[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001037270A1 - Disk-like recording carrier and optical recording/reproducing apparatus comprising the same - Google Patents

Disk-like recording carrier and optical recording/reproducing apparatus comprising the same Download PDF

Info

Publication number
WO2001037270A1
WO2001037270A1 PCT/JP2000/008062 JP0008062W WO0137270A1 WO 2001037270 A1 WO2001037270 A1 WO 2001037270A1 JP 0008062 W JP0008062 W JP 0008062W WO 0137270 A1 WO0137270 A1 WO 0137270A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
pit
record carrier
pits
signal
Prior art date
Application number
PCT/JP2000/008062
Other languages
French (fr)
Japanese (ja)
Inventor
Masayoshi Shioya
Yasumori Hino
Kazumasa Hirano
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2001037270A1 publication Critical patent/WO2001037270A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Definitions

  • the present invention relates to a disc-shaped record carrier on which information is recorded by a light source such as a laser and / or from which the recorded information is reproduced, and an optical disc for recording information on the record carrier and reproducing the recorded information.
  • the present invention relates to a type recording / reproducing apparatus. Background art
  • a disc-shaped record carrier that rotates at a predetermined number of revolutions is converged and irradiated with a light beam generated from a semiconductor laser mounted on an optical pickup using an objective lens or the like, and the information recorded on the record carrier is Optical reproducing devices for reproducing are known.
  • a record carrier used in such an optical reproducing apparatus has a surface run of soil 100 / m to soil 200im due to a warp caused by the record carrier itself, a tilt caused by the device, and the like.
  • the depth of focus of the objective lens that converges the light beam on the record carrier is narrower than 1 m, the light beam output from the optical pickup must be focused properly on the record carrier.
  • a focus error signal indicating the convergence state of the light beam on the record carrier is detected, and the objective lens is driven in the direction of moving toward and away from the record carrier in accordance with the focus error signal.
  • a focus control system is needed to maintain the beam (ie, to make the light beam properly converge on the record carrier).
  • the above-mentioned record carrier is provided with a fine pit row (track) having a pitch of 0.74 to 1.6 m in a spiral shape. Reproduction of the signal recorded thereon is performed by receiving reflected light from the record carrier with a photodetector while performing tracking control so that the light beam is always positioned on a pit row (track).
  • the focus error signal is also obtained from the reflected light from the record carrier.
  • the astigmatism method is often used.
  • a photodetector divided into four by two orthogonal straight lines is installed at a position where the cross section of the reflected light of the astigmatic optical system becomes circular when the record carrier is at the focal position of the objective lens.
  • the force error signal (FE) can be detected by combining the four detection signals A, B, C, and D obtained from the four divided photodetectors by an arithmetic circuit or the like.
  • a and B and C and D are detection signals output from the cells of the photodetector located at diagonal positions.
  • the beam cross section on the photodetector divided into four parts becomes a long circle in the diagonal direction orthogonal to the major axis direction of the above-mentioned ellipse.
  • the focus error signal (FE) described above is caused by the position deviation of the optical detector, the variation in the sensitivity of each photodetector divided into four, and the variation in the amplification factor of the amplifier that amplifies the signal output from each photodetector.
  • the convergence state of the light beam on the record carrier may not be optimal even if becomes zero.
  • a bias (offset) voltage is applied to the focus error signal to change the convergence state of the light beam, and adjustment is performed so that the jitter of the reproduced signal is optimized.
  • the bias voltage is adjusted by the following procedures (1) to (4) (see Japanese Patent Application Laid-Open No. 8-77579).
  • Focus control is performed on the objective lens with respect to the record carrier, and tracking control is performed so that the light beam spot by the objective lens is always positioned in the pit row on the record carrier.
  • V (V 1 + V 2) 2 from the stored VI and V 2, and apply this value V to the focus control system as the optimal bias voltage value.
  • the adjustment requires that information for measuring the error rate be recorded on the record carrier in advance. That is, in the case of an unused recording / reproducing record carrier, there is a problem that the bias voltage cannot be adjusted because no information is recorded on the record carrier. In addition, when trying to perform the above-described bias voltage adjustment on an unused recording / reproducing record carrier, it is necessary to provide a special area on the record carrier and perform information recording in advance, and then adjust the bias voltage. There is a problem that the start-up time of the device increases.
  • the method using the error rate of the reproduction signal requires an error rate measurement system that is not used in the normal operation of the optical recording / reproducing apparatus, and has a problem that the apparatus becomes complicated and expensive. Disclosure of the invention
  • the present invention has been made in view of the above points, and it is unnecessary to previously record information for adjusting a bias voltage, thereby shortening a start-up time of an apparatus, and a circuit for measuring an error rate of a reproduced signal. It is an object of the present invention to provide a disc-shaped record carrier and an optical recording / reproducing apparatus which can optimize a convergence state of a light beam without using the same.
  • the present invention has the following configuration.
  • the disc-shaped record carrier of the present invention is a disc-shaped record carrier that is arranged radially along the center line of a pit force concentric or spiral virtual track, wherein The width of the pit in the radial direction is set to a predetermined ratio with respect to a spot size of a light beam for recording information on the record carrier or reproducing the recorded information.
  • the interval or width in the radial direction of the pit is set to a predetermined ratio with respect to the spot size of the light beam, when the light beam passes over the pit and when the light beam passes through the pit When passing between the ports, the signal amplitude detected from the pit can be made substantially equal.
  • the convergence state of the light beam is optimized by operating the focus control system without operating the tracking control system.
  • a radial width of the pit is 0.5 times or more of a spot size of the light beam. According to such a configuration, it is possible to always secure a signal amplitude of 85% or more of the maximum detectable signal amplitude based on the pit.
  • the interval between the pits in the radial direction is 1.4 times or less the spot size of the light beam.
  • the distance between the clock pits in the radial direction is set to 1.4 times or less of the spot size of the light beam, the light beam will pass through between the clock pits. It is possible to obtain a signal amplitude of 90% or more of the signal amplitude based on the pit obtained when the beam passes over the clock pit.
  • the optical recording / reproducing apparatus of the present invention provides a light converging device that converges a light beam on a disc-shaped record carrier on which pits are arranged at predetermined intervals along the center line of a concentric or spiral virtual track.
  • it is possible to adjust the convergence state of the light beam so that the signal amplitude based on the pit, which is the output value of the amplitude detection means, becomes a predetermined value.
  • the amplitude detecting means includes an averaging means for averaging and outputting a signal amplitude based on the detected plurality of pits.
  • the signal amplitude detected when the light beam passes over the pit and when the light beam passes between the pits changes. It is possible to adjust the convergence state of the light beam using the signal amplitude based on.
  • the apparatus further comprises tracking control means for causing the light beam to follow the center line of the virtual track, and operating the tracking control means so that the output of the amplitude detection means becomes a predetermined value. It is preferable to change the convergence state of the beam. According to this configuration, by operating the tracking control means, the light beam can pass through a predetermined position with respect to the pit (on the clock pit or at an intermediate position between the wobbled pits). Therefore, it is possible to more stably adjust the convergence state of the light beam by reducing the fluctuation of the signal amplitude based on the signal.
  • the predetermined value is a maximum value of a signal amplitude based on the pit. That is, by adjusting the convergence state of the light beam so that the signal amplitude based on the pit becomes maximum, it becomes possible to minimize the jitter of the reproduced signal obtained from the optical disk. Therefore, it is possible to adjust the convergence state of the light beam more easily and faster than in the conventional method of measuring the error limit value of the reproduction signal. Also, since there is no need to provide a circuit for measuring the error rate of the reproduced signal, the device configuration can be simplified.
  • the pits may be formed as wobble pits which are allocated to the inner and outer peripheral sides with respect to the center line of the virtual track. According to such a configuration, among the pits provided on the record carrier, even if the amplitude of the signal based on the wobbled pits distributed and arranged on the inner and outer peripheries with respect to the center line of the track for tracking control is used, The convergence state of the beam can be adjusted to a predetermined state.
  • the pit may be a center of the virtual track.
  • Clock pits for generating clock signals arranged at predetermined intervals on the line can also be used. According to such a configuration, among the pits provided on the record carrier, the convergence state of the light beam can be adjusted to a predetermined state by using the clock pit provided for generating the clock signal. .
  • the optical recording / reproducing apparatus of the present invention includes: a light converging means for converging a light beam on the disc-shaped record carrier of the present invention; and Focus control means for controlling the position of the light converging means, and amplitude detecting means for detecting a signal amplitude based on the pit from the reflected light from the record carrier, wherein the output of the amplitude detecting means has a predetermined value.
  • the convergence state of the light beam is changed so that According to such a configuration, the optimum value of the bias voltage applied to optimize the convergence state of the light beam on the record carrier can be determined based on the signal amplitude based on the pit.
  • the apparatus can be simplified because the error rate measurement system required when adjusting the bias voltage based on the error rate of the reproduction signal is not required. Further, the convergence state of the light beam can be optimized only by operating the focus control system without operating the tracking control system.
  • FIG. 1A is a perspective view showing the entire configuration of a disc-shaped record carrier of the present invention
  • FIG. 1B is an enlarged plan view schematically showing a state of formation of a pit on a surface.
  • FIG. 2 is a diagram showing the relationship between the ratio of the spot width to the spot size of the light beam and the signal amplitude.
  • FIG. 3 is a diagram illustrating the relationship between the ratio of the interval of the clock pit in the radial direction to the spot size of the light beam and the signal amplitude.
  • FIG. 4 is a block diagram showing the configuration of the optical recording / reproducing apparatus of the present invention.
  • 5A, 5B, and 5C are diagrams illustrating the operation of the astigmatism optical system of the optical recording / reproducing apparatus of the present invention.
  • FIG. 6 is a diagram showing a pit and a signal waveform detected from the pit.
  • FIG. 7 is a block diagram showing a configuration of a detection circuit of the optical recording / reproducing apparatus of FIG.
  • FIG. 8 is a diagram showing the relationship between the offset voltage, the amount of jitter of the reproduced signal, and the signal amplitude value of the clock pitch.
  • FIG. 1A and 1B are configuration diagrams of a disc-shaped record carrier 21 of the present invention.
  • FIG. 1A is a perspective view showing the entire configuration
  • FIG. 1B is a schematic diagram showing a pit formation state on a surface.
  • FIG. 1A is a perspective view showing the entire configuration
  • FIG. 1B is a schematic diagram showing a pit formation state on a surface.
  • a disc-shaped record carrier (hereinafter referred to as an optical disc) 21 has a recording film 2 laminated on a substrate 1, and a spiral virtual track 3, 4 is formed.
  • One round (360 °) of tracks 3 and 4 is divided into 128 segments 5.
  • FIG. 1B schematically shows a state of formation of a pit in one segment.
  • the horizontal direction on the paper indicates the track circumferential direction, and the light beam spot moves from left to right on the paper.
  • Each segment 5 includes a clock pit 6 for generating a synchronizing signal in the direction of travel of the light beam spot, a wobbled pit 7 and 8 for obtaining a tracking signal, and address data or predetermined data.
  • Address pits 9 in which information is distributed in units of 1 bit and areas where additional recording and erasing of information or signals can be performed Areas 10 are provided in order.
  • the pebble pits 7 and 8 are formed at equal distances from the center line of the virtual tracks 3 and 4 to the inner and outer radial sides in the radial direction.
  • the arrangement of the pebble pits 7, 8 differs between adjacent virtual tracks when viewed along the direction of movement of the light beam spot.
  • FIG. 1B the arrangement of the pebble pits 7, 8 with respect to the center line of the virtual track is shown. Indicates the virtual track as 3 and 4.
  • the radial width of the pits 6, 7, 8, and 9 and the radial interval between the clock pits 6 are light beams converged on the optical disk 21.
  • the spot size is set so as to have a predetermined ratio with respect to the spot size (the width at which the relative intensity of the laser beam output from the objective lens 33 of the optical recording / reproducing apparatus in FIG. 4 described below is 50%). I have.
  • the depth of the pits 6, 7, 8, and 9 is set to, for example, 5 for the wavelength ⁇ of the laser beam, and the circumferential length of the pit is 0.8 times the spot size of the light beam.
  • the horizontal axis represents the ratio of the radial width of the pit to the spot size of the light beam
  • the vertical axis represents the signal amplitude as a relative value with the maximum value being one.
  • the depth of the clock pit 6 is set to ⁇ / 5 with respect to the wavelength ⁇ of the laser beam, and the circumferential length of the clock pit 6 is set to 0.8 times the spot size of the light beam.
  • the signal amplitude based on the pits is It changes as shown in 3.
  • the horizontal axis represents the ratio of the radial spacing of the clock pit 6 to the spot size of the light beam
  • the vertical axis represents the signal amplitude as a relative value with the maximum value being one. If the radial distance between the clock pits 6 is set to 1.4 times or less the spot size of the light beam, even if the light beam passes between the clock pits 6 (dotted line). However, when the light beam passes over the clock pit 6 (solid line), it is possible to obtain an amplitude substantially equal to the signal amplitude obtained (90% or more).
  • the light beam is In this case, it is possible to detect substantially the same signal amplitude when the light beam passes over the pit and when the light beam passes between the pits.
  • FIG. 4 is a block diagram of the optical recording / reproducing apparatus of the present invention for recording / reproducing a signal on / from the optical disk 21 of FIG.
  • 21 is an optical disk shown in FIG. 1A
  • 32 is an optical head for recording information on the optical disk 21 or reproducing information recorded on the optical disk 21.
  • Light generated from a light source provided inside the light head 32 is collected on the optical disk 21 by the objective lens 33.
  • 35 and 40 are photodetectors for detecting a signal recorded on an optical disc 21 It is.
  • the photo detectors 35, 40, 49 are mounted inside the optical head 32.
  • the optical head 32 is configured to be able to be transported in the radial direction of the optical disk 21 by the feed mode 34.
  • the optical disk 21 is mounted on a spindle motor (not shown) and rotates at a predetermined rotation speed.
  • a light beam output from a semiconductor laser (not shown) mounted on the optical head 32 is converged and irradiated onto the optical disk 21 by the objective lens 33.
  • the reflected light from the optical disk 21 is split by an optical system (not shown) provided inside the optical head 32.
  • One of the divided reflected lights passes through an astigmatic optical system (not shown), and then irradiates a photodetector 49 divided into four parts.
  • the other reflected light is an analyzer (not shown). After passing through the above, the light detectors 35, 40 for recording signal detection are irradiated.
  • the photodetector 49 is installed at a position where the cross section of light passing through an astigmatism optical system (not shown) becomes circular when the recording film 2 of the optical disk 21 is at the focal position of the objective lens 33. ing.
  • the beam cross section 31 on the photodetector 49 becomes an ellipse long in the diagonal direction as shown in FIG. 5B. . Therefore, the four cells 36, 37, 38, 3
  • the detection signals A, C, D, and B respectively output from 9 are (A + B)> (C + D).
  • the beam cross section 31 on the photodetector 49 is orthogonal to the long axis of the ellipse in FIG. 5B as shown in FIG. 5C. Ellipse having a major axis in the direction of Therefore, the detection signals A, C, D, and B respectively output from the four cells 36, 37, 38, and 39 are (A + B) ⁇ (C + D).
  • the output signals A and B of the cell 36 and the cell 39 on the photodetector 49 are added by the adder 43 and input to the differential amplifier 44.
  • the output signals C and D of the cells 37 and 38 on the photodetector 49 are added by the adder 42 and input to the differential amplifier 44.
  • the focus error signal FE output from the differential amplifier 44 is input to the focus control circuit 45.
  • the focus control circuit 45 adds the output signal of the adder 42 and the output signal of the adder 43 (that is, adds all the detection signals A, B, C, and D of the photodetector 49). It consists of a controlled AGC (Automatic Gain Adjuster) and a high-pass filter.
  • AGC Automatic Gain Adjuster
  • the output signal from the focus control circuit 45 is applied to the drive circuit 46 via the adder 51 and the SW circuit (switching circuit) 52, and the output signal of the drive circuit 46 is applied to the focus coil 53. .
  • a current corresponding to the focus error signal FE flows through the focus coil 53, and the objective lens 33 is driven.
  • a SW circuit 52 is for setting the focus control system to an operation state or a non-operation state.
  • the other split light of the reflected light from the optical disc 21 passes through an analyzer (not shown) or the like, and then irradiates the photodetectors 35 and 40 for detecting recording signals.
  • Light is distributed to the photodetectors 35 and 40 according to the direction of magnetization on the optical disc 21 by the action of the analyzer. Therefore, the information signal recorded in the form of the direction of magnetization on the optical disc 21 is detected by taking the difference between the output signal of the photodetector 35 and the output signal of the photodetector 40 (see FIG. Omitted). Signals are recorded at a very high density on the optical disk 21, and high-response elements are used for the photodetectors 35 and 40 for detecting the signals.
  • a synchronization signal is generated at the beginning of a segment 5 formed by dividing one round of the track into 128.
  • a clock pit 6 wobbled pits 7 and 8 for obtaining a tracking signal, and an address pit 9 in which address data is dispersed for each bit.
  • these pits are extremely small, with a radial width of at least 0.5 times the spot size of the light beam and a circumferential length of 0.8 times the spot size. Have been.
  • the reflected light from the pit portion is much smaller than the reflected light from portions other than the pit portion, so the presence or absence of the pit is determined by the amount of reflected light from the optical disk 21. It is possible to detect.
  • the above-described detection of the pit is performed by adding the output signal of the photodetector 35 and the output signal of the photodetector 40 by the adder 41.
  • the output signal of the adder 41 is input to the detection circuit 47.
  • FIG. 6A shows the clock pit 6, the wobbled pits 7, 8, and the address pit 9 on the virtual track 3 (or 4) shown in FIG. 1B.
  • FIG. 6B shows the output signal waveform of the adder 41 corresponding to each pit.
  • FIG. 7 is a block diagram showing a configuration of the detection circuit 47.
  • the clock bit detection circuit 54 constituted by a logic circuit or the like detects the clock bit 6 and outputs the detection signal to the PLL circuit 55. Output to
  • circuit 55 outputs the pulse-like timing signal shown in Fig. 6 (c), operates the peak detection circuit 56 (see Fig. 7) at the timing shown in Fig. 6 (c), and 41
  • the peak value of peak 11 corresponding to clock pit 6 in the output signal waveform from Fig. 6 (Fig. 6 (b)), that is, the signal amplitude value Sc based on clock pit 6 is detected.
  • the timing signal output from the PLL circuit 55 is delayed for a predetermined time by the timer 59 (see FIG. 7), and then at the timing shown in FIG. 6 (d), the peak detection circuit 57 (see FIG. 7) To detect the peak value of the peak 12 corresponding to the wobbled pit 7 in the output signal waveform (FIG. 6 (b)) from the adder 41, that is, the signal amplitude value Swl based on the wobbled pit 7 .
  • the timing signal output from the PLL circuit 55 is delayed for a predetermined time by the timer 60 (see FIG. 7), and then the peak detector 58 (see FIG. 7) at the timing shown in FIG. 6 (e).
  • the peak value of the peak 13 corresponding to the wobbled bit 8 in the output signal waveform from the adder 41 (Fig. 6 (b)), that is, the signal amplitude value Sw2 based on the wobbled bit 8 is calculated. To detect.
  • Output signal Swl of peak detection circuit 57 and output signal of peak detection circuit 58 By calculating the difference between the signals Sw2, it is possible to detect a position shift signal between the light beam and the virtual track 3 (or 4), that is, a tracking error signal, and use this to perform tracking control.
  • a position shift signal between the light beam and the virtual track 3 (or 4) that is, a tracking error signal
  • a well-known method can be used for the specific method, the description is omitted because it is not directly related to the present invention.
  • the output signal Sc of the peak detection circuit 56 is input to a control circuit 48 (see FIG. 4) composed of DSP and the like.
  • the control circuit 48 applies the offset voltage to the focus control system while monitoring the output signal S c of the peak detection circuit 56, until the output signal S c of the peak detection circuit 56 reaches a predetermined value.
  • the convergence state of the light beam on the optical disk 21 is changed.
  • the predetermined value may be a value that maximizes the signal amplitude Sc based on the clock pit 6, or may be set to an arbitrary value that is convenient for the recording / reproducing device.
  • an offset voltage value at which the signal amplitude Sc based on the clock pitch 6 is maximized may be applied to the focus control system.
  • the wobbled pits 7 and 8 are pits for detecting a positional shift between the light beam and the track, the light beam is located between the pit and the light beam between the pits. In some cases, the detected signal amplitude is set to change. However, the wobble pits 7, 8 can be set to the same width, the same depth, and the same length as the clock pit 6. Therefore, the signal amplitude based on the wobbled pits 7 and 8 is measured while the tracking control system is operating, and the convergence state of the light beam is adjusted so that the signal amplitude based on the wobbled pits 7 and 8 is maximized. It is possible to make adjustments so that the playback time is minimal.
  • the average value of the signal amplitude based on the wobbled pits 7 and 8 is detected, and the convergence state of the light beam is adjusted so that the average value is maximized. It can be adjusted to minimize the playback jitter.
  • the clock pit 6 and the wobbled pits 7 and 8 are formed at the stage of creating the optical disk 21.
  • the signal amplitude based on such a pit is used to adjust the convergence state of the light beam, so that the conventional method is used. As described above, it is not necessary to perform the operation of recording the information for adjusting the focus state while the apparatus is being activated immediately before the adjustment. Therefore, it is possible to shorten the start-up time of the optical recording / reproducing apparatus.
  • the present invention is not limited at all by the above-described embodiment.
  • the case where the pit depth is set to ⁇ / 5 with respect to the wavelength ⁇ of the laser beam has been described.
  • the pit depth may be further increased or reduced. Is also good.
  • the case where the pit length is 0.8 times the spot size of the light beam has been described, but a shorter pit may be used.
  • the focus error signal is detected using the astigmatism method.
  • a focus error detection method called an SSD (spot size detection) or a focus error detection method using a knife edge is used. May be.
  • an example in which the pits are formed radially along the spiral virtual track has been described. good.
  • the radial width of the pits and the radial distance between the pits are set at a predetermined ratio with respect to the spot size of the light beam for recording and reproduction.
  • the signal amplitude detected from the pit can be made substantially equal between the case where the light beam passes over the pit and the case where the light beam passes between the pits. As a result, it is possible to detect the signal amplitude based on the pit necessary for optimizing the convergence state of the optical beam only by operating the focus control system without operating the tracking control system.
  • the optical recording / reproducing apparatus of the present invention changes the convergence state of the light beam so that the output of the amplitude detecting means for detecting the signal amplitude based on the pit from the reflected light from the record carrier becomes a predetermined value.
  • the signal amplitude based on the pit is Therefore, it is possible to adjust the convergence state of the light beam to a predetermined value. Therefore, by using the disc-shaped record carrier of the present invention in combination with the optical recording / reproducing apparatus, the tracking control system operates. Before the adjustment, the convergence state of the light beam can be adjusted optimally, so that the operation of the tracking control system can be made more stable.
  • the clock pit and the wobbled pit are formed at the stage of producing the record carrier.
  • the adjustment is performed before the adjustment. It is not necessary to perform the operation of recording the information for adjusting the focus state during the start-up of the apparatus. Therefore, the start-up time of the optical recording / reproducing apparatus can be reduced.
  • the device configuration can be simplified.
  • the present invention can be used as an inexpensive and easy-to-use record carrier and optical recording / reproducing apparatus.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

An optical recording/reproducing apparatus for adjusting the state of a beam of light so that the jitter of the reproduced signal may be a minimum by applying a bias voltage to a focusing control system. A disk-like recording carrier (21) having a width of pits and an interval in the radial direction the ratios of which to the spot size of the recording/reproducing light beam are predetermined. The focused state of the light beam on the recording carrier is adjusted so that the signal amplitude produced by a pit may be a maximum. Thus, without recording a signal on a recording carrier in advance, the focused state of the light beam is optimized, thereby shortening the starting time of the apparatus.

Description

明 細 書 円盤状記録担体およびそれを用いた光学式記録再生装置 技術分野  Description Disc-shaped record carrier and optical recording / reproducing apparatus using the same
本発明は、 レーザ等の光源によって情報が記録され及び/又は記録さ れた情報が再生される円盤状記録担体、 および該記録担体に情報を記録 し及びノ又は記録された情報を再生する光学式記録再生装置に関する。 背景技術  The present invention relates to a disc-shaped record carrier on which information is recorded by a light source such as a laser and / or from which the recorded information is reproduced, and an optical disc for recording information on the record carrier and reproducing the recorded information. The present invention relates to a type recording / reproducing apparatus. Background art
従来、 所定の回転数で回転する円盤状の記録担体に、 光ピックアップ に搭載した半導体レーザから発生した光ビームを対物レンズ等を用いて 収束して照射し、 記録担体上に記録された情報を再生する光学式再生装 置が知られている。  Conventionally, a disc-shaped record carrier that rotates at a predetermined number of revolutions is converged and irradiated with a light beam generated from a semiconductor laser mounted on an optical pickup using an objective lens or the like, and the information recorded on the record carrier is Optical reproducing devices for reproducing are known.
このような光学式再生装置で使用される記録担体には、 記録担体自体 に起因する反りや装置に起因する傾き等によって土 1 0 0 / m〜土 2 0 0 i mの面振れが発生する。 一方、 光ビームを記録担体上に収束する対 物レンズの焦点深度は土 1 mよりも狭いため、 光ピックアップから出 力された光ビームを記録担体上で適正な収束状態にするためには、 記録 担体上の光ビームの収束状態を表すフォーカス誤差信号を検出し、 これ に応じて対物レンズを記録担体に接離する方向に駆動し、 対物レンズと 記録担体との距離を上記焦点深度内に保つように (即ち、 光ビームが記 録担体上で適正な収束状態になるように) 制御するフォーカス制御系が 必要となる。  A record carrier used in such an optical reproducing apparatus has a surface run of soil 100 / m to soil 200im due to a warp caused by the record carrier itself, a tilt caused by the device, and the like. On the other hand, since the depth of focus of the objective lens that converges the light beam on the record carrier is narrower than 1 m, the light beam output from the optical pickup must be focused properly on the record carrier. A focus error signal indicating the convergence state of the light beam on the record carrier is detected, and the objective lens is driven in the direction of moving toward and away from the record carrier in accordance with the focus error signal. A focus control system is needed to maintain the beam (ie, to make the light beam properly converge on the record carrier).
また、 上記した記録担体にはピッチが 0 . 7 4〜 1 . 6 mという微 小なピッ ト列 (トラック) がスパイラル状に設けられており、 記録担体 上に記録されている信号の再生は、 光ビームが常にピッ ト列 (トラック ) 上に位置するようにトラッキング制御しながら記録担体上からの反射 光を光検出器で受光して行っている。 Further, the above-mentioned record carrier is provided with a fine pit row (track) having a pitch of 0.74 to 1.6 m in a spiral shape. Reproduction of the signal recorded thereon is performed by receiving reflected light from the record carrier with a photodetector while performing tracking control so that the light beam is always positioned on a pit row (track).
フォーカス誤差信号も記録担体からの反射光より得られるが、 この反 射光よりフォーカス誤差信号を検出する方法としては、 非点収差法が良 く用いられる。  The focus error signal is also obtained from the reflected light from the record carrier. As a method for detecting the focus error signal from the reflected light, the astigmatism method is often used.
非点収差法では、 記録担体が対物レンズの焦点位置にあるときに非点 収差光学系の反射光の断面が円形になる位置に、 直交する 2直線で 4分 割された光検出器を設置し、 4分割された光検出器から得られた 4つの 検出信号 A, B, C, Dを演算回路等で合成することによってフォー力 ス誤差信号 (F E) を検出することができる。 ここで、 4つの検出信号 A, B, C, Dのうち Aと Bおよび Cと Dはそれぞれ対角の位置にある 光検出器のセルから出力される検出信号である。  In the astigmatism method, a photodetector divided into four by two orthogonal straight lines is installed at a position where the cross section of the reflected light of the astigmatic optical system becomes circular when the record carrier is at the focal position of the objective lens Then, the force error signal (FE) can be detected by combining the four detection signals A, B, C, and D obtained from the four divided photodetectors by an arithmetic circuit or the like. Here, of the four detection signals A, B, C, and D, A and B and C and D are detection signals output from the cells of the photodetector located at diagonal positions.
非点収差光学系においては、 記録担体が対物レンズの焦点位置にある ときは 4分割された光検出器上のビーム断面は円形になり、 4つの検出 信号 A, B, C, Dは (A + B) = (C +D) となる。 対物レンズに対 して記録担体が対物レンズの焦点位置よりも近接すると 4分割された光 検出器上のビーム断面は対角線方向に長い楕円になり、 検出信号 A, B , C, Dは (A+B) > (C + D) となる。 また、 対物レンズに対して 記録担体が対物レンズの焦点位置よりも離れると 4分割された光検出器 上のビーム断面は上述の楕円の長軸方向と直交する対角線方向に長い精 円になり、 検出信号 A, B, C, Dは (A+B) く (C + D) となる。 以上よりフォーカス誤差信号 F Eとして、 F E= (A+ B) - (C + D ) の演算を行なうことにより記録担体上での光ビームの収束状態を表す フォーカス誤差信号が得られる。  In an astigmatism optical system, when the record carrier is at the focal position of the objective lens, the beam cross section on the photodetector divided into four is circular, and the four detection signals A, B, C, and D are (A + B) = (C + D). If the record carrier is closer to the objective lens than the focal position of the objective lens, the beam cross section on the four-divided photodetector becomes a diagonally long ellipse, and the detection signals A, B, C, and D become (A + B)> (C + D). Also, when the record carrier is farther from the objective lens than the focal position of the objective lens, the beam cross section on the photodetector divided into four parts becomes a long circle in the diagonal direction orthogonal to the major axis direction of the above-mentioned ellipse, The detection signals A, B, C, and D are (A + B) and (C + D). From the above, as the focus error signal FE, a calculation of FE = (A + B)-(C + D) can be performed to obtain a focus error signal indicating the convergence state of the light beam on the record carrier.
ところが、 4分割された光検出器に入射するビームと光検出器との間 の位置ずれや、 4分割された各光検出器の感度バラツキ、 さらには各光 検出器より出力される信号を増幅する増幅器の増幅率バラツキ等に起因 して、 上述のフォーカス誤差信号 (F E ) が 0になっても、 記録担体上 の光ビームの収束状態が最適にならない場合がある。 However, between the beam incident on the photodetector divided into four and the photodetector The focus error signal (FE) described above is caused by the position deviation of the optical detector, the variation in the sensitivity of each photodetector divided into four, and the variation in the amplification factor of the amplifier that amplifies the signal output from each photodetector. In some cases, the convergence state of the light beam on the record carrier may not be optimal even if becomes zero.
そこで例えば、 C Dプレーヤ等ではこのフォーカス誤差信号にバイァ ス (オフセッ ト) 電圧を印加して光ビームの収束状態を変化させ、 再生 信号のジッターが最良になるように調整している。 このバイアス電圧は 以下の ( 1 ) 〜 (4 ) に示す手順によって調整されている (特開平 8- 77579号公報参照)。  Therefore, for example, in a CD player or the like, a bias (offset) voltage is applied to the focus error signal to change the convergence state of the light beam, and adjustment is performed so that the jitter of the reproduced signal is optimized. The bias voltage is adjusted by the following procedures (1) to (4) (see Japanese Patent Application Laid-Open No. 8-77579).
( 1 ) 対物レンズを記録担体に対してフォーカス制御するとともに記 録担体上のピッ ト列に対物レンズによる光ビームスポッ 卜が常に位置す るようにトラッキング制御を行なう。  (1) Focus control is performed on the objective lens with respect to the record carrier, and tracking control is performed so that the light beam spot by the objective lens is always positioned in the pit row on the record carrier.
( 2 ) 対物レンズが記録担体に近づく方向にバイアス電圧を印加しな がら再生信号のエラーレートを監視し、 エラ一レートが所定の限界値に 達した際のバイアス電圧 V 1を記憶する。  (2) While applying a bias voltage in a direction in which the objective lens approaches the record carrier, the error rate of the reproduced signal is monitored, and the bias voltage V1 when the error rate reaches a predetermined limit value is stored.
( 3 ) 対物レンズが記録担体から離れる方向にバイアス電圧を印加し ながら再生信号のエラーレー卜を監視し、 エラーレー卜が所定の限界値 に達した際のバイアス電圧 V 2を記憶する。  (3) Monitor the error rate of the reproduced signal while applying a bias voltage in a direction in which the objective lens moves away from the record carrier, and store the bias voltage V2 when the error rate reaches a predetermined limit value.
( 4 ) 記憶した V I , V 2より V = ( V 1 + V 2 ) 2の値を演算し 、 この値 Vを最適なバイアス電圧値としてフォーカス制御系に印加する しかしながら、 上述の従来のバイアス電圧調整では、 エラーレートを 測定するための情報が記録担体上にあらかじめ記録されている必要があ る。 即ち未使用の記録再生用記録担体の場合、 記録担体上には何も情報 が記録されていないので、 上述したバイアス電圧を調整できないという 課題がある。 また、 未使用の記録再生用の記録担体で上述のバイアス電圧調整を実 施しようとすると、 記録担体上に特別な領域を設け事前に情報記録を実 行した上で上記バイアス電圧を調整する必要があり、 装置の起動時間が 増大するという課題がある。 (4) Calculate the value of V = (V 1 + V 2) 2 from the stored VI and V 2, and apply this value V to the focus control system as the optimal bias voltage value. The adjustment requires that information for measuring the error rate be recorded on the record carrier in advance. That is, in the case of an unused recording / reproducing record carrier, there is a problem that the bias voltage cannot be adjusted because no information is recorded on the record carrier. In addition, when trying to perform the above-described bias voltage adjustment on an unused recording / reproducing record carrier, it is necessary to provide a special area on the record carrier and perform information recording in advance, and then adjust the bias voltage. There is a problem that the start-up time of the device increases.
さらに、 再生信号のエラーレートを用いる方式では光学式記録再生装 置の通常動作では使用しないエラーレート測定システムが必要になり、 装置が複雑かつ高価になる課題がある。 発明の開示  Furthermore, the method using the error rate of the reproduction signal requires an error rate measurement system that is not used in the normal operation of the optical recording / reproducing apparatus, and has a problem that the apparatus becomes complicated and expensive. Disclosure of the invention
本発明は、 かかる点に鑑みてなされたもので、 バイアス電圧を調整す るための情報の事前記録を不要にして装置の起動時間を短縮するととも に、 再生信号のエラーレートを測定する回路を用いずに光ビームの収束 状態を最適にできる円盤状記録担体と光学式記録再生装置とを提供する ことを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is unnecessary to previously record information for adjusting a bias voltage, thereby shortening a start-up time of an apparatus, and a circuit for measuring an error rate of a reproduced signal. It is an object of the present invention to provide a disc-shaped record carrier and an optical recording / reproducing apparatus which can optimize a convergence state of a light beam without using the same.
上記の目的を達成するために本発明は以下の構成とする。  In order to achieve the above object, the present invention has the following configuration.
本発明の円盤状記録担体は、 ピッ ト力 同心円状あるいはスパイラル 状の仮想トラックの中心線に沿いかつ放射線状に配置された円盤状記録 担体であって、 前記ピッ 卜の半径方向の間隔あるいは前記ピッ 卜の半径 方向の幅が、 前記記録担体上に情報を記録し又は記録された情報を再生 する光ビームのスポッ トサイズに対してそれぞれ所定の比率に設定され ていることを特徴とする。 かかる構成によれば、 ピッ トの半径方向の間 隔又は幅を光ビームのスポッ 卜サイズに対して所定比率に設定すること により、 光ビームがピッ ト上を通過する場合と、 光ビームがピッ ト間を 通過する場合とで、 該ピッ 卜から検出される信号振幅を略等しぐするこ とができる。 この結果、 トラッキング制御系を動作させることなく、 フ オーカス制御系を動作させるだけで、 光ビームの収束状態を最適化する ために必要なピッ 卜に基づく信号振幅を検出することが可能になる。 上記の構成において、 前記ピッ トの半径方向の幅が、 前記光ビームの スポッ トサイズの 0 . 5倍以上であることが好ましい。 かかる構成によ れば、 ピッ 卜に基づく信号の検出可能な最大振幅の 8 5 %以上の信号振 幅を常に確保可能となる。 The disc-shaped record carrier of the present invention is a disc-shaped record carrier that is arranged radially along the center line of a pit force concentric or spiral virtual track, wherein The width of the pit in the radial direction is set to a predetermined ratio with respect to a spot size of a light beam for recording information on the record carrier or reproducing the recorded information. According to this configuration, by setting the interval or width in the radial direction of the pit to a predetermined ratio with respect to the spot size of the light beam, when the light beam passes over the pit and when the light beam passes through the pit When passing between the ports, the signal amplitude detected from the pit can be made substantially equal. As a result, the convergence state of the light beam is optimized by operating the focus control system without operating the tracking control system. Therefore, it is possible to detect the signal amplitude based on the pit necessary for the above. In the above configuration, it is preferable that a radial width of the pit is 0.5 times or more of a spot size of the light beam. According to such a configuration, it is possible to always secure a signal amplitude of 85% or more of the maximum detectable signal amplitude based on the pit.
また、 上記の構成において、 前記ピッ トの半径方向の間隔が、 前記光 ビームのスポッ トサイズの 1 . 4倍以下であることが好ましい。 ピッ ト のなかでも特にクロックピッ 卜の半径方向の間隔を光ビームのスポッ ト サイズの 1 . 4倍以下に設定した場合には、 光ビームがクロックピッ ト 同士の間を通過する場合に、 光ビームがクロックピッ ト上を通過する場 合に得られるピッ 卜に基づく信号振幅の 9 0 %以上の信号振幅を得るこ とが可能になる。  Further, in the above configuration, it is preferable that the interval between the pits in the radial direction is 1.4 times or less the spot size of the light beam. In particular, if the distance between the clock pits in the radial direction is set to 1.4 times or less of the spot size of the light beam, the light beam will pass through between the clock pits. It is possible to obtain a signal amplitude of 90% or more of the signal amplitude based on the pit obtained when the beam passes over the clock pit.
また、 本発明の光学式記録再生装置は、 同心円状あるいはスパイラル 状の仮想トラックの中心線に沿って所定の間隔でピッ 卜が配置された円 盤状記録担体上に光ビームを収束させる光収束手段と、 前記光ビームが 前記記録担体上で所定の収束状態になるように前記光収束手段の位置を 制御するフォーカス制御手段と、 前記記録担体からの反射光より前記ピ ッ 卜に基づく信号振幅を検出する振幅検出手段とを備え、 前記振幅検出 手段の出力が所定値になるように前記光ビームの収束状態を変化させる ことを特徴とする。 かかる構成によれば、 振幅検出手段の出力値である ピッ 卜に基づく信号振幅が所定値になるように、 光ビームの収束状態を 調整することが可能になる。  Further, the optical recording / reproducing apparatus of the present invention provides a light converging device that converges a light beam on a disc-shaped record carrier on which pits are arranged at predetermined intervals along the center line of a concentric or spiral virtual track. Means, focus control means for controlling the position of the light convergence means so that the light beam is brought into a predetermined convergence state on the record carrier, and signal amplitude based on the pits from reflected light from the record carrier. And a convergence state of the light beam is changed so that an output of the amplitude detection means becomes a predetermined value. According to such a configuration, it is possible to adjust the convergence state of the light beam so that the signal amplitude based on the pit, which is the output value of the amplitude detection means, becomes a predetermined value.
上記の構成において、 前記振幅検出手段が、 検出した複数のピッ トに 基づく信号振幅を平均化して出力をする平均化手段を備えることが好ま しい。 かかる構成によれば、 光ビームがピッ ト上を通過する場合とピッ 卜間を通過する場合とで検出される信号振幅が変化するゥォブルピッ ト に基づく信号振幅を用いて光ビームの収束状態を調整することが可能に なる。 In the above configuration, it is preferable that the amplitude detecting means includes an averaging means for averaging and outputting a signal amplitude based on the detected plurality of pits. According to this configuration, the signal amplitude detected when the light beam passes over the pit and when the light beam passes between the pits changes. It is possible to adjust the convergence state of the light beam using the signal amplitude based on.
また、 上記の構成において、 前記光ビームを前記仮想トラックの中心 線に追従させるトラツキング制御手段を備え、 前記トラツキング制御手 段を動作させながら前記振幅検出手段の出力が所定値になるように前記 光ビームの収束状態を変化させることが好ましい。 かかる構成によれば 、 トラッキング制御手段を動作させることにより光ビームがピッ トに対 して所定の位置 (クロックピッ ト上あるいはゥォブルピッ 卜の中間位置 ) を通過するようにできるので、 検出されるピッ トに基づく信号振幅の 変動を低減してより安定に光ビームの収束状態を調整することが可能に なる。  In the above configuration, the apparatus further comprises tracking control means for causing the light beam to follow the center line of the virtual track, and operating the tracking control means so that the output of the amplitude detection means becomes a predetermined value. It is preferable to change the convergence state of the beam. According to this configuration, by operating the tracking control means, the light beam can pass through a predetermined position with respect to the pit (on the clock pit or at an intermediate position between the wobbled pits). Therefore, it is possible to more stably adjust the convergence state of the light beam by reducing the fluctuation of the signal amplitude based on the signal.
また、 上記の構成において、 前記所定値は、 前記ピッ トに基づく信号 振幅の最大値であることが好ましい。 即ち、 光ビームの収束状態を、 ピ ッ 卜に基づく信号振幅が最大になるように調整することにより、 光ディ スクから得られる再生信号のジッターを最小にすることが可能になる。 従って、 再生信号のエラー限界値を測定する従来の方式よりも簡易かつ 高速に光ビームの収束状態の調整を行なうことが可能である。 また、 再 生信号のエラーレートを測定する回路を設ける必要がないので装置構成 を簡易にすることが可能である。  In the above configuration, it is preferable that the predetermined value is a maximum value of a signal amplitude based on the pit. That is, by adjusting the convergence state of the light beam so that the signal amplitude based on the pit becomes maximum, it becomes possible to minimize the jitter of the reproduced signal obtained from the optical disk. Therefore, it is possible to adjust the convergence state of the light beam more easily and faster than in the conventional method of measuring the error limit value of the reproduction signal. Also, since there is no need to provide a circuit for measuring the error rate of the reproduced signal, the device configuration can be simplified.
また、 上記の構成において、 前記ピッ トを、 前記仮想トラックの中心 線に対し内 ·外周側に振り分けて配置されたゥォブルピッ トとすること ができる。 かかる構成によれば、 記録担体上に設けられたピッ トのうち 、 トラッキング制御用にトラックの中心線に対し内 · 外周側に振り分け て配置されたゥォブルピッ 卜に基づく信号の振幅を用いても光ビームの 収束状態を所定の状態に調整することが可能になる。  Further, in the above configuration, the pits may be formed as wobble pits which are allocated to the inner and outer peripheral sides with respect to the center line of the virtual track. According to such a configuration, among the pits provided on the record carrier, even if the amplitude of the signal based on the wobbled pits distributed and arranged on the inner and outer peripheries with respect to the center line of the track for tracking control is used, The convergence state of the beam can be adjusted to a predetermined state.
また、 上記の構成において、 前記ピッ トを、 前記仮想トラックの中心 線上に所定の間隔で配置されたクロック信号生成用のクロックピッ トと することもできる。 かかる構成によれば、 記録担体上に設けられたピッ トのうち、 クロック信号生成用に設けられたクロックピッ トを用いても 光ビームの収束状態を所定の状態に調整することが可能である。 Further, in the above configuration, the pit may be a center of the virtual track. Clock pits for generating clock signals arranged at predetermined intervals on the line can also be used. According to such a configuration, among the pits provided on the record carrier, the convergence state of the light beam can be adjusted to a predetermined state by using the clock pit provided for generating the clock signal. .
また、 本発明の光学式記録再生装置は、 上記本発明の円盤状記録担体 上に光ビームを収束させる光収束手段と、 前記光ビームが前記記録担体 上で所定の収束状態になるように前記光収束手段の位置を制御するフォ 一カス制御手段と、 前記記録担体からの反射光より前記ピッ 卜に基づく 信号振幅を検出する振幅検出手段とを備え、 前記振幅検出手段の出力が 所定値になるように前記光ビームの収束状態を変化させることを特徴と する。 かかる構成によれば、 記録担体上の光ビームの収束状態を最適化 するために印加するバイアス電圧の最適値を、 ピッ 卜に基づく信号振幅 をもとに決定することができる。 この結果、 バイアス電圧の調整のため の情報をあらかじめ記録担体に記録する必要がないため起動時間を短縮 化できる。 また、 再生信号のエラーレートからバイアス電圧を調整する ときに必要であったエラーレート測定システムが不要となるため装置を 簡素化できる。 また、 トラッキング制御系を動作させることなく、 フォ —カス制御系を動作させるだけで光ビームの収束状態を最適化できる。 図面の簡単な説明  Further, the optical recording / reproducing apparatus of the present invention includes: a light converging means for converging a light beam on the disc-shaped record carrier of the present invention; and Focus control means for controlling the position of the light converging means, and amplitude detecting means for detecting a signal amplitude based on the pit from the reflected light from the record carrier, wherein the output of the amplitude detecting means has a predetermined value. The convergence state of the light beam is changed so that According to such a configuration, the optimum value of the bias voltage applied to optimize the convergence state of the light beam on the record carrier can be determined based on the signal amplitude based on the pit. As a result, since it is not necessary to record information for adjusting the bias voltage on the record carrier in advance, the start-up time can be reduced. In addition, the apparatus can be simplified because the error rate measurement system required when adjusting the bias voltage based on the error rate of the reproduction signal is not required. Further, the convergence state of the light beam can be optimized only by operating the focus control system without operating the tracking control system. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは本発明の円盤状記録担体の全体構成を示した斜視図、 図 1 B は表面上のピッ 卜の形成状態を模式的に示した拡大平面図である。  FIG. 1A is a perspective view showing the entire configuration of a disc-shaped record carrier of the present invention, and FIG. 1B is an enlarged plan view schematically showing a state of formation of a pit on a surface.
図 2は、 光ビームのスポッ トサイズに対するピッ ト幅の比と、 信号振 幅との関係を示した図である。  FIG. 2 is a diagram showing the relationship between the ratio of the spot width to the spot size of the light beam and the signal amplitude.
図 3は、 光ビームのスポッ トサイズに対するクロックピッ トの半径方 向の間隔の比と、 信号振幅との関係を示した図である。 図 4は、 本発明の光学式記録再生装置の構成を示したプロック図であ る。 FIG. 3 is a diagram illustrating the relationship between the ratio of the interval of the clock pit in the radial direction to the spot size of the light beam and the signal amplitude. FIG. 4 is a block diagram showing the configuration of the optical recording / reproducing apparatus of the present invention.
図 5 A , 図 5 B , 図 5 Cは、 本発明の光学式記録再生装置の非点収差 光学系の動作を説明する図である。  5A, 5B, and 5C are diagrams illustrating the operation of the astigmatism optical system of the optical recording / reproducing apparatus of the present invention.
図 6は、 ピッ トと該ピットより検出される信号波形とを示す図である 図 7は、 図 4の光学式記録再生装置の検出回路の構成を示すブロック 図である。  FIG. 6 is a diagram showing a pit and a signal waveform detected from the pit. FIG. 7 is a block diagram showing a configuration of a detection circuit of the optical recording / reproducing apparatus of FIG.
図 8は、 オフセッ ト電圧と、 再生信号のジッター量およびクロックピ ッ卜の信号振幅値との関係を示す図である。 発明を実施するための最良の形態  FIG. 8 is a diagram showing the relationship between the offset voltage, the amount of jitter of the reproduced signal, and the signal amplitude value of the clock pitch. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 A、 図 1 Bは本発明の円盤状記録担体 2 1の構成図であり、 図 1 Aは全体構成を示した斜視図、 図 1 Bは表面上のピッ卜の形成状態を模 式的に示した拡大平面図である。  1A and 1B are configuration diagrams of a disc-shaped record carrier 21 of the present invention. FIG. 1A is a perspective view showing the entire configuration, and FIG. 1B is a schematic diagram showing a pit formation state on a surface. FIG.
図 1 Aに示すように、 円盤状記録担体 (以下、 光ディスクと称する) 2 1は、 基板 1上に記録膜 2が積層されてなり、 記録膜 2上にはスパイ ラル状の仮想トラック 3 , 4が形成される。 卜ラック 3, 4の 1周分 ( 3 6 0 ° ) は 1 2 8 0のセグメント 5に分割されている。  As shown in FIG. 1A, a disc-shaped record carrier (hereinafter referred to as an optical disc) 21 has a recording film 2 laminated on a substrate 1, and a spiral virtual track 3, 4 is formed. One round (360 °) of tracks 3 and 4 is divided into 128 segments 5.
図 1 Bは、 1つのセグメン卜内のピッ 卜の形成状態を模式的に示して いる。 図中、 紙面横方向はトラック周方向を示し、 光ビームスポッ トは 紙面左側から右側に向かって移動する。 各セグメント 5には、 光ビーム スポッ 卜の進行方向に向かって、 同期信号を生成するためのクロックピ ット 6と、 トラッキング用の信号を得るためのゥォブルピッ ト 7 , 8と 、 ァドレスデータあるいは所定の情報を 1ビッ 卜毎に分散化して配置し たァドレスピッ ト 9と、 情報あるいは信号の追加記録と消去が可能な領 域 1 0とが順に設けられている。 ゥォブルピット 7, 8は仮想トラック 3, 4の中心線に対して半径方向の内外周側に等距離に振り分けて形成 されている。 ゥォブルピッ ト 7, 8の配列は光ビームスポットの移動方 向に沿って見た場合、 隣り合う仮想トラック間で相違しており、 図 1 B では、 仮想トラックの中心線に対するゥォブルピット 7, 8の配列によ り仮想トラックを 3と 4に区別して示している。 FIG. 1B schematically shows a state of formation of a pit in one segment. In the figure, the horizontal direction on the paper indicates the track circumferential direction, and the light beam spot moves from left to right on the paper. Each segment 5 includes a clock pit 6 for generating a synchronizing signal in the direction of travel of the light beam spot, a wobbled pit 7 and 8 for obtaining a tracking signal, and address data or predetermined data. Address pits 9 in which information is distributed in units of 1 bit and areas where additional recording and erasing of information or signals can be performed Areas 10 are provided in order. The pebble pits 7 and 8 are formed at equal distances from the center line of the virtual tracks 3 and 4 to the inner and outer radial sides in the radial direction. The arrangement of the pebble pits 7, 8 differs between adjacent virtual tracks when viewed along the direction of movement of the light beam spot. In FIG. 1B, the arrangement of the pebble pits 7, 8 with respect to the center line of the virtual track is shown. Indicates the virtual track as 3 and 4.
図 1 A、 図 1 Bに示した光ディスク 2 1において、 ピット 6, 7, 8 , 9の半径方向の幅、 およびクロックピット 6同士の半径方向の間隔は 光ディスク 2 1上に収束される光ビームのスポッ トサイズ (後述する図 4の光学式記録再生装置の対物レンズ 3 3から出力されたレーザビーム の相対強度が 5 0 %になる幅) に対して所定の比率になるように設定さ れている。  In the optical disk 21 shown in FIGS. 1A and 1B, the radial width of the pits 6, 7, 8, and 9 and the radial interval between the clock pits 6 are light beams converged on the optical disk 21. The spot size is set so as to have a predetermined ratio with respect to the spot size (the width at which the relative intensity of the laser beam output from the objective lens 33 of the optical recording / reproducing apparatus in FIG. 4 described below is 50%). I have.
ピット 6 , 7, 8 , 9の深さをレーザビームの波長 λに対して、 例え ば入 5に設定し、 かつピッ卜の周方向長さを光ビームのスポットサイ ズの 0 . 8倍、 半径方向のピット間隔を光ビームのスポッ トサイズと等 しい幅に設定した状態で、 ピッ卜の半径方向幅を光ビームのスポットサ ィズに対して変化させたとき、 ピッ 卜に基づく信号振幅は図 2に示すよ うに変化する。  The depth of the pits 6, 7, 8, and 9 is set to, for example, 5 for the wavelength λ of the laser beam, and the circumferential length of the pit is 0.8 times the spot size of the light beam. When the radial width of the pit is changed with respect to the spot size of the light beam with the pit interval in the radial direction set to be equal to the spot size of the light beam, the signal amplitude based on the pit becomes It changes as shown in Figure 2.
図 2において、 横軸は、 光ビームのスポッ トサイズに対するピッ トの 半径方向幅の比を示しており、 縦軸は信号振幅を最大値を 1とした相対 値で示している。 光ビームのスポッ トサイズと等しい幅にピット間隔を 設定した場合には、 光ビームが上記ピッ ト上を通過する場合 (実線) と ピット同士の間を通過する場合 (点線) とで略等しい信号振幅を得るこ とが可能になる。 またピット幅を光ビームのスポットサイズに対して 0 . 5倍以上確保すれば、 検出可能な最大振幅の 8 5 %以上の信号振幅を 常に検出することが可能となる。 クロックピッ 卜 6の深さをレーザビームの波長 λに対して λ / 5に設 定し、 かつクロックピッ トピッ ト 6の周方向長さを光ビームのスポッ 卜 サイズの 0 . 8倍、 クロックピッ ト 6の半径方向幅を光ビームのスポッ トサイズと等しく した状態で、 クロックピッ 卜 6同士の半径方向の間隔 を光ビームのスポッ トサイズに対して変化させたとき、 ピッ トに基づく 信号振幅は図 3に示すように変化する。 In FIG. 2, the horizontal axis represents the ratio of the radial width of the pit to the spot size of the light beam, and the vertical axis represents the signal amplitude as a relative value with the maximum value being one. When the pit interval is set to a width equal to the spot size of the light beam, the signal amplitude is approximately equal between the case where the light beam passes over the pits (solid line) and the case where the light beam passes between the pits (dotted line). Can be obtained. Also, if the pit width is 0.5 times or more as large as the spot size of the light beam, it is possible to always detect a signal amplitude of 85% or more of the maximum detectable amplitude. The depth of the clock pit 6 is set to λ / 5 with respect to the wavelength λ of the laser beam, and the circumferential length of the clock pit 6 is set to 0.8 times the spot size of the light beam. When the radial spacing of clock pits 6 is made equal to the spot size of the light beam, and the radial spacing between clock pits 6 is changed with respect to the spot size of the light beam, the signal amplitude based on the pits is It changes as shown in 3.
図 3において、 横軸は、 光ビームのスポッ トサイズに対するクロック ピッ 卜 6の半径方向の間隔の比を示しており、 縦軸は信号振幅を最大値 を 1 とした相対値で示している。 クロックピッ ト 6の半径方向の間隔を 光ビームのスポッ トサイズの 1 . 4倍以下に設定した場合には、 光ビー ムがクロックピッ ト 6同士の間を通過する場合 (点線) であっても、 光 ビームがクロックピッ ト 6上を通過する場合 (実線) に得られる信号振 幅と略等しい ( 9 0 %以上) 振幅を得る事が可能になる。  In FIG. 3, the horizontal axis represents the ratio of the radial spacing of the clock pit 6 to the spot size of the light beam, and the vertical axis represents the signal amplitude as a relative value with the maximum value being one. If the radial distance between the clock pits 6 is set to 1.4 times or less the spot size of the light beam, even if the light beam passes between the clock pits 6 (dotted line). However, when the light beam passes over the clock pit 6 (solid line), it is possible to obtain an amplitude substantially equal to the signal amplitude obtained (90% or more).
以上のように、 クロックピッ ト 6の半径方向の幅およびクロックピッ ト 6どうしの半径方向の間隔を光ビームのスポッ トサイズに対して所定 の比率になるように設定することによって、 光ビームがピッ ト上を通過 する場合と、 光ビームがピッ ト間を通過する場合とで、 略等しい信号振 幅を検出することが可能になる。  As described above, by setting the radial width of the clock pit 6 and the radial interval between the clock pits 6 so as to have a predetermined ratio to the spot size of the light beam, the light beam is In this case, it is possible to detect substantially the same signal amplitude when the light beam passes over the pit and when the light beam passes between the pits.
図 4は、 図 1 Αの光ディスク 2 1に信号を記録再生する本発明の光学 式記録再生装置のブロック図である。 図中、 2 1は図 1 Aに示した光デ イスク、 3 2は光ディスク 2 1に情報を記録し、 あるいは光ディスク 2 1に記録された情報を再生するための光へッ ドである。 光へッ ド 3 2内 部に設けられた光源より発生した光は対物レンズ 3 3によって光ディス ク 2 1上に集光される。  FIG. 4 is a block diagram of the optical recording / reproducing apparatus of the present invention for recording / reproducing a signal on / from the optical disk 21 of FIG. In the figure, 21 is an optical disk shown in FIG. 1A, and 32 is an optical head for recording information on the optical disk 21 or reproducing information recorded on the optical disk 21. Light generated from a light source provided inside the light head 32 is collected on the optical disk 21 by the objective lens 33.
4 9はフォーカス誤差信号を検出するための 4分割された光検出器、 3 5及び 4 0は光ディスク 2 1上に記録された信号を検出する光検出器 である。 光検出器 3 5, 4 0, 4 9は光ヘッド 3 2の内部に搭載されて いる。 49 is a quadrant photodetector for detecting a focus error signal, and 35 and 40 are photodetectors for detecting a signal recorded on an optical disc 21 It is. The photo detectors 35, 40, 49 are mounted inside the optical head 32.
光へッ ド 3 2は送りモー夕 3 4によって光ディスク 2 1の半径方向に 移送可能に構成されている。  The optical head 32 is configured to be able to be transported in the radial direction of the optical disk 21 by the feed mode 34.
光ディスク 2 1はスピンドルモー夕 (図示省略) に搭載され、 所定の 回転数で回転する。 光ヘッド 3 2に搭載された半導体レーザ (図示省略 ) より出力された光ビームは対物レンズ 3 3によって光ディスク 2 1上 に収束して照射される。  The optical disk 21 is mounted on a spindle motor (not shown) and rotates at a predetermined rotation speed. A light beam output from a semiconductor laser (not shown) mounted on the optical head 32 is converged and irradiated onto the optical disk 21 by the objective lens 33.
光ディスク 2 1からの反射光は、 光へッド 3 2内部に設けられた光学 系 (図示省略) によって分割される。 分割された一方の反射光は非点収 差光学系 (図示省略) を通過した後 4分割された光検出器 4 9を照射し 、 分割されたもう一方の反射光は検光子 (図示省略) 等を通過した後に 記録信号検出用の光検出器 3 5, 4 0上を照射する。  The reflected light from the optical disk 21 is split by an optical system (not shown) provided inside the optical head 32. One of the divided reflected lights passes through an astigmatic optical system (not shown), and then irradiates a photodetector 49 divided into four parts. The other reflected light is an analyzer (not shown). After passing through the above, the light detectors 35, 40 for recording signal detection are irradiated.
光検出器 4 9は、 光ディスク 2 1の記録膜 2が対物レンズ 3 3の焦点 位置にあるときに非点収差光学系 (図示省略) を通過した光の断面が円 形になる位置に設置されている。  The photodetector 49 is installed at a position where the cross section of light passing through an astigmatism optical system (not shown) becomes circular when the recording film 2 of the optical disk 21 is at the focal position of the objective lens 33. ing.
次に図 5 A、 図 5 B、 図 5 Cを用いて非点収差光学系の動作を説明す る。  Next, the operation of the astigmatism optical system will be described with reference to FIGS. 5A, 5B, and 5C.
光ディスク 2 1の記録膜 2が対物レンズ 3 3の焦点位置にあるときは 、 図 5 Aに示すように光検出器 4 9上のビーム断面 3 1は円形になる。 よって、 光検出器 4 9を構成する 4つのセル 3 6 , 3 7, 3 8, 3 9よ りそれぞれ出力される検出信号 A, C, D, Bは、 (A + B ) = ( C + D ) となる。  When the recording film 2 of the optical disc 21 is at the focal position of the objective lens 33, the beam cross section 31 on the photodetector 49 becomes circular as shown in FIG. 5A. Therefore, the detection signals A, C, D, and B respectively output from the four cells 36, 37, 38, 39 constituting the photodetector 49 are (A + B) = (C + D).
また、 光ディスク 2 1の記録膜 2が対物レンズ 3 3の焦点位置よりも 近接すると、 図 5 Bに示すように光検出器 4 9上のビーム断面 3 1は対 角線方向に長い楕円になる。 よって、 4つのセル 3 6, 3 7, 3 8, 3 9よりそれぞれ出力される検出信号 A, C, D, Bは、 (A + B) > ( C + D) となる。 When the recording film 2 of the optical disc 21 is closer than the focal position of the objective lens 33, the beam cross section 31 on the photodetector 49 becomes an ellipse long in the diagonal direction as shown in FIG. 5B. . Therefore, the four cells 36, 37, 38, 3 The detection signals A, C, D, and B respectively output from 9 are (A + B)> (C + D).
さらに、 光ディスク 2 1の記録膜 2が対物レンズ 3 3の焦点位置より も離れると、 図 5 Cに示すように光検出器 49上のビーム断面 3 1は図 5 Bの楕円の長軸と直交する方向に長軸を有する楕円になる。 よって、 4つのセル 36, 3 7, 38, 39よりそれぞれ出力される検出信号 A , C, D, Bは、 (A + B) < (C + D) となる。  Further, when the recording film 2 of the optical disk 21 is further away from the focal position of the objective lens 33, the beam cross section 31 on the photodetector 49 is orthogonal to the long axis of the ellipse in FIG. 5B as shown in FIG. 5C. Ellipse having a major axis in the direction of Therefore, the detection signals A, C, D, and B respectively output from the four cells 36, 37, 38, and 39 are (A + B) <(C + D).
図 4に示すように、 光検出器 49上のセル 36とセル 3 9の出力信号 A, Bは加算器 43で加算され差動増幅器 44に入力される。 また光検 出器 49上のセル 3 7とセル 3 8の出力信号 C, Dは加算器 42で加算 され差動増幅器 44に入力される。 そして、 差動増幅器 44で F E= ( A+B) - (C + D) の演算が行われ、 光ディスク 2 1上での光ビーム の収束状態を表すフォーカス誤差信号 F Eが得られる。  As shown in FIG. 4, the output signals A and B of the cell 36 and the cell 39 on the photodetector 49 are added by the adder 43 and input to the differential amplifier 44. The output signals C and D of the cells 37 and 38 on the photodetector 49 are added by the adder 42 and input to the differential amplifier 44. Then, the differential amplifier 44 calculates F E = (A + B) − (C + D) to obtain a focus error signal F E indicating the convergence state of the light beam on the optical disk 21.
差動増幅器 44の出力であるフォーカス誤差信号 F Eは、 フォーカス 制御回路 45に入力される。 フォーカス制御回路 4 5は、 加算器 42と 加算器 43の出力信号を加算 (即ち光検出器 49の検出信号 A, B, C , Dを全て加算) する加算器 5 0の出力によって増幅率がコントロール される AGC (自動利得調整器)、 及び高域通過フィル夕一等によって 構成されている。  The focus error signal FE output from the differential amplifier 44 is input to the focus control circuit 45. The focus control circuit 45 adds the output signal of the adder 42 and the output signal of the adder 43 (that is, adds all the detection signals A, B, C, and D of the photodetector 49). It consists of a controlled AGC (Automatic Gain Adjuster) and a high-pass filter.
フォーカス制御回路 45からの出力信号は、 加算器 5 1および SW回 路 (スイッチング回路) 5 2を介して駆動回路 46に印加され、 駆動回 路 46の出力信号はフォーカスコイル 5 3に印加される。 この結果、 フ オーカスコイル 5 3にはフォーカス誤差信号 F Eに応じた電流が流れ、 対物レンズ 33が駆動される。  The output signal from the focus control circuit 45 is applied to the drive circuit 46 via the adder 51 and the SW circuit (switching circuit) 52, and the output signal of the drive circuit 46 is applied to the focus coil 53. . As a result, a current corresponding to the focus error signal FE flows through the focus coil 53, and the objective lens 33 is driven.
即ち、 対物レンズ 3 3はフォーカス誤差信号 F Eに応じて駆動され、 光ビームは光ディスク 2 1上で常に所定の収束状態になるようにフォー カス制御される。 図 4中、 S W回路 5 2はフォーカス制御系を動作状 態あるいは不動作状態にするためのものである。 That is, the objective lens 33 is driven according to the focus error signal FE, and the light beam is formed on the optical disk 21 so that it always has a predetermined convergence state. Scrap control is performed. In FIG. 4, a SW circuit 52 is for setting the focus control system to an operation state or a non-operation state.
一方、 光ディスク 2 1からの反射光のうち分割された他方の光は、 検 光子 (図示省略) 等を通過した後に、 記録信号検出用の光検出器 3 5, 4 0上を照射する。 検光子の作用によって、 光検出器 3 5 , 4 0上には 光ディスク 2 1上の磁化の方向に応じて光が分配される。 従って光ディ スク 2 1上に磁化の方向の形で記録された情報信号は、 光検出器 3 5の 出力信号と光検出器 4 0の出力信号との差分をとることで検出される ( 図示省略)。 光ディスク 2 1上には、 非常に高密度に信号が記録されて おり、 これを検出する光検出器 3 5および 4 0には高応答性の素子が使 用されている。  On the other hand, the other split light of the reflected light from the optical disc 21 passes through an analyzer (not shown) or the like, and then irradiates the photodetectors 35 and 40 for detecting recording signals. Light is distributed to the photodetectors 35 and 40 according to the direction of magnetization on the optical disc 21 by the action of the analyzer. Therefore, the information signal recorded in the form of the direction of magnetization on the optical disc 21 is detected by taking the difference between the output signal of the photodetector 35 and the output signal of the photodetector 40 (see FIG. Omitted). Signals are recorded at a very high density on the optical disk 21, and high-response elements are used for the photodetectors 35 and 40 for detecting the signals.
また、 図 1 A、 図 1 Bに示すように、 本発明の光ディスク 2 1ではト ラック 1周分を 1 2 8 0分割して形成されたセグメント 5の先頭部分に 同期信号を生成するためのクロックピッ ト 6と、 トラッキング用の信号 を得るためのゥォブルピッ ト 7, 8と、 アドレスデータを 1 ビット毎に 分散化したアドレスピット 9とが設けられている。 上述したように、 こ れらのピッ トは、 半径方向の幅が光ビームのスポッ トサイズの 0 . 5倍 以上、 周方向長さがスポッ トサイズの 0 . 8倍というように非常に微小 に構成されている。  As shown in FIGS. 1A and 1B, in the optical disc 21 of the present invention, a synchronization signal is generated at the beginning of a segment 5 formed by dividing one round of the track into 128. There are provided a clock pit 6, wobbled pits 7 and 8 for obtaining a tracking signal, and an address pit 9 in which address data is dispersed for each bit. As mentioned above, these pits are extremely small, with a radial width of at least 0.5 times the spot size of the light beam and a circumferential length of 0.8 times the spot size. Have been.
この様に構成されたピッ トでは、 ピッ ト部分からの反射光はピッ ト部 分以外からの反射光に比べて非常に小さいため、 ピッ卜の存在の有無を 光ディスク 2 1からの反射光量より検出することが可能である。 本実施 の形態では上述したピッ 卜の検出を光検出器 3 5の出力信号と光検出器 4 0の出力信号とを加算器 4 1で加算して行っている。 加算器 4 1の出 力信号は検出回路 4 7に入力される。  In a pit configured in this manner, the reflected light from the pit portion is much smaller than the reflected light from portions other than the pit portion, so the presence or absence of the pit is determined by the amount of reflected light from the optical disk 21. It is possible to detect. In the present embodiment, the above-described detection of the pit is performed by adding the output signal of the photodetector 35 and the output signal of the photodetector 40 by the adder 41. The output signal of the adder 41 is input to the detection circuit 47.
次に検出回路 4 7の動作について図 6と図 7を用いて説明する。 図 6 (a) は、 図 1 Bに示した仮想トラック 3 (又は 4) 上のクロッ クピッ ト 6、 ゥォブルピッ ト 7, 8、 アドレスピッ ト 9を示している。 図 6 (b) は各ピッ トに対応した加算器 4 1の出力信号波形を示して いる。 Next, the operation of the detection circuit 47 will be described with reference to FIGS. FIG. 6A shows the clock pit 6, the wobbled pits 7, 8, and the address pit 9 on the virtual track 3 (or 4) shown in FIG. 1B. FIG. 6B shows the output signal waveform of the adder 41 corresponding to each pit.
図 7は検出回路 47の構成を示したブロック図である。  FIG. 7 is a block diagram showing a configuration of the detection circuit 47.
加算器 4 1より図 6 (b) に示す信号波形が出力されると、 ロジック 回路等によって構成されたクロックピッ 卜検出回路 54は、 クロックピ ッ ト 6を検出し、 検出信号を P L L回路 5 5に出力する。  When the signal waveform shown in FIG. 6 (b) is output from the adder 41, the clock bit detection circuit 54 constituted by a logic circuit or the like detects the clock bit 6 and outputs the detection signal to the PLL circuit 55. Output to
? 1^回路5 5は、 図 6 ( c ) に示すパルス状のタイミング信号を出 力し、 図 6 (c) に示すタイミングでピーク検出回路 5 6 (図 7参照) を動作させ、 加算器 4 1からの出力信号波形 (図 6 (b)) 中のクロッ クピッ ト 6に対応するピーク 1 1のピーク値、 即ちクロックピッ ト 6に 基づく信号振幅値 Scを検出する。  ? 1 ^ circuit 55 outputs the pulse-like timing signal shown in Fig. 6 (c), operates the peak detection circuit 56 (see Fig. 7) at the timing shown in Fig. 6 (c), and 41 The peak value of peak 11 corresponding to clock pit 6 in the output signal waveform from Fig. 6 (Fig. 6 (b)), that is, the signal amplitude value Sc based on clock pit 6 is detected.
また P L L回路 5 5から出力されたタイミング信号は、 夕イマ 5 9 ( 図 7参照) によって所定時間遅延された後、 図 6 (d) に示すタイミン グでピーク検出回路 5 7 (図 7参照) を動作させ、 加算器 4 1からの出 力信号波形 (図 6 (b)) 中のゥォブルピッ ト 7に対応するピーク 1 2 のピーク値、 即ちゥォブルピッ 卜 7に基づく信号振幅値 Swlを検出す る。  The timing signal output from the PLL circuit 55 is delayed for a predetermined time by the timer 59 (see FIG. 7), and then at the timing shown in FIG. 6 (d), the peak detection circuit 57 (see FIG. 7) To detect the peak value of the peak 12 corresponding to the wobbled pit 7 in the output signal waveform (FIG. 6 (b)) from the adder 41, that is, the signal amplitude value Swl based on the wobbled pit 7 .
同様にして P L L回路 5 5から出力されたタイミング信号は、 夕イマ 6 0 (図 7参照) によって所定時間遅延された後、 図 6 (e ) に示す夕 イミングでピーク検出回路 5 8 (図 7参照) を動作させ、 加算器 4 1か らの出力信号波形 (図 6 ( b)) 中のゥォブルピッ ト 8に対応するピー ク 1 3のピーク値、 即ちゥォブルピッ ト 8に基づく信号振幅値 Sw2を 検出する。  Similarly, the timing signal output from the PLL circuit 55 is delayed for a predetermined time by the timer 60 (see FIG. 7), and then the peak detector 58 (see FIG. 7) at the timing shown in FIG. 6 (e). The peak value of the peak 13 corresponding to the wobbled bit 8 in the output signal waveform from the adder 41 (Fig. 6 (b)), that is, the signal amplitude value Sw2 based on the wobbled bit 8 is calculated. To detect.
ピーク検出回路 5 7の出力信号 Swlとピーク検出回路 5 8の出力信 号 S w2の差分をとることで、 光ビームと仮想トラック 3 (又は 4 ) と の位置ずれ信号、 即ちトラッキング誤差信号が検出でき、 これを用いて トラッキング制御を行なうことができる。 その具体的方法は周知の方法 が利用できるが、 本発明には直接関係しないので説明を省略する。 Output signal Swl of peak detection circuit 57 and output signal of peak detection circuit 58 By calculating the difference between the signals Sw2, it is possible to detect a position shift signal between the light beam and the virtual track 3 (or 4), that is, a tracking error signal, and use this to perform tracking control. Although a well-known method can be used for the specific method, the description is omitted because it is not directly related to the present invention.
ピーク検出回路 5 6の出力信号 S cは、 D S P等で構成されたコント ロール回路 4 8 (図 4参照) に入力される。  The output signal Sc of the peak detection circuit 56 is input to a control circuit 48 (see FIG. 4) composed of DSP and the like.
コントロ一ル回路 4 8はピーク検出回路 5 6の出力信号 S cをモニタ しながら、 オフセット電圧をフォーカス制御系に印加していき、 ピーク 検出回路 5 6の出力信号 S cが所定値になるまで光ディスク 2 1上の光 ビームの収束状態を変化させる。 ここで、 所定値とは、 クロックピット 6に基づく信号振幅 S cが最大となる値であっても良いし、 記録再生装 置にとって都合の良い任意の値に設定することも可能である。  The control circuit 48 applies the offset voltage to the focus control system while monitoring the output signal S c of the peak detection circuit 56, until the output signal S c of the peak detection circuit 56 reaches a predetermined value. The convergence state of the light beam on the optical disk 21 is changed. Here, the predetermined value may be a value that maximizes the signal amplitude Sc based on the clock pit 6, or may be set to an arbitrary value that is convenient for the recording / reproducing device.
次に、 ピーク検出回路 5 6の出力信号 S cが最大になるように光ビ一 ムの収束状態を調整した場合の効果について図 8を用いて説明する。 コントロール回路 4 8からフォーカス制御系に印加するオフセット電 圧に対する、 光ディスク 2 1上に記録された信号を再生した時のジッ夕 一量 (再生信号ジッター量)、 及びクロックピッ ト 6に基づく信号振幅 S cの関係は概略、 図 8に示すような関係になる。  Next, the effect of adjusting the convergence state of the optical beam so that the output signal Sc of the peak detection circuit 56 is maximized will be described with reference to FIG. The signal amplitude based on the amount of jitter (reproduced signal jitter) when the signal recorded on the optical disk 21 is reproduced and the clock pit 6 with respect to the offset voltage applied from the control circuit 48 to the focus control system The relationship of Sc is roughly as shown in FIG.
図 8より、 クロックピッ ト 6に基づく信号振幅 S c (実線) を最大に する印加オフセッ ト電圧と、 再生信号ジッター量 (点線) を最小にする 印加オフセッ卜電圧とは略一致するので、 再生信号ジッター量を最小に するにはクロックピッ 卜 6に基づく信号振幅 S cが最大になるオフセッ ト電圧値をフォーカス制御系に印加すれば良い。  From Fig. 8, the applied offset voltage that maximizes the signal amplitude Sc (solid line) based on clock pit 6 and the applied offset voltage that minimizes the reproduced signal jitter (dotted line) are almost the same. To minimize the signal jitter amount, an offset voltage value at which the signal amplitude Sc based on the clock pitch 6 is maximized may be applied to the focus control system.
従って、 従来必要であった再生信号のエラーレートを測定する回路を 設けなくとも、 光ビームの収束状態を最適の状態に調整することが可能 になる。 また、 クロックピッ ト 6に基づく信号振幅の検出はフォーカス制御系 のみ動作させれば可能になるので、 トラッキング制御系を動作させる以 前に光ディスク 2 1上の光ビームの状態を最適にできるので卜ラッキン グ制御系をより安定に動作させることが可能になる。 Therefore, it is possible to adjust the convergence state of the light beam to an optimum state without providing a circuit for measuring the error rate of the reproduced signal, which is conventionally required. Since signal amplitude detection based on clock pit 6 can be performed by operating only the focus control system, the state of the light beam on optical disk 21 can be optimized before operating the tracking control system. The racking control system can be operated more stably.
また、 上述したように、 ゥォブルピット 7 , 8は光ビームとトラック との間の位置ずれを検出するためのピッ卜であるため、 光ビームがピッ ト上にある場合と光ビームがピッ 卜間にある場合で検出される信号振幅 が変化するように設定されている。 しかしゥォブルピット 7, 8もクロ ックピッ ト 6と同じ幅、 同じ深さ、 同じ長さに設定可能である。 従って トラッキング制御系を動作させた状態でゥォブルピット 7, 8に基づく 信号振幅を測定し、 ゥォブルピット 7, 8に基づく信号振幅が最大にな るように光ビームの収束状態を調整することで、 記録信号の再生ジッ夕 一が最小になるように調整することが可能である。  Further, as described above, since the wobbled pits 7 and 8 are pits for detecting a positional shift between the light beam and the track, the light beam is located between the pit and the light beam between the pits. In some cases, the detected signal amplitude is set to change. However, the wobble pits 7, 8 can be set to the same width, the same depth, and the same length as the clock pit 6. Therefore, the signal amplitude based on the wobbled pits 7 and 8 is measured while the tracking control system is operating, and the convergence state of the light beam is adjusted so that the signal amplitude based on the wobbled pits 7 and 8 is maximized. It is possible to make adjustments so that the playback time is minimal.
またトラッキング制御系を不動作にした状態でも、 ゥォブルピット 7 , 8に基づく信号振幅の平均値を検出し、 この平均値が最大になるよう に光ビームの収束状態を調整することで、 記録信号の再生ジッターが最 小になるように調整することが可能である。  Even when the tracking control system is disabled, the average value of the signal amplitude based on the wobbled pits 7 and 8 is detected, and the convergence state of the light beam is adjusted so that the average value is maximized. It can be adjusted to minimize the playback jitter.
クロックピッ ト 6およびゥォブルピッ ト 7 , 8は光デイスク 2 1を作 成する段階で形成されており、 このようなピッ卜に基づく信号振幅を用 いて光ビームの収束状態を調整するので、 従来のように該調整の直前の 装置起動中に、 焦点状態調整用の情報を記録する動作を行なう必要がな い。 従って、 光学式記録再生装置の起動時間を短縮することが可能にな る。  The clock pit 6 and the wobbled pits 7 and 8 are formed at the stage of creating the optical disk 21. The signal amplitude based on such a pit is used to adjust the convergence state of the light beam, so that the conventional method is used. As described above, it is not necessary to perform the operation of recording the information for adjusting the focus state while the apparatus is being activated immediately before the adjustment. Therefore, it is possible to shorten the start-up time of the optical recording / reproducing apparatus.
本発明は上記に示した実施の形態によりなんら限定されない。 上記実 施形態ではピッ 卜の深さをレーザビームの波長 λに対して λ / 5に設定 した場合を説明したが、 ピットの深さをさらに深くしても又は浅くして も良い。 またピッ トの長さが光ビームのスポッ トサイズの 0 . 8倍の場 合を説明したがこれより短いピッ 卜にしても良い。 また上記実施形態で は非点収差法を用いてフォーカス誤差信号の検出を行ったが、 S S D ( スポッ 卜サイズディテクシヨン) と呼ばれるフォーカス誤差検出法や、 ナイフエッジを用いたフォーカス誤差検出法を用いても良い。 また上記 実施形態ではスパイラル状の仮想トラックに沿ってピッ 卜が放射線状に 形成された例を説明したが、 同心円状の仮想トラックに沿ってピッ 卜が 放射線状に形成された光ディスクであっても良い。 The present invention is not limited at all by the above-described embodiment. In the above embodiment, the case where the pit depth is set to λ / 5 with respect to the wavelength λ of the laser beam has been described. However, the pit depth may be further increased or reduced. Is also good. Also, the case where the pit length is 0.8 times the spot size of the light beam has been described, but a shorter pit may be used. In the above embodiment, the focus error signal is detected using the astigmatism method. However, a focus error detection method called an SSD (spot size detection) or a focus error detection method using a knife edge is used. May be. In the above-described embodiment, an example in which the pits are formed radially along the spiral virtual track has been described. good.
以上に説明した実施の形態は、 いずれもあくまでも本発明の技術的内 容を明らかにする意図のものであって、 本発明はこのような具体例にの み限定して解釈されるものではなく、 その発明の精神と請求の範囲に記 載する範囲内でいろいろと変更して実施することができ、 本発明を広義 に解釈すべきである。 産業上の利用の可能性  The embodiments described above are all intended to clarify the technical contents of the present invention, and the present invention should not be construed as being limited to such specific examples. However, various modifications can be made within the spirit of the invention and the scope described in the claims, and the invention should be interpreted in a broad sense. Industrial applicability
本発明の円盤状記録担体は、 ピッ 卜の半径方向の幅とピッ ト同士の半 径方向の間隔が記録 ·再生のための光ビームのスポッ トサイズに対して 所定の比率に設定されているので、 光ビームがピッ ト上を通過する場合 と、 光ビームがピッ ト間を通過する場合とで、 該ピッ トから検出される 信号振幅を略等しくすることができる。 この結果、 トラッキング制御系 を動作させることなく、 フォーカス制御系を動作させるだけで、 光ビー ムの収束状態を最適化するために必要なピッ 卜に基づく信号振幅を検出 することが可能になる。  In the disk-shaped record carrier of the present invention, the radial width of the pits and the radial distance between the pits are set at a predetermined ratio with respect to the spot size of the light beam for recording and reproduction. The signal amplitude detected from the pit can be made substantially equal between the case where the light beam passes over the pit and the case where the light beam passes between the pits. As a result, it is possible to detect the signal amplitude based on the pit necessary for optimizing the convergence state of the optical beam only by operating the focus control system without operating the tracking control system.
また、 本発明の光学式記録再生装置は、 記録担体からの反射光よりピ ッ 卜に基づく信号振幅を検出する振幅検出手段の出力が所定値になるよ うに光ビームの収束状態を変化させるので、 ピッ 卜に基づく信号振幅が 所定値になるように、 光ビームの収束状態を調整することが可能になる 従って、 本発明の円盤状記録担体と光学式記録再生装置とを組み合わ せて使用することにより、 トラッキング制御系を動作させる以前に、 光 ビームの収束状態を最適に調整できるのでトラッキング制御系の動作を より安定にすることができる。 Further, the optical recording / reproducing apparatus of the present invention changes the convergence state of the light beam so that the output of the amplitude detecting means for detecting the signal amplitude based on the pit from the reflected light from the record carrier becomes a predetermined value. , The signal amplitude based on the pit is Therefore, it is possible to adjust the convergence state of the light beam to a predetermined value. Therefore, by using the disc-shaped record carrier of the present invention in combination with the optical recording / reproducing apparatus, the tracking control system operates. Before the adjustment, the convergence state of the light beam can be adjusted optimally, so that the operation of the tracking control system can be made more stable.
また、 クロックピッ トおよびゥォブルピッ トは記録担体を作成する段 階で形成されており、 このようなピッ 卜に基づく信号振幅を用いて光ビ ームの収束状態を調整する場合ので、 該調整前の装置起動中等に焦点状 態調整用の情報の記録動作を行なう必要がない。 従って、 光学式記録再 生装置の起動時間を短縮することが可能になる。  The clock pit and the wobbled pit are formed at the stage of producing the record carrier. When the convergence state of the optical beam is adjusted by using the signal amplitude based on such a pit, the adjustment is performed before the adjustment. It is not necessary to perform the operation of recording the information for adjusting the focus state during the start-up of the apparatus. Therefore, the start-up time of the optical recording / reproducing apparatus can be reduced.
また、 ピッ 卜に基づく信号振幅の最大値を探索して収束状態の調整を 行なうことにより、 再生信号のエラー限界値を測定する方式よりも簡易 かつ高速に光ビームの収束調整を行なうことが可能である。 また、 再生 信号のエラーレートを測定する回路を設ける必要がないので装置構成を 簡易にすることが可能である。  Also, by searching for the maximum value of the signal amplitude based on the pit and adjusting the convergence state, it is possible to adjust the convergence of the light beam more easily and faster than the method that measures the error limit value of the reproduced signal. It is. Further, since there is no need to provide a circuit for measuring the error rate of the reproduced signal, the device configuration can be simplified.
従って、 本発明は、 低コス トで、 かつ使い勝手の良い記録担体及び光 学式記録再生装置として利用することができる。  Therefore, the present invention can be used as an inexpensive and easy-to-use record carrier and optical recording / reproducing apparatus.

Claims

請 求 の 範 囲 The scope of the claims
1 . ピッ ト力 同心円状あるいはスパイラル状の仮想トラックの中心 線に沿いかつ放射線状に配置された円盤状記録担体であって、 前記ピッ 卜の半径方向の間隔あるいは前記ピッ トの半径方向の幅が、 前記記録担 体上に情報を記録し又は記録された情報を再生する光ビームのスポッ ト サイズに対してそれぞれ所定の比率に設定されていることを特徴とする 円盤状記録担体。 1. Pitch force A disc-shaped record carrier arranged radially along the center line of a concentric or spiral virtual track, wherein the pitch in the radial direction of the pits or the width in the radial direction of the pits A disc-shaped record carrier, wherein the disc-shaped record carrier is set at a predetermined ratio to a spot size of a light beam for recording information on the record carrier or reproducing the recorded information.
2 . 前記ピッ トの半径方向の幅が、 前記光ビームのスポッ トサイズの 0 . 5倍以上であることを特徴とする請求項 1に記載の円盤状記録担体  2. The disc-shaped record carrier according to claim 1, wherein a radial width of the pit is at least 0.5 times a spot size of the light beam.
3 . 前記ピッ トの半径方向の間隔が、 前記光ビームのスポッ トサイズ の 1 . 4倍以下であることを特徴とする請求項 1に記載の円盤状記録担 体。 3. The disc-shaped recording medium according to claim 1, wherein a distance between the pits in a radial direction is not more than 1.4 times a spot size of the light beam.
4 . 前記ピッ トの半径方向の幅が、 前記光ビームのスポッ トサイズの 0 . 5倍以上であり、 かつ、 前記ピッ トの半径方向の間隔が、 前記光ビ —ムのスポッ トサイズの 1 . 4倍以下であることを特徴とする請求項 1 に記載の円盤状記録担体。  4. The radial width of the pit is not less than 0.5 times the spot size of the light beam, and the radial spacing of the pits is equal to the spot size of the light beam. 2. The disc-shaped record carrier according to claim 1, wherein the size is 4 times or less.
5 . 同心円状あるいはスパイラル状の仮想トラックの中心線に沿って 所定の間隔でピッ 卜が配置された円盤状記録担体上に光ビームを収束さ せる光収束手段と、 前記光ビームが前記記録担体上で所定の収束状態に なるように前記光収束手段の位置を制御するフォーカス制御手段と、 前 記記録担体からの反射光より前記ピッ トに基づく信号振幅を検出する振 幅検出手段とを備え、 前記振幅検出手段の出力が所定値になるように前 記光ビームの収束状態を変化させることを特徴とする光学式記録再生装 5. Light converging means for converging a light beam on a disc-shaped record carrier on which pits are arranged at predetermined intervals along the center line of a concentric or spiral virtual track; Focus control means for controlling the position of the light converging means so as to be in a predetermined convergence state above, and amplitude detecting means for detecting a signal amplitude based on the pit from the reflected light from the record carrier. An optical recording / reproducing apparatus, wherein the convergence state of the light beam is changed so that the output of the amplitude detection means becomes a predetermined value.
6 . 前記振幅検出手段が、 検出した複数のピッ トに基づく信号振幅を 平均化して出力をする平均化手段を備えたことを特徴とする請求項 5に 記載の光学式記録再生装置。 6. The optical recording / reproducing apparatus according to claim 5, wherein the amplitude detecting means includes an averaging means for averaging and outputting a signal amplitude based on the detected plurality of pits.
7 . 前記光ビームを前記仮想卜ラックの中心線に追従させる卜ラツキ ング制御手段を備え、 前記トラッキング制御手段を動作させながら前記 振幅検出手段の出力が所定値になるように前記光ビームの収束状態を変 化させることを特徴とする請求項 5又は 6に記載の光学式記録再生装置  7. A tracking control means for causing the light beam to follow the center line of the virtual track, and convergence of the light beam so that the output of the amplitude detection means becomes a predetermined value while operating the tracking control means. 7. The optical recording / reproducing apparatus according to claim 5, wherein the state is changed.
8 . 前記振幅検出手段の出力が最大となるように前記光ビームの収束 状態を変化させることを特徴とする請求項 5又は 6に記載の光学式記録 再生装置。 8. The optical recording / reproducing apparatus according to claim 5, wherein the convergence state of the light beam is changed so that the output of the amplitude detecting means is maximized.
9 . 前記ピッ トは、 前記仮想トラックの中心線に対し内 · 外周側に振 り分けて配置されたゥォブルピッ 卜であることを特徴とする請求項 5又 は 6に記載の光学式記録再生装置。  9. The optical recording / reproducing apparatus according to claim 5 or 6, wherein the pit is a wobble pit arranged inward and outward with respect to a center line of the virtual track. .
1 0 . 前記ピッ トは、 前記仮想トラックの中心線上に所定の間隔で配 置されたクロック信号生成用のクロックピッ トであることを特徴とする 請求項 5又は 6に記載の光学式記録再生装置。  10. The optical recording / reproducing apparatus according to claim 5, wherein the pit is a clock pit for generating a clock signal arranged at a predetermined interval on a center line of the virtual track. apparatus.
1 1 . 請求項 1〜4のいずれかに記載の円盤状記録担体上に光ビーム を収束させる光収束手段と、 前記光ビームが前記記録担体上で所定の収 束状態になるように前記光収束手段の位置を制御するフォーカス制御手 段と、 前記記録担体からの反射光より前記ピッ 卜に基づく信号振幅を検 出する振幅検出手段とを備え、 前記振幅検出手段の出力が所定値になる ように前記光ビームの収束状態を変化させることを特徴とする光学式記 録再生装置。  11. A light converging means for converging a light beam on the disc-shaped record carrier according to any one of claims 1 to 4, and the light so that the light beam is in a predetermined convergence state on the record carrier. A focus control means for controlling the position of the convergence means; and an amplitude detection means for detecting a signal amplitude based on the pit from the reflected light from the record carrier, wherein an output of the amplitude detection means has a predetermined value. An optical recording / reproducing apparatus characterized in that the convergence state of the light beam is changed as described above.
PCT/JP2000/008062 1999-11-17 2000-11-15 Disk-like recording carrier and optical recording/reproducing apparatus comprising the same WO2001037270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32653699A JP2001143328A (en) 1999-11-17 1999-11-17 Disc-shaped record carrier and optical recording / reproducing apparatus using the same
JP11/326536 1999-11-17

Publications (1)

Publication Number Publication Date
WO2001037270A1 true WO2001037270A1 (en) 2001-05-25

Family

ID=18188938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008062 WO2001037270A1 (en) 1999-11-17 2000-11-15 Disk-like recording carrier and optical recording/reproducing apparatus comprising the same

Country Status (2)

Country Link
JP (1) JP2001143328A (en)
WO (1) WO2001037270A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030042913A (en) 2001-11-26 2003-06-02 삼성전자주식회사 Recording/reproducing apparatus and control method thereof
CA2614024A1 (en) * 2005-05-31 2006-12-07 Ralston Olivier Forsman-White Heat insulating composite and methods of manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235039A (en) * 1988-03-14 1989-09-20 Matsushita Commun Ind Co Ltd Focus position deciding device
JPH02285522A (en) * 1989-04-26 1990-11-22 Ricoh Co Ltd Optical information recording medium with discrete block format system
JPH0485728A (en) * 1990-07-27 1992-03-18 Sony Corp Automatic servo offset adjusting device
JPH0573926A (en) * 1991-09-13 1993-03-26 Hitachi Maxell Ltd Optical disk
JPH0729186A (en) * 1993-07-16 1995-01-31 Ricoh Co Ltd Optical information recording medium and recording and reproduction method using it
EP0867869A2 (en) * 1997-03-28 1998-09-30 Kabushiki Kaisha Toshiba Information storage medium and information reproducing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235039A (en) * 1988-03-14 1989-09-20 Matsushita Commun Ind Co Ltd Focus position deciding device
JPH02285522A (en) * 1989-04-26 1990-11-22 Ricoh Co Ltd Optical information recording medium with discrete block format system
JPH0485728A (en) * 1990-07-27 1992-03-18 Sony Corp Automatic servo offset adjusting device
JPH0573926A (en) * 1991-09-13 1993-03-26 Hitachi Maxell Ltd Optical disk
JPH0729186A (en) * 1993-07-16 1995-01-31 Ricoh Co Ltd Optical information recording medium and recording and reproduction method using it
EP0867869A2 (en) * 1997-03-28 1998-09-30 Kabushiki Kaisha Toshiba Information storage medium and information reproducing apparatus

Also Published As

Publication number Publication date
JP2001143328A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US6526007B1 (en) Recording medium driving device for rotationally driving a disk-shaped recording medium having tilt detection means and tilt detection method
JP3566701B2 (en) Optical disk recording and playback device
JPH0316694B2 (en)
KR19990063206A (en) Optical Disc Device
JP4791335B2 (en) Tracking error detection method and optical disk reproducing apparatus using the same
WO2001037270A1 (en) Disk-like recording carrier and optical recording/reproducing apparatus comprising the same
JP4153621B2 (en) Tilt detection device
JP2002163829A (en) Method for controlling reproduction of optical recording medium and device for it
JP5623948B2 (en) Recommended recording condition determination method and recording adjustment method
JP4042272B2 (en) Recording medium driving apparatus and tilt detection method
JP4122658B2 (en) Recording medium driving apparatus and tilt detection method
US20040105357A1 (en) Recording and reproduction apparatus
JPS58158044A (en) Recording and reproducing system of optical disc
JP3985767B2 (en) Optical disc apparatus and optical disc reproducing method
JP2003173549A (en) Optical disk device and focus offset adjusting method
JP4206705B2 (en) Skew detection method, skew detection device, optical pickup, and optical disk device
JP2008084415A (en) Optical disc apparatus and tracking control method
JP4122660B2 (en) Recording medium driving apparatus and tilt detection method
US20060158978A1 (en) Optical disk apparatus
JP4520906B2 (en) Tangential tilt detection device and optical disc device
JP2002319158A (en) Optical recording / reproducing device
KR100293522B1 (en) Optical Pickup Apparatus
JP4247261B2 (en) Optical disk device
JP2006269071A (en) Recording method and recording device of optical information recording medium
JP2001118272A (en) Recording medium drive device and tilt detection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10130561

Country of ref document: US

122 Ep: pct application non-entry in european phase