明細書 コイル及びその製造方法、 並びに、 コイルの製造装置 技術分野 Description Coil and method for manufacturing the same, and coil manufacturing apparatus
本発明は、 コイル及びその製造方法並びにコィルの製造装置に関 し、 特に リ二ァモ一夕の電機子に有用なコィル及びその製造方法並 びにコイルの製造装置に関する。 The present invention relates to a coil, a method for manufacturing the same, and an apparatus for manufacturing a coil, and more particularly to a coil useful for an armature of Linamo and a method for manufacturing the same, and an apparatus for manufacturing a coil.
技術背景 Technology background
従来よ り、 導線を、 軸方向に沿って複数回巻いて円筒状に層を形 成し、 これを更に多層重ねて、 周方向に導線からなる複数の層が形 成されたコイルが、 各種電気機器に用いられている。 Conventionally, a conductor is wound a plurality of times in the axial direction to form a cylindrical layer, and this is further laminated in multiple layers to form a coil in which a plurality of layers of the conductor are formed in the circumferential direction. Used in electrical equipment.
一般的なコイル 1 0の構造を、 図 2 8、 図 2 9 に示す。 The general structure of the coil 10 is shown in Figs.
これらの図に示すように、 一般的なコイル 1 0では、 コイル 1 0 を構成する導線 1の一端 1 1から、 巻き取り装置 (図示省略) のリ —ル 1 9の軸心に巻き付けが行われ、 図 2 9の矢印で示すように、 リール 1 9の軸心方向に 1層分の導線 1が巻き付けられる。 そして、 1層分の巻き付けが終わると、 軸心側 (内周側) から外周側に向か つて、 継続して巻き付けが行われ、 コイル 1 0が所定の径となった 時点でその巻き取りが終了する。 従って、 従来のコイル 1 0では、 一端 1 1 が軸心側に、 他端 1 2が外周側に位置する。 As shown in these figures, in a general coil 10, winding is performed from one end 11 of a conducting wire 1 constituting the coil 10 to an axis of a reel 19 of a winding device (not shown). As shown by the arrow in FIG. 29, one layer of the conductive wire 1 is wound in the axial direction of the reel 19. When the winding of one layer is completed, winding is continuously performed from the shaft center side (inner side) to the outer side, and when the coil 10 reaches a predetermined diameter, the winding is performed. Ends. Therefore, in the conventional coil 10, one end 11 is located on the axial center side, and the other end 12 is located on the outer peripheral side.
しかしながら、 従来のコィル 1 0のように一端 1 1が軸心側に、 他端 1 2が外周側に位置すると、 図 3 0に示すように、 複数のコィ ル 1 0, 1 0…を直列に配置し、 その端子を、 外周側に引き出す場 合、 コイル 1 0, 1 0…の間に隙間 dが生じてしまう。 However, when one end 11 is located on the axial center side and the other end 12 is located on the outer peripheral side as in the conventional coil 10, as shown in FIG. 30, a plurality of coils 10 are connected in series. When the terminals are pulled out to the outer peripheral side, a gap d is created between the coils 10, 10 ....
このように、 複数のコィル 1 0 , 1 0…を同軸方向に直列に配置 する場合に隙間 dが生じると、 軸方向にコイル 1 0, 1 0…を高密 度に配置することができないと云う不具合がある。 Thus, if a gap d occurs when a plurality of coils 10, 10 ... are arranged in series in the coaxial direction, the coils 10, 10 ... cannot be arranged with high density in the axial direction. There is a defect.
特に、 当該コイル 1 0 , 1 0…を並べて、 リニアモー夕の固定子
を構成する場合には、 コイル 1 0 , 1 0…を高密度に配置できない 分、 コイル部分の占積率が低く な り、 モータの効率が低下すると云 う不具合がある。 発明の開示 In particular, the coils 1 0, 1 0… However, when the coils 10, 10,... Cannot be arranged at high density, there is a problem that the space factor of the coil portion is reduced and the efficiency of the motor is reduced. Disclosure of the invention
本発明は、 かかる事情に鑑みてなされたもので、 コイルを軸方向 に直列に配置するに当たり、 互いの間に隙間を生じることなく高密 度に配置することができるコイル及びその製造方法、 並びに、 コィ ルの製造装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and when arranging coils in series in the axial direction, a coil and a method of manufacturing the coil that can be arranged with high density without forming a gap between each other, and It is intended to provide a coil manufacturing device.
上記目的を達成するため、 請求の範囲 1のコイルは、 一方の端部 から所定の点までの第 1の導電部と他方の端部から前記所定の点ま での第 2の導電部とを有する 1本の導電性部材によって形成された コイルであって、 前記第 1の導電部が、 前記所定の点を始点にして 前記コイルの軸方向に沿って第 1の所定幅で複数層分巻き取られて 形成された第 1のコイル部と、 前記第 2の導電部が、 前記所定の点 を始点にして、 前記第 1の導電部とは逆の方向に前記軸方向に沿つ て第 2の所定幅で複数層分巻き取られて形成された第 2のコイル部 とを備え、 前記導電性部材の 2つの端部は、 ともに当該コイルの外 層側に位置している。 このため、 このコイルを同軸に複数配置する 際には、 コイルの 2つの端部 (端子) が共に外層側に引き出され、 従来のコイルに比べて、 高密度にこれらを配置することができる。 In order to achieve the above object, the coil according to claim 1 includes a first conductive part from one end to a predetermined point and a second conductive part from the other end to the predetermined point. A coil formed by one conductive member, wherein the first conductive part is wound by a plurality of layers at a first predetermined width along the axial direction of the coil starting from the predetermined point. The first coil portion formed and the second conductive portion are formed along the axial direction in a direction opposite to the first conductive portion, starting from the predetermined point. A second coil portion formed by winding a plurality of layers with a predetermined width of 2. The two ends of the conductive member are both located on the outer layer side of the coil. For this reason, when arranging a plurality of coils coaxially, both ends (terminals) of the coil are both drawn out to the outer layer side, so that they can be arranged at a higher density than a conventional coil.
また、 請求の範囲 2のコイルは、 一方の端部から所定の点までの 第 1の導電部と他方の端部から前記所定の点までの第 2の導電部と を有する 1本の導電性部材によって形成されたコイルであって、 前 記第 1の導電部が、 前記一方の端部を始点にするとともに前記所定 の点を終点として、 前記コイルの軸方向に沿って第 1の所定幅で複 数層分巻き取られて形成された第 1のコイル部と、 前記第 2の導電 部が、 前記他方の端部を始点にするとともに前記所定の点を終点と して、 前記第 1の導電部とは逆の方向に前記軸方向に沿って第 2の
所定幅で複数層分巻き取られて形成された第 2のコイル部とを構え、 前記導電性部材の 2つの端部は、 ともに当該コィルの軸心側に位置 している。 このため、 このコイルを同軸に複数配置する際、 コイル の 2つの端部 (端子) が共に軸心側に引き出され、 従来のコイルに 比べて、 高密度にこれらを配置することができる。 In addition, the coil according to claim 2 is a single conductive part having a first conductive part from one end to a predetermined point and a second conductive part from the other end to the predetermined point. A coil formed of a member, wherein the first conductive portion has a first predetermined width along an axial direction of the coil, with the one end as a starting point and the predetermined point as an end point. A first coil part formed by winding a plurality of layers at the second end, and the second conductive part having the other end as a start point and the predetermined point as an end point; Along the axial direction in the opposite direction to the conductive portion of the second A second coil portion formed by winding a plurality of layers with a predetermined width, and two ends of the conductive member are both located on the axis side of the coil. For this reason, when arranging a plurality of coils coaxially, both ends (terminals) of the coil are drawn out toward the axial center side, so that they can be arranged at a higher density than a conventional coil.
また、 請求の範囲 3のコイルは、 所定の直径を有する略円筒状の コイルであって、 導電性部材が当該コイルの軸心側から軸方向に沿 つた第 1 の所定幅で周方向に複数層分巻き取られ、 前記導電性部材 の一方の端部が外層側に位置し、 他方の端部が前記軸 '、側に位置す る第 1のコイル部と、 導電性部材が当該コイルの軸心側から軸方向 に沿った第 2の所定幅で周方向に複数層分巻き取られ、 前記導電性 部材の一方の端部が外層側に位置し、 他方の端部が前記軸心側に位 置する第 2のコイル部とを備え、 前記第 1のコイル部の外周側に位 置する端部と前記第 2のコイル部の外周側に位置する端部とが電気 的に接続され、 前記第 1のコイル部の軸心側に位置する端部と前記 第 2のコィル部の軸心側に位置する端部とが、 当該コィルの 2つの 電気的な端子となっている。 この場合にも、 このコイルを同軸に複 数配置する際、 コイルの 2つの端子が共に軸心側に引き出されてい るので、 従来のコイルに比べて、 高密度にこれらを配置することが できる。 The coil according to claim 3 is a substantially cylindrical coil having a predetermined diameter, wherein a plurality of conductive members are arranged in a circumferential direction at a first predetermined width along an axial direction from an axial center side of the coil. A first coil portion in which one end of the conductive member is located on the outer layer side and the other end is located on the shaft 、 side, and the conductive member is a coil of the coil. A plurality of layers are wound in the circumferential direction at a second predetermined width along the axial direction from the axis side, one end of the conductive member is located on the outer layer side, and the other end is located on the axis side. And a second coil portion located at an outer periphery of the first coil portion, and an end located at an outer peripheral side of the first coil portion and an end located at an outer peripheral side of the second coil portion are electrically connected to each other. The end of the first coil portion located on the axis side and the end of the second coil portion located on the axis side are two of the coils. It has become a electrical terminal. Also in this case, when two or more coils are coaxially arranged, the two terminals of the coil are both drawn out toward the axial center, so that they can be arranged at a higher density than a conventional coil. .
また、 請求の範囲 4のコイルは、 所定の直径を有する略円筒状の コイルであって、 導電性部材が当該コイルの軸心側から軸方向に沿 つた第 1 の所定幅で周方向に複数層分巻き取られ、 前記導電性部材 の一方の端部が外層側に位置し、 他方の端部が前記軸心側に位置す る第 1のコイル部と、 導電性部材が当該コイルの軸心側から軸方向 に沿った第 2の所定幅で周方向に複数層分巻き取られ、 前記導電性 部材の一方の端部が外層側に位置し、 他方の端部が前記軸心側に位 置する第 2のコイル部とを備え、 前記第 1のコイル部の軸心側に位 置する端部と前記第 2のコイル部の軸心側に位置する端部とが電気
的に接続され、 前記第 1のコイル部の外層側に位置する端部と前記 第 2のコイル部の外層側に位置する端部とが、 当該コイルの 2つの 電気的な端子となっている。 この場合にも、 このコイルを同軸に複 数配置する際には、 コイルの 2つの端部 (端子) が共に外層側に引 き出されるので、 従来のコイルに比べて、 高密度にこれらを配置す ることができる。 Further, the coil according to claim 4 is a substantially cylindrical coil having a predetermined diameter, wherein a plurality of conductive members are arranged in a circumferential direction at a first predetermined width along an axial direction from an axial center side of the coil. A first coil portion in which one end of the conductive member is located on the outer layer side and the other end is located on the axial center side; and the conductive member is a shaft of the coil. A plurality of layers are wound in the circumferential direction at a second predetermined width along the axial direction from the center side, one end of the conductive member is located on the outer layer side, and the other end is located on the axial side. And a second coil portion that is located on the axial side of the first coil portion and an end located on the axial side of the second coil portion is electrically connected. And the end located on the outer layer side of the first coil part and the end located on the outer layer side of the second coil part are two electrical terminals of the coil. . Also in this case, when two or more coils are coaxially arranged, the two ends (terminals) of the coil are both drawn out to the outer layer side. Can be placed.
また、 請求の範囲 5のコイルは、 請求頂 1 から 4 までのいずれか 1項に記載されたコイルにおいて、 前記第 2の所定幅を、 前記第 1 の所定幅よ り も狭く している。 このため第 1のコイル部を主たるコ ィル部と して製造し、 他を従たるコイル部とすることで、 その製造 時のバリエ一シヨ ンが増える。 このとき、 コイル全体としての性能 に差異はない。 The coil according to claim 5 is the coil according to any one of claims 1 to 4, wherein the second predetermined width is smaller than the first predetermined width. For this reason, by manufacturing the first coil portion as a main coil portion and using the other as a subordinate coil portion, the number of variances at the time of manufacturing increases. At this time, there is no difference in the performance of the entire coil.
また、 請求の範囲 6のコイルは、 請求の範囲 1 から 4までのいず れか 1項に記載されたコイルにおいて、 前記第 1 のコイル部におけ る巻き取りの層数と、 前記第 2のコイル部における巻き取りの層数 とが等しく なつている。 これによ り、 周方向の幅が一定のコイルが 実現する。 Further, the coil according to claim 6 is the coil according to any one of claims 1 to 4, wherein the number of winding layers in the first coil unit is the same as that of the second coil. And the number of winding layers in the coil section is equal. As a result, a coil having a constant circumferential width is realized.
また、 請求の範囲 7のコイルは、 請求の範囲 1 または 2に記載さ れたコイルにおいて、 前記第 1のコイル部は、 前記第 1の導電部を 前記第 1 の所定幅で卷き取った円筒状の層部が、 少なく とも 2層分 積層され、 前記第 2のコイル部は、 前記第 2の導電部を前記第 2の 所定幅で巻き取った円筒状の層部が、 少なく とも 2層分積層されて いる。 これにより、 端部が共に、 外層側 (外周側) または軸心側に 引き出された多層のコィルが容易に実現できる。 Further, the coil according to claim 7 is the coil according to claim 1 or 2, wherein the first coil portion winds the first conductive portion at the first predetermined width. At least two cylindrical layer portions are laminated, and the second coil portion has at least two cylindrical layer portions obtained by winding the second conductive portion at the second predetermined width. The layers are stacked. As a result, a multilayer coil having both ends drawn out to the outer layer side (outer peripheral side) or the axial center side can be easily realized.
また、 請求の範囲 8のコイルは、 請求の範囲 1 または 2に記載さ れたコイルにおいて、 前記導電性部材は導線であ り、 前記第 2の所 定幅は前記導線の直径に略等しく なつている。 これによ り、 第 1の コイル部が主たるコイル部となり、 第 2のコイル部は、 導線の端部 を、 第 1のコイル部の端部が引き出される側に合わせて、 これを外
層側 (外周側) または軸心側に引き出すためのものと して設けられ る。 The coil according to claim 8 is the coil according to claim 1 or 2, wherein the conductive member is a conductor, and the second predetermined width is substantially equal to a diameter of the conductor. ing. As a result, the first coil portion becomes the main coil portion, and the second coil portion aligns the end of the conductor with the side from which the end of the first coil portion is drawn out, and removes the outside. It is provided for drawing out to the layer side (outer circumference side) or the shaft center side.
また、 請求の範囲 9のコイルの製造方法は、 1 本の導電性部材を 一方の端部から所定の点までの第 1導電部と他方の端部から前記所 定の点までの第 2の導電部とに分ける工程と、 前記一方の端部が当 該コイルの外層側に位置するように、 前記第 1の導電部を、 前記所 定の点を始点にして所定の軸方向に沿って第 1の所定幅で複数層分 巻き取る工程と、 前記他方の端部が当該コィルの外層側に位置する ように、 前記第 2の導電部を、 前記所定の点を始点にして前記第 1 の導電部とは逆の方向に、 前記軸方向に沿って第 2の所定幅で複数 層分巻き取る工程とを含んでいる。 これによ り作製されたコイルは、 コイルの 2つの端部 (端子) が共に外層側に引き出され、 このコィ ルを同軸に複数配置する際には、 従来のコイルに比べて、 高密度に これらを配置することができる。 The method for manufacturing a coil according to claim 9 is characterized in that the one conductive member includes a first conductive part from one end to a predetermined point and a second conductive part from the other end to the predetermined point. Dividing the first conductive portion along a predetermined axial direction from the predetermined point so that the one end is located on the outer layer side of the coil. Winding a plurality of layers at a first predetermined width, and positioning the second conductive portion with the predetermined point as a starting point so that the other end is located on the outer layer side of the coil. Winding a plurality of layers in a direction opposite to the conductive portion at a second predetermined width along the axial direction. In the coil manufactured in this way, both ends (terminals) of the coil are drawn out to the outer layer side. When a plurality of these coils are arranged coaxially, the coil has a higher density than conventional coils. These can be arranged.
また、 請求の範囲 1 0のコイルの製造方法は、 請求の範囲 9 に記 載されたコイルの製造方法において、 2つのフランジ部の間に、 前 記第 1の所定幅と略等しい長さのリール部を設ける工程と、 前記第 1の導電部を、 前記所定の点を始点として前記リール部に巻き取つ て第 1のコイル部を形成する工程と、 前記 2つのフランジの一方を 前記リール部に対して軸方向に移動させて、 該一方のフランジ部と 前記第 1 のコイル部との間に前記第 2の所定幅と略等しい幅の隙間 を形成する工程と、 前記隙間に、 前記第 2の導電部を、 前記所定の 点を始点と して前記第 1の導電部とは逆の方向に前記リール部に巻 き取って第 2のコイル部を形成する工程とを含んでいる。 この場合 にも、 作製されたコイルは、 コイルの 2つの端部 (端子) が共に外 層側に引き出され、 このコイルを同軸に複数配置する際には、 従来 のコィルに比べて、 高密度にこれらを配置することができる。 The method for manufacturing a coil according to claim 10 is the method for manufacturing a coil according to claim 9, wherein the coil having a length substantially equal to the first predetermined width is provided between the two flange portions. Providing a reel portion, winding the first conductive portion around the reel portion starting from the predetermined point to form a first coil portion, and attaching one of the two flanges to the reel. Forming a gap having a width substantially equal to the second predetermined width between the one flange part and the first coil part by moving the flange part in the axial direction; Winding the second conductive portion around the reel portion in a direction opposite to the first conductive portion starting from the predetermined point as a starting point to form a second coil portion. . In this case as well, in the manufactured coil, both ends (terminals) of the coil are both drawn out to the outer layer side, and when a plurality of such coils are arranged coaxially, the coil has a higher density than a conventional coil. These can be arranged.
また、 請求の範囲 1 1のコイルの製造方法は、 1本の導電性部材 を一方の端部から所定の点までの第 1の導電部と他方の端部から前
記所定の点までの第 2の導電部とに分ける工程と、 前記第 1の端部 が当該コイルの軸心側に位置するように、 前記第 1の導電部を、 前 記第 1の端部を始点にするとともに前記所定の点を終点と して、 所 定の軸方向に沿って第 1の所定幅で複数層分巻き取る工程と、 前記 第 2 の端部が当該コイルの軸心側に位置するように、 前記第 2 の導 電部を、 前記第 2の端部を始点にするとともに前記所定の点を終点 として、 前記第 1の導電部とは逆の方向に、 前記軸方向に沿って第 2の所定幅で複数層分巻き取る工程とを含んでいる。 これによ り作 製されたコイルは、 コイルの 2つの端部 (端子) が共に軸心側に引 き出され、 このコイルを同軸に複数配置する際には、 従来のコイル に比べて、 高密度にこれらを配置することができる。 Further, the method for manufacturing a coil according to claim 11 is characterized in that the one conductive member includes a first conductive part from one end to a predetermined point and a front part from the other end. Dividing the first conductive portion into the second conductive portion up to the predetermined point, and the first conductive portion so that the first end is located on the axis side of the coil. Winding a plurality of layers at a first predetermined width along a predetermined axial direction with the part as a starting point and the predetermined point as an end point; and the second end is the axis of the coil. The second conductive portion, the second end portion as a starting point and the predetermined point as an end point, in a direction opposite to the first conductive portion, the axis Winding a plurality of layers at a second predetermined width along the direction. In the coil produced by this, both ends (terminals) of the coil are both drawn out toward the axis, and when multiple coils are arranged coaxially, compared to conventional coils, These can be arranged at high density.
また、 請求の範囲 1 2のコイルの製造方法は、 請求の範囲 1 1 に 記載されたコイルの製造方法において、 2つのフランジ部の間に、 前記第 1 の所定幅と略等しい長さのリール部を設ける工程と、 前記 第 1の導電部を、 前記第 1の端部を始点にするとともに前記所定の 点を終点として前記リール部に卷き取って第 1のコイル部を形成す る工程と、 前記 2つのフラ ンジの一方を前記リール部に対して軸方 向に移動させて、 該一方のフラ ンジ部と前記第 1 のコイル部との間 に前記第 2の所定幅と略等しい幅の隙間を形成する工程と、 前記隙 間に、 前記第 2の導電部を、 前記第 2 の端部を始点にするとともに 前記所定の点を終点として前記第 1の導電部とは逆の方向に前記リ ール部に巻き取って第 2のコイル部を形成する工程とを含んでいる。 この場合にも、 作製されたコイルは、 コイルの 2つの端部 (端子) が共に軸心側に引き出され、 このコィルを同軸に複数配置する際に は、 従来のコイルに比べて、 高密度にこれらを配置することができ る。 The method for manufacturing a coil according to claim 12 is the method for manufacturing a coil according to claim 11, wherein a reel having a length substantially equal to the first predetermined width is provided between the two flange portions. Forming a first coil portion by winding the first conductive portion around the reel portion starting at the first end and ending at the predetermined point. Moving one of the two flanges in the axial direction with respect to the reel portion, and substantially equal to the second predetermined width between the one flange portion and the first coil portion. Forming a gap with a width, and between the gaps, the second conductive portion, starting from the second end portion, and having the predetermined point as an end point, opposite to the first conductive portion. Forming a second coil part by winding the reel part in the direction. In this case as well, the manufactured coil has two ends (terminals) of the coil that are both drawn out toward the axial center, and when a plurality of such coils are arranged coaxially, the coil has a higher density than conventional coils. These can be placed in
また、 請求の範囲 1 3のコイルの製造装置は、 第 1のフランジ部 材と、 前記第 1のフラ ンジ部材と回転軸を共有して一体に回転可能 なリール部材と、 前記リール部材に対して前記回転軸の軸方向に相
対移動可能であるとともに、 前記第 1のフ ラ ンジ部材及び前記リ一 ル部材と回転軸を共有して一体に回転可能な第 2のフランジ部とを 備えている。 これによ り、 第 1、 第 2のフ ラ ンジ部を相対移動させ ることで、 1つのコイルを軸方向に分割して、 個別にその巻き取り を行う ことができる。 In addition, the coil manufacturing apparatus according to claim 13 includes a first flange member, a reel member that can rotate integrally with the first flange member by sharing a rotation axis with the first flange member, In the axial direction of the rotating shaft. A second flange portion which is movable with respect to the first flange member and a second flange portion which is rotatable integrally with the reel member while sharing a rotation axis with the first flange member. Thus, by relatively moving the first and second flange portions, one coil can be divided in the axial direction and can be individually wound.
また、 請求の範囲 1 4のコイルの製造装置は、 請求の範囲 1 3に 記載されたコイルの製造装置において、 前記第 2 のフラ ンジ部材が、 前記リール部材に対して前記軸方向に関する第 1の位置で固定され、 前記第 1 のフラ ンジ部材及び前記リール部材と回転軸を共有して一 体に回転する第 1の状態と、 前記リール部材に対して前記第 1の位 置と異なる第 2の位置で固定され、 前記第 1 のフ ラ ンジ部材及び前 記リール部材との間で前記回転の方向に対し相対的に移動する第 2 の状態とに設定される。 これによ り、 コイルを軸方向に所定幅で形 成した後、 このコイルの巻き取り方向とは無関係に、 当該コイルに 隣接して、 新たなコイルの巻き取りが可能になる。 Further, the coil manufacturing apparatus according to claim 14 is the coil manufacturing apparatus according to claim 13, wherein the second flange member is a first member in the axial direction with respect to the reel member. And a first state in which the first flange member and the reel member rotate together with the first flange member and the reel member while sharing a rotation axis, and a first state different from the first position with respect to the reel member. The second state is fixed at the position 2 and moves relatively to the rotation direction between the first flange member and the reel member. Thus, after forming the coil with a predetermined width in the axial direction, a new coil can be wound adjacent to the coil regardless of the winding direction of the coil.
また、 請求の範囲 1 5のリニアモ一夕は、 コイルを備えた電機子 と、 該電機子との間で相対運動可能な磁石部材とを備えたリニアモ 一夕において、 前記コイルとして、 請求の範囲 1 から 4までのいず れか 1項に記載されたコイルを有する。 このリニアモ一夕は、 従来 のコイルに比べて、 コイルが高密度に配置されるので、 その性能が 同よ 。 A linear motor according to claim 15 is a linear motor that includes an armature having a coil and a magnet member that can move relative to the armature. It has the coil described in any one of 1 to 4. This linear motor has the same performance as conventional coils because the coils are arranged at a higher density than conventional coils.
また、 請求の範囲 1 6のステージ装置は、 被駆動部を所定の位置 に移動させるステージ装置において、 請求の範囲 1 5に記載された リニアモー夕を駆動手段として有する。 この場合、 備えられたリニ ァモ一夕の性能が高まるので、 ステージ装置全体として高機能化が 図られる。 A stage device according to claim 16 is a stage device for moving a driven part to a predetermined position, the device having the linear motor described in claim 15 as driving means. In this case, the performance of the provided linear camera is enhanced, so that the overall performance of the stage device is enhanced.
また、 請求の範囲 1 7の露光装置は、 露光用光学系を用いて基板 上に所定のパターンを形成する露光装置において、 請求頂 1 6に記 載されたステージ装置を備え、 該ステージ装置によって前記基板を
所定の位置に移動させる。 この場合、 備えられたステージ装置の性 能が高まるので、 露光装置装置全体と して高機能化が図られる。 An exposure apparatus according to claim 17 is an exposure apparatus that forms a predetermined pattern on a substrate using an exposure optical system, and includes the stage device described in claim 16, wherein the stage device The substrate Move to a predetermined position. In this case, the performance of the provided stage apparatus is enhanced, and the overall function of the exposure apparatus is enhanced.
また、 請求の範囲 1 8の露光装置は、 請求の範囲 1 7記載の露光 装置において、 前記露光用光学系は、 マスクに形成された前記パ夕 ーンを前記基板上に投影するとともに、 請求の範囲 1 6に記載され たステージ装置を備え、 該ステージ装置によって前記マスクを移動 させる。 この場合、 備えられたステージ装置のみならず、 マスクを 移動させるステージ装置の性能も高まるので、 更に、 露光装置装置 全体として高機能化が図られる。 The exposure apparatus according to claim 18 is the exposure apparatus according to claim 17, wherein the exposure optical system projects the pattern formed on a mask onto the substrate. A stage device described in the range 16, wherein the mask is moved by the stage device. In this case, the performance of not only the stage device provided but also the stage device for moving the mask is improved, so that the overall function of the exposure apparatus is improved.
また、 請求の範囲 1 9の所定のパターンが形成されたデバイスは、 請求の範囲 1 7に記載された露光装置を用いて製造されたものであ る。 かかるデバイスは、 マスクの位置合わせの精度、 基板の移動制 御の精度が高くなる。 従って、 設計パターンが更に高密度化しても、 設計パターンにあった忠実なデバイス構造が実現される。 Further, the device on which the predetermined pattern of claim 19 is formed is manufactured using the exposure apparatus described in claim 17. In such a device, the accuracy of mask alignment and the accuracy of substrate movement control are improved. Therefore, even if the design pattern is further densified, a device structure that is faithful to the design pattern is realized.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1の実施の形態のコイル 2 0の形状を示す正面図であ る。 FIG. 1 is a front view showing the shape of the coil 20 according to the first embodiment.
図 2は、 コイル 2 0の斜視図である。 FIG. 2 is a perspective view of the coil 20.
図 3は、 コイル 2 0における導線 2の巻き取りの方向を示す説明 図である。 FIG. 3 is an explanatory diagram showing the direction of winding of the conductive wire 2 in the coil 20.
図 4は、 コイル 2 0 を第 1のコイル部 2 O Aと第 2のコイル部 2 0 Bとに分けた状態を示す説明図である。 FIG. 4 is an explanatory diagram showing a state where the coil 20 is divided into a first coil unit 2OA and a second coil unit 20B.
図 5は、 コイル 2 0の製造行程を示す説明図である。 FIG. 5 is an explanatory diagram showing a manufacturing process of the coil 20.
図 6は 多数のコイル 2 0が、 同軸に配置された状態を示す説明 図である FIG. 6 is an explanatory diagram showing a state in which many coils 20 are coaxially arranged.
図 7は 第 2の実施の形態のコイル 3 0を示す正面図である。 FIG. 7 is a front view showing a coil 30 according to the second embodiment.
図 8は コイル 3 0 における導線 3の巻き取りの方向を示す説明 図である FIG. 8 is an explanatory diagram showing the winding direction of the conductor 3 in the coil 30.
図 9は コイル 3 0の第 1のコイル部 3 O A部分で導線 3が巻き
O 01/20755 Fig. 9 shows the conductor 3 wound around the first coil 3OA of the coil 30. O 01/20755
9 取られた状態を示す説明図である。 9 is an explanatory diagram showing a state taken.
図 1 0は、 コイル 3 0の第 1のコイル部 3 O Aと第 2のコイル部 Figure 10 shows the first coil section 3 O A of the coil 30 and the second coil section.
3 0 Bで導線 3が巻き取られた状態を示す説明図である。 FIG. 3 is an explanatory view showing a state where a conductive wire 3 is wound at 30 B.
図 1 1は、 コイル 3 0の製造行程を示す説明図である。 FIG. 11 is an explanatory diagram showing a manufacturing process of the coil 30.
図 1 2は、 第 3の実施の形態のコィル 4 0を示す正面図である。 図 1 3は、 コイル 4 0における導線 4 A, 4 Bの巻き取りの方向 を示す説明図である。 FIG. 12 is a front view showing a coil 40 according to the third embodiment. FIG. 13 is an explanatory diagram showing the winding direction of the conductors 4 A and 4 B in the coil 40.
図 1 4は、 コイル 4 0の第 1のコイル部 4 O Aと第 2のコイル部 Figure 14 shows the first coil section 4 O A of the coil 40 and the second coil section.
4 08で導線4八, 4 Bが巻き取られた状態を示す説明図である。 図 1 5は、 第 4の実施の形態のコイル 5 0を示す正面図である。 図 1 6は、 コイル 5 0における導線 5 A, 5 Bの巻き取りの方向 を示す説明図である。 FIG. 4 is an explanatory diagram showing a state where conductors 48 and 4B are wound up at 408. FIG. 15 is a front view showing a coil 50 according to the fourth embodiment. FIG. 16 is an explanatory diagram showing the winding directions of the conductors 5A and 5B in the coil 50.
図 1 7は、 コイル 5 0の第 1のコイル部 5 O Aと第 2のコイル部 5 0 Bで導線 5 A, 5 Bが巻き取られた状態を示す説明図である。 図 1 8は、 コイル 2 0が固定子として用いられている リニアモー 夕 1 1 0を示す斜視図である。 FIG. 17 is an explanatory diagram showing a state in which the conductive wires 5A and 5B are wound around the first coil portion 5OA and the second coil portion 50B of the coil 50. FIG. FIG. 18 is a perspective view showing a linear motor 110 in which the coil 20 is used as a stator.
図 1 9は、 リニアモー夕 1 1 0の横断面を示す図である。 FIG. 19 is a diagram showing a cross section of the linear motor 110.
図 2 0は、 図 1 9の XX— XX線に沿った縦断面図である。 FIG. 20 is a longitudinal sectional view taken along the line XX—XX of FIG.
図 2 1は、 固定子 1 1 1のコイル 2 0の引出線 2 1 , 2 2を互い に異なる方向に引き出した状態を示す図である。 FIG. 21 is a diagram showing a state in which the lead wires 21 and 22 of the coil 20 of the stator 111 are drawn in different directions from each other.
図 2 2は、 固定子 1 1 1のコイル 2 0の引出線 2 1, 2 2を同じ 方向に引き出した状態を示す図である。 FIG. 22 is a diagram showing a state in which the leads 21 and 22 of the coil 20 of the stator 111 are drawn in the same direction.
図 2 3は、 リニアモー夕 1 1 0が適用されたステージ装置 1 0 0 を示す斜視図である。 FIG. 23 is a perspective view showing a stage device 100 to which the linear motor 110 is applied.
図 2 4は、 レチクルステージ 4 0 0の駆動部に リニアモータ 1 1 0が用いられた露光装置 2 0 0の全体構成を示す図である。 FIG. 24 is a diagram showing an overall configuration of an exposure apparatus 200 in which a linear motor 110 is used for a drive section of a reticle stage 400.
図 2 5は、 レチクルステージ 4 0 0を示す斜視図である。 FIG. 25 is a perspective view showing reticle stage 400.
図 2 6は、 本発明にかかる露光装置を用いた半導体デバイスの製 造プロセスを示す図である。
図 2 7は、 本発明にかかる露光装置を用いた半導体デバイスのよ り具体的な製造プロセスを示す図である。 FIG. 26 is a diagram illustrating a process of manufacturing a semiconductor device using the exposure apparatus according to the present invention. FIG. 27 is a diagram showing a more specific manufacturing process of a semiconductor device using the exposure apparatus according to the present invention.
図 2 8は、 従来のコイル 1 0 を示す斜視図である。 FIG. 28 is a perspective view showing a conventional coil 10.
図 2 9は、 従来のコィル 1 0における導線 1の卷き取りの方向を 示す説明図である。 FIG. 29 is an explanatory diagram showing the direction of winding of the conductive wire 1 in the conventional coil 10.
図 3 0は、 従来のコイル 1 0が同軸に多数配置された状態を示す 説明図である。 発明を実施するための最良の形態 FIG. 30 is an explanatory diagram showing a state in which many conventional coils 10 are coaxially arranged. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施の形態) (First Embodiment)
以下、 本発明の第 1の実施の形態について、 図 1から図 6を用い て説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
この第 1の実施の形態のコイル 2 0は、 図 1、 図 2に示すように 端部 (端子) 2 1、 2 2が、 共に、 コイル 2 0の外周側に位置して いる。 In the coil 20 according to the first embodiment, as shown in FIGS. 1 and 2, both ends (terminals) 21 and 22 are located on the outer peripheral side of the coil 20.
具体的には、 このコイル 2 0は、 図 3、 図 4に示すように、 導線 2の所定の部位 (所定の点) 2 Cを中心に、 第 1 の導線部 (導電 部) 2 Aと第 2の導線部 (導電部) 2 B とに分けられている。 More specifically, as shown in FIGS. 3 and 4, the coil 20 has a first conductor portion (conductive portion) 2 A centered on a predetermined portion (predetermined point) 2 C of the conductor 2. The second conductor portion (conductive portion) 2B.
そして、 第 1の導線部 2 Aによって第 1のコイル部 2 0 Aが構成 され、 第 2の導線部 2 Bによって第 2のコイル部 2 0 Bが構成され ている。 The first conductive wire portion 2A forms a first coil portion 20A, and the second conductive wire portion 2B forms a second coil portion 20B.
ここで、 第 1の導線部 2 Aの端部 2 1がコイル 2 0の一方の電気 的な端子となり、 第 2の導線部 2 Bの端部 2 2がコイル 2 0の他方 の電気的な端子となっている。 Here, the end 21 of the first conductor 2 A serves as one electric terminal of the coil 20, and the end 22 of the second conductor 2 B serves as the other electric terminal of the coil 20. Terminal.
そして、 第 1の導線部 2 Aが、 所定の部位 2 Cからコイル製造装 置 6 0のリール 6 1 Aに巻き取られ、 図 3の矢印で示すように、 軸 心方向に 1層分の導線 2が巻き付けられる。 1層分の巻き付けが終 わると、 その外周側に、 更に、 第 1の導線部 2 Aの巻き取りが行わ れて、 コイル 2 0が所定の径 r 1 となった時点でその卷き取りが終
了する。 このとき導線 2の端部 2 1 が外周側 (最外層側) に位置す る o Then, the first conductive wire portion 2A is wound on a reel 61A of the coil manufacturing device 60 from a predetermined portion 2C, and as shown by an arrow in FIG. 3, one layer in the axial direction. Conductor 2 is wound. When the winding of one layer is completed, the first conductive wire portion 2A is further wound on the outer peripheral side, and when the coil 20 reaches the predetermined diameter r1, the winding is performed. Ends Complete. At this time, the end 2 1 of the conductor 2 is located on the outer peripheral side (outermost layer side).
一方、 第 2のコイル部 2 0 Bに関しては、 この実施の形態では、 軸方向には 1巻き、 周方向に複数回の卷き取りが行われる。 この卷 き取りは、 所定の部位 2 C (図 3中、 X印) から、 外周に向かって 巻き付けが行われるため、 端部 2 2が第 2 のコイル部 2 0 Bの外周 側 (最外層側) に位置する。 On the other hand, with respect to the second coil portion 20B, in this embodiment, one winding is performed in the axial direction and a plurality of windings are performed in the circumferential direction. In this winding, winding is performed from a predetermined portion 2C (indicated by X in FIG. 3) toward the outer periphery, so that the end portion 22 is located on the outer peripheral side of the second coil portion 20B (the outermost layer). Side).
次に、 コイル製造装置 6 0 を用いたコイル 2 0の製造方法につい て、 図 5 を用いて説明する。 Next, a method of manufacturing the coil 20 using the coil manufacturing apparatus 60 will be described with reference to FIG.
図 5に示すコイル製造装置 6 0は、 第 1のフランジ部 6 1 と、 第 2のフラ ンジ部 6 2 と、 第 1 のフラ ンジ部 6 1 に一体に形成された リール部 6 1 Aからな り、 第 2のフランジ部 6 2は、 第 1のフラン ジ部 6 1 に対して、 相対的に、 軸方向に摺動自在になっている。 第 1 のフラ ンジ部 6 1 と、 第 2のフラ ンジ部 6 2 と、 リール部 6 1 Aは全て同軸 (軸 J ) となるように構成されている。 第 2のフラ ンジ部 6 2は、 リール部 6 1 Aの軸方向に対して、 このリール部 6 1 A (及び第 1のフランジ部 6 1 ) と一体に回転できるとともに、 リール部 6 1 Aの軸方向に対して相対的に移動できるようになって いる。 The coil manufacturing apparatus 60 shown in FIG. 5 includes a first flange portion 61, a second flange portion 62, and a reel portion 61A formed integrally with the first flange portion 61. That is, the second flange portion 62 is slidable in the axial direction relatively to the first flange portion 61. The first flange section 61, the second flange section 62, and the reel section 61A are all configured to be coaxial (axis J). The second flange portion 62 can rotate integrally with the reel portion 61A (and the first flange portion 61) in the axial direction of the reel portion 61A, and the reel portion 61A It can move relatively to the axial direction.
また、 リール部 6 1 A及び第 1のフランジ部 6 1のみが軸 J回り に回転し、 第 2のフラ ンジ部 6 2は回転せず静止した状態にするこ とも可能なように構成されている。 In addition, the reel unit 61A and the first flange unit 61 only rotate around the axis J, and the second flange unit 62 is configured to be stationary without rotating. I have.
なお、 リール部 6 1 Aとフラ ンジ部 6 1 は必ずしも一体に形成す る必要はなく、 リール部 6 1 Aとフランジ部 6 1 がー体に回転でき るように構成されていればよい。 The reel section 61A and the flange section 61 do not necessarily need to be formed integrally, and it is sufficient that the reel section 61A and the flange section 61 are configured to be rotatable around the body.
また、 第 2のフラ ンジ部 6 2には卷取部 6 3が設けられている。 このように構成されたコイル製造装置 6 0にあっては、 導線 2の 一端 (端部 2 2 ) が巻取部 6 3に形成された固定部 (図示省略) に 固定され、 所定長の導線 2 (第 2の導線部 2 Bの全長に相当) が卷
取部 6 3に巻き取られる。 このとき所定の部位 2 Cが、 卷取部 6 3 と リール部 6 1 Aとの中間点に位置する。 Further, a winding portion 63 is provided in the second flange portion 62. In the coil manufacturing apparatus 60 thus configured, one end (end 22) of the conductive wire 2 is fixed to a fixed portion (not shown) formed on the winding portion 63, and a predetermined length of the conductive wire is provided. 2 (corresponding to the entire length of the second conductor portion 2B) It is wound by the take-up part 63. At this time, the predetermined part 2C is located at an intermediate point between the winding part 63 and the reel part 61A.
卷取部 6 3に所定長の導線 2 (第 2の導線部 2 B ) が巻き取られ た状態で、 第 1のフランジ部 6 1、 第 2のフランジ部 6 2 との間が 幅 W 1 (第 1の所定幅) となる第 1の位置に固定されたまま、 第 1 のフランジ部 6 1、 リール部 6 1 A、 第 2のフランジ部 6 2が、 図 5 ( a ) に示すように、 軸 Jを中心に矢印方向に一体に回転される (第 1の状態) 。 これによ り、 リール部 6 1 Aに残りの導線 2 (第 1の導線部 2 A) が巻き取られる。 With the conductor 2 (the second conductor 2 B) of a predetermined length wound around the winding part 63, the width W 1 is defined between the first flange part 61 and the second flange part 62. The first flange 61, the reel 61A, and the second flange 62 are fixed to the first position (the first predetermined width) as shown in FIG. 5 (a). Then, it is integrally rotated about the axis J in the direction of the arrow (first state). Thus, the remaining conductor 2 (first conductor 2A) is wound around the reel 61A.
この巻き取り作業は、 先ず、 導線 2を リール部 6 1 Aの軸方向に 沿って、 第 2のフランジ部 6 2から第 1のフランジ部 6 1に向かつ て 1巻き宛巻き取って層状にし、 第 1のフランジ部 6 1に至った時 点で、 今度は、 第 2のフランジ部 6 2に向けて折り返す。 この作業 を所定回繰り返して、 所定の数だけ層が重ね合わされた第 1のコィ ル部 2 O Aが形成される。 この巻き取りが終了したとき、 導線 2の 端部 2 1が、 第 1のコイル部 2 0 Aの最も外周側 (最外層側) に位 置する。 ここまでの状態を図 5 ( b ) に示す。 In this winding operation, first, the conductor 2 is wound one turn along the axial direction of the reel portion 61A from the second flange portion 62 to the first flange portion 61 to form a layer. When the first flange portion 61 is reached, it is turned back to the second flange portion 62 this time. This operation is repeated a predetermined number of times to form a first coil portion 2OA in which a predetermined number of layers are overlapped. When this winding is completed, the end 21 of the conductive wire 2 is positioned on the outermost side (outermost layer side) of the first coil section 20A. The state up to this point is shown in Fig. 5 (b).
次に、 第 2のフランジ部 6 2が第 1のフランジ部 6 1から所定幅 W 2 (第 2の所定幅 ; 導線 2の直径に相当) 離れる方向に摺動され た第 2の位置に固定される。 このとき リール部 6 1 Aは第 1のフラ ンジ部 6 1 と一体である。 従って、 第 1のフランジ部 6 1 と第 2の フランジ部 6 2 との間 (リール部 6 1 Aの幅) が、 W 1から W 1 + W 2 となる。 Next, the second flange portion 62 is fixed at the second position slid in a direction away from the first flange portion 61 by a predetermined width W2 (a second predetermined width; equivalent to the diameter of the conductor 2). Is done. At this time, the reel portion 61A is integral with the first flange portion 61. Therefore, the distance between the first flange portion 61 and the second flange portion 62 (the width of the reel portion 61A) is changed from W1 to W1 + W2.
この状態で、 第 1のフランジ部 6 1、 リール部 6 1 Aを第 2のフ ランジ部 6 2に対して回転させる (第 2の状態) 。 これによ り、 巻 取部 6 3に巻き付けられていた導線 2 (第 2の導線部 2 B ) がこの 所定幅 W 2の部分に巻き取られる。 このとき第 2のフランジ部 6 2 の片面 6 2 Aと第 1のコイル部 2 O Aの側面 2 O A, で、 実質的な リールが形成され、 これらの壁面に沿って、 当該第 2の導線部 2 B
が巻き付けられる (図 5 ( c ) ) 。 尚、 巻き取り時の回転の方向は、 第 1のコイル部 2 O Aの卷き取り時とは逆になる。 In this state, the first flange 61 and the reel 61A are rotated with respect to the second flange 62 (second state). Thereby, the conductive wire 2 (the second conductive wire portion 2B) wound around the winding portion 63 is wound around the portion having the predetermined width W2. At this time, a substantial reel is formed by one surface 62A of the second flange portion 62 and the side surface 2OA of the first coil portion 2OA, and the second conductor portion is formed along these wall surfaces. 2 B Is wound (Fig. 5 (c)). The direction of rotation during winding is opposite to that during winding of the first coil unit 2OA.
この巻き取りが終了すると、 導線 2の他方の端部 (コイル 2 0の 端部 2 2 ) が、 端部 2 1 と同様に、 コイル 2 0 の最外周部に位置す る (図 5 ( d ) ) 。 When this winding is completed, the other end of the conductor 2 (the end 22 of the coil 20) is located at the outermost periphery of the coil 20 in the same manner as the end 21 (see FIG. 5 (d )).
最後に、 コイル製造装置 6 0の第 1 のフラ ンジ部 6 1、 リール部 6 1 Aを、 第 2のフラ ンジ部 6 2から引き抜いて、 図 1、 図 2に示 すコイル 2 0が得られる。 Finally, the first flange section 61 and the reel section 61A of the coil manufacturing apparatus 60 are pulled out from the second flange section 62, and the coil 20 shown in FIGS. 1 and 2 is obtained. Can be
この第 1の実施の形態のコィル 2 0は、 導線 2の両端 2 1 , 2 2 が共にコイル 2 0の最も外周に位置して、 端子となっているため、 図 6に示すように、 多数のコイル 2 0, 2 0…を同軸に並べる際、 互いの間に隙間が生じることなく、 高密度の設置が可能になる。 In the coil 20 of the first embodiment, since both ends 21 and 22 of the conductive wire 2 are both located at the outermost periphery of the coil 20 and serve as terminals, as shown in FIG. When the coils 20, 20... Are arranged coaxially, high-density installation is possible without any gaps between them.
なお、 図 1 から図 6 の構成では、 導線 2の両端 2 1, 2 2がコィ ル 2 0の軸方向に関して隣合う位置になっているが、 このような構 成に限定されるものではない。 例えば、 第 1のコイル部 2 0 Aの端 部 2 1が、 図 3における第 1 のフラ ンジ部 6 1側に位置するように 構成してもよい。 これは、 周方向への巻き取りの回数 (層の数) に よって調整できる。 In the configurations shown in FIGS. 1 to 6, both ends 21 and 22 of the conductor 2 are located adjacent to each other in the axial direction of the coil 20. However, the present invention is not limited to such a configuration. . For example, the end 21 of the first coil unit 20A may be configured to be located on the first flange unit 61 side in FIG. This can be adjusted by the number of windings (the number of layers) in the circumferential direction.
このように構成されたコイル 2 0は、 例えば、 リニアモー夕のコ ィル部と して用いることができる。 The coil 20 configured as described above can be used, for example, as a coil portion of a linear motor.
この場合、 コイル部がリニアモー夕の移動子を構成してもよいし、 固定子を構成してもよい。 In this case, the coil section may constitute a linear motor slider or a stator.
本実施の形態のコイルを用いたリニアモー夕では、 軸方向 (リニ ァモ一夕の移動方向) にコイルを高密度で配置できる分、 その推進 力を高く することができる。 In the linear motor that uses the coil of the present embodiment, the propulsive force can be increased because the coil can be arranged at high density in the axial direction (the moving direction of the linear motor).
なお、 コイル 2 0 を リニアモ一夕に用いた構成については後述す る。 The configuration using the coil 20 for the linear motor will be described later.
また、 本実施の形態では、 第 2のコイル部 2 0 Bは、 リール部 6 1 Aの軸方向に関しては、 1巻分のみの幅 (導線 2の直径に略等し
い。 ) で第 1のコイル部 2 O Aと同じ数の層だけ積層されるように 構成してあるが、 これに限定されるものではない。 例えば、 第 1の コイル部 2 0 Aと等しい幅となるように巻き取り を行ってもよい。 (第 2の実施の形態) In the present embodiment, the second coil portion 20 B has a width of only one turn (substantially equal to the diameter of the conductor 2) in the axial direction of the reel portion 61 A. No. ), The same number of layers as the first coil unit 2OA are laminated, but the present invention is not limited to this. For example, winding may be performed so as to have a width equal to the first coil unit 20A. (Second embodiment)
次に、 本発明の第 2の実施の形態について、 図 7から図 1 1 を用 いて説明する。 Next, a second embodiment of the present invention will be described with reference to FIG. 7 to FIG.
この第 2の実施の形態では、 コイル 3 0は、 図 7、 図 8に示すよ うに、 端部 3 1、 3 2が、 共に、 コイル 3 0の軸心側に位置してい る。 In the second embodiment, as shown in FIGS. 7 and 8, both ends 31 and 32 of the coil 30 are located on the axial center side of the coil 30.
すなわち、 コイル 3 0は、 1本の導線 3 によって構成されている が、 この導線 3の所定の部位 (図 8の X印) 3 Cを中心に、 第 1の 導線部 (導電部) 3 Aと第 2の導線部 (導電部) 3 Bとに分けられ ている (図 9、 図 1 0 ) 。 In other words, the coil 30 is composed of one conductor 3, and a first conductor portion (conductive portion) 3 A centering on a predetermined portion (X mark in FIG. 8) 3 C of the conductor 3. And a second conductive part (conductive part) 3B (FIGS. 9 and 10).
そして、 第 1の導線部 3 Aによって第 1のコイル部 3 0 Aが構成 され、 第 2の導線部 3 Bによって第 2のコイル部 3 0 Bが構成され ている。 The first coil portion 30A constitutes a first coil portion 30A, and the second conductor portion 3B constitutes a second coil portion 30B.
このコイル 3 0では、 第 1の導線部 3 A、 第 2の導線部 3 Bにお いて、 共に、 端部 3 1, 3 2側から、 その巻き取りが行われる。 従 つて、 所定の部位 3 Cは、 コイル 3 0の最も外周側に位置する (図 8 ) o In the coil 30, both the first conductor 3 A and the second conductor 3 B are wound from the ends 31 and 32. Therefore, the predetermined portion 3C is located on the outermost side of the coil 30 (FIG. 8).
すなわち、 第 1のコイル部 3 O Aでは、 端部 3 1から、 図 8中、 矢印で示すように、 幅 (第 1の所定幅) W 1 だけ、 軸に沿って卷き 取りが行われて、 導線 3が層状とな り、 これが、 順次、 外周側に向 かって、 積層される。 That is, in the first coil portion 3OA, the end portion 31 is wound along the axis by a width (first predetermined width) W1 as shown by an arrow in FIG. Then, the conductive wire 3 is formed into a layer, which is sequentially stacked toward the outer peripheral side.
一方、 第 2のコィル部 3 ◦ Bでは、 その幅 (第 2の所定幅) W 2 が、 導線 3の直径に略等しく、 従って、 第 2のコイル部 3 0 Bは、 導線 3が軸方向には 1列で、 外周に向かって多数回卷き付けられる。 次に、 コイル製造装置 7 0 を用いた、 コイル 3 0の製造方法につ いて、 図 9〜図 1 1 を用いて説明する。
コイル製造装置 7 0は、 第 1の実施の形態のコイル製造装置 6 0 と同様の構成を有し、 第 1のフランジ部 7 1 と、 これと一体のリ一 ル部 7 1 Aと、 第 2のフランジ部 7 2 とからなる。 On the other hand, in the second coil portion 3 ◦B, its width (second predetermined width) W 2 is substantially equal to the diameter of the conductor 3, and therefore, the second coil portion 30 B has a structure in which the conductor 3 is in the axial direction. Is wound in a single row, many times around the circumference. Next, a method of manufacturing the coil 30 using the coil manufacturing apparatus 70 will be described with reference to FIGS. 9 to 11. The coil manufacturing device 70 has the same configuration as the coil manufacturing device 60 of the first embodiment, and includes a first flange portion 71, a reel portion 71A integral therewith, and a first flange portion 71A. And 2 flange portions 7 2.
このコイル製造装置 7 0にあっては、 導線 3の一端 (端部 3 1 ) が、 第 1のフランジ部 7 1 に形成された固定部 7 1 Bに固定される。 第 2のフランジ部 7 2は、 第 1のフランジ部 7 1 との間が幅 W 1 (第 1の所定幅) となる第 1の位置に固定されたまま、 第 1のフラ ンジ部 7 1、 リール部 7 1 A、 第 2の 7ランジ部 7 2が図 1 1 ( a ) に示すように軸 Jを中心に矢印方向に一体に回転される (第 1の状態) 。 これによ り、 リ一ル部 Ί 1 Aに導線 3が巻き付けられ る。 In this coil manufacturing device 70, one end (end portion 31) of the conductive wire 3 is fixed to a fixing portion 71B formed on the first flange portion 71. The second flange portion 72 remains fixed at the first position where the width between the first flange portion 71 and the first flange portion 71 becomes a width W 1 (first predetermined width). The reel section 71A and the second 7-lange section 72 are integrally rotated about the axis J in the direction of the arrow as shown in FIG. 11A (first state). As a result, the conductor 3 is wound around the reel portion 1A.
このときの巻き付けは、 図 1 0 ( a ) に示すように、 導線 3が、 軸 J方向に沿って複数回巻かれて、 導線 3からなる円筒状の層が形 成され、 これが所定の数だけ積層された時点で、 第 1のコイル部 3 0 Aの巻き付けが終了する。 このとき導線 3の端部 3 1が、 第 1の コイル部 3 0 Aの最内周側 (最内層側) に位置する。 ここまでの状 態を、 図 9、 図 1 1 ( a ) に示す。 At this time, as shown in FIG. 10 (a), the conductor 3 is wound a plurality of times along the direction of the axis J to form a cylindrical layer composed of the conductor 3, which is a predetermined number of times. At this point, the winding of the first coil section 30A is completed. At this time, the end 31 of the conductor 3 is located on the innermost circumference side (the innermost layer side) of the first coil section 30A. The state up to this point is shown in Fig. 9 and Fig. 11 (a).
次に、 第 2のフランジ部 7 2 を、 第 1のフランジ部 7 1 との間が 所定幅 W 2 (導線 3の直径に相当) となる位置 (第 2の位置) まで 移動させて固定する。 その結果、 リール部 7 1 Aが軸方向に、 実質 的に所定幅 W 2だけ広がる。 このとき、 導線 3の端部 3 2を、 第 2 のフランジ部 7 2に設けられた固定部 7 2に固定する。 この状撒を 図 1 1 ( b ) に示す。 Next, the second flange portion 72 is moved and fixed to a position (a second position) where a predetermined width W2 (corresponding to the diameter of the conductive wire 3) is formed between the second flange portion 72 and the first flange portion 71. . As a result, the reel portion 71A is substantially expanded in the axial direction by a predetermined width W2. At this time, the end 32 of the conductor 3 is fixed to the fixing portion 72 provided on the second flange 72. This distribution is shown in Fig. 11 (b).
そして、 第 1のフランジ部 7 1、 リール部 7 1 A ( 7 1 D ) を、 第 2のフランジ部 7 2に対して回転させる (第 2の状態) ことで、 残されていた導線 3 (第 2の導線部 3 B ) を、 所定幅 W 2のリール 部 7 1 Dに巻き付ける。 このとき、 第 2のフランジ部 7 2の面 7 2 Aと、 第 1のコイル部 3 0 Aの側面 3 2 A ' とに沿って、 第 2の導 線部 3 Bの巻き取りが行われる。
この結果、 導線 3の他方の端部 (コイル 3 0の端部 3 2 ) も、 端 部 3 1 と同様に、 コイル 3 0の最内周側 (最内層側) に位置する (図 1 1 ( c ) ) 。 Then, by rotating the first flange portion 71 and the reel portion 71A (71D) with respect to the second flange portion 72 (second state), the remaining conductive wire 3 ( The second conductor 3B) is wound around a reel 71D having a predetermined width W2. At this time, the second conductor 3B is wound along the surface 72A of the second flange portion 72 and the side surface 32A 'of the first coil portion 30A. . As a result, the other end of the conductor 3 (the end 32 of the coil 30) is also located on the innermost circumference side (the innermost layer side) of the coil 30 similarly to the end 31 (FIG. 11). (c)).
最後に、 コィル製造装置 7 0の第 1 のフラ ンジ部 7 1 を第 2 のフ ランジ部 7 2から引き抜いて、 図 7、 図 8に示すコイル 3 0が得ら れる。 Finally, the first flange portion 71 of the coil manufacturing device 70 is pulled out from the second flange portion 72, and the coil 30 shown in FIGS. 7 and 8 is obtained.
このようにコイル 3 0では、 導線 3の両端 3 1、 3 2は、 共に、 コイル 3 0の最も内周側 (軸心側) に位置するため、 第 1の実施の 形態の場合と同様に、 多数のコイル 3 0、 3 0…を同軸に多数並べ る際に、 互いの間に隙間が生じることな く、 高密度の設置が可能に なる。 As described above, in the coil 30, both ends 3 1 and 3 2 of the conductor 3 are located on the innermost side (axial side) of the coil 30, and therefore, as in the case of the first embodiment. When arranging a large number of coils 30, 30... Coaxially, high-density installation is possible without forming a gap between each other.
このように構成されたコイル 3 0は、 例えば、 リニアモ一夕のコ ィル部と して用いることができる。 The coil 30 configured as described above can be used, for example, as a coil portion of a linear motor.
この場合、 コイル部がリニアモ一夕の移動子を構成してもよいし、 固定子を構成してもよい。 In this case, the coil unit may constitute a moving element of the linear motor, or may constitute a stator.
本実施の形態のコィルを用いたリニアモー夕においても、 軸方向 ( リニアモー夕の駆動方向) にコイルを高密度で配置できる分、 そ の推進力を高くすることができる。 Also in the linear motor using the coil of the present embodiment, the propulsive force can be increased because the coils can be arranged at high density in the axial direction (the driving direction of the linear motor).
なお、 本実施の形態では、 第 2のコイル部 3 0 Bは、 リール部 7 1 Aの軸方向に関しては、 1巻分のみの幅 (導線 3の直径に略等し い。 ) で第 1のコィル部 3 0 Aと同じ数の層だけ積層されるように 構成してあるが、 これに限定されるものではない。 例えば、 第 1の コイル部 3 0 Aと等しい幅となるように巻き取り を行ってもよい。 (第 3の実施の形態) In the present embodiment, the second coil portion 30B has a width of only one turn (substantially equal to the diameter of the conductor 3) in the axial direction of the reel portion 71A. Although the same number of layers as the coil portion 30A of the above are laminated, the present invention is not limited to this. For example, winding may be performed so as to have a width equal to the first coil portion 30A. (Third embodiment)
次に、 本発明の第 3の実施の形態について、 図 1 2〜図 1 4を用 いて説明する。 Next, a third embodiment of the present invention will be described with reference to FIGS.
第 3の実施の形態のコイル 4 0は、 2本の導線 4 A、 4 Bにて構 成される 2つのコイル 4 O A、 4 0 Bが、 各々の端部 4 2、 4 3で、 互いに電気的に接続され、 残りの端部 4 1 , 4 4が、 共に内周側に
位置した 1つのコイル 4 0を構成する (図 1 2、 図 1 3 ) 。 The coil 40 of the third embodiment has two coils 4 OA and 40 B composed of two conductors 4 A and 4 B, which are connected to each other at their ends 42 and 43. Electrically connected, and the remaining ends 4 1 and 4 4 One positioned coil 40 is configured (Fig. 12, Fig. 13).
具体的には、 図 1 3、 図 1 4に示すように、 一方の導線 4 Aが軸 方向に沿った所定幅 W 1 1で 1周分ずつ巻かれて円筒状の層が形成 されている。 そして、 この層状の導線 4 Aが周方向に複数層形成さ れて第 1のコイル部 4 0 Aが構成されている。 また、 導線 4 Bが軸 方向に沿った所定幅 W 1 2で 1周分ずつ巻かれて円筒状の層が形成 されている。 そして、 この層状の導線 4 Bが周方向に複数層 (第 1 のコイル 5 O Aと等しい) 形成されて第 2のコイル部 4 0 Bが構成 されている。 Specifically, as shown in FIGS. 13 and 14, one conductive wire 4A is wound one turn at a predetermined width W11 along the axial direction to form a cylindrical layer. . Then, a plurality of the layered conductive wires 4A are formed in the circumferential direction to form a first coil portion 40A. Further, the conductor 4B is wound one turn at a predetermined width W12 along the axial direction to form a cylindrical layer. The layered conductive wire 4B is formed in a plurality of layers (equal to the first coil 5OA) in the circumferential direction to form a second coil portion 40B.
これら第 1のコイル部 4 O Aの端部 4 2 と、 第 2のコイル部 4 0 Bの端部 4 3 とは、 別々に、 その巻き取りが行われる。 そして、 別 々に作製された第 1のコイル部 4 0 A、 第 2のコイル部 4 0 Bが、 互いに、 その端部 4 2, 4 3で半田付け等によって電気的に接続さ れて、 全体として 1つのコイル 4 0が実現されている。 The end portion 42 of the first coil portion 40A and the end portion 43 of the second coil portion 40B are separately wound. Then, the first coil portion 40A and the second coil portion 40B separately manufactured are electrically connected to each other at their ends 42, 43 by soldering or the like. As a whole, one coil 40 is realized.
この場合、 端部 4 2, 4 3間の接続を容易にするために、 巻き数 を減ら して、 接続用の空間を確保しておく ことができる (図 1 3の 空間 4 0 C ) 。 In this case, in order to facilitate the connection between the ends 42 and 43, the number of turns can be reduced and a space for connection can be secured (space 40C in FIG. 13).
このように構成されたコイル 4 0 も、 上記した第 1、 第 2の実施 の形態の場合と同様に、 リニアモ一夕に用いることができる。 この 場合にも、 リニアモ一夕は、 軸方向に当該コイル 4 0が高密度に配 置できる分、 その推進力が高く なる。 The coil 40 configured as described above can be used for the linear motor as in the first and second embodiments. Also in this case, the propulsion force of the linear motor is increased because the coils 40 can be densely arranged in the axial direction.
なお、 所定幅 W 1 1 と所定幅 W 1 2は、 等しい幅に設定してもよ いし、 所定幅 W 1 1 を所定幅 W 1 2 よ り も大きく する等して異なる 幅に設定してもよい。 The predetermined width W 1 1 and the predetermined width W 1 2 may be set to the same width, or may be set to different widths such as making the predetermined width W 11 larger than the predetermined width W 12. Is also good.
(第 4の実施の形態) (Fourth embodiment)
次に、 本発明の第 4の実施の形態について、 図 1 5〜図 1 7 を用 いて説明する。 Next, a fourth embodiment of the present invention will be described with reference to FIGS.
第 4の実施の形態のコイル 5 0は、 2本の導線 5 A、 5 Bにて構 成される 2つのコイル 5 O A、 5 0 Bが、 各々の端部 5 2、 5 3で、
互いに電気的に接続され、 残りの端部 5 1, 5 4が共に外周側に位 置した 1 つのコイル 5 0 を構成する (図 1 5、 図 1 6 ) The coil 50 of the fourth embodiment has two coils 5 OA and 50 B composed of two conductors 5 A and 5 B, each of which has an end 52, 53. One coil 50 is electrically connected to each other, and the remaining ends 51 and 54 are located on the outer peripheral side together (Figs. 15 and 16).
具体的には、 図 1 6、 図 1 7に示すように、 一方の導線 5 Aが軸 方向に沿った所定幅 W 1 1で 1周分ずつ巻かれて円筒状の層が形成 されている。 そして、 この層状の導線 5 Aが周方向に複数層形成さ れて所定幅 W 11の第 1のコイル 5 0 Aが構成されている。 また、 導 線 5 Bが軸方向に沿った所定幅 W 1 2で 1周分ずっ卷かれて円筒状 の層が形成されている。 そして、 この層状の導線 5 Bが周方向に複 数層 (第 1のコイル 5 O Aと等しい) 形成されて第 2のコイル 5 0 Bが構成されている。 Specifically, as shown in FIGS. 16 and 17, one conductive wire 5A is wound one turn at a predetermined width W11 along the axial direction to form a cylindrical layer. . A plurality of the layered conductors 5A are formed in the circumferential direction to form a first coil 50A having a predetermined width W11. In addition, the conductor 5B is wound one turn around the predetermined width W12 along the axial direction to form a cylindrical layer. The layered conductive wire 5B is formed in a plurality of layers (equal to the first coil 5OA) in the circumferential direction to form the second coil 50B.
これら第 1のコイル部 5 O Aの端部 5 2 と、 第 2のコイル部 5 0 Bの端部 5 3 も、 別々に、 その卷き取りが行われる。 別々に作製さ れた第 1 のコイル部 5 0 A、 第 2のコイル部 5 0 Bは、 互いに、 そ の端部 5 2, 5 3で半田付け等によって電気的に接続されて、 全体 として 1 つのコイル 4 0が実現されている。 The end portion 52 of the first coil portion 50A and the end portion 53 of the second coil portion 50B are separately wound. The first coil portion 50A and the second coil portion 50B separately manufactured are electrically connected to each other at their ends 52, 53 by soldering or the like, and as a whole, One coil 40 is realized.
この場合にも、 端部 5 2, 5 3間の接続を容易にするために、 巻 き数を減ら して、 接続用の空間を確保されている (図 1 6の空間 5 0 C ) 。 In this case, too, the number of windings is reduced and a space for connection is secured (space 50 C in FIG. 16) to facilitate connection between the ends 52 and 53.
このように構成されたコイル 5 0 も、 上記した第 1〜第 3の実施 の形態の場合と同様に、 リニアモー夕に用いることができる。 この 場合にも、 リニアモ一夕は、 軸方向に当該コイル 5 0が高密度に配 置できる分、 その推進力が高くなる。 The coil 50 configured as described above can also be used for a linear motor as in the first to third embodiments. Also in this case, in the linear motor, the propulsive force increases because the coils 50 can be densely arranged in the axial direction.
なお、 所定幅 W 1 1 と所定幅 W 1 2は、 等しい幅に設定してもよ いし、 所定幅 W l 1 を所定幅 W 1 2 よ り も大き く する等して異なる 幅に設定してもよい。 The predetermined width W11 and the predetermined width W12 may be set to the same width, or may be set to different widths, for example, by making the predetermined width Wl1 larger than the predetermined width W12. You may.
なお、 発明の実施の形態では、 本発明のコイルをリニアモー夕に 使用した場合を例に挙げて説明したが、 本発明のコイルの用途はリ ニァモー夕に限定されるものではない。 例えば、 複数のコイルを高 密度で配置する必要がある装置であれば、 そこに本発明のコイルを
O 01/20755 In the embodiment of the present invention, the case where the coil of the present invention is used for a linear motor is described as an example. However, the use of the coil of the present invention is not limited to the linear motor. For example, if a device requires a plurality of coils to be arranged at a high density, the coil of the present invention is placed there. O 01/20755
19 用いることができる。 また、 電磁レンズに応用することも可能であ る。 19 Can be used. It can also be applied to electromagnetic lenses.
(第 5の実施の形態) (Fifth embodiment)
次に、 本発明の第 5の実施の形態について、 図 1 8〜図 2 3を用 いて説明する。 Next, a fifth embodiment of the present invention will be described with reference to FIGS.
この第 5の実施の形態は、 上記した第 1〜第 4の実施の形態によ つて得られるコイル 2 0, 3 0 , 4 0, 5 0を用いて、 リニアモ一 夕 1 1 0の固定子 1 1 1を構成したものである (図 1 8 ) 。 The fifth embodiment uses a coil 20, 30, 40, 50 obtained by the above-described first to fourth embodiments to form a stator of a linear motor 110. This is a configuration of 1 1 1 (Fig. 18).
このリニアモー夕 1 1 0の構成、 並びに、 これを用いたステージ 装置 20 0について、 以下、 説明する。 The configuration of the linear motor 110 and the stage apparatus 200 using the same will be described below.
また、 以下の説明では、 第 1の実施の形態で示したコイル 2 0を 多数、 同軸に配置して、 リニアモ一夕 1 1 0の固定子 1 1 1を構成 したものを例として説明するが、 他の第 2〜第 4の実施の形態で説 明したコイル 30 , 40, 5 0を用いて固定子を構成してもよいの は勿論である。 Also, in the following description, an example will be described in which a large number of coils 20 shown in the first embodiment are coaxially arranged to constitute a stator 111 of a linear motor 110. Of course, the stator may be configured using the coils 30, 40, 50 described in the other second to fourth embodiments.
第 1の実施の形態のリニアモー夕 1 1 0は、 図 1 8に示すように、 支持部 1 1 3 A, 1 1 3 Aによってステージ装置 2 0 0 (図 2 3参 照) 側に固定された円柱状の固定子 1 1 1と、 可動ステージ 1 0 9 側に固定される円筒状の可動子 1 1 2とによって構成されている。 このリニアモー夕 1 1 0では、 円筒状の可動子 1 1 2の中心部分に、 柱状の固定子 1 1 1が所定の間隙 Mを隔てて挿通されている (図 1 9 ) 。 また、 可動子 1 1 2は、 その外周がハウジング部 1 08に覆 われており、 このハウジング部 1 0 8に前記可動ステージ 1 0 9が 固定されている。 As shown in FIG. 18, the linear motor 110 of the first embodiment is fixed to the stage device 200 (see FIG. 23) by support portions 113A and 113A. It comprises a cylindrical stator 111 and a cylindrical movable member 112 fixed to the movable stage 109 side. In this linear motor 110, a columnar stator 111 is inserted through a central portion of a cylindrical mover 112 with a predetermined gap M therebetween (FIG. 19). The outer periphery of the mover 112 is covered with a housing part 108, and the movable stage 109 is fixed to the housing part 108.
ここで、 固定子 1 1 1は、 図 1 9、 図 2 0に示すように、 芯部材 1 1 1とこれに卷き付けられた複数のコイル 2 0, 2 0…及びこれ らを外側から覆うパイ プ 1 5 0とによって構成されている。 Here, as shown in FIG. 19 and FIG. 20, the stator 1 1 1 includes a core member 1 1 1 and a plurality of coils 2 0, 2 0 ... wound around the core member 1 1 It consists of a pipe 150 to cover.
そして、 コイル 20, 2 0…とパイ プ 1 5 0との間に第 1の冷却 液用流路 1 1 4が形成され、 芯部材 1 5 1の軸心に第 2の冷却液用
流路 1 1 5が形成されている。 A first coolant flow path 114 is formed between the coils 20, 20, and the pipe 150, and the second coolant flow path is formed at the axis of the core member 151. Channels 115 are formed.
芯部材 1 5 1 は、 図 2 0に示すように、 断面が略扇形の棒状部材 1 5 1 A , 1 5 1 A…が、 複数本 (図示例では、 8本) その要部分 1 5 1 C , …を内周側にして互いに結合されて、 中空の円柱となつ ている。 この芯部材 1 5 1の外周には、 コイリレ 2 0 , 2 0…が巻き 付けられている。 As shown in FIG. 20, the core member 15 1 is composed of a plurality of rod-shaped members 15 5 A, 15 1 A... Having a substantially fan-shaped cross section (eight in the illustrated example). They are connected to each other with C,… on the inner circumference side to form a hollow cylinder. The coils 20, 20... Are wound around the outer periphery of the core member 15 1.
ここで、 固定子 1 1 1の芯部材 1 5 1 は、 積層ケィ素鋼板 (強磁 性体) にて構成されており (図 2 0 ) 、 これによつて、 可動子 1 1 2側の永久磁石 1 6 1, 1 6 1…からの磁束によって、 芯部材 1 5 1 内に渦電流が発生し得る状態となっても、 各層の界面で電流の流 れが妨げられ、 渦電流の流れが抑制される。 Here, the core member 15 1 of the stator 11 1 is made of a laminated silicon steel sheet (a ferromagnetic material) (FIG. 20). Even if the magnetic flux from the permanent magnets 16 1, 16 1… can generate eddy currents in the core member 15 1, the flow of current is prevented at the interface between the layers, and the flow of eddy currents Is suppressed.
一方、 リニアモー夕 1 1 0の可動子 1 1 2は、 図 1 9、 図 2 0に 示すように、 環状の永久磁石 1 6 1, 1 6 1…が同軸に複数 (図示 例では、 6個) 配列され、 その周囲が筒状ヨーク 1 6 2で囲まれて いる。 On the other hand, as shown in FIGS. 19 and 20, the mover 111 of the linear motor 110 has a plurality of annular permanent magnets 161, 161,... The arrangement is made, and the periphery is surrounded by a cylindrical yoke 16 2.
このう ち筒状ヨーク 1 6 2は、 低炭素鋼 (例えば、 S S 4 0 0 ) によつて構成されている。 Of these, the cylindrical yoke 162 is made of low-carbon steel (for example, SS400).
次に、 リニアモー夕 1 1 0の固定子 1 1 1の芯部材 1 5 1の構造 について説明する。 Next, the structure of the core member 151 of the stator 111 of the linear motor 110 will be described.
芯部材 1 5 1は、 断面が扇形の棒状部材 1 5 1 A (図 2 0 ) を、 互いにその要部分 1 5 1 Cを中心に、 複数本 (図示例では 8 ) 束ね て 1本の柱状に形成したものである。 The core member 15 1 is composed of a rod-shaped member 15 1 A (FIG. 20) having a fan-shaped cross section, and a plurality of (8 in the example shown) bundled together with a central portion 15 1 C therebetween. It is formed in.
尚、 断面扇形の棒状部材 1 5 1 A , 1 5 1 A…は、 図 2 0に示す ように、 ケィ素鋼板が積層された、 断面四角形の柱材を断面が扇形 の柱状に形成し、 その要部分よ り中心側を所定の曲率で切り欠いて おく ことで作製される。 要部分よ り中心側を切り欠く ことで、 芯部 材 1 5 1 の軸心に第 2の冷却液用流路 1 1 5が形成される。 As shown in FIG. 20, the bar-shaped members 15 1 A, 15 1 A,... Having a sector cross section are formed by laminating a plurality of silicon steel plates and forming a column having a square cross section into a column shape having a sector cross section. It is manufactured by cutting out the center side from the main part at a predetermined curvature. By cutting out the center side from the main part, the second coolant flow path 115 is formed at the axis of the core member 151.
ここで、 第 1の冷却用通路 1 1 4をコイル 2 0で発生した熱を固 定子 1 1 1の外部に伝えないようにする断熱用手段として用い、 第
2の冷却用通路 1 1 5をコイル 2 0 に対する冷却用手段と して用い ることも可能である。 この場合、 第 1の冷却用通路 1 1 4には、 媒 体 (冷媒) として、 例えば、 フロ リナー ト (登録商標) を層流の状 態で流せばよい。 第 2の冷却用通路 1 1 5にも冷媒としてフロ リナ — 卜を流せばよい。 また、 冷媒と して水を用いることも可能である。 次に、 芯部材 1 5 1 に巻き付けられる複数のコィル 2 0, 2 0 ··· からの引出線 2 1 , 2 2, 2 1 , 2 2…の配設パターンについて説 明する。 Here, the first cooling passage 114 is used as a heat insulating means for preventing heat generated in the coil 20 from being transmitted to the outside of the stator 111. It is also possible to use the two cooling passages 1 15 as cooling means for the coil 20. In this case, as the medium (refrigerant), for example, Fluorinert (registered trademark) may be allowed to flow in the first cooling passage 114 in a laminar state. The refrigerant may be allowed to flow as a refrigerant also in the second cooling passage 1 15. It is also possible to use water as a refrigerant. Next, a description will be given of an arrangement pattern of the lead wires 21, 22, 21, 22,... From the plurality of coils 20, 20... Wound around the core member 15 1.
リニアモ一夕 1 1 0においては、 固定子 1 1 1側にコイル 2 0が 設置されている。 この場合、 固定子 1 1 1 に設置されているコイル 2 0全てに通電すると、 可動子 1 1 2の移動に寄与しない部分のコ ィル 2 0に流された電流が無駄にな り効率が悪い。 また、 コイル 2 0の発熱量が増え、 この発熱による空気のゆらぎが大き く なる。 そ こで、 コイル 2 0が用いられたリニアモ一夕 1 1 0では、 可動子 1 1 2の移動に寄与する部分のコイル 2 0のみに通電が行われるよう に、 可動子 1 1 2の移動位置に応じて通電するコイル 2 0をスィ ッ チ等によ り選択できるように構成されている。 可動子 1 1 2の移動 に寄与する部分としては、 例えば、 可動子 1 1 2の永久磁石 1 6 1 と対向する部分及びその前後数個分のコィル 2 0を設定することが できる。 また、 通電するコイル 2 0の選択は、 制御装置 (図示省 略) によ り、 可動子 1 1 2の目標位置及びコイル 2 0 と永久磁石 1 6 1の空間的位置関係に基づいて制御することができる。 そのため、 各コイル 2 0は、 各々、 電流の入力側端子 (図示省略) に接続され る引出線 2 1 と、 G N D側端子に接続される引出線 2 2が接続され ている。 In Linear Motor 110, a coil 20 is installed on the stator 111 side. In this case, when current is supplied to all the coils 20 installed in the stator 1 1 1, the current flowing through the coil 20 that does not contribute to the movement of the mover 1 1 2 is wasted, and the efficiency is reduced. bad. In addition, the amount of heat generated by the coil 20 increases, and the fluctuation of air caused by the heat increases. Therefore, in the linear motor 110 using the coil 20, the moving of the mover 112 is performed so that only the coil 20 of the portion contributing to the movement of the mover 112 is energized. The coil 20 to be energized according to the position can be selected by a switch or the like. As the portion contributing to the movement of the mover 112, for example, a portion of the mover 112 that faces the permanent magnet 161 and coils 20 before and after the portion can be set. The selection of the coil 20 to be energized is controlled by a controller (not shown) based on the target position of the mover 112 and the spatial positional relationship between the coil 20 and the permanent magnet 161. be able to. Therefore, each coil 20 is connected to a lead 21 connected to a current input terminal (not shown) and a lead 22 connected to a GND terminal.
ここでは、 引出線 2 1 , 2 2 , 2 1, 2 2, …は、 コイル 2 0, 2 0…の内側と芯部材 1 5 1 との間に配設されている (図 2 0 ) 。 Here, the lead wires 21, 22, 21, 22,... Are arranged between the inside of the coils 20, 20, and the core member 15 1 (FIG. 20).
1つのコイル 2 0から引き出される一対の引出線 2 1 , 2 2は、 図 2 1 に示すように、 互いに異なる方向に引き出されている。 これ
によ り、 複数のコイル 2 0, 2 0…の何れが通電されても、 通電に よ り引出線 2 1、 2 2から生じる熱が固定子 1 1 1内で偏ることが なく なる。 この結果、 発熱による揺らぎが、 一箇所に集中的に生じ ることがなく な り、 熱が、 干渉計等によるステージ位置の検出結果 に与える影響を小さ く することができる。 As shown in FIG. 21, the pair of lead wires 21 and 22 drawn from one coil 20 are drawn in different directions from each other. this Therefore, no matter which of the plurality of coils 20, 20,... Is energized, the heat generated from the lead wires 21, 22 due to the energization is not biased in the stator 11 1. As a result, fluctuation due to heat generation does not occur in one place, and the influence of heat on the detection result of the stage position by an interferometer or the like can be reduced.
尚、 図 2 2に示すように、 1つのコイル 2 0から引き出された一 対の引出線 2 1 , 2 2を同一方向 (図中、 左方向) に引き出し、 こ れに隣接するコイル 2 0からの引出線 2 1 , 2 2を、 逆方向 (図中. 右方向) に引き出すことによつても、 通電時に引出線 2 1 , 2 2か ら生じる熱を固定子 1 1 1上で分散させることができる。 As shown in FIG. 22, a pair of lead wires 21 and 22 drawn from one coil 20 are drawn in the same direction (left direction in the figure), and a coil 20 adjacent to this is drawn out. By drawing out the lead wires 2 1 and 2 2 from the other side in the opposite direction (rightward in the figure), the heat generated from the lead wires 2 1 and 2 2 when energized is distributed on the stator 1 1 1 Can be done.
次に、 リニアモータ 1 1 0の可動子 1 1 2について説明する。 可動子 1 1 2は、 環状の永久磁石 1 6 1, 1 6 1…が、 筒状ョー ク 1 6 2内に同軸に複数 (図示例では 6個) 配置されたものである (図 1 9、 図 2 0 ) 。 Next, the mover 112 of the linear motor 110 will be described. The mover 1 12 has a plurality of (six in the example shown) coaxially arranged annular permanent magnets 16 1, 16 1… in a cylindrical yoke 16 2 (FIG. 19). , Figure 20).
複数の永久磁石 1 6 1, 1 6 1…は、 図 1 9に示すような極性で. 筒状ヨーク 1 6 2内に配置され、 このとき永久磁石 1 6 1 , 1 6 1 …は互いに反発し合う。 また、 筒状ヨーク 1 6 2は、 強磁性体 (低 炭素鋼) からな り、 筒状ヨーク 1 6 2内部に収容するとき、 各永久 磁石 1 6 1 , 1 6 1…は、 筒状ヨーク 1 6 2の側面に吸着する。 The plurality of permanent magnets 16 1, 16 1… are arranged in the cylindrical yoke 16 2 with the polarity as shown in FIG. 19, and the permanent magnets 16 1, 16 1… repel each other. Compete with each other. The cylindrical yoke 16 2 is made of a ferromagnetic material (low carbon steel). When housed inside the cylindrical yoke 16 2, each permanent magnet 16 1, 16 1… Adsorb to the side of 16 2.
このように構成されたリニアモ一夕 1 1 0は、 そのパイプ 1 5 0 に挿入された多数のコイル 2 0 , 2 0, …が互いの間隔をあけるこ となく、 軸方向に高密度に配置されるので、 固定子 (電機子) 1 1 1内でのコイルの占積率が高く、 全体と して推進力が高くなる。 図 2 3は、 リニアモー夕 1 1 0が用いられたステージ装置 1 0 0 を示す斜視図である。 このステージ装置 1 0 0では、 リニアモー夕 1 1 0は、 Xステージ 1 0 0 Xの駆動に用いられている。 The linear motor 110 constructed in this way has a large number of coils 20, 20,... Inserted into the pipe 150, arranged densely in the axial direction without any gaps between them. As a result, the space factor of the coils in the stator (armature) 1 1 1 is high, and the propulsion force as a whole increases. FIG. 23 is a perspective view showing a stage apparatus 100 in which the linear motor 110 is used. In the stage device 100, the linear motor 110 is used for driving the X stage 100X.
ここで、 固定子 1 1 1 を構成するパイ プ 1 5 0内には第 1、 第 2 の冷却用流路 1 1 4, 1 1 5が形成され、 この流路 1 1 4, 1 1 5 に温度調節用の流体を流すことで固定子 1 1 1から生じる熱が吸収
されるようになつている。 Here, first and second cooling passages 114, 115 are formed in a pipe 150 constituting the stator 111, and these passages 114, 115 are formed. Heat generated from stator 1 1 1 is absorbed by flowing temperature control fluid through It has become to be.
尚、 Yステージ 1 0 0 Yの駆動に用いられる 2つのリニアモ一夕 1 2 0の構成は、 リニアモー夕 1 1 0 と同一であ り、 その詳細な説 明は省略する。 The configuration of the two linear motors 120 used for driving the Y stage 100 Y is the same as that of the linear motor 110, and a detailed description thereof will be omitted.
これら リニアモー夕 1 1 0, 1 2 0が駆動手段として用いられる ステージ装置 1 0 0は、 その用途は限定されないが、 この実施の形 態では、 ウェハ (基板) W上にマスク (図示省略) に形成されたパ ターンを転写する露光装置における、 ウェハ Wの移動手段と して用 いられる。 The stage device 100 in which the linear motors 110 and 120 are used as driving means is not limited in its use, but in this embodiment, a mask (not shown) is mounted on a wafer (substrate) W. It is used as a means for moving the wafer W in an exposure apparatus that transfers the formed pattern.
すなわち、 ステージ装置 1 0 0は、 X軸及び Y軸の 2軸の X— Y ステージ装置であり、 ベース部 1 0 2上を X方向 (図中矢印 Xで示 す方向) に駆動される Xステージ 1 0 0 X、 Y方向 (矢印 Yで示す 方向) に駆動される Yステージ 1 0 0 Y、 及び試料台 (可動体) 1 0 4を、 主たる構成要素としている。 That is, the stage device 100 is a two-axis XY stage device of the X axis and the Y axis, and is driven in the X direction (the direction indicated by the arrow X in the figure) on the base portion 102. Stage 100 The Y stage 100Y driven in the X and Y directions (the direction indicated by the arrow Y) and the sample stage (movable body) 104 are the main components.
ここで試料台 1 0 4は、 前記 Υステージ 1 0 0 Υ上に配置され、 この試料台 1 0 4にウェハホルダ (図示省略) を介してゥヱハ (基 板) Wが搭載される。 Here, the sample stage 104 is placed on the {stage 100}, and a sample stage (substrate) W is mounted on the sample stage 104 via a wafer holder (not shown).
このウェハ Wの上方には、 図示省略の照射部が配置されており、 照射部からマスク (共に図示省略) を介して照射された露光光によ つて、 前記ウェハ W上に予め塗布されたレジス ト (図示省略) に、 マスク上の回路パ夕一ンが転写されるようになつている。 Above the wafer W, an irradiation unit (not shown) is arranged, and a resist pre-coated on the wafer W by exposure light irradiated from the irradiation unit via a mask (both not shown). (Not shown), the circuit pattern on the mask is transferred.
ステージ装置 1 0 0における Xステージ 1 0 0 Χ及び Υステージ 1 0 0 Yの移動量は、 各々、 試料台 1 0 4の X方向の端部、 Υ方向 の端部に固定された移動鏡 1 0 5 X, 1 0 5 Yと、 これに対向する ように、 ベース部 1 0 2に各々固定されたレーザ干渉計 1 0 6 Χ, 1 0 6 Υとによって計測される。 そして、 主制御装置 (図示省略) が、 この計測結果を基に、 試料台 1 0 4をベース部 1 0 2上の所望 の位置に移動制御するようになっている。 The movement amounts of the X stage 100Χ and the Υ stage 100Y in the stage apparatus 100 are respectively the movable mirror 1 fixed to the X-direction end and the Υ-direction end of the sample stage 104. 05 X, 105 Y, and the laser interferometers 106 1, 106 た fixed to the base 102, respectively, so as to face them. A main controller (not shown) controls the movement of the sample stage 104 to a desired position on the base 102 based on the measurement result.
ここで、 2つのリニアモ一夕 1 1 0, 1 1 0の固定子 1 1 1 , 1
1 1は、 共にベース 1 0 2上に取付部 1 1 1 A , 1 1 1 A (図 1 8 ) にて固定され、 可動子 1 1 2, 1 1 2は、 各々、 固定板 1 0 7, 1 0 7を介して Xステージ 1 0 0 Xに固定されている。 Here, the stators of the two linear motors 1 1 1, 1 1 0 1 1 1, 1 1 1 and 1 1 are both fixed on the base 102 with the mounting portions 1 1 1 A and 1 1 1 A (Fig. 18), and the movers 1 1 2 and 1 1 2 are fixed plates 1 0 7 respectively. , 107 through the X stage 100x.
また、 リニアモ一夕 1 2 0 , 1 2 0の、 各々の固定子 1 2 1 , 1 2 1は共に Xステージ 1 0 0 Xに固定され、 可動子 1 2 2, 1 2 2 (一方のみ図示) は Yステージ 1 0 0 Yに固定されている。 In addition, the stators 1 2 1 and 1 2 1 of Linear Motors 1 2 0 and 1 2 0 are both fixed to the X stage 100 X, and the movers 1 2 2 and 1 2 2 (only one shown) ) Is fixed to Y stage 100 Y.
Xステージ 1 0 0 Xは、 多数のコイル 2 0が軸方向 (駆動方向) に配置された固定子 1 1 1 を有する 2つのリニアモー夕 1 1 0, 1 1 0によって、 ベース部 1 0 2上を X方向に駆動される。 Yステー ジ 1 0 0 Yは、 Xステージ 1 0 0 Xに設置されるので、 Xステージ 1 0 0 Xとともにベース部 1 0 2上を X方向に駆動される。 また、 Yステージ 1 0 0 Yは、 多数のコイル 2 0が軸方向 (駆動方向) に 配置された固定子 1 2 1 を有する 2つのリニアモ一夕 1 2 0, 1 2 0によって、 ベース部 1 0 2上を Xステージ 1 0 0 Xに対し Y方向 に駆動される。 これによ り、 Yステージ 1 0 0 Y上に設置された試 料台 1 0 4は、 ベース部 1 0 2上を X Y方向にそれそれ移動するこ とができる。 The X stage 100 X is mounted on the base unit 102 by two linear motors 110, 110 having a stator 111 in which a number of coils 20 are arranged in the axial direction (driving direction). Driven in the X direction. Since the Y stage 100 Y is installed on the X stage 100 X, it is driven in the X direction on the base unit 102 together with the X stage 100 X. The Y stage 100 Y has a base unit 1 by two linear motors 120 and 120 having a stator 121 in which a number of coils 20 are arranged in the axial direction (drive direction). The X stage is driven in the Y direction with respect to the X stage. As a result, the sample stand 104 placed on the Y stage 100 Y can move in the X and Y directions on the base unit 102.
各固定子 1 1 1 , 1 1 1 , 1 2 1 , '1 2 1内は、 各々の第 1、 第 2の冷却用流路に流される温度調整用の流体によつて冷却されるが、 この流体は、 温度調節機 1 3 1にて温度調節される。 尚、 固定子 1 1 1, 1 1 1 , 1 2 1 , 1 2 1 と温度調節機 1 3 1 とは、 吐出配管 1 3 2、 配管 1 3 3等によって接続されている。 The inside of each of the stators 1 1 1, 1 1 1 1, 1 2 1, and 1 2 1 is cooled by a temperature adjusting fluid flowing through each of the first and second cooling channels. This fluid is temperature-controlled by the temperature controller 13 1. The stators 11 1, 11 1, 12 1, 12 1 and the temperature controller 13 1 are connected by a discharge pipe 13 2, a pipe 13 3, and the like.
また、 ステージ装置 1 0 0には、 エアガイ ド 1 4 0 と静圧気体軸 受け (図示省略) とが設けられて、 エア吹き出し口 1 4 1、 エア吸 引口 1 4 2によって静圧空気軸受式のステージが構成されている。 これによ り、 Xステージ 1 0 0 Xは X方向にガイ ドされる。 Further, the stage apparatus 100 is provided with an air guide 140 and a static pressure gas bearing (not shown), and a static air bearing is provided by an air blowing port 141 and an air suction port 144. An expression stage is configured. Thus, the X stage 100 X is guided in the X direction.
(第 6の実施の形態) (Sixth embodiment)
次に、 本発明の第 6の実施の形態について、 図 2 4、 図 2 5を用 いて説明する。
この第 6の実施の形態は、 上記した第 1〜第 4の実施の形態によ つて得られるコイル 2 0 , 3 0 , 4 0, 5 0を用いたリニアモ一夕 1 1 0を露光装置 3 0 0のレチクルステージ 4 0 0 (図 2 5 ) の駆 動手段と して用いたものである。 Next, a sixth embodiment of the present invention will be described with reference to FIGS. In the sixth embodiment, a linear motor 110 using the coils 20, 30, 40, 50 obtained by the above-described first to fourth embodiments is exposed to an exposure apparatus 3. It was used as a driving means for the reticle stage 400 (Fig. 25).
尚、 この第 6の実施の形態でも、 第 1の実施の形態で示したコィ ル 2 0を用いたリニアモー夕 1 1 0 (図 1 8 ) を用いたものを例と して説明するが、 他のコイル 3 0 , 4 0, 5 0を用いて固定子を構 成してもよいのは勿論である。 In the sixth embodiment, the linear motor 110 (FIG. 18) using the coil 20 shown in the first embodiment will be described as an example. It is a matter of course that the stator may be configured using other coils 30, 40, 50.
ここで露光装置 2 0 0は、 いわゆるステップ ' アン ド · スキャン 露光方式の走査型露光装置である。 Here, the exposure apparatus 200 is a so-called step-and-scan exposure type scanning exposure apparatus.
この露光装置 2 0 0は、 照明系 2 1 0 と、 レチクル (フォ トマス ク) Rを保持するステージ可動部 4 0 1 と、 投影光学系 P Lと、 ゥ ェハ (基板) Wを X— Y平面内で X方向— Y方向の 2次元方向に駆 動するステージ装置 3 0 0と、 これらを制御する主制御装置 2 2 0 等を備えている。 The exposure apparatus 200 includes an illumination system 210, a stage movable section 401 for holding a reticle (photomask) R, a projection optical system PL, and a wafer (substrate) W for X—Y. It has a stage device 300 that drives in a two-dimensional direction between the X direction and the Y direction in a plane, and a main controller 220 that controls these.
前記照明系 2 1 0は、 光源ユニッ トから照射された露光光を、 レ チクル R上の矩形 (あるいは円弧状) の照明領域 I A Rに均一な照 度で照射するものである。 The illumination system 210 irradiates the exposure light emitted from the light source unit to the rectangular (or arc-shaped) illumination area I AR on the reticle R with uniform illumination.
また、 レチクルステージ 4 0 0では、 図 2 5に示すように、 ステ —ジ可動部 4 0 1がレチクルベース上を所定の走査速度で、 ガイ ド レール 4 0 3に沿って走査方向に移動されるようになっており、 ス テ一ジ可動部 4 0 1の上面にはレチクル Rが、 例えば真空吸着によ り固定される。 また、 ステージ可動部 4 0 1のレチクル Rの下方に は、 露光光通過穴 4 0 2が形成されている。 In the reticle stage 400, as shown in FIG. 25, the stage movable section 401 is moved in the scanning direction along the guide rail 403 at a predetermined scanning speed on the reticle base. The reticle R is fixed on the upper surface of the stage movable portion 401 by, for example, vacuum suction. An exposure light passage hole 402 is formed below the reticle R of the stage movable section 401.
このステージ可動部 4 0 1の移動位置は、 反射鏡 2 1 5、 レチク ルレ一ザ干渉計 2 1 6によって検出され、 ステージ制御系 2 1 9は、 この検出されたステージ可動部 4 0 1の移動位置に基づく主制御装 置 2 2 0からの指示に応じて、 ステージ可動部 4 0 1 を駆動する。 The moving position of the stage movable section 401 is detected by the reflecting mirror 215 and the reticle laser interferometer 216, and the stage control system 219 detects the position of the detected stage movable section 401. The stage movable section 401 is driven in accordance with an instruction from the main control device 220 based on the moving position.
また、 投影光学系 P Lは縮小光学系であ り、 図 2 4に示すように、
レチクルステージ 4 0 0の下方に配置され、 その光軸 A X (照明光 学系の光軸 I Xに一致) の方向が Z軸方向とされる。 ここではテレ セン ト リ ックな光学配置となるように光軸 A X方向に沿って所定間 隔で配置された複数枚のレンズエレメ ン トから成る屈折光学系が使 用されている。 従って、 上記照明系 2 1 0によ り レチクル Rの照明 領域 I A Rが照明されると、 レチクル Rの照明領域 I A R内の回路 パターンの縮小像 (部分倒立像) が、 ウェハ W上の照明領域 I A R に共役な露光領域 I Aに形成される。 Further, the projection optical system PL is a reduction optical system, and as shown in FIG. 24, It is arranged below the reticle stage 400 and its optical axis AX (corresponding to the optical axis IX of the illumination optical system) is defined as the Z-axis direction. Here, a refraction optical system including a plurality of lens elements arranged at predetermined intervals along the optical axis AX direction so as to have a telecentric optical arrangement is used. Therefore, when the illumination area IAR of the reticle R is illuminated by the illumination system 210, a reduced image (partially inverted image) of the circuit pattern in the illumination area IAR of the reticle R is formed on the illumination area IAR on the wafer W. Is formed in the exposure area IA which is conjugate to.
尚、 ステージ装置 3 0 0は、 コイルを電機子と して用いた平面モ 一夕 3 7 0を駆動手段として、 テーブル 3 1 8 を X— Y面内で 2次 元方向に駆動するものである。 The stage device 300 drives the table 318 in the two-dimensional direction in the XY plane by using a plane motor 370 as a driving means using a coil as an armature. is there.
すなわち、 ステージ装置 3 0 0は、 ベース部 3 2 1 と、 このべ一 ス部 3 2 1の上面の上方に数〃 m程度のク リアランスを介して浮上 されるテーブル 3 1 8 と、 このテ一ブル 3 1 8 を移動させる平面モ —夕 3 7 0 とを具えている。 ここでテーブル 3 1 8には、 露光処理 時、 その上面にウェハ (基板) Wが、 例えば真空吸着によって固定 される。 In other words, the stage device 300 includes a base portion 321, a table 318 that is levitated above the upper surface of the base portion 321 through a clearance of about several m, and a table 318. It is equipped with a plane model that moves one bull 3 1 8 — 3 7 0. Here, a wafer (substrate) W is fixed on the upper surface of the table 318 during the exposure processing, for example, by vacuum suction.
また、 テーブル 3 1 8には移動鏡 3 2 7が固定され、 ウェハ干渉 計 3 3 1 からレーザビームが照射されて、 当該テーブル 3 1 8の X 一 Y面内での移動位置が検出されるようになっている。 A movable mirror 327 is fixed to the table 318, and a laser beam is irradiated from the wafer interferometer 331 to detect a moving position of the table 318 in the X-Y plane. It has become.
このとき得られた移動位置の情報は、 ステージ制御系 2 1 9 を介 して主制御装置 2 2 0に送られる。 そして、 ステ一ジ制御系 2 1 9 は、 この情報に基づく主制御装置 2 2 0からの指示に従って、 平面 モ一夕 3 7 0を作動させ、 テーブル 3 1 8を X— Y面内の所望の位 置に移動させる。 The information on the movement position obtained at this time is sent to main controller 220 through stage control system 219. Then, the stage control system 219 operates the plane motor 370 in accordance with an instruction from the main controller 220 based on this information, and moves the table 318 to a desired position in the XY plane. To the position.
テーブル 3 1 8は、 平面モータ 3 7 0を構成する可動子 (図示省 略) の上面に、 支持機構 (図示省略) によって異なる 3点で支持さ れており、 平面モー夕 3 7 0によって、 X方向、 Y方向に駆動する のみならず X— Y面に対して傾斜させたり、 Z軸方向 (上方) に駆
動させることができるようになつている。 尚、 平面モ一夕 3 7 0 と して、 例えば、 特開平 5— 2 2 9 2 4号公報に開示されているモー 夕を用いることができる。 本国際出願で指定した指定国または選択 した選択国の国内法令が許す限りにおいて、 上記公報における開示 を援用して本明細書の記載の一部とする。 The table 318 is supported at three different points by a support mechanism (not shown) on the upper surface of a mover (not shown) constituting the flat motor 370. In addition to driving in the X and Y directions, it can be tilted with respect to the XY plane or driven in the Z It can be moved. As the plane module 370, for example, the module disclosed in Japanese Patent Application Laid-Open No. 5-22924 can be used. To the extent permitted by the national laws of the designated or designated elected country in this international application, the disclosures in the above gazettes will be incorporated herein by reference.
尚、 図中、 符号 3 2 1 はベース部であり、 その内部から生じる熱 による温度上昇を防ぐための流体が、 供給管 2 9 2、 排出管 2 9 3 . 温度調節装置 2 7 9の作用によって、 循環され.るようになっている, 斯かる構成のレチクルステージ 4 0 0を含む露光装置 2 0 0にお いては、 概ね、 以下の手順で露光処理が行われる。 In the figure, reference numeral 3 21 denotes a base portion, and a fluid for preventing a temperature rise due to heat generated inside the base portion is provided by a supply pipe 29 2 and a discharge pipe 29 3. In the exposure apparatus 200 including the reticle stage 400 having such a configuration, the exposure processing is generally performed in the following procedure.
先ず、 レチクル R、 ウェハ Wがロー ドされ、 次いで、 レチクルァ ライ ンメ ン ト、 ベースライ ン計測、 アライ ンメ ン ト計測等が実行さ れる。 First, reticle R and wafer W are loaded, and then reticle alignment, baseline measurement, alignment measurement, and the like are performed.
ァライ メ ン ト計測の終了後には、 ステップ ' アン ド · スキャン方 式の露光動作が行われる。 After the alignment measurement is completed, a step-and-scan exposure operation is performed.
露光動作にあたっては、 レチクル干渉計 2 1 6によるレチクル R の位置情報、 ウェハ干渉計 3 3 1 によるゥヱハ Wの位置情報に基づ き、 主制御装置 2 2 0がステージ制御系 2 1 9に指令を出し、 レチ クルステージ 4 0 0のリニアモータ 1 1 0, 1 1 0及び平面モー夕 3 7 0によって、 レチクル Rとウェハ Wとが同期して移動し、 もつ て、 所望の走査露光が行われる。 In the exposure operation, the main controller 220 sends a command to the stage control system 219 based on the position information of the reticle R by the reticle interferometer 216 and the position information of W by the wafer interferometer 331. The reticle R and the wafer W are moved synchronously by the linear motors 110, 110 of the reticle stage 400 and the plane motor 370, so that the desired scanning exposure is performed. Will be
このようにして、 1つのショ ッ ト領域に対するレチクルパターン の転写が終了すると、 テーブル 3 1 8が 1 ショ ッ ト領域分だけステ ッビングされて、 次のショ ッ ト領域に対する走査露光が行われる。 このステヅビングと走査露光とが順次繰り返され、 ゥェハ W上に必 要なショ ッ ト数のパターンが転写される。 In this manner, when the transfer of the reticle pattern to one shot area is completed, the table 318 is stepped by one shot area, and scanning exposure is performed for the next shot area. This stepping and scanning exposure are sequentially repeated, and the required number of shot patterns are transferred onto the wafer W.
ここで、 上記のレチクルステージ 4 0 0においては、 リニアモー 夕 1 1 0, 1 1 0の固定子 1 1 1 , 1 1 1 を構成する各コイル 2 0 2 0…に、 3相の電流が適宜供給され、 その移動量が制御される。
この露光装置 2 0 0のレチクルステージ 4 0 0は、 推進力が大き く、 余分に電力を消費することもない。 Here, in the above reticle stage 400, the three-phase currents are appropriately applied to the coils 202, which constitute the stators 111, 111 of the linear motors 110, 110, respectively. Is supplied and the amount of movement is controlled. The reticle stage 400 of the exposure apparatus 200 has a large propulsive force and does not consume extra power.
なお、 第 5、 第 6の実施の形態では、 リニアモ一夕として固定子 側に本発明のコイルを配置したム一ビングマグネッ ト型のリニアモ 一夕を例に挙げて説明したが、 このようなリ二ァモ一夕に限定され るものではない。 例えば、 可動子 (移動子) に本発明のコイルを配 置し、 固定子側に磁石を配置したム一ビングコイル型のリニアモ一 夕としてもよい。 In the fifth and sixth embodiments, a moving magnet type linear motor in which the coil of the present invention is arranged on the stator side is described as an example of the linear motor. It is not limited to Linamo. For example, a moving coil type linear motor in which the coil of the present invention is arranged on the mover (mover) and the magnet is arranged on the stator side may be used.
なお、 上記実施の形態では、 本発明が、 スキャニングステツバに 適用された場合について説明したが、 マスクと基板とを静止した状 陸でマスクのパターンを基板に転写するとともに、 基板を順次ステ ップ移動させるステップ ' アン ド ' リ ピー ト方式の縮小投影露光装 置や、 投影光学系を用いることなく マスクと基板とを密接させてマ スクのパターンを基板に転写するプロキシミティ露光装置にも本発 明は好適に適用できるものである。 In the above embodiment, the case where the present invention is applied to a scanning stepper has been described. However, the mask pattern is transferred to the substrate while the mask and the substrate are stationary, and the substrate is sequentially stepped. Steps to move the mask An 'and' repeat type reduction projection exposure apparatus and a proximity exposure apparatus that transfers the mask pattern to the substrate by bringing the mask and substrate into close contact without using a projection optical system The present invention can be suitably applied.
また、 本発明は、 半導体製造用の露光装置に限らず、 例えば、 角 型のガラスプレー トに液晶表示素子パターンを転写する液晶用の露 光装置や、 簿膜磁気へッ ドを製造するための露光装置にも広く適用 できる。 In addition, the present invention is not limited to an exposure apparatus for manufacturing a semiconductor, but may be, for example, an exposure apparatus for a liquid crystal for transferring a liquid crystal display element pattern onto a square glass plate, or a method for manufacturing a magnetic head for a film. It can be widely applied to any type of exposure equipment.
また、 本発明の露光装置の露光用照明光としては、 A r Fエキシ マレ一ザ光に限らず、 g線 ( 4 3 6 nm) 、 i線 ( 3 6 5 nm) 、 K r Fエキシマレーザ光 ( 2 4 8 nm) 、 F 2レーザ光 ( 1 7 5 η m) 、 X線や電子線などの荷電粒子線をを用いることができる。 例 えば、 電子線を用いる場合には電子銃として、 熱電子放射型のラン タンへキサボライ ト ( L a B 6) 、 タンタル ( T a) を用いることが できる。 In addition, the illumination light for exposure of the exposure apparatus of the present invention is not limited to the ArF excimer laser light, but may be g-line (436 nm), i-line (365 nm), KrF excimer laser. light (2 4 8 nm), F 2 laser beam (1 7 5 η m), charged particle beams such as X-ray or electron beam may be used. For example, when using an electron beam as the electron gun, thermionic emission type Kisaborai bets to run Tan (L a B 6), it can be used tantalum (T a).
更に、 電子線を用いる場合は、 マスクを用いる構成としてもよい し、 マスクを用いずに電子線による直接描画によ リ基板上にパター ンを形成する構成と してもよい。 すなわち、 本発明は、 露光用光学
系として電子光学系を用いる電子ビーム露光装置であれば、 ペンシ ルビーム方式、 可変成形ビーム方式、 セルプロジェクシヨ ン方式、 ブランキング ' アパーチャ方式、 及び E B P Sの何れのタイ プであ つても、 適用が可能である。 Further, when an electron beam is used, a structure using a mask may be used, or a pattern may be formed on a substrate by direct drawing using an electron beam without using a mask. That is, the present invention provides an optical As long as the electron beam exposure system uses an electron optical system, it can be applied to any of the pencil beam system, variable shaped beam system, cell projection system, blanking 'aperture system, and EBPS. It is possible.
また、 投影光学系の倍率は縮小系のみならず等倍及び拡大系のい ずれでもよい。 投影光学系としては、 エキシマレ一ザなどの遠紫外 線を用いる場合は硝材として石英や蛍石などの遠紫外線を透過する 材料を用い、 F 2レーザや X線を用いる場合は反射屈折系または反射 系の光学系にし (レチクルも反射型タイ プのものを用いる) 、 また、 電子線を用いる場合には光学系として電子レンズ及び偏向器からな る電子光学系を用いればよい。 なお、 電子線が通過する光路は真空 状態にすることはいうまでもない。 Further, the magnification of the projection optical system may be not only the reduction system but also any one of the same magnification and the enlargement system. The projection optical system, using a material which transmits far ultraviolet rays such as quartz and fluorite as the glass material when using a far ultraviolet rays such as excimer one The catadioptric system or reflection when using the F 2 laser or X-ray If the reticle is of a reflection type, an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state.
また、 波長 2 0 0 nm程度以下の真空紫外光 ( VUV光) を用い る露光装置では、 投影光学系として反射屈折系を用いることも考え られる。 この反射屈折型の投影光学系としては、 例えば特開平 8— 1 7 1 0 5 4号公報及びこれに対応する米国特許第 5, 6 6 8, 6 7 2号、 並びに特開平 1 0— 2 0 1 9 5号公報及びこれに対応する 米国特許第 5, 8 3 5 , 2 7 5号などに開示される、 反射光学素子 としてビ一ムスプリ ッ夕と凹面鏡とを有す反射屈折系を用いること ができる。 また、 特開平 8— 3 3 4 6 9 5号公報及びこれに対応す る米国特許第 5, 6 8 9, 3 7 7号、 並びに特開平 1 0— 3 0 3 9 号公報及びこれに対応する米国特許出願第 8 7 3, 6 0 5号 (出願 日 ; 1 9 9 7年 6月 1 2 日) 等に開示される、 反射光学素子として ビ一ムスプリ ッ夕を用いずに凹面鏡等を有する反射屈折系を用いる ことができる。 本国際出願で指定した指定国または選択した選択国 の国内法令が許す限りにおいて、 上記各公報及びこれらに対応する 米国特許及び米国特許出願における開示を援用して本明細書の記載 の一部とする。 In an exposure apparatus using vacuum ultraviolet light (VUV light) having a wavelength of about 200 nm or less, a catadioptric system may be used as the projection optical system. Examples of the catadioptric projection optical system include, for example, Japanese Patent Application Laid-Open No. Hei 8-171504 and US Patent No. 5,668,672 corresponding thereto, and Japanese Patent Application Laid-Open No. A catadioptric system having a beam splitter and a concave mirror is used as a reflective optical element as disclosed in Japanese Patent Publication No. 0195/95 and corresponding US Pat. Nos. 5,835,275 and the like. be able to. In addition, Japanese Patent Application Laid-Open No. Hei 8-334649 and US Pat. No. 5,689,377 corresponding thereto, and Japanese Patent Application Laid-Open No. Hei 10-33939 and corresponding US Pat. U.S. Patent Application No. 873,605 (filing date: June 12, 1997), which discloses a concave mirror or the like without using a beam splitter as a reflective optical element. Can be used. To the extent permitted by the national laws of the designated country or selected elected country specified in this international application, the disclosures in the above publications and the corresponding U.S. patents and U.S. patent applications are hereby incorporated by reference into their disclosure. I do.
この他、 米国特許第 5 , 0 3 1 , 9 7 6号、 第 5 , 4 8 8 , 2 2
9号、 及び第 5, 7 1 7 , 5 1 8号に開示される、 複数の屈折光学 素子と 2枚のミラー (凹面鏡である主鏡と、 屈折素子または平行平 面板の入射面と反対側に反射画が形成される裏面鏡ある副鏡) とを 同一軸上に配置し、 その複数の屈折光字素子によつて形成されるレ チクルパターンの中間像を、 主鏡と副鏡とによってウェハ上に再結 像させる反射屈折系を用いてもよい。 この反射屈折系では、 複数の 屈折光学素子に続けて主鏡と副鏡とが配置され、 照明光が主鏡の一 部を通って副鏡、 主鏡の順に反射され、 さらに副鏡の一部を通って ウェハ上に達することになる。 本国際出願で指定した指定国または 選択した選択国の国内法令が許す限りにおいて、 上記米国特許にお ける開示を援用して本明細書の記載の一部とする。 In addition, U.S. Pat.Nos. 5,031,976, 5,488,22 No. 9, and Nos. 5, 717, 518, No. 5, No. 5, No. 7, No. 7, No. 8, No. 5, No. 5, No. 5, No. 5, No. 7 A sub-mirror with a back mirror on which a reflection image is formed is arranged on the same axis, and an intermediate image of a reticle pattern formed by the plurality of refracting light elements is formed by the primary mirror and the sub-mirror. A catadioptric system that re-images on the wafer may be used. In this catadioptric system, a primary mirror and a secondary mirror are arranged following a plurality of refractive optical elements, and the illumination light passes through a part of the primary mirror and is reflected in the order of the secondary mirror and the primary mirror. Through the part and onto the wafer. To the extent permitted by national law in the designated country or selected elected country of this international application, the disclosures in the above US patents are incorporated by reference into this description.
さらに、 反射屈折型の投影光学系と しては、 例えほ円形イメージ フィール ドを有し、 かつ物体面側、 及び像面側が共にテレセン ト リ ックであるとともに、 その投影倍率が 1 / 4倍または 1 5倍とな る縮小系を用いてもよい。 また、 この反射屈折型の投影光学系を備 えた走査型露光装置の場合、 照明光の照射領域が投影光学系の視野 内でその光軸をほぽ中心とし、 かつレチクルまたはウェハの走査方 向と略直交する方向に沿って延びる矩形ス リ ッ ト状に規定される夕 イ ブであってもよい。 かかる反射屈折型の投影光学系を備えた走査 型露光装置によれば、 例えば波長 1 5 7 n mの F 2のレーザ光を露光 用照明光として用いても、 1 0 0 n m L / Sパターン程度の微細パ ターンをウェハ上に高精度に転写することが可能である。 Furthermore, a catadioptric projection optical system has, for example, a circular image field, and both the object side and the image side are telecentric, and the projection magnification is 1/4. A reduction system that doubles or 15 times may be used. In the case of a scanning exposure apparatus having a catadioptric projection optical system, the irradiation area of the illumination light has its optical axis substantially at the center of the field of view of the projection optical system, and the scanning direction of the reticle or wafer. It may be an evening stipulated in a rectangular slit shape extending along a direction substantially orthogonal to the above. According to a scanning exposure apparatus provided with such a catadioptric projection optical system, for example, even if using a laser beam having a wavelength of 1 5 7 nm of F 2 as exposure illumination light, 1 0 0 nm L / S pattern about It is possible to transfer the fine pattern on the wafer with high precision.
また、 ウェハステージゃレチクルステージの駆動系として米国特 許第 5 , 6 2 3 , 8 5 3 または米国特許第 5 , 5 2 8 , 1 1 8号等 に開示される リニアモ一夕を用いてもよ く、 かかる場合には、 エア ベアリ ングを用いたエア浮上型及びローレンツ力またはリアク夕ン スカを用いた磁気浮上型のどちらを用いてもよい。 本国際出願で指 定した指定国または選択した選択国の国内法令が許す限りにおいて、 上記各米国特許における開示を援用して本明細書の記載の一部とす
る。 Further, a linear motor disclosed in U.S. Pat. No. 5,632,853 or U.S. Pat.No. 5,528,118 may be used as a drive system for the wafer stage and reticle stage. In such a case, either an air levitation type using an air bearing or a magnetic levitation type using a Lorentz force or a reaction lancer may be used. To the extent permitted by the national laws of the designated or designated elected States in this International Application, the disclosures in each of the above U.S. Patents are incorporated herein by reference. You.
また、 ステージの駆動装置として平面モー夕を用いる場合、 磁石 ュニヅ ト と電機子ュニッ 卜のいずれか一方をステージに接続し、 磁 石ュニッ ト と電機子ュニッ トの他方をステージの移動面側に設けれ ばよい。 When a plane motor is used as the stage drive device, one of the magnet unit and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is on the moving surface side of the stage. It may be provided.
また、 ステージは、 ガイ ドに沿って移動するタイプでも良いし、 ガイ ドを設けないガイ ドレスタイ プでもよい。 The stage may be a type that moves along a guide or a guideless type that does not have a guide.
レチクルステージの移動にょ リ発生する反力は、 例えば特開平 8 - 3 3 0 2 2 4号公報及びこれに対応する米国特許第 5, 8 7 4 , 8 2 0号に開示されるように、 フ レーム部材を用いて機械的に床 F D (大地) に逃がしてもよい。 本国際出願で指定した指定日または 選択した選択国の国内法令が許す限りにおいて、 上記公報及び米国 特許における開示を援用して本明細書の記載の一部とする。 The reaction force generated by the movement of the reticle stage is, for example, as disclosed in JP-A-8-330224 and corresponding US Pat. Nos. 5,874,820. It may be mechanically released to the floor FD (ground) using a frame member. To the extent permitted by the national law of the designated date or selected elected country specified in this international application, the disclosures in the above publications and US patents are incorporated herein by reference.
また、 複数のレンズから構成される照明光学系、 投影光学系を露 光装置本体に組み込み光学調整をするとともに、 多数の機械部品か らなるレチクルステージやウェハステージを露光装置本体に取り付 けて配線や配管を接続し、 更に総合調整 (電気調整、 動作確認等) をすることによ り上記実施の形態の露光装置を製造することができ る。 なお、 露光装置の製造は温度及びク リーン度等が管理されたク リーンルームで行う ことが望ま しい。 In addition, the illumination optical system and projection optical system consisting of multiple lenses are incorporated into the exposure device body to perform optical adjustments, and the reticle stage and wafer stage consisting of many mechanical parts are attached to the exposure device body. The exposure apparatus of the above-described embodiment can be manufactured by connecting wiring and piping, and performing overall adjustment (electrical adjustment, operation check, etc.). It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature, the degree of cleanliness and the like are controlled.
また、 半導体デバイスは、 デバイスの機能 · 性能設計を行うステ ップ、 この設計ステヅプに基づいたレチクルを製作するステップ、 シ リ コ ン材料からウェハを製作するステッ プ、 前述した実施の形態 の露光装置により レチクルのパターンをウェハに転写するステップ、 デバイス組み立てステップ (ダイ シング工程、 ボンディ ング工程、 パッケージ工程を含む) 、 検査ステップ等を経て製造される。 Further, in the case of a semiconductor device, a step for designing the function and performance of the device, a step for manufacturing a reticle based on the design step, a step for manufacturing a wafer from a silicon material, It is manufactured through the steps of transferring the reticle pattern onto the wafer by the equipment, device assembly steps (including dicing, bonding, and packaging processes), and inspection steps.
以下、 デバイス製造方法について、 更に詳細に説明する。 Hereinafter, the device manufacturing method will be described in more detail.
図 2 6には、 デバイス ( I Cや L S I等の半導体チヅプ、 液晶パ ネル、 C C D、 薄膜磁気ヘッ ド、 マイクロマシン等) の製造例のフ
ローチャー トが示されている。 図 2 6に示されるように、 まず、 ス テツプ 5 0 1 (設計ステップ) において、 デバイスの機能 · 性能設 計 (例えば、 半導体テバイスの回路設計等) を行い、 その機能を実 現するためのパターン設計を行う。 引き続き、 ステップ 5 0 2 (マ スク製作ステップ) において、 設計した回路パターンを形成したマ スク (レチクル) を製作する。 一方、 ステップ 5 0 3 (ゥェハ製造 ステップ) において、 シリコン等の材料を用いてウェハを製造する。 次に、 ステップ 5 0 4 (ウェハ処理ステップ) において、 ステツ プ 5 0 1 〜ステップ 5 0 3で用意したマスク (レチクル) とウエノ、 を使用して、 後述するように、 リ ソグラフィ技術等によってウェハ 上に実際の回路等を形成する。 次いで、 ステップ 5 0 5 (テバイス 組立ステップ) において、 ステップ 5 0 4で処理されたウェハを用 いてテバイス組立を行う。 このステップ 5 0 5には、 ダイ シングェ 程、 ボンディ ング工程、 及びパッケージング工程 (チップ封入) 等 の工程が必要に応じて含まれる。 Figure 26 shows an example of the manufacture of devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.). The row chart is shown. As shown in Figure 26, first, in step 501 (design step), the function and performance of the device are designed (for example, circuit design of a semiconductor device, etc.), and the functions for realizing the function are performed. Perform pattern design. Subsequently, in step 502 (mask manufacturing step), a mask (reticle) on which the designed circuit pattern is formed is manufactured. On the other hand, in step 503 (wafer manufacturing step), a wafer is manufactured using a material such as silicon. Next, in step 504 (wafer processing step), using the mask (reticle) and ueno prepared in steps 501 to 503, the wafer is formed by lithography technology or the like as described later. An actual circuit or the like is formed thereon. Next, in step 505 (tevis assembly step), tevis assembly is performed using the wafer processed in step 504. Step 505 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
最後に、 ステップ 5 0 6 (検査ステップ) において、 ステップ 5 0 5で作製されたテバイスの動作確認テス ト、 耐久性テス ト等の検 査を行う。 こう した工程を経た後にデバイスが完成し、 これが出荷 される。 Finally, in step 506 (inspection step), inspection of the operation verification test, durability test, and the like of the device manufactured in step 505 is performed. After these steps, the device is completed and shipped.
図 2 7 には、 半導体テバイスの場合における、 上記ステップ 5 0 4の詳細なフロー例が示されている。 図 2 7において、 ステップ 5 1 1 (酸化ステップ) においてはウェハの表面を酸化させる。 ステ ヅ プ 5 1 2 ( C V Dステ ッ プ) においてはウェハ表面に酸化絶縁膜 を形成する。 ステップ 5 1 3 (電極形成ステップ) においてはゥェ ハ上に電極を蒸着によって形成する。 ステップ 5 1 4 (イオン打込 みステップ) においてはウェハにイオンを打ち込む。 FIG. 27 shows a detailed flow example of the above step 504 in the case of a semiconductor device. In FIG. 27, in step 5 11 (oxidation step), the surface of the wafer is oxidized. In step 512 (CVD step), an oxide insulating film is formed on the wafer surface. In step 5 13 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 5 1 4 (ion implantation step), ions are implanted into the wafer.
以上のステップ 5 1 1〜ステップ 5 1 4それぞれは、 ウェハ処理 の各段階の前処理工程を構成しており、 各段階において必要な処理 に応じて選択されて実行される。
ウェハプロセスの各段階において、 上述の前処理工程が終了する と、 以下のようにして後処理工程が実行される。 この後処理工程で は、 まず、 ステップ 5 1 5 (レジス ト形成ステップ) において、 ゥ ェハに感光剤を塗布する。 引き続き、 ステップ 5 1 6 (露光ステツ プ) において、 上で説明した露光装置を用いてマスクの回路パ夕一 ンをウェハに転写する。 次に、 ステップ 5 1 7 (現像ステップ) に おいては露光されたウェハを現像し、 ステップ 5 1 8 (エッチング ステップ) において、 レジス トが残存している部分以外の部分の露 出部材をエッチングによ り取り去る。 そして、 ステップ 5 1 9 (レ ジス ト除去ステップ) においてエッチングが済んで不要となったレ ジス トを取り除く。 Each of the above steps 51 1 to 51 4 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage. In each stage of the wafer process, when the above-described pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 515 (register forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 516 (exposure step), the circuit pattern of the mask is transferred to the wafer by using the exposure apparatus described above. Next, in step 517 (development step), the exposed wafer is developed, and in step 518 (etching step), the exposed members other than the portion where the resist remains are etched. Remove by. Then, in step 519 (resist removing step), unnecessary resists after etching are removed.
これらの前処理工程と後処理工程とを繰り返し行う ことによって、 ウェハ上に多重に回路パターンが形成される。 By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer.
以上説明した本実施の形態のデバイス製造方法によると、 露光ェ 程 (ステップ 5 1 6 ) において上記第 1〜第 4の実施の形態のコィ ルを用いたリニアモー夕が駆動手段として用いられた露光装置にて、 露光が行われるので、 露光精度の向上により、 高集積度のテバイス を歩留ま り良く生産することができる。 According to the device manufacturing method of the present embodiment described above, in the exposure step (Step 516), the linear motor using the coils of the first to fourth embodiments is used as the driving means. Since the exposure is performed by the apparatus, it is possible to produce a highly integrated device with a high yield by improving the exposure accuracy.
産業上の利用可能性 Industrial applicability
請求の範囲 1のコイルによれば、 その 2つの端部が、 ともに当該 コィルの外層側に位置するので、 このコィルを同軸に複数配置する 際には、 コイルの 2つの端部 (端子) が共に外層側に引き出され、 従来のコイルに比べて、 高密度にこれらを配置することができる。 According to the coil of claim 1, since the two ends are both located on the outer layer side of the coil, when a plurality of coils are coaxially arranged, the two ends (terminals) of the coil are Both are pulled out to the outer layer side, and these can be arranged at a higher density than conventional coils.
また、 請求の範囲 2のコイルは、 その 2つの端部が、 ともに当該 コイルの軸心側に位置するので、 このコイルを同軸に複数配置する 際、 コイルの 2つの端部 (端子) が共に軸心側に引き出され、 従来 のコイルに比べて、 高密度にこれらを配置することができる。 Further, since the two ends of the coil of claim 2 are both located on the axis side of the coil, when a plurality of coils are coaxially arranged, both ends (terminals) of the coil are It is pulled out to the shaft center side, and these can be arranged at a higher density than conventional coils.
また、 請求の範囲 3のコイルは、 第 1のコイル部の外周側に位置 する端部と前記第 2のコイル部の外周側に位置する端部とが電気的
に接続され、 前記第 1のコイル部の軸心側に位置する端部と前記第 2のコイル部の軸心側に位置する端部とが、 当該コイルの 2つの電 気的な端子となるので、 この場合にも、 このコイルを同軸に複数配 置する際、 コイルの 2つの端子が共に軸心側に引き出されているの で、 従来のコイルに比べて、 高密度にこれらを配置することができ る。 In the coil according to claim 3, the end located on the outer peripheral side of the first coil part and the end located on the outer peripheral side of the second coil part are electrically connected. And the end located on the axial center side of the first coil unit and the end located on the axial center side of the second coil unit serve as two electrical terminals of the coil. Therefore, also in this case, when arranging a plurality of coils coaxially, since both terminals of the coil are drawn out toward the axial center side, they are arranged at a higher density than the conventional coil. be able to.
また、 請求の範囲 4のコイルは、 第 1のコイル部の軸心側に位置 する端部と前記第 2のコイル部の軸心側に位置する端部とが電気的 に接続され、 前記第 1のコイル部の外層側に位置する端部と前記第 2のコイル部の外層側に位置する端部と力 当該コイルの 2つの電 気的な端子となるので、 この場合にも、 このコイルを同軸に複数配 置する際には、 コイルの 2つの端部 (端子) が共に外層側に引き出 されるので、 従来のコイルに比べて、 高密度にこれらを配置するこ とができる。 Further, in the coil according to claim 4, the end located on the axis side of the first coil section and the end located on the axis side of the second coil section are electrically connected to each other, The end located on the outer layer side of the first coil part and the end located on the outer layer side of the second coil part and the force become two electrical terminals of the coil. When a plurality of coils are coaxially arranged, the two ends (terminals) of the coil are both drawn out to the outer layer side, so that they can be arranged at a higher density than a conventional coil.
また、 請求の範囲 5のコイルは、 請求頂 1 から 4までのいずれか 1項に記載されたコイルにおいて、 前記第 2の所定幅を、 前記第 1 の所定幅よ り も狭ぐするので、 第 1のコイル部を主たるコイル部と して製造し、 他を従たるコイル部とすることで、 その製造時のバリ エーショ ンが増える。 Further, the coil according to claim 5 is the coil according to any one of claims 1 to 4, wherein the second predetermined width is smaller than the first predetermined width, By manufacturing the first coil portion as the main coil portion and the other as the subordinate coil portion, variations in the manufacturing process increase.
また、 請求の範囲 6のコイルは、 請求の範囲 1 から 4までのいず れか 1項に記載されたコイルにおいて、 前記第 1のコイル部におけ る巻き取りの層数と、 前記第 2のコイル部における巻き取りの層数 とが等しくするので、 周方向の幅が一定のコイルが実現する。 The coil according to claim 6 is the coil according to any one of claims 1 to 4, wherein the number of winding layers in the first coil unit is the same as that of the second coil. Since the number of winding layers in the coil portion is equal, a coil having a constant circumferential width is realized.
また、 請求の範囲 7のコイルは、 請求の範囲 1 または 2に記載さ れたコイルにおいて、 2つの端部が、 外層側 (外周側) または軸心 側に引き出された多層のコィルが容易に実現できる。 The coil according to claim 7 is a coil according to claim 1 or 2, wherein the two ends are easily pulled out to the outer layer side (outer peripheral side) or the axial side. realizable.
また、 請求の範囲 8のコイルは、 請求の範囲 1 または 2に記載さ れたコイルにおいて、 前記導電性部材が導線であ り、 前記第 2の所 定幅が前記導線の直径に略等しいので、 第 1のコィル部が主たるコ
ィル部となり、 第 2のコイル部は、 導線の端部を、 第 1のコイル部 の端部が引き出される側に合わせて、 これを外層側 (外周側) また は軸心側に引き出すためのものとして利用できる。 Further, the coil according to claim 8 is the coil according to claim 1 or 2, wherein the conductive member is a conductor, and the second predetermined width is substantially equal to a diameter of the conductor. The first coil part is the main The second coil section is used to align the end of the conductor with the side from which the end of the first coil section is drawn out, and to pull this out to the outer layer side (outer circumference side) or the axis side. Available as
また、 請求の範囲 9のコイルの製造方法では、 一方の端部が当該 コイルの外層側に位置するように、 第 1の導電部が、 所定の点を始 点にして所定の軸方向に沿って第 1の所定幅で複数層分巻き取られ、 他方の端部が当該コイルの外層側に位置するように、 第 2の導電部 が、 所定の点を始点にして第 1の導電部とは逆の方向に、 軸方向に 沿って第 2の所定幅で複数層分巻き取られるので、 作製されたコィ ルは、 コイルの 2つの端部 (端子) が共に外層側に引き出され、 こ のコイルを同軸に複数配置する際には、 従来のコイルに比べて、 高 密度にこれらを配置することができる。 In the method for manufacturing a coil according to claim 9, the first conductive portion extends along a predetermined axial direction starting from a predetermined point so that one end is located on the outer layer side of the coil. The second conductive part is wound around the first conductive part with a predetermined point as a starting point so that the first conductive part is wound by a plurality of layers at a first predetermined width, and the other end is located on the outer layer side of the coil. Is wound in the opposite direction along the axial direction for a plurality of layers at the second predetermined width, so that the produced coil has both ends (terminals) of the coil drawn out to the outer layer side, and When multiple coils are arranged coaxially, they can be arranged at a higher density than conventional coils.
また、 請求の範囲 1 0のコイルの製造方法では、 請求の範囲 9に 記載されたコイルの製造方法において、 2つのフランジ部の間に、 前記第 1の所定幅と略等しい長さのリール部が設けられて、 前記第 1の導電部が、 前記所定の点を始点と して前記リール部に巻き取ら れて第 1のコイル部が形成される。 また、 2つのフランジの一方を 前記リール部に対して軸方向に移動させて、 該一方のフランジ部と 前記第 1のコイル部との間に前記第 2の所定幅と略等しい幅の隙間 が形成される。 この隙間に、 第 2の導電部が、 所定の点を始点とし て第 1の導電部とは逆の方向に前記リール部に巻き取られて第 2の コイル部が形成される。 従って、 作製されたコイルは、 コイルの 2 つの端部 (端子) が共に外層側に引き出され、 このコイルを同軸に 複数配置する際には、 従来のコイルに比べて、 高密度にこれらを配 置することができる。 According to a tenth aspect of the present invention, there is provided the coil manufacturing method as described in the ninth aspect, wherein the reel portion having a length substantially equal to the first predetermined width is provided between the two flange portions. Is provided, and the first conductive portion is wound around the reel portion with the predetermined point as a starting point, to form a first coil portion. Further, one of the two flanges is moved in the axial direction with respect to the reel portion, and a gap having a width substantially equal to the second predetermined width is formed between the one flange portion and the first coil portion. It is formed. In this gap, a second coil portion is formed by winding the second conductive portion around the reel portion in a direction opposite to the first conductive portion, starting at a predetermined point. Therefore, in the manufactured coil, both ends (terminals) of the coil are drawn out to the outer layer side, and when arranging a plurality of coils coaxially, they are arranged at a higher density than the conventional coils. Can be placed.
また、 請求の範囲 1 1のコイルの製造方法では、 第 1の端部が当 該コイルの軸心側に位置するように、 第 1の導電部が、 前記第 1の 端部を始点にするとともに所定の点を終点と して、 所定の軸方向に 沿って第 1の所定幅で複数層分巻き取られ、 第 2の端部が当該コィ
ルの軸心側に位置するように、 第 2の導電部が、 第 2の端部を始点 にするとともに前記所定の点を終点と して、 第 1 の導電部とは逆の 方向に、 前記軸方向に沿って第 2の所定幅で複数層分巻き取られる。 従って、 作製されたコイルは、 コイルの 2つの端部 (端子) が共に 軸心側に引き出され、 このコイルを同軸に複数配置する際には、 従 来のコイルに比べて、 高密度にこれらを配置することができる。 Further, in the method for manufacturing a coil according to claim 11, the first conductive portion starts from the first end so that the first end is located on the axis side of the coil. And a predetermined point as an end point, and a plurality of layers are wound along a predetermined axial direction with a first predetermined width, and a second end portion of the coil is wound. The second conductive portion is positioned on the axis side of the first conductive portion, starting at the second end and ending at the predetermined point, in a direction opposite to the first conductive portion, A plurality of layers are wound in a second predetermined width along the axial direction. Therefore, in the manufactured coil, the two ends (terminals) of the coil are both drawn out toward the axis, and when a plurality of such coils are arranged coaxially, these coils have a higher density than the conventional coil. Can be arranged.
また、 請求の範囲 1 2のコイルの製造方法では、 請求の範囲 1 1 に記載されたコイルの製造方法において、 第 1の導電部が、 第 1の 端部を始点にするとともに所定の点を終点と して前記リール部に巻 き取られて第 1のコイル部が形成される。 また、 2つのフラ ンジの 一方が前記リール部に対して軸方向に移動させて、 該一方のフラ ン ジ部と前記第 1のコイル部との間に前記第 2の所定幅と略等しい幅 の隙間が形成され、 この隙間に、 前記第 2の導電部が、 前記第 2の 端部を始点にするとともに前記所定の点を終点と して前記第 1の導 電部とは逆の方向に前記リール部に卷き取られて第 2のコイル部が 形成される。 従って、 作製されたコイルは、 コイルの 2つの端部 (端子) が共に軸心側に引き出され、 このコイルを同軸に複数配置 する際には、 従来のコイルに比べて、 高密度にこれらを配置するこ とができる。 Further, in the method for manufacturing a coil according to claim 12, in the method for manufacturing a coil according to claim 11, the first conductive portion starts from the first end and sets a predetermined point. The first coil portion is formed by being wound around the reel portion as an end point. Further, one of the two flanges is moved in the axial direction with respect to the reel portion, and a width substantially equal to the second predetermined width is provided between the one flange portion and the first coil portion. In the gap, the second conductive portion has a direction opposite to the direction of the first conductive portion with the second end as a start point and the predetermined point as an end point. Then, the second coil portion is formed by being wound around the reel portion. Therefore, in the manufactured coil, the two ends (terminals) of the coil are both drawn out toward the axis, and when arranging a plurality of these coils coaxially, these coils are densely arranged compared to conventional coils. Can be placed.
また、 請求の範囲 1 3のコイルの製造装置は、 第 1のフラ ンジ部 材と、 これと回転軸を共有して一体に回転可能なリール部材、 更に は、 該リール部材に対して前記回転軸の軸方向に相対移動可能であ り前記第 1のフラ ンジ部材及び前記リール部材と回転軸を共有して 一体に回転可能な第 2のフラ ンジ部を備えているので、 第 1、 第 2 のフラ ンジ部を相対移動させることで、 1つのコイルを軸方向に分 割して、 個別にその巻き取りを行う ことができる。 Further, the coil manufacturing apparatus according to claim 13 is characterized in that the first flange member, a reel member that can rotate integrally with the first flange member by sharing a rotation axis with the first flange member, A second flange portion that is relatively movable in the axial direction of the shaft and that can rotate integrally with the first flange member and the reel member while sharing a rotation axis with the first flange member and the reel member; By relatively moving the flange portion 2, one coil can be divided in the axial direction and can be individually wound.
また、 請求の範囲 1 4のコイルの製造装置によれば、 コイルを軸 方向に所定幅で形成した後、 このコイルの卷き取り方向とは無関係 に、 当該コイルに隣接して、 新たなコイルの巻き取りが可能になる。
また、 請求の範囲 1 5の リニアモー夕は、 コィルを備えた電機子 と、 該電機子との間で相対運動可能な磁石部材とを備えた リニアモ 一夕において、 前記コイルとして、 請求の範囲 1 から 4 までのいず れか 1項に記載されたコイルを有するので、 従来のコイルに比べて、 コイルが高密度に配置されるので、 推進力の向上等が期待できる。 また、 請求の範囲 1 6のステージ装置は、 被駆動部を所定の位置 に移動させるステージ装置において、 請求の範囲 1 5に記載された リニアモータを駆動手段と して有する。 この場合、 備えられた リニ ァモ一夕の性能が高まるので、 ステージ装置全体として高機能化が 図られる。 Further, according to the coil manufacturing apparatus of claim 14, after the coil is formed with a predetermined width in the axial direction, a new coil is formed adjacent to the coil regardless of the winding direction of the coil. Can be wound up. The linear motor according to claim 15 is a linear motor that includes an armature provided with a coil and a magnet member capable of relatively moving between the armature and the armature. Since it has the coil described in any one of items 1 to 4, the coil is arranged at a higher density than the conventional coil, so that improvement in propulsion can be expected. A stage device according to claim 16 is a stage device for moving a driven part to a predetermined position, and has the linear motor described in claim 15 as a driving unit. In this case, the performance of the provided linear camera is enhanced, so that the overall performance of the stage device is enhanced.
また、 請求の範囲 1 7の露光装置は、 露光装置において、 請求頂 1 6に記載されたステージ装置を備え、 該ステージ装置によって前 記基板を所定の位置に移動させる。 この場合、 備えられたステージ 装置の性能が高まるので、 露光装置装置全体として高機能化が図ら れる。 An exposure apparatus according to claim 17 is the exposure apparatus, including the stage device described in claim 16, wherein the stage device moves the substrate to a predetermined position. In this case, the performance of the provided stage apparatus is enhanced, and the overall function of the exposure apparatus is enhanced.
また、 請求の範囲 1 8の露光装置は、 請求の範囲 1 7記載の露光 装置において、 露光用光学系が、 マスクに形成された前記パターン を前記基板上に投影するとともに、 請求の範囲 1 6に記載されたス テージ装置を備え、 該ステージ装置によって前記マスクを移動され るので、 備えられたステージ装置のみならず、 マスクを移動させる ステージ装置の性能も高まるので、 更に、 露光装置装置全体と して 高機能化が図られる。 The exposure apparatus according to claim 18 is the exposure apparatus according to claim 17, wherein the exposure optical system projects the pattern formed on a mask onto the substrate. Since the mask is moved by the stage device, the performance of not only the provided stage device but also the stage device for moving the mask is improved. As a result, higher functionality is achieved.
また、 請求の範囲 1 9の所定のパターンが形成されたデバイスは、 請求の範囲 1 7 または請求の範囲 1 8に記載された露光装置を用い て製造される。 従って、 製造されたデバイスは、 マスクの位置合わ せの精度、 基板の移動制御の精度が高く、 設計パターンが更に高密 度化しても、 設計パターンにあった忠実なデバイス構造が実現でき る。
Further, the device in which the predetermined pattern of claim 19 is formed is manufactured by using the exposure apparatus described in claim 17 or claim 18. Therefore, the manufactured device has high accuracy in mask alignment and substrate movement control, and can realize a device structure that is faithful to the design pattern even if the design pattern is further densified.