[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2002040664A1 - Method of constructing nucleic acid library - Google Patents

Method of constructing nucleic acid library Download PDF

Info

Publication number
WO2002040664A1
WO2002040664A1 PCT/JP2001/009200 JP0109200W WO0240664A1 WO 2002040664 A1 WO2002040664 A1 WO 2002040664A1 JP 0109200 W JP0109200 W JP 0109200W WO 0240664 A1 WO0240664 A1 WO 0240664A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
stranded nucleic
sequence
double
amino acid
Prior art date
Application number
PCT/JP2001/009200
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Nishigaki
Yasunori Kinoshita
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2002040664A1 publication Critical patent/WO2002040664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the present invention relates to a method for producing a nucleic acid library. More specifically, the present invention provides a method for hybridizing two single-stranded nucleic acids having complementary sequences (stem portions) at their ends, and then ligating the ends of the single-stranded region (branch portion) to RNA ligase.
  • the present invention relates to a method for preparing a nucleic acid library, wherein the method uses a Y-ligation method for ligation.
  • the present invention relates to a nucleic acid library produced by the method for producing a nucleic acid library and a peptide library obtained by using the nucleic acid library. Background art
  • Evolutionary molecular engineering aims to obtain useful biopolymers based on Darwin's principle of evolution. This method consists of the following elements: 1) construction of a mutant library, 2) selection of a more useful molecular species, 3) introduction and amplification of a mutation into the genotype, and 4) expression of the mutant population. This is achieved by repeating steps 4) to 4).
  • DNA mutant libraries have been constructed at the nucleotide level, and there are chemical and enzymatic methods.
  • the former method when synthesizing DNA using a DNA synthesizer, a method is employed in which nucleotides as raw materials are mixed at a specific ratio.
  • the latter also uses DNA or RNA polymerase under special conditions to induce mutations.
  • the method of generating chimeric genes by subdividing and reconstituting a plurality of similar genes, called DNA shuffling has produced various results.
  • the challenge is to create a completely new variant population, which is a block-wise variant population, which is called the block 'shuffling method'.
  • the hierarchical structural unit of the protein be set as a mutation unit. Attempts to create useful functional macromolecules from mutant populations in evolutionary molecular engineering can be attributed to exploring a vast sequence space, and from the conventional point mutant population of genes It can be said that the starting method is equivalent to searching for the vicinity of the wild-type protein with a short stride. On the other hand, the mutant population in block units is equivalent to walking with a stride in the sequence space far away from the wild-type protein. It can be said that the fitness of the array space is the key to the determination of whether or not the expected functional substance is reached by this stride. The shape of the topography of the array space is an important factor. It's a stage and I can't say for sure yet.
  • composition of the point mutation library changes depending on the lot to be constructed, and each search trial is independent and cannot be referred to each other.
  • block shuffling it is possible to design in consideration of the search history when determining the type and length of the block. It is excellent in that it can accumulate know-how in the design of racks.
  • the fundamental building block is a trinucleotide encoding an amino acid, that is, a codon.
  • the codon-amino acid correspondence table shows that all trinucleotides encode some amino acid or stop codon. Therefore, a random mutant population in nucleotide units covers all amino acids. But there are serious drawbacks. That is, at a certain probability, a stop codon is always generated and an immature peptide chain is generated. It is also known that codon usage varies depending on the protein translation system. Since there is a limit to the amount of material that can be handled experimentally, it is desirable to use codons efficiently in order to secure a large library size. Block shuffling can avoid such problems.
  • the present inventors have developed a method for efficiently connecting DNAs called the Y-ligation method.
  • this Y-ligation method two single-stranded DNAs (5, -half and 3'-half) contain complementary sequences (stem portions) at the ends, and after hybridization, In this method, the ends of the main-strand region (branch) are ligated with RNA ligase.
  • Figure 1 shows a schematic diagram of the Y-Ligege method.
  • no attempt has been made to apply the Y-ligation method, particularly to create a DNA library or a protein library. Disclosure of the invention
  • the problem to be solved by the present invention is to establish a method for constructing a nucleic acid library using the Y-ligation method.
  • the present inventors have 5, and a stem sequence and branch arranged in a direction from the side 3 ', 3 in 5 end first single-stranded nucleic acid having a nucleotide sequence of the first amino acid co Solo de
  • a second single strand having a stem sequence complementary to the stem sequence and a branch sequence in the direction from the 3 ′ side to the 5 ′ side, and having a base sequence encoding a second amino acid at the 5 ′ end
  • T4A ligase By connecting the 3 'end of the first single-stranded nucleic acid and the 5' end of the second single-stranded nucleic acid, and then performing PCR and restriction enzyme treatment.
  • the inventors have found that a nucleic acid library can be prepared, and have completed the present invention.
  • a method for preparing a nucleic acid library comprising the following steps (1) to (7).
  • a second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and a base sequence encoding a second amino acid at the 5 ′ end is prepared.
  • step (3) The double-stranded nucleic acid obtained in step (3) is transformed into type III, and PCR is performed using a primer modified with an affinity substance on the 5, side, and the direction from 3, on the 3, side
  • a double-stranded nucleic acid comprising a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a restriction enzyme recognition sequence,
  • step (3) Convert the double-stranded nucleic acid amplified in step (3) to type III, perform PCR using primers whose 5 'side has been modified with an affinity substance, and recognize the restriction enzyme recognition sequence in the direction from 5' to 3 '.
  • a double-stranded nucleic acid having a nucleotide sequence encoding a first amino acid and a second amino acid at the 3 ′ end or the 5 ′ end is prepared,
  • a method for preparing a nucleic acid library including the following steps (1) to (7) is provided.
  • a second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and a base sequence encoding a second amino acid at the 5 ′ end is prepared.
  • step (4b) Perform PCR using the double-stranded nucleic acid obtained in step (4a) as type III and using a forward primer modified on the 5 ′ side with an affinity substance and a reverse primer containing a restriction enzyme recognition sequence. , 5 'to 3' stem, branch,
  • a double-stranded nucleic acid comprising a nucleotide sequence encoding one amino acid, a nucleotide sequence encoding a second amino acid, a branch sequence and a restriction enzyme recognition sequence;
  • PCR using the double-stranded nucleic acid amplified in step (4a) as type III, and using a food primer containing a restriction enzyme recognition sequence and a reverse primer modified on the 5 ′ side with an affinity substance.
  • step (4b) The two types of double-stranded nucleic acids obtained in step (4b) are treated with a restriction enzyme to obtain bases encoding the first amino acid and the second amino acid at the 3 ′ end or the 5 ′ end, respectively.
  • a restriction enzyme to obtain bases encoding the first amino acid and the second amino acid at the 3 ′ end or the 5 ′ end, respectively.
  • a method for producing a nucleic acid library including the following steps (1) to (7) is provided.
  • a second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and having a base sequence encoding a second amino acid at the 5 ′ end is prepared.
  • a forward primer which forms the double-stranded nucleic acid obtained in the step (3) into a ⁇ form, modifies the 5 ′ side with an affinity substance, and anneals to the stem sequence of the first single-stranded nucleic acid; PCR using a reverse primer containing a restriction enzyme recognition sequence and annealing to the branch sequence of the second single-stranded nucleic acid is performed, and the stem sequence, branch sequence, Preparing a double-stranded nucleic acid comprising a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence;
  • Convert the double-stranded nucleic acid amplified in step (3) into type III include a restriction enzyme recognition sequence, and anneal to the first single-stranded nucleic acid branch sequence, and modify the 5 and 5 sides with an affinity substance PCR using a reverse primer that anneals to the stem sequence of the second single-stranded nucleic acid was performed, and restriction enzyme recognition was performed in the direction from 5 'to 3'.
  • a double-stranded nucleic acid including a nucleotide sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, a nucleotide sequence encoding the second amino acid, a branch sequence, and a stem sequence is prepared, and obtained in step (5) (4).
  • a double-stranded nucleic acid having a nucleotide sequence encoding a first amino acid and a second amino acid at the 3 ′ end or the 5 ′ end is prepared,
  • step (6) using the binding ability of the affinity substance introduced in step (4) to prepare a single-stranded nucleic acid from the double-stranded nucleic acid obtained in step (5), and
  • a mixture of single-stranded nucleic acids having a base sequence encoding a plurality of different first amino acids is used as the first single-stranded nucleic acid;
  • a mixture of single-stranded nucleic acids having a base sequence encoding the second amino acid of the species is used.
  • the length of the stem sequence is 10 to 100 bases.
  • the first single-stranded nucleic acid the stem sequence Te Oi 5 'to 3' in the direction of the side 00 (1 1.000 eight Ding 80; 1 1 1 1 chome 0 (SEQ ID NO: 1)
  • the stem sequence of the second single-stranded nucleic acid is CCGAGCGCTTA TGAAAC (SEQ ID NO: 2) in the direction from the 3 ′ side to the 5 ′ side.
  • the length of the branch sequence is between 10 and 100 bases.
  • the branch sequence of the first single-stranded nucleic acid is AAGATCTCTTTT (SEQ ID NO: 3) in the direction from the 5 ′ side to the 3 ′ side, and the branch sequence of the second single-stranded nucleic acid is 3 TTGCCCTAGGGGAT (SEQ ID NO: 4) in the 'side direction.
  • the ligation product is converted into a single-stranded nucleic acid under denaturing conditions, and then amplified by PCR to prepare a double-stranded nucleic acid.
  • the affinity substance in the primer used in step (4) is biotin.
  • the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme whose cleavage site is not included in the recognition sequence.
  • the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme that cuts away from the recognition sequence.
  • the restriction enzyme recognition sequence in the primer used in step (4) is an MboI I recognition sequence.
  • a library of nucleic acids containing a base sequence encoding 16 amino acids is prepared by repeating steps (2) to (6) four times in total.
  • nucleic acid library produced by the above-described method for producing a nucleic acid library.
  • a peptide library obtained by using the nucleic acid library produced by the above-described method for producing a nucleic acid library.
  • FIG. 1 shows a schematic diagram of the Y-Ligege method.
  • FIG. 2 is a diagram showing an outline of one specific embodiment of the method of the present invention.
  • FIG. 3 shows the structure of the substrate of T4 RNA ligase (a) and the relationship between the recognition sequence of the introduced restriction enzyme and the cleavage site (b).
  • FIG. 4 shows the results of analysis of the ligation product amplified in each cycle of the method of the present invention by denaturing PAGE and silver staining.
  • FIG. 5 shows the result of analyzing the reaction product after the first YLBS cycle by electrophoresis according to the method of the present invention.
  • FIG. 6 shows the results of electrophoretic analysis of the reaction product after the second and third YLBS cycles according to the method of the present invention.
  • FIG. 7 shows the results of sequencing the ligation products after the third YLBS cycle.
  • the method for producing a nucleic acid library of the present invention is characterized by comprising steps (1) to (7).
  • Step (1) in the method of the present invention comprises a first sequence having a stem sequence and a branch sequence in the direction from the 5 ′ side to the third side, and having a base sequence encoding the first amino acid at the 3 ′ end.
  • This is a step of preparing a second single-stranded nucleic acid.
  • the first single-stranded nucleic acid (hereinafter, also referred to as 5, half-chain) has a different structure.
  • a second single-stranded nucleic acid (hereinafter, also referred to as a 3 ′ half-strand)
  • a mixture of single-stranded nucleic acids having a base sequence encoding an amino acid is used.
  • Examples of the plurality of different amino acids include, for example, any two or more amino acids selected from naturally occurring twenty amino acids.
  • the number of kinds of amino acids is not particularly limited.
  • Natural amino acids include aliphatic amino acids (glycine, alanine), branched amino acids (parin, leucine, isoleucine), 'hydroxyamino acids (serine, threonine), acidic amino acids (aspartic acid, glutamic acid), and amino acids.
  • amino acid De (asparagine, glumin), basic amino acids (lysine, arginine), sulfur-containing amino acids (cystine, methionine), aromatic amino acids (phenylalanine, tyrosine), heterocyclic amino acids (tributophano, histidine), It can be classified into imino acids (proline), but one amino acid may be selected from each group and used as a representative.
  • imino acids proline
  • glycine, isoleucine, and asparagine were used as the seven amino acids representative of the properties of amino acids. Acids, lysine, serine, cystine, and proline were selected, but are merely examples of the present invention.
  • the length of the stem sequence in the 5, half-strand and the 3, half-strand is not particularly limited as long as both strands can hybridize, and preferably from 10 to 100 bases. It is more preferably from 10 to 30 salinity.
  • the stem sequence of the half-strand and the stem sequence of the 3 'half-strand are complementary to each other, so that the 5, half-strand and the half-strand can hybridize under certain conditions. More specifically, since the stem sequence of the 5 'half-strand (5, 3 from the direction) is complementary to the stem sequence of the half-strand (3, 5 from the direction), both strands hybridize. that both stems sequences form a duplex, since there remains 5 5 half-chain branch-chain and 3 'branch chain single strand of half chain of, as a whole forming the shape of a Y-shaped by (See Figure 1). The name Y-Lige-Shillon comes from the shape of this structure. The feature of this method is that the coupling efficiency between the two DAs can be improved by changing from the intermolecular reaction to the intramolecular reaction. Therefore, it can be applied to low-concentration substrates.
  • the number is 00 in the direction from the 5, side to the 3 'side.
  • the length of the branch sequence in the half-strand and the half-strand can be linked by the T4 RNA ligase treatment to the base at the end of the half-strand and the base at the end of the half-strand.
  • the length of the branch sequence is preferably about 10 to 100 bases, more preferably about 10 to 30 bases.
  • the length of the half-chain branch sequence and the length of the half-chain branch sequence may be the same or different.
  • the branch sequence may include a restriction enzyme recognition sequence as described later in this specification.
  • AAGATCTCTTTT SEQ ID NO: 3
  • a branch sequence of the second single-stranded nucleic acid is 3 ' From the 5'-side direction, there is 11 1 0 ((0000 000 8 (SEQ ID NO: 4).
  • the 5, half-strand and the half-strand used in step (1) can be synthesized by an ordinary DNA synthesis method (a method of synthesizing using a DNA synthesizer).
  • an ordinary DNA synthesis method a method of synthesizing using a DNA synthesizer.
  • the use of phosphorylated 3 and 5 terminal ends of the half chain enables binding to the 3 and 5 terminal ends of the half chain.
  • Step (2) in the method of the present invention is a step of hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences.
  • the 5, -half strand and 3, -half strand prepared in step (1) are heated at 94 ° C for 5 minutes in a suitable buffer, and then, for example, at 60 ° C for 15 minutes. By keeping the temperature, the complementary stem sequence can be hybridized.
  • Hybridization conditions buffer composition and hybridization temperature
  • the product hybridized in the step (2) is treated with T4RNA ligase, and the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ of the second single-stranded nucleic acid are treated. This is the step of connecting the terminal.
  • the solution containing the hybridization product can be used as it is for the ligase reaction.
  • the hybridization product is recovered by standard DNA purification methods and then buffered for T4 RNA ligase. Dissolve in the buffer to prepare a solution for ligase reaction.
  • a ligase reaction is performed by adding ATP and T4 RNA ligase to such a solution and reacting at an appropriate temperature (for example, 25 ° C) for a certain period of time (for example, 16 hours). Thereby, the 3 'end of the first single-stranded nucleic acid is linked to the 5' end of the second single-stranded nucleic acid.
  • Step (4) in the method of the present invention is carried out by PCR using the double-stranded nucleic acid obtained in step (3) as a type II,
  • Double-stranded nucleic acid containing a stem sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, a nucleotide sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence in the direction from the 5 'side to the 3 side. ;
  • step (4) (4a) the ligation product is converted into a single-stranded nucleic acid, and then a complementary strand is synthesized to prepare a double-stranded nucleic acid.
  • step (4b) Using the double-stranded nucleic acid obtained in step (4a) as type III, using a forward primer modified on the 5, side with an affinity substance and a linos primer containing a restriction enzyme recognition sequence. Perform a PCR to obtain a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence in the direction from the 5 ′ side to the 3 ′ side. Preparing a double-stranded nucleic acid containing
  • the double-stranded nucleic acid amplified in step (4a) is converted into type II, and PCR is performed using a food primer containing a restriction enzyme recognition sequence and a reverse primer modified on the 5th side with an affinity substance. And a restriction enzyme recognition sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a stem sequence in the direction from the 5 ′ side to the 3 ′ side.
  • a single-stranded nucleic acid is prepared.
  • Step (4a) is a step of preparing a double-stranded nucleic acid by converting the ligation product into a single-stranded nucleic acid and then synthesizing a complementary strand.
  • Ligation product obtained in step (3) is 5 stem sequences of the 'half-chain and 3' half chain forms a double strand, the end of the duplex, 5 5 Half-chain branches sequences , A base sequence encoding the first amino acid, a base sequence encoding the second amino acid, and a half-chain branch sequence to form a loop structure.
  • This ligation product can be converted into a single-stranded nucleic acid by placing it under denaturing conditions.
  • the single-stranded nucleic acid of the ligation product is composed of 5, a half-chain stem sequence, a half-chain branch sequence, a half-strand branch sequence, a base sequence encoding the first amino acid, and a second sequence from the 5 ′ to the 3 ′ side. It has a base sequence that encodes the amino acid of 3, a half-chain branch sequence, and a 3, half-chain stem sequence.
  • a complementary strand is synthesized with respect to the single-stranded nucleic acid to prepare a double-stranded nucleic acid.
  • the double-stranded nucleic acid is preferably subjected to PCR using the single-stranded nucleic acid as a ⁇ -type, whereby a desired double-stranded nucleic acid can be amplified.
  • the double-stranded nucleic acid obtained in the step (4a) is used as a type III, and the forward primer modified on the 5, side with an affinity substance and a reverse primer containing a restriction enzyme recognition sequence are used.
  • a double-stranded nucleic acid prepared in step (4) is prepared, and the double-stranded nucleic acid amplified in step (4) is converted into a type II, and a forward primer containing a restriction enzyme recognition sequence and a 5 ' PCR using a single primer and a restriction enzyme recognition sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, a nucleotide sequence encoding the second amino acid, and a branch in the direction from the 5 ′ side to the 3 ′ side.
  • Including sequence and stem sequence A step of preparing a stranded nucleic acid.
  • the affinity substance in the primer used in step (4b) is not particularly limited as long as it can be introduced into the primer and enables the preparation of a single-stranded nucleic acid in step (7).
  • An example of an affinity substance is biotin, in which case in step (7) a single biotin-labeled biotin The strand nucleic acid can be recovered.
  • the double-stranded nucleic acid obtained in the step (3) is converted into type II, and the first side of the first single-stranded nucleic acid is modified with an affinity substance on the 5, side.
  • PCR was performed using a forward primer that anneals to the stem sequence and a reverse primer that contains the restriction enzyme recognition sequence and anneals to the branch sequence of the second single-stranded nucleic acid.
  • Convert the double-stranded nucleic acid amplified in step (3) into type III include a restriction enzyme recognition sequence, and anneal to the first single-stranded nucleic acid branch sequence, and modify the 5 and 5 sides with an affinity substance PCR was performed using the reverse primer that anneals to the stem sequence of the second single-stranded nucleic acid, and the restriction enzyme recognition sequence, the branch sequence, and the first amino acid in the direction from 5, side to 3, side.
  • Preparing a double-stranded nucleic acid comprising a base sequence encoding, a base sequence encoding a second amino acid, a branch sequence and a stem sequence
  • the two types of double-stranded nucleic acids obtained in the step (4) are treated with a restriction enzyme, so that the nucleotide sequence encoding the first amino acid and the second amino acid at the 3 ′ end or 5 ′ end respectively.
  • a restriction enzyme so that the nucleotide sequence encoding the first amino acid and the second amino acid at the 3 ′ end or 5 ′ end respectively.
  • the second specific example is characterized in that steps (4a) and (4b) in the first specific example are performed by one PCR.
  • mutations may be introduced into the final ligated product as a result of mutations and the like, which may cause problems such as amino acid substitution, frame shift, and insertion of a stop codon. Therefore, it is preferable to reduce the introduction of mutation by this PCR. Therefore, the PCR for the purpose of amplifying the ligated product in the step (4a) and the preparation of the raw material in the next cycle in the step (4b) were simultaneously performed by a single PCR operation.
  • PCR is performed using primers (stem primer, part primer) of a stem sequence and a branch sequence (in the examples, indicated as part sequence), and the PCR width of the ligation product is determined.
  • primers stem primer, part primer
  • branch sequence in the examples, indicated as part sequence
  • step (4) is a step in which two sets of PCR are performed to produce a raw material for the next cycle, and the ligated product prepared in steps (2) to (3) has a stem portion and a restriction enzyme recognition site. This is the step of introducing a sequence.
  • a restriction enzyme recognition sequence is introduced by the restriction enzyme in the next step (5) such that the restriction enzyme recognition sequence is cleaved at the 3 'end of the nucleotide sequence encoding the second amino acid. Have been.
  • a restriction enzyme recognition sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, and a second amino acid are prepared in the direction from 5, side to 3, prepared in step (4).
  • a restriction enzyme recognition sequence such that the restriction enzyme in the next step (5) is cleaved at the 5 ′ end of the base sequence encoding the first amino acid Has been introduced.
  • the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme whose cleavage site is not included in the recognition sequence, and is preferably a recognition sequence for a restriction enzyme that cuts away from the recognition sequence.
  • a recognition sequence of MboII a recognition sequence of MboII.
  • the “restriction enzyme whose cleavage site is not included in the recognition sequence” used in the present invention include two types: an enzyme that cuts just outside the recognition sequence and an enzyme that cuts far away from the recognition sequence.
  • an appropriate enzyme can be selected from the following enzymes and used.
  • Examples of enzymes that cleave immediately outside the recognition sequence include the following.
  • 'W represents A or T
  • ' S represents C or G.
  • Examples of enzymes that cut far away from the recognition sequence include the following.
  • Step (5) in the method of the present invention comprises treating the two double-stranded nucleic acids obtained in step (4) with a restriction enzyme to thereby add a first amino acid at the 3 ′ end or the 5 ′ end, respectively.
  • This is a step of preparing a double-stranded nucleic acid having a base sequence encoding two amino acids.
  • the restriction enzyme used in step (5) is a restriction enzyme that recognizes the restriction enzyme recognition sequence introduced in step (4).
  • Step (6) in the method of the present invention is a step of preparing a single-stranded nucleic acid from the double-stranded nucleic acid obtained in step (5) by utilizing the binding ability of the affinity substance introduced in step (4). is there.
  • a single strand having a stem sequence and a branch sequence in the direction from the 5 'side to the 3 side and having a base sequence encoding the first amino acid and the second amino acid at the 3' end A base nucleic acid having a stem nucleic acid and a stem sequence and a branch sequence complementary to the stem sequence in the direction from the 3 ′ side to the 5 ′ side, and encoding the first amino acid and the second amino acid at the 5 ′ end
  • a single-stranded nucleic acid having a sequence is prepared.
  • each of the two types of single-stranded nucleic acids prepared in step (6) has a base sequence encoding a second amino acid at the 3, terminal of the first single-stranded nucleic acid prepared in step (1).
  • Step (6) yields two types of single-stranded nucleic acids for use in the next cycle.
  • the library 1 a single-stranded product was obtained in step (3), and a double-stranded DNA was obtained in step (4).
  • Step (7) in the method of the present invention is a step of repeating steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6).
  • the number of blocks connected in this way increases exponentially to 2, 4, 8, 16 according to the number of cycles. This property is an important advantage when constructing long shuffled products in that the number of reaction stages can be reduced.
  • the construction of a peptide / protein library was considered as the ultimate goal, and codons (trinucleotides) as its minimum unit were blocked.
  • the lock length can be set to any length. It is also possible to start from a block in which a plurality of codons are linked.
  • On the extension is shuffling of the structural units of the protein (for example, structural units such as Hi-helix, 3-sheet, module, domain, etc.).
  • Some small functional peptides are known to be composed of a few residues of amino acids.However, in order to express a variety of functions, they must be long enough to form various structures. Deemed necessary.
  • a peptide consisting of more than ten amino acids has an optimal length for forming a flexible structure.
  • the peptide consisting of 16 amino acids as shown in the examples of the present specification can be constructed only by rotating steps (2) to (6) for four cycles, and has a long potential having a high potential for function expression. Is important in the sense that
  • the operation was carried out so that the number of blocks of the 5′-half strand and the number of blocks of the 3′-half strand to be subjected to the ligation reaction in each cycle was the same.
  • a substrate By using a substrate, it is possible to construct a shuffled body having an arbitrary number of blocks. For example, when constructing a library having a block length of 12, the steps (2) to (6) are performed three times, and the fourth cycle is prepared from the products of the third cycle and the products of the second cycle.
  • the used 5'-half strand and 3'-half chain may be used.
  • the library once constructed in each cycle can be arbitrarily reproduced and used by amplifying it with a PCR.
  • the nucleic acid in the present invention is used in the broadest sense including DNA and RNA, and also includes analogs of DNA and RNA.
  • nucleic acids themselves such as DNA, RNA, and their analogs
  • the method of the present invention is suitable for applying such knowledge to block design and applying it to the creation of new functional nucleic acids. are doing.
  • RNA of 48 nucleotides was generated, but the 5'-half strand and the 3, -half strand including the raw material can be replaced with RNA.
  • RNA ligase activity for DNA ligation, ligation of substrate as RNA leads to improved efficiency. In this case, this can be achieved by including a promotion in the stem area.
  • the final DNA library can also be converted to RNA and replaced with an RNA library.
  • RNA Ribonucleic acid
  • a nucleic acid analog or a modified / labeled nucleic acid in the final cycle, it is possible to obtain a linked substance other than a regular nucleic acid.
  • FIG. 2 also schematically illustrates the contents of the embodiment of the present specification, and does not limit the scope of the present invention.
  • MboII is used as a restriction enzyme
  • biotin is used as an affinity substance. The description of each step in FIG. 2 is described below.
  • the present invention also relates to a nucleic acid library produced by the above-described method for producing a nucleic acid library.
  • the nucleic acid in the nucleic acid library obtained by the method of the present invention is composed of a base sequence encoding an arbitrary predetermined number of amino acids, and the frequency of occurrence of each amino acid generally does not show any extreme bias. It is characterized by.
  • the present invention also relates to a peptide library obtained by using the nucleic acid library prepared by the above-described method for preparing a nucleic acid library.
  • the peptide library can be obtained by expressing the nucleic acid library in an appropriate expression system.
  • Examples of an expression system for preparing a peptide library include a phage display method.
  • Phage display has become a powerful method for screening molecules with an affinity for a target molecule of interest from a number of peptides, muteins, and cDNAs.
  • phage Deisupurei method it is possible to generate 10 8 10 9 different recombinants, among these, antigens, antibodies, cell surface receptors, protein chaperones, DNA, to metal I O emissions Other It is possible to select one or more clones with affinity.
  • Library-based screening can be used for a number of applications, as the presented factor is expressed on the virus surface as a capsid fusion protein.
  • virus particles isolated from a library can be regenerated by infecting bacteria (3) has the advantage that the primary structure of the presented binding peptide or protein can be easily deduced by sequencing the DNA of the cloned fragment in the viral genome.
  • the peptide library of the present invention is, for example, expressed by bacteriophage. Can be done. That is, the nucleic acid library obtained by the method of the present invention can be cloned into the gene III, VI, or VIII of Bacteriophage M13, and thereby expressed as a large number of peptide: capsid fusion proteins.
  • Fig. 3 shows the structure of the substrate of T4 RNA ligase (a) and the relationship between the recognition sequence of the introduced restriction enzyme and the cleavage site (b) (details will be described in the experimental procedure).
  • the ligation product was purified by denaturing polyacrylamide gel electrophoresis (PAGE) (8 M urea 8% polyacrylamide, 300 V, 160 mA, 35 minutes). After excising the band of the target substance from the gel, the degree of purification was increased by performing PCR using the DNA extracted from the gel as a template (1: 1 of the band extract 50-1) as follows. By this operation, the raw material DNA can be removed. Primers containing sequences adjacent to the block portion (pl: TTGMGATCTCTTTT (SEQ ID NO: 5) and p2: TTGAACGGGATCCCCTA (SEQ ID NO: 6), each lOpmole) were used.
  • PAGE polyacrylamide gel electrophoresis
  • the composition of the PCR reaction solution (50 ⁇ 1) is 200 ⁇ MdNTP, 1 unit Taq polymerase (Greignner) ⁇ 50 mM Tris-HCl (pH8.7), 2.5 mM MgCl 2 .
  • the PCR reaction conditions are as follows; pre-denaturation: 90 ° C, 2 minutes; denaturation: 90 ° C, 0.5 minutes; annealing: 35 ° C, 1 minute; extension: 72 ° C, 0.5 minutes 30 cycles.
  • PCR for introducing a restriction enzyme MboII recognition sequence and a stem portion into the amplified product of the ligation product is performed.
  • two types of PCR were performed for preparation of 5, -half chain and preparation of 3, -half chain.
  • the former is a primer
  • biotin-GGCTCGCGAATACTTTG (10pmole) (SEQ ID NO: 9) was used.
  • p5 and p8 are primers having a biotin modification at the 5 'end for the purpose of preparing single-stranded DNA to be performed later.
  • This sequence is the same as the sequence at the 5 'end of p3 and p6.
  • the underlined portion in the primer sequence indicates the recognition sequence of the restriction enzyme MboII.
  • PCR products for 3'-half strand preparation and 5, -half strand preparation were each incubated in a 30/1 buffer with 50 units of restriction enzyme MboII (Takara) at 37 ° C for 1 hour. -I did it.
  • the structure of the restriction enzyme site is shown in FIG. 3 (b).
  • 'N' indicates the base of the block, and the recognition sequence and the cleavage site are indicated by boxes and arrows, respectively. It is necessary to cut at the brink of the connected block, and the restriction enzyme selection condition is that the cut site is not included in the recognition sequence.
  • one kind of enzyme is used, but it is also possible to use a combination of similar enzymes.
  • Each restriction enzyme digest (30 ⁇ 1) was mixed with 30 jl of 2X Binding and Washin buffer (2XB & W buffer, 0.2M Tris-HCl (pH8.0), 1M NaCl, 2% Tween-20). Combined, washed in advance with O.lM NaOH, and equilibrated with 1x Binding and Washing buffer (B & W buffer, 0.1 M Tris-HCl (pH 8.0), 0.5 M NaCl, 13 ⁇ 4 Tween-20) It was mixed with 60 zl streptavidin-magnet beads (Dynabeads M-280 streptavidin, DynaBeads). This suspension was stirred at room temperature for 1 hour to immobilize the PCR product.
  • the 3, -half strand and the 5, -half strand recovered from the ligation were hybridized in a TRL buffer and ligated with T4 RNA ligase in the same manner as in the first ligation reaction. Thereafter, by repeating the same operation, the blocks were sequentially connected until a predetermined length was obtained.
  • This block shuffling DNA was cloned using a TA cloning kit (TA Cloning Kit Jr., Invitrogen). The insert was confirmed by colony PCR and denaturing PAGE. Plasmid DNA was extracted from the transformant in which the insert was confirmed, using a plasmid extraction kit (Wizard Plus SV Minipreps DNA Purification System, Promega). DNA sequencing was performed with a DNA sequencing 'kit (Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP, Amersham Parmacia Biotech) and a DNA sequencer (Shimadu, DSQ2000).
  • DNA sequencing 'kit Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP, Amersham Parmacia Biotech
  • Each product contains a primer region (constant length of 32 bases) and a connecting block region (3 x 2 n base length, where n is the number of cycles). Therefore, a product of 38 bp in the first cycle, 44 bp in the second cycle, 56 bp in the third cycle, and 80 bp in the fourth cycle is expected, which is consistent with the analysis results.
  • lane M is the size of DNA, and the size is shown on the left.
  • the currently used DNA polymerase for PCR is Taq DNA polymerase, which is known to introduce one mutation per tens of thousands of nucleotides during synthesis.
  • restriction enzyme MboI I used in this example is an enzyme that cuts away from the recognition sequence. Belong to.
  • a DNA library was prepared using the YLBS method.
  • GGCTCGCGAATACTGCGAA GACCACCATGNNN 32mer, underlined stem region (SEQ ID NO: 13)
  • stem primer biotin label: GGCTCGCGAATACTGCGMGGCCACCATG (29mer) (SEQ ID NO: 14)
  • stem primer biotin label: GGCTCGCGAATACTGCGMCAGGATCGTGGA (31mer) (SEQ ID NO: 17)
  • part primer (FITC labeling): CTGCGMGACCACCATG (anneal on 17mer, 5 and half) (SEQ ID NO: 18)
  • the part primer contains an MboI I recognition site, and the stem primer is mutated so as not to be cut by MboI I.
  • the YLBS library contains the # 7 promoter and a part of FLAG-Prosite.
  • T7 side primer AAGAAGGAGTTGCCACCATG (20mer) (SEQ ID NO: 19)
  • Leu CTC Gin CAA lie ATT Asn AAC
  • T polynucleotide kinase PNK
  • PNK T polynucleotide kinase
  • This reaction solution has a DNA concentration of 40 pmol / l.
  • Figure 5 shows the results of YLBS (Y1) at the 1st cycle.
  • the ligation product is a 66mer. The band at the position corresponding to this is cut out.
  • the ligation product should be 72mer for Y2 and 84mer for Y3.
  • the reaction was incubated at 94 ° C for 2 minutes, followed by one cycle of 94 ° C for 30 seconds, 60 ° C for 1 minute, and 72 ° C for 30 seconds. Incubated for 5 minutes.
  • remove a part of the reaction solution for example, 5 ⁇ 1 and analyze it by the same PAGE as in (3) above. At this time, if multiple bands appear, cut out the band of the target product and perform PCR again, or use a PCR cycle in which only the target product is amplified (the target product is first amplified and non-specific products are amplified). Tends to be amplified later).
  • LxBW buffer 200 ⁇ 1 (0.1M Tris-HCl (pH8.0 ), 0.5M NaCl, l% Tween20) 1 times with 200 1 of H 2 0, twice with a bead secured
  • the beads are washed by repeatedly removing the supernatant. To this, add 25 1 of 28% aqueous ammonia, stir, and leave at room temperature for 2 minutes. After securing the beads, collect and save the supernatant. Repeat this operation again. Store the supernatant together (non-pyotin chains). After washing with H 2 0 of the beads once 200/1, it is added and stirred 28% aqueous ammonia 25 ⁇ 1 is heated at 65 ° C 20 min. After securing the beads, collect and save the supernatant. Repeat this operation again. Store the supernatant together (pyotin chains).
  • the four kinds of recovered liquids are dried using a centrifugal concentrator.
  • 5 half is the DNA strand labeled with biotin, and 3 'half is the unlabeled DNA strand.
  • the remaining recovered material is used as a measure of the recovery efficiency, and is run together during the next cycle of PAGE analysis.
  • FIG. 6 shows electrophoresis images of the results of electrophoretic analysis of the reaction products after the second and third YLBS cycles.
  • lanes 1 to 6 show the following.
  • Lane 1 Marker 1 (100mer, 90, 80, 70, 60, 50 ... from the top)
  • Lane 2 sample subjected to Y ligation (Y2 is 72mer, Y3 is 84mer, appears slightly above due to the use of biotin)
  • Lane 4 5 'half chain with biotin (remaining used for Y ligation)
  • Lane 6 3'-half chain with biotin The dark band around 60mer is considered to be unreacted DNA that was not cleaved by boII treatment (the PCR product remains intact), and the dark band below it was cleaved with MboI I but did not ligate. .
  • the ligated product after Y3 was PCR-amplified with a primer for sequence (T7 side primer, POU side primer) and cloned using a TA cloning kit (invitrogen). Plasmid was recovered and a sequence was conducted. Figure 7 shows the results of the sequence. As a result, four out of ten clones of appropriate length were obtained. In addition, one of the 10 samples corresponded to the codon used.
  • a method for constructing a nucleic acid library using the Y-ligation method has been established.
  • the method of the present invention can reduce the number of reaction stages when constructing a nucleic acid library encoding long peptide chains, can set the block length to an arbitrary length, and furthermore, the frequency of appearance of each block Has the advantage that no extreme bias is seen.

Landscapes

  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to establish a method of constructing a nucleic acid library by using the Y-ligation method. Namely, a method of constructing a nucleic acid library which involves the following steps (1) to (7): (1) preparing a first single-stranded nucleic acid and a second single-stranded nucleic acid each having a stem sequence and a branch sequence and a base sequence encoding an amino acid at the 3'-end; (2) hybridizing the first single-stranded nucleic acid with the second single-stranded nucleic acid between the stem sequences thereof; (3) treating the hybridized product with T4 RNA ligase to thereby ligate the 3'-end of the single-stranded nucleic acid to the 5'-end of the second single-stranded nucleic acid; (4) using the double-stranded nucleic acid obtained in the step (3) as a template, carrying out PCR with the use of primers modified in the 5'-side with a substance having affinity to thereby prepare double-stranded nucleic acids; (5) treating two double-stranded nucleic acids obtained in the step (4) with a restriction enzyme to give double-stranded nucleic acids respectively having base sequences encoding the first and second amino acids at the 3'- or 5'-end; (6) using the binding ability of the substance having affinity introduced in the step (4), preparing single-stranded nucleic acids from the double-stranded nucleic acids obtained in the step (5); and (7) using the single-stranded nucleic acids obtained in the step (6), repeating the steps (2) to (6) needed times.

Description

核酸ライブラリ一の作製方法 技術分野  Method for preparing a nucleic acid library
本発明は、 核酸ライブラリ一の作製方法に関する。 より詳細には、 本発明は、 末端に互いに相補的配列 (ステム部分) を有する二本の一本鎖核酸をハイブリダ ィゼ一シヨン後、 一本鎖領域 (ブランチ部分) の末端を R N Aリガ一ゼで連結す る Y—ライゲーシヨン法を利用することを特徴とする核酸ライブラリ一の作製方 法に関する。 本発明は、 上記核酸ライブラリ一の作製方法により作製される核酸 ライブラリーおよび該核酸ライブラリ一を用いて得られるぺプチドライブラリ一 に関する。 背景技術  The present invention relates to a method for producing a nucleic acid library. More specifically, the present invention provides a method for hybridizing two single-stranded nucleic acids having complementary sequences (stem portions) at their ends, and then ligating the ends of the single-stranded region (branch portion) to RNA ligase. The present invention relates to a method for preparing a nucleic acid library, wherein the method uses a Y-ligation method for ligation. The present invention relates to a nucleic acid library produced by the method for producing a nucleic acid library and a peptide library obtained by using the nucleic acid library. Background art
進化分子工学ではダーウィンの進化原理に基づいて有用な生体高分子を獲得す ることを目的としている。 この方法は、 1 ) 変異体ライブラリの構築、 2 ) より 有用な分子種の選択、 3 ) その遺伝子型への突然変異導入と増幅、 4 ) その変異 体集団の発現、 の要素から成り立ち、 2 ) から 4 ) のステップを繰り返すことに より ί亍われる。  Evolutionary molecular engineering aims to obtain useful biopolymers based on Darwin's principle of evolution. This method consists of the following elements: 1) construction of a mutant library, 2) selection of a more useful molecular species, 3) introduction and amplification of a mutation into the genotype, and 4) expression of the mutant population. This is achieved by repeating steps 4) to 4).
有用なぺプチドまたはタンパク質を探索していく場合、 突然変異の導入や発現 型の同定の簡便さから D Ν Αの変異体ラィブラリ一構築し、 この遺伝子型を対応 させた形でタンパク質を発現して機能に基づく選択を行う方法が採られることが 多い。 そこで出発点である D N Aライブラリ一の特性は、 有用なペプチドまたは タンパク質を獲得する上で成功の決め手となる重要な因子の一つと言える。  When searching for a useful peptide or protein, construct a D Ν 変 異 mutant library for easy introduction of mutations and identification of the phenotype, and express the protein in a form corresponding to this genotype. In many cases, a function-based selection method is used. Therefore, the characteristics of the DNA library, which is the starting point, can be said to be one of the important factors that determine the success in obtaining useful peptides or proteins.
従来、 D N A変異体ライブラリーの構築はヌクレオチドレベルで行われており、 化学的方法と酵素的方法がある。 前者は D N A合成機を使用して D N Aを合成す る際、 原料のヌクレオチドを特定の割合で混合しておく方法が採られる。 また、 後者は、 D N Aまたは R N Aポリメラーゼを特殊な条件で使用して突然変異を誘 発する方法や、 D NAシャフリングと称して複数の類似する遺伝子を細分化し、 再構成することでキメラ遺伝子を作成する方法などがあり各々成果を上げている 一方で、 本発明者らはブ口ック単位の変異体集団という全く新しい変異体集団 の構築に挑戦しており、 ブロック 'シャフリング法と呼んでいる。 タンパク質を コードする D N Aライブラリーを構築する場合、 タンパク質の階層的構成単位を 変異単位に設定することを提案している。 進化分子工学において変異体集団の中 から有用な機能性高分子を創製する試みは、 広大な配列空間を探索することにた とえられ、従来から行われている遺伝子の点突然変異体集団から出発する方法は、 野生型タンパク質の周辺を小股で探索することに相当するといえる。 一方、 プロ ック単位の変異体集団は野生型タンパク質から遠く離れた配列空間を大股で歩行 することに当たる。 この大股歩行によつて期待する機能物質に行き当たるか否か は配列空間の適応度地形の形状が重要な鍵を握っているといえるが、 現在ではそ のデ一夕を蓄積している段階であって明確なことはまだ言えない。 Conventionally, DNA mutant libraries have been constructed at the nucleotide level, and there are chemical and enzymatic methods. In the former method, when synthesizing DNA using a DNA synthesizer, a method is employed in which nucleotides as raw materials are mixed at a specific ratio. The latter also uses DNA or RNA polymerase under special conditions to induce mutations. The method of generating chimeric genes by subdividing and reconstituting a plurality of similar genes, called DNA shuffling, has produced various results. The challenge is to create a completely new variant population, which is a block-wise variant population, which is called the block 'shuffling method'. When constructing a DNA library that encodes a protein, it is proposed that the hierarchical structural unit of the protein be set as a mutation unit. Attempts to create useful functional macromolecules from mutant populations in evolutionary molecular engineering can be attributed to exploring a vast sequence space, and from the conventional point mutant population of genes It can be said that the starting method is equivalent to searching for the vicinity of the wild-type protein with a short stride. On the other hand, the mutant population in block units is equivalent to walking with a stride in the sequence space far away from the wild-type protein. It can be said that the fitness of the array space is the key to the determination of whether or not the expected functional substance is reached by this stride.The shape of the topography of the array space is an important factor. It's a stage and I can't say for sure yet.
しかし、 一方で、 分子進ィ匕の理論的研究は、 天然のタンパク質の一次配列と構 造解析からタンパク質の多くがェクソン ·シャフリングというメカニズムを通し て多様な機能を獲得してきたことを示すデ一夕を蓄積している。 このアイデアは タンパク質のモジュール構造の境界とその遺伝子のィントロンの位置に有意に相 関関係が見られることに基づいている。 つまり、 現存する多様なタンパク質は機 能単位としてのェクソンと進化デバイスとしてのイントロンがシャフリング ·メ 力二ズムを通して発展してきた産物と見ることが可能である。 この事は、 変異単 位としてブロックを使用することの有効性を支持するものであり、 本発明者らは 工学に応用しうる一般的な手法としてブロック ·シャフリング法の確立をめざし ている。 ブロック ·シャフリングの利点の一つとして、 配列空間の探索の歩幅を 自由に設計できることが挙げられる。 点突然変異ライブラリ一は構築されるロッ 卜によってその組成が変化してしまい各探索試行が独立していて互いに参考にな らない。 一方、 ブロック ·シャフリングでは、 そのブロックの種類や長さを決定 する際に探索経歴を考慮した設計が可能であり、 より効率的探索を目指してプロ ック設計のノウハウを蓄積していける点で優れている。 However, on the other hand, the theoretical study of molecular progression shows that many proteins have acquired various functions through the mechanism of exon shuffling from the primary sequence and structural analysis of natural proteins. Has accumulated overnight. The idea is based on the significant correlation between the boundaries of the protein's modular structure and the position of the gene's intron. In other words, various existing proteins can be seen as products that exons as functional units and introns as evolutionary devices have developed through shuffling mechanisms. This supports the effectiveness of using a block as a mutation unit, and the present inventors aim to establish a block shuffling method as a general technique applicable to engineering. One of the advantages of block shuffling is that it is possible to freely design the stride for searching the array space. The composition of the point mutation library changes depending on the lot to be constructed, and each search trial is independent and cannot be referred to each other. On the other hand, with block shuffling, it is possible to design in consideration of the search history when determining the type and length of the block. It is excellent in that it can accumulate know-how in the design of racks.
機能性夕ンパク質の創製をめざす場合、 そのもつとも基本的構成単位はァミノ 酸をコードしているトリヌクレオチド、 すなわちコドンである。 コドン 'ァミノ 酸対応表は全てのトリヌクレオチドが何らかのアミノ酸や終止コドンをコードし ていることを示している。 従って、 ヌクレオチド単位のランダム変異体集団も全 てのアミノ酸を網羅することになる。 しかし、 そこには重大な欠点がある。 つま り、 ある確率で必ず終止コドンが発生してしまい未成熟なペプチド鎖が生成して しまうことが挙げられる。 また、 タンパク質の翻訳系によってコドンの使用頻度 に差があることが知られている。実験的に取り扱える物質量には限界があるので、 大きなライブラリーのサイズを確保するためにも効率的なコドンの使用が望まし レ、。 ブロック ·シャフリングはこのような問題を回避することが可能である。 本発明者らはこれまでに Y—ライゲーシヨン法という D N Aを効率的に連結す る方法を開発している。この Y—ライゲ一シヨン法は、二本の一本鎖 D N A (5, - ハーフおよび 3' -ハーフ) の末端に互いに相補的配列 (ステム部分) を含めてお き、 ハイブリダィゼ一シヨン後、 一本鎖領域 (ブランチ部分) の末端を R N Aリ ガーゼで連結する方法である。 Y—ライゲ一シヨン法の模式図を図 1に示す。 しかしながら、 Y—ライゲ一シヨン法の応用、 特に D N Aライブラリ一やタン パク質ライブラリ一を作製する試みはなされていない。 発明の開示  When creating functional proteins, the fundamental building block is a trinucleotide encoding an amino acid, that is, a codon. The codon-amino acid correspondence table shows that all trinucleotides encode some amino acid or stop codon. Therefore, a random mutant population in nucleotide units covers all amino acids. But there are serious drawbacks. That is, at a certain probability, a stop codon is always generated and an immature peptide chain is generated. It is also known that codon usage varies depending on the protein translation system. Since there is a limit to the amount of material that can be handled experimentally, it is desirable to use codons efficiently in order to secure a large library size. Block shuffling can avoid such problems. The present inventors have developed a method for efficiently connecting DNAs called the Y-ligation method. In this Y-ligation method, two single-stranded DNAs (5, -half and 3'-half) contain complementary sequences (stem portions) at the ends, and after hybridization, In this method, the ends of the main-strand region (branch) are ligated with RNA ligase. Figure 1 shows a schematic diagram of the Y-Ligege method. However, no attempt has been made to apply the Y-ligation method, particularly to create a DNA library or a protein library. Disclosure of the invention
本発明が解決しょうとする課題は、 Y—ライゲ一シヨン法を利用した核酸ライ ブラリーを構築する方法を確立することである。  The problem to be solved by the present invention is to establish a method for constructing a nucleic acid library using the Y-ligation method.
本発明者らは、 5,側から 3 '側の方向にステム配列とブランチ配列とを有し、 3 5 末端に第 1のアミノ酸をコ一ドする塩基配列を有する第 1の一本鎖核酸と、 3 ' 側から 5 ' 側の方向に上記ステム配列と相補的なステム配列とブランチ配列 とを有し、 5 ' 末端に第 2のアミノ酸をコードする塩基配列を有する第 2の一本 鎖核酸とを用いて、 各ステム配列間でハイブリダィズさせた後、 T4 Aリガ一ゼ で処理して、 第 1の一本鎖核酸の 3' 末端と第 2の一本鎖核酸の 5, 末端とを連 結し、 続いて P C Rと制限酵素処理を行なうという操作を繰り返すことにより、 核酸ラィブラリ一を作製できることを見出し、 本発明を完成するに至った。 The present inventors have 5, and a stem sequence and branch arranged in a direction from the side 3 ', 3 in 5 end first single-stranded nucleic acid having a nucleotide sequence of the first amino acid co Solo de A second single strand having a stem sequence complementary to the stem sequence and a branch sequence in the direction from the 3 ′ side to the 5 ′ side, and having a base sequence encoding a second amino acid at the 5 ′ end After hybridization between each stem sequence using nucleic acid, T4A ligase By connecting the 3 'end of the first single-stranded nucleic acid and the 5' end of the second single-stranded nucleic acid, and then performing PCR and restriction enzyme treatment. The inventors have found that a nucleic acid library can be prepared, and have completed the present invention.
即ち、 本発明によれば、 以下の工程 ( 1) から (7) を含む、 核酸ライブラリ 一の作製方法が提供される。  That is, according to the present invention, there is provided a method for preparing a nucleic acid library, comprising the following steps (1) to (7).
( 1) 5, 側から 3, 側の方向にステム配列とブランチ配列とを有し、 3, 末端 に第 1のアミノ酸をコードする塩基配列を有する第 1の一本鎖核酸と、 3' 側か ら 5'側の方向に上記ステム配列と相補的なステム配列とブランチ配列とを有し、 5 ' 末端に第 2のアミノ酸をコードする塩基配列を有する第 2の一本鎖核酸とを 用意し、  (1) a first single-stranded nucleic acid having a stem sequence and a branch sequence in the direction from the 5th side to the 3rd side and having a base sequence encoding the first amino acid at the 3rd end; A second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and a base sequence encoding a second amino acid at the 5 ′ end is prepared. And
( 2 ) 第 1の一本鎖核酸と第 2の一本鎖核酸とを各ステム配列間でハイプリダイ ズさせ、  (2) hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences,
(3)ハイブリダィズした生成物を T4RNAリガ一ゼで処理して、 第 1の一本鎖核 酸の 3' 末端と第 2の一本鎖核酸の 5' 末端とを連結し、  (3) treating the hybridized product with T4 RNA ligase to ligate the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ end of the second single-stranded nucleic acid,
(4) 工程 (3) で得た二本鎖核酸を錶型にして、 5, 側を親和性物質で修飾し たプライマ一を使用する PC Rを行い、 5, 側から 3, 側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコード する塩基配列、 ブランチ配列及び制限酵素認識配列を含む二本鎖核酸を調製し、 また  (4) The double-stranded nucleic acid obtained in step (3) is transformed into type III, and PCR is performed using a primer modified with an affinity substance on the 5, side, and the direction from 3, on the 3, side A double-stranded nucleic acid comprising a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a restriction enzyme recognition sequence,
工程 (3) で増幅した二本鎖核酸を錡型にして、 5' 側を親和性物質で修飾し たプライマーを使用する PCRを行い、 5' 側から 3' 側の方向に制限酵素認識 配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸を コ一ドする塩基配列、 ブランチ配列及びステム配列を含む二本鎖核酸を調製し、 ( 5 )工程( 4 )で得た 2種の二本鎖核酸を制限酵素で処理することにより、各々 3' 末端又は 5' 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列 を有する二本鎖核酸を調製し、  Convert the double-stranded nucleic acid amplified in step (3) to type III, perform PCR using primers whose 5 'side has been modified with an affinity substance, and recognize the restriction enzyme recognition sequence in the direction from 5' to 3 '. Preparing a double-stranded nucleic acid including a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a stem sequence, and obtaining (5) in step (4). By treating the two types of double-stranded nucleic acids with a restriction enzyme, a double-stranded nucleic acid having a nucleotide sequence encoding a first amino acid and a second amino acid at the 3 ′ end or the 5 ′ end is prepared,
(6) 工程 (4) で導入した親和性物質による結合能を利用して、 工程 (5) で 得た二本鎖核酸から一本鎖核酸を調製し、 そして (6) Using the binding ability of the affinity substance introduced in step (4), Preparing a single-stranded nucleic acid from the obtained double-stranded nucleic acid, and
(7) 工程 (6) で得た一本鎖核酸を用いて工程 (2) から工程 (6) を必要な 回数だけ繰り返す:  (7) Repeat steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6):
本発明の一例としては、 以下の工程 ( 1) から (7) を含む核酸ライブラリ一 の作製方法が提供される。  As an example of the present invention, a method for preparing a nucleic acid library including the following steps (1) to (7) is provided.
( 1) 5, 側から 3, 側の方向にステム配列とブランチ配列とを有し、 3, 末端 に第 1のアミノ酸をコードする塩基配列を有する第 1の一本鎖核酸と、 3' 側か ら 5 '側の方向に上記ステム配列と相補的なステム配列とブランチ配列とを有し、 5' 末端に第 2のアミノ酸をコードする塩基配列を有する第 2の一本鎖核酸とを 用意し、  (1) a first single-stranded nucleic acid having a stem sequence and a branch sequence in the direction from the 5th side to the 3rd side and having a base sequence encoding the first amino acid at the 3rd end; A second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and a base sequence encoding a second amino acid at the 5 ′ end is prepared. And
( 2 ) 第 1の一本鎖核酸と第 2の一本鎖核酸とを各ステム配列間でハイプリダイ ズさせ、  (2) hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences,
(3)ハイブリダィズした生成物を T4RNAリガーゼで処理して、 第 1の一本鎖核 酸の 3, 末端と第 2の一本鎖核酸の 5, 末端とを連結し、  (3) treating the hybridized product with T4 RNA ligase to ligate the 3 'end of the first single-stranded nucleic acid and the 5' end of the second single-stranded nucleic acid,
(4 a)連結産物を一本鎖核酸にした後、相補鎖を合成して二本鎖核酸を調製し、 (4 a) After converting the ligation product to a single-stranded nucleic acid, a complementary strand is synthesized to prepare a double-stranded nucleic acid,
(4b)工程(4 a)で得た二本鎖核酸を錡型にして、 5' 側を親和性物質で修飾 したフォワードプライマーと制限酵素認識配列を含むリバースプライマーとを使 用する PCRを行い、 5' 側から 3' 側の方向にステム配列、 ブランチ配列、 第(4b) Perform PCR using the double-stranded nucleic acid obtained in step (4a) as type III and using a forward primer modified on the 5 ′ side with an affinity substance and a reverse primer containing a restriction enzyme recognition sequence. , 5 'to 3' stem, branch,
1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブ ランチ配列及び制限酵素認識配列を含む二本鎖核酸を調製し、 また Preparing a double-stranded nucleic acid comprising a nucleotide sequence encoding one amino acid, a nucleotide sequence encoding a second amino acid, a branch sequence and a restriction enzyme recognition sequence;
工程 (4 a) で増幅した二本鎖核酸を錡型にして、 制限酵素認識配列を含むフ ォヮ一ドプライマ一と 5' 側を親和性物質で修飾したリバースプライマーとを使 用する PC Rを行い、 5' 側から 3, 側の方向に制限酵素認識配列、 ブランチ配 列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配 列、 ブランチ配列及びステム配列を含む二本鎖核酸を調製し、  PCR using the double-stranded nucleic acid amplified in step (4a) as type III, and using a food primer containing a restriction enzyme recognition sequence and a reverse primer modified on the 5 ′ side with an affinity substance. The restriction enzyme recognition sequence, the branch sequence, the base sequence encoding the first amino acid, the base sequence encoding the second amino acid, the branch sequence, and the stem sequence in the direction from the 5 'side to the 3 side. Prepare double-stranded nucleic acid,
(5) 工程 (4 b) で得た 2種の二本鎖核酸を制限酵素で処理することにより、 各々 3' 末端又は 5' 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基 配列を有する二本鎖核酸を調製し、 (5) The two types of double-stranded nucleic acids obtained in step (4b) are treated with a restriction enzyme to obtain bases encoding the first amino acid and the second amino acid at the 3 ′ end or the 5 ′ end, respectively. Preparing a double-stranded nucleic acid having a sequence,
(6) 工程 (4b) で導入した親和性物質による結合能を利用して、 工程 (5) で得た二本鎖核酸から一本鎖核酸を調製し、 そして  (6) preparing a single-stranded nucleic acid from the double-stranded nucleic acid obtained in the step (5) by utilizing the binding ability of the affinity substance introduced in the step (4b), and
(7) 工程 (6) で得た一本鎖核酸を用いて工程 (2) から工程 (6) を必要な 回数だけ繰り返す:  (7) Repeat steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6):
本発明の別の一例としては、 以下の工程 ( 1) から (7) を含む核酸ライブラ リーの作製方法が提供される。  As another example of the present invention, a method for producing a nucleic acid library including the following steps (1) to (7) is provided.
( 1) 5, 側から 3, 側の方向にステム配列とブランチ配列とを有し、 3, 末端 に第 1のアミノ酸をコードする塩基配列を有する第 1の一本鎖核酸と、 3' 側か ら 5'側の方向に上記ステム配列と相補的なステム配列とブランチ配列とを有し、 5' 末端に第 2のアミノ酸をコードする塩基配列を有する第 2の一本鎖核酸とを 用意し、  (1) a first single-stranded nucleic acid having a stem sequence and a branch sequence in the direction from the 5th side to the 3rd side and having a base sequence encoding the first amino acid at the 3rd end; A second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and having a base sequence encoding a second amino acid at the 5 ′ end is prepared. And
( 2 ) 第 1の一本鎖核酸と第 2の一本鎖核酸とを各ステム配列間でハイプリダイ ズさせ、  (2) hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences,
( 3 )ノヽイブリダイズした生成物を T4 RNAリガーゼで処理して、 第 1の一本鎖核 酸の 3' 末端と第 2の一本鎖核酸の 5' 末端とを連結し、  (3) treating the hybridized product with T4 RNA ligase to ligate the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ end of the second single-stranded nucleic acid,
(4) 工程 (3) で得た二本鎖核酸を錶型にして、 5' 側を親和性物質で修飾し た、 第 1の一本鎖核酸のステム配列にァニールするフォワードプライマ一と、 制 限酵素認識配列を含み、 第 2の一本鎖核酸のブランチ配列にァニールするリバ一 スプライマーとを使用する PC Rを行い、 5,側から 3,側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコード する塩基配列、ブランチ配列、及び制限酵素認識配列を含む二本鎖核酸を調製し、 また  (4) a forward primer which forms the double-stranded nucleic acid obtained in the step (3) into a 錶 form, modifies the 5 ′ side with an affinity substance, and anneals to the stem sequence of the first single-stranded nucleic acid; PCR using a reverse primer containing a restriction enzyme recognition sequence and annealing to the branch sequence of the second single-stranded nucleic acid is performed, and the stem sequence, branch sequence, Preparing a double-stranded nucleic acid comprising a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence;
工程 (3) で増幅した二本鎖核酸を铸型にして、 制限酵素認識配列を含み、 第 1の一本鎖核酸のブランチ配列にァニールするフォワードプライマーと、 5, 側 を親和性物質で修飾した、 第 2の一本鎖核酸のステム配列にァニールするリバ一 スプライマーとを使用する PCRを行い、 5' 側から 3' 側の方向に制限酵素認 識配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸 をコードする塩基配列、ブランチ配列及びステム配列を含む二本鎖核酸を調製し、 ( 5 )工程( 4 )で得た 2種の二本鎖核酸を制限酵素で処理することにより、各々 3' 末端又は 5' 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列 を有する二本鎖核酸を調製し、 Convert the double-stranded nucleic acid amplified in step (3) into type III, include a restriction enzyme recognition sequence, and anneal to the first single-stranded nucleic acid branch sequence, and modify the 5 and 5 sides with an affinity substance PCR using a reverse primer that anneals to the stem sequence of the second single-stranded nucleic acid was performed, and restriction enzyme recognition was performed in the direction from 5 'to 3'. A double-stranded nucleic acid including a nucleotide sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, a nucleotide sequence encoding the second amino acid, a branch sequence, and a stem sequence is prepared, and obtained in step (5) (4). By treating the two types of double-stranded nucleic acids with a restriction enzyme, a double-stranded nucleic acid having a nucleotide sequence encoding a first amino acid and a second amino acid at the 3 ′ end or the 5 ′ end is prepared,
(6)工程 (4) で導入した親和性物質による結合能を利用して、 工程 (5) で 得た二本鎖核酸から一本鎖核酸を調製し、 そして  (6) using the binding ability of the affinity substance introduced in step (4) to prepare a single-stranded nucleic acid from the double-stranded nucleic acid obtained in step (5), and
(7)工程 (6) で得た一本鎖核酸を用いて工程 (2) から工程 (6) を必要な 回数だけ繰り返す:  (7) Repeat steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6):
好ましくは、 第 1の一本鎖核酸として、 異なる複数種の第 1のアミノ酸をコ一 ドする塩基配列を有する一本鎖核酸の混合物を使用し、第 2の一本鎖核酸として、 異なる複数種の第 2のアミノ酸をコードする塩基配列を有する一本鎖核酸の混合 物を使用する。  Preferably, a mixture of single-stranded nucleic acids having a base sequence encoding a plurality of different first amino acids is used as the first single-stranded nucleic acid; A mixture of single-stranded nucleic acids having a base sequence encoding the second amino acid of the species is used.
好ましくは、 ステム配列の長さが 10から 100塩基である。  Preferably, the length of the stem sequence is 10 to 100 bases.
特に好ましくは、 第 1の一本鎖核酸のステム配列は 5' 側から 3' 側の方向に ぉぃて00( 11。000八 丁八0;1111丁0 (配列番号 1) であり、 第 2の一本 鎖核酸のステム配列は 3' 側から 5' 側の方向において CCGAGCGCTTA TGAAAC (配列番号 2) である。 Particularly preferably, the first single-stranded nucleic acid, the stem sequence Te Oi 5 'to 3' in the direction of the side 00 (1 1.000 eight Ding 80; 1 1 1 1 chome 0 (SEQ ID NO: 1) And the stem sequence of the second single-stranded nucleic acid is CCGAGCGCTTA TGAAAC (SEQ ID NO: 2) in the direction from the 3 ′ side to the 5 ′ side.
好ましくは、 ブランチ配列の長さは 10から 100塩基である。  Preferably, the length of the branch sequence is between 10 and 100 bases.
特に好ましくは、 第 1の一本鎖核酸のブランチ配列は 5' 側から 3' 側の方向 において AAGATCTCTTTT (配列番号 3) であり、 第 2の一本鎖核酸の ブランチ配列が 3, 側から 5' 側の方向において TTGCCCTAGGGGAT (配列番号 4) である。  Particularly preferably, the branch sequence of the first single-stranded nucleic acid is AAGATCTCTTTT (SEQ ID NO: 3) in the direction from the 5 ′ side to the 3 ′ side, and the branch sequence of the second single-stranded nucleic acid is 3 TTGCCCTAGGGGAT (SEQ ID NO: 4) in the 'side direction.
好ましくは、 工程 (4) において、 連結産物を変性条件下において一本鎖核酸 にした後、 PCRにより増幅して二本鎖核酸を調製する。  Preferably, in step (4), the ligation product is converted into a single-stranded nucleic acid under denaturing conditions, and then amplified by PCR to prepare a double-stranded nucleic acid.
好ましくは、 工程 (4) で使用するプライマ一における親和性物質はピオチン である。 好ましくは、 工程 (4 ) で使用するプライマーにおける制限酵素認識配列は、 切断部位が認識配列に含まれなレ、制限酵素の認識配列である。 Preferably, the affinity substance in the primer used in step (4) is biotin. Preferably, the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme whose cleavage site is not included in the recognition sequence.
好ましくは、 工程 (4 ) で使用するブライマ一における制限酵素認識配列は、 認識配列から離れたところで切断する制限酵素の認識配列である。  Preferably, the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme that cuts away from the recognition sequence.
好ましくは、 工程 (4 ) で使用するプライマ一における制限酵素認識配列は、 MboI Iの認識配列である。  Preferably, the restriction enzyme recognition sequence in the primer used in step (4) is an MboI I recognition sequence.
好ましくは、 工程 (2 ) から工程 ( 6 ) を合計 4回繰り返することにより 1 6 アミノ酸をコ一ドする塩基配列を含む核酸のライブラリーが作製される。  Preferably, a library of nucleic acids containing a base sequence encoding 16 amino acids is prepared by repeating steps (2) to (6) four times in total.
本発明の別の側面によれば、 上記した核酸ライブラリーの作製方法により作製 される核酸ライブラリーが提供される。  According to another aspect of the present invention, there is provided a nucleic acid library produced by the above-described method for producing a nucleic acid library.
本発明のさらに別の側面によれば、 上記した核酸ライブラリーの作製方法によ り作製される核酸ライブラリーを用いて得られる、 ぺプチドライブラリーが提供 される。 図面の簡単な説明  According to still another aspect of the present invention, there is provided a peptide library obtained by using the nucleic acid library produced by the above-described method for producing a nucleic acid library. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 Y—ライゲ一シヨン法の模式図を示す。  FIG. 1 shows a schematic diagram of the Y-Ligege method.
図 2は、 本発明の方法の具体的な実施態様の一つの概要を示す図である。  FIG. 2 is a diagram showing an outline of one specific embodiment of the method of the present invention.
図 3は、 T4 RNA リガーゼの基質の構造 (a) および導入される制限酵素の認識 配列と切断部位の関係 (b) を示す。  FIG. 3 shows the structure of the substrate of T4 RNA ligase (a) and the relationship between the recognition sequence of the introduced restriction enzyme and the cleavage site (b).
図 4は、本発明の方法の各サイクルで増幅した連結産物を変性 PAGEおよぴ銀染 色で分析した結果を示す。  FIG. 4 shows the results of analysis of the ligation product amplified in each cycle of the method of the present invention by denaturing PAGE and silver staining.
図 5は、 本発明の方法による 1回目の Y L B Sサイクル後の反応産物を電気泳 動で分析した結果を示す。  FIG. 5 shows the result of analyzing the reaction product after the first YLBS cycle by electrophoresis according to the method of the present invention.
図 6は、 本発明の方法による 2回目及び 3回目の Y L B Sサイクル後の反応産 物を電気泳動で分析した結果を示す。  FIG. 6 shows the results of electrophoretic analysis of the reaction product after the second and third YLBS cycles according to the method of the present invention.
図 7は、 3回目の Y L B Sサイクル後のラィゲーシヨン産物をシークェンスし た結果を示す。 発明を実施するための最良の形態 FIG. 7 shows the results of sequencing the ligation products after the third YLBS cycle. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
本発明の核酸ライブラリーの作製方法は、 工程 ( 1 ) から (7 ) を含むことを 特徴とする。  The method for producing a nucleic acid library of the present invention is characterized by comprising steps (1) to (7).
本発明の方法における工程 ( 1 ) は、 5 ' 側から 3, 側の方向にステム配列と ブランチ配列とを有し、 3 ' 末端に第 1のアミノ酸をコードする塩基配列を有す る第 1の一本鎖核酸と、 3 ' 側から 5 ' 側の方向に上記ステム配列と相補的なス テム配列とブランチ配列とを有し、 5 ' 末端に第 2のアミノ酸をコードする塩基 配列を有する第 2の一本鎖核酸とを用意する工程である。  Step (1) in the method of the present invention comprises a first sequence having a stem sequence and a branch sequence in the direction from the 5 ′ side to the third side, and having a base sequence encoding the first amino acid at the 3 ′ end. A single-stranded nucleic acid, a stem sequence complementary to the above stem sequence and a branch sequence in the direction from the 3 ′ side to the 5 ′ side, and a base sequence encoding the second amino acid at the 5 ′ end. This is a step of preparing a second single-stranded nucleic acid.
ランダムなアミノ酸配列、 即ち、 互いに異なる任意のアミノ酸をコードする塩 基配列から成る核酸ライブラリ一を作製するためには、第 1の一本鎖核酸 (以下、 5, ハーフ鎖とも称する) として、 異なる複数種の第 1のアミノ酸をコードする 塩基配列を有する一本鎖核酸の混合物を使用し、 第 2の一本鎖核酸 (以下、 3 ' ハーフ鎖とも称する) として、 異なる複数種の第 2のアミノ酸をコードする塩基 配列を有する一本鎖核酸の混合物を使用する。  In order to prepare a nucleic acid library consisting of a random amino acid sequence, that is, a base sequence encoding any amino acid different from each other, the first single-stranded nucleic acid (hereinafter, also referred to as 5, half-chain) has a different structure. Using a mixture of single-stranded nucleic acids having a base sequence encoding a plurality of first amino acids, a second single-stranded nucleic acid (hereinafter, also referred to as a 3 ′ half-strand), A mixture of single-stranded nucleic acids having a base sequence encoding an amino acid is used.
異なる複数種のアミノ酸としては、 例えば、 天然の 2 0種のアミノ酸の中から 選ばれる任意の 2以上のアミノ酸を挙げることができる。 ァミノ酸の種類の数は 特に限定されない。 また、 天然のアミノ酸は、 脂肪族アミノ酸 (グリシン、 ァラ ニン) 、 分枝アミノ酸 (パリン、 ロイシン、 イソロイシン) 、' ヒドロキシァミノ 酸 (セリン、 トレォニン) 、 酸性アミノ酸 (ァスパラギン酸、 グルタミン酸) 、 アミ ド (ァスパラギン、 グル夕ミン)、 塩基性アミノ酸(リシン、 アルギニン)、 含硫黄アミノ酸 (システィン、 メチォニン)、 芳香族アミノ酸 (フエ二ルァラ二 ン、 チロシン) 、 複素環式アミノ酸 (トリブトファンォ、 ヒスチジン) 、 ィミノ 酸 (プロリン) に分類することができるが、 各グループの中から 1種のアミノ酸 を代表として選択して使用してもよい。 本明細書中後記する実施例では、 ァミノ 酸の性質を代表する 7つのアミノ酸としてグリシン、 イソロイシン、 ァスパラギ ン酸、 リシン、 セリン、 システィン、 プロリンを選択しているが、 これは本発明 の一例を示すものに過ぎない。 Examples of the plurality of different amino acids include, for example, any two or more amino acids selected from naturally occurring twenty amino acids. The number of kinds of amino acids is not particularly limited. Natural amino acids include aliphatic amino acids (glycine, alanine), branched amino acids (parin, leucine, isoleucine), 'hydroxyamino acids (serine, threonine), acidic amino acids (aspartic acid, glutamic acid), and amino acids. De (asparagine, glumin), basic amino acids (lysine, arginine), sulfur-containing amino acids (cystine, methionine), aromatic amino acids (phenylalanine, tyrosine), heterocyclic amino acids (tributophano, histidine), It can be classified into imino acids (proline), but one amino acid may be selected from each group and used as a representative. In the examples described later in this specification, glycine, isoleucine, and asparagine were used as the seven amino acids representative of the properties of amino acids. Acids, lysine, serine, cystine, and proline were selected, but are merely examples of the present invention.
5, ハーフ鎖および 3, ハーフ鎖におけるステム配列の長さは、 両鎖がハイブ リダイズすることができるのに十分な長さであれば特に限定されず、好ましくは、 1 0から 1 0 0塩基、 より好ましくは 1 0から 3 0塩 呈度である。  The length of the stem sequence in the 5, half-strand and the 3, half-strand is not particularly limited as long as both strands can hybridize, and preferably from 10 to 100 bases. It is more preferably from 10 to 30 salinity.
5, ハーフ鎖のステム配列と 3 ' ハーフ鎖のステム配列とは互いに相補的であ り、 これにより 5, ハーフ鎖と 3, ハーフ鎖は一定の条件下でハイブリダィズす ることが可能になる。 より詳細には、 5 ' ハーフ鎖のステム配列 (5, 方向から 3, 方向) は 3, ハーフ鎖のステム配列 (3, 方向から 5, 方向) と相補的であ るため両鎖がハイブリダィズすることにより両方のステム配列は二本鎖を形成し、 5 5 ハーフ鎖のブランチ鎖と 3 ' ハーフ鎖のブランチ鎖は一本鎖のまま存在する ため、 全体としては Y字の形を形成することになる (図 1を参照) 。 Y—ライゲ —シヨンという名称はこの構造体の形に由来する。 この方法の特徴は二本の D Aを連結する反応を分子間反応から分子内反応としたことにより連結効率を向上 させることができる点にある。 従って、 低濃度の基質についても応用することが 可能である。 The stem sequence of the half-strand and the stem sequence of the 3 'half-strand are complementary to each other, so that the 5, half-strand and the half-strand can hybridize under certain conditions. More specifically, since the stem sequence of the 5 'half-strand (5, 3 from the direction) is complementary to the stem sequence of the half-strand (3, 5 from the direction), both strands hybridize. that both stems sequences form a duplex, since there remains 5 5 half-chain branch-chain and 3 'branch chain single strand of half chain of, as a whole forming the shape of a Y-shaped by (See Figure 1). The name Y-Lige-Shillon comes from the shape of this structure. The feature of this method is that the coupling efficiency between the two DAs can be improved by changing from the intermolecular reaction to the intramolecular reaction. Therefore, it can be applied to low-concentration substrates.
第 1の一本鎖核酸のステム配列の一例としては、 5, 側から 3 ' 側の方向にお ぃて00〇丁。0〇0八八丁八( 11 11丁0 (配列番号 1 ) 、 第 2の一本鎖核酸の ステム配列の一例としては 3, 側から 5 ' 側の方向において C C GA G C G C T T A T GAAA C (配列番号 2 ) が挙げられる。 As an example of the stem sequence of the first single-stranded nucleic acid, the number is 00 in the direction from the 5, side to the 3 'side. 0_Rei_0 eight Hatcho eight (1 1 1 1 chome 0 (SEQ ID NO: 1), as an example of a second single-stranded nucleic acid, the stem sequence 3, in the direction from the side 5 'side CC GA GCGCTTAT GAAA C ( SEQ ID NO: 2).
5, ハーフ鎖および 3, ハーフ鎖におけるブランチ配列の長さは、 5, ハーフ 鎖の 3, 末端の塩基と 3, ハーフ鎖の 5, 末端の塩基とが、 T4 RNAリガ一ゼ処理 により連結できる程度の長さであれば特に限定されない。 一般にブランチ配列の 長さは短い方が連結効率は高いが、 両鎖合わせて約 3 0 0ヌクレオチドの基質を かなりの効率で連結することが可能であることが分かっている。 また、 両鎖を 1 対 1の化学量論比で反応させることになることから、 原料に対する生成物の歩留 まりを向上することとなりコスト低減や精製操作の簡便化を計ることが可能とな る。 ブランチ配列の長さは、 好ましくは 10から 100塩基、 より好ましくは 1 0から 30塩基程度である。 5, ハーフ鎖のブランチ配列と 3, ハーフ鎖のブラ ンチ配列の長さは同一でも異なっていてもよい。 The length of the branch sequence in the half-strand and the half-strand can be linked by the T4 RNA ligase treatment to the base at the end of the half-strand and the base at the end of the half-strand. There is no particular limitation as long as the length is of the order. Generally, the shorter the length of the branch sequence is, the higher the ligation efficiency is, but it has been found that a substrate of about 300 nucleotides in both strands can be ligated with considerable efficiency. In addition, since both chains are reacted at a stoichiometric ratio of 1 to 1, the yield of the product with respect to the raw material can be improved, and the cost can be reduced and the purification operation can be simplified. You. The length of the branch sequence is preferably about 10 to 100 bases, more preferably about 10 to 30 bases. The length of the half-chain branch sequence and the length of the half-chain branch sequence may be the same or different.
ブランチ配列の中には、 本明細書中後記するような制限酵素認識配列が含まれ ていてもよい。  The branch sequence may include a restriction enzyme recognition sequence as described later in this specification.
第 1の一本鎖核酸のブランチ配列の一例としては、 5, 側から 3 ' 側の方向に おいて AAGATCTCTTTT (配列番号 3) 、 第 2の一本鎖核酸のブランチ 配列としては、 3, 側から 5' 側の方向にぉぃて11丁0( ( 〇丁 0000八丁 (配列番号 4) が挙げられる。 An example of a branch sequence of the first single-stranded nucleic acid is AAGATCTCTTTT (SEQ ID NO: 3) in the direction from the 5 'side to the 3' side, and a branch sequence of the second single-stranded nucleic acid is 3 ' From the 5'-side direction, there is 11 1 0 ((0000 000 8 (SEQ ID NO: 4).
工程 ( 1) で用いる 5, ハーフ鎖および 3, ハーフ鎖は、 通常の DN A合成法 (DN Aの合成器を利用して合成する方法)により合成することができる。また、 3, ハーフ鎖の 5, 末端はリン酸化したものを用いることにより、 5, ハーフ鎖 の 3, 末端と結合することが可能になる。  The 5, half-strand and the half-strand used in step (1) can be synthesized by an ordinary DNA synthesis method (a method of synthesizing using a DNA synthesizer). In addition, the use of phosphorylated 3 and 5 terminal ends of the half chain enables binding to the 3 and 5 terminal ends of the half chain.
本発明の方法における工程 (2) は、 第 1の一本鎖核酸と第 2の一本鎖核酸と を各ステム配列間でハイブリダイズさせる工程である。  Step (2) in the method of the present invention is a step of hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences.
具体的には、 工程 ( 1) で用意した 5, -ハーフ鎖および 3, -ハーフ鎖を、 好 適な緩衝液中で 94 °Cで 5分間加熱した後、 例えば、 60°Cで 15分間保温する ことにより相補的なステム配列をハイブリダィズさせることができる。 ハイプリ ダイゼーションの条件(緩衝液の組成、およびハイブリダイゼーション温度)は、 ステム配列の長さや塩基組成などに応じて適宜設定することができる。  Specifically, the 5, -half strand and 3, -half strand prepared in step (1) are heated at 94 ° C for 5 minutes in a suitable buffer, and then, for example, at 60 ° C for 15 minutes. By keeping the temperature, the complementary stem sequence can be hybridized. Hybridization conditions (buffer composition and hybridization temperature) can be appropriately set according to the length of the stem sequence, base composition, and the like.
本発明の方法における工程 (3) は、 工程 (2) でハイブリダィズした生成物 を T4RNAリガーゼで処理して、 第 1の一本鎖核酸の 3'末端と第 2の一本鎖核酸 の 5' 末端とを連結する工程である。  In the step (3) of the method of the present invention, the product hybridized in the step (2) is treated with T4RNA ligase, and the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ of the second single-stranded nucleic acid are treated. This is the step of connecting the terminal.
なお、ハイプリダイゼーシヨン溶液として T4RNAリガーゼの緩衝液として適当 なものを使用した場合には、 ハイブリダィゼ一シヨン生成物を含む溶液をそのま まリガ一ゼ反応に使用することができ、 そうでない場合には、 ハイブリダィゼ一 シヨン生成物を通常の DN A精製方法により回収した後、 T4RNAリガ一ゼ用の緩 衝液に溶解してリガーゼ反応用の溶液を調製する。 このような溶液に、 ATPと T4 RNA リガ一ゼを添加して適当な温度 (例えば、 25°C) で一定時間 (例えば、 1 6時間) 反応させることにより、 リガ一ゼ反応を行なう。 これにより第 1の一本 鎖核酸の 3, 末端と第 2の一本鎖核酸の 5' 末端とが連結される。 If an appropriate buffer for T4 RNA ligase is used as the hybridization solution, the solution containing the hybridization product can be used as it is for the ligase reaction. The hybridization product is recovered by standard DNA purification methods and then buffered for T4 RNA ligase. Dissolve in the buffer to prepare a solution for ligase reaction. A ligase reaction is performed by adding ATP and T4 RNA ligase to such a solution and reacting at an appropriate temperature (for example, 25 ° C) for a certain period of time (for example, 16 hours). Thereby, the 3 'end of the first single-stranded nucleic acid is linked to the 5' end of the second single-stranded nucleic acid.
本発明の方法における工程 (4) は、 工程 (3) で得た二本鎖核酸を錶型にし た PCRにより、  Step (4) in the method of the present invention is carried out by PCR using the double-stranded nucleic acid obtained in step (3) as a type II,
5 ' 側から 3, 側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコー ドする塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブランチ配列及び制限 酵素認識配列を含む二本鎖核酸;並びに、  Double-stranded nucleic acid containing a stem sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, a nucleotide sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence in the direction from the 5 'side to the 3 side. ; And
55 側から 3' 側の方向に制限酵素認識配列、 ブランチ配列、 第 1のアミノ酸 をコードする塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブランチ配列及 びステム配列を含む二本鎖核酸; 5 Double-stranded nucleic acid containing a restriction enzyme recognition sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a stem sequence in the direction from the 5 side to the 3 'side ;
を調製する工程である。 Is a step of preparing
工程 (4) の第 1の具体例においては、 (4 a) 連結産物を一本鎖核酸にした 後、 相補鎖を合成して二本鎖核酸を調製し、 次いで  In the first specific example of the step (4), (4a) the ligation product is converted into a single-stranded nucleic acid, and then a complementary strand is synthesized to prepare a double-stranded nucleic acid.
(4 b)工程(4 a)で得た二本鎖核酸を錶型にして、 5, 側を親和性物質で修飾 したフォワードプライマ一と制限酵素認識配列を含むリノ 一スプライマーとを使 用する PCRを行い、 5' 側から 3' 側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブ ランチ配列及び制限酵素認識配列を含む二本鎖核酸を調製し、 また  (4b) Using the double-stranded nucleic acid obtained in step (4a) as type III, using a forward primer modified on the 5, side with an affinity substance and a linos primer containing a restriction enzyme recognition sequence. Perform a PCR to obtain a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence in the direction from the 5 ′ side to the 3 ′ side. Preparing a double-stranded nucleic acid containing
工程 (4 a) で増幅した二本鎖核酸を錡型にして、 制限酵素認識配列を含むフ ォヮ一ドプライマ一と 5, 側を親和性物質で修飾したリバースプライマーとを使 用する PCRを行い、 5' 側から 3' 側の方向に制限酵素認識配列、 ブランチ配 列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配 列、 ブランチ配列及びステム配列を含む二本鎖核酸を調製する。  The double-stranded nucleic acid amplified in step (4a) is converted into type II, and PCR is performed using a food primer containing a restriction enzyme recognition sequence and a reverse primer modified on the 5th side with an affinity substance. And a restriction enzyme recognition sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a stem sequence in the direction from the 5 ′ side to the 3 ′ side. A single-stranded nucleic acid is prepared.
なお、 本明細書で工程(4) と称する場合、 上記工程(4 a)及び工程(4 b) を包含するものとする。 工程 (4 a) は、 連結産物を一本鎖核酸にした後、 相補鎖を合成して二本鎖核 酸を調製する工程である。 工程 (3) で得られる連結産物は、 5' ハーフ鎖およ び 3' ハーフ鎖のステム配列は二本鎖を形成しており、 その二本鎖の末端から、 55 ハーフ鎖のブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のァ ミノ酸をコードする塩基配列、 及び 3, ハーフ鎖のブランチ配列の順にループ構 造を形成している。 この連結産物は、 変性条件下に置くことにより一本鎖核酸に することができる。 連結産物の一本鎖核酸は、 5' 側から 3' 側の方向に 5, ハ ーフ鎖のステム配列、 5, ハーフ鎖のブランチ配列、 第 1のアミノ酸をコードす る塩基配列、 第 2のアミノ酸をコードする塩基配列、 3, ハーフ鎖のブランチ配 列、 及び 3, ハーフ鎖のステム配列を有するものである。 In addition, when it is referred to as step (4) in the present specification, the above step (4a) and step (4b) are included. Step (4a) is a step of preparing a double-stranded nucleic acid by converting the ligation product into a single-stranded nucleic acid and then synthesizing a complementary strand. Ligation product obtained in step (3) is 5 stem sequences of the 'half-chain and 3' half chain forms a double strand, the end of the duplex, 5 5 Half-chain branches sequences , A base sequence encoding the first amino acid, a base sequence encoding the second amino acid, and a half-chain branch sequence to form a loop structure. This ligation product can be converted into a single-stranded nucleic acid by placing it under denaturing conditions. The single-stranded nucleic acid of the ligation product is composed of 5, a half-chain stem sequence, a half-chain branch sequence, a half-strand branch sequence, a base sequence encoding the first amino acid, and a second sequence from the 5 ′ to the 3 ′ side. It has a base sequence that encodes the amino acid of 3, a half-chain branch sequence, and a 3, half-chain stem sequence.
工程 (4 a) では、 この一本鎖核酸に対してその相補鎖を合成して二本鎖核酸 を調製する。 二本鎖核酸は、 上記一本鎖核酸を錶型にした PCRにより行なうこ とが好ましく、 これにより所望の二本鎖核酸を増幅することができる。  In the step (4a), a complementary strand is synthesized with respect to the single-stranded nucleic acid to prepare a double-stranded nucleic acid. The double-stranded nucleic acid is preferably subjected to PCR using the single-stranded nucleic acid as a 錶 -type, whereby a desired double-stranded nucleic acid can be amplified.
工程(4 b) は、 工程(4 a) で得た二本鎖核酸を錡型にして、 5, 側を親和性 物質で修飾したフォワードプライマ一と制限酵素認識配列を含むリバースブラィ マーとを使用する PCRを行い、 5' 側から 3' 側の方向にステム配列、 ブラン チ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩 基配列、 ブランチ配列及び制限酵素認識配列を含む二本鎖核酸を調製し、 また 工程 (4) で増幅した二本鎖核酸を錡型にして、 制限酵素認識配列を含むフォ ワードプライマ一と 5' 側を親和性物質で修飾したリバ一スプライマーとを使用 する PCRを行い、 5'側から 3'側の方向に制限酵素認識配列、ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブランチ配列及びステム配列を含む二本鎖核酸を調製する工程である。  In the step (4b), the double-stranded nucleic acid obtained in the step (4a) is used as a type III, and the forward primer modified on the 5, side with an affinity substance and a reverse primer containing a restriction enzyme recognition sequence are used. Perform a PCR, and in the direction from the 5 'side to the 3' side, a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence. A double-stranded nucleic acid prepared in step (4) is prepared, and the double-stranded nucleic acid amplified in step (4) is converted into a type II, and a forward primer containing a restriction enzyme recognition sequence and a 5 ' PCR using a single primer and a restriction enzyme recognition sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, a nucleotide sequence encoding the second amino acid, and a branch in the direction from the 5 ′ side to the 3 ′ side. Including sequence and stem sequence A step of preparing a stranded nucleic acid.
工程 (4b) で使用するプライマーにおける親和性物質は、 プライマーに導入 することが可能であり、 工程 (7) での一本鎖核酸の調製を可能にするものであ れば特に限定されない。 親和性物質の例としては、 ピオチンが挙げられ、 この場 合、 工程 (7) では、 ストレプトアビジンを使用してピオチンで標識された一本 鎖核酸を回収することができる。 The affinity substance in the primer used in step (4b) is not particularly limited as long as it can be introduced into the primer and enables the preparation of a single-stranded nucleic acid in step (7). An example of an affinity substance is biotin, in which case in step (7) a single biotin-labeled biotin The strand nucleic acid can be recovered.
工程 (4) の第 2の具体例においては、 工程 (3) で得た二本鎖核酸を铸型に して、 5, 側を親和性物質で修飾した、 第 1の一本鎖核酸のステム配列にァニ一 ルするフォワードプライマーと、 制限酵素認識配列を含み、 第 2の一本鎖核酸の ブランチ配列にァニールするリバースプライマ一とを使用する PC Rを行い、 5, 側から 3' 側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする 塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブランチ配列、 及び制限酵素 認識配列を含む二本鎖核酸を調製し、 また  In the second specific example of the step (4), the double-stranded nucleic acid obtained in the step (3) is converted into type II, and the first side of the first single-stranded nucleic acid is modified with an affinity substance on the 5, side. PCR was performed using a forward primer that anneals to the stem sequence and a reverse primer that contains the restriction enzyme recognition sequence and anneals to the branch sequence of the second single-stranded nucleic acid. Preparing a double-stranded nucleic acid comprising a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and a restriction enzyme recognition sequence in the direction of the side,
工程 (3) で増幅した二本鎖核酸を錶型にして、 制限酵素認識配列を含み、 第 1の一本鎖核酸のブランチ配列にァニールするフォワードプライマーと、 5, 側 を親和性物質で修飾した、 第 2の一本鎖核酸のステム配列にァニールするリバ一 スプライマーとを使用する PCRを行い、 5, 側から 3, 側の方向に制限酵素認 識配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸 をコードする塩基配列、ブランチ配列及びステム配列を含む二本鎖核酸を調製し、 Convert the double-stranded nucleic acid amplified in step (3) into type III, include a restriction enzyme recognition sequence, and anneal to the first single-stranded nucleic acid branch sequence, and modify the 5 and 5 sides with an affinity substance PCR was performed using the reverse primer that anneals to the stem sequence of the second single-stranded nucleic acid, and the restriction enzyme recognition sequence, the branch sequence, and the first amino acid in the direction from 5, side to 3, side. Preparing a double-stranded nucleic acid comprising a base sequence encoding, a base sequence encoding a second amino acid, a branch sequence and a stem sequence,
( 5 )工程( 4 )で得た 2種の二本鎖核酸を制限酵素で処理することにより、各々 3' 末端又は 5' 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列 を有する二本鎖核酸を調製する。 (5) The two types of double-stranded nucleic acids obtained in the step (4) are treated with a restriction enzyme, so that the nucleotide sequence encoding the first amino acid and the second amino acid at the 3 ′ end or 5 ′ end respectively. To prepare a double-stranded nucleic acid.
この第 2の具体例では、 上記した第 1の具体例における工程 (4a)及び (4 b) を 1回の PCRで行うことを特徴とする。 PCR反応では、 変異の揷入等の 結果、 最終の連結産物に変異が導入され、 アミノ酸の置換、 フレームシフト、 終 止コドンの挿入等の問題が生ずる可能性がある。 そこで、 この PCRによる変異 の導入を少なくすることが好ましい。 そこで、 工程 (4a) のライゲ一シヨン産 物の増幅、 及び工程 (4b) の次サイクルの原料調製を目的とした PCRを、 一 度の P C R操作により同時に実施することにした。この第 2の具体例の方法では、 ステム配列とブランチ配列 (実施例では part配列と表示) のプライマー (stem primer, part primer) を用いて PCRを実施し、 ライゲーシヨン産物の P CR增 幅を行う。 この方法により、 アミノ酸をコードする塩基配列のサイクルの繰り返 しによる連結により作製される核酸ライブラリーへの変異の導入頻度を軽減する ことができ、 その結果として、 ライブラリ一の質の向上が達成できる。 The second specific example is characterized in that steps (4a) and (4b) in the first specific example are performed by one PCR. In the PCR reaction, mutations may be introduced into the final ligated product as a result of mutations and the like, which may cause problems such as amino acid substitution, frame shift, and insertion of a stop codon. Therefore, it is preferable to reduce the introduction of mutation by this PCR. Therefore, the PCR for the purpose of amplifying the ligated product in the step (4a) and the preparation of the raw material in the next cycle in the step (4b) were simultaneously performed by a single PCR operation. In the method of the second specific example, PCR is performed using primers (stem primer, part primer) of a stem sequence and a branch sequence (in the examples, indicated as part sequence), and the PCR width of the ligation product is determined. . By this method, the repetition of the cycle of the nucleotide sequence encoding the amino acid Thus, the frequency of introducing mutations into a nucleic acid library produced by ligation can be reduced, and as a result, the quality of the library can be improved.
上記した工程 (4 ) は、 次のサイクルの原料を製造するために二組の P C Rを 行う工程であり、 工程 (2 ) から工程 (3 ) で調製した連結物にステム部分と制 限酵素認識配列を導入する工程である。  The above step (4) is a step in which two sets of PCR are performed to produce a raw material for the next cycle, and the ligated product prepared in steps (2) to (3) has a stem portion and a restriction enzyme recognition site. This is the step of introducing a sequence.
工程 (4 ) で調製される、 5 ' 側から 3 ' 側の方向にステム配列、 ブランチ配 列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配 列、 ブランチ配列及び制限酵素認識配列を含む二本鎖核酸においては、 次の工程 ( 5 ) における制限酵素により、 第 2のアミノ酸をコードする塩基配列の 3 ' 末 端で切断されるように制限酵素認識配列が導入されている。  A stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence, and the like, which are prepared in the step (4) in the direction from the 5 ′ side to the 3 ′ side. In a double-stranded nucleic acid containing a restriction enzyme recognition sequence, a restriction enzyme recognition sequence is introduced by the restriction enzyme in the next step (5) such that the restriction enzyme recognition sequence is cleaved at the 3 'end of the nucleotide sequence encoding the second amino acid. Have been.
同様に、 工程 (4 ) で調製される、 5, 側から 3, 側の方向に制限酵素認識配 列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコ ―ドする塩基配列、 ブランチ配列及びステム配列を含む二本鎖核酸においては、 次の工程 (5 ) における制限酵素により、 第 1アミノ酸をコードする塩基配列の 5 ' 末端で切断されるように制限酵素認識配列が導入されている。  Similarly, a restriction enzyme recognition sequence, a branch sequence, a nucleotide sequence encoding the first amino acid, and a second amino acid are prepared in the direction from 5, side to 3, prepared in step (4). For a double-stranded nucleic acid containing a base sequence, a branch sequence, and a stem sequence, a restriction enzyme recognition sequence such that the restriction enzyme in the next step (5) is cleaved at the 5 ′ end of the base sequence encoding the first amino acid Has been introduced.
工程 (4 ) で使用するプライマーにおける制限酵素認識配列は、 切断部位が認 識配列に含まれない制限酵素の認識配列であり、 好ましくは認識配列から離れた ところで切断する制限酵素の認識配列であり、例えば、 MboIIの認識配列である。 本発明で用いる 「切断部位が認識配列に含まれない制限酵素」 としては、 認識 配列のすぐ外側で切断する酵素と認識配列から遠く離れたところを切断する酵素 の 2種類が挙げられる。 本発明では下記の酵素の中から適当なものを選択して使 用することができる。  The restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme whose cleavage site is not included in the recognition sequence, and is preferably a recognition sequence for a restriction enzyme that cuts away from the recognition sequence. For example, a recognition sequence of MboII. Examples of the “restriction enzyme whose cleavage site is not included in the recognition sequence” used in the present invention include two types: an enzyme that cuts just outside the recognition sequence and an enzyme that cuts far away from the recognition sequence. In the present invention, an appropriate enzyme can be selected from the following enzymes and used.
認識配列のすぐ外側で切断する酵素の酵素の例としては、 以下のものが挙げら れる。 Examples of enzymes that cleave immediately outside the recognition sequence include the following.
Figure imgf000018_0001
示す (
Figure imgf000018_0001
Show (
'W は Aまたは T、 ' S, は Cまたは Gを表している。 'W represents A or T,' S, represents C or G.
のタイプの酵素の使用例  Of use of different types of enzymes
i j  i j
3'突出型 5'突出型 3 'protruding type 5' protruding type
認識配列から遠く離れたところを切断する酵素の例としては、 以下のものが挙 げられる。 Examples of enzymes that cut far away from the recognition sequence include the following.
表 2 :Table 2:
Figure imgf000019_0001
CjePI
Figure imgf000019_0001
CjePI
Eci l GGCGGANNNNNNNNNJN" Eci l GGCGGANNNNNNNNNJN "
Eco31 I GGTCTC 讓 ΒΠ736Ι Bsal Bso31 I Eco31 I GGTCTC 讓 ΒΠ736Ι Bsal Bso31 I
EcoA4I Eco044I EcoA4I Eco044I
Eco57I CTGAAGNNNNNNNNNNNNNNJN" BspKT5I Eco57I CTGAAGNNNNNNNNNNNNNNNNJN "BspKT5I
Esp3I CGTCTCN一画 N_ BsmBI BstGZ53I Esp3I CGTCTCN stroke N_ BsmBI BstGZ53I
Faul CCCGCNNNN~NN_ BstFZ438I Faul CCCGCNNNN ~ NN_ BstFZ438I
Fokl GGATGN丽画 NN一 NNNN一 BstPZ418〖  Fokl GGATGN 丽 NN-one NNNN-one BstPZ418 〖
Gsul CTGGAGNNNNN NNNNNNNNJN" Bpml  Gsul CTGGAGNNNNN NNNNNNNNJN "Bpml
HaelV ー丽 NNNN一 NNNNN蘭 GAYNNNN匿 NNNNNNNNN— NNNNM  HaelV ー 丽 NNNN-one NNNNN orchid GAYNNNN concealed NNNNNNNNN— NNNNM
Hgal GACGCNNNNN"NNNNN_ Hgal GACGCNNNNN "NNNNN_
Hphl GGTGANNNNNNN.N^ AsuHPI Hphl GGTGANNNNNNN.N ^ AsuHPI
Ksp632I CTCTTCr丽 Bco5I Bcoll6I BcoKI Ksp632I CTCTTCr 丽 Bco5I Bcoll6I BcoKI
BseZI Bsu6 I Eamll04I Earl  BseZI Bsu6 I Eamll04I Earl
MboI I GMGAN丽讓 JT  MboI I GMGAN 丽 JT
Mlyl GAGTCNN删ー Schl  Mlyl GAGTCNN 删 Schl
Mmel TCCRAC薩讓議醒画 NN_N  Mmel TCCRAC
Mnl l CCTCNN画 NJT  Mnl l CCTCNN drawing NJT
Plel GAGTCNNNN"N_ Ppsl  Plel GAGTCNNNN "N_ Ppsl
Ppi l "NNNNN_NN N NNGAACNNNNNCTCN NNNNNN_N NNN'  Ppi l "NNNNN_NN N NNGAACNNNNNCTCN NNNNNN_N NNN '
RleAI CCCACA NNNNNNNNJNN"  RleAI CCCACA NNNNNNNNJNN "
Sapl GCTCTTCN~NNN_ Vpa 32I  Sapl GCTCTTCN ~ NNN_ Vpa 32I
SfaNI GCATCNNNNN"NNNN_ BspST5I Phal  SfaNI GCATCNNNNN "NNNN_ BspST5I Phal
SspD5I GGTGANNNNNNNN^  SspD5I GGTGANNNNNNNN ^
Sthl32I CCCG画 NNN—  Sthl32I CCCG drawing NNN—
Stsl GGATGNNNNNNNNNN"NNNN_  Stsl GGATGNNNNNNNNNN "NNNN_
Taql l GACCGANNNNNNNNNJN" , CACCC扁醒醒一 NN一  Taql l GACCGANNNNNNNNNJN ", CACCC Awakening NN-1
TspRI JNCASTGNN"  TspRI JNCASTGNN "
龍 111 CAARCANNNNNNNNN Dragon 111 CAARCANNNNNNNNN
I I
本発明の方法における工程 (5) は、 工程 (4)で得た 2種の二本鎖核酸を制 限酵素で処理することにより、 各々 3' 末端又は 5' 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列を有する二本鎖核酸を調製する工程である。 工程 (5) で用いる制限酵素は、 工程 (4) で導入した制限酵素認識配列を認 識する制限酵素である。 Step (5) in the method of the present invention comprises treating the two double-stranded nucleic acids obtained in step (4) with a restriction enzyme to thereby add a first amino acid at the 3 ′ end or the 5 ′ end, respectively. This is a step of preparing a double-stranded nucleic acid having a base sequence encoding two amino acids. The restriction enzyme used in step (5) is a restriction enzyme that recognizes the restriction enzyme recognition sequence introduced in step (4).
本発明の方法における工程 (6) は、 工程 (4) で導入した親和性物質による 結合能を利用して、 工程 (5) で得た二本鎖核酸から一本鎖核酸を調製する工程 である。  Step (6) in the method of the present invention is a step of preparing a single-stranded nucleic acid from the double-stranded nucleic acid obtained in step (5) by utilizing the binding ability of the affinity substance introduced in step (4). is there.
工程 (6) により、 5' 側から 3, 側の方向にステム配列とブランチ配列とを 有し、 3' 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列を有す る一本鎖核酸と、 3' 側から 5' 側の方向に上記ステム配列と相補的なステム配 列とブランチ配列とを有し、 5' 末端に第 1のアミノ酸と第 2のアミノ酸をコー ドする塩基配列を有する一本鎖核酸とが調製される。 即ち、 工程 (6) で調製さ れる 2種の一本鎖核酸はそれそれ、工程( 1 )で用意した第 1の一本鎖核酸の 3, 末端に第 2のアミノ酸をコードする塩基配列を追加した核酸と、 工程 (1) で用 意した第 2の一本鎖核酸の 5 ' 末端に第 1のアミノ酸をコ一ドする塩基配列を追 加した核酸とに対応する。  According to step (6), a single strand having a stem sequence and a branch sequence in the direction from the 5 'side to the 3 side and having a base sequence encoding the first amino acid and the second amino acid at the 3' end. A base nucleic acid having a stem nucleic acid and a stem sequence and a branch sequence complementary to the stem sequence in the direction from the 3 ′ side to the 5 ′ side, and encoding the first amino acid and the second amino acid at the 5 ′ end A single-stranded nucleic acid having a sequence is prepared. That is, each of the two types of single-stranded nucleic acids prepared in step (6) has a base sequence encoding a second amino acid at the 3, terminal of the first single-stranded nucleic acid prepared in step (1). This corresponds to the added nucleic acid and the nucleic acid obtained by adding a base sequence encoding the first amino acid to the 5 ′ end of the second single-stranded nucleic acid prepared in step (1).
工程 (6) により、 次のサイクルに使用するための 2種類の一本鎖核酸が得ら れることになる。 なお、 ライブラリ一としては、 工程 (3) で一本鎖連結物が得 られ、 工程 (4) で二本鎖ィ匕 DN Aが得られたことになる。  Step (6) yields two types of single-stranded nucleic acids for use in the next cycle. As for the library 1, a single-stranded product was obtained in step (3), and a double-stranded DNA was obtained in step (4).
本発明の方法における工程 (7) は、 工程 (6) で得た一本鎖核酸を用いてェ 程 (2) から工程 (6) を必要な回数だけ繰り返す工程である。  Step (7) in the method of the present invention is a step of repeating steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6).
このようにして連結されるブロック数はサイクル数に応じて 2、 4、 8、 16、 と指数関数的に増加していく。 この特性は長いシャフリング物を構築する際には 反応段数を少なくできるという意味で重要な利点となる。  The number of blocks connected in this way increases exponentially to 2, 4, 8, 16 according to the number of cycles. This property is an important advantage when constructing long shuffled products in that the number of reaction stages can be reduced.
本発明では、 ペプチド ·タンパク質ライブラリーの構築を最終目標として捕ら え、 その最小単位としてのコドン (トリヌクレオチド) をブロックとしたが、 ブ ロック長は任意の長さに設定することができる。 コドンが複数個連結したブロヅ クから出発することも可能である。 その延長上にはタンパク質の構造単位 (例え ばひ一ヘリックス、 3シート、 モジュール、 ドメインなどの構造単位) でのシャ フリングがある。 機能性べプチドとしては小さいものは数残基アミノ酸から成り 立つものも知られているが、 多彩な機能を発現するには多様な構造体を形成しう る長さを有していることが必要であると考えられる。 このような観点から十数残 基のアミノ酸からなるぺプチドはフレキシブルな構造体を形成する最適な長さで あると言える。 本明細書の実施例で示したような 1 6アミノ酸からなるぺプチド は、 工程 (2 ) 〜 (6 ) を 4サイクル回しただけで構築しうることや、 機能発現 の高いポテンシャルを有する長さであるという意味で重要である。 In the present invention, the construction of a peptide / protein library was considered as the ultimate goal, and codons (trinucleotides) as its minimum unit were blocked. The lock length can be set to any length. It is also possible to start from a block in which a plurality of codons are linked. On the extension is shuffling of the structural units of the protein (for example, structural units such as Hi-helix, 3-sheet, module, domain, etc.). Some small functional peptides are known to be composed of a few residues of amino acids.However, in order to express a variety of functions, they must be long enough to form various structures. Deemed necessary. From such a viewpoint, it can be said that a peptide consisting of more than ten amino acids has an optimal length for forming a flexible structure. The peptide consisting of 16 amino acids as shown in the examples of the present specification can be constructed only by rotating steps (2) to (6) for four cycles, and has a long potential having a high potential for function expression. Is important in the sense that
本明細書の実施例では、各サイクルで連結反応させる 5 ' -ハーフ鎖および 3' - ハーフ鎖のブロック数は同数となるように操作を進めたが、 偶数個と奇数個のブ ロック数の基質を用いることで任意のブロック数を有するシャフリング体の構築 を行なうことも可能である。 例えば、 1 2ブロック長のライブラリ一を構築する 場合には、 工程 (2 ) 〜 (6 ) を 3サイクル回し、 第 4サイクル目は第 3サイク ルの生成物と第 2サイクルの生成物から調製した 5' -ハーフ鎖および 3' -ハ一 フ鎖を使用すればよい。  In the examples of the present specification, the operation was carried out so that the number of blocks of the 5′-half strand and the number of blocks of the 3′-half strand to be subjected to the ligation reaction in each cycle was the same. By using a substrate, it is possible to construct a shuffled body having an arbitrary number of blocks. For example, when constructing a library having a block length of 12, the steps (2) to (6) are performed three times, and the fourth cycle is prepared from the products of the third cycle and the products of the second cycle. The used 5'-half strand and 3'-half chain may be used.
これは、 本発明の方法の大きな利点の一つである。 即ち、 一度、 各サイクルで 構築されたラィブラリ一は、 P C Rで増幅することにより任意に再生して使用す ることが可能である。 このことは単にブロック長の調節のみにとどまらず、 異な るプロックから構築されたライブラリ一とのドッキングも可能にするという意味 で、 探索する配列空間の範囲を大きく広げることになる。  This is one of the great advantages of the method of the present invention. That is, the library once constructed in each cycle can be arbitrarily reproduced and used by amplifying it with a PCR. This greatly expands the range of the sequence space to be searched in the sense that it can not only adjust the block length but also dock with a library constructed from different blocks.
本発明における核酸とは、 D N A及び R N Aを含む最も広い意味で使用され、 D N Aや R N Aの類似体も含まれる。  The nucleic acid in the present invention is used in the broadest sense including DNA and RNA, and also includes analogs of DNA and RNA.
近年、 D N A、 R N A、 その類似体など核酸自体の酵素活性や結合活性がクロ —ズアップされ、 その応用も盛んに行われている。 このような知見をブロック設 計に生かし、 新しい機能性核酸の創製に応用していくことに、 本発明の方法は適 している。 In recent years, the enzymatic activities and binding activities of nucleic acids themselves, such as DNA, RNA, and their analogs, have been closed up, and their applications are being actively pursued. The method of the present invention is suitable for applying such knowledge to block design and applying it to the creation of new functional nucleic acids. are doing.
本明細書の実施例においては、 48ヌクレオチドの DNAを生成したが、 原料 も含めて 5' -ハーフ鎖および 3, -ハーフ鎖は RNAに置き換えることが可能で ある。 DN Aの連結には RN Aリガーゼの活性を応用していることから理解され るように、基質を RNAとして連結することは効率の向上につながることになる。 この場合、 ステム領域にプロモー夕一を含めておくことで達成される。  In the examples of the present specification, DNA of 48 nucleotides was generated, but the 5'-half strand and the 3, -half strand including the raw material can be replaced with RNA. As can be seen from the application of RNA ligase activity for DNA ligation, ligation of substrate as RNA leads to improved efficiency. In this case, this can be achieved by including a promotion in the stem area.
最終的な DNAライブラリ一も RNAに変換し、 RNAライブラリーに置き換 えることも可能である。 また、 核酸類似物質または修飾 ·標識を施した核酸を最 終サイクルに組み込むことで、 正規の核酸以外の連結物を獲得することも可能で ある。  The final DNA library can also be converted to RNA and replaced with an RNA library. In addition, by incorporating a nucleic acid analog or a modified / labeled nucleic acid in the final cycle, it is possible to obtain a linked substance other than a regular nucleic acid.
上記した本発明の方法の具体的な実施態様の一つの概要を図 2に示す。 なお、 図 2は、 本明細書の実施例の内容を模式化したものでもあり、 本発明の範囲を限 定するものではない。 ここでは、 制限酵素として Mbo I Iを使用し、 親和性物 質としてピオチンを使用している。 図 2の各工程の説明を以下に記載する。  An outline of one specific embodiment of the above-described method of the present invention is shown in FIG. FIG. 2 also schematically illustrates the contents of the embodiment of the present specification, and does not limit the scope of the present invention. Here, MboII is used as a restriction enzyme, and biotin is used as an affinity substance. The description of each step in FIG. 2 is described below.
(1) 5' —ハーフおよび 3, 一ハーフについて、 共通するステム部分と 7つの トリヌクレオチドを含む DN Aオリゴマーを準備する。 図では単純化して単一の D N Aオリゴマ一鎖で説明してある。  (1) Prepare DNA oligomers containing a common stem portion and 7 trinucleotides for the 5'-half and 3,1 half. The illustration is simplified for a single DNA oligomer single strand.
(2)次に、 5, -ハーフと 3, -ハーフをハイブリダィズする。  (2) Next, hybridize 5, -half and 3, -half.
( 3 ) 両鎖を T4 RNAリガーゼで連結する。  (3) Ligate both chains with T4 RNA ligase.
(4)連結産物を PC Rで増幅する。  (4) Amplify the ligation product with PCR.
(5) 次のサイクルの原料を製造するために二組の PC Rを行い、 連結物にステ ム部分と制限酵素認識配列を導入する(Pre-5, -ハーフおよび Pre- 3' -ハーフ)。 この際ステム側のプライマ一は 5' ピオチン修飾を施したものを使用する。 制限 酵素は切断部分が認識配列に含まれないものを使用する。  (5) Perform two sets of PCR to produce the raw material for the next cycle and introduce the stem portion and the restriction enzyme recognition sequence into the ligated product (Pre-5, -half and Pre-3'-half) . At this time, the primer on the stem side should be modified with 5'-biotin. Use a restriction enzyme whose cleavage site is not included in the recognition sequence.
(6)制限酵素処理により不要な片方の末端を切り離す。  (6) Unnecessary one end is cut off by restriction enzyme treatment.
(7) ピオチンとストレブトァビジン ' ビーズの結合能を利用して、 一本鎖 DN A (次のサイクルの 5' -ハーフおよび 3, -ハーフ)を調製する。 この際必要とす る D N Aは、 濃い灰色ボックスで示されるプロヅクを有する D N A鎖である。 ( 8 ) 工程 2に戻り、 ここまでの操作を所定のブロック数が連結するまで繰り返 す。 (7) Prepare single-stranded DNA (5'-half and 3, -half of next cycle) using the binding ability of biotin and streptavidin 'beads. At this time you need DNA is a DNA strand with a block indicated by a dark gray box. (8) Return to step 2 and repeat the above operations until a predetermined number of blocks are connected.
本発明は、 上記した核酸ライブラリーの作製方法により作製される核酸ライブ ラリーにも関する。  The present invention also relates to a nucleic acid library produced by the above-described method for producing a nucleic acid library.
本発明の方法により得られる核酸ライブラリー中の核酸は、 任意の所定の数の アミノ酸をコードする塩基配列から構成され、 各アミノ酸の出現頻度についても 一般的には極端な偏りは見られないことを特徴とする。  The nucleic acid in the nucleic acid library obtained by the method of the present invention is composed of a base sequence encoding an arbitrary predetermined number of amino acids, and the frequency of occurrence of each amino acid generally does not show any extreme bias. It is characterized by.
さらに本発明は、 上記した核酸ライブラリーの作製方法により作製される核酸 ライブラリ一を用いて得られる、 ペプチドライブラリーにも関する。 ペプチドラ ィブラリーは、 核酸ライブラリーを適当な発現系において発現させることにより 得ることができる。  The present invention also relates to a peptide library obtained by using the nucleic acid library prepared by the above-described method for preparing a nucleic acid library. The peptide library can be obtained by expressing the nucleic acid library in an appropriate expression system.
ペプチドライブラリーを作製するための発現系としては、 例えば、 ファージデ イスプレイ法が挙げられる。 ファージディスプレイ法は、 目的の標的分子に対す る親和性を有する分子を多数のペプチド、 変異タンパク質、 および c D N Aから スクリ一ニングするための強力な方法となっている。 ファージデイスプレイ法で は、 108から 109個の異なる組み換え体を生成することが可能であり、 これらの中 から、 抗原、 抗体、 細胞表面受容体、 タンパク質シャペロン、 D N A、 金属ィォ ンその他に対する親和性を有する 1つ以上のクローンを選択することが可能であ る。 ライブラリ一のスクリーニングは、 提示される因子がキヤプシド融合タンパ ク質としてウィルス表面に発現されるため、 多くの用途に用いることができる。 ファージディスプレイ法では、 ( 1 ) 表現型と遺伝型の間に物理的な関連が存在 する、 (2 ) ライブラリ一から単離されたウィルス粒子は、 細菌に感染させるこ とによって再生することができる、 (3 ) 提示された結合ペプチドまたはタンパ ク質の一次構造は、 ウィルスゲノム中のクローニングされた断片の D N Aを配列 決定することによって容易に推定できる、 という利点を有する。 Examples of an expression system for preparing a peptide library include a phage display method. Phage display has become a powerful method for screening molecules with an affinity for a target molecule of interest from a number of peptides, muteins, and cDNAs. In phage Deisupurei method, it is possible to generate 10 8 10 9 different recombinants, among these, antigens, antibodies, cell surface receptors, protein chaperones, DNA, to metal I O emissions Other It is possible to select one or more clones with affinity. Library-based screening can be used for a number of applications, as the presented factor is expressed on the virus surface as a capsid fusion protein. In phage display, (1) there is a physical association between phenotype and genotype, (2) virus particles isolated from a library can be regenerated by infecting bacteria (3) has the advantage that the primary structure of the presented binding peptide or protein can be easily deduced by sequencing the DNA of the cloned fragment in the viral genome.
本発明のペプチドライブラリ一は、 例えば、 バクテリオファージによって発現 させることができる。 即ち、 本発明の方法で得られる核酸ライブラリーを、 バク テリオファージ M13の遺伝子 III、 VI、 または VIII中にクローン化し、 それによ つて多数のぺプチド:キヤプシド融合タンパク質として発現させることができる。 実施例 The peptide library of the present invention is, for example, expressed by bacteriophage. Can be done. That is, the nucleic acid library obtained by the method of the present invention can be cloned into the gene III, VI, or VIII of Bacteriophage M13, and thereby expressed as a large number of peptide: capsid fusion proteins. Example
以下の実施例により本発明をさらに具体的に説明するが、 本発明は実施例によ つて限定されることはない。  The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples.
(実施例 1 )  (Example 1)
本実施例では、 アミノ酸の性質を代表する 7つのアミノ酸をコ一ドするトリヌ クレオチドをブロックとする 16ブロックのシャフリング ·ライブラリーの構築 を試みた。 アミノ酸とトリヌクレオチドの対応表を以下に示す。 このコドンは小 麦胚芽の翻訳系のコドン使用頻度を参考に選択した。  In the present example, an attempt was made to construct a 16-block shuffling library in which trinucleotides encoding seven amino acids representing the properties of amino acids were used as blocks. The correspondence table between amino acids and trinucleotides is shown below. This codon was selected with reference to the frequency of codon usage in the translation system of wheat germ.
アミ コドン Ami Codon
Gly GGC  Gly GGC
l ie ATC  l ie ATC
Asp GAC  Asp GAC
L y s AAG  L y s AAG
S e r TCC  S e r TCC
Cy s TGC  Cy s TGC
Pro CCA  Pro CCA
また、 図 3に T4 RNAリガーゼの基質の構造 (a) および導入される制限酵素の 認識配列と切断部位の関係 (b) を示す (詳細は実験操作の中で説明する) 。  Fig. 3 shows the structure of the substrate of T4 RNA ligase (a) and the relationship between the recognition sequence of the introduced restriction enzyme and the cleavage site (b) (details will be described in the experimental procedure).
(実験操作) (Experimental operation)
1. 5, -ハーフおよび 3, -ハーフのライゲ一シヨン  1.5, -half and 3, -half ligature
各々 7種類の 5, -ハーフ鎖および 3, -ハーフ鎖 (5, 末端リン酸ィ匕したもの) を 30 1のライゲーシヨン緩衝液中(50mMTris-HCl (pH8.0), lOmMMgCl 2, 10ing/l BSA, ImM hexammine cobalt chloride, 及び.25% polyethylene glycol 6000 ) 、 94°C で 5分間加熱後、 60°Cに 15分間保温して相補的なステム領域をハイブリダ ィズさせた (図 3 (a) を参照、 図中、 'Ν' はブロック部分のヌクレオチドを 示す) 。 その後、 O.lmM ATP と 50 units の T4 RNA ligase (Takara) を添加し て 25°Cで 16時間反応させた。 Each of the seven types of 5-, half-chain and 3,-half-chain (5, with terminal phosphorylation) in 30 ligation buffer (50 mM Tris-HCl (pH 8.0), lOmMMgCl 2 , 10ing / l BSA, ImM hexammine cobalt chloride, and .25% polyethylene glycol 6000) were heated at 94 ° C for 5 minutes and then kept at 60 ° C for 15 minutes to hybridize the complementary stem region (Fig. 3 (a ), Where 'Ν' indicates the nucleotide in the block.) Thereafter, O.lmM ATP and 50 units of T4 RNA ligase (Takara) were added and reacted at 25 ° C for 16 hours.
2. ライゲーシヨン産物の増幅 2. Amplification of ligation products
ライゲ一ション産物は変性ポリァクリルァミドゲル電気泳動 (PAGE)で精製した ( 8 M尿素 8%ポリアクリルアミド, 300 V, 160mA, 35分間)。 目的物のバンド をゲルから切り出した後、 ゲルから抽出した DNAをテンプレート (バンド抽出 物 50〃1中の 1〃1) とした PCRを以下の通り行うことで精製度を上げた。 こ の操作によって原料の DN Aを除去することができる。 ブロック部分に隣接する 配列を含むプライ マー(pl:TTGMGATCTCTTTT (配列番号 5 ) および p2:TTGAACGGGATCCCCTA (配列番号 6 ) 、 各 lOpmole)を使用した。 PCR反応液 (50〃1) の組成は 200〃MdNTP、 1ュニット Taq polymerase (Greignner)ヽ 50mM Tris-HCl(pH8.7)、 2.5mM MgCl 2である。 P C Rの反応条件を以下に示す;プレ変 性: 90°C, 2分; 変性: 90°C, 0. 5分; アニーリング: 35°C, 1分;伸長: 72°C, 0. 5分; 30サイクル。 The ligation product was purified by denaturing polyacrylamide gel electrophoresis (PAGE) (8 M urea 8% polyacrylamide, 300 V, 160 mA, 35 minutes). After excising the band of the target substance from the gel, the degree of purification was increased by performing PCR using the DNA extracted from the gel as a template (1: 1 of the band extract 50-1) as follows. By this operation, the raw material DNA can be removed. Primers containing sequences adjacent to the block portion (pl: TTGMGATCTCTTTT (SEQ ID NO: 5) and p2: TTGAACGGGATCCCCTA (SEQ ID NO: 6), each lOpmole) were used. The composition of the PCR reaction solution (50〃1) is 200〃MdNTP, 1 unit Taq polymerase (Greignner) ヽ 50 mM Tris-HCl (pH8.7), 2.5 mM MgCl 2 . The PCR reaction conditions are as follows; pre-denaturation: 90 ° C, 2 minutes; denaturation: 90 ° C, 0.5 minutes; annealing: 35 ° C, 1 minute; extension: 72 ° C, 0.5 minutes 30 cycles.
3. 次サイクルの原料調製を目的とした PCR 3. PCR for preparing raw materials for the next cycle
連結物の増幅物に制限酵素 MboII認識配列およびステム部分を導入するための PCRを行う。ここでは 5, -ハーフ鎖調製用および 3, -ハーフ鎖調製用に 2種類 の P CRを行った。  PCR for introducing a restriction enzyme MboII recognition sequence and a stem portion into the amplified product of the ligation product is performed. In this case, two types of PCR were performed for preparation of 5, -half chain and preparation of 3, -half chain.
前者はプライマ一として、  The former is a primer,
p3: GGCTCGCGAATACTTTGGGGATCTCTTT( 0. lpmole ) (配列番号 7) 、 p3: GGCTCGCGAATACTTTGGGGATCTCTTT (0. lpmole) (SEQ ID NO: 7),
p4:TTGACGAAGATCCCCTA( lOpmole) (配列番号 8) 、 p4: TTGACGAAGATCCCCTA (lOpmole) (SEQ ID NO: 8),
p5:biotin-GGCTCGCGAATACTTTG(10pmole) (配列番号 9 ) を用いた。 p5: biotin-GGCTCGCGAATACTTTG (10pmole) (SEQ ID NO: 9) Was used.
また、 後者はプライマ一として、  In the latter case,
p6:ttGAAGAtctcttt(0.1pmole) (配列番号 10 ) 、 p6: ttGAAGAtctcttt (0.1pmole) (SEQ ID NO: 10),
p7:GGCTCGCGAATACTTTGAACGGGATCCCCTA(10pmole) (配列番号 1 1) 、 p7: GGCTCGCGAATACTTTGAACGGGATCCCCTA (10pmole) (SEQ ID NO: 11),
p8:biotin-GGCTCGCGAATACTTTGAA(10pmole) (配列番号 12) p8: biotin-GGCTCGCGAATACTTTGAA (10pmole) (SEQ ID NO: 12)
を用いた。 Was used.
p5および p8は、後に行う一本鎖 DNAの調製を目的として 5' 末端にビォチン 修飾を施したプライマ一である。 この配列は p3および p6の 5' 末端側の配列と 同じである。 プライマー配列中の下線部分は制限酵素 MboIIの認識配列を示して いる。  p5 and p8 are primers having a biotin modification at the 5 'end for the purpose of preparing single-stranded DNA to be performed later. This sequence is the same as the sequence at the 5 'end of p3 and p6. The underlined portion in the primer sequence indicates the recognition sequence of the restriction enzyme MboII.
4. 制限酵素処理 4. Restriction enzyme treatment
3' -ハーフ鎖調製用および 5, -ハーフ鎖調製用の PC R産物は、各々、 30 /1 の緩衝液中、 50ュニッ卜の制限酵素 MboII(Takara)で 37°Cで 1時間インキュべ —トした。制限酵素部位の構造は図 3(b)に示した。 図中、 'N' はブロックの塩 基を示しており、 認識配列と切断部位はそれぞれボックスと矢印で示した。 連結 されたブロックの瀬戸際で切断することが必要であり、 切断部位が認識配列に含 まれないことが制限酵素の選択条件となる。 ここでは 1種類の酵素を使用してい るが、 同様の酵素を組み合わせて使用することも可能である。  PCR products for 3'-half strand preparation and 5, -half strand preparation were each incubated in a 30/1 buffer with 50 units of restriction enzyme MboII (Takara) at 37 ° C for 1 hour. -I did it. The structure of the restriction enzyme site is shown in FIG. 3 (b). In the figure, 'N' indicates the base of the block, and the recognition sequence and the cleavage site are indicated by boxes and arrows, respectively. It is necessary to cut at the brink of the connected block, and the restriction enzyme selection condition is that the cut site is not included in the recognition sequence. Here, one kind of enzyme is used, but it is also possible to use a combination of similar enzymes.
5. PCR産物からのー本鎖DNAの調製 5. Preparation of single-stranded DNA from PCR products
各々の制限酵素消化物(30〃1)を 30 j lの 2 X Binding and Washin 緩衝液 (2 XB & W buffer, 0.2M Tris-HCl (pH8.0), 1M NaCl, 2% Tween- 20)と合わせ、 予 め、 O.lM NaOH で洗浄し、 1 x Binding and Washing 緩衝液 (B & W buffer, 0.1M Tris-HCl (pH8.0), 0.5M NaCl , 1¾ Tween-20)で平衡化した 60 zlストレブトアビ ジン ·マグネットビ一ズ(ダイナビーズ M- 280 streptavidin, DynaBeads) と混合 した。この懸濁液を室温で 1時間攪拌して PC R産物を固定化した。ビーズを 100 )UL\ の lxB & W緩衝液で一度、 100 l の水で二度洗浄した後、 室温で 2分間 25 /1の 25% アンモニア水で二度処理して非ピオチン修飾 DN A鎖を回収した。 次に、 ビーズを 100〃1の水で二度洗浄した後、 65°Cで 2分間 25〃1の 25%アンモ ニゥム水で二度処理してピオチン修飾 DN A鎖を回収した。 回収したアンモニア 水抽出液は乾燥後、水に溶解して次サイクルの原料として使用する。 3' -ハーフ 鎖調製用 PCR産物からの抽出物は非ピオチン修飾 DNA鎖を使用し、 5' -ハー フ鎖調製用の PCR産物からの抽出物はピオチン修飾 DNA鎖を使用する (図 2 を参照) 。 Each restriction enzyme digest (30〃1) was mixed with 30 jl of 2X Binding and Washin buffer (2XB & W buffer, 0.2M Tris-HCl (pH8.0), 1M NaCl, 2% Tween-20). Combined, washed in advance with O.lM NaOH, and equilibrated with 1x Binding and Washing buffer (B & W buffer, 0.1 M Tris-HCl (pH 8.0), 0.5 M NaCl, 1¾ Tween-20) It was mixed with 60 zl streptavidin-magnet beads (Dynabeads M-280 streptavidin, DynaBeads). This suspension was stirred at room temperature for 1 hour to immobilize the PCR product. 100 beads ) Washed twice with lxB & W buffer of UL \ and twice with 100 l of water, and then treated twice with 25/1 25% aqueous ammonia at room temperature for 2 minutes to recover non-biotin-modified DNA chain . Next, the beads were washed twice with 100〃1 of water, and then treated twice with 25〃1 of 25% ammonia water at 65 ° C for 2 minutes to collect the biotin-modified DNA chain. The recovered aqueous ammonia extract is dried, dissolved in water and used as a raw material for the next cycle. Extracts from PCR products for 3'-half strand preparation use non-biotin-modified DNA strands, while extracts from PCR products for 5'-half strand preparation use biotin-modified DNA strands (see Figure 2). See).
6. 回収された 3, -ハーフ鎖および 5, -ハーフ鎖のライゲーシヨン 6. Ligation of recovered 3, -half-chain and 5, -half-chain
連結物から回収された 3, -ハーフ鎖および 5, -ハーフ鎖は最初のライゲーシ ョン反応同様に、 TRL緩衝液中でハイプリダイズさせた後、 T4 RNAリガーゼによ るライゲーシヨンを行った。 以後同様の操作を繰り返すことにより所定の長さと なるまでブロックを順次連結させた。  The 3, -half strand and the 5, -half strand recovered from the ligation were hybridized in a TRL buffer and ligated with T4 RNA ligase in the same manner as in the first ligation reaction. Thereafter, by repeating the same operation, the blocks were sequentially connected until a predetermined length was obtained.
7. シャフリング物の配列決定 7. Shuffling sequencing
このブロックシャフリング · DN Aを TA cloning kit (TA Cloning Kit Jr., Invitrogen)を用いてクローニングした。ィンサートの確認はコロニ一 · P CRお よび変性 PAGEで行った。ィンサートが確認された形質転換体から、プラスミド抽 出キッ卜 (Wizard Plus SV Minipreps DNA Purification System, Promega) を用い てプラスミ ド D N Aを抽出した。 DNA配列は DNA シーケンシング 'キット ( Thermo Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP, Amersham Parmacia Biotech)および DNA シーケンサ一 (Shimadu, DSQ2000)で行った。  This block shuffling DNA was cloned using a TA cloning kit (TA Cloning Kit Jr., Invitrogen). The insert was confirmed by colony PCR and denaturing PAGE. Plasmid DNA was extracted from the transformant in which the insert was confirmed, using a plasmid extraction kit (Wizard Plus SV Minipreps DNA Purification System, Promega). DNA sequencing was performed with a DNA sequencing 'kit (Thermo Sequenase fluorescent labeled primer cycle sequencing kit with 7-deaza-dGTP, Amersham Parmacia Biotech) and a DNA sequencer (Shimadu, DSQ2000).
(結果と考察) (Results and discussion)
1. 連結物のゲル電気泳動分析結果 各サイクルで増幅した連結産物を変性 PAGEおよび銀染色で分析した。結果を図 4に示す。 1. Results of gel electrophoresis analysis of the ligated product The ligation products amplified in each cycle were analyzed by denaturing PAGE and silver staining. Fig. 4 shows the results.
各産物はプライマ一領域 (32塩基長一定) および連結ブロック領域 (3 x 2 n 塩基長、 nはサイクル数) を含んでいる。従って、 第一サイクルでは 38bp、 第二 サイクルでは 44bp、 第 3サイクルでは 56bp、 第 4サイクルでは 80bpの産物が期 待され、 分析結果と一致している。 図 4中、 レーン Mは D N Aのサイズマ一力一 であり、 サイズを左に示した。 Each product contains a primer region (constant length of 32 bases) and a connecting block region (3 x 2 n base length, where n is the number of cycles). Therefore, a product of 38 bp in the first cycle, 44 bp in the second cycle, 56 bp in the third cycle, and 80 bp in the fourth cycle is expected, which is consistent with the analysis results. In FIG. 4, lane M is the size of DNA, and the size is shown on the left.
2 . D N A配列決定の結果 2. Results of DNA sequencing
構築した D N Aライブラリ一の一部の配列決定結果を以下の表 4に示す。  The results of sequencing of a portion of the constructed DNA library are shown in Table 4 below.
表 4 : Table 4:
: D N Aライブラリ一の配列デ一夕 : DNA sequence of DNA library
Figure imgf000029_0001
Figure imgf000029_0001
* mutated sequences その他の配列結果も含めて解析した結果、 P C Rの際に発生したと思われる塩 基置換が確認された。なお、現在使用している P C R用 D N Aポリメラ一ゼは Taq DNA ポリメラ一ゼであるが、 この酵素は合成する際に数万ヌクレオチド当たり一 個の変異を導入することが知られている。  * As a result of analysis including mutated sequences and other sequence results, a substitution of a base which is considered to have occurred during PCR was confirmed. The currently used DNA polymerase for PCR is Taq DNA polymerase, which is known to introduce one mutation per tens of thousands of nucleotides during synthesis.
また、制限酵素の切断の際に発生したと思われる欠失突然変異も確認されたが、 これは、 制限酵素の切断部位の非特異性に由来すると思われる。 なお、 本実施例 で使用した制限酵素 MboI Iは、 認識配列から遠く離れたところを切断する酵素に 属するものである。 In addition, a deletion mutation that appeared to have occurred during cleavage of the restriction enzyme was also confirmed, but this is probably due to the non-specificity of the restriction enzyme cleavage site. The restriction enzyme MboI I used in this example is an enzyme that cuts away from the recognition sequence. Belong to.
別の実験から、 Mbol Iの切断部位特異性が両鎖で異なることが示唆されている。 また、 本実施例では 1 6個のアミノ酸からなるペプチドライブラリ一の構築を 最終目標に設定して、 7種のトリヌクレオチドをブロックとして YLBSのサイクル を 4サイクル回し、 所定のブロック数を含むシャフリング ·ライブラリーを獲得 することに成功した。 総合的なプロック出現頻度も以下に示すように極端な偏り は見られなかった。 コドン GGC ATC GAC AAG TCC TGC CCA  Separate experiments suggest that the cleavage site specificity of Mbol I is different for both chains. In this example, the construction of a peptide library consisting of 16 amino acids was set as the final goal, and the YLBS cycle was repeated four times using seven types of trinucleotides as blocks, and shuffling including a predetermined number of blocks was performed. · Successfully acquired the library. No extreme bias was found in the overall frequency of block appearance as shown below. Codon GGC ATC GAC AAG TCC TGC CCA
(Gly) ( l ie) (Asp) (Lys) ( Ser) (Cys) (Pro)  (Gly) (lie) (Asp) (Lys) (Ser) (Cys) (Pro)
出現率 7.6% 22. 9 15.3% 17.8% 6Λ 6. 1¾ 24.3¾ Appearance 7.6% 22.9 15.3% 17.8% 6Λ 6.1 1¾ 24.3¾
(実施例 2 ) (Example 2)
YLBS法を用いて DNAライブラリーの作製を行った。  A DNA library was prepared using the YLBS method.
原料ォリゴヌクレオチドとしては以下の配列を使用した。  The following sequences were used as starting oligonucleotides.
5, half : GGCTCGCGAATACTGCGAA GACCACCATGNNN ( 32mer,下線部分はステム領域)(配 列番号 1 3 )  5, half: GGCTCGCGAATACTGCGAA GACCACCATGNNN (32mer, underlined stem region) (SEQ ID NO: 13)
stem primer (biotin標識): GGCTCGCGAATACTGCGMGGCCACCATG (29mer) (配列番号 1 4 )  stem primer (biotin label): GGCTCGCGAATACTGCGMGGCCACCATG (29mer) (SEQ ID NO: 14)
part primer (FITC標識): GCGTAGMGATCGTGGA( 17mer, 3' half にァニール) (配列 番号 1 5 )  part primer (FITC label): GCGTAGMGATCGTGGA (17mer, anneal in 3 'half) (SEQ ID NO: 15)
3' half : NNNTCCACGATCCTG TTCGCAGTATTCGCGAGCC ( 34mer,下線部分はステム領域) (配列番号 1 6 )  3 'half: NNNTCCACGATCCTG TTCGCAGTATTCGCGAGCC (34mer, underlined stem region) (SEQ ID NO: 16)
stem primer (biotin標識): GGCTCGCGAATACTGCGMCAGGATCGTGGA (31mer) (配列番 号 1 7 )  stem primer (biotin label): GGCTCGCGAATACTGCGMCAGGATCGTGGA (31mer) (SEQ ID NO: 17)
part primer (F ITC標識): CTGCGMGACCACCATG( 17mer, 5, half にァニール) (配列 番号 1 8 ) part primerには MboI I認識部位が含まれており、 stem primerには MboI Iで切 断されないように変異を施してある。 part primer (FITC labeling): CTGCGMGACCACCATG (anneal on 17mer, 5 and half) (SEQ ID NO: 18) The part primer contains an MboI I recognition site, and the stem primer is mutated so as not to be cut by MboI I.
MboI I認識部位: MboI I recognition site:
GAAGANNNNNNNN CTTCTNNNNNN 个 シークェンス用プライマー GAAGANNNNNNNN CTTCTNNNNNN Individual primer for sequence
YLBS ライブラリーをペプチドとして発現させるため、 Τ7 プロモーター及び FLAG-Prositeの一部を含む。  To express the YLBS library as a peptide, it contains the # 7 promoter and a part of FLAG-Prosite.
T7 side primer: AAGAAGGAGTTGCCACCATG( 20mer ) (配列番号 1 9 )  T7 side primer: AAGAAGGAGTTGCCACCATG (20mer) (SEQ ID NO: 19)
POU side primer: TTATAGTCCAGGATCGTGGA( 20mer ) (配列番号 2 0 ) 使用コドン配列 POU side primer: TTATAGTCCAGGATCGTGGA (20mer) (SEQ ID NO: 20) Codon sequence used
小麦胚芽の codon usage と制限酵素 MboI Iの認識配列の回避を考慮して、 以下の コドンを使用することとした。 In consideration of the codon usage of wheat germ and the avoidance of the recognition sequence of the restriction enzyme MboI I, the following codons were used.
表 5 : アミノ酸 コドン アミノ酸 コドンTable 5: Amino acid codons Amino acid codons
Phe TTT ' His CAC Phe TTT 'His CAC
Leu CTC Gin CAA lie ATT Asn AAC  Leu CTC Gin CAA lie ATT Asn AAC
Met ATG Lys AAA  Met ATG Lys AAA
Val GTG Asp GAC  Val GTG Asp GAC
Ser TCC Glu GAG  Ser TCC Glu GAG
Pro CCA Cys TGC  Pro CCA Cys TGC
Thr ACC Trp TGG  Thr ACC Trp TGG
Ala GCC Arg CGC  Ala GCC Arg CGC
Tyr TAC Gly GGC 実験の概要は以下に示す。 Tyr TAC Gly GGC The outline of the experiment is shown below.
( 1) 3' half の 5,末端リン酸化  (1) 5 'phosphorylation of 3' half
(2) 5' half及び 3' half のハイプリダイゼ一ション及びライゲ一ション  (2) 5 'half and 3' half hybridization and ligation
(3) 変性 PAGEによるライゲーション産物の精製  (3) Purification of ligation products by denaturing PAGE
(4) ライゲーション産物の PCR増幅  (4) PCR amplification of ligation products
(5) 制限酵素 boII処理  (5) boII restriction enzyme treatment
(6) 1本鎖 DNAの調製 (5, half及び 3, half)  (6) Preparation of single-stranded DNA (5, half and 3, half)
(7) 次の YLBSサイクル  (7) Next YLBS cycle
( 1) 3, half の 5,末端リン酸化 (1) 3, half of 5, terminal phosphorylation
T ポリヌクレオチドキナーゼ (PNK)を用いて 3, half の 5,末端をリン酸ィ匕する。 この時、 20種類の 3' half をそれそれ等モルずつ混合した溶液を用いる。  Use T polynucleotide kinase (PNK) to phosphorylate the 3 and half 5 and termini. At this time, use a solution in which 20 kinds of 3 'halves are mixed in the respective molar amounts.
H20 2 1 H20 2 1
3' half mixture 4 1 3 'half mixture 4 1
(各 20pmol, total400pmol) (Each 20pmol, total400pmol)
ΙΟχΡΝΚ buffer ljulΙΟχΡΝΚ buffer ljul
Figure imgf000032_0001
Figure imgf000032_0001
T4 PNK(10U/ /l,Takara) 2jul T4 PNK (10U / / l, Takara) 2jul
Total 10 zl Total 10 zl
調製した溶液を 37°Cで 1時間ィンキュベーシヨンした後、 85°Cで 15分間加熱 して酵素を失活させる。 この反応液は 40pmol/ lの DNA濃度となる。  After incubating the prepared solution at 37 ° C for 1 hour, heat at 85 ° C for 15 minutes to inactivate the enzyme. This reaction solution has a DNA concentration of 40 pmol / l.
(2) 5, half及び 3, half のハイブリダイゼ一ション及びラィゲ一ション (2) 5, half and 3, half hybridization and ligation
5' half mixture 各 2pmol, total40pmol) 5 'half mixture 2pmol, total40pmol)
3' half mixture 各 2pmol, total40pmol)  3 'half mixture for each 2pmol, total40pmol)
(リン酸化済)  (Phosphorylated)
ImM ATP 1 zl 2 XTRL* 5 / 1 ImM ATP 1 zl 2 XTRL * 5/1
2 X TRL 2 X TRL
lOOmM Tris-HCl(pH8.0)  lOOmM Tris-HCl (pH8.0)
20mM MgCl 2 20mM MgCl 2
20mg/l BSA  20mg / l BSA
lmM HCC(hexammine cobalt chloride)  lmM HCC (hexammine cobalt chloride)
50%(w/v) PEG6000  50% (w / v) PEG6000
調製した溶液を 95°Cで 2分間加熱した後 65°Cで 10分間アニーリングさせる。 その後室温まで冷却し、 T4 MA Ligase(25U/ul,Takara)を 2ul加えて 25° ォー バーナイトでインキュベーションする。  Heat the prepared solution at 95 ° C for 2 minutes and then anneal at 65 ° C for 10 minutes. After cooling to room temperature, add 2ul of T4 MA Ligase (25U / ul, Takara) and incubate at 25 ° overnight.
( 3 ) 変性 PAGEによるライゲーション産物の精製 (3) Purification of ligation products by denaturing PAGE
ライゲ一シヨン溶液にマーカ一色素(0.5 BPB in formamide)10ul を混合し、 8M 尿素 8%PAGEで分画する(300V, 160mA, 50分間)。 銀染色法で染色、 目的のライゲ ーシヨン産物のバンドをメスにより切り出し、 1.5ml のチューブに入れる。 ゲル の洗浄のため滅菌水を lml加え、 ミキサーで 5分間攪拌後、 滅菌水を除く。 更に 滅菌水を 50ul添加し、 ゲル破砕棒でよくゲルを潰す。卓上遠心機で遠心後、上清 を PCRのテンプレートとする。  Mix 10 ul of marker dye (0.5 BPB in formamide) with the ligated solution and fractionate by 8M urea 8% PAGE (300V, 160mA, 50 minutes). Stain using the silver staining method, cut out the band of the desired ligation product with a scalpel, and place in a 1.5 ml tube. To wash the gel, add 1 ml of sterile water, stir with a mixer for 5 minutes, and remove the sterile water. Add 50ul of sterile water and crush the gel well with a gel crushing rod. After centrifugation in a tabletop centrifuge, use the supernatant as a template for PCR.
lcycle目の YLBS(Y1 )の結果を図 5に示す。ラィゲ一ション産物は 66merである。 これに対応する位置のバンドを切り出す。 なお、 ライゲーシヨン産物は Y2 では 72mer、 Y3では 84merになるはずである。  Figure 5 shows the results of YLBS (Y1) at the 1st cycle. The ligation product is a 66mer. The band at the position corresponding to this is cut out. The ligation product should be 72mer for Y2 and 84mer for Y3.
( 4 ) ライゲーシヨン産物の PCR増幅 (4) PCR amplification of ligation products
ラィゲ一ション産物を増幅するとともに、次の YLBSサイクルの原料を調製する ための PCRを 1種類 (5, half及び 3, half )行う。  Amplify the ligation product and perform one type of PCR (5, half and 3, half) to prepare the starting material for the next YLBS cycle.
10 XPCR緩衝液 5 1 10 XPCR buffer 5 1
25mM MgCl 2 5^ 1 ゲルの上清溶液(テンプレート) 5〃1 25mM MgCl 2 5 ^ 1 Gel supernatant solution (template) 5〃1
5,または 3, stem primer(10pmol/ l) lj 5, or 3, stem primer (10 pmol/l) lj
5,または 3, part primer(10pmol/ l) ijul 5, or 3, part primer (10 pmol/l) ijul
20mM dNTP 0.5 /1 20mM dNTP 0.5 / 1
Taqポリメラ一ゼ(グライナ一) 1 unit Taq Polymerase 1 unit
H20で 最終 50 /1 H 2 0 at final 50/1
反応は、 94°Cで 2分インキュベートした後、 94°Cで 30秒、 60°Cで 1分及び 72°C で 30秒を 1サイクルとし、 これを 30サイクル行った後、 72°Cで 5分インキュべ 一卜した。 PCR終了後、 反応液の一部 (例えば 5〃1)を取り、 上記 (3) と同様の PAGEで分析する。 この時、 複数のバンドが出た場合には、 目的産物のバンドを切 り出して再度 PCRを行うか、目的産物だけが増幅する PCRサイクル(目的産物が最 初に増幅され、 非特異的産物は後から増幅されてくる傾向がある)で再度行う。  The reaction was incubated at 94 ° C for 2 minutes, followed by one cycle of 94 ° C for 30 seconds, 60 ° C for 1 minute, and 72 ° C for 30 seconds. Incubated for 5 minutes. After the PCR is completed, remove a part of the reaction solution (for example, 5〃1) and analyze it by the same PAGE as in (3) above. At this time, if multiple bands appear, cut out the band of the target product and perform PCR again, or use a PCR cycle in which only the target product is amplified (the target product is first amplified and non-specific products are amplified). Tends to be amplified later).
(5) 制限酵素 MboII処理 (5) Restriction enzyme MboII treatment
5' half 及び 3' half の PCR産物をエタノール沈殿し、25 1の H20で溶解する。 The 5 'half and 3' PCR products of half precipitated with ethanol, dissolved in H 2 0 of 25 1.
5, half または 3' half 25 /1 5, half or 3 'half 25/1
10xL緩衝液 3 1 10xL buffer 3 1
MboII (10U/ul,Takara)
Figure imgf000034_0001
MboII (10U / ul, Takara)
Figure imgf000034_0001
Total 30〃1 Total 30〃1
調製した溶液を 37°Cで 2時間インキュベーションする。  Incubate the prepared solution at 37 ° C for 2 hours.
(6) 1本鎖 DNAの調製 (5, half及び 3' half) (6) Preparation of single-stranded DNA (5, half and 3 'half)
各々の制限酵素消化物 (30 1)に 20〃1の H20を加える。 これを 2xBW緩衝液 (0.2M Tris-HCl(pH8.0),lM NaCl,2% Tween20) で平衡化したダイナビーズ (streptavidin M-280)50 l と混合し、 室温で 1時間ミキサーにより攪袢する。 この操作により PCR産物がビーズに結合する。 攪袢後、 チューブを卓上遠心機で 遠心し、更にマグネットを用いてビーズをチューブ壁面に確保する(以後、この操 作をビーズ確保と呼ぶ)。 上清を除去し、 200〃 1 の lxBW 緩衝液(0.1M Tris-HCl(pH8.0), 0.5M NaCl, l% Tween20)で 1回、 200 1の H20で 2回、 ビーズ 確保と上清除去を繰り返してビーズを洗浄する。 ここに 25 1の 28%アンモニア 水を添加し、 攪拌して室温で 2分間放置する。 ビーズ確保後、 上清を回収して保 存する。もう一度この操作を繰り返す。上清は合わせて保存する(非ピオチン鎖)。 ビーズを一度 200 /1の H20で洗浄した後、 25〃1の 28%アンモニア水を添加して 攪拌し、 65°Cで 20分間加熱する。 ビーズ確保後、 上清を回収して保存する。 もう 一度この操作を繰り返す。 上清は合わせて保存する(ピオチン鎖)。 Add 20制 限 1 of H 20 to each restriction enzyme digest (30 1). This was mixed with 50 l of Dynabeads (streptavidin M-280) equilibrated with 2xBW buffer (0.2 M Tris-HCl (pH 8.0), 1 M NaCl, 2% Tween20), and stirred at room temperature for 1 hour with a mixer. I do. By this operation, the PCR product binds to the beads. After stirring, the tube is centrifuged with a tabletop centrifuge, and beads are secured on the tube wall using a magnet. The work is called securing beads). The supernatant was removed, LxBW buffer 200〃 1 (0.1M Tris-HCl (pH8.0 ), 0.5M NaCl, l% Tween20) 1 times with 200 1 of H 2 0, twice with a bead secured The beads are washed by repeatedly removing the supernatant. To this, add 25 1 of 28% aqueous ammonia, stir, and leave at room temperature for 2 minutes. After securing the beads, collect and save the supernatant. Repeat this operation again. Store the supernatant together (non-pyotin chains). After washing with H 2 0 of the beads once 200/1, it is added and stirred 28% aqueous ammonia 25〃1 is heated at 65 ° C 20 min. After securing the beads, collect and save the supernatant. Repeat this operation again. Store the supernatant together (pyotin chains).
4種類の回収液を遠心濃縮機を用いて乾燥させる。この時 YLBSの次のサイクル に使用するのは、 5, half がピオチンで標識された方の DNA鎖で、 3' half が未標識 の DNA鎖である。 また、 残りの回収物は回収効率の目安となるため、 次サイクル の PAGE分析の際に一緒に泳動する。  The four kinds of recovered liquids are dried using a centrifugal concentrator. In this case, in the next cycle of YLBS, 5, half is the DNA strand labeled with biotin, and 3 'half is the unlabeled DNA strand. In addition, the remaining recovered material is used as a measure of the recovery efficiency, and is run together during the next cycle of PAGE analysis.
( 7 ) 次の YLBSサイクル (7) Next YLBS cycle
回収後の 3' half の 5'末端はリン酸化されているため、 ステップ 2のハイプリ ダイゼ一シヨンから同様の操作を繰り返す。  Since the 5 'end of the 3' half after recovery is phosphorylated, the same procedure is repeated from the hybridization in step 2.
2回目及び 3回目の Y L B Sサイクル後の反応産物を電気泳動で分析した結果 の電気泳動像を図 6に示す。  FIG. 6 shows electrophoresis images of the results of electrophoretic analysis of the reaction products after the second and third YLBS cycles.
図 6において、 レーン 1から 6は以下を示す。  In FIG. 6, lanes 1 to 6 show the following.
レーン 1:マーカ一 (上から 100mer, 90,80, 70,60,50. . . . ) Lane 1: Marker 1 (100mer, 90, 80, 70, 60, 50 ... from the top)
レーン 2 : Y ligationを行ったサンプル(Y2は 72mer,Y3は 84mer,ピオチンがつ いているためやや上に出る) Lane 2: sample subjected to Y ligation (Y2 is 72mer, Y3 is 84mer, appears slightly above due to the use of biotin)
レーン 3 5' - half のピオチンがついていない方の鎖 Lane 3 5 '-half of the chain without biotin
レーン 4 5 half のピオチンがついている方の鎖(Y ligationに使用した残り) レーン 5 3' - half のビォチンがついていない方の鎖 (Y ligationに使用した残 り) Lane 4 5 'half chain with biotin (remaining used for Y ligation) Lane 5 3'-half chain without biotin (remaining used for Y ligation)
レーン 6 : 3' - half のピオチンがついている方の鎖 60mer付近の濃いバンドは boII処理で切断されなかった DNA(PCR産物がその まま残っている)、その下の濃いバンドは MboI Iで切断されたがライゲ一シヨンし なかった未反応 DNAと考えられる。 Lane 6: 3'-half chain with biotin The dark band around 60mer is considered to be unreacted DNA that was not cleaved by boII treatment (the PCR product remains intact), and the dark band below it was cleaved with MboI I but did not ligate. .
(シークェンスの結果)  (Result of the sequence)
Y3後のライゲ一シヨン産物をシークェンス用プライマ一(T7 side primer, POU side primer)で PCR増幅し、 TAクロ一ニングキヅト(invitrogen)を用いてクロー ニングした。 プラスミ ドを回収し、 シークェンスを行った。 シークェンスの結果 を図 7に示す。 その結果、 適切な長さのクローンは 10サンプル中 4つであった。 更に、 使用したコドンに対応しているものは 10サンプル中 1つであった。  The ligated product after Y3 was PCR-amplified with a primer for sequence (T7 side primer, POU side primer) and cloned using a TA cloning kit (invitrogen). Plasmid was recovered and a sequence was conducted. Figure 7 shows the results of the sequence. As a result, four out of ten clones of appropriate length were obtained. In addition, one of the 10 samples corresponded to the codon used.
表 6 : Table 6:
Figure imgf000036_0001
産業上の利用の可能性
Figure imgf000036_0001
Industrial applicability
本発明により、 Y—ライゲ一ション法を利用した核酸ラィブラリ一を構築する 方法が確立された。  According to the present invention, a method for constructing a nucleic acid library using the Y-ligation method has been established.
本発明の方法は、 長いべプチド鎖をコ一ドする核酸ライブラリーを構築する際 に反応段数を少なくでき、 ブロック長を任意の長さに設定することができ、 さら に各プロックの出現頻度に極端な偏りは見られないという利点を有する。  The method of the present invention can reduce the number of reaction stages when constructing a nucleic acid library encoding long peptide chains, can set the block length to an arbitrary length, and furthermore, the frequency of appearance of each block Has the advantage that no extreme bias is seen.
本出願が主張する優先権の基礎となる日本特許出願である特願 2 0 0 0 - 3 4 6 4 6 7号及び特願 2 0 0 1 - 3 0 8 2 7 7号の明細書に記載の内容は全て本明 細書の開示の一部として本明細書に引用するものとする。  It is described in the specification of Japanese Patent Application No. 2000-0-346 467 and Japanese Patent Application No. 200-1307, which are the Japanese patent applications that form the basis of the priority claimed by the present application. The entire contents of which are incorporated herein by reference as part of the disclosure of this specification.

Claims

請求の範囲 The scope of the claims
1. 以下の工程 (1) から (7) を含む、 核酸ライブラリ一の作製方法。 1. A method for preparing a nucleic acid library, comprising the following steps (1) to (7).
( 1) 5, 側から 3, 側の方向にステム配列とブランチ配列とを有し、 3, 末端 に第 1のアミノ酸をコードする塩基配列を有する第 1の一本鎖核酸と、 3' 側か ら 5 '側の方向に上記ステム配列と相補的なステム配列とブランチ配列とを有し、 5' 末端に第 2のアミノ酸をコードする塩基配列を有する第 2の一本鎖核酸とを 用意し、  (1) a first single-stranded nucleic acid having a stem sequence and a branch sequence in the direction from the 5th side to the 3rd side and having a base sequence encoding the first amino acid at the 3rd end; A second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and a base sequence encoding a second amino acid at the 5 ′ end is prepared. And
( 2 ) 第 1の一本鎖核酸と第 2の一本鎖核酸とを各ステム配列間でハイプリダイ ズさせ、  (2) hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences,
(3)ハイブリダィズした生成物を T4RNAリガーゼで処理して、 第 1の一本鎖核 酸の 3' 末端と第 2の一本鎖核酸の 5' 末端とを連結し、  (3) treating the hybridized product with T4 RNA ligase to ligate the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ end of the second single-stranded nucleic acid,
(4) 工程 (3) で得た二本鎖核酸を錄型にして、 5' 側を親和性物質で修飾し たプライマーを使用する PC Rを行い、 5' 側から 3' 側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコード する塩基配列、 ブランチ配列及び制限酵素認識配列を含む二本鎖核酸を調製し、 また  (4) The double-stranded nucleic acid obtained in step (3) is subjected to PCR using a primer modified with an affinity substance on the 5 ′ side in the form of 錄, and the direction is changed from the 5 ′ side to the 3 ′ side. Preparing a double-stranded nucleic acid comprising a stem sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a restriction enzyme recognition sequence;
工程 (3) で増幅した二本鎖核酸を錶型にして、 5' 側を親和性物質で修飾し たプライマ一を使用する PCRを行い、 5, 側から 3' 側の方向に制限酵素認識 配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸を コ一ドする塩基配列、 ブランチ配列及びステム配列を含む二本鎖核酸を調製し、 ( 5 )工程( 4 )で得た 2種の二本鎖核酸を制限酵素で処理することにより、各々 3, 末端又は 5, 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列 を有する二本鎖核酸を調製し、  Convert the double-stranded nucleic acid amplified in step (3) to type III, perform PCR using a primer whose 5 'side has been modified with an affinity substance, and recognize the restriction enzyme in the direction from the 5, 5 side to the 3' side. A double-stranded nucleic acid including a sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a stem sequence is prepared, and in step (5) (4), The resulting two types of double-stranded nucleic acids are treated with a restriction enzyme to prepare double-stranded nucleic acids having a base sequence encoding the first amino acid and the second amino acid at the 3, terminal or the 5, terminal, respectively. ,
(6) 工程 (4) で導入した親和性物質による結合能を利用して、 工程 (5) で 得た二本鎖核酸から一本鎖核酸を調製し、 そして  (6) a single-stranded nucleic acid is prepared from the double-stranded nucleic acid obtained in step (5) by utilizing the binding ability of the affinity substance introduced in step (4), and
(7) 工程 (6) で得た一本鎖核酸を用いて工程 (2) から工程 (6) を必要な 回数だけ繰り返す: (7) Steps (2) to (6) are required using the single-stranded nucleic acid obtained in step (6). Repeat as many times as:
2. 以下の工程 (1) から (7) を含む、 請求項 1に記載の核酸ライブラリー の作製方法。  2. The method for producing a nucleic acid library according to claim 1, comprising the following steps (1) to (7).
( 1) 5, 側から 3' 側の方向にステム配列とブランチ配列とを有し、 3, 末端 に第 1のアミノ酸をコードする塩基配列を有する第 1の一本鎖核酸と、 3' 側か ら 5 '側の方向に上記ステム配列と相補的なステム配列とブランチ配列とを有し、 5' 末端に第 2のアミノ酸をコードする塩基配列を有する第 2の一本鎖核酸とを 用 し、  (1) a first single-stranded nucleic acid having a stem sequence and a branch sequence in the direction from the 5 side to the 3 ′ side, and a third single-stranded nucleic acid having a base sequence encoding the first amino acid at the terminus; A second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction and having a base sequence encoding a second amino acid at the 5 ′ end. And
( 2 ) 第 1の一本鎖核酸と第 2の一本鎖核酸とを各ステム配列間でハイプリダイ ズさせ、  (2) hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences,
( 3 )ノヽイブリダイズした生成物を T4 RNAリガーゼで処理して、 第 1の一本鎖核 酸の 3' 末端と第 2の一本鎖核酸の 5' 末端とを連結し、  (3) treating the hybridized product with T4 RNA ligase to ligate the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ end of the second single-stranded nucleic acid,
(4 a)連結産物を一本鎖核酸にした後、相補鎖を合成して二本鎖核酸を調製し、 (4 b)工程(4 a)で得た二本鎖核酸を錶型にして、 5' 側を親和性物質で修飾 したフォワードプライマーと制限酵素認識配列を含むリバースプライマ一とを使 用する PCRを行い、 5' 側から 3' 側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配列、 ブ ランチ配列及び制限酵素認識配列を含む二本鎖核酸を調製し、 また  (4a) After converting the ligation product to a single-stranded nucleic acid, a complementary strand is synthesized to prepare a double-stranded nucleic acid, and (4b) the double-stranded nucleic acid obtained in the step (4a) PCR using a forward primer modified on the 5 'side with an affinity substance and a reverse primer containing a restriction enzyme recognition sequence was performed.From the 5' side to the 3 'side, the stem sequence, branch sequence, Preparing a double-stranded nucleic acid comprising a nucleotide sequence encoding the amino acid of the following, a nucleotide sequence encoding the second amino acid, a branch sequence and a restriction enzyme recognition sequence;
工程 (4 a) で増幅した二本鎖核酸を鎵型にして、 制限酵素認識配列を含むフ ォヮ一ドプライマ一と 5, 側を親和性物質で修飾したリバースプライマーとを使 用する PCRを行い、 5' 側から 3' 側の方向に制限酵素認識配列、 ブランチ配 列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコードする塩基配 列、 ブランチ配列及びステム配列を含む二本鎖核酸を調製し、  The double-stranded nucleic acid amplified in step (4a) is converted into type II, and PCR is performed using a food primer containing a restriction enzyme recognition sequence and a reverse primer modified on the 5th side with an affinity substance. And a restriction enzyme recognition sequence, a branch sequence, a base sequence encoding the first amino acid, a base sequence encoding the second amino acid, a branch sequence and a stem sequence in the direction from the 5 ′ side to the 3 ′ side. Prepare a single-stranded nucleic acid,
(5) 工程 (4 b) で得た 2種の二本鎖核酸を制限酵素で処理することにより、 各々 3, 末端又は 5, 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基 配列を有する二本鎖核酸を調製し、  (5) By treating the two types of double-stranded nucleic acids obtained in the step (4b) with a restriction enzyme, a nucleotide sequence encoding the first amino acid and the second amino acid at the 3, or 5 terminal, respectively. Preparing a double-stranded nucleic acid having
(6) 工程 (4 b) で導入した親和性物質による結合能を利用して、 工程 (5) で得た二本鎖核酸から一本鎖核酸を調製し、 そして (6) Using the binding ability of the affinity substance introduced in step (4b), Preparing a single-stranded nucleic acid from the double-stranded nucleic acid obtained in the above, and
(7) 工程 (6) で得た一本鎖核酸を用いて工程 (2) から工程 (6) を必要な 回数だけ繰り返す:  (7) Repeat steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6):
3. 以下の工程 ( 1) から (7) を含む、 請求項 1に記載の核酸ライブラリ一 の作製方法。  3. The method for producing a nucleic acid library according to claim 1, comprising the following steps (1) to (7).
( 1) 5' 側から 3' 側の方向にステム配列とブランチ配列とを有し、 3' 末端 に第 1のアミノ酸をコードする塩基配列を有する第 1の一本鎖核酸と、 3' 側か ら 5'側の方向に上記ステム配列と相補的なステム配列とブランチ配列とを有し、 5 ' 末端に第 2のアミノ酸をコ一ドする塩基配列を有する第 2の一本鎖核酸とを 用意し、  (1) a first single-stranded nucleic acid having a stem sequence and a branch sequence in a direction from the 5 ′ side to the 3 ′ side, and having a base sequence encoding the first amino acid at the 3 ′ end; A second single-stranded nucleic acid having a stem sequence complementary to the above-mentioned stem sequence and a branch sequence in the 5′-side direction, and having a base sequence coding for a second amino acid at the 5 ′ end; Prepare
( 2 ) 第 1の一本鎖核酸と第 2の一本鎖核酸とを各ステム配列間でハイプリダイ ズさせ、  (2) hybridizing the first single-stranded nucleic acid and the second single-stranded nucleic acid between the respective stem sequences,
(3)ハイブリダィズした生成物を T4MAリガーゼで処理して、 第 1の一本鎖核 酸の 3' 末端と第 2の一本鎖核酸の 5' 末端とを連結し、  (3) treating the hybridized product with T4MA ligase to ligate the 3 ′ end of the first single-stranded nucleic acid and the 5 ′ end of the second single-stranded nucleic acid,
(4) 工程 (3) で得た二本鎖核酸を鎢型にして、 5, 側を親和性物質で修飾し た、 第 1の一本鎖核酸のステム配列にァニールするフォワードプライマーと、 制 限酵素認識配列を含み、 第 2の一本鎖核酸のブランチ配列にァニールするリバ一 スプライマーとを使用する PC Rを行い、 5 '側から 3 '側の方向にステム配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸をコード する塩基配列、ブランチ配列、及び制限酵素認識配列を含む二本鎖核酸を調製し、 また  (4) The double-stranded nucleic acid obtained in the step (3) is made into type III, and the 5-side is modified with an affinity substance, and a forward primer that anneals to the stem sequence of the first single-stranded nucleic acid, PCR using a reverse primer containing a restriction enzyme recognition sequence and annealing to the branch sequence of the second single-stranded nucleic acid is performed, and the stem sequence, the branch sequence, and the Preparing a double-stranded nucleic acid comprising a nucleotide sequence encoding one amino acid, a nucleotide sequence encoding a second amino acid, a branch sequence, and a restriction enzyme recognition sequence;
工程 (3) で増幅した二本鎖核酸を錶型にして、 制限酵素認識配列を含み、 第 1の一本鎖核酸のブランチ配列にァニールするフォワードプライマ一と、 5' 側 を親和性物質で修飾した、 第 2の一本鎖核酸のステム配列にァニールするリバ一 スプライマーとを使用する PCRを行い、 5, 側から 3' 側の方向に制限酵素認 識配列、 ブランチ配列、 第 1のアミノ酸をコードする塩基配列、 第 2のアミノ酸 をコードする塩基配列、ブランチ配列及びステム配列を含む二本鎖核酸を調製し、 ( 5 )工程( 4 )で得た 2種の二本鎖核酸を制限酵素で処理することにより、各々 3' 末端又は 5, 末端に第 1のアミノ酸と第 2のアミノ酸をコードする塩基配列 を有する二本鎖核酸を調製し、 The double-stranded nucleic acid amplified in step (3) is converted into a type II, containing a restriction enzyme recognition sequence and a forward primer that anneals to the branch sequence of the first single-stranded nucleic acid, and an affinity substance on the 5 ′ side. PCR using a modified reverse primer that anneals to the stem sequence of the second single-stranded nucleic acid is performed, and the restriction enzyme recognition sequence, the branch sequence, the first Preparing a double-stranded nucleic acid comprising a base sequence encoding an amino acid, a base sequence encoding a second amino acid, a branch sequence and a stem sequence, (5) By treating the two types of double-stranded nucleic acids obtained in step (4) with a restriction enzyme, the nucleotide sequence encoding the first amino acid and the second amino acid at the 3 ′ end or at the 5th end is obtained. Preparing a double-stranded nucleic acid having
(6) 工程 (4) で導入した親和性物質による結合能を利用して、 工程 (5) で 得た二本鎖核酸から一本鎖核酸を調製し、 そして  (6) a single-stranded nucleic acid is prepared from the double-stranded nucleic acid obtained in step (5) by utilizing the binding ability of the affinity substance introduced in step (4), and
(7) 工程 (6) で得た一本鎖核酸を用いて工程 (2) から工程 (6) を必要な 回数だけ繰り返す:  (7) Repeat steps (2) to (6) as many times as necessary using the single-stranded nucleic acid obtained in step (6):
4. 第 1の一本鎖核酸として、 異なる複数種の第 1のアミノ酸をコードする塩 基配列を有する一本鎖核酸の混合物を使用し、 第 2の一本鎖核酸として、 異なる 複数種の第 2のアミノ酸をコードする塩基配列を有する一本鎖核酸の混合物を使 用する、 請求項 1から 3の何れかに記載の核酸ライブラリーの作製方法。  4. A mixture of single-stranded nucleic acids having a base sequence encoding a plurality of different first amino acids is used as the first single-stranded nucleic acid. 4. The method for producing a nucleic acid library according to claim 1, wherein a mixture of single-stranded nucleic acids having a base sequence encoding a second amino acid is used.
5. ステム配列の長さが 10から 100塩基である、 請求項 1から 4の何れか に記載の核酸ラィブラリ一の作製方法。  5. The method for producing a nucleic acid library according to claim 1, wherein the length of the stem sequence is 10 to 100 bases.
6. 第 1の一本鎖核酸のステム配列が 5 ' 側から 3' 側の方向において GGC TCGCGAATACTTTGであり、 第 2の一本鎖核酸のステム配列が 3 ' 側 から 5' 側の方向において CCGAGCGCTTATGAAACである、 請求項 1から 5の何れかに記載の核酸ライブラリーの作製方法。  6. The stem sequence of the first single-stranded nucleic acid is GGC TCGCGAATACTTTG in the direction from the 5 'side to the 3' side, and the stem sequence of the second single-stranded nucleic acid is CCGAGCGCTTATGAAAC in the direction from the 3 'side to the 5' side. The method for producing a nucleic acid library according to any one of claims 1 to 5, wherein
7. ブランチ配列の長さが 10から 100塩基である、 請求項 1から 6の何れ かに記載の核酸ライブラリーの作製方法。  7. The method for producing a nucleic acid library according to any one of claims 1 to 6, wherein the length of the branch sequence is 10 to 100 bases.
8. 第 1の一本鎖核酸のブランチ配列が 55 側から 3 ' 側の方向において A A GATCTCTTTTであり、第 2の一本鎖核酸のブランチ配列が 3 '側から 5, 側の方向において TTGCCCTAGGGGATである、 請求項 1から 7の何れ かに記載の核酸ラィブラリ一の作製方法。 8. 'an AA GATCTCTTTT in the direction of the side, the second single-stranded branches sequence 3 of nucleic' first single-stranded 3 branches sequences from 5 5 side of the nucleic acid 5 from the side, TTGCCCTAGGGGAT in the direction of the side The method for producing a nucleic acid library according to any one of claims 1 to 7, which is:
9. 工程( 4 )において、連結産物を変性条件下において一本鎖核酸にした後、 P CRにより増幅して二本鎖核酸を調製する、 請求項 1から 8の何れかに記載の 核酸ラィブラリ一の作製方法。  9. The nucleic acid library according to any one of claims 1 to 8, wherein in step (4), the ligation product is converted into a single-stranded nucleic acid under denaturing conditions, and then amplified by PCR to prepare a double-stranded nucleic acid. One manufacturing method.
10. 工程(4)で使用するプライマ一における親和性物質がピオチンである、 請求項 1から 9の何れかに記載の核酸ライブラリーの作製方法。 10. The affinity substance in the primer used in step (4) is biotin, A method for producing a nucleic acid library according to any one of claims 1 to 9.
11. 工程 (4) で使用するプライマーにおける制限酵素認識配列が、 切断部 位が認識配列に含まれない制限酵素の認識配列である、 請求項 1から 10の何れ かに記載の核酸ライブラリーの作製方法。  11. The nucleic acid library according to any one of claims 1 to 10, wherein the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme whose cleavage site is not included in the recognition sequence. Production method.
12. 工程 (4) で使用するプライマ一における制限酵素認識配列が、 認識配 列から離れたところで切断する制限酵素の認識配列である、 請求項 1から 11の 何れかに記載の核酸ライブラリーの作製方法。  12. The nucleic acid library according to any one of claims 1 to 11, wherein the restriction enzyme recognition sequence in the primer used in step (4) is a recognition sequence for a restriction enzyme that cleaves away from the recognition sequence. Production method.
13. 工程 (4) で使用するプライマーにおける制限酵素認識配列が、 boII の認識配列である、 請求項 1から 12の何れかに記載の核酸ライブラリーの作製 方法。  13. The method for producing a nucleic acid library according to any one of claims 1 to 12, wherein the restriction enzyme recognition sequence in the primer used in step (4) is a boII recognition sequence.
14. 工程 (2) から工程 (6) を合計 4回繰り返することにより 16ァミノ 酸をコードする塩基配列を含む核酸のライブラリ一を作製する、 請求項 1から 1 3の何れかに記載の核酸ライブラリーの作製方法。  14. The nucleic acid according to any one of claims 1 to 13, wherein a nucleic acid library containing a base sequence encoding 16-amino acid is prepared by repeating the steps (2) to (6) four times in total. How to make a library.
15. 請求項 1から 14の何れかに記載の核酸ライブラリーの作製方法により 作製される核酸ライブラリ一。  15. A nucleic acid library produced by the method for producing a nucleic acid library according to any one of claims 1 to 14.
16. 請求項 1から 14の何れかに記載の核酸ライブラリ一の作製方法により 作製される核酸ライブラリーを用いて得られる、 ペプチドライブラリ一。  16. A peptide library obtained by using the nucleic acid library produced by the method for producing a nucleic acid library according to any one of claims 1 to 14.
PCT/JP2001/009200 2000-11-14 2001-10-19 Method of constructing nucleic acid library WO2002040664A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-346467 2000-11-14
JP2000346467 2000-11-14
JP2001-308277 2001-10-04
JP2001308277A JP2002315577A (en) 2000-11-14 2001-10-04 Method for constructing nucleic acid library

Publications (1)

Publication Number Publication Date
WO2002040664A1 true WO2002040664A1 (en) 2002-05-23

Family

ID=26603929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009200 WO2002040664A1 (en) 2000-11-14 2001-10-19 Method of constructing nucleic acid library

Country Status (2)

Country Link
JP (1) JP2002315577A (en)
WO (1) WO2002040664A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932992B2 (en) 2001-06-20 2015-01-13 Nuevolution A/S Templated molecules and methods for using such molecules
US9096951B2 (en) 2003-02-21 2015-08-04 Nuevolution A/S Method for producing second-generation library
US9109248B2 (en) 2002-10-30 2015-08-18 Nuevolution A/S Method for the synthesis of a bifunctional complex
US9121110B2 (en) 2002-12-19 2015-09-01 Nuevolution A/S Quasirandom structure and function guided synthesis methods
US9359601B2 (en) 2009-02-13 2016-06-07 X-Chem, Inc. Methods of creating and screening DNA-encoded libraries
US9422551B2 (en) 2013-05-29 2016-08-23 New England Biolabs, Inc. Adapters for ligation to RNA in an RNA library with reduced bias
US9574189B2 (en) 2005-12-01 2017-02-21 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US10731151B2 (en) 2002-03-15 2020-08-04 Nuevolution A/S Method for synthesising templated molecules
US10730906B2 (en) 2002-08-01 2020-08-04 Nuevolutions A/S Multi-step synthesis of templated molecules
US10865409B2 (en) 2011-09-07 2020-12-15 X-Chem, Inc. Methods for tagging DNA-encoded libraries
US11118215B2 (en) 2003-09-18 2021-09-14 Nuevolution A/S Method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US11225655B2 (en) 2010-04-16 2022-01-18 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
US11674135B2 (en) 2012-07-13 2023-06-13 X-Chem, Inc. DNA-encoded libraries having encoding oligonucleotide linkages not readable by polymerases

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIOTECHNIQUES, vol. 15, no. 5, 1993, pages 890 - 893 *
DATABASE BIOSIS [online] APTE AARON N. ET AL.: "Anchor-ligated cDNA libraries: A technique for generating cDNA library for the immediate cloning of the 5' ends of mRNAs", XP002907773, Database accession no. 199497045319 *
DATABASE BIOSIS [online] KOICHI NISHIGAKI ET AL.: "An efficient method for ligating single-stranded DNAs and RNAs with T4 RNA ligase", XP002907772, Database accession no. 200000271512 *
DATABASE BIOSIS [online] WU NING ET AL.: "Negative selection of intact mRNA for full-length cDNA library construction", XP002907775, Database accession no. 200100516855 *
DATABASE BIOSIS [online] YASUNORI KINOSHITA ET AL.: "Fluorescence-, isotope- or biotin-labeling of the 5' -end of single-stranded DNA/RNA using T4 RNA ligase", XP002907774, Database accession no. 199799795549 *
INTERNATIONAL GENOME SEQUENCING AND ANALYSIS CONFERENCE, vol. 12, 2000, pages 98 *
MOLECULAR DIVERSITY, vol. 4, no. 3, 1998, pages 187 - 190 *
NUCLEIC ACIDS RESEARCH, vol. 25, no. 18, 1997, pages 3747 - 3748 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932992B2 (en) 2001-06-20 2015-01-13 Nuevolution A/S Templated molecules and methods for using such molecules
US10669538B2 (en) 2001-06-20 2020-06-02 Nuevolution A/S Templated molecules and methods for using such molecules
US10731151B2 (en) 2002-03-15 2020-08-04 Nuevolution A/S Method for synthesising templated molecules
US10730906B2 (en) 2002-08-01 2020-08-04 Nuevolutions A/S Multi-step synthesis of templated molecules
US10077440B2 (en) 2002-10-30 2018-09-18 Nuevolution A/S Method for the synthesis of a bifunctional complex
US11001835B2 (en) 2002-10-30 2021-05-11 Nuevolution A/S Method for the synthesis of a bifunctional complex
US9109248B2 (en) 2002-10-30 2015-08-18 Nuevolution A/S Method for the synthesis of a bifunctional complex
US9284600B2 (en) 2002-10-30 2016-03-15 Neuvolution A/S Method for the synthesis of a bifunctional complex
US9121110B2 (en) 2002-12-19 2015-09-01 Nuevolution A/S Quasirandom structure and function guided synthesis methods
US9096951B2 (en) 2003-02-21 2015-08-04 Nuevolution A/S Method for producing second-generation library
US11965209B2 (en) 2003-09-18 2024-04-23 Nuevolution A/S Method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US11118215B2 (en) 2003-09-18 2021-09-14 Nuevolution A/S Method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US9574189B2 (en) 2005-12-01 2017-02-21 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US11702652B2 (en) 2005-12-01 2023-07-18 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US9359601B2 (en) 2009-02-13 2016-06-07 X-Chem, Inc. Methods of creating and screening DNA-encoded libraries
US11168321B2 (en) 2009-02-13 2021-11-09 X-Chem, Inc. Methods of creating and screening DNA-encoded libraries
US11225655B2 (en) 2010-04-16 2022-01-18 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
US10865409B2 (en) 2011-09-07 2020-12-15 X-Chem, Inc. Methods for tagging DNA-encoded libraries
US11674135B2 (en) 2012-07-13 2023-06-13 X-Chem, Inc. DNA-encoded libraries having encoding oligonucleotide linkages not readable by polymerases
US9422551B2 (en) 2013-05-29 2016-08-23 New England Biolabs, Inc. Adapters for ligation to RNA in an RNA library with reduced bias

Also Published As

Publication number Publication date
JP2002315577A (en) 2002-10-29

Similar Documents

Publication Publication Date Title
US11408020B2 (en) Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
KR101411361B1 (en) Structural nucleic acid guided chemical synthesis
ES2381824T3 (en) Procedures for generating very diverse libraries
AU2003273792B2 (en) Method for the synthesis of a bifunctional complex
US6951719B1 (en) Process for obtaining recombined nucleotide sequences in vitro, libraries of sequences and sequences thus obtained
JP6557151B2 (en) Method for sequencing nucleic acids in a mixture and compositions related thereto
US6991922B2 (en) Process for in vitro creation of recombinant polynucleotide sequences by oriented ligation
US20040009507A1 (en) Concatenated nucleic acid sequence
WO2002040664A1 (en) Method of constructing nucleic acid library
AU5171799A (en) Method for obtaining (in vitro) recombined polynucleotide sequences, sequence banks and resulting sequences
EP1021563A2 (en) Collections of uniquely tagged molecules
JP2005514927A5 (en)
AU3798393A (en) Exchangeable template reaction
JPH10511554A (en) Controlled synthesis of polynucleotide mixtures encoding desired peptide mixtures
KR20120097214A (en) Use of single strand binding protein in amplifying target nucleic acid
WO2004018674A1 (en) Method for the selective combinatorial randomization of polynucleotides
EP2405000A1 (en) Synthesis of chemical libraries
CN116601310A (en) Preparation of a chain read sequencing library
KR20030045124A (en) Method of determining nucleic acid base sequence
US7220548B2 (en) Partial homologous recombination of DNA chain
EP1130092A1 (en) A method of preparing recombinant nucleic acids
JP2005168411A (en) Method for investigating dna having activity for inhibiting proteolytic enzyme
JP4220744B2 (en) Processing libraries using ligation inhibition
JPH09154585A (en) Formation of random polymer of microgene
JP4581079B2 (en) Method for preparing ligated DNA and method for preparing transformant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase