WO2001038619A1 - Sliver comprising extra fine fibers - Google Patents
Sliver comprising extra fine fibers Download PDFInfo
- Publication number
- WO2001038619A1 WO2001038619A1 PCT/JP2000/007861 JP0007861W WO0138619A1 WO 2001038619 A1 WO2001038619 A1 WO 2001038619A1 JP 0007861 W JP0007861 W JP 0007861W WO 0138619 A1 WO0138619 A1 WO 0138619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- sliver
- fibers
- less
- ultrafine
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/18—Separating or spreading
Definitions
- the present invention relates to a sliver formed from a synthetic fiber staple having a fiber length of 30 mm or less via a carding process. More specifically, the present invention relates to a single-fiber fineness of 0.7 dtex as a constituent fiber. The present invention relates to a novel sliver structure having the same high productivity and spinnability as a conventional sliver using the following ultrafine fibers. Background art
- the typical yarn form of polyester fiber, which is the mainstream polyester fiber is described as follows: Sea-island type (Fig. 1) described in Japanese Patent Publication No. 431-208, etc. Solid radiation type described in Japanese Patent Publication No. 12-29 (Fig. 2), hollow radiation type described in Japanese Patent Publication No. 53-169 (Fig. 3), Japanese Patent Publication No. 53-103 Blend type (Fig. 4) described in Japanese Patent Publication No. 216969 and the like can be mentioned.
- ultrafine fibers including ultrafine fibers
- the fibrous structures formed by such ultrafine fibers are characterized by (1) softness, (2) large surface area, (3) large space for fiber aggregates, and (4) high brushing properties. Yes, these functions are used extensively in various fields such as woven and knitted fabrics, nonwoven fabrics and synthetic leather.
- ultrafine fibers including conventionally known ultrafine fibers (hereinafter referred to simply as “fine fibers”) are used in the form of filaments of continuous filaments.
- fine fibers are used in the form of filaments of continuous filaments.
- fine fibers it was not heavily used in the form of a staple for spinning, and in this respect it was extremely lacking in versatility.
- microfibers are not frequently used for spinning is that it is difficult to produce good quality as much as the card fibers required for spinning of microfiber materials formed with fineness.
- An object of the present invention is to solve the above-mentioned problems, to specify the single yarn structure of ultrafine fibers, the shape of the segments incorporated in the single yarns, the opened state of these segments, and the like, and to collect such fibers.
- a new sliver structure consisting of staples of microfibers is constructed, thereby completely eliminating the lack of versatility of microfibers. Disclosure of the invention
- the present invention has the following configuration. That is, it is a sliver made of ultrafine fibers, which is made of synthetic fibers having a fiber length of 30 mm or less that has passed through a cardboard process, and has a single-fiber fineness of 0.7 dt or less, and has a number of segments of 2 or more in a single yarn.
- U% is not more than 10.0%
- the number of neps (ke Zg) is not more than 8.0.
- the segment is characterized in that the segments are split at least randomly along the axis.
- FIG. 1 is a cross-sectional view of a single yarn of sea-island type ultrafine fiber.
- FIG. 2 is a single yarn transverse cross-sectional view of a solid radiation type ultrafine fiber.
- FIG. 3 is a single cross-sectional view of a hollow radiation type ultrafine fiber.
- FIG. 4 is a cross-sectional view of a single yarn of the blend type ultrafine fiber.
- FIG. 5 is a cross-sectional view of a single yarn of the ultrafine fiber used in the example of the present invention.
- FIG. 6 is an explanatory diagram of a carding machine used in an embodiment of the present invention.
- 1 is a cylinder. 2 is the buffer. 3 is flat. 4 is take-in.
- each yarn form described above with reference to FIGS. 1 to 4 is a basic form of ultrafine fiber including polyester fiber.As is well known, the sea-island type shown in FIG. The solid radiation type shown in Fig. 2 is due to swelling or dissolution of one component, the hollow radiation type shown in Fig. 3 is due to exfoliation, and the blend type shown in Fig. 4 is due to dissolution of sea components as in Fig. 1. Then, the fibers are opened for each segment forming a single yarn of the ultrafine fiber, and ultrafineness is performed.
- Each of the above yarns forms a stable synthetic fiber in an ultra-fine state, and can be used as a constituent fiber of sliver.However, in terms of ease of production, parallelism of the obtained fiber and spinning, From the viewpoint of spinnability, the solid radiation type shown in FIG. 2 and the hollow radiation type shown in FIG. 3 are more preferable than the sea-island type shown in FIG. 1 and the plain type shown in FIG. In particular, a fiber obtained by fibrillating (dividing) a composite fiber made of polyamide and polyester as a raw yarn is most preferable.
- the ultrafine fiber obtained from such a conjugate fiber is most suitable as the material of the sliver of the present invention because it maintains the dimensional stability of polyester and the hydrophilicity of polyamide at the same time.
- conjugate fiber As an example of the conjugate fiber, a polymer having no affinity to each other, for example, a polyamide and a polyester is joined along a longitudinal direction by conjugate spinning. Specifically, in the cross section, a segment formed from both components A and B (whichever is a polyamide component) is shown in FIG.
- This component is composed of a component A having the shape of (1) and another component (B) having a shape that complements the radiating portion, but complements the radiating portion with the component (A) having a radiating shape as shown in (I) and (J).
- One of them is composed of the other component B, and one of the radial shapes is interrupted at the center, and the other is a side-by-side repeating type with a hollow part as shown in Fig. 5 (K).
- polyamide which is a component of the composite fiber examples include nylon 4, nylon 6, nylon 7, nylon 11, nylon 12, nylon 66, nylon 6,10, polymetaxylene adipamide, and polyparaxylyl. Rendecanamide, polybiscyclohexylmethanedecaneamide, and copolyamides containing these as components are exemplified.
- polyester examples of the polymer which has no affinity for the polyamide which forms a composite fiber together with the above polyamide
- polyester is preferred.
- polyolefins are preferred, with polyesters being most preferred. In other words, when a combination of polyamide and polyester is used, the resulting fiber has the most preferable gloss and texture.
- polyester examples include polyethylene ate, poly 1,4-dimethylcyclohexane terephthalate, polypivalolactone, and copolyesters containing these components.
- polyolefin examples include polyethylene, polypropylene and these components. Copolyolefin and the like.
- conjugate fiber is obtained by laminating two polymers of a fiber-forming polymer and a readily soluble polymer in a radial or parallel manner.
- polyester is preferable in terms of ease of twist fixing and feeling, and particularly, polyethylene terephthalate is most preferable.
- the easily soluble polymer can be easily selected in consideration of the combination with the fiber-forming polymer.However, a copolymerized polyester having a large alkali-hydrolyzing property, such as one of polyalkylene dalicol or a dicarboxylic acid having a metal sulfonate group, or Copolymerize the two Polyethylene terephthalate is useful.
- the conjugate fiber of the present embodiment composed of a combination of the above two components is melt-spun in a filament shape of a continuous filament, then bundled and mechanically cut into a predetermined length of 30 mm or less. Use a pull-shaped fiber.
- the segments constituting the single yarn are spread on the ultrafine fibers of the stable fibers.
- the polyamide is made by physical impact such as mechanical bending or friction, or by the above polyamide.
- a chemical solution examples include benzyl alcohol, 3-phenylethyl alcohol, phenol, m-cresol, formic acid, and acetic acid.
- the concentration is preferably set to 1 to 50% by weight, especially 3 to 30% by weight. If the amount is less than 1% by weight, the effect of fibrillation is weak. On the other hand, if the amount exceeds 50% by weight, the aqueous emulsion becomes unstable. This is because there is a tendency to adversely affect other fiber components.
- the easily soluble polymer can be dissolved and split with an aqueous solution of sodium hydroxide, potassium hydroxide or the like.
- the raw fiber form of the ultrafine fiber is a solid radiation type or a hollow radiation type has been described, but the present invention can also be used for a sea-island type.
- the above-mentioned conjugate fiber is shortened, and after performing opening and thinning for each segment, it is supplied to a carding process.
- the stableness of the synthetic fiber used in the cotton spinning method is a variety of fibers having a fineness of 1.1 to 1.6 dt and a fiber length of about 38 mm.
- the gauge between cylinder 1 and doffer 2 should be adjusted to 4-5Z 1,000 mm in Fig. 6.
- the gauge between cylinder 1 and flat 3 is 10 to 12Z 1,000 inches
- the gauge between cylinder 1 and Tekain 4 is 7Z 1 000 inches
- cylinder 1 is 170 to 180 mm.
- the properties thereof are greatly different from those of the conventional staple material, which is related to spinnability in spinning. It is necessary to carefully examine the properties of raw cotton such as hygroscopicity, electrical resistance, bulkiness, friction resistance, collective doubt, high elongation and compression elasticity. In particular, hygroscopicity, chargeability, bulkiness, high elongation, and the suitability of the oil agent to be given to the fiber are greatly related to the quality of operation.
- the gauge between cylinder 1-1 and doffer 1-2 is set to 4Z1 000 inches, and the gauge between cylinder 1 and flat 3 is The gauge is 12Z 1,000 inches, the gauge between cylinder 1 and car 4 is 71,000 inches, cylinder 1 is 180 rpm, and car 4 is 350 rpm.
- m is set to doffer 2 and 5 r ⁇ p ⁇ m.
- the needle cloth must be made by Mcc especially for synthetic fiber.
- each segment of the microfiber is individually fibrillated along the axis of the fiber, and the degree of fibrillation is greatly related to the bulkiness of the fiber, and the entire filament is fibrillated.
- Partially fibrillated has less sag and maintains bulkiness. Further, it is more preferable that a uniform sliver can be obtained because the occurrence of neps in a force dwell can be reduced. The degree is determined by visually judging the state of the enlarged cross section.
- the sliver that has passed through the carding process is further supplied to a drawing machine in a single or a plurality of slivers, and is subjected to a predetermined draft action to be finished into a sliver of the present invention having a specified weight.
- the U% of the sliver immediately after the completion of the drawing process is reduced to 5.0% or less, and the number of neps (Zg) is reduced to 8.0 or less, whereby the U% of the sliver after the completion of the drawing process is reduced to 10%.
- the NEP number (q / g) can be reduced to 8.0 or less.
- the sliver of the present invention formed for this purpose only has the features of microfibers. Has the same quality and high productivity as the sliver of the synthetic fiber which is usually used.
- the present invention will be further described with reference to examples.
- the cross section is the shape shown in Fig. 5 (H), and eight radial segments are formed of polyamide made of nylon 6, while eight segments having a shape complementary to the radiating portion are made of polyethylene terephne.
- the composite fiber formed from the polyester consisting of the latex was melt-spun at a composite ratio of 1: 2 by a normal process to obtain a drawn yarn of 11 1 dt / 50 f.
- the drawn yarn is mechanically cut into a stable with a fiber length of 20 mm, which is then formed into a fibrillation method using benzyl alcohol described in Japanese Patent Publication No. 53-36563.
- the fiber was finely divided into ultrafine fiber bundles having a fineness of about 0.22 dt, and this was used as a raw fiber in the carding process.
- the fiber length by setting the fiber length to 20 mm, it is possible to avoid the entanglement of the ultrafine fibers in the card, and further to prevent the occurrence of neps by reducing the speed of the drafter rotation and holding down the sliver unit weight. We have obtained the expected high quality power sliver.
- the sliver has a U% of 8.0% and a NEP of 6.0 (g Zg), and is of the same quality as a commonly used synthetic fiber sliver, and is used in many fields such as clothing and artificial leather. It was very versatile to use. In particular, it is suitable for wiping applications utilizing the fineness of fibers, and is effective for wiping glasses, industrial wiping cloths, and the like.
- the wiping performance is remarkably improved as compared with the conventional cotton products, and the IC circuit board ⁇ connectors for optical fiber, audio and video, etc. Excellent for cleaning parts.
- natural cotton swabs made of cotton, absorbent cotton, etc. are made of water-soluble polymers such as polyvinyl alcohol in order to prevent fluff that occurs during the formation of the swabs and drop off of surface fibers that occur during use.
- a cotton swab is impregnated with an aqueous solution of a compound as a binder and then dried to solidify the fiber surface.
- the swab shown in Example 2 suppresses the fluffing of the swab when forming the cotton ball without using any binder, and a method for preventing the fibers from falling off during use. It was obtained as a result of intensive studies, making the best use of the thermoplastic properties of the synthetic fibers that make up the cotton swabs, and then forming them at a specified temperature, for a specified time, and then heat-molded. By doing so, an extremely clean swab with high wiving performance can be obtained.
- the synthetic fiber sliver of the present invention composed of ultrafine fibers is cut into appropriate lengths by an appropriate winding device, and then wound around a shaft such as plastic, paper, or a wooden tube.
- a shaft such as plastic, paper, or a wooden tube.
- a cotton ball of the desired size is formed, and the cotton ball is heat-treated in a heat-treatable molding machine to shrink the fibers on the surface of the cotton ball, to improve the fluffiness and to entangle the fibers. It is made to be done.
- the heat transfer between the fibers is good, the efficiency of the heat treatment is increased, and the fiber density is high, so that strong fiber entanglement is possible, and precision equipment In cleaning, etc., it is possible to substantially eliminate the problem that the fibers are frayed from the surface of the cotton ball and become difficult to use.
- the temperature of the heat treatment is appropriately selected depending on the material constituting the cotton ball, but it is preferable to perform the treatment at a temperature lower by 20 ° C. to 100 ° C. based on the melting point of the material. If the treatment temperature is too high, a part of the fiber surface will be fused or the inside of the cotton ball will shrink, causing the problem of excessive solidification of the cotton ball and yellowing due to thermal deterioration. On the other hand, if the processing temperature is low, the fiber shrinks weakly and the fiber is not sufficiently entangled, and the fiber is loosened during cleaning, which causes the fiber to fall off. It is sufficient that the heat treatment time is usually within 10 seconds. In any case, such a heat treatment should be appropriately adjusted according to the purpose and use of the swab.
- the cross section is the shape shown in Fig. 5 (H), and eight radial segments are formed from polyamide made of nylon 6, and eight segments having a shape complementary to the radiating part are polyethylene terephthalate.
- the composite fiber formed from the polyester having a latex was melt-spun at a composite ratio of 1: 2 by a usual process to obtain a drawn yarn of 110 dt Z50f.
- the drawn yarn was mechanically cut into a stable having a fiber length of 20 mm, and this was drawn with a liquid card dyeing machine at a ratio of 48 Baume Na ⁇ H, 27 cc / 1 bath ratio of 1: 1 to 955.
- the mixture was treated at 30 ° C for 30 minutes to produce ultrafine fiber cotton having a fineness of about 0.2 dt, which was passed through a carding step and a drawing step to form a sliver of 1 g / m.
- the sliver was wound on both ends of a lmm ⁇ paper shaft using a conventional winding device to form cotton balls, and then treated for 3 seconds in a molding machine heated to 190 ° C. A cotton swab with high wiping performance was obtained, having no fluff on the surface and intertwining the fibers of the surface layer constituting the cotton ball.
- the cross section has the shape shown in Fig. 5 (H). Eight segments having a radial shape are formed of alkali-soluble polyester, and eight segments having a shape complementary to the radiating portion are formed of regular polyester.
- Composite fiber is processed by the normal process. It was melt spun at a combined ratio of 25:75 to obtain a drawn yarn of 11 1 dt / 50 f.
- the raw fiber was subjected to the same pressing process and drawing process as in Example 1 to form a sliver having a U% of 8.0% and a nep number of 6.0 (Zg).
- the obtained sliver of the present invention was versatile and versatile as in the case of Example 1.
- the sliver of the present invention has the following effects. In other words, it has all the features of the fiber structure using ultra-fine fibers, such as flexibility, a large surface area, and high bulkiness, and has a sliver quality almost equivalent to that of the conventional short fiber spinning synthetic fiber sliver.
- the possession makes it possible to use microfibers in a wide field where spun yarn is usually used, and has the effect of almost completely eliminating the lack of versatility of microfibers described at the beginning.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Multicomponent Fibers (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A sliver comprising extra fine fibers, characterized in that it comprises carded synthetic fibers having a fiber length of 30 mm or less, wherein the fiber is a fibrillated composite fiber having a single yarn fineness of 0.7 dt or less and a number of segments in the single yarn of 2 or more, wherein in a sliver state in which single fibers are collected in an amount of 5,000 dt or more, U % is 10.0 % or less and the number of neps (pieces/g) is 8.0 or less, and wherein the segment is slitted along its axis line at least randomly. The above sliver provides a spun sliver which uses extra fine fibers having a single yarn fineness of 0.7 dt or less as constituent fibers and at the same time has almost same sliver properties as those of a conventional sliver made of a synthetic fiber.
Description
明 細 書 極細繊維からなるスライバー 技術分野 Description Sliver made of microfibers Technical field
本発明は、 カード工程を経由した繊維長 3 0 mm以下の合成繊維ステ一プルから 形成されたスライバーに関するものであり、 更に詳しくは、 構成繊維として単糸繊 度 0 . 7デシテックス (以下デシテックスを d tと略称する) 以下の極細繊維を用 いながら従来のスライバーと略同等の高生産性と可紡性を有する新規なスライバー 構造に関するものである。 背景技術 The present invention relates to a sliver formed from a synthetic fiber staple having a fiber length of 30 mm or less via a carding process. More specifically, the present invention relates to a single-fiber fineness of 0.7 dtex as a constituent fiber. The present invention relates to a novel sliver structure having the same high productivity and spinnability as a conventional sliver using the following ultrafine fibers. Background art
従来、 多くの化学繊維,合成繊維が生産され、 天然繊維と共に夫々の繊維特性に 合わせて種々の分野に使用されてきたが、 生産技術の進歩により、 天然繊維を超え る合成繊維特有の技術が開発され、 これに基づく独特の製品が実用化されている。 その一つが、 極細繊維 (通常 1 . 1 d t以下を呼称) あるいは超極細繊維 (通常 3 3 d t以下を呼称) と呼ばれる細繊化技術である。 天然繊維中、 最も細いものは 綿繊維の 1 . 3〜 1 . 7 d tであるが、 合成繊維では近時 0 . 0 0 0 1 I d tとい う太さの超極細繊維が実現している。 Conventionally, many chemical fibers and synthetic fibers have been produced and used in various fields along with natural fibers in accordance with their respective fiber characteristics. However, due to advances in production technology, technologies unique to synthetic fibers that surpass natural fibers have been developed. A unique product based on this has been developed and put into practical use. One of them is a fine fiber technology called ultra-fine fiber (usually less than 1.1 dt) or ultra-fine fiber (usually less than 33 dt). Among the natural fibers, the finest is 1.3 to 1.7 dt of cotton fiber, but recently, ultrafine fibers of 0.0001 Idt have been realized with synthetic fibers.
このような極細繊維を製造する技術としては既に種々の方法が実用化されている。 主流であるポリエステル繊維を対象としてその代表的な原糸形態を説明すると、 特 公昭 4 4一 1 3 2 0 8号公報等に記載する海島型 (第 1図)、 特公昭 4 9 - 2 9 1 2 9号公報等に記載する中実放射型 (第 2図)、 特公昭 5 3 - 1 0 1 6 9号公報等に記 載する中空放射型 (第 3図)、 特公昭 5 3 - 2 2 1 6 9号公報等に記載するブレンド 型 (第 4図) 等があげられる。 Various techniques have already been put to practical use as a technique for producing such ultrafine fibers. The typical yarn form of polyester fiber, which is the mainstream polyester fiber, is described as follows: Sea-island type (Fig. 1) described in Japanese Patent Publication No. 431-208, etc. Solid radiation type described in Japanese Patent Publication No. 12-29 (Fig. 2), hollow radiation type described in Japanese Patent Publication No. 53-169 (Fig. 3), Japanese Patent Publication No. 53-103 Blend type (Fig. 4) described in Japanese Patent Publication No. 216969 and the like can be mentioned.
超極細繊維を含むかかる極細繊維により形成された繊維構造物は、 ①柔らかいこ と、 ②その表面積が大きいこと、 ③繊維集合体の空間が大きいこと、 ④起毛性が高 いこと等の特徴があり、 このような機能を利用して織編物、 不織布、 合皮等各方面 で多用されている。
ところ力 従来公知の超極細繊維を含むかかる極細繊維 (以下これらを単に極細 繊維と総称する) は、 安定した品質を保っためにそのほどんどが連続長繊維のフィ ラメントの形状で使用されており、 紡績用のステ一プルの形では多用されず、 この 点汎用性に著しく欠けるものであった。 The fibrous structures formed by such ultrafine fibers, including ultrafine fibers, are characterized by (1) softness, (2) large surface area, (3) large space for fiber aggregates, and (4) high brushing properties. Yes, these functions are used extensively in various fields such as woven and knitted fabrics, nonwoven fabrics and synthetic leather. However, in order to maintain stable quality, most of such ultrafine fibers including conventionally known ultrafine fibers (hereinafter referred to simply as “fine fibers”) are used in the form of filaments of continuous filaments. However, it was not heavily used in the form of a staple for spinning, and in this respect it was extremely lacking in versatility.
このように極細繊維が紡績用として多用されない理由としては、 細繊度で形成さ れた極細繊維素材が紡績上必要とするカードエ程において、 良好な品質の生産が難 しいことに基因している。 The reason why microfibers are not frequently used for spinning is that it is difficult to produce good quality as much as the card fibers required for spinning of microfiber materials formed with fineness.
即ち、 既存繊度と大きく異なる極細繊度の素材は、 単なるカード仕様の変更のみ では均斉度の高い繊維束をつくることができず、 ネップ、 フック等が増加する上、 単繊維の平行度が悪いため、 精紡機等、 スライバー形成以後の工程で糸切れ、 糸斑 等が多発し、 品質の良好な最終製品が得られないという問題点があつた。 In other words, for materials with ultrafine denier greatly different from existing denier, it is not possible to produce a fiber bundle with high uniformity simply by changing the card specifications, and the nep, hooks, etc. increase and the parallelism of single fibers is poor. In the process after sliver formation, such as in a spinning machine, yarn breakage, yarn spots, etc. occur frequently, and a high quality final product cannot be obtained.
本発明は叙上の問題点の解消を目的とするもので、 極細繊維の単糸構造と該単糸 が内蔵するセグメントの形状及びこれらセグメントの開繊状態等を特定すると共に かかる繊維の集合体の品位を一定値以上に保つことにより、 極細繊維のステ一プル からなる新規なスライバー構造を構成し、 以て極細繊維が備える汎用性の欠如を完 全に解消しょうとするものである。 発明の開示 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to specify the single yarn structure of ultrafine fibers, the shape of the segments incorporated in the single yarns, the opened state of these segments, and the like, and to collect such fibers. By maintaining the quality of the slivers above a certain level, a new sliver structure consisting of staples of microfibers is constructed, thereby completely eliminating the lack of versatility of microfibers. Disclosure of the invention
上記課題を達成するために本発明は次の構成を備えている。 即ち極細繊維からな るスライバーであって、 カードエ程を経由した繊維長 3 0 mm以下の合成繊維から なり、 該繊維として単糸繊度 0 . 7 d t以下、 単糸内のセグメント数 2以上のフィ ブリル化型複合繊維を用い、 単繊維を 5 , 0 0 0 d t以上集束せしめたスライバー 状態において、 U %を 1 0 . 0 %以下に、 ネップ数 (ケ Z g ) を 8 . 0以下となし、 更に前記セグメントを軸線に沿って、 少なくともランダムに割繊せしめたことを特 徴とする構成である。 図面の簡単な説明 To achieve the above object, the present invention has the following configuration. That is, it is a sliver made of ultrafine fibers, which is made of synthetic fibers having a fiber length of 30 mm or less that has passed through a cardboard process, and has a single-fiber fineness of 0.7 dt or less, and has a number of segments of 2 or more in a single yarn. In a sliver state in which single fibers are bundled for 5,000 dt or more using a brillated conjugate fiber, U% is not more than 10.0%, and the number of neps (ke Zg) is not more than 8.0. Further, the segment is characterized in that the segments are split at least randomly along the axis. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 海島型極細繊維の単糸横断面図である。 FIG. 1 is a cross-sectional view of a single yarn of sea-island type ultrafine fiber.
第 2図は、 中実放射型極細繊維の単糸横断面図である。
第 3図は、 中空放射型極細繊維の単糸横断面図である。 FIG. 2 is a single yarn transverse cross-sectional view of a solid radiation type ultrafine fiber. FIG. 3 is a single cross-sectional view of a hollow radiation type ultrafine fiber.
第 4図は、 ブレンド型極細繊維の単糸横断面図である。 FIG. 4 is a cross-sectional view of a single yarn of the blend type ultrafine fiber.
第 5図は、 本発明の実施例に用いる極細繊維の単糸横断面図である。 FIG. 5 is a cross-sectional view of a single yarn of the ultrafine fiber used in the example of the present invention.
第 6図は、 本発明の実施例に用いる梳綿機の説明図である。 FIG. 6 is an explanatory diagram of a carding machine used in an embodiment of the present invention.
以下に図面の記載の符号について説明する。 1は、 シリンダーである。 2は、 ド ッファ一である。 3は、 フラットである。 4は、 テ一カーインである。 発明を実施するための最良の形態 Hereinafter, reference numerals in the drawings will be described. 1 is a cylinder. 2 is the buffer. 3 is flat. 4 is take-in. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する。 先ず最初に、 本実施の形 態に用いる極細繊維の原糸形態について説明する。 先に第 1図〜第 4図により説明 した各原糸形態はポリエステル繊維を含めた極細繊維の基本的な形態であり、 周知 の通り、 第 1図に示す海島型は海成分の溶解により、 第 2図に示す中実放射型は膨 潤あるいは一成分の溶解により、 第 3図に示す中空放射型は剥離により、 第 4図に 示すブレンド型は第 1図と同様に海成分の溶解により、 夫々極細繊維の単糸を形成 する各セグメント毎に開繊し、 極細化が実施される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the raw yarn form of the ultrafine fibers used in the present embodiment will be described. Each yarn form described above with reference to FIGS. 1 to 4 is a basic form of ultrafine fiber including polyester fiber.As is well known, the sea-island type shown in FIG. The solid radiation type shown in Fig. 2 is due to swelling or dissolution of one component, the hollow radiation type shown in Fig. 3 is due to exfoliation, and the blend type shown in Fig. 4 is due to dissolution of sea components as in Fig. 1. Then, the fibers are opened for each segment forming a single yarn of the ultrafine fiber, and ultrafineness is performed.
上記各原糸はいずれも、 極細化状態で合成繊維のステーブルを形成しており、 ス ライバーの構成繊維として使用することができるが、 製造の容易性、 得られる繊維 の平行度及び紡績上の可紡性の点から、 第 1図に示す海島型と第 4図に示すプレン ド型よりも第 2図に示す中実放射型と第 3図に示す中空放射型が好適である。 特に 原糸としてポリアミド及びポリエステルからなる複合繊維を用い、 これをフイブリ ル化 (分割) して得られたものが最も好ましい。 かかる複合繊維から得られた極細 繊維はポリエステルの寸法安定性とポリアミドの親水性を同時に保持しているので、 本発明スライバーの素材として最適である。 Each of the above yarns forms a stable synthetic fiber in an ultra-fine state, and can be used as a constituent fiber of sliver.However, in terms of ease of production, parallelism of the obtained fiber and spinning, From the viewpoint of spinnability, the solid radiation type shown in FIG. 2 and the hollow radiation type shown in FIG. 3 are more preferable than the sea-island type shown in FIG. 1 and the plain type shown in FIG. In particular, a fiber obtained by fibrillating (dividing) a composite fiber made of polyamide and polyester as a raw yarn is most preferable. The ultrafine fiber obtained from such a conjugate fiber is most suitable as the material of the sliver of the present invention because it maintains the dimensional stability of polyester and the hydrophilicity of polyamide at the same time.
かかる複合繊維の構成を更に説明すると、 該複合繊維の一例としては互いに親和 性のない重合体、 例えばポリアミドとポリエステル等とが複合紡糸によって長手方 向に沿って接合されているものであり、 具体的には、 その横断面において、 両成分 A、 B (いずれがポリアミド成分であっても可) から形成したセグメントが第 5図 The structure of such a conjugate fiber will be further described. As an example of the conjugate fiber, a polymer having no affinity to each other, for example, a polyamide and a polyester is joined along a longitudinal direction by conjugate spinning. Specifically, in the cross section, a segment formed from both components A and B (whichever is a polyamide component) is shown in FIG.
(A) に示すようにサイドバイサイド型になったもの、 同 (B ) ( C ) に示すように サイドバイサイド繰り返し型になったもの、 同 (D ) 〜 (H) に示すように放射状
の形状を有する成分 Aとこの放射部を補完する形状を有する他の成分 Bからなるも の、 同 ( I ) ( J ) に示すように放射型の形状を有する成分 Aとこの放射部を補完す る他の成分 Bからなり一方の放射形状が中心側において途切れているもの、 第 5図 (K) に示すようにサイドバイサイド繰り返し型であって中空部があるもの等があ げられる。 (A) Side-by-side type as shown in (B) (B) (C) Side-by-side repetition type as shown in (C) Radial as shown in (D) to (H) This component is composed of a component A having the shape of (1) and another component (B) having a shape that complements the radiating portion, but complements the radiating portion with the component (A) having a radiating shape as shown in (I) and (J). One of them is composed of the other component B, and one of the radial shapes is interrupted at the center, and the other is a side-by-side repeating type with a hollow part as shown in Fig. 5 (K).
上記複合繊維の一成分であるポリアミドとしては、 例えばナイロン 4, ナイロン 6, ナイロン 7 , ナイロン 1 1, ナイロン 1 2, ナイロン 6 6, ナイロン 6 · 1 0, ポリメタキシレンアジパミド, ポリパラキシリレンデカンアミド, ポリビスシクロ へキシルメタンデカンアミドおよびこれらを成分とするコポリアミド等があげられ る。 Examples of the polyamide which is a component of the composite fiber include nylon 4, nylon 6, nylon 7, nylon 11, nylon 12, nylon 66, nylon 6,10, polymetaxylene adipamide, and polyparaxylyl. Rendecanamide, polybiscyclohexylmethanedecaneamide, and copolyamides containing these as components are exemplified.
また、 上記ポリアミドとともに複合繊維を形成するポリアミドと親和性のない重 合体としては、 ポリエステル, ポリオレフイン, ポリアクリロニトリル等があげら れるが、 上記ポリアミドとの溶融複合紡糸を容易に行うという観点からポリエステ ルおよびポリオレフインが好ましく、 なかでもポリエステルが最適である。 すなわ ち、 ポリアミドとポリエステルの組み合わせを用いると、 得られる繊維の光沢, 風 合等が最も好ましいものとなる。 上記ポリエステルとしては、 例えばポリエチレン エート、 ポリ 1 , 4ージメチルシクロへキサンテレフタレ一ト、 ポリピバロラクト ンおよびこれらを成分とするコポリエステル等があげられ、 上記ポリオレフインと しては、 ポリエチレン, ポリプロピレンおよびこれらを成分とするコポリオレフイン 等があげられる。 Examples of the polymer which has no affinity for the polyamide which forms a composite fiber together with the above polyamide include polyester, polyolefin, polyacrylonitrile, etc., and from the viewpoint of facilitating melt composite spinning with the above polyamide, polyester is preferred. And polyolefins are preferred, with polyesters being most preferred. In other words, when a combination of polyamide and polyester is used, the resulting fiber has the most preferable gloss and texture. Examples of the polyester include polyethylene ate, poly 1,4-dimethylcyclohexane terephthalate, polypivalolactone, and copolyesters containing these components. Examples of the polyolefin include polyethylene, polypropylene and these components. Copolyolefin and the like.
更に、 該複合繊維の他の例としては繊維形成性ポリマーと易溶解性ポリマーの 2 つのポリマ一を放射状あるいは並列状に張り合わせたものがあげられる。 Further, another example of the conjugate fiber is obtained by laminating two polymers of a fiber-forming polymer and a readily soluble polymer in a radial or parallel manner.
繊維形成性ポリマーとしては、 ポリアミド、 ポリエステル、 ポリオレフイン等が 用いられるが、 撚の固定のし易さ及び風合の点でポリエステルが好ましく、 特にポ リエチレンテレフタレートが最も好ましい。 As the fiber-forming polymer, polyamide, polyester, polyolefin and the like are used, and polyester is preferable in terms of ease of twist fixing and feeling, and particularly, polyethylene terephthalate is most preferable.
易溶解ポリマーは繊維形成性ポリマーとの組合せを考慮して容易に選ぶことがで きるが、 アルカリ加水分解性の大きい共重合ポリエステル、 例えばポリアルキレン ダリコールや金属スルホネート基を有するジカルボン酸の 1種又は 2種を共重合し
たポリエチレンテレフ夕レー卜が有用である。 The easily soluble polymer can be easily selected in consideration of the combination with the fiber-forming polymer.However, a copolymerized polyester having a large alkali-hydrolyzing property, such as one of polyalkylene dalicol or a dicarboxylic acid having a metal sulfonate group, or Copolymerize the two Polyethylene terephthalate is useful.
上記二成分の組み合わせからなる本実施態様の複合繊維は、 連続長繊維のフィラ メント形状で溶融紡糸した後、 これを集束し、 機械的に所定長の 3 0 mm以下に切 断し、 ステ一プル ' ファイバ一の形にしたものを用いる。 The conjugate fiber of the present embodiment composed of a combination of the above two components is melt-spun in a filament shape of a continuous filament, then bundled and mechanically cut into a predetermined length of 30 mm or less. Use a pull-shaped fiber.
次いで、 かかるステーブル · ファイバーの極細繊維に対して単糸を構成するセグ メントの開繊を実施する。 上記二成分を組み合わせてなる本実施態様の 1つである 互いの重合体が相互に親和性を有しない複合繊維の場合は、 通常機械的屈曲や摩擦 等の物理的な衝撃によって、 あるいは上記ポリアミドを薬液によって膨潤させる化 学的方法によって、 細いフィブリルの束に割繊することができる。 このような薬液 (以下 「フイブリル化剤」 という) としては、 例えばべンジルアルコール, 3—フエ ニルエチルアルコール, フエノール, m—クレゾール, ギ酸, 酢酸等があげられる。 これらは、 単品を直援用いるよりも、 その水溶液もしくはその水性ェマルジヨンと して用いるのが適している。 特に、 ベンジルアルコールの水性ェマルジヨンを用い ると、 フィブリル化効果の点で、 また取り扱いが比較的容易な点で好適である。 そ して、 その濃度は、 1〜5 0重量%、 なかでも 3〜 3 0重量%に設定することが好 適である。 1重量%未満ではフイブリル化の効果が弱く、 逆に 5 0重量%を超える と水性ェマルジョンの場合には不安定となり、 のちのフィブリル化剤の除去が非常 に困難となるだけでなく、 ポリアミド成分以外の繊維成分に悪影響を及ぼす傾向が みられるからである。 Next, the segments constituting the single yarn are spread on the ultrafine fibers of the stable fibers. In the case of a conjugate fiber in which the polymers have no affinity for each other, which is one of the embodiments in which the above two components are combined, usually, the polyamide is made by physical impact such as mechanical bending or friction, or by the above polyamide. Can be split into thin bundles of fibrils by a chemical method of swelling with a chemical solution. Examples of such a chemical solution (hereinafter referred to as a “fibrillating agent”) include benzyl alcohol, 3-phenylethyl alcohol, phenol, m-cresol, formic acid, and acetic acid. These are more suitable to be used as the aqueous solution or the aqueous emulsion than using the single product directly. In particular, the use of an aqueous emulsion of benzyl alcohol is preferred in terms of the fibrillation effect and the relatively easy handling. The concentration is preferably set to 1 to 50% by weight, especially 3 to 30% by weight. If the amount is less than 1% by weight, the effect of fibrillation is weak. On the other hand, if the amount exceeds 50% by weight, the aqueous emulsion becomes unstable. This is because there is a tendency to adversely affect other fiber components.
又、 繊維形成性ポリマーと易溶解性ポリマーからなる複合繊維の場合は、 水酸化 ナトリウム、 水酸化力リウム等のアル力リ水溶液によって易溶解ポリマーを溶解し 割繊することができる。 In the case of a composite fiber comprising a fiber-forming polymer and an easily soluble polymer, the easily soluble polymer can be dissolved and split with an aqueous solution of sodium hydroxide, potassium hydroxide or the like.
上記実施の態様においては、 極細繊維の原糸形態が中実放射型又は中空放射型で ある場合について説明したが、 海島型についても本発明は使用し得る。 In the above embodiment, the case where the raw fiber form of the ultrafine fiber is a solid radiation type or a hollow radiation type has been described, but the present invention can also be used for a sea-island type.
そして本発明では上記複合繊維を短繊維化し、 セグメント毎の開繊 ·細繊化が実 施された後、 カード工程へ供給する。 Then, in the present invention, the above-mentioned conjugate fiber is shortened, and after performing opening and thinning for each segment, it is supplied to a carding process.
通常、 綿紡方式に使用される合成繊維のステーブルは繊度 1 . 1〜 1 . 6 d t、 繊維長 3 8 mm前後の繊維が多様される。 梳綿機の一般的な紡出要項はこれに合わ せて、 第 6図上、 シリンダー 1〜ドッファー 2間のゲージを 4〜5 Z 1, 0 0 0ィ
ンチに、 シリンダ一 1〜フラット 3間のゲージを 10〜 12Z 1, 000インチに、 シリンダー 1〜テ一カーイン 4間のゲージを 7 Z 1 , 000インチとし、 又シリン ダー 1を 170〜 180 Γ · Ρ · に、 テ一カーイン 4を 350〜400 ΐ" · ρ · に、 ドッファー 2を 7〜8 r · ρ · mに設定し、 かかる要件により良好な操業を 維持している。 Generally, the stableness of the synthetic fiber used in the cotton spinning method is a variety of fibers having a fineness of 1.1 to 1.6 dt and a fiber length of about 38 mm. In accordance with the general spinning requirements of a carding machine, the gauge between cylinder 1 and doffer 2 should be adjusted to 4-5Z 1,000 mm in Fig. 6. The gauge between cylinder 1 and flat 3 is 10 to 12Z 1,000 inches, the gauge between cylinder 1 and Tekain 4 is 7Z 1 000 inches, and cylinder 1 is 170 to 180 mm. · Ρ · カ ー カ ー テ カ ー カ ー テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ テ 4
ところが、 極細繊維であり、 しかもフィブリル化された繊維を紡出対象とする本 発明にあっては、 従来のステ一プル素材とその性質が大きく異なっており、 紡績上 の可紡性に関連する原綿特性の吸湿性、 電気抵抗性、 嵩高性、 摩擦抵抗性、 集団疑 集性、 強伸度、 圧縮弾性を十分吟味する必要がある。 特に吸湿性、 帯電性、 嵩高性、 強伸度及び繊維に付与する油剤の適否が操業の良否に大きく関連する。 However, in the present invention, which is an object of spinning ultrafine fibers and fibrillated fibers, the properties thereof are greatly different from those of the conventional staple material, which is related to spinnability in spinning. It is necessary to carefully examine the properties of raw cotton such as hygroscopicity, electrical resistance, bulkiness, friction resistance, collective doubt, high elongation and compression elasticity. In particular, hygroscopicity, chargeability, bulkiness, high elongation, and the suitability of the oil agent to be given to the fiber are greatly related to the quality of operation.
極細繊維の強伸度及び繊度の細繊化に対応する梳綿機仕様の一例としては、 シリ ンダ一 1〜ドッファ一 2間のゲージを 4Z1, 000インチに、 シリンダー 1〜フ ラット 3間のゲージを 12Z 1, 000インチに、 シリンダー 1〜テ一カーイン 4 間のゲ一ジを 7 1, 000インチに、 シリンダー 1を 180 r · p · mに、 テ一 カーイン 4を 350 r · p · mに、 ドッファー 2を 5 r · p · mに設定した例があ げられる。 尚、 針布は Mc cで特に合繊用として製作されたものが必要である。 As an example of a carding machine specification corresponding to the fine elongation and fineness of microfiber, the gauge between cylinder 1-1 and doffer 1-2 is set to 4Z1 000 inches, and the gauge between cylinder 1 and flat 3 is The gauge is 12Z 1,000 inches, the gauge between cylinder 1 and car 4 is 71,000 inches, cylinder 1 is 180 rpm, and car 4 is 350 rpm. An example is shown where m is set to doffer 2 and 5 r · p · m. In addition, the needle cloth must be made by Mcc especially for synthetic fiber.
上記一連の過程において、 極細繊維の各セグメントは繊維の軸線に沿って個々に フィブリル化するが、 そのフィブリル化の度合は繊維の嵩高性にも大きく関連して おり、 フィラメント全体がフィブリル化しているよりも部分的にフィブリル化して いる方がへたりが少なく嵩高性が保持される。 又力一ドエ程でのネップの発生が少 なくて済み均一なスライバーが得ることができてむしろ好ましい。 その度合いは拡 大した横断面の状態を目視によって判断して定められる。 In the above series of processes, each segment of the microfiber is individually fibrillated along the axis of the fiber, and the degree of fibrillation is greatly related to the bulkiness of the fiber, and the entire filament is fibrillated. Partially fibrillated has less sag and maintains bulkiness. Further, it is more preferable that a uniform sliver can be obtained because the occurrence of neps in a force dwell can be reduced. The degree is determined by visually judging the state of the enlarged cross section.
カード工程を経由した上記スライバーは、 更に、 単数又は複数本併合状態で練条 機へ供給され、 所定のドラフト作用を受けて規定重量の本発明スライバーに仕上げ られる。 The sliver that has passed through the carding process is further supplied to a drawing machine in a single or a plurality of slivers, and is subjected to a predetermined draft action to be finished into a sliver of the present invention having a specified weight.
本発明においては、 カード工程終了直後のスライバーの U%を 5. 0%以下に、 ネップ数 (ケ Zg) を 8. 0以下にすることにより、 練条工程終了後のスライバー の U%を 10. 0%以下に、 ネップ数 (ケ /g) を 8. 0以下にし得る。 In the present invention, the U% of the sliver immediately after the completion of the drawing process is reduced to 5.0% or less, and the number of neps (Zg) is reduced to 8.0 or less, whereby the U% of the sliver after the completion of the drawing process is reduced to 10%. The NEP number (q / g) can be reduced to 8.0 or less.
この用にして形成した本発明スライバーは、 極細繊維の特長を十分備えながらしか
も通常使用される合成繊維のスライバーと同等の品質と高生産性を有するのである。 以下、 実施例をあげて本発明を更に説明する。 実施例 The sliver of the present invention formed for this purpose only has the features of microfibers. Has the same quality and high productivity as the sliver of the synthetic fiber which is usually used. Hereinafter, the present invention will be further described with reference to examples. Example
実施例 1 Example 1
横断面を第 5図 (H) に示す形状となし、 放射状形状を有する 8個のセグメント をナイロン 6からなるポリアミドにより形成し、 一方、 該放射部を補完する形状の 8個のセグメントをポリエチレンテレフ夕レー卜からなるポリエステルにより形成 せしめた複合繊維を、 通常工程により複合比 1 : 2で溶融紡糸して 1 1 1 d t / 5 0 f の延伸糸を得た。 The cross section is the shape shown in Fig. 5 (H), and eight radial segments are formed of polyamide made of nylon 6, while eight segments having a shape complementary to the radiating portion are made of polyethylene terephne. The composite fiber formed from the polyester consisting of the latex was melt-spun at a composite ratio of 1: 2 by a normal process to obtain a drawn yarn of 11 1 dt / 50 f.
前記延伸糸を機械的に切断して繊維長 2 0 mmのステーブルとなし、 次いでこれ を特公昭 5 3 - 3 5 6 3 3号公報に記載するべンジルアルコールを用いたフィプリ ル化方法により繊度約 0 . 2 2 d tの極細繊維束に細繊化し、 これをカード工程の 原繊として用いた。 The drawn yarn is mechanically cut into a stable with a fiber length of 20 mm, which is then formed into a fibrillation method using benzyl alcohol described in Japanese Patent Publication No. 53-36563. The fiber was finely divided into ultrafine fiber bundles having a fineness of about 0.22 dt, and this was used as a raw fiber in the carding process.
梳綿機としてはリカバリ一フィダー付きの綿用フラットカードを使用し、 シリン ダ一 1 8 0 r · p · m、 ドッファー 5 r · p · m, トップとシリンダ一間のゲージ を 1 2 1 , 0 0 0インチに設定し、 4 g /mの力一ドスライバーとして紡出した。 先に説明した通り、 従来、 紡績糸生産用の繊維は紡績各工程でのドラフト機構上 3 8 mm程度の繊維長が必要とされる。 ところが本発明が対象とする極細繊維にあつ ては力一デングの際 3 8 mmではシリンダ一針間でのカード作用が強く働きすぎ繊 維の絡みすなわちネップを多発し、 品位が低下して製品化が困難となる。 As a carding machine, a flat card for cotton with a recovery feeder is used.The cylinder is 180 r · p · m, the doffer is 5 r · p · m, and the gauge between the top and the cylinder is 1 2 1, It was set at 0.000 inch and spun as a 4 g / m force sliver. As described above, conventionally, fibers for spun yarn production require a fiber length of about 38 mm due to the draft mechanism in each spinning process. However, in the case of the ultra-fine fibers targeted by the present invention, when the force is dengued, if the length is 38 mm, the card action between the needles of the cylinder is too strong, and the entanglement of the fibers, that is, NEP, occurs frequently, and the quality deteriorates. Becomes difficult.
本実施例においては、 繊維長を 2 0 mmにすることにより、 カードでの極細繊維 の絡みを回避し、 更に、 ドラファ回転の低速化とスライバー単位重量を押えること によりネップの発生を防止し、 所期の高品位力一ドスライバーを得ている。 In the present embodiment, by setting the fiber length to 20 mm, it is possible to avoid the entanglement of the ultrafine fibers in the card, and further to prevent the occurrence of neps by reducing the speed of the drafter rotation and holding down the sliver unit weight. We have obtained the expected high quality power sliver.
上記過程により製造したカードスライバーを練条機へ 3本同時に供給し、 紡速 5 O mZ分で 1 2倍のドラフトを施して 1 g Zmの斑の少ない均整なスライバーを得 た。 同スライバーは U %が 8 . 0 %、 ネップ数が 6 . 0 (ケ Z g ) であり、 通常使 用される合成繊維製スライバーと同程度の品質であって衣料、 人工皮革等多方面で 使用できる汎用性に富むものであった。
特に繊維の極細性を活用したワイビング用途には好適であり、 眼鏡拭き、 工業用 ワイビングクロス等に有効である。 更に本発明のスライバーで綿棒を製造した場合、 従来の綿製品に比較して格段にワイビング性能が向上し、 I C回路基盤ゃ光フアイ バーのコネクタ, オーディオ、 ビデオ等の O A機器磁気ヘッド等の微細部分の清掃 用として極めて優れていた。 Three of the card slivers produced in the above process were simultaneously supplied to a drawing machine, and the draft was increased by a factor of 12 at a spinning speed of 5 OmZ to obtain a uniform sliver of 1 g Zm with few spots. The sliver has a U% of 8.0% and a NEP of 6.0 (g Zg), and is of the same quality as a commonly used synthetic fiber sliver, and is used in many fields such as clothing and artificial leather. It was very versatile to use. In particular, it is suitable for wiping applications utilizing the fineness of fibers, and is effective for wiping glasses, industrial wiping cloths, and the like. Furthermore, when a cotton swab is manufactured with the sliver of the present invention, the wiping performance is remarkably improved as compared with the conventional cotton products, and the IC circuit board ゃ connectors for optical fiber, audio and video, etc. Excellent for cleaning parts.
実施例 2 Example 2
一般的に綿、 脱脂綿等からなる天然繊維製の綿棒においては、 綿棒形成時に生ず る毛羽立ちや使用中に生ずる表面繊維の脱落を防止するため、 ポリビニルアルコ一 ルに代表される水溶性高分子化合物の水溶液を綿棒中にバインダ一として含浸させ た後、 これを乾燥させ、 繊維表面を固めることが行われている。 In general, natural cotton swabs made of cotton, absorbent cotton, etc. are made of water-soluble polymers such as polyvinyl alcohol in order to prevent fluff that occurs during the formation of the swabs and drop off of surface fibers that occur during use. A cotton swab is impregnated with an aqueous solution of a compound as a binder and then dried to solidify the fiber surface.
ところが、 かかる従来法では、 ワイビング性能を向上させるために極細繊維から なる合成繊維を採用するとしても、 綿棒の使用時に繊維表面に付着しているバイン ダ一が被清掃物との摩擦によって削り取られたり、 又溶剤として水、 アルコール、 アセトン、 へキサン等の溶媒を含浸させた場合は、 バインダーが溶媒中に溶出する 等のトラブルを生じ、 却って被清掃物を汚染させることとなり、 極細繊維を使用し た本来の目的であるより高い清浄度が得られず、 I C回路基板や光ファイバ一のコ ネクター、 オーディオビデオ等の O A機器、 磁気ヘッド等の微細部分の清掃用とし て好ましくないことがあった。 However, in the conventional method, even if synthetic fibers made of ultrafine fibers are used to improve wiping performance, the binder adhering to the fiber surface when using a cotton swab is scraped off by friction with the object to be cleaned. If a solvent such as water, alcohol, acetone or hexane is impregnated with the solvent, the binder will elute into the solvent, etc. However, it is not possible to obtain a higher degree of cleanliness than the original purpose, which is not desirable for cleaning fine parts such as IC circuit boards, connectors for optical fibers, OA equipment such as audio / video, and magnetic heads. Was.
実施例 2に示す綿棒は、 バインダ一によるかかる被清掃物の汚染をさけるために、 バインダー類を一切使用しないで綿棒の綿球形成時の毛羽立ちをおさえ、 使用時の 繊維の脱落を防ぐ方法を鋭意検討した結果得られたものであって、 綿棒を構成して いる合成繊維の特徴である熱可塑性を最大限に活用し、 これの綿球形成後に、 所定 の温度、 所定の時間、 加熱成形することにより極めてクリーンでワイビング性能の 高い綿棒が得られるようにしたものである。 In order to avoid such contamination of the object to be cleaned by the binder, the swab shown in Example 2 suppresses the fluffing of the swab when forming the cotton ball without using any binder, and a method for preventing the fibers from falling off during use. It was obtained as a result of intensive studies, making the best use of the thermoplastic properties of the synthetic fibers that make up the cotton swabs, and then forming them at a specified temperature, for a specified time, and then heat-molded. By doing so, an extremely clean swab with high wiving performance can be obtained.
実施例 2に示す形態においては、 極細繊維からなる本発明の合成繊維スライバー を適宜な捲き付け装置により適宜長にカットし、 しかる後、 プラスチック、 紙、 木 管等の軸体に捲き付けることにより所望の大きさの綿球を形成し、 更にこの綿球を 加熱処理可能な成型機の中で熱処理することにより綿球表面の繊維を収縮させ、 毛 羽立ちを整えると共に繊維相互のからみを発生させる様にしたものである。
実施例 2の形態においては、 極細繊維を使用しているため、 繊維相互間の熱伝達 が良好で加熱処理の効率が上がると共に、 繊維密度が高いので、 強固な繊維絡みが 可能となり、 精密機器等の清掃に際して綿球の表面から繊維がほつれて使いにくく なる事が略解消し得る。 In the embodiment shown in Example 2, the synthetic fiber sliver of the present invention composed of ultrafine fibers is cut into appropriate lengths by an appropriate winding device, and then wound around a shaft such as plastic, paper, or a wooden tube. A cotton ball of the desired size is formed, and the cotton ball is heat-treated in a heat-treatable molding machine to shrink the fibers on the surface of the cotton ball, to improve the fluffiness and to entangle the fibers. It is made to be done. In the embodiment 2 of the present invention, since ultrafine fibers are used, the heat transfer between the fibers is good, the efficiency of the heat treatment is increased, and the fiber density is high, so that strong fiber entanglement is possible, and precision equipment In cleaning, etc., it is possible to substantially eliminate the problem that the fibers are frayed from the surface of the cotton ball and become difficult to use.
前記加熱処理の温度は、 綿球を構成する素材によって適宜選択されるが、 素材の 融点を基準としてその 2 0 °C〜 1 0 0 °C低い温度で処理するのが好ましい。 処理温 度が高過ぎると繊維表面の一部が融着したり綿球の内部まで収縮が起こり、 綿球が 過度に固化する弊害を生じ又熱劣化による黄変等の問題を引き起こす。 一方、 処理 温度が低いと、 繊維の収縮が弱くて繊維の絡みが十分でなく、 清掃時に繊維のほぐ れが生じて繊維の脱落を引き起こすこととなる。 尚、 前記加熱処理時間は通常 1 0 秒以内であれば十分である。 いずれにしても、 この様な加熱処理は適宜綿棒の使用 目的や用途に応じて調整するのが良い。 The temperature of the heat treatment is appropriately selected depending on the material constituting the cotton ball, but it is preferable to perform the treatment at a temperature lower by 20 ° C. to 100 ° C. based on the melting point of the material. If the treatment temperature is too high, a part of the fiber surface will be fused or the inside of the cotton ball will shrink, causing the problem of excessive solidification of the cotton ball and yellowing due to thermal deterioration. On the other hand, if the processing temperature is low, the fiber shrinks weakly and the fiber is not sufficiently entangled, and the fiber is loosened during cleaning, which causes the fiber to fall off. It is sufficient that the heat treatment time is usually within 10 seconds. In any case, such a heat treatment should be appropriately adjusted according to the purpose and use of the swab.
以下、 実施例 2の具体的実施形態を説明する。 横断面を第 5図 (H) に示す形状 となし、 放射状形状を有する 8個のセグメントをナイロン 6からなるポリアミドに より形成し、 該放射部を補完する形状の 8個のセグメントをポリエチレンテレフタ レ一トがらなるポリエステルにより形成せしめた複合繊維を、 通常工程により複合 比 1 : 2で溶融紡糸して 1 1 0 d t Z 5 0 f の延伸糸を得た。 Hereinafter, a specific embodiment of the second embodiment will be described. The cross section is the shape shown in Fig. 5 (H), and eight radial segments are formed from polyamide made of nylon 6, and eight segments having a shape complementary to the radiating part are polyethylene terephthalate. The composite fiber formed from the polyester having a latex was melt-spun at a composite ratio of 1: 2 by a usual process to obtain a drawn yarn of 110 dt Z50f.
前記延伸糸を機械的に切断して繊維長 2 0 mmのステーブルとなし、 これを液梳 染色機で 4 8ボーメ N a〇H、 2 7 c c / 1浴比 1 : 1 2で 9 5 °C X 3 0分処理し て繊度約 0 . 2 d tの極細繊維綿を製造し、 これをカード工程及び練条工程に通し て 1 g /mのスライバーを形成した。 The drawn yarn was mechanically cut into a stable having a fiber length of 20 mm, and this was drawn with a liquid card dyeing machine at a ratio of 48 Baume Na〇H, 27 cc / 1 bath ratio of 1: 1 to 955. The mixture was treated at 30 ° C for 30 minutes to produce ultrafine fiber cotton having a fineness of about 0.2 dt, which was passed through a carding step and a drawing step to form a sliver of 1 g / m.
前記スライバーを通常の捲き付け装置を使用して l mm φの紙軸の両端部に捲き 付け綿球体を形成させ、 次いで 1 9 0 °Cに加熱せしめた成形機中で 3秒間処理する ことにより、 表面に毛羽がなく、 綿球を構成する表層部の繊維が絡み合ったワイピ ング性能の高い綿棒を得た。 The sliver was wound on both ends of a lmmφ paper shaft using a conventional winding device to form cotton balls, and then treated for 3 seconds in a molding machine heated to 190 ° C. A cotton swab with high wiping performance was obtained, having no fluff on the surface and intertwining the fibers of the surface layer constituting the cotton ball.
実施例 3 Example 3
横断面を第 5図 (H) に示す形状となし、 放射状形状を有する 8個のセグメント をアルカリ易溶性ポリエステルにより、 又該放射部を補完する形状の 8個のセグメ ントをレギュラーポリエステルにより形成せしめた複合繊維を、 通常工程により複
合比 25 : 75で溶融紡糸して 1 1 1 d t/50 f の延伸糸を得た。 The cross section has the shape shown in Fig. 5 (H). Eight segments having a radial shape are formed of alkali-soluble polyester, and eight segments having a shape complementary to the radiating portion are formed of regular polyester. Composite fiber is processed by the normal process. It was melt spun at a combined ratio of 25:75 to obtain a drawn yarn of 11 1 dt / 50 f.
前記複合繊維のマルチフィラメントを集束して約 22万 d tの繊維束を形成した 後、 1 8個/インチのクリンプを付与し、 しかる後サーキユラ一カッターで切断し てカット長 20 mmの原綿を得た。 カットした繊度約 2. 2 d t、 繊維長さ 20m mの原綿を液流染色機で 48ボ一メ N a OH、 27 c c Zし 浴比 1 : 1 2で 9 5°CX 30分間処理し、 繊度約 0. 2 d tの極細繊維を形成してこれをカード工程 の原繊として用いた。 After bundling the multifilaments of the composite fiber to form a fiber bundle of about 220,000 dt, a crimp of 18 pieces / inch is given, and then cut with a circular cutter to obtain a raw cotton having a cut length of 20 mm. Was. Raw cotton with a cut fineness of about 2.2 dt and a fiber length of 20 mm was treated with a liquid dyeing machine at 48 ° C NaOH, 27 cc Z and a bath ratio of 1:12 at 95 ° C for 30 minutes. Ultrafine fibers with a fineness of about 0.2 dt were formed and used as raw fibers in the carding process.
次いで前記原繊を実施例 1と同一の力一ド過程及び練条過程に通して、 U% 8. 0%、 ネップ数 6. 0 (ケ Zg) のスライバーを形成した。 得られた本発明スライ バーは実施例 1のものと同様、 多方面に使用できる汎用性に富むものであった。 産業上の利用可能性 Next, the raw fiber was subjected to the same pressing process and drawing process as in Example 1 to form a sliver having a U% of 8.0% and a nep number of 6.0 (Zg). The obtained sliver of the present invention was versatile and versatile as in the case of Example 1. Industrial applicability
本発明のスライバーは以下の効果を有する。 すなわち、 極細繊維使いの繊維構造 物が備える柔軟性、 広い表面積、 高い嵩高性等の特徴を総べて具備すると共に、 従 来の短繊維紡揚りの合繊綿スライバーと略同等のスライバー品質を保有しているの で、 紡績糸が通常使用されている広い分野に極細繊維を使用することが可能となり、 冒頭に記載する極細繊維の汎用性の欠如を略完全に解消する効果がある。
The sliver of the present invention has the following effects. In other words, it has all the features of the fiber structure using ultra-fine fibers, such as flexibility, a large surface area, and high bulkiness, and has a sliver quality almost equivalent to that of the conventional short fiber spinning synthetic fiber sliver. The possession makes it possible to use microfibers in a wide field where spun yarn is usually used, and has the effect of almost completely eliminating the lack of versatility of microfibers described at the beginning.
Claims
1. カード工程を経由した繊維長 30mm以下の合成繊維からなり、 該繊維として 単糸繊度 0. 7デシテックス以下、 単糸内のセグメント数 2以上のフィブリル化型 複合繊維を用い、 単繊維を 5, 000デシテックス以上集束せしめたスライバー状 態において、 U%を 1 0. 0%以下に、 ネップ数 (ケ/ g) を 8. 0以下となし、 更に前記セグメントを軸線に沿って、 少なくともランダムに割繊せしめたことを特 徵とする極細繊維からなるスライバー。
1. Made of synthetic fiber with a fiber length of 30 mm or less via the carding process. Use a fibrillated conjugate fiber with a single-fiber fineness of 0.7 dtex or less and two or more segments in the single-fiber as the fiber. In a sliver state with 2,000 000 dtex or more, the U% is set to 10.0% or less, the number of neps (ke / g) is set to 8.0 or less, and the segments are arranged at least randomly along the axis. A sliver made of extra-fine fibers that is specially split.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33504499 | 1999-11-25 | ||
JP11/335044 | 1999-11-25 | ||
JP2000-189012 | 2000-06-23 | ||
JP2000189012A JP3704576B2 (en) | 1999-11-25 | 2000-06-23 | Cotton swab using a sliver made of extra fine fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001038619A1 true WO2001038619A1 (en) | 2001-05-31 |
Family
ID=26575043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/007861 WO2001038619A1 (en) | 1999-11-25 | 2000-11-08 | Sliver comprising extra fine fibers |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3704576B2 (en) |
WO (1) | WO2001038619A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668852A (en) * | 2012-08-30 | 2014-03-26 | 有限会社佐藤化成工业所 | Polyester fiber silver production method and cotton rod production method |
CN106400229A (en) * | 2016-06-24 | 2017-02-15 | 安徽创荣服装辅料有限公司 | Combed Lyocell fiber cotton color spinning vortex yarn production method |
CN107779979A (en) * | 2016-08-29 | 2018-03-09 | 湖南景竹新材料开发有限公司 | A kind of preparation method of colorful intelligent digital yarn |
CN107780012A (en) * | 2016-08-29 | 2018-03-09 | 湖南景竹新材料开发有限公司 | A kind of preparation method of colorful weak twist complex yarn |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008275576A (en) * | 2007-03-30 | 2008-11-13 | Sato Kasei Kogyosho:Kk | Swab |
ES2428234T3 (en) * | 2010-04-21 | 2013-11-06 | Puritan Medical Products Company, Llc | Material and collection device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06313215A (en) * | 1993-04-27 | 1994-11-08 | Ube Nitto Kasei Co Ltd | Peelable and splittable type conjugate fiber |
JPH0726454A (en) * | 1993-07-02 | 1995-01-27 | Teijin Ltd | Production of ultra-fine fiber web |
JPH0949136A (en) * | 1995-08-04 | 1997-02-18 | Kanebo Ltd | Polyester spun yarn and its production |
JPH10325019A (en) * | 1997-05-20 | 1998-12-08 | Kuraray Co Ltd | Divided type composite fiber |
-
2000
- 2000-06-23 JP JP2000189012A patent/JP3704576B2/en not_active Expired - Fee Related
- 2000-11-08 WO PCT/JP2000/007861 patent/WO2001038619A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06313215A (en) * | 1993-04-27 | 1994-11-08 | Ube Nitto Kasei Co Ltd | Peelable and splittable type conjugate fiber |
JPH0726454A (en) * | 1993-07-02 | 1995-01-27 | Teijin Ltd | Production of ultra-fine fiber web |
JPH0949136A (en) * | 1995-08-04 | 1997-02-18 | Kanebo Ltd | Polyester spun yarn and its production |
JPH10325019A (en) * | 1997-05-20 | 1998-12-08 | Kuraray Co Ltd | Divided type composite fiber |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668852A (en) * | 2012-08-30 | 2014-03-26 | 有限会社佐藤化成工业所 | Polyester fiber silver production method and cotton rod production method |
CN106400229A (en) * | 2016-06-24 | 2017-02-15 | 安徽创荣服装辅料有限公司 | Combed Lyocell fiber cotton color spinning vortex yarn production method |
CN107779979A (en) * | 2016-08-29 | 2018-03-09 | 湖南景竹新材料开发有限公司 | A kind of preparation method of colorful intelligent digital yarn |
CN107780012A (en) * | 2016-08-29 | 2018-03-09 | 湖南景竹新材料开发有限公司 | A kind of preparation method of colorful weak twist complex yarn |
Also Published As
Publication number | Publication date |
---|---|
JP3704576B2 (en) | 2005-10-12 |
JP2001214337A (en) | 2001-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2783602B2 (en) | Ultrafine composite fiber for thermal bonding and its woven or nonwoven fabric | |
WO2001038619A1 (en) | Sliver comprising extra fine fibers | |
JP2002371451A (en) | Wiping cloth | |
JPH09273096A (en) | Polyester-based wet nonwoven fabric | |
JP3113124B2 (en) | Method for manufacturing ultrafine fiber web | |
JP2002180333A (en) | Polyester-based short fiber having latent crimp developing property and method for producing the same | |
JP4119901B2 (en) | Sliver made of extra fine fibers | |
JP4728160B2 (en) | Split composite fiber, fiber assembly and non-woven fabric | |
JP4663186B2 (en) | Method for producing polylactic acid stereocomplex fiber | |
JP2003089955A (en) | Ultra fine fiber-made nonwoven fabric and method for manufacturing the same | |
JP5248832B2 (en) | Polycarbonate split type composite fiber, fiber assembly and non-woven fabric using the same | |
JP2002061024A (en) | Crimped porous hollow fiber | |
KR100557271B1 (en) | Divisible hollow copolyester fibers, and divided copolyester fibers, woven or knitted fabric, artificial leather and nonwoven fabric comprising same | |
JP3857056B2 (en) | Thermally divided composite fiber and fiber assembly | |
JP4791212B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP2022154116A (en) | Modified cross-section fiber and inner cotton | |
JP2000328348A (en) | Splittable type conjugate fiber and formed fiber product using the same | |
JPS60259664A (en) | Fiber sheet like article | |
JP3759236B2 (en) | Spinned yarn containing latently crimped fibers | |
JPH03185116A (en) | Polyester conjugate fiber | |
JP2000129538A (en) | Divided type conjugate fiber, and nonwoven fabric composed of the same | |
JP2002088580A (en) | Dividable fiber and fabric using the same | |
JP2006348426A (en) | Polyester conjugate fiber | |
JP4783175B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JPH0782646A (en) | Nonwoven fabric composed of combined filament |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN KR SG US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |