[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001025785A1 - Method and device for examining hepatic cirrhosis using expiration analysis device - Google Patents

Method and device for examining hepatic cirrhosis using expiration analysis device Download PDF

Info

Publication number
WO2001025785A1
WO2001025785A1 PCT/JP2000/006979 JP0006979W WO0125785A1 WO 2001025785 A1 WO2001025785 A1 WO 2001025785A1 JP 0006979 W JP0006979 W JP 0006979W WO 0125785 A1 WO0125785 A1 WO 0125785A1
Authority
WO
WIPO (PCT)
Prior art keywords
breath
analyzer according
analysis
analyzer
cirrhosis
Prior art date
Application number
PCT/JP2000/006979
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Ishikawa
Yukimoto Ishii
Satoshi Asai
Kazuo Nakano
Keiji Hasumi
Original Assignee
Nihon University
Hitachi Tokyo Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Hitachi Tokyo Electronics Co., Ltd. filed Critical Nihon University
Priority to AU75578/00A priority Critical patent/AU7557800A/en
Publication of WO2001025785A1 publication Critical patent/WO2001025785A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • the present invention relates to a method for testing liver disease and a breath analyzer for use in the method.
  • liver disease Diagnosis of liver disease is made by doctors' clinical findings, liver biopsy, laparoscopy, liver scanning, ultrasound, CT scanning, X-ray examination, and the like.
  • these methods require special techniques by doctors and specialists and expensive equipment, and are not suitable for the purpose of examining liver diseases in general medical examinations and the like. Therefore, in health examinations, etc., liver disease is examined by collecting blood and urine and analyzing metabolites in blood and urine.
  • Test methods for such liver diseases include serum pyrilrubin, ZTT, TTT, ALP, CHE, G ⁇ T, GPT, ⁇ -GTP, LDH, LAP, serum total protein, A / G ratio, urinary pyrilrubin, There is measurement of urinary urobilinogen. If such a test determines that a liver disease is suspected, the medical institution will undergo the above-mentioned diagnosis and test.
  • an object of the present invention is to provide a method for testing a liver disease capable of performing a quick determination, reducing the pain of a subject, and contributing to an accurate determination, and an apparatus used for the method. . Disclosure of the invention
  • the inventors of the present invention focused on breath analysis with little or no pain to subjects, and as a result of intensive studies on the relationship between components in breath and liver disease, The invention has been completed.
  • the present invention relates to a method for examining liver disease, which comprises collecting exhaled breath, quantifying isopropanol and / or a cyanide compound in the exhaled breath, and analyzing the result.
  • the present invention also relates to the above method for testing liver cirrhosis.
  • the present invention relates to the following breath analyzer for liver disease inspection.
  • a breath sampling unit for introducing the breath to be analyzed
  • a breath analysis unit for quantifying isopropanol and / or cyanide compounds in the breath
  • a data processing unit for analyzing the analysis result obtained by the breath analysis unit
  • a breath analyzer for liver disease testing
  • breath transfer unit includes a conduit that connects the breath collection unit and the breath analyzer so that the breath can flow.
  • the expiratory transfer means further comprises: a pump means for transmitting expiration to the expiratory analyzer.
  • the breath analyzer according to (7).
  • the breath collection means includes both a mouse bead or a mask and a connection port for connecting the breath storage container, and only one of them selected as occasion demands can be distributed with the breath analysis unit.
  • the breath analyzer according to (7) or (8), wherein a switchable valve means is provided on the conduit.
  • FIG. 1 is a schematic diagram showing a breath analyzer according to one embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between cirrhosis and quantitative values of isopropanol and cyanide.
  • FIG. 3 is a schematic view showing a breath analyzer according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a breath analyzer according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a breath analyzer according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the method of the present invention is suitable for examination of cirrhosis.
  • Examples of cyanide include acetonitrile.
  • the exhaled breath may be directly introduced into the device and subjected to quantitative analysis immediately, or it may be collected once in a container, and after a certain period of time, introduced into the device for quantitative analysis to perform quantitative analysis. You may use it.
  • the quantification of the isopropanol and / or cyanide compound can be performed by any means capable of quantifying the compound. For example, mass spectrometry, emission spectroscopy, fluorescence spectroscopy, gas chromatography (gas-solid chromatography, gas-liquid chromatography
  • Mass spectrometry includes electron ionization mass spectrometry, chemical ionization mass spectrometry, atmospheric pressure ionization mass spectrometry, secondary ion mass spectrometry, fast atom bombardment ionization mass spectrometry, thermospray ionization mass spectrometry Method, electrospray ionization mass spectrometry, laser desorption ionization mass spectrometry, and the like.
  • a magnetic field single focusing type for example, a magnetic field single focusing type, an electric field double focusing type, a quadrupole type, a three-dimensional quadrupole type, a TOF type, and an ICR type can be used.
  • a GC-MS device for example, a GC-MS device, an MS-MS device, an LC-MS device, etc. may be used.
  • Isopropanol and cyanide can be detected and quantified as decomposition products or reaction products depending on the analytical method.
  • cyanide can be quantified as HCN or the like as a decomposition product.
  • isopropanol, CH 3 C + H CH 3 as the degradation products or reaction products, CH 3 C + HOH, can be quantified as (CH 3 CH (OH) CH 3) 2 ⁇ H 2 and the like.
  • quantifying isopropanol and / or cyanide also includes indirectly quantifying isopropanol and / or cyanide by quantifying these degradation products and reaction products.
  • analysis refers to determining the possibility of suffering from liver disease based on quantitative analysis data of isopropanol and / or cyanide.
  • quantitative analysis data such as beak area and ionic strength are converted into a concentration, and if the concentration is less than a certain value, it is determined that there is no possibility of having a liver disease, and a certain value is determined.
  • the above cases can be performed by determining that there is a possibility of disease.
  • the reference value for the judgment (hereinafter referred to as the critical value) is, for example, It can be determined by measuring the isopropanol and / or cyanide compound concentration in the breath of six or more liver disease patients and healthy subjects.
  • the critical value can be set for the concentration of isopropanol, for example, between 0.15 ppm and 10 ppm, preferably between 0.15 ppm and 1 ppm. Also, regarding the concentration of hydrogen cyanide, for example, 0.3 p ⁇ ! It can be set between 1010 ppm and preferably between 0.5 ppm and 2 ppm.
  • Conversion from the quantitative analysis data to the concentration can be performed by a conventional method such as a calibration curve method. Judgment is preferably performed by automatic analysis by a convenience store, but it is also possible for the person who performs the inspection to make a judgment based on the converted concentration.
  • the determination can be made based on the relationship between the liver disease and the quantitative analysis data (peak area, ionic strength, etc.) of isopropanol and / or cyanide, which were previously examined, without converting the quantitative analysis data into concentrations. Good.
  • quantitative analysis data of isopropanol and / or cyanide compounds in the breath of 6 or more patients with liver disease and healthy subjects are input to a data processing device in advance, and the data of the subject's breath are analyzed. Judgment can also be made by automatically analyzing whether the data is closer to the data of patients with liver disease or healthy subjects.
  • the subjects are classified into groups that are unlikely to have liver disease and those that are likely to have liver disease. It can also be classified into three or more groups that are divided step by step.
  • the analysis can also be performed using other data such as age, gender, pre-existing conditions, and factors from other tests.
  • Factors from other tests include, for example, serum pyrilrubin, ZTT, TTT, ALP, CHE, GOT, GPT, ⁇ GTP, LDH, LAP, serum total protein, AZG ratio, urinary pyrilrubin, urobilobino-gen Can be overnight.
  • one or more of the above factors may be input into a pre-programmed data processor for liver disease determination, and the data combined with the quantitative analysis data for isopropanol and / or cyanide. Can be automatically analyzed.
  • the above determination method is not limited.
  • the critical values are It can be appropriately selected according to factors such as the factor 1 by the other tests described above, the accuracy of the intended liver disease screening, and the like. According to the present invention, it has been found that the concentrations of isopropanol and cyanide in breath are significantly different between healthy subjects and liver disease patients. By collecting data on the quantitative analysis of sopropanol and cyanide, it is possible to adopt a judgment method according to the test actually performed.
  • the breath collection unit is a unit for collecting a breath for analysis, introducing the breath into the device, and leading the breath to the breath analyzer, and preferably, a breath collection unit for collecting the breath. And breath transfer means for transferring the collected breath to the breath analyzer.
  • the breath collecting means may be, for example, a mouth bead for directly collecting breath, a breath blowing port such as a mask shaped to cover the mouth or both the nose and the mouth, or a connection port for connecting a breath holding container.
  • the above-mentioned exhalation blow-in port is used, and is collected in an exhalation storage container, and after a certain period of time, the exhaled air in the container is introduced into a device for quantification and tested.
  • the connection port is used.
  • the breath holding container is a container for temporarily holding the breath for analysis, for example, a glass container such as a vacuum bottle, soft vinyl chloride, vinyl tetrafluoride, and ethylene tetrafluoride. And a breath collection bag made of synthetic resin made of polyethylene phthalate.
  • the mouth beads and the mask can have a structure that allows efficient collection without exhaling breath. Further, it is preferable to provide a means for preventing the exhalation from leaking to the outside air after the exhalation is blown, for example, a valve.
  • the exhalation transfer means includes, for example, a conduit for connecting the exhalation collection means and the exhalation analyzer so that exhalation can flow, a valve provided in the conduit, a pump for forcibly sending or drawing exhalation to the exhalation analyzer. And the like.
  • the inner surface of the conduit is electropolished to suppress the adsorption of the analyte in the breath to the conduit.
  • the device according to the invention can Heating means for heating the parts, in particular the conduits and the valves, to a constant temperature.
  • the expiratory transfer means may include an expiratory volume control mechanism, and preferably has a structure for sending a fixed amount of the exhaled breath to the expiratory analyzer.
  • a pretreatment means is provided for the breath to perform pretreatment such as concentration, absorption into solution, adsorption, coagulation, removal of impurities and water by a filter, and separation by gas chromatography. Is also good.
  • the breath analysis section is a region for quantifying isopropanol and / or a cyanide compound in breath, and includes a quantitative analyzer capable of quantifying the substance.
  • the quantitative analyzer examples include a mass spectrometer, an emission spectrometer, a fluorescence spectrometer, a gas chromatograph (gas-solid chromatograph, gas-liquid chromatograph), a liquid chromatograph, a detector tube. , A semiconductor sensor, an IR analyzer (for example, FT-IR), an ion electrode concentration measuring device, a photoelectric photometer, and a colorimeter.
  • a mass spectrometer an emission spectrometer, a fluorescence spectrometer, a gas chromatograph (gas-solid chromatograph, gas-liquid chromatograph), a liquid chromatograph, a detector tube.
  • a semiconductor sensor an IR analyzer (for example, FT-IR), an ion electrode concentration measuring device, a photoelectric photometer, and a colorimeter.
  • mass spectrometers examples include electron ionization mass spectrometers, chemical ionization mass spectrometers, atmospheric pressure ionization mass spectrometers, secondary ion mass spectrometers, fast atom bombardment ionization mass spectrometers, and thermospray ionization mass spectrometers , An electrospray ionization mass spectrometer, a laser desorption ionization mass spectrometer, and the like.
  • the ion separation method can be, for example, a magnetic field single focusing type, an electric field double focusing type, a quadrupole type, a three-dimensional quadrupole type, a TOF type, or an ICR type.
  • a GC-MS device, a MS-MS device, an LC-MS device, etc. may be used.
  • the “data processing unit” receives the analysis result obtained by the breath analysis unit, analyzes the result, converts the concentration of isopropanol and / or cyanide compound if necessary, and determines the possibility of liver disease. This is an area for performing the determination, that is, the determination regarding the liver disease described in the item of the above-described test method and / or the display of the results thereof.
  • the data processing unit converts the concentration of isopropanol and / or cyanide and displays the concentration. Only the judgment may be made by the inspector.
  • the data processing unit measures the quantitative values of isopropanol and cyanide compounds in the exhaled breath of multiple liver disease patients, and the isopropanol and cyanidated exhaled breath of healthy subjects.
  • a configuration may be provided in which a database comprising quantitative values of the compound is provided, and the measured value is compared with the database to check for liver disease.
  • the device of the present invention can be used mainly for the purpose of screening for liver disease in health examinations and the like, but can also be used in medical institutions to assist diagnosis.
  • the analysis results using a communication line, etc., it is possible to connect physicians at urban hospitals to remote areas such as non-medical villages, to monitor the condition of long-term care recipients, and to conduct tests for remote treatment. You can also.
  • FIG. 1 shows a schematic configuration diagram of the breath analyzer of the present embodiment.
  • the cirrhosis testing apparatus using the breath analyzer 1a of the present embodiment includes a breath sampling unit 28, a breath analyzer 29, and a data processing unit 30.
  • the exhalation sampling section 28 has a mouth bead 2 and an exhalation collecting bag 6 connected to a two-way, three-way valve body 5 by a conduit 52, and an exhalation switching valve 3 built in the valve body 5.
  • an exhalation switching valve 3 built in the valve body 5.
  • the valve main body 5 is connected to a breath gas inlet of a breath analyzer 29 via a flow controller 7, and controls a directly or indirectly introduced breath to a constant flow rate, and a breath analyzer 2. Introduce to 9.
  • a conduit having an electropolished inner surface is used as a conduit composing the exhalation sampling unit 28, and the conduit and the valve body 5 are heated to a constant temperature by the heating unit 8, so that the analysis target during exhalation is obtained. Adsorption of substances to the conduit is suppressed.
  • Atmospheric pressure ionization mass spectrometry capable of trace analysis 5 ⁇ (Atomospheric Pres sure Ioni zation Mass Spectrometry ⁇ below,
  • APIMS which makes it possible to analyze analytes in breath with ultra-high sensitivity.
  • a cylinder of Ar + H: (1%) mixed gas 9 as a primary ion generation gas is connected to the first ionization chamber 15 of the APIMS via a pressure reducing valve 10 and a flow controller 11.
  • the second ionization chamber 17 is connected to a breath collection unit 28 and a diaphragm pump 13 via a pressure controller 12, and the internal pressure of the second ionization chamber 17 is reduced to 0.85.
  • the pressure is maintained at Pa, and the structure is such that the breath gas from the breath sampling unit 28 is sucked, and the primary ions generated in the first ionization chamber 15 collide with neutral molecules of the analyte in breath.
  • the ion-molecule reaction is performed to ionize the analyte.
  • the differential pumping section 18 is maintained at a low vacuum by the vacuum pumping system 20 and is an area connecting the second ionization chamber 17 and the breath analyzer 23.
  • the breath analysis unit 23 is maintained in a high vacuum by a vacuum exhaust system 21.
  • a quadrupole mass spectrometer 22 is disposed inside the breath analysis unit 23, and the breath analysis unit 23 passes through the narrow mouth of the slit 19. This is the area where ions introduced into the mass are separated by mass and converted into electric signals.
  • the signal amplifier 24 is connected to the breath analyzer 23, amplifies the electric signal converted by the breath analyzer 23, and transmits the electric signal to the data processor 30.
  • the data processing unit 30 is composed of a convenience store 25, a database 26, and a display unit 27, and is used to measure both or at least one of isopropanol and cyanide, which are the analytes in breath.
  • concentrations was calculated from the signal transmitted from the signal amplifier 24, and was calculated based on the concentrations of isopropanol and cyanide in the exhaled breath of the group of cirrhosis patients and the group of healthy subjects (those who were determined to be normal by a health examination) in advance.
  • the prepared database 26 By comparing with the prepared database 26 to determine which group concentration is closer to it, it is determined whether the liver cirrhosis is normal or normal, and displayed on the display unit 27.
  • exhalation switching valve 4 is set to open and introduced.
  • the introduced breath is flow-controlled by the flow controller 7 and introduced into the second ionization chamber 1 ⁇ of the AP IMS.
  • Ar + H: (1%) mixed gas 9 which is the primary ion generation gas, is controlled to a constant pressure by the pressure reducing valve 10 and the flow rate is controlled by the flow rate controller 11.
  • the introduced Ar + H: (1%) mixed gas 9 generates corona discharge due to the high voltage applied to the discharge needle 16 and, as a result, generates primary ions.
  • the generated primary ions are introduced into the secondary ionization chamber 17 and mixed with the exhalation introduced from the exhalation sampling unit 28.
  • the exhaled air collides with the primary ions, causing an ion-molecule reaction, and the analyte in the exhaled air is ionized.
  • the ionized analysis target substance passes through the differential evacuation unit 18, is introduced into the breath analysis unit 23, is mass-separated by the quadrupole mass spectrometer 22, is converted into an electric signal, and is output.
  • the converted electric signal is amplified by a signal amplifier 24 and then introduced into a data processing unit 30.
  • the concentration of both or at least one of the analytes isopropanol and / or cyanide is calculated from the transmitted signal, and the cirrhosis patient group and the healthy subject group (pre- To determine which one is closer to the concentration of either group by comparing with the data 26 created by the concentrations of isopropanol and cyanide in the breath of the person who was recognized as normal) By doing this, a test for cirrhosis is performed.
  • FIG. 3 shows a schematic configuration diagram of the breath analyzer 1b of the present embodiment.
  • an ion trap mass spectrometer 34 is used for the breath analyzer. Iontra Since the top-up mass spectrometer 34 is a spectrometer capable of microanalysis, like the AP IMS, it enables highly sensitive analysis of the analyte in breath.
  • the ion trap mass spectrometer 34 includes an ionization section 31 and a high vacuum section 32.
  • the ionization section 31 has ionization means by discharge or the like, and has a function of ionizing the exhalation introduced from the exhalation collection section 28.
  • the high vacuum section 32 is an area maintained in a high vacuum by a vacuum evacuation system 36, in which an ion trap electrode 33 and a detector 35 are disposed, and the ions generated in the ionization section 31 are formed. After trap enrichment and detection by the detector 35, it is converted into an electric signal and transmitted.
  • a simple cirrhosis test can be performed by analyzing the cyanide and isopropanol in the breath using the breath analyzer using the ion trap mass spectrometer 34. .
  • FIG. 4 shows a schematic configuration diagram of the breath analyzer 1c of the present embodiment.
  • a gas chromatograph / mass spectrometer 42 is used for the breath analyzer.
  • the gas chromatograph / mass spectrometer 42 has the feature that both qualitative analysis and quantitative analysis can be performed at the same time, so that breath analysis can be performed without identifying the beak in advance.
  • the gas chromatograph mass spectrometer 42 includes a carrier gas inlet, a column 37, an interface 38, and a mass spectrometer 39.
  • the carrier gas introduction section has a configuration in which a carrier gas cylinder 43 is connected to a power ram 37 via a pressure reducing valve 4 and a flow rate controller 45, and a carrier gas having a constant pressure and a constant flow rate is supplied to the column 37.
  • Supply a carrier gas having a constant pressure and a constant flow rate.
  • the column 37 is a region where a substance is separated due to a difference in chemical adsorption of the substance.
  • the interface 38 connects the column 37 and the mass spectrometer 39 to control gas flow, measurement timing, and the like.
  • the mass spectrometer 39 is maintained in a high vacuum by a vacuum evacuation system 40.
  • the mass-separated ions are detected by a detector 41, converted into an electric signal, and transmitted.
  • the operation of this embodiment will be described.
  • the carrier gas maintained at a constant pressure by the pressure reducing valve 44 and maintained at a constant flow rate by the flow rate controller 45 is introduced into the column 37 together with the exhalation introduced by the exhalation sampling unit 28.
  • Analytes in the exhaled breath are separated according to the characteristics of the substances, and then passed through the interface 38 to obtain the mass spectrometer 3 9 Will be introduced.
  • the mass spectrometer 39 After being ionized and mass-separated, it is detected by the signal detector 41, converted into an electric signal, and transmitted.
  • a simple liver cirrhosis test can be performed by analyzing the cyanide and isopropanol in the breath using the breath analyzer using the gas chromatograph mass spectrometer 42. Will be possible.
  • Industrial applicability can be performed by analyzing the cyanide and isopropanol in the breath using the breath analyzer using the gas chromatograph mass spectrometer 42. Will be possible.
  • liver disease test method and breath analyzer of the present invention a liver disease test can be performed without causing pain to the subject and without requiring a technician having a special technique, and the results can be obtained immediately. Can be obtained.
  • liver disease by combining it with other test results, it is possible to determine liver disease more accurately.
  • a simple, high-accuracy, and rapid liver disease test can be performed not only at a medical institution such as a hospital, but also at a health check center or a health center.
  • the device of the present invention also offers the possibility of remote treatment, such as a remote home caregiver.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A method of examining liver diseases comprising the steps of collecting expiration, quantifying isopropanol and/or cyanide compounds in the expiration, and analyzing the results; and an expiration analysis device for examining liver diseases, comprising an expiration collection unit for introducing expiration to be analyzed, an expiration analysis unit for quantifying isopropanol and/or cyanide compounds in the expiration, and a data processing unit for analyzing the analysis results obtained in the expiration analysis unit. The method of examining liver diseases is simple and high in accuracy and can be conducted without giving pains to examinees and without requiring a technician having a special technique, and the expiration analysis device used for the method is provided.

Description

明細 : 呼気分析装置を用いた肝硬変検査方法及び装置 技術分野 Description : Cirrhosis test method and device using breath analyzer
本発明は肝臓疾患の検査方法及び該検査方法に使用するための呼気分析装置に 関する。 背景技術  The present invention relates to a method for testing liver disease and a breath analyzer for use in the method. Background art
肝臓疾患の診断は、 医師による臨床所見、 肝生検、 腹腔鏡検査、 肝スキャン二 ング、 超音波検査、 CTスキャンニング、 X線検査等により行われている。 しか しながら、 これらの方法は、 医師や、 専門技師等による特殊な技術や、 高価な装 置を必要とするため、 一般の健康診断等において肝臓疾患を検査する目的には適 さない。 このため、 健康診断等においては、 血液、 尿を採取し、 血中、 尿中の代 謝物を分析することにより、 肝臓疾患の検査を行っている。  Diagnosis of liver disease is made by doctors' clinical findings, liver biopsy, laparoscopy, liver scanning, ultrasound, CT scanning, X-ray examination, and the like. However, these methods require special techniques by doctors and specialists and expensive equipment, and are not suitable for the purpose of examining liver diseases in general medical examinations and the like. Therefore, in health examinations, etc., liver disease is examined by collecting blood and urine and analyzing metabolites in blood and urine.
そのような肝臓疾患の検査法としては、 血清ピリルビン、 Z TT、 TTT、 A LP、 CHE、 G〇T、 GPT、 ァ一 GTP、 LDH、 LAP, 血清総タンパク、 A/G比、 尿ピリルビン、 尿ゥロビリノ一ゲン等の測定がある。 そして、 このよ うな検査で肝臓疾患の疑いがあると判定された場合、 医療機関において上記のよ うな診断や検査を受けることになる。  Test methods for such liver diseases include serum pyrilrubin, ZTT, TTT, ALP, CHE, G〇T, GPT, α-GTP, LDH, LAP, serum total protein, A / G ratio, urinary pyrilrubin, There is measurement of urinary urobilinogen. If such a test determines that a liver disease is suspected, the medical institution will undergo the above-mentioned diagnosis and test.
一方、 近年においては、 呼気中の代謝物を測定して各種疾患を検査する方法が 提案されている。 そのような方法は、 例えば (三井泰裕、 "呼気中極微量成分検 出システム" 、 S14- 5昭和 62年電気学会全国大会予稿集( 1987)) 等に記載さ れている。  On the other hand, in recent years, a method for examining various diseases by measuring metabolites in breath has been proposed. Such a method is described in, for example, (Yasuhiro Mitsui, "A System for Detecting Trace Components in Exhaled Breath", S14-5 Proceedings of the 1987 IEEJ National Convention (1987)).
しかしながら、 上記のように血中、 尿中の代謝物測定による肝臓疾患の検査 は、 検査時から結果が出るまでに時間がかかる。 従って、 医療機関における患者 の状態モニタ一や、 緊急入院の際の検査には適さない場合がある。 また、 採血に ついては一定の資格を有する者しか行うことができず、 しかも患者に苦痛を与え るため、 特に重病患者や小児患者には負担が大きい。 さらに、 上記血中、 尿中の 代謝物の測定データは、 必ずしも肝臓疾患に特異的なものではない。 従って、 で きるだけ正確な判定を行うためには、 できるだけ多くの測定データを出し、 これ らを組み合わせることが重要である。 また、 現在のところ、 上記呼気分析方法を 肝臓疾患の検査において実施するための具体的手段についての開示はない。 従って、 本発明の目的は、 迅速な判定が可能であり、 被験者の苦痛が少なく、 しかも正確な判定に寄与しうる肝臓疾患の検査方法、 並びに該方法に使用される 装置を提供することにある。 発明の開示 However, as described above, liver disease tests based on the measurement of metabolites in blood and urine take time from the time of the test until results are obtained. Therefore, it may not be suitable for monitoring the condition of patients in medical institutions or for testing during emergency hospitalization. In addition, blood sampling can only be performed by qualified personnel, and it is painful for patients, especially for severely ill patients and pediatric patients. In addition, the above blood, urine Metabolite data is not necessarily specific to liver disease. Therefore, it is important to generate as much measurement data as possible and combine them in order to make the judgment as accurate as possible. At the present time, there is no disclosure about specific means for performing the above-mentioned breath analysis method in a test for liver disease. Accordingly, an object of the present invention is to provide a method for testing a liver disease capable of performing a quick determination, reducing the pain of a subject, and contributing to an accurate determination, and an apparatus used for the method. . Disclosure of the invention
上記目的を達成するために、 本発明の発明者らは、 被験者に与える苦痛が殆ど ない呼気分析に着目し、 呼気中の成分と肝臓疾患との関係につき、 鋭意研究を重 ねた結果、 本発明を完成するに至った。  In order to achieve the above object, the inventors of the present invention focused on breath analysis with little or no pain to subjects, and as a result of intensive studies on the relationship between components in breath and liver disease, The invention has been completed.
( 1 ) 即ち、 本発明は、 呼気を採取し、 該呼気中のイソプロパノール及び/ま たはシアン化合物の定量を行い、 その結果を解析することを含む肝臓疾患の検査 方法に関する。  (1) That is, the present invention relates to a method for examining liver disease, which comprises collecting exhaled breath, quantifying isopropanol and / or a cyanide compound in the exhaled breath, and analyzing the result.
(2) また、 本発明は、 肝硬変の検査のための上記方法に関する。  (2) The present invention also relates to the above method for testing liver cirrhosis.
さらに、 本発明は、 下記の肝臓疾患検査用呼気分析装置に関する。  Furthermore, the present invention relates to the following breath analyzer for liver disease inspection.
(3) 分析する呼気を導入するための呼気採取部、 該呼気中のイソプロパノー ル及び/またはシァン化合物を定量する呼気分析部、 及び該呼気分析部で得られ た分析結果を解析するデータ処理部を含む、 肝臓疾患検査用呼気分析装置。  (3) a breath sampling unit for introducing the breath to be analyzed, a breath analysis unit for quantifying isopropanol and / or cyanide compounds in the breath, and a data processing unit for analyzing the analysis result obtained by the breath analysis unit A breath analyzer for liver disease testing.
(4) 前記呼気採取部が、 呼気採取手段と呼気移送手段からなる (3) 記載の 呼気分析装置。  (4) The breath analysis apparatus according to (3), wherein the breath collection unit includes a breath collection unit and a breath transfer unit.
( 5 ) 前記呼気採取手段がマウスビースまたはマスクである (4) 記載の呼気 分析装置。  (5) The breath analyzer according to (4), wherein the breath collecting means is a mouse bead or a mask.
( 6 ) 前記呼気採取手段が、 呼気収容容器を連結するための連結口である (4) 記載の呼気分析装置。  (6) The breath analysis apparatus according to (4), wherein the breath collection means is a connection port for connecting a breath storage container.
(7) 前記呼気移送手段が、 前記呼気採取手段と前記呼気分析部とを呼気流通 可能に接続する導管を含む (4) 〜 ( 6) のいずれかに記載の呼気分析装置。  (7) The breath analyzer according to any one of (4) to (6), wherein the breath transfer unit includes a conduit that connects the breath collection unit and the breath analyzer so that the breath can flow.
(8) 前記呼気移送手段が、 さらに、 呼気を前記呼気分析部に送るポンプ手段 を含む (7) 記載の呼気分析装置。 (8) The expiratory transfer means further comprises: a pump means for transmitting expiration to the expiratory analyzer. (7) The breath analyzer according to (7).
(9) 前記呼気採取手段が、 マウスビースまたはマスクと、 前記呼気収容容器 を連結するための連結口の両方を含み、 場合に応じて選択されるその一方のみを 前記呼気分析部と流通可能とする切換可能なバルブ手段を前記導管に設けたこと を特徴とする (7) または (8) 記載の呼気分析装置。  (9) The breath collection means includes both a mouse bead or a mask and a connection port for connecting the breath storage container, and only one of them selected as occasion demands can be distributed with the breath analysis unit. The breath analyzer according to (7) or (8), wherein a switchable valve means is provided on the conduit.
( 1 0) 前記呼気分析部が質量分析計を含む (3) 〜 ( 9) 記載の呼気分析装  (10) The breath analyzer according to any one of (3) to (9), wherein the breath analyzer includes a mass spectrometer.
( 1 1 ) 肝硬変の検査に使用される (3) 〜 ( 10) 記載の呼気分析装置。 さらに、 本発明は、 呼気中のシアン化合物の定量をその分解生成物である H CN の定量により行うことを特徴とする前記方法及び装置をも提供する。 図面の簡単な説明 (11) The breath analyzer according to (3) to (10), which is used for an examination of cirrhosis. Further, the present invention also provides the above method and apparatus, wherein the quantitative determination of the cyanide compound in breath is performed by the quantitative determination of its decomposition product, HCN. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一の実施例の呼気分析装置を示す概略図である。  FIG. 1 is a schematic diagram showing a breath analyzer according to one embodiment of the present invention.
図 2は、 肝硬変と、 イソプロパノール及びシアン化合物の定量値との関係を示 すグラフである。  FIG. 2 is a graph showing the relationship between cirrhosis and quantitative values of isopropanol and cyanide.
図 3は、 本発明の他の実施例の呼気分析装置を示す概略図である。  FIG. 3 is a schematic view showing a breath analyzer according to another embodiment of the present invention.
図 4は、 本発明の他の実施例の呼気分析装置を示す概略図である。  FIG. 4 is a schematic diagram showing a breath analyzer according to another embodiment of the present invention.
図 5は、 本発明の他の実施例の呼気分析装置を示す概略図である。 発明を実施するための最良の形態  FIG. 5 is a schematic diagram showing a breath analyzer according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
1. 検査方法  1. Inspection method
本発明の方法により検査され得る肝臓疾患の例としては、 急性肝炎、 慢性肝炎、 劇症肝炎、 脂肪肝、 肝硬変が挙げられる。 特に、 本発明の方法は肝硬変の検査に 適している。  Examples of liver diseases that can be tested by the method of the present invention include acute hepatitis, chronic hepatitis, fulminant hepatitis, fatty liver, cirrhosis. In particular, the method of the present invention is suitable for examination of cirrhosis.
より正確な判定を可能とするには、 ィソプロパノール及びシアン化合物の両方 を定量するのが好ましいが、 いずれか一方を定量してもよい。  To enable a more accurate determination, it is preferable to quantify both isopropanol and the cyanide compound, but either one may be quantified.
シアン化合物の例としては、 ァセトニトリルが挙げられる。  Examples of cyanide include acetonitrile.
呼気は、 装置に直接導入し、 即時に定量分析を行っても良く、 また、 一旦容器 に採取し、 一定時間経過後に、 定量分析のための装置に導入して、 定量分析を行 つてもよい。 The exhaled breath may be directly introduced into the device and subjected to quantitative analysis immediately, or it may be collected once in a container, and after a certain period of time, introduced into the device for quantitative analysis to perform quantitative analysis. You may use it.
また、 定量分析方法によっては、 定量分析前に、 採取した呼気に、 濃縮、 溶液 への吸収、 吸着、 凝結、 フィルターによる不純物や水分の除去、 ガスクロマトグ ラフィ一による分離等の前処理を行っても良い。  In addition, depending on the quantitative analysis method, the collected breath is subjected to pretreatment such as concentration, absorption into solution, adsorption, coagulation, removal of impurities and water by a filter, and separation by gas chromatography before quantitative analysis. Is also good.
ィソプロパノール及び/またはシアン化合物の定量は、 該化合物を定量し得る 任意の手段により行い得る。 例えば、 質量分析法、 発光分析法、 蛍光分析法、 ガ スクロマトグラフィー (気一固クロマトグラフィー、 気一液クロマトグラフィ The quantification of the isopropanol and / or cyanide compound can be performed by any means capable of quantifying the compound. For example, mass spectrometry, emission spectroscopy, fluorescence spectroscopy, gas chromatography (gas-solid chromatography, gas-liquid chromatography
―) 、 液体クロマトグラフィー、 検知管法、 半導体センサ一による方法、 I R分 析 (FT— I R等) 等により行うことができる。 質量分析法としては、 電子ィォ ン化質量分析法、 化学イオン化質量分析法、 大気圧イオン化質量分析法、 二次ィ オン質量分析法、 高速原子衝撃イオン化質量分析法、 サーモスプレーイオン化質 量分析法、 エレク トロスプレーイオン化質量分析法、 レーザー脱離イオン化質量 分析法等が挙げられる。 分析機器としては、 例えば磁場単収束型、 電場磁場二重 収束型、 四重極型、 三次元四重極型、 TOF型、 I CR型のものを用いうる。 ま た、 GC— MS装置、 MS— MS装置、 L C一 MS装置等も使用しうる。 -), Liquid chromatography, detector tube method, method using a semiconductor sensor, IR analysis (FT-IR, etc.), etc. Mass spectrometry includes electron ionization mass spectrometry, chemical ionization mass spectrometry, atmospheric pressure ionization mass spectrometry, secondary ion mass spectrometry, fast atom bombardment ionization mass spectrometry, thermospray ionization mass spectrometry Method, electrospray ionization mass spectrometry, laser desorption ionization mass spectrometry, and the like. As the analysis instrument, for example, a magnetic field single focusing type, an electric field double focusing type, a quadrupole type, a three-dimensional quadrupole type, a TOF type, and an ICR type can be used. Alternatively, a GC-MS device, an MS-MS device, an LC-MS device, etc. may be used.
ィソプロパノール及びシアン化合物は、 分析方法によってはその分解生成物ま たは反応生成物として検出され、 定量され得る。 例えば、 シアン化合物は、 分解 生成物としての H CN等として定量され得る。 また、 イソプロパノールは、 分解 生成物または反応生成物としての CH3C + H CH3、 CH3C + HOH、 (CH3C H (OH) C H3)2 · H2等として定量され得る。 従って、 本明細書を通して、 「イソプロパノール及び/またはシアン化合物の定量」 は、 これらの分解生成物 及び反応生成物の定量により間接的にイソプロパノール及び/またはシアン化合 物を定量することをも含む。 Isopropanol and cyanide can be detected and quantified as decomposition products or reaction products depending on the analytical method. For example, cyanide can be quantified as HCN or the like as a decomposition product. Further, isopropanol, CH 3 C + H CH 3 as the degradation products or reaction products, CH 3 C + HOH, can be quantified as (CH 3 CH (OH) CH 3) 2 · H 2 and the like. Thus, throughout this specification, "quantifying isopropanol and / or cyanide" also includes indirectly quantifying isopropanol and / or cyanide by quantifying these degradation products and reaction products.
本発明において、 「解析」 とは、 イソプロパノール及び/またはシアン化合物 の定量分析データにより、 肝臓疾患に罹患している可能性を判定することをいう。 判定は、 例えば、 ビーク面積、 イオン強度等の定量分析データを濃度に換算し、 該濃度が一定の値未満の場合は、 肝臓疾患に罹患している可能性がないと判断し、 一定の値以上の場合は罹患の可能性があると判断することにより行うことができ る。 この場合、 判定の基準となる値 (以下、 臨界値という) は、 予め例えば各々 6名以上の肝臓病疾患患者と健常者の呼気中のイソプロパノール及び/またはシ アン化合物濃度を測定することにより求めることができる。 In the present invention, “analysis” refers to determining the possibility of suffering from liver disease based on quantitative analysis data of isopropanol and / or cyanide. For the determination, for example, quantitative analysis data such as beak area and ionic strength are converted into a concentration, and if the concentration is less than a certain value, it is determined that there is no possibility of having a liver disease, and a certain value is determined. The above cases can be performed by determining that there is a possibility of disease. In this case, the reference value for the judgment (hereinafter referred to as the critical value) is, for example, It can be determined by measuring the isopropanol and / or cyanide compound concentration in the breath of six or more liver disease patients and healthy subjects.
臨界値は、 イソプロパノールの濃度について、 例えば、 0. 1 5 ppm〜 10 P pmの間で設定することができ、 好ましくは 0. 1 5 ppm〜 l ppm の間 で設定することができる。 また、 シアン化水素の濃度について、 例えば、 0. 3 p ρπ!〜 10 p pmの間で設定することができ、 好ましくは 0. 5 ppm〜2 p p mの間で設定することができる。  The critical value can be set for the concentration of isopropanol, for example, between 0.15 ppm and 10 ppm, preferably between 0.15 ppm and 1 ppm. Also, regarding the concentration of hydrogen cyanide, for example, 0.3 p ρπ! It can be set between 1010 ppm and preferably between 0.5 ppm and 2 ppm.
定量分析データから濃度への換算は、 検量線法等の慣用方法により行い得る。 判定はコンビュ一夕による自動解析で行うのが好ましいが、 換算された濃度に 基づき検査を行う者が判定することもできる。  Conversion from the quantitative analysis data to the concentration can be performed by a conventional method such as a calibration curve method. Judgment is preferably performed by automatic analysis by a convenience store, but it is also possible for the person who performs the inspection to make a judgment based on the converted concentration.
また、 判定は、 定量分析データを濃度に換算することなく、 予め調べた肝臓疾 患とイソプロパノール及び/またはシアン化合物の定量分析データ (ピーク面積、 イオン強度等) との関係に基づいて行ってもよい。 さらに、 例えば各々 6名以上 の肝臓病疾患の患者と健常者の呼気中のイソプロパノール及び/またはシアン化 合物の定量分析データを予めデータ処理装置にインプッ 卜しておき、 被験者の呼 気中のデータが肝臓病疾患の患者と健常者のいずれのデ—夕に近いかを自動解析 することにより判定を行うこともできる。  In addition, the determination can be made based on the relationship between the liver disease and the quantitative analysis data (peak area, ionic strength, etc.) of isopropanol and / or cyanide, which were previously examined, without converting the quantitative analysis data into concentrations. Good. Furthermore, for example, quantitative analysis data of isopropanol and / or cyanide compounds in the breath of 6 or more patients with liver disease and healthy subjects are input to a data processing device in advance, and the data of the subject's breath are analyzed. Judgment can also be made by automatically analyzing whether the data is closer to the data of patients with liver disease or healthy subjects.
なお、 上記の説明においては、 被験者を肝臓疾患に罹患している可能性がない 群と、 罹患の可能性がある群とに類別して判定しているが、 罹患の可能性、 疾患 の程度等により段階的に分けた 3以上の群に類別することもできる。  In the above explanation, the subjects are classified into groups that are unlikely to have liver disease and those that are likely to have liver disease. It can also be classified into three or more groups that are divided step by step.
また、 解析は、 年齢、 性別、 既往症、 他の検査によるファクタ一等の他のデ一 夕を合わせて用いて行うこともできる。 他の検査によるファクタ一は、 例えば、 血清ピリルビン、 ZTT、 TTT、 ALP, CHE、 GOT, GPT、 ァ一 GT P、 LDH、 LAP, 血清総タンパク、 AZG比、 尿ピリルビン、 尿ゥロビリノ —ゲンのデ一夕であり得る。 例えば、 上記ファクターの一またはそれ以上のデー 夕を、 肝臓疾患の判定用に予めプログラムされたデータ処理装置にインプッ 卜し、 そのデータとィソプロパノール及び/またはシアン化合物の定量分析のデータを 合わせて自動的に解析することができる。  The analysis can also be performed using other data such as age, gender, pre-existing conditions, and factors from other tests. Factors from other tests include, for example, serum pyrilrubin, ZTT, TTT, ALP, CHE, GOT, GPT, αGTP, LDH, LAP, serum total protein, AZG ratio, urinary pyrilrubin, urobilobino-gen Can be overnight. For example, one or more of the above factors may be input into a pre-programmed data processor for liver disease determination, and the data combined with the quantitative analysis data for isopropanol and / or cyanide. Can be automatically analyzed.
なお、 上記判定方法は限定的なものではない。 また、 臨界値も、 類別すべき群、 上記他の検査によるファクタ一等の要素、 また目的とする肝臓疾患スクリーニン グの精度等に応じて、 適宜選択することができる。 本発明により、 呼気中のイソ プロパノール及びシアン化合物の濃度が、 健常者と肝臓病患者とで有意に異なる ことが見出されたため、 例えば各々 6名程度の健常者と肝臓病患者の呼気中ィソ プロパノール及びシアン化合物の定量分析デ一夕を収集することにより、 実際に 行われる検査に応じた判定方法を採用することができる。 Note that the above determination method is not limited. Also, the critical values are It can be appropriately selected according to factors such as the factor 1 by the other tests described above, the accuracy of the intended liver disease screening, and the like. According to the present invention, it has been found that the concentrations of isopropanol and cyanide in breath are significantly different between healthy subjects and liver disease patients. By collecting data on the quantitative analysis of sopropanol and cyanide, it is possible to adopt a judgment method according to the test actually performed.
2 . 呼気分析装置 2. Breath analyzer
本発明の装置において、 呼気採取部は、 分析のための呼気を採取し、 装置内に 導入し、 呼気分析装置へと導くための部分であり、 好ましくは、 呼気を採取する ための呼気採取手段と、 採取した呼気を呼気分析装置に移送する呼気移送手段か らなる。  In the device of the present invention, the breath collection unit is a unit for collecting a breath for analysis, introducing the breath into the device, and leading the breath to the breath analyzer, and preferably, a breath collection unit for collecting the breath. And breath transfer means for transferring the collected breath to the breath analyzer.
呼気採取手段は、 例えば直接呼気を採取するためのマウスビース、 口または鼻 と口の両方を覆う形状のマスク等の呼気吹き込み口、 または呼気収容容器を連結 するための連結口等であり得る。  The breath collecting means may be, for example, a mouth bead for directly collecting breath, a breath blowing port such as a mask shaped to cover the mouth or both the nose and the mouth, or a connection port for connecting a breath holding container.
呼気を直接装置に導入して検査を行う場合は、 上記呼気吹き込み口が使用され、 呼気収容容器に採取し、 一定時間経過後に、 該容器中の呼気を定量のための装置 に導入して検査する場合には、 上記連結口が使用される。  When testing is performed by introducing exhaled air directly into the device, the above-mentioned exhalation blow-in port is used, and is collected in an exhalation storage container, and after a certain period of time, the exhaled air in the container is introduced into a device for quantification and tested. In this case, the connection port is used.
呼気収容容器は、 分析のための呼気を一旦収容しておくための容器であり、 例 えば真空ビンのようなガラス容器、 軟質塩化ビニル製、 四フヅ化ビニル製、 四フ ッ化エチレン製、 ポリエチレンフタレート製の合成樹脂製呼気捕集バッグ等であ り得る。  The breath holding container is a container for temporarily holding the breath for analysis, for example, a glass container such as a vacuum bottle, soft vinyl chloride, vinyl tetrafluoride, and ethylene tetrafluoride. And a breath collection bag made of synthetic resin made of polyethylene phthalate.
前記マウスビース及びマスクは、 呼気を外に漏らすことなく効率的に採取しう る構造を取ることができる。 さらに、 呼気吹き込み後、 呼気が外気に漏れるのを 防ぐための手段、 例えば弁を設けるのが好ましい。  The mouth beads and the mask can have a structure that allows efficient collection without exhaling breath. Further, it is preferable to provide a means for preventing the exhalation from leaking to the outside air after the exhalation is blown, for example, a valve.
呼気移送手段は、 例えば、 前記呼気採取手段と前記呼気分析部とを呼気流通可 能に接続する導管、 該導管に設けられるバルブ、 呼気を強制的に前記呼気分析部 に送るか、 あるいは引き込むポンプ等を含み得る。  The exhalation transfer means includes, for example, a conduit for connecting the exhalation collection means and the exhalation analyzer so that exhalation can flow, a valve provided in the conduit, a pump for forcibly sending or drawing exhalation to the exhalation analyzer. And the like.
呼気中の分析対象物質の導管への吸着を抑えるために、 導管の内面は電界研磨 されているのが好ましい。 さらに、 本発明の装置は、 同目的のために、 呼気採取 部、 特に導管及びバルブを一定温度に加熱し得る加熱手段を備える。 Preferably, the inner surface of the conduit is electropolished to suppress the adsorption of the analyte in the breath to the conduit. Furthermore, the device according to the invention can Heating means for heating the parts, in particular the conduits and the valves, to a constant temperature.
さらに、 呼気移送手段は、 呼気量コントロール機構を含んでいてもよく、 採取 した呼気の一定量を呼気分析部に送る構造とするのが好ましい。  Further, the expiratory transfer means may include an expiratory volume control mechanism, and preferably has a structure for sending a fixed amount of the exhaled breath to the expiratory analyzer.
また、 呼気採取部において、 呼気に、 濃縮、 溶液への吸収、 吸着、 凝結、 フィ ルターによる不純物や水分の除去、 ガスクロマトグラフィ一による分離等の前処 理を行うための前処理手段を設けてもよい。  In the breath collection section, a pretreatment means is provided for the breath to perform pretreatment such as concentration, absorption into solution, adsorption, coagulation, removal of impurities and water by a filter, and separation by gas chromatography. Is also good.
本発明において、 呼気分析部は、 呼気中のイソプロパノール及び/またはシァ ン化合物を定量する領域であり、 該物質を定量し得る定量分析機器を含む。  In the present invention, the breath analysis section is a region for quantifying isopropanol and / or a cyanide compound in breath, and includes a quantitative analyzer capable of quantifying the substance.
該定量分析機器の具体例としては、 質量分析計、 発光分析計、 蛍光分析計、 ガ スクロマトグラフ装置 (気一固クロマトグラフ装置、 気一液クロマトグラフ装 置) 、 液体クロマトグラフ装置、 検知管、 半導体センサー、 I R分析計 (例えば F T— I R ) 、 イオン電極濃度測定装置、 光電光度計及び比色計等が挙げられる。 質量分析計としては、 特に、 電子イオン化質量分析計、 化学イオン化質量分析計、 大気圧イオン化質量分析計、 二次イオン質量分析計、 高速原子衝撃イオン化質量 分析計、 サ一モスプレーイオン化質量分析計、 エレク トロスプレーイオン化質量 分析計、 レーザー脱離イオン化質量分析計等が挙げられる。 イオンの分離方式は、 例えば磁場単収束型、 電場磁場二重収束型、 四重極型、 三次元四重極型、 T O F 型、 I C R型であり得る。 また、 G C— M S装置、 M S— M S装置、 L C— M S 装置等も使用しうる。  Specific examples of the quantitative analyzer include a mass spectrometer, an emission spectrometer, a fluorescence spectrometer, a gas chromatograph (gas-solid chromatograph, gas-liquid chromatograph), a liquid chromatograph, a detector tube. , A semiconductor sensor, an IR analyzer (for example, FT-IR), an ion electrode concentration measuring device, a photoelectric photometer, and a colorimeter. Examples of mass spectrometers include electron ionization mass spectrometers, chemical ionization mass spectrometers, atmospheric pressure ionization mass spectrometers, secondary ion mass spectrometers, fast atom bombardment ionization mass spectrometers, and thermospray ionization mass spectrometers , An electrospray ionization mass spectrometer, a laser desorption ionization mass spectrometer, and the like. The ion separation method can be, for example, a magnetic field single focusing type, an electric field double focusing type, a quadrupole type, a three-dimensional quadrupole type, a TOF type, or an ICR type. Also, a GC-MS device, a MS-MS device, an LC-MS device, etc. may be used.
本発明において、 「データ処理部」 は、 呼気分析部で得られた分析結果を受け、 これを解析し、 所望によりィソプロパノール及び/またはシアン化合物の濃度の 換算、 肝臓疾患罹患の可能性の判定、 即ち、 上記検査方法の項目で詳述した肝臓 疾患に関する判定、 及び/またはそれらの結果の表示等を行う領域である。  In the present invention, the “data processing unit” receives the analysis result obtained by the breath analysis unit, analyzes the result, converts the concentration of isopropanol and / or cyanide compound if necessary, and determines the possibility of liver disease. This is an area for performing the determination, that is, the determination regarding the liver disease described in the item of the above-described test method and / or the display of the results thereof.
前述のように、 デ一夕処理部において判定までの全てのデータ処理をコンビュ 一夕一プログラムにより自動的に行っても、 データ処理部ではィソプロパノール 及び/またはシアン化合物の濃度換算と濃度表示のみを行い、 判定は検査者が行 つてもよい。  As described above, even if all data processing up to the judgment is automatically performed by the compilation overnight program in the data processing unit, the data processing unit converts the concentration of isopropanol and / or cyanide and displays the concentration. Only the judgment may be made by the inspector.
データ処理部は、 予め測定した複数の肝臓疾患患者の呼気中のイソプロパノー ルとシアン化合物の定量値及び、 健常者の呼気中のィソプロパノールとシアン化 合物の定量値からなるデータベースを備え、 前記測定値と該デ一夕べ一スを比較 して、 肝臓疾患を検査する構成であってもよい。 The data processing unit measures the quantitative values of isopropanol and cyanide compounds in the exhaled breath of multiple liver disease patients, and the isopropanol and cyanidated exhaled breath of healthy subjects. A configuration may be provided in which a database comprising quantitative values of the compound is provided, and the measured value is compared with the database to check for liver disease.
なお、 本発明の装置は、 主に健康診断等において、 肝臓疾患のスクリーニング の目的で使用され得るが、 医療機関において、 診断の補助に用いることもできる。 また、 分析結果を通信回線等を用いて送信することにより、 無医村等の遠隔地と 都市部の病院の医師とをつなぎ、 長期療養者の病状のモニター、 遠隔治療のため の検査等を可能にすることもできる。 実施例  Note that the device of the present invention can be used mainly for the purpose of screening for liver disease in health examinations and the like, but can also be used in medical institutions to assist diagnosis. In addition, by transmitting the analysis results using a communication line, etc., it is possible to connect physicians at urban hospitals to remote areas such as non-medical villages, to monitor the condition of long-term care recipients, and to conduct tests for remote treatment. You can also. Example
本発明は、 以下の実施例においてさらに説明される。 これらの実施例は、 例示 であって、 本発明を限定するものではない。 当該技術分野の技術者は、 本発明の 記載及び当該分野で知られている情報により様々な改良及び修正を行い得る。 な お、 実施例を説明するための全図において、 同一機能を有するものは同一記号を 付け、 その繰り返しの説明は省略する。  The present invention is further described in the following examples. These examples are illustrative and do not limit the invention. Those skilled in the art can make various improvements and modifications based on the description of the present invention and the information known in the art. In all the drawings for describing the embodiments, those having the same functions are denoted by the same reference symbols, and their repeated description will be omitted.
実施例 1 Example 1
本実施例の呼気分析装置の概略構成図を図 1に示す。  FIG. 1 shows a schematic configuration diagram of the breath analyzer of the present embodiment.
図 1に示すとおり、 本実施例の呼気分析装置 1 aを用いた肝硬変検査装置は、 呼気採取部 2 8、 呼気分析部 2 9及びデータ処理部 3 0より構成されている。 前 記呼気採取部 2 8は、 マウスビース 2と呼気捕集バック 6が導管 5 2により 2連 3方構造バルブ本体 5に接続されており、 前記バルブ本体 5に内蔵された呼気切 換バルブ 3及び 4により、 マウスビースから直接呼気を導入する場合と呼気捕集 バック 6に一旦呼気を捕集して間接的に呼気を導入する場合とを切り替えて使用 する構造になっている。 前記バルブ本体 5は流量コントロ一ラ 7を経由し呼気分 析部 2 9の呼気ガス導入口に接続されており、 直接あるいは間接的に導入された 呼気を一定流量に制御し、 呼気分析部 2 9に導入する。  As shown in FIG. 1, the cirrhosis testing apparatus using the breath analyzer 1a of the present embodiment includes a breath sampling unit 28, a breath analyzer 29, and a data processing unit 30. The exhalation sampling section 28 has a mouth bead 2 and an exhalation collecting bag 6 connected to a two-way, three-way valve body 5 by a conduit 52, and an exhalation switching valve 3 built in the valve body 5. According to 4 and 4, there is a structure in which the exhalation is introduced directly from the mouse bead and the exhalation is indirectly introduced by exhaling the air once in the exhalation collecting bag 6. The valve main body 5 is connected to a breath gas inlet of a breath analyzer 29 via a flow controller 7, and controls a directly or indirectly introduced breath to a constant flow rate, and a breath analyzer 2. Introduce to 9.
また、 呼気採取部 2 8を構成する導管として、 内面を電界研磨された導管を使 用し、 さらにヒ一夕 8により導管及びバルブ本体 5を一定温度に加熱することに より呼気中の分析対象物質の導管への吸着を抑えている。  In addition, a conduit having an electropolished inner surface is used as a conduit composing the exhalation sampling unit 28, and the conduit and the valve body 5 are heated to a constant temperature by the heating unit 8, so that the analysis target during exhalation is obtained. Adsorption of substances to the conduit is suppressed.
前記呼気分析部 2 9の分析計には極微量分析が可能な大気圧ィォン化質量分析 5「 (Atomospheric Pres sure Ioni zation Mass Spectrometry^ 以下、Atmospheric pressure ionization mass spectrometry capable of trace analysis 5 `` (Atomospheric Pres sure Ioni zation Mass Spectrometry ^ Below,
APIMSと略す) を使用しており、 呼気中の分析対象物質を超高感度で分析するこ とを可能にしている。 前記 APIMSの第一イオン化室 1 5には一次イオン生成ガ スとしての Ar+H: ( 1 % ) 混合ガス 9のボンベが減圧弁 1 0と流量コントロ一ラ — 1 1を介して接続されており、 放電針 1 6に印加された高圧によるコロナ放電 により 1次イオンを生成する。 また、 第二イオン化室 1 7には、 呼気採取部 2 8 と、 圧力コントローラ 1 2を介してダイヤフラムポンプ 1 3とが接続されており、 前記第二イオン化室 1 7内圧力を 0 . 8 5 Paに保ち、 呼気採取部 2 8からの呼 気ガスを吸い込む構造とすると共に、 前記第一イオン化室 1 5で生成した一次ィ オンと呼気中の分析対象物質の中性分子を衝突させた結果、 イオン—分子反応を 行わせ分析対象物質のイオン化を行う。 差動排気部 1 8は、 真空排気系 2 0によ り低真空に保たれており、 第 2イオン化室 1 7と呼気分析部 2 3とをつなぐ領域 である。 前記呼気分析部 2 3は真空排気系 2 1により高真空に保たれており、 内 部に四重極質量分析計 2 2を配し、 スリッ ト 1 9の細口を通って呼気分析部 2 3 に導入されたイオンを質量分離し、 電気信号に変換する領域である。 信号増幅器 2 4は呼気分析部 2 3に接続されており、 呼気分析部 2 3で変換された電気信号 を増幅し、 データ処理部 3 0に送信する。 APIMS), which makes it possible to analyze analytes in breath with ultra-high sensitivity. A cylinder of Ar + H: (1%) mixed gas 9 as a primary ion generation gas is connected to the first ionization chamber 15 of the APIMS via a pressure reducing valve 10 and a flow controller 11. Thus, primary ions are generated by corona discharge caused by the high pressure applied to the discharge needle 16. In addition, the second ionization chamber 17 is connected to a breath collection unit 28 and a diaphragm pump 13 via a pressure controller 12, and the internal pressure of the second ionization chamber 17 is reduced to 0.85. The pressure is maintained at Pa, and the structure is such that the breath gas from the breath sampling unit 28 is sucked, and the primary ions generated in the first ionization chamber 15 collide with neutral molecules of the analyte in breath. The ion-molecule reaction is performed to ionize the analyte. The differential pumping section 18 is maintained at a low vacuum by the vacuum pumping system 20 and is an area connecting the second ionization chamber 17 and the breath analyzer 23. The breath analysis unit 23 is maintained in a high vacuum by a vacuum exhaust system 21.A quadrupole mass spectrometer 22 is disposed inside the breath analysis unit 23, and the breath analysis unit 23 passes through the narrow mouth of the slit 19. This is the area where ions introduced into the mass are separated by mass and converted into electric signals. The signal amplifier 24 is connected to the breath analyzer 23, amplifies the electric signal converted by the breath analyzer 23, and transmits the electric signal to the data processor 30.
前記データ処理部 3 0はコンビュ一夕 2 5とデータベース 2 6, 及び表示部 2 7より構成されており、 呼気中の分析対象物質であるィソプロパノール及びシァ ン化合物の両方あるいは、 少なくともどちらか一方の濃度を、 信号増幅器 2 4か ら送信された信号から計算し、 予め肝硬変患者グループと健常者グループ (健康 診断で、 正常だと認められた者) の呼気中のイソプロパノール及びシアン化合物 濃度により作成されたデータベース 2 6と比較して、 どちらのグループの濃度に 近いか判定することにより、 肝硬変であるか正常かを判定し、 表示部 2 7に表示 する。  The data processing unit 30 is composed of a convenience store 25, a database 26, and a display unit 27, and is used to measure both or at least one of isopropanol and cyanide, which are the analytes in breath. One of the concentrations was calculated from the signal transmitted from the signal amplifier 24, and was calculated based on the concentrations of isopropanol and cyanide in the exhaled breath of the group of cirrhosis patients and the group of healthy subjects (those who were determined to be normal by a health examination) in advance. By comparing with the prepared database 26 to determine which group concentration is closer to it, it is determined whether the liver cirrhosis is normal or normal, and displayed on the display unit 27.
本実施例の動作について説明する。 呼気を直接導入する場合には、 マウスピー ス 2より導入し、 この時の呼気切換バルブ 3は開に、 また呼気切換バルブ 4は閉 に設定される。 また、 呼気を間接的に導入する場合には、 一度呼気捕集バック 6 に捕集し、 その後呼気捕集バック 6をバルブ本体 5に接続して、 呼気切換バルブ / The operation of the present embodiment will be described. When exhalation is introduced directly, the exhalation switching valve 3 is opened and the exhalation switching valve 4 is closed at this time. When the exhalation is introduced indirectly, the exhalation is collected once in the exhalation collection bag 6, and then the exhalation collection bag 6 is connected to the valve body 5, and the exhalation switching valve is used. /
3は閉に、 また呼気切換バルブ 4は開に設定し導入する。 導入された呼気は流量 コントローラ 7で流量制御され、 AP IMSの第二イオン化室 1 Ίに導入される。 一 方、 一次イオン生成ガスである Ar+H: ( 1 % ) 混合ガス 9は、 減圧弁 1 0で、 一 定圧力に制御され、 流量コントローラ 1 1で流量制御されて AP IMSの第一イオン 化室 1 5に導入される。 導入された Ar+H: ( 1 % ) 混合ガス 9は放電針 1 6に印 加された高電圧によりコロナ放電を生じ、 その結果一次イオンを生成する。 生成 された一次イオンは、 第二次イオン化室 1 7に導入され、 呼気採取部 2 8より導 入された呼気と混合される。 混合された結果、 呼気は一次イオンと衝突してィォ ン—分子反応を生じ、 呼気中の分析目的物質がイオン化される。 イオン化された 分析目的物質は、 差動排気部 1 8を通り、 呼気分析部 2 3に導入され四重極質量 分析計 2 2により質量分離された後に電気信号に変換されて出力される。 変換さ れた電気信号は、 信号増幅器 2 4により増幅された後に、 デ一夕処理部 3 0に導 入される。 導入された信号のうち、 特に、 分析対象物質であるイソプロパノール 及びシアン化合物の両方あるいは、 少なくともどちらか一方の濃度を、 送信され た信号から計算し、 予め肝硬変患者グループと健常者グループ (健康診断で、 正 常と認められた者) の呼気中のィソプロパノール及びシアン化合物濃度により作 成されたデ一夕べ一ス 2 6と比較して、 どちらかのグループの濃度に近いかを判 定することにより、 肝硬変の検査を実行する。  3 is set to closed and exhalation switching valve 4 is set to open and introduced. The introduced breath is flow-controlled by the flow controller 7 and introduced into the second ionization chamber 1 室 of the AP IMS. On the other hand, Ar + H: (1%) mixed gas 9, which is the primary ion generation gas, is controlled to a constant pressure by the pressure reducing valve 10 and the flow rate is controlled by the flow rate controller 11. Introduced into chemical chamber 15. The introduced Ar + H: (1%) mixed gas 9 generates corona discharge due to the high voltage applied to the discharge needle 16 and, as a result, generates primary ions. The generated primary ions are introduced into the secondary ionization chamber 17 and mixed with the exhalation introduced from the exhalation sampling unit 28. As a result of the mixing, the exhaled air collides with the primary ions, causing an ion-molecule reaction, and the analyte in the exhaled air is ionized. The ionized analysis target substance passes through the differential evacuation unit 18, is introduced into the breath analysis unit 23, is mass-separated by the quadrupole mass spectrometer 22, is converted into an electric signal, and is output. The converted electric signal is amplified by a signal amplifier 24 and then introduced into a data processing unit 30. Among the introduced signals, in particular, the concentration of both or at least one of the analytes isopropanol and / or cyanide is calculated from the transmitted signal, and the cirrhosis patient group and the healthy subject group (pre- To determine which one is closer to the concentration of either group by comparing with the data 26 created by the concentrations of isopropanol and cyanide in the breath of the person who was recognized as normal) By doing this, a test for cirrhosis is performed.
図 1の装置を用いて、 健常者 2 0名及び肝硬変患者 2 0名の呼気を分析した。 質量分析の結果を図 2に示す。 図 2 ( A ) には、 シアン化合物に対しての肝硬変 患者と健常者の濃度比較を示す。 図 2 ( B ) には、 イソプロパノールに対しての 肝硬変患者と健常者の濃度比較を示す。 図より、 シアン化合物とイソプロパノー ルの濃度は、 肝硬変患者グループと健常者グループ間で、 4〜 1 0倍の違いがあ ることが明らかである。 このように本実施例によれば、 呼気中のシアン化合物と ィソプロパノールを AP IMSを使用した呼気分析装置を用いて分析することにより、 簡便な肝硬変検査を行い得る。  Using the apparatus shown in FIG. 1, the breath of 20 healthy subjects and 20 cirrhosis patients was analyzed. Figure 2 shows the results of mass spectrometry. FIG. 2 (A) shows a comparison of the concentration of cyanide between a liver cirrhosis patient and a healthy subject. FIG. 2 (B) shows the comparison of the concentration of isopropanol between cirrhosis patients and healthy subjects. From the figure, it is clear that there is a 4- to 10-fold difference in the concentrations of cyanide and isopropanol between the group of cirrhosis patients and the group of healthy subjects. As described above, according to this example, a simple cirrhosis test can be performed by analyzing the cyanide and isopropanol in the breath using the breath analyzer using AP IMS.
実施例 2 Example 2
本実施例の呼気分析装置 1 bの概略構成図を図 3に示す。 本実施例において、 呼気分析部には、 イオントラップ式質量分析計 3 4を使用している。 イオントラ ップ式質量分析計 3 4は AP IMSと同様に微量分析が可能な分析計であるため、 呼 気中の分析対象物質を高感度で分析することを可能にしている。 前記イオントラ ップ式質量分析計 3 4は、 イオン化部 3 1と高真空部 3 2により構成されている。 前記イオン化部 3 1には放電等によるイオン化手段があり、 呼気採取部 2 8より 導入された呼気をイオン化する働きがある。 前記高真空部 3 2は、 真空排気系 3 6により高真空に保たれた領域であり、 内部にイオントラップ電極 3 3及び検出 器 3 5を配し、 イオン化部 3 1で生成されたイオンをトラップ濃縮し、 検出器 3 5で検出した後、 電気信号に変換して送信する。 FIG. 3 shows a schematic configuration diagram of the breath analyzer 1b of the present embodiment. In this embodiment, an ion trap mass spectrometer 34 is used for the breath analyzer. Iontra Since the top-up mass spectrometer 34 is a spectrometer capable of microanalysis, like the AP IMS, it enables highly sensitive analysis of the analyte in breath. The ion trap mass spectrometer 34 includes an ionization section 31 and a high vacuum section 32. The ionization section 31 has ionization means by discharge or the like, and has a function of ionizing the exhalation introduced from the exhalation collection section 28. The high vacuum section 32 is an area maintained in a high vacuum by a vacuum evacuation system 36, in which an ion trap electrode 33 and a detector 35 are disposed, and the ions generated in the ionization section 31 are formed. After trap enrichment and detection by the detector 35, it is converted into an electric signal and transmitted.
このように、 本実施例によれば、 呼気中のシアン化合物とイソプロパノールを 前記イオントラップ式質量分析計 3 4を使用した呼気分析装置を用いて分析する ことにより、 簡便な肝硬変検査が可能になる。  As described above, according to the present embodiment, a simple cirrhosis test can be performed by analyzing the cyanide and isopropanol in the breath using the breath analyzer using the ion trap mass spectrometer 34. .
実施例 3 Example 3
本実施例の呼気分析装置 1 cの概略構成図を図 4に示す。 本実施例において、 呼気分析部にはガスクロマトグラフ質量分析計 4 2を使用している。 ガスクロマ トグラフ質量分析計 4 2は定性分析と定量分析を両方同時にできる特徴を持って いるため、 予めビークの同定を行うことなく呼気分析を行うことができる。 ガス クロマトグラフ質量分析計 4 2は、 キャリアガス導入部、 カラム 3 7 , イン夕一 フェース 3 8 , 及び質量分析計 3 9より構成されている。 前記キャリアガス導入 部は、 キヤリァガスボンベ 4 3が減圧弁 4 と流量コントローラ 4 5を介して力 ラム 3 7と接続された構成を有し、 一定圧力、 一定流量のキャリアガスをカラム 3 7に供給する。 前記カラム 3 7は物質の化学吸着性の違いにより物質分離をす る領域である。 前記インターフェース 3 8は、 前記カラム 3 7と前記質量分析計 3 9を接続させ、 ガス流量、 測定タイ ミング等を制御する。 前記質量分析計 3 9 は真空排気系 4 0により高真空に保たれており、 質量分離したイオンを検出器 4 1により検出し電気信号に変換した後に送信する。  FIG. 4 shows a schematic configuration diagram of the breath analyzer 1c of the present embodiment. In this embodiment, a gas chromatograph / mass spectrometer 42 is used for the breath analyzer. The gas chromatograph / mass spectrometer 42 has the feature that both qualitative analysis and quantitative analysis can be performed at the same time, so that breath analysis can be performed without identifying the beak in advance. The gas chromatograph mass spectrometer 42 includes a carrier gas inlet, a column 37, an interface 38, and a mass spectrometer 39. The carrier gas introduction section has a configuration in which a carrier gas cylinder 43 is connected to a power ram 37 via a pressure reducing valve 4 and a flow rate controller 45, and a carrier gas having a constant pressure and a constant flow rate is supplied to the column 37. Supply. The column 37 is a region where a substance is separated due to a difference in chemical adsorption of the substance. The interface 38 connects the column 37 and the mass spectrometer 39 to control gas flow, measurement timing, and the like. The mass spectrometer 39 is maintained in a high vacuum by a vacuum evacuation system 40. The mass-separated ions are detected by a detector 41, converted into an electric signal, and transmitted.
本実施例の動作を説明する。 減圧弁 4 4で一定圧力に保たれ、 流量コントロー ラ 4 5により一定流量に保たれたキヤリアガスは、 呼気採取部 2 8により導入さ れた呼気と共に、 カラム 3 7に導入される。 導入された呼気中の分析対象物質は、 物質の特性により分離された後に、 イ ンタフェース 3 8を通って質量分析計 3 9 に導入される。 質量分析計 3 9では、 イオン化され質量分離された後に信号検出 器 4 1で検出され電気信号に変換された後に送信される。 このように本実施例に よれば、 呼気中のシアン化合物とィソプロパノールを前記ガスクロマトグラフ質 量分析計 4 2を使用した呼気分析装置を用いて分析することにより、 簡便な肝硬 変検査が可能になる。 産業上の利用可能性 The operation of this embodiment will be described. The carrier gas maintained at a constant pressure by the pressure reducing valve 44 and maintained at a constant flow rate by the flow rate controller 45 is introduced into the column 37 together with the exhalation introduced by the exhalation sampling unit 28. Analytes in the exhaled breath are separated according to the characteristics of the substances, and then passed through the interface 38 to obtain the mass spectrometer 3 9 Will be introduced. In the mass spectrometer 39, after being ionized and mass-separated, it is detected by the signal detector 41, converted into an electric signal, and transmitted. As described above, according to the present example, a simple liver cirrhosis test can be performed by analyzing the cyanide and isopropanol in the breath using the breath analyzer using the gas chromatograph mass spectrometer 42. Will be possible. Industrial applicability
本発明の肝臓疾患の検査方法及び呼気分析装置によると、 肝臓疾患の検査を、 被験者に苦痛を与えることなく、 しかも特別な技術を有する技術者を要すること なく行うことができ、 しかも結果を即時に得ることができる。  ADVANTAGE OF THE INVENTION According to the liver disease test method and breath analyzer of the present invention, a liver disease test can be performed without causing pain to the subject and without requiring a technician having a special technique, and the results can be obtained immediately. Can be obtained.
また、 他の検査結果と組み合わせることにより、 さらに正確な肝臓疾患の判定 が可能になる。  Also, by combining it with other test results, it is possible to determine liver disease more accurately.
従って、 本発明の方法及び装置により、 病院などの医療機関だけでなく、 健康 診断セン夕一や保健所においても、 簡便で精度が高く、 しかも迅速な肝臓疾患検 査を行うことが可能になる。 さらに、 本発明の装置は、 遠隔地の自宅療養者のモ 二夕一等、 遠隔治療の可能性をも提供する。  Therefore, according to the method and apparatus of the present invention, a simple, high-accuracy, and rapid liver disease test can be performed not only at a medical institution such as a hospital, but also at a health check center or a health center. In addition, the device of the present invention also offers the possibility of remote treatment, such as a remote home caregiver.

Claims

請 求 の 範 囲 The scope of the claims
1 . 呼気を採取し、 該呼気中のイソプロパノール及び/またはシアン化合物の定 量を行い、 その結果を解析することを含む肝臓疾患の検査方法。 1. A method for examining liver disease, which comprises collecting exhaled breath, quantifying isopropanol and / or cyanide in the exhaled breath, and analyzing the results.
2 . 肝硬変の検査のための請求の範囲第 1項に記載の肝臓疾患の検査方法。  2. The method for testing liver disease according to claim 1, which is used for testing cirrhosis.
3 . 分析する呼気を導入するための呼気採取部、 該呼気中のイソプロパノール及 び/またはシアン化合物を定量する呼気分析部、 及び該呼気分析部で得られた分 析結果を解析するデータ処理部を含む、 肝臓疾患検査用呼気分析装置。  3. A breath sampling unit for introducing a breath to be analyzed, a breath analysis unit for quantifying isopropanol and / or a cyanide compound in the breath, and a data processing unit for analyzing an analysis result obtained by the breath analysis unit. A breath analyzer for liver disease testing.
4 . 前記呼気採取部が、 呼気採取手段と呼気移送手段からなる請求の範囲第 3項 に記載の呼気分析装置。  4. The breath analysis apparatus according to claim 3, wherein the breath collection unit includes a breath collection unit and a breath transfer unit.
5 . 前記呼気採取手段がマウスピース又はマスクである請求の範囲第 4項に記載 の呼気分析装置。  5. The breath analyzer according to claim 4, wherein the breath collecting means is a mouthpiece or a mask.
6 . 前記呼気採取手段が、 呼気収容容器を連結するための連結口である請求の範 囲第 4項に記載の呼気分析装置。  6. The breath analyzer according to claim 4, wherein the breath collecting means is a connection port for connecting a breath storage container.
7 . 前記呼気移送手段が、 前記呼気採取手段と前記呼気分析部とを呼気流通可能 に接続する導管を含む請求の範囲第 4項に記載の呼気分析装置。  7. The breath analysis apparatus according to claim 4, wherein the breath transfer means includes a conduit connecting the breath collection means and the breath analysis section so that the breath can flow.
8 . 前記呼気移送手段が、 さらに、 呼気を前記呼気分析部に送るポンプ手段を含 む請求の範囲第 7項に記載の呼気分析装置。  8. The breath analyzer according to claim 7, wherein the breath transfer means further includes a pump means for sending breath to the breath analyzer.
9 . 前記呼気移送手段が、 マウスピースまたはマスクと、 呼気収容容器を連結す るための連結口の両方を含み、 場合に応じて選択されるその一方のみを前記呼気 分析部と流通可能とする切換可能なバルブ手段を前記導管に設けたことを特徴と する請求の範囲第 7項に記載の呼気分析装置。  9. The breath transfer means includes both a mouthpiece or a mask and a connection port for connecting a breath storage container, and only one of them, which is selected depending on the case, can be distributed with the breath analysis unit. 8. The breath analyzer according to claim 7, wherein a switchable valve means is provided on the conduit.
1 0 . 前記呼気分析部が質量分析計である請求の範囲第 3項に記載の呼気分析装  10. The breath analyzer according to claim 3, wherein the breath analyzer is a mass spectrometer.
1 1 . 前記呼気分析部が質量分析計を含む請求の範囲第 4項に記載の呼気分析装 11. The breath analyzer according to claim 4, wherein the breath analyzer includes a mass spectrometer.
1 2 . 前記呼気分析部が質量分析計を含む請求の範囲第 7項に記載の呼気分析装 置。 12. The breath analyzer according to claim 7, wherein the breath analyzer includes a mass spectrometer.
1 3 . 前記呼気分析部が質量分析計を含む請求の範囲第 9項に記載の呼気分析装 置。 13. The breath analyzer according to claim 9, wherein the breath analyzer includes a mass spectrometer. Place.
1 4 . 肝硬変の検査に使用される請求の範囲第 3項に記載の呼気分析装置。 14. The breath analyzer according to claim 3, which is used for a liver cirrhosis test.
1 5 . 肝硬変の検査に使用される請求の範囲第 4項に記載の呼気分析装置。15. The breath analyzer according to claim 4, which is used for liver cirrhosis testing.
1 6 . 肝硬変の検査に使用される請求の範囲第 7項に記載の呼気分析装置。16. The breath analyzer according to claim 7, which is used for cirrhosis test.
1 7 . 肝硬変の検査に使用される請求の範囲第 9項に記載の呼気分析装置。17. The breath analyzer according to claim 9, which is used for liver cirrhosis testing.
1 8 . 肝硬変の検査に使用される請求の範囲第 1 0項に記載の呼気分析装置。 18. The breath analyzer according to claim 10, which is used for cirrhosis test.
1 9 . 肝硬変の検査に使用される請求の範囲第 1 1項に記載の呼気分析装置。 19. The breath analyzer according to claim 11, which is used for an examination of cirrhosis.
2 0 . 肝硬変の検査に使用される請求の範囲第 1 3項に記載の呼気分析装置。 20. The breath analyzer according to claim 13, which is used for a liver cirrhosis test.
PCT/JP2000/006979 1999-10-07 2000-10-06 Method and device for examining hepatic cirrhosis using expiration analysis device WO2001025785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75578/00A AU7557800A (en) 1999-10-07 2000-10-06 Method and device for examining hepatic cirrhosis using expiration analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/286335 1999-10-07
JP28633599A JP4452783B2 (en) 1999-10-07 1999-10-07 Cirrhosis test method and apparatus using breath analysis apparatus

Publications (1)

Publication Number Publication Date
WO2001025785A1 true WO2001025785A1 (en) 2001-04-12

Family

ID=17703064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006979 WO2001025785A1 (en) 1999-10-07 2000-10-06 Method and device for examining hepatic cirrhosis using expiration analysis device

Country Status (3)

Country Link
JP (1) JP4452783B2 (en)
AU (1) AU7557800A (en)
WO (1) WO2001025785A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999375A (en) * 2020-09-30 2020-11-27 暨南大学 Exhaled volatile organic compound quantification method based on real-time online mass spectrometry
CN113588821A (en) * 2021-07-29 2021-11-02 中国科学院合肥物质科学研究院 Method for detecting and identifying oral odor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855153B2 (en) 2001-07-05 2006-12-06 株式会社日立製作所 Security system
EP1487328A4 (en) * 2002-03-04 2007-08-01 Cyrano Sciences Inc DETECTION, DIAGNOSIS AND MONITORING OF A MEDICAL CONDITION OR DISEASE BY ARTIFICIAL OLFACTOMETRY
WO2004097373A2 (en) * 2003-04-28 2004-11-11 Univ Arizona Thermoelectric biosensor for analytes in a gas
GB0416239D0 (en) * 2004-07-21 2004-08-25 Givaudan Sa Method to identify or evaluate compounds useful in the field of fragrances and aromas
AU2008307788A1 (en) 2007-10-02 2009-04-09 Almstrand, Anne-Charlotte Collection and measurement of exhaled particles
JP2011007818A (en) * 2010-10-13 2011-01-13 Tokai Denshi Kk Method for measuring alcohol in exhalation
GB201704367D0 (en) * 2017-03-20 2017-05-03 Exhalation Tech Ltd A breath condensate analyser
JP2019120561A (en) * 2017-12-28 2019-07-22 京セラ株式会社 Sensor module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989863A (en) * 1995-09-25 1997-04-04 Suzuki Motor Corp Expired gas analyzer
JPH1062414A (en) * 1996-08-13 1998-03-06 Suzuki Motor Corp Apparatus for analyzing dimethyl sulfide or isoprene in exhalation and method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989863A (en) * 1995-09-25 1997-04-04 Suzuki Motor Corp Expired gas analyzer
JPH1062414A (en) * 1996-08-13 1998-03-06 Suzuki Motor Corp Apparatus for analyzing dimethyl sulfide or isoprene in exhalation and method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIO SAKAMOTO ET AL.: "Study of liver function tests using various stable isotope labelled compounds in liver cirrhosis", J. LABELLED CPD. RADIOPHARM., vol. 42, January 1999 (1999-01-01), pages 93 - 99, XP002935835 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999375A (en) * 2020-09-30 2020-11-27 暨南大学 Exhaled volatile organic compound quantification method based on real-time online mass spectrometry
CN113588821A (en) * 2021-07-29 2021-11-02 中国科学院合肥物质科学研究院 Method for detecting and identifying oral odor

Also Published As

Publication number Publication date
AU7557800A (en) 2001-05-10
JP2001108673A (en) 2001-04-20
JP4452783B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
Lawal et al. Exhaled breath analysis: a review of ‘breath-taking’methods for off-line analysis
US6363772B1 (en) System and method for detection of a biological condition
Schwoebel et al. Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data
Rattray et al. Taking your breath away: metabolomics breathes life in to personalized medicine
Zhou et al. Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device
Kataoka et al. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis
JPS62858A (en) Instrument for simultaneously measuring metabolites in expired air and urine
JP4452783B2 (en) Cirrhosis test method and apparatus using breath analysis apparatus
US20040046567A1 (en) Method and device for evaluating the state of organisms and natural products and for analysing a gaseous mixture comprising main constituents and secondary constituents
CN102138069A (en) Portable plasma-based diagnostic apparatus and diagnostic method
Hu Mass spectrometric analysis of exhaled breath: Recent advances and future perspectives
Slingers et al. Real‐time versus thermal desorption selected ion flow tube mass spectrometry for quantification of breath volatiles
Badjagbo Exhaled breath analysis for early cancer detection: principle and progress in direct mass spectrometry techniques
CN105758958A (en) Quick detector for hydrogen and methane components in respiratory air
Xu et al. Rapid and non-invasive diagnosis of type 2 diabetes through sniffing urinary acetone by a proton transfer reaction mass spectrometry
JP3525157B2 (en) Intestinal gas component measurement method and flatus detection method
Hagens et al. Development and validation of a point-of-care breath test for octane detection
Mayhew et al. Proton transfer reaction–mass spectrometry
CN111220682B (en) A method for online monitoring of exhaled breath anesthetics by ion mobility spectrometry
Magnano et al. Exhaled volatile organic compounds and respiratory disease: recent progress and future outlook
Storer et al. Validating SIFT-MS analysis of volatiles in breath
EP4346580A1 (en) A device for detecting health disorders from biological samples and a detection process
RU2822004C2 (en) Method of analyzing composition of exhaled air by rotational spectrometry
Jaffe et al. Respiratory gas monitoring
Salman et al. Ion mobility spectrometry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase