Zellen mit PBS (0,1% Tween) wurden Durchflußzytometrie-Analysen mittels eines "FACScan"-Geräts (Becton Dickinson, Mountain View, CA, USA) durchgeführt. Debris und tote Zellen wurden ausgesondert und lebende Zellen mittels der "FACScan Lysis II"-Software (Becton Dickinson) geplottet. Zur Kontrolle wurde das gleiche Experiment mit einem für IgG2 spezifischen Antikörper durchgeführt.
Beispiel 2 Transfektion von H-IL-6-cDNA in Bl6-Melanomzellen
Bl6-Zellen wurden mit einem die cDNA für das Fusionsprotein H- IL-6 unter Kontrolle des CMV-Promotors enthaltenden Plasmid
(Figur la) und mit dem pSV2-neo-Plasmid cotransfiziert . 30
Neo-resistente Klone wurden hinsichtlich der Expression des H-
Il-6-Proteins durch Testen der Aktivität von Zellüberständen von BAF3/gpl30-Zellen gescreent. Für dieses Beispiel wurden zwei positive Klone ausgewählt und ein scheintransfizierter Klon, der nur das pSV2-neo-Plasmid enthielt. Figur lb zeigt die Expression des 84 kD Glykoproteins einer positiven Transfektante, nachgewiesen mittels Immunpräzipitation des radioaktiv markierten Proteins aus dem Überstand über einen anti-IL-6-Antikörper. Negative Transfektanten und parentale Bl6-Zellen sezernierten nicht H-IL-6 ins Medium. Figur lc zeigt eine Westernblot-Analyse des Mediums von transfizierten und parentalen B16-Zellen nach einer zehnfachen Konzentrierung. Das IL-6/sIL-6R-Fusionsprotein wurde mit dem anti-IL-6-Antikörper genauso effizient nachgewiesen wie rekombinantes IL-6. Es gab keine Kreuzreaktion des anti-IL-6- MAK mit SIL6R (rechte Spur) . Die H-IL-6-Spiegel im Überstand transfizierter Zellen wurden durch Messung der biologischen Aktivität des Fusionsproteins auf einer mit gpl30 transfizierten BAF3-Zellinie (BAF3/gpl30) bestimmt (Figur 2b) . Untransfizierte BAF3-Zellen exprimierten gpl30 und IL-6R nicht, antworten daher nicht auf IL-6 oder H-IL-6. Zeilüberstände transfizierter B16-Zellen wurden nach 24 Stunden geerntet und es konnte eine dosisabhängige Proliferation der BAF3/gpl30-Zellen beobachtet werden. Die EC50-Konzentration wurde mit 0,2 μl/ml bestimmt (Figur 2b). Dies entspricht H-IL-6-Spiegeln von 500 pg/ml/107 Zellen/24 Stunden (Figur 2a) . Die biologische Aktivität von H-IL-6 in vivo und dessen Stabilität wurden durch Injektion (i.p.) von 2 μg rekombinantem H-IL-6 in C57BL/6-Mäuse getestet. Die Expression des Akutphase-Proteins Haptoglobin wurde nach 72 Stunden durch Bestimmung der Serumspiegel mittels Westernblot- Analysen analysiert (Figur 2c) . Nach IL-6-Injektion konnten nach 72 Stunden keine erhöhten Haptoglobin-Spiegel nachgewiesen werden. Acht von neun getesteten Mäusen zeigten deutlich erhöhte Haptoglobin-Spiegel im Vergleich zu Kontrolltieren, die PBS erhielten. Somit kann H-IL-6 bei wesentlich geringeren Dosen als IL-6 Akutphase-Proteine in Mäusen induzieren.
Beispiel 3 Untersuchung der in vitro-Eigenschaften von parentalen B16-
Zellen und Transfektanten
Um zu untersuchen ob H-IL-6-Transfektion das Zellwachstum in vitro beeinflußt wurden Proliferationsassays durchgeführt und die Zelldichten mittels eines kolorimetrischen Assays mit MTT bestimmt. Figur 3a zeigt die Proliferation von parentalen B16- und transfizierten Bl6/H-IL-6-Zellen, die über einen Zeitraum von fünf Tagen zu verschiedenen Zeitpunkten gemessen wurde. In Bl6/H-IL-6-Zellen war das Zellwachstum deutlich gehemmt und die Zelldichten betrugen etwa 10% im Vergleich zu den parentalen B16-Zellen am Ende der Zeitreihe. Außerdem zeigten transfizierte Bl6-Zellen eine veränderte Morhologie, die durch verlängerte Zellauswölbungen, Verlust der Pigmentierung und ein Aneinanderliegen in langen Reihen gekennzeichnet war, was auf einen veränderten Differenzierungsstatus hinweist (Figur 3b) . Ähnliche Effekte konnten beobachtet werden, wenn Bl6-Zellen mit rekombinantem IL-6/sIL-6R-Fusionsprotein behandelt worden waren. Außerdem ergab die Messung von MHC-1 keinen Unterschied zwischen parentalen Bl6-Zellen und Transfektanten, was darauf hinweist, daß der niedrige immunogene Status aufgrund der geringen MHC- 1-Expression von transfizierten Bl6-Zellen nicht durch das Transfektionsverfahren und die Expression von H-IL-6 veränderte wurde (Figur 4) .
Beispiel 4 Untersuchungen zum Tumorwachstum
Die Tumorigenizität der H-IL-6-Transfektanten wurde durch s.c. Injektion in syngene C57BL/6-Mäuse untersucht. Figur 5a zeigt, daß Bl6/H-lL-6-Zellen im Vergleich zu parentalen oder scheintransfizierten Bl6-Zellen wesentlich kleinere Tumore bildeten. Sechs von acht Tieren in der Bl6/H-IL-6-Gruppe zeigten nach zwei Wochen eine vollständige Abstoßung der Tumorzellen. Das mittlere Volumen der etablierten Tumore in dieser Gruppe betrug 50 bis 100 mm3, während die parentalen oder scheininfizierten B16-Zellen Tumore mit 1800 bzw. 1900 mm3 ausbildeten. In einem parallelen Experiment wurde das Überleben von Mäusen beobachtet, denen s.c. parentale oder transfizierte Bl6-Zellen injiziert worden waren (Figur 5b) . 50% der Tiere, die Bl6-Zellen erhalten hatten, waren moribund und mußten nach drei Wochen getötet werden. Kein Tier dieser Gruppe überlebte 33 Tage nach Injektion, während 8 von 10 Mäusen, die Bl6/H-IL-6-Zellen erhalten hatten, nach 89 Tagen überlebt hatten. Um zu untersuchen, ob ein durch rekombinantes H-IL-6 induziertes verringertes Wachstum von Bl6-Zellen in vivo beobachtet werden kann, wurden Mäusen, die parentale B16- Zellen erhalten hatten, dreimal pro Woche 2 μg rekombinantes H-IL-6 i.p. injiziert. Nach zwei Wochen wurden die Mäuse getötet und die Tumorgewichte bestimmt. Diese systemische Behandlung mi t rekombinantem H- IL- 6 verringerte das Tumorwachstum um etwa 40 bis 50% .
Beispiel 5
Die Abstoßung von Bl6/H-IL-6-Zellen ist in für einen GM-CSFR- Antagonisten transgenen Mäusen beeinträchtigt
Es wurde davon ausgegangen, daß GM-CSF eine Schlüsselrolle bei der Abstoßung von Tumorzellen durch das Immunsystem einnimmt. Um die Rolle von GM-CSF bei der Abstoßung von H-IL-6 sezernierenden Bl6-Melanomzellen zu untersuchen wurden transfizierte und parentale Bl6-Zellen in für das mutierte K14E/E21K GM-CSF-Protein transgene Mäuse injiziert. Für dieses GM-CSF-Mutein konnte kürzlich gezeigt werden, daß es zwar an die GM-CSF-Rezeptor-α-Kette binden, nicht jedoch die signaltransduzierende ß-Einheit des GM-CSF-Rezeptorkomplexes stimulieren konnte. Somit verhält sich das K14E/E21K-GM-CSF- Protein als ein GM-CSF-Rezeptorantagonist . Für den K14E/E21K- GM-CSF-Antagonisten transgene Mäuse zeigten Spiegel von 2 bis 15 ng/ml im Serum (Figur 6a) . Transgene und nicht-transgene Kontrollmäuse wurden nach zwei Wochen getötet und die Tumorvolumina wurden wie vorstehend beschrieben bestimmt. Das Tumorwachstum der Bl6/H-IL-6-Zellen in Wildtypmäusen FVB/N x C57BL/6 war mit dem in C57BL/6-Mäusen vergleichbar mit einem durchschnittlichen Tumorvolumen von 50 bis 100 mm3. Die Tumorvolumina in transgenen GM-CSF Kl4E/E21K-Mäusen war eine Größenordnung höher als in den nicht-transgenen Kontrollmäusen (900 mm3) , was darauf hindeutet, daß die Abstoßung der transfizierten Tumorzellen von der Anwesenheit von biologisch aktivem GM-CSF abhing (Figur 6b) . Von parentalen B16-Zellen sowohl in transgenen als auch Wildtyp-Mäusen produzierte Tumore waren mit denen in C57BL/6-Mäusen vergleichbar.

Claims

Patentansprüche
1. Verwendung eines Konjugats aus IL-6 und einem IL-6 Rezeptor oder einer dieses Konjugat kodierenden DNA-Sequenz zur
Behandlung eines Tumors .
2. Verwendung nach Anspruch 1, wobei das Konjugat ein Fusionsprotein aus IL-6 und dem löslichen Anteil des IL-6- Rezeptors (sIL-6R) ist.
3. Verwendung nach Anspruch 2, wobei das Fusionsprotein Hyper- IL-6 ist.
4. Verwendung nach einem der Ansprüche 1 bis 3, wobei das Konjugat in Form eines Immuntherapeutikums verwendet wird.
5. Verwendung nach einem der Ansprüche 1 bis 4, wobei der Tumor ein Melanom, ein Nieren- oder ein Pankreaskarzinom ist.
6. Verwendung nach einem der Ansprüche 1 bis 5, wobei außerdem GM-CSF verabreicht wird.
PCT/DE2002/000533 2001-02-16 2002-02-14 Verwendung eines komjugats aus il-6 und einem il-6 rezeptor zur tumortherapie WO2002066052A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10107737A DE10107737A1 (de) 2001-02-16 2001-02-16 Verwendung eines Konjugats aus IL-6 und einem IL-6 Rezeptor zur Tumortherapie
DE10107737.8 2001-02-16

Publications (1)

Publication Number Publication Date
WO2002066052A1 true WO2002066052A1 (de) 2002-08-29

Family

ID=7674581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000533 WO2002066052A1 (de) 2001-02-16 2002-02-14 Verwendung eines komjugats aus il-6 und einem il-6 rezeptor zur tumortherapie

Country Status (2)

Country Link
DE (1) DE10107737A1 (de)
WO (1) WO2002066052A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081738A1 (en) * 2009-01-16 2010-07-22 Agirx Limited Vaccine compositions
EP2992898A1 (de) * 2014-09-04 2016-03-09 Klinikum rechts der Isar der Technischen Universität München T-Zell-Adjuvant und dessen Verwendung zur therapeutischen und prophylaktischen Impfung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413908A2 (de) * 1989-06-01 1991-02-27 Yeda Research And Development Company Limited Löslisches extrazellulares Fragment des menschlischen IFN-beta 2/IL-6-Rezeptors, seine Herstellung und diesen Fragment enthaltende pharmazeutische Mischung
EP0538810A2 (de) * 1991-10-20 1993-04-28 Yeda Research And Development Co. Ltd. Interleukin-6 enthaltende pharmazeutische Zusammensetzungen
WO1996036354A2 (en) * 1995-05-15 1996-11-21 Akademia Medyczna im. K.Marcinkowskiego Anticancer vaccine comprising il6/il6 receptor transfected cells
WO1997032891A2 (de) * 1996-03-07 1997-09-12 Angewandte Gentechnologie Systeme Gmbh Konjugat zur beeinflussung von wechselwirkungen zwischen proteinen
WO1999002552A2 (en) * 1997-07-10 1999-01-21 Yeda Research And Development Co. Ltd. Chimeric interleukin-6 soluble receptor/ligand protein, analogs thereof and uses thereof
WO2000078331A2 (en) * 1999-06-21 2000-12-28 Yeda Research And Development Co. Ltd. Il6ril6 chimera for the treatment of neurodegenerative diseases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413908A2 (de) * 1989-06-01 1991-02-27 Yeda Research And Development Company Limited Löslisches extrazellulares Fragment des menschlischen IFN-beta 2/IL-6-Rezeptors, seine Herstellung und diesen Fragment enthaltende pharmazeutische Mischung
EP0538810A2 (de) * 1991-10-20 1993-04-28 Yeda Research And Development Co. Ltd. Interleukin-6 enthaltende pharmazeutische Zusammensetzungen
WO1996036354A2 (en) * 1995-05-15 1996-11-21 Akademia Medyczna im. K.Marcinkowskiego Anticancer vaccine comprising il6/il6 receptor transfected cells
WO1997032891A2 (de) * 1996-03-07 1997-09-12 Angewandte Gentechnologie Systeme Gmbh Konjugat zur beeinflussung von wechselwirkungen zwischen proteinen
WO1999002552A2 (en) * 1997-07-10 1999-01-21 Yeda Research And Development Co. Ltd. Chimeric interleukin-6 soluble receptor/ligand protein, analogs thereof and uses thereof
WO2000078331A2 (en) * 1999-06-21 2000-12-28 Yeda Research And Development Co. Ltd. Il6ril6 chimera for the treatment of neurodegenerative diseases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACKIEWICZ A ET AL: "Interleukin-6-type Cytokines and their receptors for gene therapy of melanoma", ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, NEW YORK ACADEMY OF SCIENCES, NEW YORK, NY, US, vol. 762, 1995, pages 361 - 374, XP002087945, ISSN: 0077-8923 *
SCHAEFER KARL-HERBERT ET AL: "The IL-6/sIL-6R fusion protein hyper-IL-6 promotes neurite outgrowth and neuron survival in cultured enteric neurons", JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, MARY ANN LIEBERT, NEW YORK, NY, US, vol. 19, no. 5, May 1999 (1999-05-01), pages 527 - 532, XP002169391, ISSN: 1079-9907 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081738A1 (en) * 2009-01-16 2010-07-22 Agirx Limited Vaccine compositions
EP2992898A1 (de) * 2014-09-04 2016-03-09 Klinikum rechts der Isar der Technischen Universität München T-Zell-Adjuvant und dessen Verwendung zur therapeutischen und prophylaktischen Impfung

Also Published As

Publication number Publication date
DE10107737A1 (de) 2002-09-05

Similar Documents

Publication Publication Date Title
DE69824039T2 (de) Heterodimäre fusionsproteine zur verwendung für gezielte immuntherapie und allgemeine immunerregung
DE69534235T2 (de) Cytokin lerk-7
DE69836217T2 (de) Chimäres lösliches interleukin-6 rezeptor/ligand protein, analoge und verwendungen
DE69129302T2 (de) Inhibitoren des tumorwachstums aus geweben, methoden ihrer herstellung und verwendungen
DE69534265T2 (de) Chimäre zytokine und ihre verwendung
DE69518919T2 (de) Autoantikörper enthaltende zusammensetzung für tumorbehandlung und -vorbeugung
DE69927262T2 (de) Cd40 bindende antikörper und ctl peptide zur behandlung von tumoren
BR112019017001A2 (pt) composição, proteína de fusão, ácido nucleico, célula hospedeira, e, métodos para produção de um domínio de aglutinação de albumina, para preparação de uma variante de il-15, para produção de uma proteína de fusão e para inibição ou redução de um tumor em um indivíduo em necessidade do mesmo.
DE69637480T2 (de) Bioaktive il-12 fusionsproteine
DE69528894T2 (de) Bifunktionelles protein, herstellung und verwendung
DE69534593T2 (de) Onkostatin- m rezeptor
DE69733695T2 (de) Notch-liganden zur verwendung in der immuntherapie
DE69434168T2 (de) Liganden für die FLT3 Rezeptoren
US8501177B2 (en) Treatment of ectodermal dysplasia with EDA1 fusion proteins
DE69926480T2 (de) Acpl dna und polypeptide
AU2018372167A1 (en) Partial agonists of interleukin-2
DE60122337T2 (de) Verwendung von taci als antitumormittel
DE69535719T2 (de) Fas-antigenbindender ligand
US20230203145A1 (en) Anti-gdf15 neutralizing monoclonal antibody and use thereof
JPH09504693A (ja) 活性化されたt細胞の表面上のレセプタ:act―4
TWI285649B (en) VGA polypeptides and methods of treating VGF-related disorders
DE69734096T2 (de) Rezeptor des ob-proteins und verwandte zusammensetzungen und verfahren
DE69929240T2 (de) Impfstoffe mit erhöhter wirkung basierend auf chimären immunoglobulin e peptiden
DE60223556T2 (de) Medizinische verwendung von stammzellen, die vegfr-1 exprimieren
DE69123121T2 (de) Synthetischer poly-ig-rezeptor, rezeptor-antikörper-komplexe, herstellung und anwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP