[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001038480A1 - Improved cleaning wipes - Google Patents

Improved cleaning wipes Download PDF

Info

Publication number
WO2001038480A1
WO2001038480A1 PCT/US2000/030243 US0030243W WO0138480A1 WO 2001038480 A1 WO2001038480 A1 WO 2001038480A1 US 0030243 W US0030243 W US 0030243W WO 0138480 A1 WO0138480 A1 WO 0138480A1
Authority
WO
WIPO (PCT)
Prior art keywords
wipe
wipes
cleaning
liquid cleaner
acid
Prior art date
Application number
PCT/US2000/030243
Other languages
French (fr)
Inventor
Malcolm A. Deleo
Robert L. Blum
Maria G. Ochomogo
Paul A. Pappalardo
Elizabeth Swayne
Original Assignee
The Clorox Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Clorox Company filed Critical The Clorox Company
Priority to AU14558/01A priority Critical patent/AU1455801A/en
Priority to CA002394626A priority patent/CA2394626C/en
Publication of WO2001038480A1 publication Critical patent/WO2001038480A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3753Polyvinylalcohol; Ethers or esters thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/049Cleaning or scouring pads; Wipes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives

Definitions

  • the present invention relates to an improved general purpose cleaning wipe which comprises a wipe combined with a liquid solution comprising surfactant and a hydrophilic polymer.
  • the improved wipe surprisingly accomplishes the desired but difficult-to-achieve goals of enhanced cleaning, with little or no filming or streaking, without buffing the surface cleaned with the wipe.
  • Cleaning wipes have been formulated for specific purposes.
  • cleaning wipes containing inverse emulsions i.e., water-in-lipid
  • These baby wipes are claimed to be more aesthetically pleasant to use on skin, since they essentially contain a waxy coating which, among other characteristics, prevents premature release of the aqueous liquid cleaning composition contained in the inverse emulsion.
  • Examples of these inverse emulsion impregnated wipes are depicted in Cabell et al., U.S.
  • Patent 5,908,707 Mackey et al., WO 97/40814, Mackey et al., WO 96/14835 and Moore, EP 750063. It is quite clear that these types of wipes do not consider improved cleaning of hard surfaces as paramount.
  • Clark et al. U.S. Patent 4,666,621 discloses pretreating a nonwoven substrate (essentially, a sheet laminated from wood pulp and polyester) with a low level of acrylic polymer emulsion, which is allowed to cure. Thereafter, the impregnated sheet is moistened with alcohol, surfactant and demineralized water. It is quite clear that the function of the acrylic polymer emulsion is to function as a binder for the sheet, since the patent admits that the use thereof is critical "...to suppress linting (of the sheet) during a cleaning operation.” (Clark et al., column
  • Salka et al. U.S. Patent 5,514,369 disclose foaming shampoo compositions comprising glycoside surfactant, betaine, amine oxide and a "slip agent," which could be a polyacrylate, such as acrylamidomethylpropanesulfonic acid (Cosmedia HSP-1180, from Henkel Corp.).
  • a lip agent such as acrylamidomethylpropanesulfonic acid (Cosmedia HSP-1180, from Henkel Corp.).
  • the concentrations of the ingredients are relatively high (at least 7% total surfactants) and plainly, the formulations are meant to be viscous, pearlescent liquids, which are unsuitable for cleaning hard surfaces and, especially, are not intended to be loaded onto wipes.
  • the present invention is directed to an improved cleaning wipe impregnated with a liquid cleaning composition in which a hydrophilic polymer, a surfactant, optionally, at least one solvent and water are combined to provide enhanced cleaning of hard surfaces, without the need for rinsing with water, and in which not only is complete cleaning effected, but done so without the leaving of a significant residue, which is typically called streaking/filming.
  • Surfaces treated with the wipes especially glossy hard surfaces, such as glass, mirrors, chrome, tile, shiny metallic surfaces, painted surfaces, porcelain (or other hard, glossy surfaces, whether made of natural or composite materials), and the like, are rendered brighter and shinier in appearance.
  • the invention is directed to a cleaning wipe which requires no scrubbing, buffing, polishing or rinsing, comprising:
  • a liquid cleaner which comprises: (i) a surfactant
  • the invention is directed to a cleaning wipe as just described in which the liquid cleaner also contains at least one water-soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at
  • said at least one organic solvent present in an amount effective to help solubilize or disperse the surfactant and/or hydrophilic polymer into the aqueous phase.
  • the invention is directed to a method for cleaning a hard surface, comprising the steps of: applying to the surface a cleaning wipe combined with a discrete amount of liquid cleaner, said liquid cleaner comprising: (i) a surfactant; (ii) a hydrophilic polymer; and
  • the invention provides an improved cleaning wipe comprising an absorbent/adsorbent wipe, preferably made of at least one layer of nonwoven material, the wipe being impregnated with a liquid cleaner.
  • the wipe provides excellent cleaning with no or little streaking/filming and imparts resistance to soiling to the surface cleaned therewith.
  • the cleaning wipe is preferably impregnated with a liquid cleaner which preferably is a single phase solution or dispersion, having a viscosity generally less than about 1,000 Centipoise ("cps").
  • the liquid cleaner has the following ingredients:
  • At least one water-soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at 25°C and present in a solubilizing- or dispersion-effective amount may be incorporated into the liquid cleaner.
  • Additional adjuncts in small amounts such as cosurfactants, chelating agents, buffers, fragrances, dyes, and the like can be included to provide desirable attributes of such adjuncts.
  • the substrate for the wipe is generally an absorbent or adsorbent material.
  • it is a nonwoven sheet, which is at least one layer, made of wood pulp; or a blend of wood pulp and a synthetic fiber, without limitation, such as polyester, rayon, nylon, polypropylene, polyethylene, other cellulose polymers; or a synthetic fiber or mixture of such fibers.
  • the nonwovens may include nonwoven fibrous sheet materials which include meltblown, coform, air-laid, spun bond, wet laid, bonded-carded web materials, hydroentangled (also known as spunlaced) materials, and combinations thereof. These materials can comprise synthetic or natural fibers or combinations thereof.
  • a binder may or may not be present.
  • Woven materials such as cotton fibers, cotton nylon blends, or other textiles may also be used herein.
  • Regenerated cellulose, polyurethane foams, and the like, which are used in making sponges, may also be suitable for use herein.
  • the substrate's liquid loading capacity should be at least about 50%- 1000% of the dry weight thereof, most preferably at least about 200%-800%. This is expressed as loading ' _ to 10 times the weight (or, more accurately, the mass) of the substrate.
  • the substrate varies without limitation from about .01 to about 1,000 grams per square meter, most preferably 25 to 120 grams/ m (referred to as "basis weight") and typically is produced as a sheet or web which is cut, die-cut, or otherwise sized into the appropriate shape and size.
  • the substrates which are now referred to simply as wipes, can be individually sealed with a heat-sealable or glueable thermoplastic overwrap (such as polyethylene, Mylar, and the like). More preferably the wipes can be packaged as numerous, individual sheets which are then impregnated or contacted with the liquid cleaning ingredients of the invention for more economical dispensing. Even more preferably, the wipes can be formed as a continuous web during the manufacturing process and loaded into a dispenser, such as a canister with a closure, or a tub with closure. The closure is to seal the moist wipes from the external environment and to prevent premature volatilization of the liquid ingredients.
  • a heat-sealable or glueable thermoplastic overwrap such as polyethylene, Mylar, and the like.
  • the wipes can be packaged as numerous, individual sheets which are then impregnated or contacted with the liquid cleaning ingredients of the invention for more economical dispensing. Even more preferably, the wipes can be formed as a continuous web during the manufacturing process and loaded into a
  • the dispenser may be formed of plastic, such as high density polyethylene, polypropylene, polycarbonate, polyethylene pterethalate (PET), polyvinyl chloride (PVC), or other rigid plastics.
  • the continuous web of wipes could preferably be threaded through a thin opening in the top of the dispenser, most preferably, through the closure. A means of sizing the desired length or size of the wipe from the web would then be needed.
  • a knife blade, serrated edge, or other means of cutting the web to desired size can be provided on the top of the dispenser, for non-limiting example, with the thin opening actually doubling in duty as a cutting edge.
  • the continuous web of wipes could be scored, folded, segmented, or partially cut into uniform or non-uniform sizes or lengths, which would then obviate the need for a sharp cutting edge.
  • the wipes could be interleafed, so that the removal of one wipe advances the next, and so forth.
  • the wipes will preferably have a certain wet tensile strength which is without limitation about 25 to about 250 Newtons/m, more preferably about 75-170 Newtons/m.
  • the liquid cleaner is impregnated, dosed, loaded, metered, or otherwise dispensed onto the wipe.
  • each individual wipe could be treated with a discrete amount of liquid cleaner. More preferably, a mass treatment of a continuous web of wipes with the liquid cleaner will ensue. In some cases, an entire web of wipes could be soaked in the cleaner. In other cases, while the web is being spooled, or even during the creation of the nonwoven material, the liquid cleaner could be sprayed or otherwise metered onto the web.
  • a mass, such as a stack of individually cut and sized wipes could also be impregnated in its container by the manufacturer, or, even by the user. What follows is a description of the individual constituents of the liquid cleaner.
  • An essential part of the invention lies in the use of a low residue surfactant, of which especially preferred is a glycoside, as the major surfactant portion of the liquid cleaner used to impregnate the wipe.
  • a low residue surfactant of which especially preferred is a glycoside
  • the alkyl polyglycosides include those of the formula:
  • R is a hydrophobic group (e.g., alkyl, aryl, alkylaryl etc., including branched or unbranched, saturated and unsaturated, and hydroxylated or alkoxylated members of the foregoing, among other possibilities) containing from about 6 to about 30 carbon atoms, preferably from about 8 to about 16 carbon atoms, and more preferably from about 8 to about 12 carbon atoms; n is a number from 2 to about 4, preferably 2 (thereby giving corresponding units such as ethylene, propylene and butylene oxide); y is a number having an average value of from 0 to about 12, preferably 0; Z is a moiety derived from a reducing saccharide containing 5 or 6 carbon atoms (e.g., a glucose, fructose, mannose, galactose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose, or ribose
  • glycosides are possible.
  • mixtures of saccharide moieties (Z) may be incorporated into polyglycosides.
  • the hydrophobic group (R) can be attached at the 2-, 3-, or 4-positions of a saccharide moiety rather than at the 1- position (thus giving, for example, a glucosyl as opposed to a glucoside).
  • normally free hydroxyl groups of the saccharide moiety may be alkoxylated or polyalkoxylated.
  • the (C n H 2n O) y group may include ethylene oxide and propylene oxide in random or block combinations, among a number of other possible variations.
  • Non-limiting examples of glycoside surfactants include Glucopon 225 (a mixture of C g and C ]0 chains equivalent to an average of C 9 ,, with x of the general formula above of 1.7, and an HLB of 13.6; Glucopon 220 (a mixture of C 8 and C ]0 chains equivalent to an average of C 9 ,, with x of the general formula above of 1.5, and an HLB of 13.5; Glucopon 325 (a mixture of C g , C 10 , C 12 , C 14 , and C 16 chains equivalent to an average of C 102 , with x of the general formula above of 1.6, and an HLB of 13.1; Glucopon 625 (a mixture of C ]2 , C )4 , and C 16 chains equivalent to an average of C 12 g , with x of the general formula above of 1.60, and an HLB of
  • Glucopon 600 (a mixture of C 12 , C 14 , and C l6 chains equivalent to an average of C 12 g , with x of the general formula above of 1.40, and an HLB of 11.5, all manufactured by the Henkel Corporation.
  • Glucopon 225 and Glucopon 220 are preferred and Glucopon 425 is especially preferred.
  • Glucosides from other manufacturers, such as Triton CG-110, having an HLB of 13.6 and manufactured by Union Carbide also may serve as examples of suitable surfactants.
  • Glucoside surfactants are frequently supplied as mixtures with other surfactants.
  • mixtures with the anionic surfactants, lauryl sulfate or laurylether sulfate, or the amphoteric surfactants, cocamidopropylbetaine or cocamidopropyl amineoxide are available from the Henkel Corporation.
  • the amounts of surfactants present are to be somewhat minimized, for purposes of cost-savings and to generally restrict the dissolved actives which could contribute to leaving behind residues when the composition is applied to a surface.
  • the amounts added are generally about 0.001-6%, more preferably 0.002-4.00% surfactant. These are generally considered to be cleaning-effective amounts.
  • glycoside surfactant may be used in conjunction with any of the other nonionic, anionic, cationic or amphoteric surfactants, or mixtures thereof, such as are known in the art.
  • Such surfactants are described, for example, in McCutcheon's Emulsifiers and Detergents (1997), the contents of which are hereby incorporated by reference.
  • Illustrative nonionic surfactants are the ethylene oxide and mixed ethylene oxide / propylene oxide adducts of alkylphenols, the ethylene oxide and mixed ethylene oxide / propylene oxide adducts of long chain alcohols or of fatty acids, mixed ethylene oxide / propylene oxide block copolymers, esters of fatty acids and hydrophilic alcohols, such as sorbitan monooleate, alkanolamides, and the like.
  • Illustrative anionic surfactants are the soaps, alkylbenzene sulfonates, olefin sulfonates, paraffin sulfonates, alcohol and alcohol ether sulfates, phosphate esters, and the like.
  • Illustrative cationic surfactants include amines, amine oxides, alkylamine ethoxylates, ethylenediamine alkoxylates such as the Tetronic® series from BASF, quaternary ammonium salts, and the like.
  • Illustrative amphoteric surfactants are those which have both acidic and basic groups in their structure, such as amino and carboxyl radicals or amino and sulfonic radicals, or amine oxides and the like.
  • Suitable amphoteric surfactants include betaines, sulfobetaines, imidazolines, and the like.
  • the amounts of cosurfactants will generally be about less than the level of the primary low residue surfactant, such as preferably glycoside.
  • the polymer is generally speaking a water soluble to dispersible polymer having a molecular weight of generally below 2,000,000 daltons.
  • the polymer will also not itself have an obvious or offensive odor, although that attribute can be mitigated by judicious selection of fragrance.
  • suitable classes of polymers include: a. Polysaccharides
  • Suitable polymers may comprise polysaccharide polymers, which include substituted cellulose materials like carboxymethylcellulose, ethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, succinoglycan and naturally occurring polysaccharide polymers like xanthan gum, guar gum, locust bean gum, tragacanth gum or derivatives thereof. Particularly useful polysaccharides are xanthan gum and derivatives thereof. Some of these are thickeners which may have too much tack, from a performance and aesthetic standpoint. Additional suitable polysaccharide polymers may include sodium caseinate and gelatin. Other suitable polysaccharide polymers may include cationic derivatives, such as the cationic cellulose ether, Polymer JR. b. Polycarboxylates
  • Polycarboxylates can also be used which contain amounts of nonionizable monomers, such as ethylene and other simple olefins, styrene, alpha- methylstyrene, methyl, ethyl and C3 to C8 alkyl acrylates and methacrylates, isobornyl methacrylate, acrylamide, hydroxyethyl acrylate and methacrylate, hydroxypropyl acrylate and methacrylate, N-vinyl pyrrolidone, butadiene, isoprene, vinyl halides such as vinyl chloride and vinylidine chloride, alkyl maleates, alkyl fumarates.
  • nonionizable monomers such as ethylene and other simple olefins, styrene, alpha- methylstyrene, methyl, ethyl and C3 to C8 alkyl acrylates and methacrylates, isobornyl methacrylate, acryl
  • suitable polymers include other polycarboxylates, such as homopolymers and copolymers of monomeric units selected FROM the group consisting of unsaturated carboxylic acids such as acrylic acid, methacrylic acid, polycarboxylic acids, sulfonic acids, phosphonic acids and mixtures thereof.
  • acrylic emulsion are generally copolymers of one or more acidic monomers, such as acrylic acid, methacrylic acid or maleic anhydride, with at least one other ethylenically unsaturated monomer selected from a group consisting of ethylene and other simple olefins, styrene, alpha-methylstyrene, methyl, ethyl and C3 to Cg alkyl acrylates and methacrylates, isobornyl methacrylate, acrylamide, hydroxyethyl acrylate and methacrylate, hydroxypropyl acrylate and methacrylate, N-vinyl pyrrolidone, butadiene, isoprene, vinyl halides such as vinyl chloride and vinylidine chloride, alkyl maleates, alkyl fumarates, fumaric acid, maleic acid, itaconic acid, and the like.
  • acidic monomers such as acrylic acid, methacrylic acid or maleic anhydride
  • acetoacetoxy methacrylate or other acetoacetate monomers and divinyl or polyvinyl monomers, such as glycol polyacrylates, allyl methacrylate, divinyl benzene and the like.
  • the preferred polymers have a number average molecular weight of about 500 to about 2,000,000.
  • These polymers may also be crosslinked with metal ions or modified for crosslinking with silane functionality as described, for example, in U.S. Patent 5,428,107.
  • acrylic emulsion polymers include those available under the Rhoplex tradename from Rohm & Haas, such as Rhoplex AC-33, Rhoplex B-924, and Rhoplex MC-76.
  • suitable polymers may include cationic acrylic water soluble polymers that are copolymers of cationic quaternized acrylates, methacrylates, acrylamides, and methacrylamides, for example trimethylammoniumpropylmethacrylate, and acrylamide or acrylonitrile.
  • cationic acrylic water soluble polymers that are copolymers of cationic quaternized acrylates, methacrylates, acrylamides, and methacrylamides, for example trimethylammoniumpropylmethacrylate, and acrylamide or acrylonitrile.
  • Suitable polymers include vinylpyrrolidone homopolymers and copolymers.
  • Suitable vinylpyrrolidone homopolymers have an average molecular weight of from 1,000 to 100,000,000, preferably from 2,000 to 10,000,000, more preferably from 5,000 to 1,000,000, and most preferably from 30,000 to 700,000.
  • Suitable vinyl pyrrolidone homopolymers are commercially available from ISP Corporation, Wayne, New Jersey under the product names PVP K-15 (average molecular weight of 8.000), PVP K30 (average molecular weight of 38,000), PVP K-60 (average molecular weight of 216,000), PVP K-90 (average molecular weight of 630,000), and PVP K-120 (average molecular weight of 2,900,000).
  • Suitable copolymers of vinylpyrrolidone include copolymers of N-vinylpyrrolidone with one or more alkylenically unsaturated monomers.
  • Suitable alkylenically unsaturated monomers include unsaturated dicarboxylic acids such as maleic acid, chloromaleic acid, fumaric acid, itaconic acid, citraconic acid, phenylmaleic acid, aconitic acid, acrylic acid, methacrylic acid, N-vinylimidazole, vinylcaprolactam, butene, hexadecene, and vinyl acetate.
  • esters and amides of the unsaturated acids may be employed, for example, methyl acrylate, ethylacrylate, acrylamide, methacryamide, dimethylaminoethylmethacrylate, dimethylaminopropylmethacrylamide, trimethylammoniumethylmethacrylate, and trimethylammoniumpropylmethacrylamide.
  • suitable alkylenically unsaturated monomers include aromatic monomers such as styrene, sulphonated styrene, alpha-methylstyrene, vinyltoluene, t-butyl styrene and others.
  • Copolymers of vinylpyrrolidone with vinyl acetate are commercially available under the trade name PVP/VA from ISP Corporation.
  • Copolymers of vinylpyrrolidone with alpha- olefins are available, for example, as P-904 from ISP Corporation.
  • Copolymers of vinylpyrrolidone with dimethylaminoethylmethacrylate are available, for example, as Copolymer 958 from ISP Corporation.
  • Copolymers of vinylpyrrolidone with trimethylammoniumethylmethacrylate are available, for example, as Gafquat 734 from ISP Corporation.
  • Copolymers of vinylpyrrolidone with trimethylammoniumpropylmethacrylamide are available, for example, as Gafquat HS-100 from ISP Corporation.
  • Copolymers of vinylpyrrolidone with styrene are available, for example, as Polectron 430 from ISP Corporation.
  • Copolymers of vinylpyrrolidone with acrylic acid are available, for example, as Polymer ACP 1005 (25% vinylpyrrolidone/ 75% acrylic acid) from ISP Corporation.
  • Methylvinyl ether Other suitable polymers include methylvinylether homopolymers and copolymers.
  • Preferred copolymers are those with maleic anhydride. These copolymers can be hydrolyzed to the diacid or derivatized as the monoalkyl ester.
  • the n- butyl ester is available as Gantrez ES-425 from ISP Corporation.
  • Polyvinyl alcohols Other suitable polymers include polyvinyl alcohols. Preferably, polyvinyl alcohols which are at least 80.0%, preferably 88-99.9%, and most preferably 99.0-99.8% hydrolyzed are used.
  • the polyvinyl alcohol, Elvanol 71-30 is available from E. I. DuPont de Nemours and Company, Wilmington, Del. g. Polyethylene glycols
  • polyethylene glycols such as disclosed in Baker et al., U.S. Patent 4,690,779, incorporated herein by reference.
  • hydrophilic polymer or polymers are present at a level of about 0.001-5%, more preferably, about 0.001-1% of the liquid cleaner.
  • Chelants useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxysulfonates.
  • Non-limiting examples of polyacetate and polycarboxylate builders include the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediamine tetraacetic acid, ethylenediamine triacetic acid, ethylenediamine tetrapropionic acid, diethylenetriamine pentaacetic acid, nitrilotriacetic acid, oxydisuccinic acid, iminodisuccinic acid, mellitic acid, polyacrylic acid or polymethacrylic acid and copolymers, benzene polycarboxylic acids, gluconic acid, sulfamic acid, oxalic acid, phosphoric acid, phosphonic acid, organic phosphonic acids, acetic acid, and citric acid
  • chelating agents may also exist either partially or totally in the hydrogen ion form, for example, citric acid or disodium dihydrogen ethylenediamine tetraacetate.
  • the substituted ammonium salts include those from methylamine, dimethylamine, butylamine, butylenediamine, propylamine, triethylamine, trimethylamine, monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, and propanolamine.
  • chelating agents and dependent on the desired pH of the formulation (see below), are the mono-, di-, tri-, and tetrapotassium and ammonium salts of ethylenediamine tetraacetic acid. See, for example, Robbins et al., U.S. Patent 5,972,876, Chang et al., U.S. Patent 5,948,742, Ochomogo et al., U.S. Patent
  • the amount of chelant added should be in the range of 0.001-2%, more preferably 0.001-2%, by weight of the cleaner.
  • the cleaner is an aqueous cleaner with relatively low levels of actives
  • the principal ingredient is water, which should be present at a level of at least about 70%, more preferably at least about 80%, and most preferably, at least about 90%.
  • Distilled, deionized, or industrial soft water is preferred so as not to contribute to formation of a residue and to avoid the introduction of undesirable metal ions.
  • a solvent may optionally be used which is generally a water soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at 25°C.
  • a key attribute is that it should volatilize rapidly, such that it volatilizes no more than 5 minutes after contact with a surface, without leaving a residue. It is preferably selected from C, ⁇ alkanols, C, ⁇ diols, C, ⁇ alkyl ethers of alkylene glycols and polyalkylene glycols, and mixtures thereof.
  • the alkanol can be selected from methanol, ethanol, n-propanol, isopropanol, the various positional isomers of butanol, pentanol, and hexanol, and mixtures of the foregoing. It may also be possible to utilize in addition to, or in place of, said alkanols, the diols such as methylene, ethylene, propylene and butylene glycols, and mixtures thereof, and including polyalkylene glycols.
  • a straight or branched chain alkanol as the coupling agent of the invention.
  • alkanol methanol, ethanol, n-propanol, isopropanol, and the various positional isomers of butanol, pentanol, and hexanol.
  • IPA isopropyl alcohol
  • 2-propanol also known as 2-propanol and, in the vernacular, "isopropanol.”
  • IPA isopropyl alcohol
  • alkylene glycol ether solvent can be used alone or in addition to the polar alkanol solvent.
  • the alkylene glycol ether solvents can include, for example, monoalkylene glycol ethers such as ethylene glycol monopropyl ether, ethylene glycol mono-n-butyl ether, propylene glycol monopropyl ether, and propylene glycol mono-n-butyl ether, and polyalkylene glycol ethers such as diethylene glycol monoethyl or monopropyl or monobutyl ether, di- or tri-polypropylene glycol monomethyl or monoethyl or monopropyl or monobutyl ether, etc., and mixtures thereof.
  • glycol ethers are diethylene glycol monobutyl ether, also known as 2-(2-butoxyethoxy) ethanol, sold as Butyl Carbitol by Union Carbide, ethylene glycol monobutyl ether, also known as butoxyethanol, sold as Butyl Cellosolve also by Union Carbide, and also sold by Dow Chemical Co., propylene glycol monopropyl ether, available from a variety of sources, and propylene glycol methyl ether, sold by Dow as Dowanol PM.
  • diethylene glycol monobutyl ether also known as 2-(2-butoxyethoxy) ethanol
  • Butyl Carbitol ethylene glycol monobutyl ether
  • butoxyethanol sold as Butyl Cellosolve also by Union Carbide
  • Dow Chemical Co propylene glycol monopropyl ether, available from a variety of sources
  • propylene glycol methyl ether sold by Dow as Dowanol PM.
  • alkylene glycol ether is propylene glycol t-butyl ether, which is commercially sold as Arcosolve PTB, by Arco Chemical Co.
  • Dipropylene glycol n-butyl ether (“DPNB”) is also preferred.
  • Short chain carboxylic acids such as acetic acid, glycolic acid, lactic acid and propionic acid are also potential solvents, although their strong odor may require mitigation with a fragrance.
  • Short chain esters such as glycol acetate, or cyclic or linear volatile methylsiloxanes (such as from Dow Corning), may also be suitable for use.
  • Additional water insoluble solvents may be included in minor amounts (0- 1%). These include isoparafinic hydrocarbons, mineral spirits, alkylaromatics, and terpenes such as d-limonene. Additional water soluble solvents may be included in minor amounts (0-2%). These include pyrrolidones, such as N-methyl-2- pyrrolidone, N-octyl-2-pyrrolidone and N-dodecyl-2- pyrrolidone.
  • the total amount of solvents is preferably no more than about 20%, and more preferably, no more than about 10%, of the cleaner.
  • a particularly preferred range is about 1 -5%.
  • These amounts of solvents are generally referred to as dispersion-effective or solubilizing-effective amounts.
  • the solvents, especially the glycol ethers, are also important as cleaning materials on their own, helping to loosen and solubilize greasy or oily soils from surfaces cleaned. But the volatile solvents, such as IPA, are necessary to prevent the leaving of residues on the surface cleaned.
  • Buffering and pH adjusting agents may be desirable components. These would include minute amounts of inorganic agents such as alkali metal and alkaline earth salts of silicate, metasilicate, borate, carbonate, carbamate, phosphate, ammonia, and hydroxide.
  • Organic buffering agents such as monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine, triethanolamine, and 2-amino-2-methylpropanol are also desirable.
  • adjuncts can be added for improving aesthetic qualities of the invention.
  • Aesthetic adjuncts include fragrances or perfumes, such as those available from Givaudan-Rohre, International Flavors and Fragrances, Quest, Sozio, Firmenich,
  • Dragoco, Norda, Bush Boake and Allen and others and dyes or colorants which can be solubilized or suspended in the formulation.
  • Further solubilizing materials such as hydrotropes (e.g., water soluble salts of low molecular weight organic acids such as the sodium or potassium salts of xylene sulfonic acid), may also be desirable.
  • Adjuncts for cleaning include additional surfactants, such as those described in Kirk-Othmer,
  • Dyes or colorants which can be solubilized or suspended in the formulation such as diaminoanthraquinones, may be added, although it is cautioned that since leaving little or no residue is an objective of the invention, that only minute amounts should be used.
  • Thickeners such as polyacrylic acid, xanthan gum, alginates, guar gum, methyl, ethyl and propylhydroxycelluloses, and the like, may be desired additives, although the use of such polymers is to be distinguished from the previously mentioned hydrophilic polymers in 5 above.
  • Defoamers such as, without limitation, silicones, aminosilicones, silicone blends, silicone/hydrocarbon blends, and the like, available from Dow Corning, Wacker, Witco, Ross and Hercules.
  • the amounts of these aesthetic adjuncts should be in the range of 0-2%, more preferably 0-1%.
  • a mildewstat or bacteriostat examples include Kathon GC, a 5-chloro-2-methyl-4-isothiazolin-3-one, Kathon ICP, a 2-methyl-4-isothiazolin-3-one, and a blend thereof, and Kathon 886, a 5-chloro-2- methyl-4-isothiazolin-3-one, all available from Rohm and Haas Company; Bronopol, a 2-bromo-2-nitropropane 1,3-diol, from Boots Company Ltd.; Proxel CRL, a propyl-p-hydroxybenzoate, from ICI PLC; Nipasol M, an o-phenyl-phenol, Na + salt, from Nipa Laboratories Ltd.; Dowicide A, a 1 ,2-benzoisothia
  • preservatives include methyl, ethyl and propyl parabens, short chain organic acids (such as acetic, lactic and glycolic acids), bisguanidine compounds (e.g., Dantagard or Glydant) and the short chain alcohols mentioned in 8. above can be bifunctional and also act as preservatives, such as ethanol and IPA.
  • Acusol 445N (Rohm & Haas)
  • Table II depicts a thickened formula for the liquid cleaner:
  • the polyacrylic acid is a hydrophilic polymer which can be substituted by various other materials, such as, without limitationpolyethylene glycol, and copolymers of acrylic acid and another comonomer. See also above, 5. Polymers.
  • Wipes are typically made from fibrous sheet materials as described in 1. Substrate above. Examples of the substrates from which the wipes are made include:
  • Example 1 Filming and Streaking on Black Ceramic Tiles
  • the inventive wipes show dramatically superior performance over comparative products.
  • the inventive wipe was tested for performance on glass mirror tiles and compared to commercial products.
  • the wipes were wiped over the mirrors and the mirrors allowed to dry.
  • two standards were used: where a completely streaked mirror got a 0 grade, while a clean, nonstreaked mirror got a 10 grade.
  • the test had multiple replicates with at least 10 expert panelists visually grading each mirror tile. This was a blind test, in which the panelists did not know the identity of the products used to clean each mirror tile.
  • the confidence level for the test was 95%. The results are depicted below in Table V: 480

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention provides an improved cleaning wipe which requires no scrubbing, buffing, polishing or rinsing, with the following components: (a) a wipe which comprises at least one layer of absorbent/adsorbent material; (b) a liquid cleaner which comprises: (i) a low residue surfactant; (ii) a hydrophilic polymer; and (iii) the remainder, water.

Description

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Title: IMPROVED CLEANING WIPES
Inventors: Malcolm A. DeLeo, Robert L. Blum, Maria G. Ochomogo, Paul A. Pappalardo, and Elizabeth N. Swayne
FIELD OF THE INVENTION The present invention relates to an improved general purpose cleaning wipe which comprises a wipe combined with a liquid solution comprising surfactant and a hydrophilic polymer. The improved wipe surprisingly accomplishes the desired but difficult-to-achieve goals of enhanced cleaning, with little or no filming or streaking, without buffing the surface cleaned with the wipe.
BACKGROUND OF THE INVENTION Cleaning wipes have been formulated for specific purposes. For example, cleaning wipes containing inverse emulsions (i.e., water-in-lipid) are particularly useful in removing perianal soils from infants. These baby wipes are claimed to be more aesthetically pleasant to use on skin, since they essentially contain a waxy coating which, among other characteristics, prevents premature release of the aqueous liquid cleaning composition contained in the inverse emulsion. Examples of these inverse emulsion impregnated wipes are depicted in Cabell et al., U.S.
Patent 5,908,707, Mackey et al., WO 97/40814, Mackey et al., WO 96/14835 and Moore, EP 750063. It is quite clear that these types of wipes do not consider improved cleaning of hard surfaces as paramount.
Clark et al., U.S. Patent 4,666,621, discloses pretreating a nonwoven substrate (essentially, a sheet laminated from wood pulp and polyester) with a low level of acrylic polymer emulsion, which is allowed to cure. Thereafter, the impregnated sheet is moistened with alcohol, surfactant and demineralized water. It is quite clear that the function of the acrylic polymer emulsion is to function as a binder for the sheet, since the patent admits that the use thereof is critical "...to suppress linting (of the sheet) during a cleaning operation." (Clark et al., column
4, lines 3-4). However, the polymer does not function as a cleaning active in the cleaning wipe of Clark. Other references disclose the use of glycoside surfactants in hard surface cleaners (e.g., Malik, U.S. Patent 4,627,931 and Maekawa et al., JP Heisei 10 (1998)-8090), but do not mention that these types of surfactants can be loaded onto cleaning wipes, and, most importantly are not combined with hydrophilic polymers in a cleaning solution before being loaded onto cleaning wipes.
Salka et al., U.S. Patent 5,514,369, disclose foaming shampoo compositions comprising glycoside surfactant, betaine, amine oxide and a "slip agent," which could be a polyacrylate, such as acrylamidomethylpropanesulfonic acid (Cosmedia HSP-1180, from Henkel Corp.). As shampoos, the concentrations of the ingredients are relatively high (at least 7% total surfactants) and plainly, the formulations are meant to be viscous, pearlescent liquids, which are unsuitable for cleaning hard surfaces and, especially, are not intended to be loaded onto wipes.
Thus, none of the related art teach, disclosure or suggest an improved cleaning wipe impregnated with a liquid cleaner comprising a glycoside nonionic surfactant and a hydrophilic polymer. Additionally, such related art does not teach, disclose or suggest the advantages and benefits of the inventive cleaning wipe.
Summary of the Invention The present invention is directed to an improved cleaning wipe impregnated with a liquid cleaning composition in which a hydrophilic polymer, a surfactant, optionally, at least one solvent and water are combined to provide enhanced cleaning of hard surfaces, without the need for rinsing with water, and in which not only is complete cleaning effected, but done so without the leaving of a significant residue, which is typically called streaking/filming. Surfaces treated with the wipes, especially glossy hard surfaces, such as glass, mirrors, chrome, tile, shiny metallic surfaces, painted surfaces, porcelain (or other hard, glossy surfaces, whether made of natural or composite materials), and the like, are rendered brighter and shinier in appearance.
In one aspect, the invention is directed to a cleaning wipe which requires no scrubbing, buffing, polishing or rinsing, comprising:
(a) a wipe which preferably comprises at least one layer of nonwoven material;
(b) a liquid cleaner which comprises: (i) a surfactant;
(ii) a hydrophilic polymer; and (iii) the remainder, water, said wipe used to clean surfaces without rinsing, streaking or filming.
In another aspect, the invention is directed to a cleaning wipe as just described in which the liquid cleaner also contains at least one water-soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at
25°C, said at least one organic solvent present in an amount effective to help solubilize or disperse the surfactant and/or hydrophilic polymer into the aqueous phase.
In yet another aspect, the invention is directed to a method for cleaning a hard surface, comprising the steps of: applying to the surface a cleaning wipe combined with a discrete amount of liquid cleaner, said liquid cleaner comprising: (i) a surfactant; (ii) a hydrophilic polymer; and
(iii) the remainder, water, whereby the surfaces are cleaned without the need for scrubbing, wiping, or immediate rinsing, and are free from streaking and filming.
It is therefore an object and an advantage of the present invention to provide a cleaning wipe impregnated with a liquid cleaner which contains a low residue surfactant, preferably such as a glycoside, to greatly improve the streaking and filming performance of such a wipe.
It is another object and another advantage of the present invention to provide a cleaning wipe impregnated with a liquid cleaner in which one of the ingredients thereof is a hydrophilic polymer, at least one of whose purposes is to promote improved streaking/filming on a surface cleaned with said wipe.
It is yet another object and yet another advantage of the present invention to provide a cleaning wipe which has low to no streaking and filming.
It is still a further object and still a further advantage of the present invention to provide a consumer convenient cleaning means which cleans surfaces without the need to rinse with water.
It is another object and a further advantage of the present invention to provide a cleaning wipe which cleans hard surfaces and, especially with respect to glossy surfaces, leaves the surface clean, bright and shiny.
DETAILED DESCRIPTION OF THE INVENTION The invention provides an improved cleaning wipe comprising an absorbent/adsorbent wipe, preferably made of at least one layer of nonwoven material, the wipe being impregnated with a liquid cleaner. The wipe provides excellent cleaning with no or little streaking/filming and imparts resistance to soiling to the surface cleaned therewith.
The cleaning wipe is preferably impregnated with a liquid cleaner which preferably is a single phase solution or dispersion, having a viscosity generally less than about 1,000 Centipoise ("cps"). The liquid cleaner has the following ingredients:
(i) a surfactant;
(ii) a hydrophilic polymer; and
(iii) the remainder, water.
Preferably, at least one water-soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at 25°C and present in a solubilizing- or dispersion-effective amount may be incorporated into the liquid cleaner. Additional adjuncts in small amounts such as cosurfactants, chelating agents, buffers, fragrances, dyes, and the like can be included to provide desirable attributes of such adjuncts.
In the application, effective amounts are generally those amounts listed as the ranges or levels of ingredients in the descriptions which follow hereto. Unless otherwise stated, amounts listed in percentage ("%'s") are in weight percent (based on 100% active) of the cleaning composition.
1. The Substrate
The substrate for the wipe is generally an absorbent or adsorbent material. Preferably, it is a nonwoven sheet, which is at least one layer, made of wood pulp; or a blend of wood pulp and a synthetic fiber, without limitation, such as polyester, rayon, nylon, polypropylene, polyethylene, other cellulose polymers; or a synthetic fiber or mixture of such fibers. The nonwovens may include nonwoven fibrous sheet materials which include meltblown, coform, air-laid, spun bond, wet laid, bonded-carded web materials, hydroentangled (also known as spunlaced) materials, and combinations thereof. These materials can comprise synthetic or natural fibers or combinations thereof. A binder may or may not be present.
Manufacturers include Kimberly-Clark, E.I. du Pont de Nemours and Company, Dexter, American Nonwovens, James River, BBA Nonwovens and PGI. Examples of such substrates are depicted in: Bouchette et al., U.S. Patents 4,781,974 and 4,615,937, Clark et al., U.S. Patent 4,666,621, Amundson et al., WO 98/03713, and Cabell et al., U.S. Patent 5,908,707, Mackey et al., WO 97/40814, Mackey et al.,
WO 96/14835 and Moore, EP 750063, all of which are incorporated herein by reference.
Woven materials, such as cotton fibers, cotton nylon blends, or other textiles may also be used herein. Regenerated cellulose, polyurethane foams, and the like, which are used in making sponges, may also be suitable for use herein.
The substrate's liquid loading capacity should be at least about 50%- 1000% of the dry weight thereof, most preferably at least about 200%-800%. This is expressed as loading ' _ to 10 times the weight (or, more accurately, the mass) of the substrate.
The substrate varies without limitation from about .01 to about 1,000 grams per square meter, most preferably 25 to 120 grams/ m (referred to as "basis weight") and typically is produced as a sheet or web which is cut, die-cut, or otherwise sized into the appropriate shape and size.
The substrates, which are now referred to simply as wipes, can be individually sealed with a heat-sealable or glueable thermoplastic overwrap (such as polyethylene, Mylar, and the like). More preferably the wipes can be packaged as numerous, individual sheets which are then impregnated or contacted with the liquid cleaning ingredients of the invention for more economical dispensing. Even more preferably, the wipes can be formed as a continuous web during the manufacturing process and loaded into a dispenser, such as a canister with a closure, or a tub with closure. The closure is to seal the moist wipes from the external environment and to prevent premature volatilization of the liquid ingredients. Without limitation, the dispenser may be formed of plastic, such as high density polyethylene, polypropylene, polycarbonate, polyethylene pterethalate (PET), polyvinyl chloride (PVC), or other rigid plastics. The continuous web of wipes could preferably be threaded through a thin opening in the top of the dispenser, most preferably, through the closure. A means of sizing the desired length or size of the wipe from the web would then be needed. A knife blade, serrated edge, or other means of cutting the web to desired size can be provided on the top of the dispenser, for non-limiting example, with the thin opening actually doubling in duty as a cutting edge. Alternatively, the continuous web of wipes could be scored, folded, segmented, or partially cut into uniform or non-uniform sizes or lengths, which would then obviate the need for a sharp cutting edge. Further, as in hand tissues, the wipes could be interleafed, so that the removal of one wipe advances the next, and so forth.
The wipes will preferably have a certain wet tensile strength which is without limitation about 25 to about 250 Newtons/m, more preferably about 75-170 Newtons/m.
2. The liquid cleaner The liquid cleaner is impregnated, dosed, loaded, metered, or otherwise dispensed onto the wipe. This can be executed in numerous ways. For example, each individual wipe could be treated with a discrete amount of liquid cleaner. More preferably, a mass treatment of a continuous web of wipes with the liquid cleaner will ensue. In some cases, an entire web of wipes could be soaked in the cleaner. In other cases, while the web is being spooled, or even during the creation of the nonwoven material, the liquid cleaner could be sprayed or otherwise metered onto the web. A mass, such as a stack of individually cut and sized wipes could also be impregnated in its container by the manufacturer, or, even by the user. What follows is a description of the individual constituents of the liquid cleaner.
3. Surfactants
An essential part of the invention lies in the use of a low residue surfactant, of which especially preferred is a glycoside, as the major surfactant portion of the liquid cleaner used to impregnate the wipe. Particularly preferred are the alkyl polyglycosides. The preferred glycosides include those of the formula:
RO(CπH2nO)y(Z)x
wherein R is a hydrophobic group (e.g., alkyl, aryl, alkylaryl etc., including branched or unbranched, saturated and unsaturated, and hydroxylated or alkoxylated members of the foregoing, among other possibilities) containing from about 6 to about 30 carbon atoms, preferably from about 8 to about 16 carbon atoms, and more preferably from about 8 to about 12 carbon atoms; n is a number from 2 to about 4, preferably 2 (thereby giving corresponding units such as ethylene, propylene and butylene oxide); y is a number having an average value of from 0 to about 12, preferably 0; Z is a moiety derived from a reducing saccharide containing 5 or 6 carbon atoms (e.g., a glucose, fructose, mannose, galactose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose, or ribose unit, etc., but most preferably a glucose unit); and x is a number having an average value of from 1 to about 10, preferably from 1 to about 5, and more preferably from 1 to about 3. In actual practice, R may be a mixture of carbon chains, for instance, from 8 to 16 carbon atoms and Z may be a mixture of saccharide units from 0 to 6.
It would be apparent that a number of variations with respect to the makeup of the glycosides are possible. For example, mixtures of saccharide moieties (Z) may be incorporated into polyglycosides. Also, the hydrophobic group (R) can be attached at the 2-, 3-, or 4-positions of a saccharide moiety rather than at the 1- position (thus giving, for example, a glucosyl as opposed to a glucoside). In addition, normally free hydroxyl groups of the saccharide moiety may be alkoxylated or polyalkoxylated. Further, the (CnH2nO)y group may include ethylene oxide and propylene oxide in random or block combinations, among a number of other possible variations.
Non-limiting examples of glycoside surfactants include Glucopon 225 (a mixture of Cg and C]0 chains equivalent to an average of C9 ,, with x of the general formula above of 1.7, and an HLB of 13.6; Glucopon 220 (a mixture of C8 and C]0 chains equivalent to an average of C9 ,, with x of the general formula above of 1.5, and an HLB of 13.5; Glucopon 325 (a mixture of Cg, C10 , C12, C14, and C16 chains equivalent to an average of C102, with x of the general formula above of 1.6, and an HLB of 13.1; Glucopon 625 (a mixture of C]2, C)4, and C16 chains equivalent to an average of C12 g, with x of the general formula above of 1.60, and an HLB of
12.1; and Glucopon 600 (a mixture of C12, C14, and Cl6 chains equivalent to an average of C12 g, with x of the general formula above of 1.40, and an HLB of 11.5, all manufactured by the Henkel Corporation. Of these, Glucopon 225 and Glucopon 220 are preferred and Glucopon 425 is especially preferred. Glucosides from other manufacturers, such as Triton CG-110, having an HLB of 13.6 and manufactured by Union Carbide also may serve as examples of suitable surfactants.
Glucoside surfactants are frequently supplied as mixtures with other surfactants. For example, mixtures with the anionic surfactants, lauryl sulfate or laurylether sulfate, or the amphoteric surfactants, cocamidopropylbetaine or cocamidopropyl amineoxide, are available from the Henkel Corporation.
The amounts of surfactants present are to be somewhat minimized, for purposes of cost-savings and to generally restrict the dissolved actives which could contribute to leaving behind residues when the composition is applied to a surface.
However, the amounts added are generally about 0.001-6%, more preferably 0.002-4.00% surfactant. These are generally considered to be cleaning-effective amounts.
4. Cosurfactants
Although the disclosed glycosides of the invention provide excellent cleaning performance, as shown in the examples which follow, it may sometimes be desired to add small amounts of cosurfactants to the formulations to obtain additional cleaning benefits. The glycoside surfactant may be used in conjunction with any of the other nonionic, anionic, cationic or amphoteric surfactants, or mixtures thereof, such as are known in the art. Such surfactants are described, for example, in McCutcheon's Emulsifiers and Detergents (1997), the contents of which are hereby incorporated by reference.
Illustrative nonionic surfactants are the ethylene oxide and mixed ethylene oxide / propylene oxide adducts of alkylphenols, the ethylene oxide and mixed ethylene oxide / propylene oxide adducts of long chain alcohols or of fatty acids, mixed ethylene oxide / propylene oxide block copolymers, esters of fatty acids and hydrophilic alcohols, such as sorbitan monooleate, alkanolamides, and the like.
Illustrative anionic surfactants are the soaps, alkylbenzene sulfonates, olefin sulfonates, paraffin sulfonates, alcohol and alcohol ether sulfates, phosphate esters, and the like.
Illustrative cationic surfactants include amines, amine oxides, alkylamine ethoxylates, ethylenediamine alkoxylates such as the Tetronic® series from BASF, quaternary ammonium salts, and the like. Illustrative amphoteric surfactants are those which have both acidic and basic groups in their structure, such as amino and carboxyl radicals or amino and sulfonic radicals, or amine oxides and the like. Suitable amphoteric surfactants include betaines, sulfobetaines, imidazolines, and the like.
The amounts of cosurfactants will generally be about less than the level of the primary low residue surfactant, such as preferably glycoside.
5. Polymers
The polymer is generally speaking a water soluble to dispersible polymer having a molecular weight of generally below 2,000,000 daltons. Preferably, the polymer will also not itself have an obvious or offensive odor, although that attribute can be mitigated by judicious selection of fragrance. Examples of suitable classes of polymers include: a. Polysaccharides
Suitable polymers may comprise polysaccharide polymers, which include substituted cellulose materials like carboxymethylcellulose, ethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, succinoglycan and naturally occurring polysaccharide polymers like xanthan gum, guar gum, locust bean gum, tragacanth gum or derivatives thereof. Particularly useful polysaccharides are xanthan gum and derivatives thereof. Some of these are thickeners which may have too much tack, from a performance and aesthetic standpoint. Additional suitable polysaccharide polymers may include sodium caseinate and gelatin. Other suitable polysaccharide polymers may include cationic derivatives, such as the cationic cellulose ether, Polymer JR. b. Polycarboxylates
Polycarboxylates can also be used which contain amounts of nonionizable monomers, such as ethylene and other simple olefins, styrene, alpha- methylstyrene, methyl, ethyl and C3 to C8 alkyl acrylates and methacrylates, isobornyl methacrylate, acrylamide, hydroxyethyl acrylate and methacrylate, hydroxypropyl acrylate and methacrylate, N-vinyl pyrrolidone, butadiene, isoprene, vinyl halides such as vinyl chloride and vinylidine chloride, alkyl maleates, alkyl fumarates. Other suitable polymers include other polycarboxylates, such as homopolymers and copolymers of monomeric units selected FROM the group consisting of unsaturated carboxylic acids such as acrylic acid, methacrylic acid, polycarboxylic acids, sulfonic acids, phosphonic acids and mixtures thereof.
Copolymerization of the above monomeric units among them or with other co- monomers such as maleic anhydride, ethylene or propylene are also suitable. c. Acrylate Polymers
Other suitable polymers are acrylic emulsion. These are generally copolymers of one or more acidic monomers, such as acrylic acid, methacrylic acid or maleic anhydride, with at least one other ethylenically unsaturated monomer selected from a group consisting of ethylene and other simple olefins, styrene, alpha-methylstyrene, methyl, ethyl and C3 to Cg alkyl acrylates and methacrylates, isobornyl methacrylate, acrylamide, hydroxyethyl acrylate and methacrylate, hydroxypropyl acrylate and methacrylate, N-vinyl pyrrolidone, butadiene, isoprene, vinyl halides such as vinyl chloride and vinylidine chloride, alkyl maleates, alkyl fumarates, fumaric acid, maleic acid, itaconic acid, and the like. It is also frequently desirable to include minor amounts of other functional monomers, such as acetoacetoxy methacrylate or other acetoacetate monomers and divinyl or polyvinyl monomers, such as glycol polyacrylates, allyl methacrylate, divinyl benzene and the like. The preferred polymers have a number average molecular weight of about 500 to about 2,000,000. These polymers may also be crosslinked with metal ions or modified for crosslinking with silane functionality as described, for example, in U.S. Patent 5,428,107. Examples of such acrylic emulsion polymers include those available under the Rhoplex tradename from Rohm & Haas, such as Rhoplex AC-33, Rhoplex B-924, and Rhoplex MC-76. There are also polymers from Alco, such as Balance CR, Balance 47 and Balance 055. Additionally, there are acrylates from Rohm and Haas, namely, Acusol, such as Acusol 445, and the like. See also Keyes et al., U.S. Patent 4,606,842, incorporated herein by reference. Other suitable polymers are copolymers of acrylic and/or methacrylic acid with acrylate and methacrylate esters. For example, a copolymer of 51% methyl methacrylate, 31% butyl acrylate. and 18% acrylic acid is available from Rohm & Haas as Emulsion Polymer E-1250.
Other suitable polymers may include cationic acrylic water soluble polymers that are copolymers of cationic quaternized acrylates, methacrylates, acrylamides, and methacrylamides, for example trimethylammoniumpropylmethacrylate, and acrylamide or acrylonitrile. f. Polyvinylpyrrolidones
Other suitable polymers include vinylpyrrolidone homopolymers and copolymers. Suitable vinylpyrrolidone homopolymers have an average molecular weight of from 1,000 to 100,000,000, preferably from 2,000 to 10,000,000, more preferably from 5,000 to 1,000,000, and most preferably from 30,000 to 700,000. Suitable vinyl pyrrolidone homopolymers are commercially available from ISP Corporation, Wayne, New Jersey under the product names PVP K-15 (average molecular weight of 8.000), PVP K30 (average molecular weight of 38,000), PVP K-60 (average molecular weight of 216,000), PVP K-90 (average molecular weight of 630,000), and PVP K-120 (average molecular weight of 2,900,000). Suitable copolymers of vinylpyrrolidone include copolymers of N-vinylpyrrolidone with one or more alkylenically unsaturated monomers. Suitable alkylenically unsaturated monomers include unsaturated dicarboxylic acids such as maleic acid, chloromaleic acid, fumaric acid, itaconic acid, citraconic acid, phenylmaleic acid, aconitic acid, acrylic acid, methacrylic acid, N-vinylimidazole, vinylcaprolactam, butene, hexadecene, and vinyl acetate. Any of the esters and amides of the unsaturated acids may be employed, for example, methyl acrylate, ethylacrylate, acrylamide, methacryamide, dimethylaminoethylmethacrylate, dimethylaminopropylmethacrylamide, trimethylammoniumethylmethacrylate, and trimethylammoniumpropylmethacrylamide. Other suitable alkylenically unsaturated monomers include aromatic monomers such as styrene, sulphonated styrene, alpha-methylstyrene, vinyltoluene, t-butyl styrene and others. Copolymers of vinylpyrrolidone with vinyl acetate are commercially available under the trade name PVP/VA from ISP Corporation. Copolymers of vinylpyrrolidone with alpha- olefins are available, for example, as P-904 from ISP Corporation. Copolymers of vinylpyrrolidone with dimethylaminoethylmethacrylate are available, for example, as Copolymer 958 from ISP Corporation. Copolymers of vinylpyrrolidone with trimethylammoniumethylmethacrylate are available, for example, as Gafquat 734 from ISP Corporation. Copolymers of vinylpyrrolidone with trimethylammoniumpropylmethacrylamide are available, for example, as Gafquat HS-100 from ISP Corporation. Copolymers of vinylpyrrolidone with styrene are available, for example, as Polectron 430 from ISP Corporation. Copolymers of vinylpyrrolidone with acrylic acid are available, for example, as Polymer ACP 1005 (25% vinylpyrrolidone/ 75% acrylic acid) from ISP Corporation. e. Methylvinyl ether Other suitable polymers include methylvinylether homopolymers and copolymers.
Preferred copolymers are those with maleic anhydride. These copolymers can be hydrolyzed to the diacid or derivatized as the monoalkyl ester. For example, the n- butyl ester is available as Gantrez ES-425 from ISP Corporation. f. Polyvinyl alcohols Other suitable polymers include polyvinyl alcohols. Preferably, polyvinyl alcohols which are at least 80.0%, preferably 88-99.9%, and most preferably 99.0-99.8% hydrolyzed are used. For example, the polyvinyl alcohol, Elvanol 71-30 is available from E. I. DuPont de Nemours and Company, Wilmington, Del. g. Polyethylene glycols
Yet other feasible polymers are polyethylene glycols, such as disclosed in Baker et al., U.S. Patent 4,690,779, incorporated herein by reference.
Mixtures of any of the foregoing polymers may be possible or desirable. The hydrophilic polymer or polymers are present at a level of about 0.001-5%, more preferably, about 0.001-1% of the liquid cleaner.
6. Chelating Agent
The chelating agent is also an important part of the invention. Chelants useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxysulfonates. Non-limiting examples of polyacetate and polycarboxylate builders include the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediamine tetraacetic acid, ethylenediamine triacetic acid, ethylenediamine tetrapropionic acid, diethylenetriamine pentaacetic acid, nitrilotriacetic acid, oxydisuccinic acid, iminodisuccinic acid, mellitic acid, polyacrylic acid or polymethacrylic acid and copolymers, benzene polycarboxylic acids, gluconic acid, sulfamic acid, oxalic acid, phosphoric acid, phosphonic acid, organic phosphonic acids, acetic acid, and citric acid. These chelating agents may also exist either partially or totally in the hydrogen ion form, for example, citric acid or disodium dihydrogen ethylenediamine tetraacetate. The substituted ammonium salts include those from methylamine, dimethylamine, butylamine, butylenediamine, propylamine, triethylamine, trimethylamine, monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, and propanolamine.
Other chelating agents, and dependent on the desired pH of the formulation (see below), are the mono-, di-, tri-, and tetrapotassium and ammonium salts of ethylenediamine tetraacetic acid. See, for example, Robbins et al., U.S. Patent 5,972,876, Chang et al., U.S. Patent 5,948,742, Ochomogo et al., U.S. Patent
5,948,741, and Mills et al., U.S. 5,814,591
The amount of chelant added should be in the range of 0.001-2%, more preferably 0.001-2%, by weight of the cleaner.
7. Water
Since the cleaner is an aqueous cleaner with relatively low levels of actives, the principal ingredient is water, which should be present at a level of at least about 70%, more preferably at least about 80%, and most preferably, at least about 90%.
Distilled, deionized, or industrial soft water is preferred so as not to contribute to formation of a residue and to avoid the introduction of undesirable metal ions.
8. Solvents A solvent may optionally be used which is generally a water soluble or dispersible organic solvent having a vapor pressure of at least 0.001 mm Hg at 25°C. A key attribute is that it should volatilize rapidly, such that it volatilizes no more than 5 minutes after contact with a surface, without leaving a residue. It is preferably selected from C,^ alkanols, C,^ diols, C,^ alkyl ethers of alkylene glycols and polyalkylene glycols, and mixtures thereof. The alkanol can be selected from methanol, ethanol, n-propanol, isopropanol, the various positional isomers of butanol, pentanol, and hexanol, and mixtures of the foregoing. It may also be possible to utilize in addition to, or in place of, said alkanols, the diols such as methylene, ethylene, propylene and butylene glycols, and mixtures thereof, and including polyalkylene glycols.
It is preferred to use a straight or branched chain alkanol as the coupling agent of the invention. These are methanol, ethanol, n-propanol, isopropanol, and the various positional isomers of butanol, pentanol, and hexanol. Especially preferred is isopropyl alcohol ("IPA"), also known as 2-propanol and, in the vernacular, "isopropanol." It is also preferred to use a mixture of an alkanol with a glycol ether, in which the ratio of the two components is about 100:1 to 1:10.
One can also use an alkylene glycol ether solvent in this invention. The alkylene glycol ether solvents can be used alone or in addition to the polar alkanol solvent. These can include, for example, monoalkylene glycol ethers such as ethylene glycol monopropyl ether, ethylene glycol mono-n-butyl ether, propylene glycol monopropyl ether, and propylene glycol mono-n-butyl ether, and polyalkylene glycol ethers such as diethylene glycol monoethyl or monopropyl or monobutyl ether, di- or tri-polypropylene glycol monomethyl or monoethyl or monopropyl or monobutyl ether, etc., and mixtures thereof. Additionally, acetate and propionate esters of glycol ethers can be used. Preferred glycol ethers are diethylene glycol monobutyl ether, also known as 2-(2-butoxyethoxy) ethanol, sold as Butyl Carbitol by Union Carbide, ethylene glycol monobutyl ether, also known as butoxyethanol, sold as Butyl Cellosolve also by Union Carbide, and also sold by Dow Chemical Co., propylene glycol monopropyl ether, available from a variety of sources, and propylene glycol methyl ether, sold by Dow as Dowanol PM.
Another preferred alkylene glycol ether is propylene glycol t-butyl ether, which is commercially sold as Arcosolve PTB, by Arco Chemical Co. Dipropylene glycol n-butyl ether ("DPNB") is also preferred.
Short chain carboxylic acids, such as acetic acid, glycolic acid, lactic acid and propionic acid are also potential solvents, although their strong odor may require mitigation with a fragrance. Short chain esters, such as glycol acetate, or cyclic or linear volatile methylsiloxanes (such as from Dow Corning), may also be suitable for use.
Additional water insoluble solvents may be included in minor amounts (0- 1%). These include isoparafinic hydrocarbons, mineral spirits, alkylaromatics, and terpenes such as d-limonene. Additional water soluble solvents may be included in minor amounts (0-2%). These include pyrrolidones, such as N-methyl-2- pyrrolidone, N-octyl-2-pyrrolidone and N-dodecyl-2- pyrrolidone.
It is preferred to limit the total amount of solvents to preferably no more than about 20%, and more preferably, no more than about 10%, of the cleaner. A particularly preferred range is about 1 -5%. These amounts of solvents are generally referred to as dispersion-effective or solubilizing-effective amounts. The solvents, especially the glycol ethers, are also important as cleaning materials on their own, helping to loosen and solubilize greasy or oily soils from surfaces cleaned. But the volatile solvents, such as IPA, are necessary to prevent the leaving of residues on the surface cleaned.
9. Miscellaneous Adjuncts
Buffering and pH adjusting agents may be desirable components. These would include minute amounts of inorganic agents such as alkali metal and alkaline earth salts of silicate, metasilicate, borate, carbonate, carbamate, phosphate, ammonia, and hydroxide. Organic buffering agents such as monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine, triethanolamine, and 2-amino-2-methylpropanol are also desirable.
Small amounts of adjuncts can be added for improving aesthetic qualities of the invention. Aesthetic adjuncts include fragrances or perfumes, such as those available from Givaudan-Rohre, International Flavors and Fragrances, Quest, Sozio, Firmenich,
Dragoco, Norda, Bush Boake and Allen and others, and dyes or colorants which can be solubilized or suspended in the formulation. Further solubilizing materials, such as hydrotropes (e.g., water soluble salts of low molecular weight organic acids such as the sodium or potassium salts of xylene sulfonic acid), may also be desirable. Adjuncts for cleaning include additional surfactants, such as those described in Kirk-Othmer,
Encyclopedia of Chemical Technology, 3rd Ed., Volume 22, pp. 332-432 (Marcel- Dekker, 1983), and McCutcheon's Soaps and Detergents (N. Amer. 1984), which are incorporated herein by reference. Dyes or colorants which can be solubilized or suspended in the formulation, such as diaminoanthraquinones, may be added, although it is cautioned that since leaving little or no residue is an objective of the invention, that only minute amounts should be used. Thickeners, such as polyacrylic acid, xanthan gum, alginates, guar gum, methyl, ethyl and propylhydroxycelluloses, and the like, may be desired additives, although the use of such polymers is to be distinguished from the previously mentioned hydrophilic polymers in 5 above. Defoamers, such as, without limitation, silicones, aminosilicones, silicone blends, silicone/hydrocarbon blends, and the like, available from Dow Corning, Wacker, Witco, Ross and Hercules. The amounts of these aesthetic adjuncts should be in the range of 0-2%, more preferably 0-1%.
Other various adjuncts which are known in the art for detergent compositions can be added so long as they are not used at levels that cause unacceptable spotting/filming.
Additionally, because the surfactants in liquid systems are sometimes subject to attack from microorganisms, it is advantageous to add a mildewstat or bacteriostat. Exemplary mildewstats (including non-isothiazolone compounds) include Kathon GC, a 5-chloro-2-methyl-4-isothiazolin-3-one, Kathon ICP, a 2-methyl-4-isothiazolin-3-one, and a blend thereof, and Kathon 886, a 5-chloro-2- methyl-4-isothiazolin-3-one, all available from Rohm and Haas Company; Bronopol, a 2-bromo-2-nitropropane 1,3-diol, from Boots Company Ltd.; Proxel CRL, a propyl-p-hydroxybenzoate, from ICI PLC; Nipasol M, an o-phenyl-phenol, Na+ salt, from Nipa Laboratories Ltd.; Dowicide A, a 1 ,2-benzoisothiazolin-3-one, from Dow Chemical Co.; and Irgasan DP 200, a 2,4,4'-trichloro-2- hydroxydiphenylether, from Ciba-Geigy A.G. See also, Lewis et al., U.S. 4,252,694 and U.S. 4, 105,431 , incorporated herein by reference. Other suitable preservatives include methyl, ethyl and propyl parabens, short chain organic acids (such as acetic, lactic and glycolic acids), bisguanidine compounds (e.g., Dantagard or Glydant) and the short chain alcohols mentioned in 8. above can be bifunctional and also act as preservatives, such as ethanol and IPA.
EXPERIMENTAL In the following experiments, a base inventive liquid cleaner to be impregnated on wipes was established. The formulation of the liquid cleaner was:
TABLE I
Figure imgf000019_0001
1
Solvent
2
Dowanol PM - propylene glycol n-methyl ether (Dow Chemical Company) 3Glucopon APG 425 (Henkel KGaA)
4
Acusol 445N (Rohm & Haas)
Table II depicts a thickened formula for the liquid cleaner:
TABLE II
Figure imgf000019_0002
Thickener, Naturesol 250HR (Hercules) In the above Tables I and II, the polyacrylic acid is a hydrophilic polymer which can be substituted by various other materials, such as, without limitationpolyethylene glycol, and copolymers of acrylic acid and another comonomer. See also above, 5. Polymers.
The liquid cleaner of Tables I and II is then loaded onto a wipe, which is then referred to as a wet wipe. Wipes are typically made from fibrous sheet materials as described in 1. Substrate above. Examples of the substrates from which the wipes are made include:
TABLE III
Figure imgf000021_0001
Example 1 : Filming and Streaking on Black Ceramic Tiles
In this test, the filming/streaking performance of wipes — such as described in Table II, to which a discrete amount of the liquid cleaner described in Table I was added, typically in an amount exceeding 100% of the weight of the wipe on a gram/gram basis — versus competitive products was compared. The test surfaces were black gloss tiles which had been initially cleaned with a 50/50 wt./wt. mixture of isopropyl alcohol/acetic acid. These tiles were then allowed to dry completely. The inventive wipes and the comparative products were then applied to individual tiles, using a Gardner Ware Tester. To ensure that the amount of liquid applied to each tile was at a maximum, the wipes were pinned to a sponge wrapped in plastic wrap and a one pound (454.54 grams) weight was placed on top of each wipe during the application of the liquid cleaner. Five strokes were used for each tile. The tiles were then allowed to dry completely and then were visually graded by an expert panel of over ten panelists. This was a blind test, in which the panelists did not know the identity of the products used to clean each mirror tile. They then graded each tile on a 0 to 10 scale, with 0 being dirty and 10 being completely clean and streak free. The results are depicted in Table IV: TABLE IV
Figure imgf000022_0001
Procter & Gamble Co. 2Unilever (NL) 3Procter & Gamble Co. (UK)
As can be seen from the foregoing, the inventive wipes show dramatically superior performance over comparative products.
Example 2: Filming and Streaking on Mirror Tiles
In the next set of examples, the inventive wipe was tested for performance on glass mirror tiles and compared to commercial products. In this test, the wipes were wiped over the mirrors and the mirrors allowed to dry. In a 0 to 10 scale, two standards were used: where a completely streaked mirror got a 0 grade, while a clean, nonstreaked mirror got a 10 grade. The test had multiple replicates with at least 10 expert panelists visually grading each mirror tile. This was a blind test, in which the panelists did not know the identity of the products used to clean each mirror tile. The confidence level for the test was 95%. The results are depicted below in Table V: 480
TABLE V
Figure imgf000023_0001
Once again, it is demonstrated that the inventive wipes show dramatically superior performance versus comparative products.
The foregoing has described the principles, preferred embodiments and modes of operation of the present invention. However, the invention should not be construed as being limited to the particular embodiments discussed. Thus, the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of the present invention as defined by the following claims.

Claims

CLAIMS 1. A cleaning wipe having enhanced streaking/filming performance, comprising:
(a) a wipe which comprises at least one layer of absorbent or adsorbent material, said wipe impregnated with:
(b) a liquid cleaner which comprises: (i) a low residue surfactant;
(ii) a hydrophilic polymer; and (iii) the remainder, water.
2. The wipe of claim 1 wherein said low surfactant is a nonionic surfactant.
3. The wipe of claim 1 wherein said nonionic surfactant is a glycoside.
4. The wipe of claim 1 wherein said hydrophilic polymer is selected from the group consisting of polysaccharides, polycarboxylates, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylates, polyethylene glycols, methylvinyl ethers, and mixtures thereof.
5. The wipe of claim 1 further comprising at least one adjunct selected from the group consisting of solvents, additional surfactants, cosurfactants, chelating agents, buffers, thickeners, dyes, colorants, biocides, fragrances, defoamers and mixtures thereof.
6. A method for cleaning a surface comprising: contacting said surface with a wipe impregnated with a liquid cleaner, said liquid cleaner itself comprising:
(a) a low residue surfactant; (b) a hydrophilic polymer; and
(c) the remainder, water.
7. A dispenser for cleaning wipes comprising a container with a plurality of said wipes therein, said wipes being treated with a liquid cleaner, said liquid cleaner comprising:
(a) a low residue surfactant;
(b) a hydrophilic polymer; and
(c) the remainder, water.
8. The dispenser of claim 7 wherein said plurality of wipes comprise a continuous web of nonwoven material.
9. The dispenser of claim 8 further comprising means for sizing an individual wipe from said continuous web.
10. The dispenser of claim 7 wherein said plurality of wipes comprise a series of individual sheets of nonwoven material .
PCT/US2000/030243 1999-11-24 2000-11-01 Improved cleaning wipes WO2001038480A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU14558/01A AU1455801A (en) 1999-11-24 2000-11-01 Improved cleaning wipes
CA002394626A CA2394626C (en) 1999-11-24 2000-11-01 A cleaning wipe comprising low residue surfactant and hydrophilic polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/448,703 1999-11-24
US09/448,703 US6340663B1 (en) 1999-11-24 1999-11-24 Cleaning wipes

Publications (1)

Publication Number Publication Date
WO2001038480A1 true WO2001038480A1 (en) 2001-05-31

Family

ID=23781342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/030243 WO2001038480A1 (en) 1999-11-24 2000-11-01 Improved cleaning wipes

Country Status (6)

Country Link
US (1) US6340663B1 (en)
AR (1) AR026499A1 (en)
AU (1) AU1455801A (en)
CA (1) CA2394626C (en)
CO (1) CO5180603A1 (en)
WO (1) WO2001038480A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266957A1 (en) * 2001-06-15 2002-12-18 The Clorox Company Cleaning wipes
WO2003006601A1 (en) * 2001-07-12 2003-01-23 Colgate-Palmolive Company Glass cleaning wipe
WO2003031558A1 (en) * 2001-10-09 2003-04-17 The Procter & Gamble Company Pre-moistened wipe for treating a surface
DE10234259A1 (en) * 2002-07-27 2004-02-05 Beiersdorf Ag Surfactant-soaked cleaning substrate
EP1403360A1 (en) * 2002-09-27 2004-03-31 Unilever N.V. Cleaning composition and wipe
US6916776B2 (en) 2000-06-12 2005-07-12 Svendsen Limited Partnership Article for sanitizing a surface comprising a wipe containing an adhesive, positively charged, binder
WO2009013719A1 (en) * 2007-07-26 2009-01-29 The Procter & Gamble Company Hard surface cleaning composition
US7651989B2 (en) 2003-08-29 2010-01-26 Kimberly-Clark Worldwide, Inc. Single phase color change agents
US7842654B2 (en) * 2003-12-03 2010-11-30 The Procter & Gamble Company Method, articles and compositions for cleaning bathroom surfaces
US20110009309A1 (en) * 2009-07-08 2011-01-13 Annick Julia Oscar Mertens Hard Surface Cleaning Composition

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559116B1 (en) 1999-09-27 2003-05-06 The Procter & Gamble Company Antimicrobial compositions for hard surfaces
US6716805B1 (en) * 1999-09-27 2004-04-06 The Procter & Gamble Company Hard surface cleaning compositions, premoistened wipes, methods of use, and articles comprising said compositions or wipes and instructions for use resulting in easier cleaning and maintenance, improved surface appearance and/or hygiene under stress conditions such as no-rinse
WO2001052713A2 (en) * 2000-01-21 2001-07-26 Kao Corporation Floor cleaning sheet
GB0023440D0 (en) * 2000-09-25 2000-11-08 Reckitt Benckiser Uk Ltd Improvements in or relating to organic compositions
US7232794B2 (en) * 2000-11-27 2007-06-19 The Procter & Gamble Company Dishwashing wipe
US20030100465A1 (en) * 2000-12-14 2003-05-29 The Clorox Company, A Delaware Corporation Cleaning composition
US7799751B2 (en) * 2000-12-14 2010-09-21 The Clorox Company Cleaning composition
US20020174500A1 (en) * 2001-01-12 2002-11-28 Playtex Products, Inc. Wipe for removing stains from fabrics and carpets
US6495508B1 (en) * 2001-07-12 2002-12-17 Colgate-Palmolive Company Cleaning wipe
US6429183B1 (en) * 2001-07-12 2002-08-06 Colgate-Palmolive Company Antibacterial cleaning wipe comprising betaine
US6436892B1 (en) * 2001-07-12 2002-08-20 Colgate-Palmolive Company Cleaning wipe comprising 2 bromo-2 nitropropane-1,3 diol
US6429182B1 (en) * 2001-07-12 2002-08-06 Colgate-Palmolive Company Antibacterial cleaning wipe comprising betaine
US8375494B2 (en) * 2001-09-14 2013-02-19 Clean Control Corporation Cleaning compositions containing a corrosion inhibitor
US7229505B2 (en) * 2001-09-14 2007-06-12 Clean Control Corporation Methods and compositions for surfactant-free cleaning
JP5140218B2 (en) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use
US6667290B2 (en) 2001-09-19 2003-12-23 Jeffrey S. Svendsen Substrate treated with a binder comprising positive or neutral ions
US20040033925A1 (en) * 2001-11-13 2004-02-19 Colgate-Palmolive Company Cleaning wipe
US6689736B2 (en) * 2001-11-13 2004-02-10 Colgate-Palmolive Company Cleaning wipe
US6652869B2 (en) * 2001-11-13 2003-11-25 Colgate-Palmolive Company For dish washing application
US6586385B1 (en) * 2001-11-13 2003-07-01 Colgate-Palmolive Co. Cleaning wipe
US6551980B1 (en) * 2001-11-13 2003-04-22 Colgate-Palmolive Company Cleaning wipe
US6794353B2 (en) * 2001-11-13 2004-09-21 Colgate-Palmolive Company Cleaning wipe
US6489284B1 (en) * 2001-11-13 2002-12-03 Colgate Palmolive Company Cleaning wipe
US6680287B2 (en) * 2001-11-13 2004-01-20 Colgate-Palmolive Company Cleaning wipe
US6432904B1 (en) * 2001-11-13 2002-08-13 Colgate-Palmolive Company Cleaning wipe comprising alkanolamide and/or amine oxide
US6440925B1 (en) * 2001-11-13 2002-08-27 Colgate-Palmolive Company Cleaning wipe comprising antioxidizing agent
US6613732B2 (en) * 2001-11-13 2003-09-02 Colgate-Palmolive Company Multilayer cleaning wipe
US20040033926A1 (en) * 2001-11-13 2004-02-19 Colgate-Palmolive Company Cleaning wipe
US6569828B1 (en) * 2001-11-13 2003-05-27 Colgate-Palmolive Company Cleaning wipe
US6534472B1 (en) * 2001-11-13 2003-03-18 Colgate-Palmolive Company Antibacterial cleaning wipe
US6573232B1 (en) * 2001-11-13 2003-06-03 Colgate-Palmolive Company Cleaning wipe
EP1446043A1 (en) * 2001-11-16 2004-08-18 The Procter & Gamble Company Disposable dish care and hard surface cleaning wipe
US6624135B2 (en) * 2001-11-26 2003-09-23 S.C. Johnson & Son, Inc. Cleaning sheet
US6495499B1 (en) * 2001-12-10 2002-12-17 Colgate-Palmolive Company Floor cleaning wipe
US6436887B1 (en) * 2001-12-10 2002-08-20 Colgate- Palmolive Company Floor cleaning wipe comprising 5-bromo-5-nitro-dioxan
US6835311B2 (en) * 2002-01-31 2004-12-28 Koslow Technologies Corporation Microporous filter media, filtration systems containing same, and methods of making and using
US7287650B2 (en) * 2002-01-31 2007-10-30 Kx Technologies Llc Structures that inhibit microbial growth
US20030211802A1 (en) * 2002-05-10 2003-11-13 Kimberly-Clark Worldwide, Inc. Three-dimensional coform nonwoven web
US6525014B1 (en) * 2002-08-09 2003-02-25 Colgate-Palmolive Company Cleaning wipe comprising a center detergent layer
CA2495098A1 (en) * 2002-08-09 2004-02-19 Colgate-Palmolive Company Cleaning wipe
GB2391810A (en) 2002-08-14 2004-02-18 Reckitt Benckiser Inc Disinfectant with residual antimicrobial activity
US6489280B1 (en) * 2002-08-26 2002-12-03 Colgate-Palmolive Co. Light duty liquid cleaning compositions having improved preservative system
US6608013B1 (en) * 2002-08-26 2003-08-19 Colgate-Palmolive Company Light duty liquid cleaning compositions having improved preservative system
US6562773B1 (en) * 2002-08-26 2003-05-13 Colgate-Palmolive Company Light duty liquid cleaning compositions having improved preservative system
US20040092185A1 (en) * 2002-11-13 2004-05-13 Grafe Timothy H. Wipe material with nanofiber layer
US20040147425A1 (en) * 2002-11-14 2004-07-29 The Procter & Gamble Company Wiping articles and their use
US7994079B2 (en) * 2002-12-17 2011-08-09 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US20040111817A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Disposable scrubbing product
US7815995B2 (en) * 2003-03-03 2010-10-19 Kimberly-Clark Worldwide, Inc. Textured fabrics applied with a treatment composition
US7250392B1 (en) * 2003-03-07 2007-07-31 Cognis Corporation Surfactant blend for cleansing wipes
EP1628779A4 (en) 2003-04-07 2009-03-04 Polymer Group Inc Dual sided nonwoven cleaning articles
US20040258843A1 (en) * 2003-04-07 2004-12-23 Polymer Group, Inc. Dual sided nonwoven articles for cleaning
US20050025936A1 (en) * 2003-04-11 2005-02-03 Jerry Snider Nonwoven cleaning articles having intercalated three-dimensional images
US20040258844A1 (en) * 2003-04-11 2004-12-23 Polymer Group, Inc. Nonwoven cleaning articles having compound three-dimensional images
US20040204332A1 (en) * 2003-04-14 2004-10-14 Colgate-Palmolive Company Cleaning wipe
WO2004095999A2 (en) * 2003-04-25 2004-11-11 Polymer Group, Inc. Floor cleaning implement
US20050026802A1 (en) * 2003-08-01 2005-02-03 Andrew Kilkenny Disinfectant glass wipe
US20050112328A1 (en) * 2003-08-07 2005-05-26 Polymer Group, Inc. Cleaning sheet with improved three-dimensional cleaning surface
US20050065055A1 (en) * 2003-09-19 2005-03-24 Jerry Barnes Aqueous cleaning composition for hard surfaces
WO2005049781A1 (en) * 2003-11-12 2005-06-02 Ciba Specialty Chemicals Holding Inc. Surface brightening composition
US7069629B2 (en) * 2003-12-15 2006-07-04 Polymer Group, Inc. Durable lightweight imaged nonwoven wipe
US20050134629A1 (en) * 2003-12-19 2005-06-23 Martin Thomas W. Ink jet cleaning wipes
US20050136772A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
US20050196462A1 (en) * 2003-12-30 2005-09-08 Oculus Innovative Sciences, Inc. Topical formulation containing oxidative reductive potential water solution and method for using same
US20050139808A1 (en) * 2003-12-30 2005-06-30 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and process for producing same
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
EP3205358A1 (en) 2003-12-30 2017-08-16 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and method of using the same
US20050155628A1 (en) * 2004-01-16 2005-07-21 Andrew Kilkenny Cleaning composition for disposable cleaning head
US20050178518A1 (en) * 2004-02-13 2005-08-18 Hugh West Sodium sulfate treated pulp
US20050268442A1 (en) * 2004-05-26 2005-12-08 Polymer Group, Inc. Mechanically extensible substrates
US7300403B2 (en) * 2004-07-20 2007-11-27 Angelsen Bjoern A J Wide aperture array design with constrained outer probe dimension
US20060052269A1 (en) * 2004-09-01 2006-03-09 Panandiker Rajan K Premoistened disposable wipe
US20060135026A1 (en) * 2004-12-22 2006-06-22 Kimberly-Clark Worldwide, Inc. Composite cleaning products having shape resilient layer
WO2006102681A2 (en) * 2005-03-23 2006-09-28 Oculus Innovative Sciences, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
WO2006119300A2 (en) 2005-05-02 2006-11-09 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US20070010148A1 (en) * 2005-07-11 2007-01-11 Shaffer Lori A Cleanroom wiper
US20070010153A1 (en) * 2005-07-11 2007-01-11 Shaffer Lori A Cleanroom wiper
WO2007050500A2 (en) * 2005-10-24 2007-05-03 Aculon, Inc. Chemical wipes
US8258066B2 (en) * 2005-12-12 2012-09-04 Milliken & Company Cleaning device
WO2007070650A2 (en) * 2005-12-14 2007-06-21 3M Innovative Properties Company Antimicrobial adhesive films
US8124169B2 (en) * 2005-12-14 2012-02-28 3M Innovative Properties Company Antimicrobial coating system
US8859481B2 (en) * 2005-12-15 2014-10-14 Kimberly-Clark Worldwide, Inc. Wiper for use with disinfectants
BRPI0706676B8 (en) 2006-01-20 2021-05-25 Oculus Innovative Sciences Inc use of an aqueous solution with redox potential
US8187422B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Disposable cellulosic wiper
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
US20080016764A1 (en) * 2006-07-20 2008-01-24 Wolfe James H Plant care wipes
US20080028560A1 (en) * 2006-08-07 2008-02-07 Nicola John Policicchio Duster system for damp and dry dusting
US8173146B2 (en) * 2007-04-23 2012-05-08 Safen'Simple LLC Stoma wipe and adhesive remover and method
US7510137B2 (en) * 2007-05-24 2009-03-31 Kimberly-Clark Worldwide, Inc. Dispenser for sheet material
EP2167105A1 (en) * 2007-06-13 2010-03-31 3M Innovative Properties Company Antimicrobial film-forming composition, antimicrobial film, and method of verifying the presence of an antimicrobial film
US8211846B2 (en) 2007-12-14 2012-07-03 Lam Research Group Materials for particle removal by single-phase and two-phase media
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
JP5752140B2 (en) * 2009-10-22 2015-07-22 エス.シー. ジョンソン アンド サン、インコーポレイテッド Hard surface treatment composition containing a low-volatile organic component that provides antifogging and cleaning effects
US9565857B2 (en) * 2010-09-10 2017-02-14 Board Of Regents, The University Of Texas System Antimicrobial solutions
CN105764392B (en) * 2013-12-03 2019-11-19 金伯利-克拉克环球有限公司 Wet wipe for personal nursing
MX2017000530A (en) 2014-07-31 2017-05-01 Kimberly Clark Co Anti-adherent composition.
US10028899B2 (en) 2014-07-31 2018-07-24 Kimberly-Clark Worldwide, Inc. Anti-adherent alcohol-based composition
US10238107B2 (en) 2014-07-31 2019-03-26 Kimberly-Clark Worldwide, Inc. Anti-adherent composition
US9956153B2 (en) 2014-08-01 2018-05-01 Ecolab Usa Inc. Antimicrobial foaming compositions containing cationic active ingredients
BR112017019534B1 (en) * 2015-04-01 2023-12-19 Kimberly-Clark Worldwide, Inc METHOD AND FIBROUS SUBSTRATE FOR REMOVING GRAMNEGATIVE BACTERIA FROM A SURFACE
WO2017131691A1 (en) 2016-01-28 2017-08-03 Kimberly-Clark Worldwide, Inc. Anti-adherent composition against dna viruses and method of inhibiting the adherence of dna viruses to a surface
WO2017204806A1 (en) 2016-05-26 2017-11-30 Kimberly-Clark Worldwide, Inc. Anti-adherent compositions and methods of inhibiting the adherence of microbes to a surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342534A (en) * 1992-12-31 1994-08-30 Eastman Kodak Company Hard surface cleaner
WO1998026040A1 (en) * 1996-12-09 1998-06-18 Kao Corporation Detergent-impregnated article

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606842A (en) 1982-03-05 1986-08-19 Drackett Company Cleaning composition for glass and similar hard surfaces
US4627931A (en) 1985-01-29 1986-12-09 A. E. Staley Manufacturing Company Method and compositions for hard surface cleaning
US4615937A (en) 1985-09-05 1986-10-07 The James River Corporation Antimicrobially active, non-woven web used in a wet wiper
US4666621A (en) 1986-04-02 1987-05-19 Sterling Drug Inc. Pre-moistened, streak-free, lint-free hard surface wiping article
US4781974A (en) 1986-04-23 1988-11-01 James River Corporation Antimicrobially active wet wiper
US4741944A (en) * 1986-07-30 1988-05-03 Kimberly-Clark Corporation Wet wipe and wipe dispensing arrangement
US4938888A (en) * 1989-01-05 1990-07-03 Lever Brothers Company Detergent sheet with alkyl polyglycoside composition
CA2004310C (en) 1989-05-05 1995-02-21 John Jerome Burke Hard surface cleaning composition containing polyacrylate copolymers as performance boosters
CA2161431A1 (en) 1993-05-21 1994-12-08 Barry A. Salka Mild shampoo composition
WO1996014835A1 (en) * 1994-11-09 1996-05-23 The Procter & Gamble Company Cleaning tissues treated with water-in-lipid emulsion
ES2137457T3 (en) 1995-06-23 1999-12-16 Procter & Gamble CLEANING ITEMS, SUBSTRATES FOR THEMSELVES AND METHOD FOR THE MANUFACTURE OF SUBSTRATES.
CA2242411A1 (en) 1996-01-12 1997-07-17 The Procter & Gamble Company Disinfecting compositions and processes for disinfecting surfaces
BR9706945A (en) 1996-01-12 1999-04-06 Procter & Gamble Disinfectant compositions and processes for disinfecting surfaces
US5763332A (en) * 1996-04-30 1998-06-09 The Procter & Gamble Company Cleaning articles comprising a polarphobic region and a high internal phase inverse emulsion
IL126789A (en) 1996-04-30 2003-03-12 Procter & Gamble Cleaning article treated with a high internal phase inverse emulsion and process for applying the same
US5980922A (en) * 1996-04-30 1999-11-09 Procter & Gamble Company Cleaning articles treated with a high internal phase inverse emulsion
JP3711176B2 (en) 1996-06-21 2005-10-26 旭電化工業株式会社 Cleaning composition for hard surface
US6028018A (en) 1996-07-24 2000-02-22 Kimberly-Clark Worldwide, Inc. Wet wipes with improved softness
US5908707A (en) 1996-12-05 1999-06-01 The Procter & Gamble Company Cleaning articles comprising a high internal phase inverse emulsion and a carrier with controlled absorbency
US5914177A (en) * 1997-08-11 1999-06-22 The Procter & Gamble Company Wipes having a substrate with a discontinuous pattern of a high internal phase inverse emulsion disposed thereon and process of making

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342534A (en) * 1992-12-31 1994-08-30 Eastman Kodak Company Hard surface cleaner
WO1998026040A1 (en) * 1996-12-09 1998-06-18 Kao Corporation Detergent-impregnated article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916776B2 (en) 2000-06-12 2005-07-12 Svendsen Limited Partnership Article for sanitizing a surface comprising a wipe containing an adhesive, positively charged, binder
EP1266957A1 (en) * 2001-06-15 2002-12-18 The Clorox Company Cleaning wipes
WO2003006601A1 (en) * 2001-07-12 2003-01-23 Colgate-Palmolive Company Glass cleaning wipe
JP2005505661A (en) * 2001-10-09 2005-02-24 ザ プロクター アンド ギャンブル カンパニー Pre-wet wipes for surface treatment
WO2003031558A1 (en) * 2001-10-09 2003-04-17 The Procter & Gamble Company Pre-moistened wipe for treating a surface
DE10234259A1 (en) * 2002-07-27 2004-02-05 Beiersdorf Ag Surfactant-soaked cleaning substrate
EP1403360A1 (en) * 2002-09-27 2004-03-31 Unilever N.V. Cleaning composition and wipe
US7651989B2 (en) 2003-08-29 2010-01-26 Kimberly-Clark Worldwide, Inc. Single phase color change agents
US7842654B2 (en) * 2003-12-03 2010-11-30 The Procter & Gamble Company Method, articles and compositions for cleaning bathroom surfaces
WO2009013719A1 (en) * 2007-07-26 2009-01-29 The Procter & Gamble Company Hard surface cleaning composition
EP2025743A1 (en) * 2007-07-26 2009-02-18 The Procter and Gamble Company Hard surface cleaning compostion
US7811387B2 (en) 2007-07-26 2010-10-12 The Procter & Gamble Company Hard surface cleaning composition
US20110009309A1 (en) * 2009-07-08 2011-01-13 Annick Julia Oscar Mertens Hard Surface Cleaning Composition
US8546317B2 (en) * 2009-07-08 2013-10-01 The Procter & Gamble Company Hard surface cleaning composition

Also Published As

Publication number Publication date
AU1455801A (en) 2001-06-04
CA2394626A1 (en) 2001-05-31
CA2394626C (en) 2009-10-13
CO5180603A1 (en) 2002-07-30
AR026499A1 (en) 2003-02-12
US6340663B1 (en) 2002-01-22

Similar Documents

Publication Publication Date Title
US6340663B1 (en) Cleaning wipes
EP2082021B1 (en) Premoistened cleaning disposable substrate
EP1907526B1 (en) Process for removing dirt or make-up from surfaces
US7700540B2 (en) Hard surface cleaning composition
US20030216281A1 (en) Hard surface cleaning composition
EP3309243B1 (en) Hard surface cleaners
US20170121637A1 (en) Liquid detergent composition
JPH10500442A (en) Pre-stainer for laundry containing associative polymer thickener
CA3071536C (en) Antimicrobial cleaning composition
KR20010072610A (en) Shower rinsing composition
JP2020180287A (en) Liquid hand dishwashing cleaning composition
JP4230153B2 (en) Antifouling cleaner for hard surfaces
US10689598B2 (en) Liquid detergent composition
EP1032630A1 (en) Antibacterial liquid dishwashing detergent compositions
WO2013090268A1 (en) Acidic gel cleaner with improved rinsing from a dried state
CA2390318C (en) Improved cleaning wipes
CA3146721A1 (en) Cleaning composition
JP2003064399A (en) Detergent composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2394626

Country of ref document: CA

122 Ep: pct application non-entry in european phase