[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002044435A1 - Steel for carburization and carburized gear - Google Patents

Steel for carburization and carburized gear Download PDF

Info

Publication number
WO2002044435A1
WO2002044435A1 PCT/JP2001/010523 JP0110523W WO0244435A1 WO 2002044435 A1 WO2002044435 A1 WO 2002044435A1 JP 0110523 W JP0110523 W JP 0110523W WO 0244435 A1 WO0244435 A1 WO 0244435A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
steel
hardness
carburizing
content
Prior art date
Application number
PCT/JP2001/010523
Other languages
French (fr)
Japanese (ja)
Inventor
Ichie Nomura
Tomoya Kato
Makoto Sumida
Yukio Ito
Masazumi Oonishi
Hideo Aihara
Masahiko Mitsubayashi
Tadashi Eriguchi
Original Assignee
Aichi Steel Corporation
Toyota Motor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation, Toyota Motor Corporation filed Critical Aichi Steel Corporation
Priority to JP2002546781A priority Critical patent/JP4136656B2/en
Publication of WO2002044435A1 publication Critical patent/WO2002044435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • the present invention relates to a carburized steel and a carburized gear using the same, and more particularly, to a carburized steel excellent in cold forging formability and a carburized gear excellent in low cycle fatigue strength.
  • gears used for automobiles, industrial machines, etc. are made of alloy steels for machine structures such as JIS SMnC, SCr, SCM, SNCM, etc., which are subjected to hot forging, warm forging, or cold forging. After being machined and formed, it is provided with a surface hardening treatment (carburized quenching, induction hardening, soft nitriding, etc.) to improve wear resistance and fatigue strength.
  • a surface hardening treatment carburized quenching, induction hardening, soft nitriding, etc.
  • Japanese Patent Publication No. 7-100840 discloses a gear made of steel to which a large amount of alloying elements such as Mo is added, which provides low cycle fatigue strength (tooth surface fatigue strength such as spalling fracture and impact tooth root). Is known to be improved.
  • alloying elements such as Mo
  • TSC-A-10-152746 and JP-A-11-71654 a small amount of B is added to reduce the alloying component added to the material and compensate for the decrease in hardenability due to this.
  • Carburizing steel has been proposed to be added to achieve both workability and strength.
  • the term “truth” refers to an imperfect quenching layer observed on the gear surface when gas carburizing is usually performed (oxygen in the carburizing gas atmosphere diffuses from the gear surface and is contained in the material).
  • the present invention has been made in view of the above circumstances, and has as its object to provide a carburizing steel excellent in cold forging formability and a carburized gear excellent in low cycle fatigue strength. Disclosure of the invention
  • the present inventors have studied carburizing steel having excellent cold forgeability and carburized gear having excellent low cycle fatigue strength, and as a result, have completed the present invention.
  • the carburizing steel of the present invention contains: C: 0.10 to 0.30% by weight, Si: 0.50% by weight or less, Mn: 0.50 to: I. 50% by weight, P: 0.30% % By weight, S: 0.003% by weight or less, Cr: 0.85 to 2.00% by weight, Mo: 0.35% by weight or less, B: 0.0010 to 0.0050% by weight, A1 : 0.11 to 0.30% by weight, N: 0.0080 to 0.0250% by weight, Nb: 0.01 to 0.10% by weight, Ti: 0.01 to 0.10% by weight The remainder consists of Fe and unavoidable impurities,
  • Hd 83C wt% + 5.5Mn wt% + 4. OCr wt% + 10.5Mo wt% + 12
  • Hd ⁇ 6 O ⁇ TC wt% + 12.5 and is effective
  • a 1% by weight A 1% by weight_2 (N% by weight-0.30Ti% by weight) ⁇ 0.1.
  • C improves the case hardening depth and internal hardness after carburizing and quenching, and greatly affects the improvement of low cycle fatigue strength.
  • the content of C is less than 0.1% by weight, it takes a long time to carburize to obtain the case-hardening depth, so that the cost is high, and the internal strength is also reduced, and the low cycle fatigue strength of the gear is greatly reduced. I do.
  • it exceeds 0.30% by weight the internal hardness after carburizing and quenching increases, and the toughness of the gear teeth decreases significantly, resulting in a decrease in low cycle fatigue strength.
  • the lower limit of the C content is preferably 0.13% by weight, more preferably 0.19% by weight, and the upper limit of the C content is preferably 0.27% by weight. It is more preferably 0.24% by weight.
  • Si is an element added as a deoxidizing agent, it is an element that forms a solid solution in ferrite and strengthens it, and particularly affects cold workability. If the content of Si exceeds 0.50% by weight, carburization may be impaired.
  • the content of Si is preferably 0.35% by weight or less, more preferably 0.15% by weight or less. The lower limit is usually 0.03% by weight.
  • the above Mn is an element added as a deoxidizer, but in order to improve the hardenability of the material, it improves the case hardening depth and internal hardness after carburizing and quenching, and greatly improves low cycle fatigue strength. Affect. However, if the Mn content is less than 0.50% by weight, the formation of trussite in the carburized diffusion layer becomes remarkable, the internal hardness is also reduced, and the low cycle fatigue strength of the gear is greatly reduced. On the other hand, if the content exceeds 1.50% by weight, the transformation temperature of the pearlite during soft annealing decreases, and the hardness of the pearlite portion exceeds Hv 300, thereby deteriorating the cold workability and machinability of the gear.
  • the lower limit of the Mn content is preferably 0.8% by weight, more preferably 1.0% by weight, and the upper limit of the Mn content is preferably 1.5% by weight, more preferably 1. 4% by weight.
  • P is an element that forms a solid solution in ferrite and strengthens it, and in particular, is an element that deteriorates cold workability. If the P content exceeds 0.5% by weight, the austenite grain boundaries during carburization are biased, and the grain boundary strength of the carburized layer decreases.
  • the content of P is preferably 0.015% by weight or less, more preferably 0.012% by weight or less. The lower limit is usually 0.002% by weight.
  • the lower limit of the S content is preferably 0.005% by weight, more preferably 0.008% by weight, and the upper limit of the S content is preferably 0.002% by weight, more preferably It is 0.015% by weight.
  • the above Cr improves the hardenability of the material, thereby improving the case hardening depth and internal hardness after carburizing and quenching, and greatly affecting the improvement in low cycle fatigue strength.
  • B is added
  • the Cr content is less than 0.85% by weight, the formation of troostite in the carburized layer becomes remarkable, while if it exceeds 2.00% by weight, Cr carbides precipitate at the austenite grain boundaries during carburizing, and the carburized layer is formed. The grain boundary strength is lowered, which is not preferable.
  • the lower limit of the Cr content is preferably 0.9% by weight, more preferably 1.0% by weight, and the upper limit of the Cr content is preferably 1.5% by weight, more preferably 1.
  • the Mo content of 3% by weight improves the hardenability of the material, improves the case hardening depth and internal hardness after carburizing and quenching, and is also effective in improving low cycle fatigue strength. However, if the Mo content exceeds 0.35% by weight, the hardness increases remarkably during the production of the gear, the cold workability and machinability deteriorate, and the life of dies and tools is shortened. The cost will be high. In addition, in steels to which B is added, the presence of a large amount of Mo tends to generate troostite in the carburized layer.
  • the content of Mo is preferably 0.25% by weight or less, more preferably 0.20% by weight or less.
  • the lower limit is usually 0.005% by weight.
  • the above B precipitates at the austenite grain boundaries of the carburized layer to improve the grain boundary strength of the carburized layer and to improve the internal hardenability after carburizing and quenching without increasing the material hardness during cold forging. Is an important element. However, if the content exceeds 0.0050% by weight because the effect of improving the hardenability of the carburized layer is small, it becomes easy to form troostite in the carburized layer, and the effect of improving the hardenability is only saturated.
  • the hot forgeability or cold forgeability deteriorates, and if it is less than 0.0010% by weight, the internal hardenability during carburizing and quenching decreases, which is not preferable.
  • the content of B is preferably 0.0010 to 0.0035% by weight, more preferably 0.0015 to 0.0030% by weight.
  • A1 is an element added as a deoxidizing agent, it reacts with N in steel to form A1N, and has an action of preventing austenite crystal grains from being coarsened during carburizing heating.
  • Effective A 1% by weight A 1% by weight_2 (N% by weight-0.30Ti% by weight) ⁇ 0.1 and if the content of A1 is less than 0.11% by weight, In the case of a gear having a high cold working rate, abnormal growth of austenite crystal grains during carburization is observed, and the content of A1 exceeds 0.3% by weight. If this is the case, the incompletely quenched layer on the surface of the gear during carburization becomes deep, which is not preferable.
  • the content of A1 is preferably from 0.11 to 0.20% by weight, and more preferably from 0.11 to 0.15% by weight.
  • the content of A 1 N formed is preferably 200 to 600 ppm, more preferably 250 to 550 ppm, and still more preferably 300 to 500 ppm.
  • 1N precipitates, if the N content is less than 0.0080% by weight, in a cold-worked gear, the amount of precipitated A1N decreases and the austenite crystal grains during carburization become coarse. On the other hand, if it exceeds 0.0250% by weight, the amount of dissolved B decreases, and the hardenability decreases.
  • the lower limit of the N content is preferably 0.008% by weight, more preferably 0.012% by weight, and the upper limit of the N content is preferably 0.025% by weight, more preferably 0.002% by weight.
  • Nb reacts with N or C to generate Nb (C, N), which has an effect of preventing austenite crystal grains from being coarsened during carburizing heating. If the Nb content is less than 0.01% by weight, the above effects are not exhibited. If it exceeds 0.10% by weight, the effect of preventing austenite crystal grains from being coarsened during carburizing heating is saturated, resulting in high cost. I don't like it.
  • the Nb content is preferably 0.01 to 0.07% by weight, more preferably 0.01 to 0.05% by weight.
  • the Ti reacts with N to form TiN, which has the effect of preventing austenite crystal grains from becoming coarse during carburizing heating. If the Ti content is less than 0.01% by weight, the above effects are not exhibited, and if it exceeds 0.10% by weight, the effect of preventing the austenite crystal grains from becoming coarse during carburizing heating is saturated, and the cost is reduced. It is undesirably high.
  • the content of Ti is preferably 0.01 to 0.07% by weight, more preferably 0.01 to 0.055% by weight.
  • Hd 83 C wt% + 5.5 Mn wt% + 4.
  • OC r wt% + 10.5 Mo wt% + 12 is the magnitude of the internal hardness after carburizing and quenching of the carburizing steel having the above composition. The greater the value, the higher the internal hardness after carburizing and quenching.
  • Hd thus obtained satisfies the above formula, Hd ⁇ 60 "wt% + 12.5, it is possible to increase the martensite ratio to 90% or more after carburizing, quenching and tempering.
  • the material is appropriately soft-annealed and has a hardness of Hv 170 or less (preferably ⁇ V 165 or less, (Preferably Hv 160 or less) ferrite + pearlite structure, and the hardness of the pearlite structure is Hv 300 or less (preferably Hv 295 or less, Hv 290 or less is more preferable. This improves the cold forgeability of the carburizing steel.
  • the carburized gear of the present invention is manufactured by using the steel for carburization described above, has a case hardening depth of 0.5 mm or more from the surface and has a hardness of Hv 513, and has a hardening depth within the case hardening depth.
  • the characteristic is that the area ratio is 5% or less.
  • the method of working the carburized gear is not particularly limited. Usually, any one of hot forging, warm forging, and cold forging is performed, followed by machining and carburizing and quenching.
  • the hardness of the surface layer is usually represented by Vickers hardness, and the case depth of hardness Hv 513 is preferably 0.6 mm or more from the surface, more preferably 0.65 mm or more. More preferably, it is 0.7 mm or more. However, the upper limit is usually 1.5 mm, more preferably 1.2 mm. If the case hardening depth is less than 0.5 mm, the fracture starts from the inside of the gear, which is not preferable. On the other hand, if the case hardening depth is 0.5 mm or more, the fatigue strength is remarkably excellent.
  • the method for measuring the hardness of the gear will be described in Examples.
  • Fracture of the above gears due to low cycle fatigue can be caused by tooth surface fatigue delamination caused by plastic deformation inside the tooth surface due to high contact stress on the tooth surface, and high bending stress on the tooth root due to high bending stress on the tooth root. Root impact fatigue fracture and force occur due to plasticity and increased root surface stress (see Fig. 1).
  • carburized and quenched gears have a moderate C concentration distribution from 0.8% of the surface C concentration to the inside of the tooth (uncarburized portion).
  • the strength and toughness of the (uncarburized part) are important, the suppression of troostite formation in the carburized layer and the austenitic crystal grains caused by the toughness In addition to stability, the quenched structure (martensite ratio) inside the tooth due to internal strength is important.
  • the “area fraction of truss evening light” is the depth from the surface after carburizing and quenching.
  • the internal hardness of the pitch portion of the carburized gear may be Hv 350 or more, preferably ⁇ 370 or more, and more preferably Hv 390 or more. If it is less than 350, tooth surface fatigue strength is undesirably reduced.
  • the internal hardness of the root portion of the carburized gear may be Hv 300 or more, preferably Hv 330 or more, more preferably Hv 360 or more. If Hv is less than 300, the root impact fatigue strength is undesirably reduced.
  • the above-mentioned "tooth root part” means an R part which goes from the pitch circle part of the tooth toward the root of the tooth.
  • the pitch portion is Hv 350 or more, and the root portion is Hv 300 or more, more preferably, the pitch portion is Hv 370 or more, and the root portion is Hv. 330 or more, more preferably the pitch part is HV 390 or more, and the tooth root part is Hv 360 or more.
  • the hardness of the pitch portion is Hv 350 or more, and the hardness of the root portion is Hv 300 or more, and the area ratio of the trousers is 5% or less.
  • the hardness of the pitch portion is 370 or more, and the hardness of the root portion is 30 or more, and the area ratio of the trousers.
  • the hardness of the pitch portion is Hv 390 or more, and the hardness of the root portion is Hv 360 or more, and the troostite area ratio is 4.7% or less, ( 4) Particularly preferably, the hardness of the pitch portion is Hv400 or more, the hardness of the root portion is Hv390 or more, and the area ratio of the trousers is 4.5% or less.
  • a steel having the above structure and properties can be obtained by performing normal carburizing, quenching and tempering.
  • the gear diameter is equivalent to a round bar, and the outer diameter is preferably 40 mm or less, more preferably 30 mm or less, and even more preferably 25 mm or less.
  • the quenching medium is preferably 200 and the following oil quenching is preferred.
  • the carburizing atmosphere may be any one of gas carburizing, carburizing and nitriding, and vacuum carburizing.
  • Hd 83C weight% + 5.5Mn weight% + 4.01 "weight% + 10.5 Mo weight% + 12
  • Hd 83C weight% + 5.5Mn weight% + 4.01 "weight% + 10.5 Mo weight% + 12
  • the stress of the tooth root portion which is an effect of the cold forged gear, is obtained.
  • FIG. 1 is an explanatory view showing the form of low cycle fatigue fracture of a gear.
  • FIG. 2 is an explanatory diagram showing a heat pattern for carburizing, quenching and tempering a bevel gear.
  • FIG. 3 is an explanatory diagram showing a low cycle fatigue test of a bevel gear.
  • Tables 6 and 7 show the calculation results of 1% by weight of effective A. In Tables 4 to 7, those whose constituent element content is out of the range of the present invention are indicated by an asterisk beside the numerical value.
  • the ingots A to P, Ql, R1, and S were heated at 1200 ° C or higher for 0.5 hours, and then hot forged at a temperature of 1000 to 1200 ° C to produce round bars with a diameter of 30 mm. . This was annealed from 900 ° C to 600 ° C at a cooling rate of 75 tZ to obtain carburizing steel.
  • the carburizing round bars of A to H, ⁇ , P and S have the hardness (hardness of the base and pearlite) and the cold workability (70% (Deformation resistance and critical working ratio) were measured by the following methods. Table 8 shows the results.
  • the substrate hardness was measured at a load of 10 kg using a Vickers hardness tester (model: AVK_C2, manufacturer: AKAS HI).
  • the hardness of the pearlite portion was measured by measuring the micro Vickers hardness under a load of 10 g.
  • Deformation resistance was measured by loading a test piece (without notch) with a diameter of 10 mm and a height of 15 mm using a 100 t universal test device (model: RH_100, manufacturer name: manufactured by Shimadzu Corporation) at a load cell moving speed of ImmZ.
  • the compression load at 70% upsetting was measured, and the deformation resistance obtained by using the deformation resistance measurement method by the end face constrained compression proposed by the Japan Society for Technology of Plasticity is shown in Table 8. (1980) pp. 529-532
  • the limit processing rate is determined by performing an end face restraint test on the above test piece using the above equipment, applying a load cell at a moving speed of lmm / min, and limiting the upsetting rate when the end (circumferential portion) cracks.
  • the carburizing round bar was cold forged with a module of 4.8 and a number of teeth of 10
  • a bevel gear with a pitch circle diameter of 48.8 mm was manufactured by carburizing, quenching and tempering with the heat pattern shown in Fig. 2 and further grinding the inner diameter and the like.
  • the bevel gear was set in a hydraulic fatigue tester as shown in Fig. 3, and a bevel gear fatigue test was performed as follows. A jig having a curvature equivalent to that of the actual gear was fabricated on the test gear, and a complete one-sided fatigue test was performed. Using the acoustic emission, the crack generation time was regarded as the life, and the tooth surface or root origin was determined by magnetic particle flaw detection. Table 9 shows the results.
  • the case hardening depth and the internal hardness at the pitch portion and the root portion of the bevel gear were measured, and further, the troostite structure within the case hardening depth was observed and the austenite crystal grains were mixed.
  • Table 9 also shows the results.
  • the case hardening depth was measured with a load of 300 g using a micro Vickers hardness tester (model: MVK-E, manufacturer name: AKASH I).
  • the internal hardness was measured at a load of 10 kg using a Vickers hardness tester (model: AVK-C2, manufacturer: AKASH I).
  • the area ratio of troostite was determined by the following method using an image analyzer (model: LUZEX-IIIU, manufacturer name: manufactured by NI RECO). After the nail corrosion, the area ratio of the black corroded portion of the troostite structure was calculated. Austenitic crystal grains were observed using an optical microscope (model: BX60M, manufacturer name, manufactured by OLYMPUS).
  • the P steel had an Mn content outside the range of the present invention and had a good base hardness of Hv 159, but had a high pearlite hardness and a low deformation resistance in cold workability of less than 100 OMPa.
  • the critical processing rate was also inferior.
  • S steel did not contain B, Nb and Ti, and was inferior in the base material hardness and pearlite hardness, and the cold workability was further inferior to the O and P steels in the critical working ratio.
  • Steel V had a C content outside the range of the present invention and had a good pearlite hardness of Hv 171.However, the base hardness was high at Hv 171 and the deformation resistance in cold workability exceeded 1000 MPa. Was expensive.
  • the W steel had a Mn content outside the range of the present invention and had a good base hardness of Hv 158, but had a high pearlite hardness of Hv 305 and was inferior to the limit workability.
  • the steels A to H of the steels of the present invention were excellent in the base material hardness and the pearlite hardness, had a deformation resistance of 1000 MPa or less even in cold workability, and had a critical work ratio exceeding 70%.
  • steel C has low deformation resistance
  • steel D has a critical working ratio of over 80%, showing excellent cold workability.
  • the steels A to H of the steel of the present invention correspond to Hd in Table 4.
  • the content of C is higher than the range of the present invention, and the effective A 1% by weight is low, so that mixed grains are generated and the toughness is reduced, so that the tooth root strength is reduced and low cycle fatigue is caused.
  • the strength has decreased.
  • the Cr content is lower than the range of the present invention and the H di-Hd 2 value is out of the range of the present invention, a large amount of trussite precipitates, the tooth surface strength is reduced, and the cycle is low. The fatigue strength has been reduced.
  • Hd i-Hd 2 values and effective A 1 wt% is within the scope of the present invention.
  • the J steel had an effective A of 1% by weight within the range of the present invention except that the Mn content and the Hd Hd 2 value were outside the range of the present invention.
  • the K steel had an H di-H d 2 value and an effective A of 1% by weight within the range of the present invention except that the content of Mo was outside the range of the present invention.
  • L steel C r, the content of A 1, Hd - H d 2 values and effective A 1 wt% were outside the scope of the present invention.
  • Hd i-Hd 2 values and effective A 1 wt% were within the limits of the present invention.
  • N steel except the content of A 1 and N are outside the scope of the present invention, Hd ⁇ _ ⁇ Hd 2 values and effective A 1 wt% is within the scope of the present invention.
  • Q 1 steel except the content and HDI-Hd 2 value of C r, N b and T i is outside the range of the present invention, effective A 1 wt% is within the scope of the present invention.
  • the length of steel 1 ", the content of A1, the Hd i -Hd 2 value and the effective A 1% by weight were out of the range of the present invention.
  • the S steel was Cr, A 1, N, B, Nb and Ti content, Hd
  • the values and 1% by weight of effective A were outside the scope of the present invention.
  • the T steel had an effective A content of 1% by weight, and the U steel had an H di-Hd 2 value outside the range of the present invention.
  • Steel V was out of the scope of the present invention in the content of C and A1 and the effective A1% by weight.
  • the W steel had Cr and Mn contents and Hd 1 —Hd 2 values outside the range of the present invention.
  • the area ratio of trussite was small, and the austenite crystal grains were also sized.
  • the 300 times strength also exceeded 80KN, showing excellent low cycle fatigue strength.
  • the Ql-33 steel and the R1-20 steel are those described in JP-A-117-1654 and JP-A-10-15746, respectively.
  • Q2 to 5, 7, 9 to 11, 13 to: 15, 20, 21, 23, 32 steel and R 1 to 11, 13, 14, 14, 16 to 19 steel are shown in Table 4.
  • Hc ⁇ -Hd 2 values in Tables 6 and 7 and Tables 6 and 7 Effective A in 1% by weight is outside the scope of the present invention.
  • Q 6, 8, 12, 16 ⁇ 19 , 25, 28 steel effective A 1 wt% is more than 0.1 but, HDI-Hd 2 value takes a negative value.
  • Q22, 24, 26, 27 steel and R12, 15, 20 steel are Hd However, 1% by weight of effective A is less than 0.1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

A steel for carburization which has excellent suitability for cold forging; and a carburized gear having excellent low-cycle fatigue strength. The steel for carburization consists of 0.10 to 0.30 wt.% carbon, up to 0.50 wt.% silicon, 0.50 to 1.50 wt.% manganese, up to 0.030 wt.% phosphorus, up to 0.030 wt.%, sulfur, 0.85 to 2.00 wt.% chromium, up to 0.35 wt.% molybdenum, 0.0010 to 0.0050 wt.% boron, 0.11 to 0.30 wt.% aluminum, 0.0080 to 0.0250 wt.% nitrogen, 0.01 to 0.10 wt.% niobium, 0.01 to 0.10 wt.% titanium, and iron and unavoidable impurities as the remainder, provided that the steel satisfies Hd = 83C wt.% + 5.5Mn wt.% + 4.0Cr wt.% + 10.5Mo wt.% + 12 and Hd ≥ 60∑C wt.% + 12.5, and that effective Al wt.% = Al wt.% - 2( N wt.% - 0.30Ti wt.%) ≥ 0.1.

Description

明細書 浸炭用鋼及び浸炭歯車 技術分野  Description Carburizing steel and carburizing gear
本発明は、 浸炭用鋼及びそれを用いた浸炭歯車に関し、 更に詳しくは、 冷間鍛 造成形性に優れる浸炭用鋼及び低サイクル疲労強度に優れる浸炭歯車に関する。 背景技術  The present invention relates to a carburized steel and a carburized gear using the same, and more particularly, to a carburized steel excellent in cold forging formability and a carburized gear excellent in low cycle fatigue strength. Background art
従来、 自動車、 産業用機械等に使用される歯車は、 J I S SMnC, SC r , SCM, SN CM等の機械構造用合金鋼を素材として、 これらを熱間鍛造、 温 間鍛造又は冷間鍛造後、 機械加工を施して成形した後、 耐磨耗性や疲労強度を向 上させるため表面硬化処理 (浸炭焼入、 高周波焼入、 軟窒化処理等) を施してか ら供されている。  Conventionally, gears used for automobiles, industrial machines, etc. are made of alloy steels for machine structures such as JIS SMnC, SCr, SCM, SNCM, etc., which are subjected to hot forging, warm forging, or cold forging. After being machined and formed, it is provided with a surface hardening treatment (carburized quenching, induction hardening, soft nitriding, etc.) to improve wear resistance and fatigue strength.
特公平 7— 100840号公報には Mo等の合金元素を多量に添加した鋼を用 いた歯車が示され、 これにより低サイクル疲労強度 (スポーリング破壊等の歯面 疲労強度や衝撃的な歯元疲労強度等) が改善されることが知られている。 しかし 、 高価な合金元素の添加に加えて、 冷間鍛造成形性や機械加工性を悪化させるた め、 コストを大幅に上昇させる等の欠点があった。 そのため、 特開平 10— 15 2746号公報及び特開平 1 1— 71654号公報に示されるように、 素材に添 加する合金成分を削減し、 これによる焼入性の低下を補うため少量の Bを添加し 、 加工性と強度を両立させる浸炭用鋼が提案されている。  Japanese Patent Publication No. 7-100840 discloses a gear made of steel to which a large amount of alloying elements such as Mo is added, which provides low cycle fatigue strength (tooth surface fatigue strength such as spalling fracture and impact tooth root). Is known to be improved. However, in addition to the addition of expensive alloying elements, there are drawbacks such as a significant increase in cost due to deterioration of cold forgeability and machinability. Therefore, as disclosed in JP-A-10-152746 and JP-A-11-71654, a small amount of B is added to reduce the alloying component added to the material and compensate for the decrease in hardenability due to this. Carburizing steel has been proposed to be added to achieve both workability and strength.
しかしながら、 この 2件の公報に記載の発明は、 歯車の特に浸炭層のトルース タイト生成防止と浸炭時のオーステナイト結晶粒の安定性に関する検討が十分で なく、 優れた低サイクル疲労強度が得られない。  However, the inventions described in these two publications do not sufficiently study the prevention of the formation of troostite in the gear, particularly in the carburized layer, and the stability of austenite crystal grains during carburization, and do not provide excellent low cycle fatigue strength. .
尚、 ここでトルース夕イトとは、 通常ガス浸炭等を行った場合、 歯車表面に観 察される不完全焼入層 (浸炭ガス雰囲気の酸素が歯車表面から拡散し、 素材に含 まれる S i, Mn, C r等の合金元素と酸化物を形成するため、 その周辺部の S i, Mn, C r等の固溶合金元素が欠乏するため、 焼入性が低下して生じる組織 ) とは異なり、 浸炭焼入冷却時に主に浸炭層のオーステナイト粒界に沿って析出 する微細パーライ卜を指し、 これが多量に存在すると低サイクル疲労強度が低下 する大きな要因となる。 In this context, the term “truth” refers to an imperfect quenching layer observed on the gear surface when gas carburizing is usually performed (oxygen in the carburizing gas atmosphere diffuses from the gear surface and is contained in the material). Microstructure formed due to reduced hardenability due to lack of solid solution alloying elements such as Si, Mn, Cr, etc. in the surrounding area to form oxides with alloying elements such as i, Mn, Cr, etc. Unlike), it refers to fine pearlite that precipitates mainly along the austenite grain boundaries of the carburized layer during carburizing and quenching, and when present in large amounts, is a major factor in lowering low cycle fatigue strength.
本発明は、 上記実情に鑑みてなされたものであり、 冷間鍛造成形性に優れる浸 炭用鋼及び低サイクル疲労強度に優れる浸炭歯車を提供することを目的とする。 発明の開示  The present invention has been made in view of the above circumstances, and has as its object to provide a carburizing steel excellent in cold forging formability and a carburized gear excellent in low cycle fatigue strength. Disclosure of the invention
本発明者らは、 冷間鍛造成形性に優れる浸炭用鋼及び低サイクル疲労強度に優 れる浸炭歯車について検討した結果、 本発明を完成するに至った。  The present inventors have studied carburizing steel having excellent cold forgeability and carburized gear having excellent low cycle fatigue strength, and as a result, have completed the present invention.
即ち、 本発明の浸炭用鋼は、 C: 0. 10〜0. 30重量%, S i : 0. 50 重量%以下, Mn : 0. 50〜: I. 50重量%, P: 0. 030重量%以下, S : 0. 030重量%以下, C r : 0. 85〜2. 00重量%, Mo : 0. 35重 量%以下, B : 0. 0010〜0. 0050重量%, A 1 : 0. 11〜0. 30 重量%, N: 0. 0080〜0. 0250重量%, Nb: 0. 01〜0. 10重 量%, T i : 0. 01〜0. 10重量%を含有し、 残部は F e及び不可避不純物 からなり、  That is, the carburizing steel of the present invention contains: C: 0.10 to 0.30% by weight, Si: 0.50% by weight or less, Mn: 0.50 to: I. 50% by weight, P: 0.30% % By weight, S: 0.003% by weight or less, Cr: 0.85 to 2.00% by weight, Mo: 0.35% by weight or less, B: 0.0010 to 0.0050% by weight, A1 : 0.11 to 0.30% by weight, N: 0.0080 to 0.0250% by weight, Nb: 0.01 to 0.10% by weight, Ti: 0.01 to 0.10% by weight The remainder consists of Fe and unavoidable impurities,
Hd = 83C重量%+5. 5Mn重量% + 4. OC r重量%+ 10. 5Mo重 量%+ 12の関係式において、 Hd≥6 O^TC重量%+ 12. 5であり、 且つ有 効 A 1重量% = A 1重量%_ 2 (N重量%— 0. 30T i重量%) ≥0. 1であ ることを特徴とする。  Hd = 83C wt% + 5.5Mn wt% + 4. OCr wt% + 10.5Mo wt% + 12 In the relational expression, Hd≥6 O ^ TC wt% + 12.5, and is effective A 1% by weight = A 1% by weight_2 (N% by weight-0.30Ti% by weight) ≥0.1.
上記 Cは、 浸炭焼入後の肌焼深さ及び内部硬さを向上させ、 低サイクル疲労強 度の向上に大きく影響する。 しかし、 Cの含有量が 0. 10重量%未満では、 肌 焼深さを得るのに長い浸炭時間を要するためコスト高となり、 また、 内部強度も 低下して歯車における低サイクル疲労強度が大きく低下する。 一方、 0. 30重 量%を超えると、 浸炭焼入後の内部硬さが高くなり、 歯車の歯の靱性が著しく低 下するため、 低サイクル疲労強度が低下する。 加えて、 歯車の製造工程である冷 間加工性や被削性が悪くなり、 金型や工具等の寿命を劣化させるため、 著しいコ スト高となる。 尚、 Cの含有量の下限は、 好ましくは 0. 13重量%、 より好ま しくは 0. 19重量%でぁり、 Cの含有量の上限は、 好ましくは 0. 27重量% 、 より好ましくは 0. 24重量%である。 C improves the case hardening depth and internal hardness after carburizing and quenching, and greatly affects the improvement of low cycle fatigue strength. However, when the content of C is less than 0.1% by weight, it takes a long time to carburize to obtain the case-hardening depth, so that the cost is high, and the internal strength is also reduced, and the low cycle fatigue strength of the gear is greatly reduced. I do. On the other hand, if it exceeds 0.30% by weight, the internal hardness after carburizing and quenching increases, and the toughness of the gear teeth decreases significantly, resulting in a decrease in low cycle fatigue strength. In addition, the cold workability and machinability, which are the manufacturing processes of gears, deteriorate, and the service life of dies and tools deteriorates, resulting in a significant cost increase. The lower limit of the C content is preferably 0.13% by weight, more preferably 0.19% by weight, and the upper limit of the C content is preferably 0.27% by weight. It is more preferably 0.24% by weight.
上記 S iは脱酸剤として添加される元素であるが、 フェライトに固溶して強化 する元素であるため、 特に冷間加工性に影響する。 S iの含有量が 0. 50重量 %を超えると、 浸炭性を阻害するおそれがある。 S iの含有量は、 好ましくは 0 . 35重量%以下、 より好ましくは 0. 15重量%以下である。 尚、 下限は通常 0. 03重量%でぁる。  Although Si is an element added as a deoxidizing agent, it is an element that forms a solid solution in ferrite and strengthens it, and particularly affects cold workability. If the content of Si exceeds 0.50% by weight, carburization may be impaired. The content of Si is preferably 0.35% by weight or less, more preferably 0.15% by weight or less. The lower limit is usually 0.03% by weight.
上記 M nは脱酸剤として添加される元素であるが、 素材の焼入性を向上させる ため、 浸炭焼入後の肌焼深さ及び内部硬さを向上させ、 低サイクル疲労強度向上 に大きく影響する。 しかし、 Mnの含有量が 0. 50重量%未満では、 浸炭拡散 層のトルース夕イト生成が顕著になり、 内部硬さも低下して歯車における低サイ クル疲労強度が大きく低下する。 一方、 1. 50重量%を超えると、 軟化焼鈍時 のパーライ卜の変態温度が下がるためにパーライト部の硬さが Hv 300を超え るため、 歯車の冷間加工性や被削性が悪くなり、 金型や工具等の寿命を劣化させ るため、 著しいコスト高となる。 尚、 Mnの含有量の下限は、 好ましくは 0. 8 重量%、 より好ましくは 1. 0重量%であり、 Mnの含有量の上限は、 好ましく は 1. 5重量%、 より好ましくは 1. 4重量%である。  The above Mn is an element added as a deoxidizer, but in order to improve the hardenability of the material, it improves the case hardening depth and internal hardness after carburizing and quenching, and greatly improves low cycle fatigue strength. Affect. However, if the Mn content is less than 0.50% by weight, the formation of trussite in the carburized diffusion layer becomes remarkable, the internal hardness is also reduced, and the low cycle fatigue strength of the gear is greatly reduced. On the other hand, if the content exceeds 1.50% by weight, the transformation temperature of the pearlite during soft annealing decreases, and the hardness of the pearlite portion exceeds Hv 300, thereby deteriorating the cold workability and machinability of the gear. However, the life of molds and tools is shortened, resulting in significant cost increase. The lower limit of the Mn content is preferably 0.8% by weight, more preferably 1.0% by weight, and the upper limit of the Mn content is preferably 1.5% by weight, more preferably 1. 4% by weight.
上記 Pはフェライトに固溶して強化する元素であり、 特に冷間加工性を劣化さ せる元素である。 Pの含有量が 0. 5重量%を超えると浸炭時のオーステナイト 粒界に偏祈し、 浸炭層の粒界強度が低下する。 Pの含有量は、 好ましくは 0. 0 15重量%以下、 より好ましくは 0. 012重量%以下でぁる。 尚、 下限は、 通 常 0. 002重量%でぁる。  P is an element that forms a solid solution in ferrite and strengthens it, and in particular, is an element that deteriorates cold workability. If the P content exceeds 0.5% by weight, the austenite grain boundaries during carburization are biased, and the grain boundary strength of the carburized layer decreases. The content of P is preferably 0.015% by weight or less, more preferably 0.012% by weight or less. The lower limit is usually 0.002% by weight.
上記 Sは多量に含有すると浸炭時のオーステナイト粒界に偏折し、 浸炭層の粒 界強度を低下させる。 また、 Mnとの化合物である MnSを形成するため、 冷間 加工性を低下させる元素でもあるが、 一方歯車の被削性を向上させる元素でもあ る。 Sの含有量の下限は、 好ましくは 0. 005重量%、 より好ましくは 0. 0 08重量%でぁり、 Sの含有量の上限は、 好ましくは 0. 020重量%、 より好 ましくは 0. 015重量%である。  If a large amount of S is contained, it is deflected to the austenite grain boundaries during carburization, which lowers the grain boundary strength of the carburized layer. It is also an element that reduces cold workability because it forms MnS, a compound with Mn, but is also an element that improves the machinability of gears. The lower limit of the S content is preferably 0.005% by weight, more preferably 0.008% by weight, and the upper limit of the S content is preferably 0.002% by weight, more preferably It is 0.015% by weight.
上記 C rは素材の焼入性を向上させるため、 浸炭焼入後の肌焼深さ及び内部硬 さを向上させ、 低サイクル疲労強度の向上に大きく影響する。 特に、 Bが添加さ れる鋼においては、 浸炭拡散層に低サイクル疲労強度を低下させるトルースタイ 卜が生成しやすくなるが、 その生成を防止するために著しい効果がある。 C rの 含有量が 0. 85重量%未満では浸炭層のトルースタイト生成が顕著となり、 一 方、 2. 00重量%を超えると浸炭時のオーステナイト粒界に C r炭化物が析出 し、 浸炭層の粒界強度を低下させることとなり、 好ましくない。 C rの含有量の 下限は、 好ましくは 0. 9重量%、 より好ましくは 1. 0重量%であり、 C rの 含有量の上限は、 好ましくは 1. 5重量%、 より好ましくは 1. 3重量%である 上記 M oは素材の焼入性を向上させ、 浸炭焼入後の肌焼深さ及び内部硬さを向 上させ、 更に低サイクル疲労強度の向上に効果がある。 しかし、 Moの含有量が 0. 35重量%を超えると、 歯車の製造中に硬さが著しく上がり、 冷間加工性や 被削性が悪くなり、 金型や工具等の寿命を短くし、 コスト高となってしまう。 ま た、 Bが添加される鋼においては、 Moを多く含むと浸炭層にトルースタイトが 生成しやすくなる。 Moの含有量は、 好ましくは 0. 25重量%以下、 より好ま しくは 0. 20重量%以下である。 尚、 下限は通常 0. 005重量%でぁる。 上記 Bは浸炭層のオーステナイト粒界に析出して浸炭層の粒界強度を向上させ 、 冷間鍛造時の素材硬さを上昇させずに浸炭焼入後の内部の焼入性を向上させる ために重要な元素である。 しかし、 浸炭層の焼入性向上効果が小さいために含有 量が 0. 0050重量%を超えると、 浸炭層にトルースタイトを生成しやすくな り、 更には焼入性向上効果が飽和するだけでなく、 熱間鍛造成形性又は冷間鍛造 成形性が悪化し、 0. 0010重量%未満では浸炭焼入時の内部の焼入性が低下 し好ましくない。 Bの含有量は、 好ましくは 0. 0010〜0. 0035重量% 、 より好ましくは 0. 0015〜0. 0030重量%でぁる。 The above Cr improves the hardenability of the material, thereby improving the case hardening depth and internal hardness after carburizing and quenching, and greatly affecting the improvement in low cycle fatigue strength. In particular, B is added In the case of steels that are used, it is easy to generate a true style that reduces the low cycle fatigue strength in the carburized diffusion layer, but there is a remarkable effect to prevent the generation. If the Cr content is less than 0.85% by weight, the formation of troostite in the carburized layer becomes remarkable, while if it exceeds 2.00% by weight, Cr carbides precipitate at the austenite grain boundaries during carburizing, and the carburized layer is formed. The grain boundary strength is lowered, which is not preferable. The lower limit of the Cr content is preferably 0.9% by weight, more preferably 1.0% by weight, and the upper limit of the Cr content is preferably 1.5% by weight, more preferably 1. The Mo content of 3% by weight improves the hardenability of the material, improves the case hardening depth and internal hardness after carburizing and quenching, and is also effective in improving low cycle fatigue strength. However, if the Mo content exceeds 0.35% by weight, the hardness increases remarkably during the production of the gear, the cold workability and machinability deteriorate, and the life of dies and tools is shortened. The cost will be high. In addition, in steels to which B is added, the presence of a large amount of Mo tends to generate troostite in the carburized layer. The content of Mo is preferably 0.25% by weight or less, more preferably 0.20% by weight or less. The lower limit is usually 0.005% by weight. The above B precipitates at the austenite grain boundaries of the carburized layer to improve the grain boundary strength of the carburized layer and to improve the internal hardenability after carburizing and quenching without increasing the material hardness during cold forging. Is an important element. However, if the content exceeds 0.0050% by weight because the effect of improving the hardenability of the carburized layer is small, it becomes easy to form troostite in the carburized layer, and the effect of improving the hardenability is only saturated. In addition, the hot forgeability or cold forgeability deteriorates, and if it is less than 0.0010% by weight, the internal hardenability during carburizing and quenching decreases, which is not preferable. The content of B is preferably 0.0010 to 0.0035% by weight, more preferably 0.0015 to 0.0030% by weight.
上記 A 1は脱酸剤として添加される元素であるが、 鋼中の Nと反応して A 1 N を形成し、 浸炭加熱時のオーステナイト結晶粒の粗大化を防止する作用がある。 また、 有効 A 1重量% = A 1重量%_ 2 (N重量%— 0. 30T i重量%) ≥0 . 1において、 A 1の含有量が 0. 1 1重量%未満では、 浸炭層にトルースタイ 卜が生成しやすくなり、 且つ、 冷間加工率の高い歯車の場合における浸炭時のォ ーステナイト結晶粒の異常粒の成長が見られ、 A 1の含有量が 0. 3重量%を超 えると浸炭時に歯車表層の不完全焼入層が深くなり好ましくない。 また、 有効 A 1重量%が 0. 1重量%未満では、 焼入性が低下し、 浸炭層のトルース夕イトが 顕著になる。 A 1の含有量は、 好ましくは 0. 11〜0. 20重量%、 更に好ま しくは 0. 11〜0. 15重量%でぁる。 Although A1 is an element added as a deoxidizing agent, it reacts with N in steel to form A1N, and has an action of preventing austenite crystal grains from being coarsened during carburizing heating. Effective A 1% by weight = A 1% by weight_2 (N% by weight-0.30Ti% by weight) ≥0.1 and if the content of A1 is less than 0.11% by weight, In the case of a gear having a high cold working rate, abnormal growth of austenite crystal grains during carburization is observed, and the content of A1 exceeds 0.3% by weight. If this is the case, the incompletely quenched layer on the surface of the gear during carburization becomes deep, which is not preferable. If the effective A content of 1% by weight is less than 0.1% by weight, the hardenability decreases, and the amount of truss in the carburized layer becomes conspicuous. The content of A1 is preferably from 0.11 to 0.20% by weight, and more preferably from 0.11 to 0.15% by weight.
また、 形成される A 1 Nの含有量は、 好ましくは 200〜600 p pm、 より 好ましくは 250〜550 p pm、 更に好ましくは 300〜500 p pmである 上記 Nは A 1と反応して A 1 Nを析出するが、 Nの含有量が 0. 0080重量 %未満では、 冷間加工された歯車において、 析出する A 1 N量が低下して浸炭時 のオーステナイト結晶粒が粗大化する。 一方、 0. 0250重量%を超えると固 溶 B量が減少し、 焼入性が低下してしまう。 Nの含有量の下限は、 好ましくは 0 . 008重量%、 より好ましくは 0. 012重量%、 Nの含有量の上限は、 好ま しくは 0. 025重量%、 より好ましくは 0. 020重量%でぁる。  The content of A 1 N formed is preferably 200 to 600 ppm, more preferably 250 to 550 ppm, and still more preferably 300 to 500 ppm. Although 1N precipitates, if the N content is less than 0.0080% by weight, in a cold-worked gear, the amount of precipitated A1N decreases and the austenite crystal grains during carburization become coarse. On the other hand, if it exceeds 0.0250% by weight, the amount of dissolved B decreases, and the hardenability decreases. The lower limit of the N content is preferably 0.008% by weight, more preferably 0.012% by weight, and the upper limit of the N content is preferably 0.025% by weight, more preferably 0.002% by weight. Duru.
上記 Nbは N又は Cと反応して Nb (C, N) を生成し、 浸炭加熱時のオース テナイト結晶粒の粗大化を防止する効果がある。 Nbの含有量が 0. 01重量% 未満では、 上記効果が発現せず、 また、 0. 10重量%を超えると浸炭加熱時の オーステナイト結晶粒の粗大化を防止する効果が飽和し、 コスト高となり好まし くない。 Nbの含有量は、 好ましくは 0. 01〜0. 07重量%、 より好ましく は 0. 01〜0. 05重量%である。  The above-mentioned Nb reacts with N or C to generate Nb (C, N), which has an effect of preventing austenite crystal grains from being coarsened during carburizing heating. If the Nb content is less than 0.01% by weight, the above effects are not exhibited. If it exceeds 0.10% by weight, the effect of preventing austenite crystal grains from being coarsened during carburizing heating is saturated, resulting in high cost. I don't like it. The Nb content is preferably 0.01 to 0.07% by weight, more preferably 0.01 to 0.05% by weight.
上記 T iは Nと反応して T i Nを生成し、 浸炭加熱時のオーステナイト結晶粒 の粗大化を防止する効果がある。 T iの含有量が 0. 01重量%未満では、 上記 効果が発現せず、 また、 0. 10重量%を超えると浸炭加熱時のオーステナイト 結晶粒の粗大化を防止する効果が飽和し、 コスト高となり好ましくない。 T iの 含有量は、 好ましくは 0. 01〜0. 07重量%、 より好ましくは 0. 01〜0 . 055重量%である。  The Ti reacts with N to form TiN, which has the effect of preventing austenite crystal grains from becoming coarse during carburizing heating. If the Ti content is less than 0.01% by weight, the above effects are not exhibited, and if it exceeds 0.10% by weight, the effect of preventing the austenite crystal grains from becoming coarse during carburizing heating is saturated, and the cost is reduced. It is undesirably high. The content of Ti is preferably 0.01 to 0.07% by weight, more preferably 0.01 to 0.055% by weight.
上記式 Hd = 83 C重量%+ 5. 5Mn重量%+4. OC r重量%+ 10. 5 Mo重量%+ 12は、 上記組成を有する浸炭用鋼の浸炭焼入後における内部硬さ の大小を表わすパラメ一夕一を求める式であり、 この値が大きいほど浸炭焼入後 の内部硬さが高くなる。 このようにして求められた Hdが上記式 Hd≥ 60 " 重量%+ 12. 5を満 たした場合、 浸炭焼入焼戻の後にマルテンサイト率を 90%以上とすることがで さる。 The above formula Hd = 83 C wt% + 5.5 Mn wt% + 4. OC r wt% + 10.5 Mo wt% + 12 is the magnitude of the internal hardness after carburizing and quenching of the carburizing steel having the above composition. The greater the value, the higher the internal hardness after carburizing and quenching. When the Hd thus obtained satisfies the above formula, Hd≥60 "wt% + 12.5, it is possible to increase the martensite ratio to 90% or more after carburizing, quenching and tempering.
また、 上記のような浸炭用鋼を浸炭焼入する前に所定形状に加工する際におい て適切な軟化焼鈍を施した素材状態では、 硬さが Hv 170以下 (好ましくは Η V 165以下、 より好ましくは Hv 160以下) のフェライ卜 +パ一ライト組織 とすることができ、 且つ荷重 10 gのマイクロピツカ一ス硬さにおいて、 パーラ イト組織の硬さを Hv 300以下 (好ましくは Hv 295以下、 より好ましくは Hv 290以下) とすることができる。 これによつて浸炭用鋼の冷間鍛造性が向 上する。  In addition, when the above-described carburizing steel is processed into a predetermined shape before carburizing and quenching, the material is appropriately soft-annealed and has a hardness of Hv 170 or less (preferably ΗV 165 or less, (Preferably Hv 160 or less) ferrite + pearlite structure, and the hardness of the pearlite structure is Hv 300 or less (preferably Hv 295 or less, Hv 290 or less is more preferable. This improves the cold forgeability of the carburizing steel.
本発明の浸炭歯車は、 上記記載の浸炭用鋼を用いて製造され、 硬さ Hv 513 である肌焼深さが表面から 0. 5 mm以上であり、 且つ肌焼深さ内のトルース夕 ィト面積率が 5%以下であることを特徴とする。  The carburized gear of the present invention is manufactured by using the steel for carburization described above, has a case hardening depth of 0.5 mm or more from the surface and has a hardness of Hv 513, and has a hardening depth within the case hardening depth. The characteristic is that the area ratio is 5% or less.
上記浸炭歯車の加工方法は特に限定されないが、 通常、 熱間鍛造、 温間鍛造及 び冷間鍛造のいずれかが行われた後、 機械加工され、 浸炭焼入がなされる。 その 場合の表面層の硬さは、 通常ビッカース硬さで表され、 硬さ Hv 513である肌 焼深さは、 好ましくは表面から 0. 6 mm以上、 より好まし は 0. 65 mm以 上、 更に好ましくは 0. 7 mm以上である。 但し、 上限は、 通常 1. 5mm、 よ り好ましくは 1. 2 mmである。 上記肌焼深さが 0. 5 mm未満であれば歯車内 部を起点として破壊することとなり好ましくない。 一方、 上記肌焼深さが 0. 5 mm以上であれば疲労強度に著しく優れたものとなる。 尚、 歯車の硬さの測定方 法は実施例で示す。  The method of working the carburized gear is not particularly limited. Usually, any one of hot forging, warm forging, and cold forging is performed, followed by machining and carburizing and quenching. In this case, the hardness of the surface layer is usually represented by Vickers hardness, and the case depth of hardness Hv 513 is preferably 0.6 mm or more from the surface, more preferably 0.65 mm or more. More preferably, it is 0.7 mm or more. However, the upper limit is usually 1.5 mm, more preferably 1.2 mm. If the case hardening depth is less than 0.5 mm, the fracture starts from the inside of the gear, which is not preferable. On the other hand, if the case hardening depth is 0.5 mm or more, the fatigue strength is remarkably excellent. The method for measuring the hardness of the gear will be described in Examples.
上記歯車の低サイクル疲労による破壊には、 歯面への高い接触応力による歯面 内部の塑性変形が原因となる歯面疲労剥離と、 衝撃的な歯元への高い曲げ応力に より歯元内部が塑性し歯元表面応力が増加するために起こる歯元衝撃疲労破壊と 力ある (図 1参照) 。 一般に、 浸炭焼入した歯車は表層の C濃度 0. 8%から歯 内部 (未浸炭部) に向かって緩やかな C濃度分布をもつが、 低サイクル疲労強度 が要求される歯車では、 この歯内部 (未浸炭部) の強度 ·靱性が重要となるため 、 浸炭層のトルースタイト生成の抑制と靱性に起因するオーステナイト結晶粒の 安定性に加え、 内部強度に起因する歯内部の焼入組織 (マルテンサイト率) が重 要となる。 Fracture of the above gears due to low cycle fatigue can be caused by tooth surface fatigue delamination caused by plastic deformation inside the tooth surface due to high contact stress on the tooth surface, and high bending stress on the tooth root due to high bending stress on the tooth root. Root impact fatigue fracture and force occur due to plasticity and increased root surface stress (see Fig. 1). In general, carburized and quenched gears have a moderate C concentration distribution from 0.8% of the surface C concentration to the inside of the tooth (uncarburized portion). Since the strength and toughness of the (uncarburized part) are important, the suppression of troostite formation in the carburized layer and the austenitic crystal grains caused by the toughness In addition to stability, the quenched structure (martensite ratio) inside the tooth due to internal strength is important.
上記 「トルース夕イトの面積分率」 は、 浸炭焼入がなされた後の表面から深さ The “area fraction of truss evening light” is the depth from the surface after carburizing and quenching.
0. 5 mmまでの領域における平均面積分率をいい、 好ましくは 4. 7 %以下、 より好ましくは 4. 5%以下である。 5%を超えると疲労強度が低下し、 歯車の 歯面 (歯車の嚙み合わせで互いの歯どうしが接触する部分) における剥離の発生 の恐れがある。 It means the average area fraction in a region up to 0.5 mm, preferably 4.7% or less, more preferably 4.5% or less. If it exceeds 5%, the fatigue strength is reduced, and there is a possibility that peeling may occur on the tooth surface of the gear (the part where the teeth contact each other when the gear is engaged).
上記浸炭歯車のピッチ部の内部硬さは、 Hv 350以上とすることができ、 好 ましくは Ην 370以上、 より好ましくは Hv 390以上である。 Hv 350未 満では歯面疲労強度が低下し好ましくない。  The internal hardness of the pitch portion of the carburized gear may be Hv 350 or more, preferably Ην 370 or more, and more preferably Hv 390 or more. If it is less than 350, tooth surface fatigue strength is undesirably reduced.
また、 上記浸炭歯車の歯元部の内部硬さは、 Hv 300以上とすることができ 、 好ましくは Hv 330以上、 より好ましくは Hv 360以上である。 Hv 30 0未満では歯元衝撃疲労強度が低下し好ましくない。 尚、 上記 「歯元部」 とは、 歯のピツチ円部から歯底に向かう R部のことをいう。  Further, the internal hardness of the root portion of the carburized gear may be Hv 300 or more, preferably Hv 330 or more, more preferably Hv 360 or more. If Hv is less than 300, the root impact fatigue strength is undesirably reduced. In addition, the above-mentioned "tooth root part" means an R part which goes from the pitch circle part of the tooth toward the root of the tooth.
上記ピッチ部及び歯元部の内部硬さの好ましい組み合わせとしては、 ピッチ部 が Hv 350以上、 且つ歯元部が Hv 300以上、 より好ましくは、 ピッチ部が Hv 370以上、 且つ歯元部が Hv 330以上、 更に好ましくは、 ピッチ部が H V 390以上、 且つ歯元部が Hv 360以上である。  As a preferred combination of the internal hardness of the pitch portion and the root portion, the pitch portion is Hv 350 or more, and the root portion is Hv 300 or more, more preferably, the pitch portion is Hv 370 or more, and the root portion is Hv. 330 or more, more preferably the pitch part is HV 390 or more, and the tooth root part is Hv 360 or more.
更に、 上記ピッチ部の内部硬さ、 歯元部の内部硬さ及びトルースタイト面積率 の好ましい組み合わせとしては、 (1) ピッチ部の硬さが Hv 350以上、 且つ 歯元部の硬さが Hv 300以上、 且つトルース夕イト面積率が 5%以下、 (2) より好ましくは、 ピッチ部の硬さが Hv 370以上、 且つ歯元部の硬さが Hv 3 30以上、 且つトルース夕イト面積率が 4. 8%以下、 (3) 更に好ましくは、 ピッチ部の硬さが Hv 390以上、 且つ歯元部の硬さが Hv 360以上、 且つト ルースタイト面積率が 4. 7%以下、 (4) 特に好ましくは、 ピッチ部の硬さが Hv400以上、 且つ歯元部の硬さが Hv 390以上、 且つトルース夕イト面積 率が 4. 5%以下である。  Further, as a preferable combination of the internal hardness of the pitch portion, the internal hardness of the root portion, and the area ratio of the troostite, (1) the hardness of the pitch portion is Hv 350 or more, and the hardness of the root portion is Hv 300 or more, and the area ratio of the trousers is 5% or less. (2) More preferably, the hardness of the pitch portion is 370 or more, and the hardness of the root portion is 30 or more, and the area ratio of the trousers. (3) More preferably, the hardness of the pitch portion is Hv 390 or more, and the hardness of the root portion is Hv 360 or more, and the troostite area ratio is 4.7% or less, ( 4) Particularly preferably, the hardness of the pitch portion is Hv400 or more, the hardness of the root portion is Hv390 or more, and the area ratio of the trousers is 4.5% or less.
上記浸炭用鋼を用いて浸炭歯車を製造する場合には、 通常の浸炭焼入焼戻を行 えば、 上記の組織及び性質を有するものを得ることができる。 特に組織は、 歯車 の質量及び浸炭焼入媒体の影響を受けることになるが、 歯車質量が丸棒相当で外 径が好ましくは 40mm以下、 より好ましくは 30mm以下、 更に好ましくは 2 5mm以下である。 また、 焼入媒体は 200で以下の油焼入であることが好まし レ 但し、 浸炭雰囲気は、 ガス浸炭、 浸炭浸窒及び真空浸炭等、 いずれの雰囲気 で行ってもよい。 In the case of producing a carburized gear using the above-mentioned carburizing steel, a steel having the above structure and properties can be obtained by performing normal carburizing, quenching and tempering. In particular, the organization The gear diameter is equivalent to a round bar, and the outer diameter is preferably 40 mm or less, more preferably 30 mm or less, and even more preferably 25 mm or less. The quenching medium is preferably 200 and the following oil quenching is preferred. However, the carburizing atmosphere may be any one of gas carburizing, carburizing and nitriding, and vacuum carburizing.
本発明の浸炭用鋼によれば、 特定の元素組成を有し、 Hd=83C重量%+5 . 5Mn重量% + 4. 001"重量%+ 10. 5 M o重量% + 12の関係式におい て、 Hd≥60 C重量%+ 12. 5とすることで、 マルテンサイト率 90%以 上の浸炭焼入組織を得ることができ、 更にはオーステナイ卜結晶粒の異常成長を 防止することができる。 また、 浸炭焼入前の所定形状への加工の際には適切な軟 化焼鈍を施すことにより冷間鍛造成形性を改善し、 容易に加工することができる 。 従って、 この浸炭用鋼を用いて自動車や産業機械等に使用される歯車やシャフ ト等を容易に製造することができる。 また、 本発明の浸炭歯車によれば、 冷間鍛 造歯車の効果である歯元部の応力集中の緩和や歯形形状に沿った鍛流線が得られ るため、 より高強度であり、 更に高トルク領域の抵抗性である低サイクル疲労強 度 (耐歯面疲労強度及び耐歯元疲労強度) に優れる。 図面の簡単な説明  According to the carburizing steel of the present invention, it has a specific elemental composition, and Hd = 83C weight% + 5.5Mn weight% + 4.01 "weight% + 10.5 Mo weight% + 12 By setting Hd ≥ 60 C wt% + 12.5, a carburized and quenched structure with a martensite ratio of 90% or more can be obtained, and abnormal growth of austenite crystal grains can be prevented. In addition, when processing into a predetermined shape before carburizing and quenching, by applying appropriate softening annealing, the cold forging formability can be improved, and the steel can be easily processed. It can be used to easily manufacture gears, shafts, etc. used for automobiles, industrial machines, etc. Further, according to the carburized gear of the present invention, the stress of the tooth root portion, which is an effect of the cold forged gear, is obtained. Higher strength and resistance in high torque region due to ease of concentration and to obtain a flow line along the tooth profile Excellent in low cycle fatigue strength (耐歯 surface fatigue strength and 耐歯 original fatigue strength). BRIEF DESCRIPTION OF DRAWINGS
図 1は、 歯車の低サイクル疲労破壊の形態を示す説明図である。  FIG. 1 is an explanatory view showing the form of low cycle fatigue fracture of a gear.
図 2は、 傘歯車を浸炭焼入焼戻するヒートパターンを示す説明図である。 図 3は、 傘歯車の低サイクル疲労試験を示す説明概略図である。 発明を実施するための最良の形態  FIG. 2 is an explanatory diagram showing a heat pattern for carburizing, quenching and tempering a bevel gear. FIG. 3 is an explanatory diagram showing a low cycle fatigue test of a bevel gear. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明について実施例を挙げて具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to examples.
1. 浸炭用鋼の製造及び評価  1. Production and evaluation of carburizing steel
(1) 浸炭用鋼の組成から求めた硬さ及び有効 A 1重量%について  (1) Hardness and effective A 1% by weight obtained from the composition of carburizing steel
表 1〜3に示す化学組成の鋼 A〜S (A〜Hを本発明鋼、 I〜Wを比較鋼とし た。 比較鋼のうち Q 1〜33鋼及び R 1〜20鋼は、 それぞれ特開平 10— 15 2746号公報及び特開平 1 1— 71654号公報に相当するものである。 また 、 S鋼は低サイクル疲労強度が要求される歯車に多く使用されている J I S規格 の SNCM420に相当する。 ) のそれぞれ 30 kgを真空溶解炉によって溶製 した。 Steels A to S having the chemical compositions shown in Tables 1 to 3 (A to H were used as the inventive steels, I to W were used as comparative steels. Of the comparative steels, Q 1 to 33 steel and R 1 to 20 steel were It corresponds to Japanese Unexamined Patent Publication No. Hei 10-15 2746 and Japanese Unexamined Patent Publication No. Hei 11-71654. However, S steel is equivalent to JIS standard SNCM420, which is often used for gears requiring low cycle fatigue strength. ) Were melted in a vacuum melting furnace.
表 4及び 5に、 各成分量から計算された Hd
Figure imgf000011_0001
C重量%+ 5. 5Mn重 量%+4. OC r重量%+ 10. 5Mo重量%+ 12と、 Hd2=60 "C重量 %+ 12. 5及びこれら
Figure imgf000011_0002
を示した。 また、 表 6及び 7に有効 A 1重量%の計算結果を示した。 尚、 表 4〜7において、 構成元素の含有量が本 発明の範囲外のものは数値の横に *印を添えた。
Tables 4 and 5 show the calculated Hd
Figure imgf000011_0001
C wt% + 5.5Mn wt% + 4. OC r wt% + 10.5Mo wt% + 12 and Hd 2 = 60 "C wt% + 12.5 and these
Figure imgf000011_0002
showed that. Tables 6 and 7 show the calculation results of 1% by weight of effective A. In Tables 4 to 7, those whose constituent element content is out of the range of the present invention are indicated by an asterisk beside the numerical value.
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0001
表 5 Table 5
し η し Μ。 nd-| πα·,一 Ηα 分 (重量%) (重量%) (重量%) (重量%) 計算値 計算値 計算値 Η し. nd- | πα ·, one Ηα min (wt%) (wt%) (wt%) (wt%) Calculated value Calculated value Calculated value
Q22 0.28 0.36 1.85 - 44.62 44.25 0.37Q22 0.28 0.36 1.85-44.62 44.25 0.37
Q23 0.23 1.10 0.95 0.39* 40.94 41.27 -0.33Q23 0.23 1.10 0.95 0.39 * 40.94 41.27 -0.33
Q24 0.25 0.86 0.56* 0.15 43.82 42.50 1.32Q24 0.25 0.86 0.56 * 0.15 43.82 42.50 1.32
Q25 0.17 0.45* 0.35* - 31.56 37.24 -5.68Q25 0.17 0.45 * 0.35 *-31.56 37.24 -5.68
Q26 0.35 1.10 0.35* - 48.50 48.00 0.50Q26 0.35 1.10 0.35 *-48.50 48.00 0.50
Q27 0.25 2.15* 0.65* - 47.18 42.50 4.68 比 Q28 0.08* 0.45* 0.05* - 21.32 29.47 -8.15Q27 0.25 2.15 * 0.65 *-47.18 42.50 4.68 Ratio Q28 0.08 * 0.45 * 0.05 *-21.32 29.47 -8.15
Q29 0.18 0.29* 0.68* - 45.61 37.96 7.65Q29 0.18 0.29 * 0.68 *-45.61 37.96 7.65
Q30 0.23 1.15 0.55* - 43.19 41.27 1.92Q30 0.23 1.15 0.55 *-43.19 41.27 1.92
Q31 0.20 0.86 2.15* - 41.93 39.33 2.60Q31 0.20 0.86 2.15 *-41.93 39.33 2.60
Q32 0.21 0.82 0.76* ― 36.98 40.00 -3.02Q32 0.21 0.82 0.76 * ― 36.98 40.00 -3.02
Q33 0.22 0.95 1.15 0.18 41.98 40.64 1.34Q33 0.22 0.95 1.15 0.18 41.98 40.64 1.34
R1 0.21 0.70 0.70* 0.17 37.87 40.00 -2.13R1 0.21 0.70 0.70 * 0.17 37.87 40.00 -2.13
R2 0.18 0.71 0.65* 0.17 35.23 37.96 -2.73R2 0.18 0.71 0.65 * 0.17 35.23 37.96 -2.73
R3 0.17 0.68 0.81* 0.17 34.88 37.24 -2.36R3 0.17 0.68 0.81 * 0.17 34.88 37.24 -2.36
R4 0.12 1.19 0.11* 0.16 30.63 33.28 -2.65R4 0.12 1.19 0.11 * 0.16 30.63 33.28 -2.65
R5 0.21 0.11* 1.46 0.17 37.66 40.00 -2.34R5 0.21 0.11 * 1.46 0.17 37.66 40.00 -2.34
R6 0.27 0.50 0.50* 0.17 40.95 43.68 -2.73 較 R7 0.21 0.60 0.60* 0.17 37.24 40.00 -2.76R6 0.27 0.50 0.50 * 0.17 40.95 43.68 -2.73 Comparison R7 0.21 0.60 0.60 * 0.17 37.24 40.00 -2.76
R8 0.18 0.35* 0.35* 0.65* 36.49 37.96 -1.47R8 0.18 0.35 * 0.35 * 0.65 * 36.49 37.96 -1.47
R9 0.18 0.70 0.70* 0.30 34.78 37.96 -3.18R9 0.18 0.70 0.70 * 0.30 34.78 37.96 -3.18
R10 0.19 0.68 0.68* 0.40* 36.47 38.65 -2.18R10 0.19 0.68 0.68 * 0.40 * 36.47 38.65 -2.18
R11 0.19 0.71 0.25* 0.17 34.46 38.65 -4.19R11 0.19 0.71 0.25 * 0.17 34.46 38.65 -4.19
R12 0.22 1.21 1.51 0.17 44.74 40.64 4.10R12 0.22 1.21 1.51 0.17 44.74 40.64 4.10
R13 0.21 0.65 0.75* 0.17 37.79 40.00 -2.21 14 0.18 0.60 0.77* 0.17 35.11 37.96 -2.85R13 0.21 0.65 0.75 * 0.17 37.79 40.00 -2.21 14 0.18 0.60 0.77 * 0.17 35.11 37.96 -2.85
R15 0.19 0.77 0.76* 0.71* 42.50 38.65 3.85R15 0.19 0.77 0.76 * 0.71 * 42.50 38.65 3.85
R16 0.18 0.60 0.77* 0.16 35.00 37.96 -2.96R16 0.18 0.60 0.77 * 0.16 35.00 37.96 -2.96
R17 0.17 0.60 0.78* 0.22 34.84 37.24 -2.40R17 0.17 0.60 0.78 * 0.22 34.84 37.24 -2.40
R18 0.16 0.15 0.07* 0.17 28.17 36.50 -Β.33 鋼 R19 0.17 0.15 0.07* 0.17 29.00 37.24 -8.24R18 0.16 0.15 0.07 * 0.17 28.17 36.50 -Β.33 Steel R19 0.17 0.15 0.07 * 0.17 29.00 37.24 -8.24
R20 0.20 0.31 0.31* 0.78* 39.74 39.33 0.41R20 0.20 0.31 0.31 * 0.78 * 39.74 39.33 0.41
S 0.21 0.60 0.56* 0.20 37.07 40.00 -2.93S 0.21 0.60 0.56 * 0.20 37.07 40.00 -2.93
T 0.21 1.03 0.89 0.15 42.00 41.30 0.70T 0.21 1.03 0.89 0.15 42.00 41.30 0.70
U 0.17 0.72 0.91 0.16 38.70 40.00 -1.30U 0.17 0.72 0.91 0.16 38.70 40.00 -1.30
V 0.31* 0.86 1.29 0.22 49.93 45.91 4.02V 0.31 * 0.86 1.29 0.22 49.93 45.91 4.02
W 0.17 1.80* 0.21* 0.01 36.96 37.24 -0.28 W 0.17 1.80 * 0.21 * 0.01 36.96 37.24 -0.28
〇AV 〇AV
Figure imgf000017_0001
Figure imgf000017_0001
区 AI N Nb Ti Ward AI N Nb Ti
 Steel
分 (重量 <½) (重量%) (重量%) AI%-2(N%-0.30Ti%) Min (Weight <½) (Weight%) (Weight%) AI% -2 (N% -0.30Ti%)
Q22 0.035* 0.0050* 0030 0.004* 0.03 Q22 0.035 * 0.0050 * 0030 0.004 * 0.03
Q23 0.005* 0.0050* 0030 0.004* 0.00  Q23 0.005 * 0.0050 * 0030 0.004 * 0.00
Q24 0.07* 0.0050* 0030 0.004* 0.06  Q24 0.07 * 0.0050 * 0030 0.004 * 0.06
Q25 0.165 0.0050* n 030 0.004* 0.16  Q25 0.165 0.0050 * n 030 0.004 * 0.16
Q26 0.079* 0.0077* 0034 0.003* 0.07  Q26 0.079 * 0.0077 * 0034 0.003 * 0.07
Q27 0.088* 0.0035* 0.002* 0.09  Q27 0.088 * 0.0035 * 0.002 * 0.09
Q28 0.135 0.0045* 0.005* 0.13 比 Q29 0.093* 0.0017* 0.001* 0.09  Q28 0.135 0.0045 * 0.005 * 0.13 ratio Q29 0.093 * 0.0017 * 0.001 * 0.09
Q30 0.074* 0.0034* 0045 0.009* 0.07  Q30 0.074 * 0.0034 * 0045 0.009 * 0.07
Q31 0.078* 0.0054* 0.002* 0.07  Q31 0.078 * 0.0054 * 0.002 * 0.07
Q32 0.035* 0.0045* 卿 0.035 0.05  Q32 0.035 * 0.0045 * Lord 0.035 0.05
Q33 0.025* 0.0055* |[DQ ― 0.01  Q33 0.025 * 0.0055 * | [DQ ― 0.01
R1 0.091* 0.0141 0029 0.042 0.09  R1 0.091 * 0.0141 0029 0.042 0.09
R2 0.051* 0.0041* 0.002* 0.04  R2 0.051 * 0.0041 * 0.002 * 0.04
R3 0.045* 0.0023* 0041 一 0.04  R3 0.045 * 0.0023 * 0041 one 0.04
R4 0.044* 0.0045* ― 0.04  R4 0.044 * 0.0045 * ― 0.04
R5 0.041* 0.0065* 0003* 0.002* 0.03  R5 0.041 * 0.0065 * 0003 * 0.002 * 0.03
R6 0.011* 0.0038* 0001* 0.031 0.02 較 R7 0.091* 0.0141 n fiク 5 0.048 0.09  R6 0.011 * 0.0038 * 0001 * 0.031 0.02 Comparison R7 0.091 * 0.0141 n fiq 5 0.048 0.09
R8 0.041* 0.0061* 0.002* 0.03  R8 0.041 * 0.0061 * 0.002 * 0.03
R9 0.025* 0.0055* 0011 0.001* 0.01 R9 0.025 * 0.0055 * 0011 0.001 * 0.01
R10 0.055* 0.0032* 0.011 0.06 R10 0.055 * 0.0032 * 0.011 0.06
R11 0.054* 0.0044* 0044 0.012 0.05  R11 0.054 * 0.0044 * 0044 0.012 0.05
R12 0.042* 0.0044* ― 0.03  R12 0.042 * 0.0044 * ― 0.03
R13 0.049* 0.0050* 0.002* 0.04  R13 0.049 * 0.0050 * 0.002 * 0.04
R14 0.005* 0.0210 ― 0.02  R14 0.005 * 0.0210 ― 0.02
R15 0.033* 0.0045* ― 0.05  R15 0.033 * 0.0045 * ― 0.05
R16 0.053* 0.0033* 0.001* 0.001* 0.05  R16 0.053 * 0.0033 * 0.001 * 0.001 * 0.05
R17 0.055* 0.0043* 0.001* 0.001* 0.05  R17 0.055 * 0.0043 * 0.001 * 0.001 * 0.05
鋼 R18 0.041* 0.0042* 0.003* 0.030 0.03  Steel R18 0.041 * 0.0042 * 0.003 * 0.030 0.03
R19 0.041* 0.0035* 0.03  R19 0.041 * 0.0035 * 0.03
R20 0.024* 0.0150 -0.01 R20 0.024 * 0.0150 -0.01
S 0.031* 0.0099 0.01S 0.031 * 0.0099 0.01
T 0.121 0.0205 0.019 0.021 0.09 T 0.121 0.0205 0.019 0.021 0.09
U 0.141 0.0130 0.031 0.041 0.14  U 0.141 0.0130 0.031 0.041 0.14
V 0.091* 0.0133 0.029 0.031 0.10  V 0.091 * 0.0133 0.029 0.031 0.10
W 0.139 0.0134 0.033 0.022 0.15  W 0.139 0.0134 0.033 0.022 0.15
(2) 浸炭用鋼の製造及び評価 (2) Production and evaluation of carburizing steel
A〜P, Ql, R 1及び Sの鋼塊を 1200°C以上で 0. 5時間加熱した後、 1000〜 1200°Cの温度で熱間鍛造成形を行い直径 30mmの丸棒を製造し た。 これを 900°Cから 600°Cまで降温速度 75 tZ分で焼鈍して浸炭用鋼と した。 上記で得られた浸炭用鋼のうち、 A〜H, 〇, P及び Sの浸炭用丸棒について 、 硬さ (素地及びパーライト部の硬さ) 及び冷間加工性 (70%据込時の変形抵 抗及び限界加工率) を以下の方法で測定した。 その結果を表 8に示す。 The ingots A to P, Ql, R1, and S were heated at 1200 ° C or higher for 0.5 hours, and then hot forged at a temperature of 1000 to 1200 ° C to produce round bars with a diameter of 30 mm. . This was annealed from 900 ° C to 600 ° C at a cooling rate of 75 tZ to obtain carburizing steel. Among the carburizing steels obtained above, the carburizing round bars of A to H, 〇, P and S have the hardness (hardness of the base and pearlite) and the cold workability (70% (Deformation resistance and critical working ratio) were measured by the following methods. Table 8 shows the results.
素地硬さは、 ビッカース硬さ計 (型式; AVK_C2、 メーカー名; AKAS HI社製) を用いて荷重 10 kgで測定した。 また、 パーライト部の硬さはマイ クロビッカース硬さを荷重 10 gで測定した。  The substrate hardness was measured at a load of 10 kg using a Vickers hardness tester (model: AVK_C2, manufacturer: AKAS HI). The hardness of the pearlite portion was measured by measuring the micro Vickers hardness under a load of 10 g.
変形抵抗は、 直径 10mm、 高さ 15 mmの試験片 (切欠無) を 100 t万能 試験装置 (型式; RH_ 100、 メーカー名;島津社製) を用いてロードセル移 動速度 ImmZ分で負荷し、 70%据込時の圧縮荷重を測定し、 日本塑性加工学 会が提案している端面拘束圧縮による変形抵抗測定法を用いて求めた変形抵抗を 表 8に示した (塑性加工春季講演会予稿集 (1980) p. 529〜 532参照 Deformation resistance was measured by loading a test piece (without notch) with a diameter of 10 mm and a height of 15 mm using a 100 t universal test device (model: RH_100, manufacturer name: manufactured by Shimadzu Corporation) at a load cell moving speed of ImmZ. The compression load at 70% upsetting was measured, and the deformation resistance obtained by using the deformation resistance measurement method by the end face constrained compression proposed by the Japan Society for Technology of Plasticity is shown in Table 8. (1980) pp. 529-532
) o ) o
限界加工率は上記試験片を上記装置を用いて端面拘束試験を行い、 ロードセル 移動速度 lmm/分で負荷し、 端部 (円周部) に割れが入ったときの据込率を限 界加工率とした (塑性と加工 No. 241、 (1981) p. 139〜 144、 日本塑性加工学会発行 参照) 。 表 8  The limit processing rate is determined by performing an end face restraint test on the above test piece using the above equipment, applying a load cell at a moving speed of lmm / min, and limiting the upsetting rate when the end (circumferential portion) cracks. (See Plasticity and Forming No. 241, (1981) p. 139-144, published by the Japan Society for Technology of Plasticity). Table 8
区 硬さ 冷間力 []ェ性  Ward Hardness Cold force
鋼 素地硬さ /\一ライト硬さ 変形抵抗 限界加工率  Steel Base hardness / \ light hardness Deformation resistance Limit processing rate
分 (Hv) (Hv) (Mpa) (%)  Minute (Hv) (Hv) (Mpa) (%)
A 155 281 970 74 A 155 281 970 74
B 158 289 982 75 本 C 148 255 918 77 B 158 289 982 75 pcs C 148 255 918 77
発 D 159 254 972 〉80 明 E 156 243 998 79 鋼 F 159 279 979 76  Departure D 159 254 972〉 80 Description E 156 243 998 79 Steel F 159 279 979 76
G 157 285 977 73 G 157 285 977 73
H 156 287 970 74H 156 287 970 74
0 173 267 1105 72 比 P 159 307 998 68 0 173 267 1105 72 Ratio P 159 307 998 68
早父 S 171 321 1081 66  Early Father S 171 321 1081 66
鋼 V 171 261 1089 70  Steel V 171 261 1089 70
W 158 305 934 66 2. 浸炭歯車の製造及び評価 W 158 305 934 66 2. Manufacture and evaluation of carburized gears
上記で得られた浸炭用鋼のうち、 A〜N, Q 1, 尺1及び5〜\ にっぃて、 浸 炭用丸棒を冷間鍛造にてモジュールが 4. 8、 歯数が 10、 ピッチ円径が 48. 8 mmである傘歯車を、 図 2に示すヒートパターンで浸炭焼入焼戻を行い、 更に 内径等の研削仕上げを行い製造した。 この傘歯車を図 3に示すように油圧疲労試 験装置にセットし、 以下の要領で傘歯車の疲労試験を行った。 試験歯車に実相手 歯車相当の曲率を持った治具を作製し、 完全片振りの疲労試験を行った。 また、 アコースティック 'ェミッションを用いて亀裂発生時期を寿命とし、 磁粉探傷に より歯面あるいは歯元起点を判断した。 その結果を表 9に示す。  Of the carburizing steels obtained above, A to N, Q 1, Shaku 1 and 5 to N, the carburizing round bar was cold forged with a module of 4.8 and a number of teeth of 10 A bevel gear with a pitch circle diameter of 48.8 mm was manufactured by carburizing, quenching and tempering with the heat pattern shown in Fig. 2 and further grinding the inner diameter and the like. The bevel gear was set in a hydraulic fatigue tester as shown in Fig. 3, and a bevel gear fatigue test was performed as follows. A jig having a curvature equivalent to that of the actual gear was fabricated on the test gear, and a complete one-sided fatigue test was performed. Using the acoustic emission, the crack generation time was regarded as the life, and the tooth surface or root origin was determined by magnetic particle flaw detection. Table 9 shows the results.
次に、 この傘歯車のピッチ部と歯元部における肌焼深さ及び内部硬さを測定し 、 更に肌焼深さ内のトルースタイト組織の観察及びオーステナイト結晶粒の混粒 調査を行った。 それらの結果も表 9に示した。 肌焼深さはマイクロビッカース硬 度計 (型式; MVK— E、 メーカー名; AKASH I社製) を用いて荷重 300 gで測定した。 また、 内部硬さは、 ビッカース硬度計 (型式; AVK— C2、 メ —カー名; AKASH I社製) を用いて荷重 10 kgで測定した。 トルースタイ ト組織の観察は画像解析装置 (型式; LUZEX— I I I U、 メーカー名; N I RECO社製) を用いて以下の方法でトルースタイト面積率を調べた。 ナイ夕一 ル腐食後、 トルースタイト組織の黒い腐食部の面積率を算出した。 オーステナイ ト結晶粒は光学顕微鏡 (型式; BX60M、 メーカー名; OLYMPUS社製) を用いて観察した。 Next, the case hardening depth and the internal hardness at the pitch portion and the root portion of the bevel gear were measured, and further, the troostite structure within the case hardening depth was observed and the austenite crystal grains were mixed. Table 9 also shows the results. The case hardening depth was measured with a load of 300 g using a micro Vickers hardness tester (model: MVK-E, manufacturer name: AKASH I). The internal hardness was measured at a load of 10 kg using a Vickers hardness tester (model: AVK-C2, manufacturer: AKASH I). For the observation of the troostite structure, the area ratio of troostite was determined by the following method using an image analyzer (model: LUZEX-IIIU, manufacturer name: manufactured by NI RECO). After the nail corrosion, the area ratio of the black corroded portion of the troostite structure was calculated. Austenitic crystal grains were observed using an optical microscope (model: BX60M, manufacturer name, manufactured by OLYMPUS).
¾:愨 表 9 ¾: kak Table 9
1 クル J 労試験 浸 炭 熱 理 品 莨 Low 1 crew J Labor test Carburizing Thermal material AA
区 ピ?チ部 ピッチ部 歯元部 歯元部 備考  Ward Pi? Portion Pitch portion Root portion Root portion Remarks
5 rfl^A7l +— 7÷+  5 rfl ^ A7l + — 7 ÷ +
分 破壊起点 肌焼深さ 内部硬さ 肌焼深さ 内部硬さ  Min Origin of fracture Case hardening depth Internal hardness Case hardening depth Internal hardness
強度 面積率 jLj  Strength Area ratio jLj
(mm; ( H v ) (mm) ( H v )  (mm; (Hv) (mm) (Hv)
A 84.5 N 歯面 0.83 415 0.80 406 1.9% 整粒 ―  A 84.5 N Tooth surface 0.83 415 0.80 406 1.9% Sizing ―
B 84.1 KN 歯面 0.83 414 0.77 399 2.6% 整粒 ―  B 84.1 KN Tooth surface 0.83 414 0.77 399 2.6% Sizing ―
本 C 80.9 N 歯面 0.79 403 0.67 373 4.4% 整粒 一- 発 D 80.1 KN 歯元 1.01 463 0.96 450 2.8% 整粒 ― 明 E 80.3 KN 歯元 0.94 444 0.85 420 1 .9¾ 整粒 ― 鋼 F 84.4KN 歯元 0.93 440 0.89 430 4.2% 整粒 ―  This C 80.9 N Tooth surface 0.79 403 0.67 373 4.4% One-shot sizing D 80.1 KN Root 1.01 463 0.96 450 2.8% Sizing-clear E 80.3 KN Root 0.94 444 0.85 420 1.9¾ Sizing-Steel F 84.4 KN Root 0.93 440 0.89 430 4.2% Sizing ―
G 84.7 KN 歯面 0.83 416 0.75 394 2.2% 整粒 ―  G 84.7 KN Tooth surface 0.83 416 0.75 394 2.2% Sizing ―
H 81.0KN 齒面 0 79 403 0.74 390 ≤1 % 整轨 ―  H 81.0KN Tooth 0 79 403 0.74 390 ≤1%
I 65細 歯面 0.59 347 0.49 302 2.6% 整粒 C範囲外  I 65 Fine tooth surface 0.59 347 0.49 302 2.6% Sizing out of range
J 75.5 N 歯面 0.80 398 0.67 358 7.8% 整粒 Mn範囲外  J 75.5 N Tooth surface 0.80 398 0.67 358 7.8% Sizing out of Mn range
K 76.5KN 歯面 0.85 421 0.84 408 5.8% 整粒 Mo範囲外  K 76.5KN Tooth surface 0.85 421 0.84 408 5.8% Sizing out of Mo range
し 76.0KN 歯面 0.87 426 0.81 400 6.3% 混粒 Cr,AI範囲外,有効 AK0.1 76.0KN Tooth surface 0.87 426 0.81 400 6.3% Mixed Cr, out of AI range, effective AK0.1
M 73.1 KN ≤1 % 整粒 Cr範囲外 M 73.1 KN ≤1% sizing Cr out of range
比 歯元 0.96 450 0.94 434  Ratio Root 0.96 450 0.94 434
N 77.9 N 歯元 0.94 445 0.87 417 4.2¾ 混粒 N範囲外  N 77.9 N Root 0.94 445 0.87 417 4.2¾ Mixed N Out of range
O 64.2 N 歯元 ∞ 516 ≥2.0 500 1.7% 整粒 C範囲外  O 64.2 N Root ∞ 516 ≥2.0 500 1.7% Sizing out of range
較 P 85.1 KN 歯面 0.84 418 0.80 397 ≤1 % 整粒 Mn範囲外  Comparison P 85.1 KN Tooth surface 0.84 418 0.80 397 ≤1% Sizing out of Mn range
Q1 75.編 歯面 0.85 388 0.73 347 1 1.2% 整粒 Hd, - Hd2く 0, Nb'Ti範囲外Q1 75.Knitting tooth surface 0.85 388 0.73 347 1 1.2% Sizing Hd,-Hd 2 0 0, out of Nb'Ti range
R1 76.2 N 歯面 0.89 398 0.81 367 8.2% 混粒 Hd,-Hd2<0,有効 Al<0.1 , AI範囲外 鋼 R1 76.2 N Tooth surface 0.89 398 0.81 367 8.2% Mixed grain Hd, -Hd 2 <0, Effective Al <0.1, Out of AI steel
S 76.6 N 歯元 0.84 416 0.56 416 ≤1 % 混粒 SNCM420  S 76.6 N Root 0.84 416 0.56 416 ≤1% Mixed SNCM420
T 76.6KN 歯面 0.89 424 0.85 408 5.8% 混粒 有効 AK0.1  T 76.6KN Tooth surface 0.89 424 0.85 408 5.8% Mixed grain effective AK0.1
u 75.7KN 歯面 0.80 407 0.70 370 6.8% 整粒 Hd,-Hd2<0 u 75.7KN Tooth surface 0.80 407 0.70 370 6.8% Sizing Hd, -Hd 2 <0
V 67.1 KN 歯元 ∞ 518 ∞ 51 1 1.0% 混粒 C,AI範囲外,有効 AK0.1 w 76細 歯面 0.83 413 0.74 380 7.4% 整粒 Hd, - Hd,く 0, Cr.Mn範囲外 V 67.1 KN Root ∞ 518 ∞ 51 1 1.0% Mixed C, AI out of range, effective AK0.1 w 76 Fine tooth surface 0.83 413 0.74 380 7.4% Sized Hd,-Hd, 0, out of Cr.Mn range
Hv 267と良好であつたが、 素地硬さが Hv 173と高く、 冷間加工性におけ る変形抵抗も 1000 MP aを超えて高かった。 P鋼は Mnの含有量が本発明の 範囲外であり、 素地硬さは Hv 159と良好であつたが、 パーライト硬さが高く 、 冷間加工性においても変形抵抗が 100 OMP aより低かったが、 限界加工率 も劣っていた。 S鋼は B, Nb及び T iを含有せず、 素地硬さ及びパーライト硬 さに劣り、 冷間加工性も O鋼、 P鋼より限界加工率が更に劣っていた。 V鋼は C の含有量が本発明の範囲外であり、 パーライト硬さが Hv 171と良好であった が、 素地硬さが Hv 171と高く、 冷間加工性における変形抵抗も 1000MP aを超えて高かった。 W鋼は Mnの含有量が本発明の範囲外であり、 素地硬さが Hv 158と良好であつたが、 パ一ライト硬さが Hv 305と高く、 また、 限界 加工率に劣っていた。 Although it was good at Hv 267, the substrate hardness was high at Hv 173, and the deformation resistance in cold workability was higher than 1000 MPa. The P steel had an Mn content outside the range of the present invention and had a good base hardness of Hv 159, but had a high pearlite hardness and a low deformation resistance in cold workability of less than 100 OMPa. However, the critical processing rate was also inferior. S steel did not contain B, Nb and Ti, and was inferior in the base material hardness and pearlite hardness, and the cold workability was further inferior to the O and P steels in the critical working ratio. Steel V had a C content outside the range of the present invention and had a good pearlite hardness of Hv 171.However, the base hardness was high at Hv 171 and the deformation resistance in cold workability exceeded 1000 MPa. Was expensive. The W steel had a Mn content outside the range of the present invention and had a good base hardness of Hv 158, but had a high pearlite hardness of Hv 305 and was inferior to the limit workability.
一方、 本発明鋼の A〜H鋼は、 素地硬さ及びパーライト硬さに優れ、 冷間加工 性においても変形抵抗が 1000 MP a以下であり、 限界加工率も 70%を超え ていた。 特に C鋼は変形抵抗が小さく、 D鋼は限界加工率が 80%を超え、 優れ た冷間加工性を示した。 本発明鋼の A〜H鋼は、 表 4における Hd
Figure imgf000022_0001
On the other hand, the steels A to H of the steels of the present invention were excellent in the base material hardness and the pearlite hardness, had a deformation resistance of 1000 MPa or less even in cold workability, and had a critical work ratio exceeding 70%. In particular, steel C has low deformation resistance, and steel D has a critical working ratio of over 80%, showing excellent cold workability. The steels A to H of the steel of the present invention correspond to Hd in Table 4.
Figure imgf000022_0001
及び表 6における有効 A 1重量%が本発明の範囲内であった。 And 1% by weight of effective A in Table 6 was within the scope of the present invention.
表 9において、 I鋼では、 Cの含有量が本発明の範囲外であり、 ピッチ部の内 部硬さが低く、 歯面強度の低下により低サイクル疲労強度が低くなつた。 J鋼で は、 Mnの含有量が、 K鋼では C rの含有量が、 それぞれ本発明の範囲外であり 、 浸炭層にトルースタイトが 5%以上析出して歯面強度が低下し、 低サイクル疲 労強度が低くなつた。 L鋼では浸炭後のオーステナイト結晶粒に混粒が発生して いた。 これにより、 歯車ひずみや低サイクル疲労強度ばらつきが生じる。 M鋼で は、 C rの含有量が本発明の範囲を超えて高いため、 歯元曲げ強度が低下し、 低 サイクル疲労強度が低くなつた。 N鋼では、 Nの含有量が本発明の範囲を下回つ たため、 浸炭後のオーステナイト結晶粒に混粒が発生した。 〇鋼では、 低サイク ル疲労強度が劣っていた。 91及び!¾ 1鋼では、 トルース夕イトが大量に析出し て歯面強度が低下し、 低サイクル疲労強度が低くなつた。 S鋼ではピッチ部及び 歯元部の内部硬さに優れ、 トルース夕イト面積率が 1 %以下であつたが、 混粒が 発生していた。 T及び U鋼ではトルースタイ卜が大量に析出して歯面強度が低下 した。 V鋼では、 Cの含有量が本発明の範囲を超えて高く、 また有効 A 1重量% が低いため、 混粒が発生し、 靱性が低下したため、 歯元強度が低下し、 低サイク ル疲労強度が低くなつた。 W鋼では、 C rの含有量が本発明の範囲より低く、 H d i— Hd2値が本発明の範囲外であるため、 トルースタイ卜が大量に析出して 歯面強度が低下し、 低サイクル疲労強度が低くなつた。 In Table 9, in steel I, the C content was out of the range of the present invention, the internal hardness of the pitch portion was low, and the low cycle fatigue strength was low due to the decrease in tooth surface strength. The content of Mn in the steel J and the content of Cr in the steel K are out of the range of the present invention, respectively, and 5% or more of troostite precipitates in the carburized layer, and the tooth surface strength is reduced. The cycle fatigue strength was reduced. In L steel, mixed grains were generated in the austenite crystal grains after carburization. This results in gear strain and low cycle fatigue strength variation. In the M steel, since the Cr content was higher than the range of the present invention, the root flexural strength decreased and the low cycle fatigue strength decreased. In N steel, since the N content was below the range of the present invention, austenite grains after carburization were mixed. Steel 劣 had poor low cycle fatigue strength. In the case of No. 91 and No. 1 steels, a large amount of trussite precipitated to lower the tooth surface strength and lower the low cycle fatigue strength. Steel S had excellent internal hardness at the pitch and roots, and the area ratio of trussite was 1% or less, but mixed grains occurred. In T and U steels, a large amount of trussite precipitates and reduces tooth surface strength did. In steel V, the content of C is higher than the range of the present invention, and the effective A 1% by weight is low, so that mixed grains are generated and the toughness is reduced, so that the tooth root strength is reduced and low cycle fatigue is caused. The strength has decreased. In W steel, since the Cr content is lower than the range of the present invention and the H di-Hd 2 value is out of the range of the present invention, a large amount of trussite precipitates, the tooth surface strength is reduced, and the cycle is low. The fatigue strength has been reduced.
I鋼は Cの含有量が本発明の範囲外である以外は、 Hd i— Hd2値及び有効 A 1重量%が本発明の範囲内であった。 J鋼は Mnの含有量及び Hd Hd2 値が本発明の範囲外である以外は、 有効 A 1重量%が本発明の範囲内であった。 K鋼は M oの含有量が本発明の範囲外である以外は、 H d i— H d 2値及び有効 A 1重量%が本発明の範囲内であった。 L鋼は C r, A 1の含有量、 Hd — H d 2値及び有効 A 1重量%が本発明の範囲外であった。 M鋼は C rの含有量が本 発明の範囲外である以外は、 Hd i— Hd2値及び有効 A 1重量%が本発明の範 囲内であった。 N鋼は A 1及び Nの含有量が本発明の範囲外である以外は、 Hd 丄ー Hd2値及び有効 A 1重量%が本発明の範囲内であった。 Q 1鋼は C r, N b及び T iの含有量並びに Hdi— Hd2値が本発明の範囲外である以外は、 有 効 A 1重量%が本発明の範囲内であった。 尺 1鋼はじ 1", A 1の含有量、 Hd i 一 Hd 2値及び有効 A 1重量%が本発明の範囲外であった。 S鋼は C r, A 1 , N, B, Nb及び T iの含有量、 Hd
Figure imgf000023_0001
値及び有効 A 1重量%が本発明 の範囲外であった。 T鋼は有効 A 1重量%が、 U鋼は H di-Hd 2値が本発明 の範囲外であった。 V鋼は C, A 1の含有量及び有効 A 1重量%が本発明の範囲 外であった。 W鋼は C r, Mnの含有量及びHd1_Hd2値が本発明の範囲外 であった。
I steel except the C content is outside the range of the present invention, Hd i-Hd 2 values and effective A 1 wt% is within the scope of the present invention. The J steel had an effective A of 1% by weight within the range of the present invention except that the Mn content and the Hd Hd 2 value were outside the range of the present invention. The K steel had an H di-H d 2 value and an effective A of 1% by weight within the range of the present invention except that the content of Mo was outside the range of the present invention. L steel C r, the content of A 1, Hd - H d 2 values and effective A 1 wt% were outside the scope of the present invention. M steels except the content of C r is outside the range of the present invention, Hd i-Hd 2 values and effective A 1 wt% were within the limits of the present invention. N steel except the content of A 1 and N are outside the scope of the present invention, Hd丄_ーHd 2 values and effective A 1 wt% is within the scope of the present invention. Q 1 steel except the content and HDI-Hd 2 value of C r, N b and T i is outside the range of the present invention, effective A 1 wt% is within the scope of the present invention. The length of steel 1 ", the content of A1, the Hd i -Hd 2 value and the effective A 1% by weight were out of the range of the present invention. The S steel was Cr, A 1, N, B, Nb and Ti content, Hd
Figure imgf000023_0001
The values and 1% by weight of effective A were outside the scope of the present invention. The T steel had an effective A content of 1% by weight, and the U steel had an H di-Hd 2 value outside the range of the present invention. Steel V was out of the scope of the present invention in the content of C and A1 and the effective A1% by weight. The W steel had Cr and Mn contents and Hd 1 —Hd 2 values outside the range of the present invention.
一方、 本発明鋼である A〜H鋼ではトルース夕イト面積率が小さく、 またォー ステナイト結晶粒も整粒であった。 300回強度も 80KNを超え、 優れた低サ ィクル疲労強度を示した。  On the other hand, in the steels A to H of the present invention, the area ratio of trussite was small, and the austenite crystal grains were also sized. The 300 times strength also exceeded 80KN, showing excellent low cycle fatigue strength.
尚、 Q l〜33鋼及び R 1〜2 0鋼は、 それぞれ特開平 1 1— 7 1 6 54号公 報及び特開平 1 0— 1 5 2 746号公報に記載されているものであるが、 Q2〜 5, 7, 9〜1 1, 1 3〜: 1 5, 20, 2 1, 23, 32鋼及び R 1〜 1 1 , 1 3, 1 4, 1 6〜1 9鋼は表 4及び 5における Hc^— Hd2値及び表 6及び 7 における有効 A 1重量%が本発明の範囲外である。 Q 6, 8, 12, 16〜19 , 25, 28鋼は有効 A 1重量%が 0. 1を超えるが、 Hdi— Hd2値が負の 値をとる。 また、 Q22, 24, 26, 27鋼及び R 12, 15, 20鋼は Hd
Figure imgf000024_0001
とるが、 有効 A 1重量%が 0. 1未満である。
The Ql-33 steel and the R1-20 steel are those described in JP-A-117-1654 and JP-A-10-15746, respectively. , Q2 to 5, 7, 9 to 11, 13 to: 15, 20, 21, 23, 32 steel and R 1 to 11, 13, 14, 14, 16 to 19 steel are shown in Table 4. Hc ^ -Hd 2 values in Tables 6 and 7 and Tables 6 and 7 Effective A in 1% by weight is outside the scope of the present invention. Q 6, 8, 12, 16~19 , 25, 28 steel effective A 1 wt% is more than 0.1 but, HDI-Hd 2 value takes a negative value. In addition, Q22, 24, 26, 27 steel and R12, 15, 20 steel are Hd
Figure imgf000024_0001
However, 1% by weight of effective A is less than 0.1.
尚、 本発明においては、 上記実施例に限定されるものではなく、 目的、 用途に ^じて本発明の範囲内で種々の実施例とすることができる。  It should be noted that the present invention is not limited to the above embodiments, and various embodiments can be made within the scope of the present invention depending on the purpose and application.

Claims

請求の範囲 The scope of the claims
1. C: 0. 10〜0. 30重量%, S i : 0. 50重量%以下, Mn: 0.1. C: 0.10 to 0.30 wt%, Si: 0.50 wt% or less, Mn: 0.3 wt%
50〜1. 50重量%, P: 0. 030重量%以下, S : 0. 030重量%以下 , C r : 0. 85〜 2. 00重量%, Mo: 0. 35重量%以下, B: 0. 00 10-0. 0050重量%, A 1 : 0. 11〜0. 30重量%, N: 0. 008 0〜0. 0250重量%, Nb: 0. 01〜0. 10重量%, T i : 0. 01〜 0. 10重量%を含有し、 残部は Fe及び不可避不純物からなり、 50-1.50% by weight, P: 0.30% by weight or less, S: 0.30% by weight or less, Cr: 0.85-2.00% by weight, Mo: 0.35% by weight or less, B: 0.000-10-0. 0050% by weight, A1: 0.11 to 0.30% by weight, N: 0.008 0 to 0.0250% by weight, Nb: 0.01 to 0.10% by weight, T i: 0.01 to 0.10% by weight, with the balance being Fe and unavoidable impurities
Hd (硬さ) =83C重量%+5. 5Mn重量% + 4. OC r重量%+ 10. 5Mo重量%+ 12の関係式において、 Hd≥60 C重量%+ 12. 5であり 、 且つ有効 A 1重量% = A 1重量%— 2 (N重量%— 0. 30T i重量%) ≥0 . 1であることを特徴とする浸炭用鋼。  Hd (hardness) = 83C wt% + 5.5Mn wt% + 4. OCr wt% + 10.5Mo wt% + 12 In the relational expression, Hd ≥ 60C wt% + 12.5, and is effective 1% by weight of A = 1% by weight of A-2 (% by weight of N-0.30% by weight of Ti) ≥0.1.
2. 請求項 1記載の浸炭用鋼を用いて製造され、 浸炭焼入焼戻することにより硬 さ Hv 513である肌焼深さが表面から 0. 5mm以上であり、 且つ肌焼深さ内 のトルースタイト面積率が 5%以下であることを特徴とする浸炭歯車。  2. The case hardening depth which is manufactured by using the carburizing steel according to claim 1 and which has a hardness of Hv 513 by carburizing, quenching and tempering is 0.5 mm or more from the surface and within the case hardening depth. A carburized gear wherein the area ratio of troostite is 5% or less.
3. 上記浸炭歯車のピッチ部の内部硬さが Hv 350以上であり、 且つ歯元部の 内部硬さが Hv 300以上である請求項 2記載の浸炭歯車。  3. The carburized gear according to claim 2, wherein the internal hardness of the pitch portion of the carburized gear is Hv 350 or more, and the internal hardness of the root portion is Hv 300 or more.
PCT/JP2001/010523 2000-12-01 2001-11-30 Steel for carburization and carburized gear WO2002044435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002546781A JP4136656B2 (en) 2000-12-01 2001-11-30 Carburizing steel and carburizing gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-367204 2000-12-01
JP2000367204 2000-12-01

Publications (1)

Publication Number Publication Date
WO2002044435A1 true WO2002044435A1 (en) 2002-06-06

Family

ID=18837669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010523 WO2002044435A1 (en) 2000-12-01 2001-11-30 Steel for carburization and carburized gear

Country Status (2)

Country Link
JP (1) JP4136656B2 (en)
WO (1) WO2002044435A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179849A (en) * 2007-01-24 2008-08-07 Jfe Bars & Shapes Corp Steel for gear having superior impact fatigue resistance, and gear using the same
US8801873B2 (en) 2009-03-30 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Carburized steel part
US8980022B2 (en) 2009-01-16 2015-03-17 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel
JP2015127435A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
EP3124637A4 (en) * 2014-03-26 2017-08-30 Nippon Steel & Sumitomo Metal Corporation High-strength hot-formed steel sheet member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260039A (en) * 1995-03-24 1996-10-08 Sumitomo Metal Ind Ltd Production of carburized and case hardened steel
JPH0967644A (en) * 1995-08-28 1997-03-11 Daido Steel Co Ltd Carburizing steel for gear, excellent in gear cutting property
JPH108199A (en) * 1996-06-14 1998-01-13 Daido Steel Co Ltd Case hardening steel excellent in carburizing hardenability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260039A (en) * 1995-03-24 1996-10-08 Sumitomo Metal Ind Ltd Production of carburized and case hardened steel
JPH0967644A (en) * 1995-08-28 1997-03-11 Daido Steel Co Ltd Carburizing steel for gear, excellent in gear cutting property
JPH108199A (en) * 1996-06-14 1998-01-13 Daido Steel Co Ltd Case hardening steel excellent in carburizing hardenability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179849A (en) * 2007-01-24 2008-08-07 Jfe Bars & Shapes Corp Steel for gear having superior impact fatigue resistance, and gear using the same
US8980022B2 (en) 2009-01-16 2015-03-17 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel
US8801873B2 (en) 2009-03-30 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Carburized steel part
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
JP2015127435A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component
EP3124637A4 (en) * 2014-03-26 2017-08-30 Nippon Steel & Sumitomo Metal Corporation High-strength hot-formed steel sheet member

Also Published As

Publication number Publication date
JP4136656B2 (en) 2008-08-20
JPWO2002044435A1 (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP3524229B2 (en) High toughness case hardened steel machine parts and their manufacturing method
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
JP4688727B2 (en) Carburized parts and manufacturing method thereof
CN112292471B (en) Mechanical component
JPH0953149A (en) Case hardening steel with high strength and high toughness
JP3239758B2 (en) Steel material for nitrocarburizing, nitrocarburizing component and method of manufacturing the same
JP4938475B2 (en) Gear steel excellent in impact fatigue resistance and gears using the same
JP4084462B2 (en) Free-cutting hot-worked steel and its manufacturing method
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP2979987B2 (en) Steel for soft nitriding
WO2002044435A1 (en) Steel for carburization and carburized gear
JP3954437B2 (en) Method for producing case-hardened boron steel to prevent abnormal grain growth of crystal grains
JPH10219393A (en) Steel material for soft-nitriding, soft-nitrided parts, and their production
JPH0860236A (en) Production of highly accurate parts
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH08260039A (en) Production of carburized and case hardened steel
JP5131770B2 (en) Non-tempered steel for soft nitriding
JPH10259450A (en) Case hardening steel excellent in low cycle fatigue strength
JP3874533B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP4778626B2 (en) Manufacturing method of steel parts with low heat treatment strain
JP3842430B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JPH05279794A (en) Soft-nitriding steel
JPH0559432A (en) Production of carburized gear excellent in fatigue strength

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 546781

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase