[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001006183A1 - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
WO2001006183A1
WO2001006183A1 PCT/JP2000/004324 JP0004324W WO0106183A1 WO 2001006183 A1 WO2001006183 A1 WO 2001006183A1 JP 0004324 W JP0004324 W JP 0004324W WO 0106183 A1 WO0106183 A1 WO 0106183A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
valve
side passage
radiator
Prior art date
Application number
PCT/JP2000/004324
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Shunichi Furuya
Yuji Kawamura
Shunji Muta
Kenji Iijima
Sakae Hayashi
Hiroshi Kanai
Akihiko Takano
Hajime Mukawa
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Publication of WO2001006183A1 publication Critical patent/WO2001006183A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention refrigerant low critical point as the refrigerant, for example, about the carbon dioxide (C 0 2) refrigeration cycle using the available refrigerant in the supercritical region as such.
  • the pressure control valve controls the pressure on the outlet side of the radiator by a pressure control valve.
  • the pressure control valve is formed in a coolant flow path, and partitions the coolant flow path into an upstream space and a downstream space.
  • the valve body is configured to open the valve port when the displacement member is displaced.
  • the temperature in the engine room is extremely high at 55 ° C (up to 60 ° C). Also, the temperature of the gas filled in the pressure control valve has risen to that temperature. For example, when the operating characteristics of the expansion valve are as shown by the broken line in FIG.
  • the expansion valve will not open, which means that when the air conditioner is started, the refrigerant temperature is high and the refrigerant cooled by the radiator is not flowing, so the pressure control Since the gas enclosed in the enclosed space of the valve cannot be cooled, the pressure control valve keeps the valve closed in order to maintain a high pressure, so the maximum pressure allowed during normal operation Power (about 15MPa) If the maximum operating pressure is set to a high pressure switch so as not to exceed this pressure, and if measures such as stopping the compressor are taken if the pressure exceeds 15 MPa by this switch, However, the high pressure side pressure becomes too high at the time of starting and exceeds the design allowable pressure, and the high pressure cut switch frequently operates.
  • variable displacement compressor using carbon dioxide (C 0 2) Cycle In such cases, the following phenomena have been confirmed by the present applicant. That is, if C 0 2 cycle is operated at low load, that is, your information, the ejection amount and the radiator of the compressor when the refrigerant pressure in the high pressure line is operated in a subcritical region to be lower than the critical pressure Even when the load on the condenser is constant (environmental conditions are constant), the refrigeration cycle intermittently fluctuates in a steady operation state.
  • the gas sealed in the expansion valve expands or contracts according to the refrigerant temperature on the expansion valve inlet side, and the position of the valve body is increased. Is displaced, and the position of the valve element is displaced even in response to the refrigerant pressure on the expansion valve inlet side, so that the sealed gas is filled so that the relationship between the refrigerant temperature and the refrigerant pressure has optimal control characteristics.
  • the opening degree of the expansion valve becomes the target opening degree according to the refrigerant temperature on the inflow side / refrigerant pressure.
  • variable displacement compressors are designed to control the discharge rate according to the low pressure.
  • the discharge rate is low when the low pressure is low, and the discharge rate is high when the low pressure is high. Control is performed As the amount of refrigerant supplied to the low-pressure line decreases, the discharge amount of the compressor also decreases.
  • the discharge rate of the compressor decreases, at low load where the cycle operates in the subcritical region, the action of reducing the volume of the refrigerant by the condensing action of the radiator is smaller than the action of increasing the capacity of the refrigerant by the compressor.
  • the refrigerant pressure on the high pressure side does not rise for a while, and the closed state of the expansion valve is maintained.
  • the compressor continues to discharge the refrigerant little by little to the high pressure side. Therefore, the operation of increasing the volume by the refrigerant discharged from the compressor is superior to the operation of reducing the volume of the refrigerant by the condensation action of the radiator, and the high pressure gradually increases. Then, when the high pressure required for the cooling valve is reached, the expansion valve opens and the high-pressure side refrigerant flows to the low-pressure side at a stretch. Occurs. It is considered that such a series of operations is repeated thereafter, so that the cycle intermittently fluctuates greatly.
  • the hunting cycle reaches 150 to 250 seconds, and most of the hunting period occurs.
  • the temperature of the refrigerant at the outlet side of the evaporator rises significantly during this time, and a large amount of refrigerant flows into the evaporator during the short period when the expansion valve opens, and Refrigerant temperature at outlet side drops rapidly.
  • the temperature of the air passing through the evaporator while the expansion valve is closed rises by about 15 ° C, and the temperature of the air passing through the evaporator sharply decreases during the short period when the expansion valve opens.
  • refrigerant critical points such as a primary object to ensure smooth cycle operation from such a state was left at a high temperature ambient air It also aims to reduce the pressure-resistant design value of each component that makes up the refrigeration cycle, and to make each component smaller and lighter.
  • Another object of the present invention is to provide a refrigeration cycle that can avoid the continuation of the closed state of the expansion device at the same time.
  • a refrigeration cycle includes: a compressor that compresses a refrigerant to set a high-pressure line in a supercritical state according to operating conditions; and a radiator that cools the refrigerant compressed by the compressor.
  • the expansion device includes a radiator side.
  • An inlet-side passage communicating with the evaporator; an outlet-side passage communicating with the evaporator; and an inlet-side passage and the outlet-side passage provided between the inlet-side passage and the outlet-side passage.
  • the first and second valve bodies that change the communication state between the first and second valves and carbon dioxide gas are sealed therein to detect the refrigerant condition on the radiator side. And refrigerant temperature)
  • the inert gas sealed in the second sensing element has a characteristic of contracting when the refrigerant pressure on the radiator side of the expansion device reaches a predetermined pressure, regardless of the refrigerant temperature. Therefore, when the refrigerant temperature is low, the first sensing element filled with the carbon dioxide gas first contracts to open the first valve body, and the communication between the inlet-side passage portion and the outlet-side passage portion is established. However, when the refrigerant temperature is high, the first valve body is difficult to open, but the second valve body filled with the inert gas opens first, and the space between the inlet-side passage portion and the outlet-side passage portion is increased. Can be communicated.
  • the expansion device of the refrigeration cycle described above includes an inlet-side passage portion communicating with the radiator side, an outlet-side passage portion communicating with the evaporator side, the inlet-side passage portion, and the outlet-side passage portion.
  • a valve body that changes the communication state of the communication path formed between the valve body and a gas such as carbon dioxide gas is sealed inside to sense the refrigerant condition on the radiator side, and responds to the refrigerant condition on the radiator side.
  • the refrigerant even when the refrigerant temperature at the time of starting is high and the communication path minimizes the communication state by the valve element, for example, when the communication path is closed, the refrigerant leaks.
  • the low temperature refrigerant cooled by the radiator is expanded At the stage when the refrigerant gas can be cooled and the temperature of the refrigerant gradually decreases to allow the expansion device to function normally.
  • the communication between the inlet-side passage and the outlet-side passage is controlled by the valve body as usual.
  • the provision of the leak means supplies the refrigerant to the low-pressure side by the leak means even if the expansion device is closed during steady operation at low load (even if the valve element is seated on the valve seat). It is possible to prevent the disadvantage that the discharge capacity of the compressor is reduced by suppressing the reduction of the low pressure, thereby enabling the pressure on the inflow side of the expansion device to be increased at an early stage, and the expansion device to be mounted quickly. Opening is encouraged, and the inconvenience of large intermittent cycle fluctuations can be suppressed.
  • the leak means is an orifice formed between the inlet-side passage portion and the outlet-side passage portion, it is constituted by providing a clearance (clearance) between the valve body and the communication passage. Or a groove formed in the valve body or a groove formed in the valve seat on which the valve body sits.
  • the orifice is in a range where subcooling (SC) can occur due to the need to secure sufficient refrigeration efficiency, and can prevent the expansion device from being clogged and clogged.
  • SC subcooling
  • 0.3 mn in diameter to prevent ball It is preferable to set the diameter in the range of ⁇ 1.5 mm, more preferably in the range of about 0.3-0.5 mm.
  • the leak means is formed with a gap (clearance) between the valve body and the communication passage, or in the case where the leak means is formed by forming a groove in the valve body or the valve seat, the refrigerant flows through the gap (clearance) or the groove.
  • the total cross-sectional area of the leaking part is preferably about 0.07 to 0.20 mm 2 (corresponding to the cross-sectional area of a hole having a diameter of 0.3 to 0.5 mm).
  • another communication passage communicating between the inlet-side passage and the outlet-side passage is provided separately from the communication passage, and the pressure of the inlet-side passage is provided in the other communication passage. May be provided with a relief valve that opens when the pressure exceeds a predetermined pressure.
  • the relief valve is opened when the high pressure exceeds a predetermined pressure. Since the refrigerant flows from the inlet-side passage to the outlet-side passage, the relatively low-temperature refrigerant cooled by the radiator can flow to the expansion device, and is thereby sealed in the sensing element of the expansion device. Gas can be cooled and the temperature of the refrigerant gradually decreases, and the expansion device can function normally.At this stage, the communication between the inlet-side passage and the outlet-side passage is established by the valve element. It will be controlled as usual.
  • FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention using a supercritical refrigerant as a refrigerant.
  • FIG. 2 is an enlarged sectional view of the expansion device of the refrigeration cycle according to FIG. Figure 3 is a first pressure reducing and regulating valve, the relationship between the refrigerant temperature and the refrigerant pressure at the expansion device inlet side of the second pressure reducing control valve which is filled with an inert gas sealed carbon dioxide (C 0 2)
  • FIG. FIG. 4 is an enlarged cross-sectional view showing a configuration example using a diaphragm type expansion device and an orifice as a leak means.
  • FIG. 5 is an enlarged sectional view showing a modification of the expansion device shown in FIG. FIG.
  • FIG. 6 shows the relationship between the refrigerant temperature and the refrigerant pressure at the expansion device inlet side of the conventional expansion device, the expansion device with an orifice shown in FIG. 4, and the expansion device with a relief valve shown in FIG.
  • FIG. 6 is a characteristic diagram.
  • FIG. 7 is an enlarged sectional view showing a bellows-type inflator in place of the diaphragm type in FIG. Figure 8 shows PT /
  • FIG. 8 is an enlarged sectional view showing a modification of the expansion device shown in FIG.
  • FIG. 9 is a characteristic diagram showing a change in subcooling with respect to the diameter of the orifice.
  • FIG. 10 is an enlarged view of the vicinity of a valve body showing a configuration example in which a groove is formed in a spherical valve body as a leak means.
  • FIG. 11 is an enlarged view of the vicinity of a valve seat showing a configuration example in which a groove is formed in a valve seat on which a spherical valve element is seated as a leak means.
  • FIG. 12 shows an example of a configuration in which a groove is formed in a 21 dollar-shaped valve body as a leak means
  • (a) is a view showing a state where the valve body is seated on a valve seat
  • (b) is a view showing It is an expansion perspective view of a valve body.
  • FIG. 13 is an enlarged view of the vicinity of a valve seat showing a configuration example in which a groove is formed in a valve seat on which a needle-shaped valve element is seated as a leak means.
  • FIG. 14 is a diagram showing a configuration example in the case of using a spool-shaped valve body as a leak means.
  • FIG. 15 is an explanatory view for explaining the spool-shaped valve element shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line 15B--15B of FIG.
  • FIG. 16 is a diagram showing the temporal change of the refrigerant temperature at the outlet side of the evaporator in order to explain the state of the conventional hunting.
  • the first 7 figures total cross-sectional area of about 0.1 2 5 6 cycles hunting when set as mm 2 of the first leak portion with a valve body of the needle shape shown in Figure 2 the valve body of the expansion device
  • FIG. 4 is a diagram showing a temporal change of a refrigerant temperature on an outlet side of an evaporator in order to explain the state of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line 4, and a pressure reduction for the refrigerant. It comprises an expansion device 5, an evaporator 6 for evaporating and evaporating the refrigerant, and an accumulator for gas-liquid separation of the refrigerant flowing out of the evaporator 6.
  • the discharge side (D) of the compressor 2 is connected via the radiator 3 Connected to the high-pressure passage 4a of the internal heat exchanger 4, the outlet side of the high-pressure passage 4a is connected to the expansion device 5, and the path from the discharge side of the compressor 2 to the expansion device 5 is a high-pressure line 8. .
  • the outlet side of the expansion device 5 is connected to the evaporator 6, and the outlet side of the evaporator 6 is connected to the low-pressure passage 4 b of the internal heat exchanger 4 via the accumulator 7.
  • the outflow side of the low-pressure passage 4 b is connected to the suction side (S) of the compressor 2, and the path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.
  • a low critical point refrigerant as a refrigerant For example, carbon dioxide (C 0 2) is used and refrigerant compressed by the compressor 2, radiator 3 as a high-temperature high-pressure refrigerant Then, heat is radiated and cooled here. Then, the internal heat exchanger 4 exchanges heat with the low-temperature refrigerant flowing out of the evaporator 6 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to form a gaseous state. It is heated by exchanging heat with the refrigerant and returned to the compressor 2.
  • C 0 2 carbon dioxide
  • the expansion device 5 communicates with the housing 10 through the high-pressure passage 4 a of the internal heat exchanger 4 (which communicates with the radiator side). And a high-pressure space 13 where these passages are opened.
  • the first and second pressure-reducing control valves 14 and 15 are housed in the high-pressure space 13. .
  • the high-pressure space 13 is defined by the boundary wall 16 into two control valve storage spaces 17 and 18, and these two control valve storage spaces 17 and 18 are through holes formed in the boundary wall 16.
  • the control valve storage space 17 has an opening on the inlet side passage 11 and a first communication passage 20 communicating with the outlet side passage 12 on the other side.
  • the space 18 communicates with the exit passageway 1 2
  • the second communication passage 21 is open.
  • a first pressure reducing control valve 14 is stored in one control valve storage space 17, and the first pressure reducing control valve 14 opens to the high pressure space 13 of the first communication passage 20.
  • the valve body 23 includes a valve body 23 seated on a valve seat 22 formed in an opening portion, and a first bellows 25 joined to the valve body 23 via a rod 24. Rose 2 5 predetermined amount of carbon dioxide in the (C 0 2) is that is sealed.
  • a second pressure reducing control valve 15 is stored in the other control valve storage space 18. The second pressure reducing control valve 15 is similar to the first pressure reducing control valve 14.
  • the second bellows 29 is filled with a predetermined amount of inert gas.
  • valve pressures of the first and second pressure reducing valves 14 and 15 and the movement of the valve bodies 23 and 27 are adjusted by changing the amount of gas filled in the bellows.
  • 14 and 15 respond to the pressure of the high-pressure space 13 and the refrigerant temperature around the bellows, and the characteristics of the refrigerant temperature and the refrigerant pressure at the expansion device inlet are shown in Fig. 3. That is, the first pressure-reducing control valve 14 filled with carbon dioxide gas (C 0 2 ) almost linearly expands at the expansion device inlet as the refrigerant temperature rises. While the refrigerant pressure has the characteristic of rising, the inert gas
  • the pressure-reducing control valve 15 of 2 has such a characteristic that the refrigerant pressure at the expansion device inlet is substantially constant irrespective of the expansion device inlet refrigerant temperature.
  • the second valve element 27 is opened, so that the refrigerant radiated by the radiator 3 passes through the through hole 19 from one valve element storage space 17 of the expansion device 5 and the other valve element. Since the gas flows into the storage space 18 and then flows through the second communication passage 21 to the outlet-side passage portion 12, a smooth cycle operation at the time of starting can be ensured.
  • the first pressure-reducing control valve 14 is activated, and the pressure is reduced. 15 closes and shifts to normal pressure reduction control.
  • the second pressure reduction control valve 15 shown by the solid line functions, and Also, when the refrigerant temperature is low, the first pressure-reducing control valve 14 shown by the broken line functions.
  • the second communication passage 21 is opened by the operation of the second pressure reducing control valve 15, and the refrigerant To the low pressure side, the operation of the high pressure cutter switch can be avoided, ONZOFF of the compressor due to frequent operation of the high-pressure cut switch can be avoided, and deterioration of air conditioning feeling can be prevented.
  • the first pressure reducing control valve 14 is arranged upstream of the second pressure reducing valve 15, the refrigerant around the first pressure reducing valve 14 always starts when a cycle in which the refrigerant temperature is high is started. Flow, the cooling of the first pressure reducing valve 14 is promoted, and the time until the first pressure reducing valve 14 operates normally can be shortened. 15 to 1st decompression The transition to the node valve 14 can be promptly performed, and the operations of the two pressure reducing control valves 14 and 15 can be smoothly connected.
  • the two pressure-reducing control valves 14 and 15 are provided integrally with the expansion device 5, it is not necessary to secure a space by separating them, and the cost is also advantageous, and the allowable pressure resistance is reduced. Since it is not necessary to increase the size, the withstand voltage design value of each component can be reduced, and as a result, each component can be reduced in size and weight.
  • FIG. 4 shows another configuration example of the present invention.
  • a diaphragm type pressure reducing control valve 30 is housed in a high pressure space 13 of an expansion device 5.
  • a communication passage 31 is formed between the high-pressure space 13 and the outlet-side passage portion 12, and the pressure reducing control valve 30 is housed in the valve holder 32 and the high-pressure space 13 of the communication passage 31 is formed.
  • a valve body 34 seated on a valve seat 33 formed in an opening portion opened to the outside, and a diaphragm 36 joined to the valve body 34 via a load 35 valve holder 3 2 has a passage portion 37 communicating the storage portion of the valve element 34 with the high-pressure space 13 and a rod 35, and communicates with the passage portion 3 7 on the rod-side surface of the diaphragm 36.
  • a passage portion 38 for guiding the refrigerant in the high-pressure space is formed, and a spring 40 is elastically mounted between a panel receiver 39 formed in the valve holder 32 and the valve body 34, and a valve body 3 is provided. 4 is constantly urged in a direction to close the communication passage 31.
  • the diaphragm 36 is sandwiched and fixed between the valve holder 32 and the valve cover 41, and a sealed space 42 is formed by the valve cover 41 and the diaphragm 36. Determination of carbon dioxide (C 0 2) is sealed entrance. In the vicinity of the pressure-reducing control valve 30, a leak means for leaking the refrigerant from the inlet-side passage portion 11 to the outlet-side passage portion 12 is provided. The orifice 43 is formed to communicate with the outlet side passage portion 12. The orifice 43 is formed downstream of the pressure-reducing control valve 30 with respect to the inlet-side passage portion 11. You. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the orifice 43 is provided downstream of the pressure-reducing control valve 30, and when the refrigerant temperature is high, the refrigerant flows from the high-pressure space 13 through the orifice 43 to the outlet side passageway 12.
  • the refrigerant radiated by the radiator 3 flows around the pressure-reducing control valve 30, and cooling of the pressure-reducing control valve 30 can be promoted. Thereafter, when the temperature of the refrigerant passing through the expansion device 5 decreases, the pressure-reducing control valve 30 that has been closed is opened, and the normal pressure-reducing control can be performed. We can guarantee it.
  • each component can be reduced, and as a result, each component can be reduced in size and weight, such as when the vehicle suddenly accelerates.
  • the withstand voltage design value of each component can be reduced, and as a result, each component can be reduced in size and weight, such as when the vehicle suddenly accelerates.
  • the valve element 34 is seated on the valve seat 33. Even in such a case, the refrigerant can leak from the high pressure side to the low pressure side, so that a variable capacity compressor whose capacity is controlled by the pressure of the low pressure line is used as the compressor and In operation in a low-load region where the valve operates in a subcritical region below the critical pressure, even when the valve element of the expansion device sits on the valve seat and closes the communication passage 31, the Since the refrigerant can be supplied to the low-pressure side via 43, it is possible to suppress a remarkable decrease in the low-pressure pressure and a remarkable decrease in the discharge amount of the compressor, and avoid the phenomenon that the refrigerating cycle intermittently fluctuates greatly. Can o
  • FIG. 5 shows still another configuration example of the present invention.
  • This configuration example is different from the configuration shown in FIG. 4 in that a relief valve that opens when a predetermined pressure or more is used instead of an orifice 4 5 has been established.
  • the relief valve 45 is provided with a through hole 46 separately from the communication passage 31, and a valve element 47 is seated in the through hole 46 from the outlet side passage portion side, and a spring 48 is used.
  • the valve element 47 is constantly urged in a direction to close the through hole 46.
  • the predetermined pressure is a pressure at which a differential pressure between the high pressure, the low pressure, and the spring pressure is balanced. When the high pressure is higher than this pressure, the valve element moves to open the through hole 46.
  • the relief valve 45 is disposed downstream of the pressure reducing control valve 30 with respect to the inlet-side passage portion 11. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the relief valve 45 is provided downstream of the pressure-reducing control valve 30, and when the refrigerant temperature is high, the refrigerant flows from the high-pressure space 13 to the outlet-side passage portion 12 via the relief valve 45. Therefore, the refrigerant radiated by the radiator 3 flows around the pressure reducing control valve 30, and the cooling of the pressure reducing valve 30 can be promoted. Thereafter, when the temperature of the refrigerant passing through the expansion device 5 decreases, the pressure-reducing control valve 30 that has been closed is opened, and it is possible to shift to normal pressure-reducing control. It can be guaranteed.
  • the withstand voltage design value of each component can be reduced, and as a result, each component can be reduced in size and weight, and the vehicle can be rapidly mounted.
  • the high-pressure side pressure suddenly rises due to an increase in the number of revolutions of the compressor, such as in the case of acceleration, it is possible to cope with the above-described configuration example.
  • the valve is not opened until the pressure reaches a predetermined value, it is sufficiently possible to provide the same function as the orifice by adjusting the valve opening pressure and the diameter of the through hole 46. Yes, it can be a configuration that can suppress intermittent cycle fluctuations.
  • the configuration of the expansion device 5 shown in FIGS. 4 and 5 shows an example of a pressure reducing control valve using a diaphragm, but as shown in FIGS. 7 and 8, the temperature of the high-pressure side refrigerant is reduced.
  • a pressure-reducing control valve 50 using a bellows 51 whose opening is controlled by pressure and pressure (refrigerant condition) may be used instead.
  • the gas sealed in the bellows senses the refrigerant temperature on the high pressure side.
  • the volume inside the bellows is increased or decreased, and the bellows 51 expands and contracts also due to the high-pressure side refrigerant pressure, so that the bellows 51 is lowered according to the relationship between the high-pressure side refrigerant temperature and the refrigerant pressure.
  • the position of the valve element 34 connected via the valve 35 that is, the valve opening, is adjusted.
  • the relationship between the refrigerant temperature and the refrigerant pressure is set so as to have predetermined optimum characteristics, so that the same operation and effect as those of the expansion device using the diaphragm can be obtained.
  • the diameter of the orifice 43 is preferably set in a range of 0.3 mm to 1.5 mm. It uses a C 0 variable displacement compressor in two cycles, and, when the high pressure of this cycle is assumed as operating at a low load condition to be subcritical region, valve body as the expansion device described above However, even if the valve body is seated on the valve seat and the refrigerant can be supplied to the low pressure side, such a phenomenon can be avoided. It is necessary to secure at least the size required to supply the refrigerant to the low-pressure side. That is, if the diameter of the orifice 43 is reduced as much as possible, such an effect cannot be expected, so that the lower limit of the orifice diameter is naturally set.
  • the orifice 43 it is necessary to prevent the orifice 43 from being clogged by oil or the like mixed in the refrigerant while obtaining the effect of avoiding the above-described phenomenon.
  • the diameter of the orifice 43 must be at least 0.3 mm.
  • the diameter of the orifice 43 should be large enough to obtain a high pressure at which subcooling can occur in consideration of the efficiency of the refrigeration cycle (heat absorption or coefficient of performance). 3 diameter
  • the diameter of the orifice 43 is 1.5 mm, it was concluded that it would be preferable to use this as the upper limit and make the diameter smaller than this. From the above, it was eventually found that it is preferable to set the diameter of the orifice 43 in the range of 0.3 mm to 1.5 mm.
  • valve means 34 as the leak means of the expansion device can minimize the communication state of the communication passage 31 instead of the orifice 43 (in this example, (Even in the state where the valve element 34 is seated on the valve seat 33)
  • An example is shown in which a path through which a small amount of refrigerant flows from the high pressure side to the low pressure side is formed.
  • FIG. A groove 55 is formed from the high-pressure space 13 to the communication passage 31 so as to cross the part of the spherical valve element 34 that comes into contact with the valve seat 33.
  • the groove is formed so as to reduce the diameter of the central portion of the valve body.
  • a groove 56 is formed in the valve seat 33 from the high-pressure space 13 to the communication passage 31.
  • These grooves 55 and 56 have a passage approximately the same as the passage cross section of the orifice having a diameter of 0.3 mm to 1.5 mm when the valve element 34 is seated on the valve seat 33. It is preferable to form so that a cross section (groove cross section) can be obtained.
  • the configuration is useful particularly when there is not enough room for forming the orifice near the valve seat.
  • the shape of the valve body may be spherical as described above, but as shown in FIGS. 12 (a) and (b), it has been found that it is more preferable to form the valve body into a needle shape. I have. This is when the valve body is spherical The change in the opening area of the communication passage with respect to the change in the valve lift is large, so that even a small lift of the valve makes it easy for the refrigerant to flow at a stretch, and if the valve lift is not carefully adjusted, large pressure fluctuations will occur. This is because it is easy to induce
  • valve shape by changing the valve shape from a spherical shape to a needle shape, the change in the effective opening area of the communication passage 31 is reduced, especially in the initial stage of the lift, and even when the expansion valve is opened, the refrigerant on the high pressure side flows into the low pressure side at a stretch. Can be eliminated.
  • the needle-shaped valve element 60 used in this example has a frusto-conical shape as shown in FIG. 12 and crosses a portion in contact with the valve seat 33 on the conical surface.
  • a groove 61 is formed from the high-pressure space 13 to the communication passage 31 at the bottom. Particularly, in this example, by providing the groove 61 at three places around the valve body 60, the leak means is formed. Are configured.
  • the total cross-sectional area of the passage formed between the valve body 60 and the valve seat 33 in a state where the valve body 60 is seated on the valve seat 33, that is, the total of the groove cross sections is 0.3 mm to 1.5 mm in diameter.
  • the passage cross section may be substantially the same as the passage cross section of the orifice having a diameter within the range of, more preferably, the area of the hole having a diameter of about 0.3 to 0.5 mm (0.07 to 0. 20 mm 2 ) has been found to be most effective when set to the same level.
  • a groove 62 is formed on the valve seat 33 side from the high-pressure space 13 to the communication passage 31 as shown in FIG. Further, an orifice 63 may be formed beside the valve seat 33, as shown by a broken line in FIG. Particularly, in this example, the groove 62 on the valve seat side is realized by forming a groove on the inner surface of the communication passage 31 in the axial direction of the passage. Such a groove on the valve seat side Also in the case of the valve body 62 and the orifice 63, when the valve body 60 is seated on the valve seat 33, the diameter as a whole is 0.3 ⁇ between the inlet side passage portion 11 and the outlet side passage portion 12. !
  • the area of the hole having a diameter of about 0.3 to 0.5 mm (0.07 to 0.20 mm) is obtained so as to obtain a passage cross section equivalent to the area of the hole of about 1.5 mm. It is formed so that the same cross section as 2 ) can be obtained.
  • the rate of increase in the opening area can be reduced at the initial stage of the valve element lifting, so that a large amount of refrigerant flows into the low-pressure line at the initial stage of the valve element lifting. Can be prevented, and pressure fluctuation can be suppressed as compared with the case where a spherical valve element is used, and a large fluctuation of the blown air temperature can be reduced.
  • FIGS. 14 and 15 show another configuration example of the leak means.
  • the valve body 65 is not provided with a valve seat and is not seated, but a spool shape which enters the communication hole 31.
  • the insertion end of the valve body 65 inserted into the communication hole 31 is circular.
  • the valve is shaped like a frustum to reduce the rate of increase in the opening area of the valve body 65 with respect to the lift, and to prevent a large amount of refrigerant from flowing into the low-pressure line at the beginning of the valve body lift. I have.
  • the clearance (clearance) 66 between the valve body 65 and the communication passage 31 formed when the valve body 65 is inserted into the communication passage has a diameter of 0.3 mm to l as a whole.
  • the same area as a hole having a diameter of 0.3 to 0.5 mm (0.07 to 0.20 mm 2 ) is used so that a passage cross section equivalent to the area of a hole of 0.5 mm is obtained. It is desirable to adjust so that a passage cross section of a certain degree can be obtained.
  • an inlet to an expansion device is provided.
  • First and second valve bodies for changing the communication between the side passage portion and the outlet side passage portion are provided, and the first valve body is controlled by a first sensing element in which carbon dioxide gas is sealed.
  • the second valve element is controlled by the second sensing element in which an inert gas is sealed, the inert gas is used at the start of the cycle by using the sensing elements having two different characteristics.
  • the enclosed second sensing element works to flow the refrigerant cooled by the radiator to the expansion device to control the pressure, and after the refrigerant temperature decreases, the first sensing element containing the carbon dioxide gas is activated. Can work and perform normal control, It is possible to ensure the start-up operation of a cycle Wear.
  • the second sensing element filled with the inert gas works so that the refrigerant can flow to the low-pressure side. Frequent operation of the high-pressure switch can prevent the compressor from being frequently turned off and the air conditioning feeling will not be impaired.
  • the inflator is constructed by integrating the two sensing elements, there is no burden on the installation space of the cycle, etc., and a sensing element filled with carbon dioxide and a sensing element filled with inert gas are used.
  • a sensing element filled with carbon dioxide and a sensing element filled with inert gas are used.
  • the inlet side passage when the valve element is seated on a valve seat is connected to the expansion device of the refrigeration cycle using supercritical refrigerant as the refrigerant.
  • a leak means is provided to allow the refrigerant to leak from the section to the outlet side passage section, the refrigerant can flow from the inlet side passage section to the outlet side passage section via the leak means even at the start of a cycle where the refrigerant temperature is high.
  • the gas-filled sensing element works to shift to normal pressure reduction control, ensuring a smooth cycle start operation. be able to.
  • the provision of the leak means makes it possible to supply the refrigerant to the low-pressure side by the leak means even when the expansion device is closed during a steady operation at a low load, thereby suppressing a decrease in the low-pressure pressure. Inconvenience of reduced compressor displacement Can be avoided and the pressure on the inflow side of the inflator can be increased at an early stage, promptly opening the inflator, and the inconvenience of large intermittent cycle fluctuations can also be suppressed. .
  • the leak means for leaking the refrigerant from the inlet side passage portion to the outlet side passage portion in a state where the communication state of the communication passage is minimized by the valve body is an orifice formed between the inlet side passage portion and the outlet side passage portion. Even if it is configured by providing a predetermined gap (clearance) between the valve element and the communication path, the groove formed in the valve element and the valve seat formed on the valve element seat the valve element.
  • the diameter may be 0.3 mm to 1.5 mm when the leak means is constituted by an orifice, or by a gap (clearance) or a groove. It is preferable that the diameter of the orifice is set so as to have a passage cross-sectional area of about 0.3 to 0.5 mm.
  • the leak means is composed of a relief valve
  • the refrigerant can flow from the inlet-side passage to the outlet-side passage through the relief valve even at the start of the cycle when the refrigerant temperature is high, thus cooling the expansion device.
  • the sensing element filled with gas works to shift to normal depressurization control, which also helps to ensure smooth cycle start operation. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

A refrigerating cycle using a refrigerant having a low critical point such as CO2, wherein first and second valve discs (23, 27) making a communication state vary between an inlet side passage part (11) and an outlet side passage part (12), a first bellows (25) having carbon dioxide sealed therein and controlling the movement of the first valve disc (23) according to a refrigerant temperature or a refrigerant pressure on a radiator side, and a second bellows (29) having inert gas sealed therein and controlling the movement of the second valve disc (27) according to the refrigerant pressure on the radiator side are provided in an expansion device (5) of the refrigerating cycle, leak means which, in the state that the communication state of the communication passages is minimized by the valve disc, leaks the refrigerant from the inlet side passage part (11) to the outlet side passage part (12) may be provided in the expansion device (5), whereby a smooth operation from the state of having been left in high temperature atmosphere is assured, a pressure resistant design value of each component constituting the refrigerating cycle is lowered, and each component is reduced in size and weight, and thus an intermittent variation of cycle at a low load can be avoided.

Description

明 細 書  Specification
冷凍サイクル 技術分野 Refrigeration cycle technology
この発明は、 冷媒として臨界点の低い冷媒、 例えば、 二酸化炭素 (C 0 2 ) 等のように超臨界域で使用可能な冷媒を用いた冷凍サイクルに関 する。 背景技術 The present invention, refrigerant low critical point as the refrigerant, for example, about the carbon dioxide (C 0 2) refrigeration cycle using the available refrigerant in the supercritical region as such. Background art
二酸化炭素 (C 0 2 ) を冷媒とする冷凍サイクルとして、 特開平 9— 2 6 4 6 2 2号公報に開示される構成が知られている。 これは、 圧力制 御弁によって放熱器の出口側圧力を制御するもので、 圧力制御弁は、 冷 媒流路内に形成され、 前記冷媒流路を上流側空間と下流側空間とに仕切 る隔壁部と、 この隔壁部に形成され、 前記上流側空間と前記下流側空間 とを連通させる弁口と、 前記上流側空間内に密閉空間を形成し、 前記密 閉空間内外の圧力差に応じて変位する変位部材と、 前記弁口を開閉する 弁体部とを備え、 前記変位部材は、 前記上流側空間内圧力が前記密閉空 間内圧力より所定量大きくなったときに変位し、 前記弁体部は前記変位 部材が変位した時に前記弁口を開くように構成したものである。 As a refrigeration cycle using carbon dioxide (C 0 2 ) as a refrigerant, a configuration disclosed in Japanese Patent Application Laid-Open No. 9-246462 is known. The pressure control valve controls the pressure on the outlet side of the radiator by a pressure control valve. The pressure control valve is formed in a coolant flow path, and partitions the coolant flow path into an upstream space and a downstream space. A partition wall portion, a valve port formed in the partition wall portion, for communicating the upstream space and the downstream space, and a closed space formed in the upstream space, in response to a pressure difference between the inside and outside of the closed space. A displacement member that displaces the valve port, and a valve body that opens and closes the valve port. The displacement member is displaced when the pressure in the upstream space becomes larger than the pressure in the closed space by a predetermined amount. The valve body is configured to open the valve port when the displacement member is displaced.
また、 この公報には、 圧力制御弁の密閉空間に 4 5 0 K g /m 3 〜 9 5 0 K /m 3 (実施例では 6 0 0 K g /m 3 ) の密度の二酸化炭 素を封入することにより高圧側の圧力を検出し、 この圧力が目標圧力と なるように制御して同公報に図示されている最適制御線に沿つて放熱器 の出口側の圧力を制御するようにした点も示されている。 Further, this publication, the density carbon dioxide in the sealed space 4 5 0 K g / m 3 ~ 9 5 0 K / m 3 (6 0 0 K g / m 3 in the embodiment) of the pressure control valve By enclosing, the pressure on the high pressure side is detected, and this pressure is controlled to be the target pressure, and the pressure on the outlet side of the radiator is controlled along the optimal control line shown in the same publication. Points are also shown.
このような圧力制御弁によれば、 放熱器の出口側圧力が増大した場合 には、 密閉空間の内部に封入された冷媒の圧力との差圧によって変位部 材が変位して弁体部を弁口を開口する方向に移動させるので、 出口側圧 力を低下させ、 また、 放熱器の出口側の冷媒温度が高い場合には、 前記 密閉空間内の冷媒が膨張することにより前記変位部材が変位して弁体部 を弁口を閉める方向に移動させるので、 放熱器の出口側圧力が上昇し、 圧縮機の圧縮仕事を増加させることなく、 放熱器の出口側圧力を増加さ せることができ、 冷凍サイクルの成績係数の悪化を抑制しつつ冷却能力 を確保することができるようになつている。 According to such a pressure control valve, when the pressure on the outlet side of the radiator increases, the displacement portion is displaced by the pressure difference between the pressure of the refrigerant sealed in the enclosed space. Since the material is displaced and the valve body is moved in the direction to open the valve port, the outlet side pressure is reduced, and when the refrigerant temperature on the outlet side of the radiator is high, the refrigerant in the closed space is When the expansion member expands, the displacement member is displaced to move the valve body in a direction to close the valve port, so that the pressure on the outlet side of the radiator increases, and the outlet of the radiator does not increase the compression work of the compressor. The side pressure can be increased, and the cooling capacity can be secured while suppressing the deterioration of the coefficient of performance of the refrigeration cycle.
しかしながら、 上述の冷凍サイクルにおいては、 圧力制御弁に封入さ れるガスが冷媒と同じ炭酸ガスを用いているため、 次のような不都合を 生じることが予想される。  However, in the above-described refrigeration cycle, since the gas sealed in the pressure control valve uses the same carbon dioxide gas as the refrigerant, the following inconvenience is expected to occur.
即ち、 夏場などの外気温が高い環境下で車両を放置した状態からエア コンを始動すると、 エンジンルーム内の温度は 5 5 ° (〜 6 0 °Cと非常に 高くなつているので、 冷媒温度や圧力制御弁の封入ガスの温度もその位 の温度まで高まっており、 例えば、 膨張弁の作動特性が第 3図の破線の ようになつている場合を考えると、 エアコン始動時には高圧側が 1 7〜 1 9 M P aまで上昇しないことには膨張弁が開弁しないことになる。 つ まり、 エアコン始動時には、 冷媒温度が高く、 放熱器で冷却された冷媒 が流動しない状態にあるため、 圧力制御弁の密閉空間内に封入されたガ スを冷却することができず、 圧力制御弁は高い圧力を保持しようとして 弁を閉じた状態を維持する。 このため、 通常運転時で許容される最大圧 力 ( 1 5 M P a程度) を最高使用圧力として、 これ以上の圧力とならな いように高圧力ヅ トスィツチを設け、 このスィツチにより 1 5 M P a以 上となれば圧縮機を停止させる等の手段が講じられている場合には、 始 動時に高圧側圧力が高くなり過ぎて設計許容圧力を超えてしまい、 高圧 カットスィツチが頻繁に作動してしまう等の不都合がある。  In other words, when the air conditioner is started while the vehicle is left in an environment where the outside temperature is high, such as in summer, the temperature in the engine room is extremely high at 55 ° C (up to 60 ° C). Also, the temperature of the gas filled in the pressure control valve has risen to that temperature. For example, when the operating characteristics of the expansion valve are as shown by the broken line in FIG. If the pressure does not rise to ~ 19 MPa, the expansion valve will not open, which means that when the air conditioner is started, the refrigerant temperature is high and the refrigerant cooled by the radiator is not flowing, so the pressure control Since the gas enclosed in the enclosed space of the valve cannot be cooled, the pressure control valve keeps the valve closed in order to maintain a high pressure, so the maximum pressure allowed during normal operation Power (about 15MPa) If the maximum operating pressure is set to a high pressure switch so as not to exceed this pressure, and if measures such as stopping the compressor are taken if the pressure exceeds 15 MPa by this switch, However, the high pressure side pressure becomes too high at the time of starting and exceeds the design allowable pressure, and the high pressure cut switch frequently operates.
また、 容量可変型の圧縮機を二酸化炭素 (C 0 2 ) サイクルに利用し た場合には、 本出願人によって次のような現象が確認されている。 即ち C 0 2 サイクルが低負荷時において運転された場合、 つまり、 高圧ライ ンの冷媒圧力が臨界圧力よりも低くなる亜臨界域で運転された場合にお いては、 コンプレッサの吐出量や放熱器及び凝縮器の負荷が一定 (環境 条件が一定) である場合でも、 定常運転状態において冷凍サイクルが間 欠的に大きな変動を起こしてしまう。 Further, the variable displacement compressor using carbon dioxide (C 0 2) Cycle In such cases, the following phenomena have been confirmed by the present applicant. That is, if C 0 2 cycle is operated at low load, that is, your information, the ejection amount and the radiator of the compressor when the refrigerant pressure in the high pressure line is operated in a subcritical region to be lower than the critical pressure Even when the load on the condenser is constant (environmental conditions are constant), the refrigeration cycle intermittently fluctuates in a steady operation state.
このような現象が生じる原因としてはいろいろ推定されているが、 主 たる原因としては、 次のように考えられている。  Various causes have been estimated for the occurrence of this phenomenon, but the main causes are considered as follows.
即ち、 ダイヤフラム式の膨張弁であっても、 ベローズ式の膨張弁であ つても、 膨張弁流入側の冷媒温度に応じて膨張弁に封入されているガス が膨張又は収縮して弁体の位置が変位し、 また、 膨張弁流入側の冷媒圧 力に応じても弁体の位置が変位することから、 冷媒温度と冷媒圧力との 関係が最適な制御特性となるように封入ガスを封入することで、 流入側 の冷媒温度ゃ冷媒圧力に応じて膨張弁の開度が目標とする開度となるよ うになつている。  That is, regardless of whether it is a diaphragm type expansion valve or a bellows type expansion valve, the gas sealed in the expansion valve expands or contracts according to the refrigerant temperature on the expansion valve inlet side, and the position of the valve body is increased. Is displaced, and the position of the valve element is displaced even in response to the refrigerant pressure on the expansion valve inlet side, so that the sealed gas is filled so that the relationship between the refrigerant temperature and the refrigerant pressure has optimal control characteristics. Thus, the opening degree of the expansion valve becomes the target opening degree according to the refrigerant temperature on the inflow side / refrigerant pressure.
ところが、 低負荷時においては、 圧縮機として容量可変型の圧縮機が 用いられていると、 吐出量がもともと少なくなることから、 高圧ライン の圧力は比較的低くなり、 膨張弁は閉じようとする方向へ動作する。 特 に、 このような低負荷時において、 ある冷媒温度 Tに対して最適な冷媒 圧力 Pが得られる状態となる位置で膨張弁の開度が安定している場合に 何らかの原因で冷媒温度が Tよりも相対的に高くなると、 膨張弁は閉じ てしまう。  However, at low load, if a variable capacity compressor is used as the compressor, the discharge volume will be reduced originally, so the pressure in the high pressure line will be relatively low and the expansion valve will close. Work in the direction. In particular, at such a low load, when the opening degree of the expansion valve is stable at a position where the optimum refrigerant pressure P is obtained for a certain refrigerant temperature T, the refrigerant temperature becomes T for some reason. If it is higher, the expansion valve will close.
すると、 膨張弁を介して低圧ラインへ供給される冷媒は少なくなって しまう。 現行に用いられている容量可変型の圧縮機は、 低圧圧力に応じ て吐出量が制御されるようになっており、 低圧圧力が低ければ吐出量を 少なく、 低圧圧力が高ければ吐出量を多くする制御が行われることから 低圧ラインへ供給される冷媒が少なくなると、 圧縮機の吐出量も少なく なってしまう。 圧縮機の吐出量が少なくなると、 亜臨界域でサイクルが 動作する低負荷時においては、 放熱器の凝縮作用によって冷媒の容積を 減らす作用が圧縮機によって冷媒の容積を増やそうとする動作に比べて 勝ってしまうことから、 高圧側の冷媒圧力はしばらくは上昇せず、 この ため膨張弁の閉じた状態が持続されてしまうこととなる。 Then, the amount of the refrigerant supplied to the low-pressure line via the expansion valve decreases. Currently, variable displacement compressors are designed to control the discharge rate according to the low pressure.The discharge rate is low when the low pressure is low, and the discharge rate is high when the low pressure is high. Control is performed As the amount of refrigerant supplied to the low-pressure line decreases, the discharge amount of the compressor also decreases. When the discharge rate of the compressor decreases, at low load where the cycle operates in the subcritical region, the action of reducing the volume of the refrigerant by the condensing action of the radiator is smaller than the action of increasing the capacity of the refrigerant by the compressor. As a result, the refrigerant pressure on the high pressure side does not rise for a while, and the closed state of the expansion valve is maintained.
圧縮機は、 このような状態でも少しずつ冷媒を高圧側へ吐出し続ける ことから、 しばらくすると、 放熱器での液化が進行するにつれて放熱器 で実際に放熱作用を行う面積が徐々に少なくなつてくるため、 放熱器の 凝縮作用によって冷媒の容積を減らす作用よりも圧縮機から吐出される 冷媒によって容積を増やそうとする動作が勝り、 次第に高圧圧力が上昇 してくる。 すると、 閧弁に必要な高圧圧力に達すると、 膨張弁が開いて 高圧側の冷媒が低圧側へ一気に流れるようになり、 いままで冷媒の流れ が殆ど停滞していたサイクルに急激な冷媒の流れが生じる。 そして、 こ のような一連の動作を以後繰り返すことにより、 間欠的にサイクルが大 きく変動してしまうものと考えられている。  Even in such a state, the compressor continues to discharge the refrigerant little by little to the high pressure side. Therefore, the operation of increasing the volume by the refrigerant discharged from the compressor is superior to the operation of reducing the volume of the refrigerant by the condensation action of the radiator, and the high pressure gradually increases. Then, when the high pressure required for the cooling valve is reached, the expansion valve opens and the high-pressure side refrigerant flows to the low-pressure side at a stretch. Occurs. It is considered that such a series of operations is repeated thereafter, so that the cycle intermittently fluctuates greatly.
このような低負荷時 (圧縮機のストローク量が小さい時) のハンチン グは、 第 1 6図に示されるように、 ハンチングの周期が 1 5 0秒〜 2 5 0秒に至り、 その大半が膨張弁が閉じてしまう期間となることから、 こ の間に蒸発器の出口側での冷媒温度が著しく上昇し、 膨張弁が開く僅か な期間に多量の冷媒が蒸発器に流れ込んで蒸発器の出口側での冷媒温度 が急激に低下する。 その結果、 膨張弁が閉じている間に蒸発器を通過し た空気の温度が 1 5 °Cほど上昇すると共に、 膨張弁が開く僅かな期間に 蒸発器を通過した空気の温度が急激に低下することとなり、 上述したサ ィクルのハンチングに伴って吹出空気温度も大きく変動してしまう不都 合が認められている。 そこで、 この発明においては、 二酸化炭素 (C 0 2 ) 等の臨界点の低 い冷媒を用いた冷凍サイクルにおいて、 高温外気中に放置した状態など からのスムーズなサイクル運転を保障することを主たる目的としている また、 冷凍サイクルを構成する各コンポーネントの耐圧設計値を低くす ることができ、 各コンポーネントを小型、 軽量にすることをも目的とし ている。 Hunting at such a low load (when the stroke of the compressor is small), as shown in Fig. 16, the hunting cycle reaches 150 to 250 seconds, and most of the hunting period occurs. During the period during which the expansion valve is closed, the temperature of the refrigerant at the outlet side of the evaporator rises significantly during this time, and a large amount of refrigerant flows into the evaporator during the short period when the expansion valve opens, and Refrigerant temperature at outlet side drops rapidly. As a result, the temperature of the air passing through the evaporator while the expansion valve is closed rises by about 15 ° C, and the temperature of the air passing through the evaporator sharply decreases during the short period when the expansion valve opens. As a result, it has been recognized that the temperature of the blown air fluctuates greatly with the hunting of the cycle described above. Therefore, in the present invention, the carbon dioxide (C 0 2) refrigeration cycle using a low There refrigerant critical points, such as a primary object to ensure smooth cycle operation from such a state was left at a high temperature ambient air It also aims to reduce the pressure-resistant design value of each component that makes up the refrigeration cycle, and to make each component smaller and lighter.
さらに、 この発明においては、 二酸化炭素 (C 0 2 ) 等の臨界点の低 い冷媒を用いた冷凍サイクルにおいて、 間欠的に生じ得る低負荷時での サイクル変動を抑えること、 即ち、 低負荷時での膨張装置の閉塞状態の 持続を回避することができる冷凍サイクルを提供することも課題として いる。 発明の開示 ' Further, in the present invention, in a refrigeration cycle using a low There refrigerant carbon dioxide (C 0 2) critical points, such as, suppressing the cyclic variation in the low load that may occur intermittently, i.e., low load Another object of the present invention is to provide a refrigeration cycle that can avoid the continuation of the closed state of the expansion device at the same time. DISCLOSURE OF THE INVENTION ''
上記課題を達成するために、 この発明に係る冷凍サイクルは、 冷媒を 圧縮して運転条件により高圧ラインを超臨界状態とする圧縮機と、 前記 圧縮機によって圧縮された冷媒を冷却する放熱器と、 前記放熱器で冷却 された冷媒を減圧する膨張装置と、 前記膨張装置によって減圧された冷 媒を蒸発させる蒸発器とによって少なくとも構成される冷凍サイクルに おいて、 前記膨張装置は、 放熱器側と連通する入口側通路部と、 蒸発器 側と連通する出口側通路部と、 前記入口側通路部と前記出口側通路部と の間に設けられ、 前記入口側通路部と前記出口側通路部との間の連通状 態を変化させる第 1及び第 2の弁体と、 内部に炭酸ガスが封入されて前 記放熱器側の冷媒条件を感知し、 この放熱器側の冷媒条件 (冷媒圧力や 冷媒温度) に応じて前記第 1の弁体の動きを制御する第 1の感受素子と 内部に不活性ガスが封入されて前記放熱器側の冷媒圧力を感知し、 この 放熱器側の冷媒圧力に応じて前記第 2の弁体の動きを制御する第 2の感 受素子とを有することを特徴としている。 In order to achieve the above object, a refrigeration cycle according to the present invention includes: a compressor that compresses a refrigerant to set a high-pressure line in a supercritical state according to operating conditions; and a radiator that cools the refrigerant compressed by the compressor. In a refrigeration cycle including at least an expansion device that decompresses the refrigerant cooled by the radiator and an evaporator that evaporates the refrigerant depressurized by the expansion device, the expansion device includes a radiator side. An inlet-side passage communicating with the evaporator; an outlet-side passage communicating with the evaporator; and an inlet-side passage and the outlet-side passage provided between the inlet-side passage and the outlet-side passage. The first and second valve bodies that change the communication state between the first and second valves and carbon dioxide gas are sealed therein to detect the refrigerant condition on the radiator side. And refrigerant temperature) A first sensing element for controlling the movement of the first valve element and an inert gas sealed therein to sense the refrigerant pressure on the radiator side, and according to the refrigerant pressure on the radiator side, The second sense controlling the movement of the second valve body And a receiving element.
したがって、 第 2の感受素子に封入される不活性ガスは、 冷媒温度に あまり依存せずに膨張装置の放熱器側の冷媒圧力が所定の圧力となった 場合に収縮する特性を有しているので、 冷媒温度が低い場合には、 炭酸 ガスを封入した第 1の感受素子が先に収縮して第 1の弁体を開き、 入口 側通路部と出口側通路部との間を連通させるが、 冷媒温度が高い場合に は、 第 1の弁体は開きにく くなるものの、 不活性ガスを封入した第 2の 弁体が先に開き、 入口側通路部と出口側通路部との間を連通させること ができる。 つまり、 高温放置下で冷凍サイクルを始動させた場合でも、 第 2の弁体が開くことで、 放熱器で冷却された比較的低い温度の冷媒を 膨張装置に流すことができ、 徐々に冷媒温度が下がってきた段階で第 1 の弁体が機能し始めて入口側通路部と出口側通路部との間の連通状態の 制御を第 2の弁体から第 1の弁体へ移行させることができるようになる また、 上述の冷凍サイクルの膨張装置は、 放熱器側と連通する入口側 通路部と、 蒸発器側と連通する出口側通路部と、 前記入口側通路部と前 記出口側通路部との間に形成された連通路の連通状態を変化させる弁体 と、 内部に炭酸ガスなどのガスが封入されて前記放熱器側の冷媒条件を 感知し、 この放熱器側の冷媒条件に応じて前記弁体の動きを制御する感 受素子と、 前記入口側通路部と前記出口側通路部との間に、 前記弁体に よって前記連通路の連通状態が最小となる状態において前記入口側通路 部から前記出口側通路部へ冷媒をリークさせるリーク手段とを有して構 成されるものであってもよい。  Therefore, the inert gas sealed in the second sensing element has a characteristic of contracting when the refrigerant pressure on the radiator side of the expansion device reaches a predetermined pressure, regardless of the refrigerant temperature. Therefore, when the refrigerant temperature is low, the first sensing element filled with the carbon dioxide gas first contracts to open the first valve body, and the communication between the inlet-side passage portion and the outlet-side passage portion is established. However, when the refrigerant temperature is high, the first valve body is difficult to open, but the second valve body filled with the inert gas opens first, and the space between the inlet-side passage portion and the outlet-side passage portion is increased. Can be communicated. In other words, even when the refrigeration cycle is started while being left at a high temperature, the relatively low temperature refrigerant cooled by the radiator can flow through the expansion device by opening the second valve body, and the refrigerant temperature gradually decreases. When the pressure drops, the first valve element begins to function, and control of the communication state between the inlet-side passage and the outlet-side passage can be shifted from the second valve to the first valve. In addition, the expansion device of the refrigeration cycle described above includes an inlet-side passage portion communicating with the radiator side, an outlet-side passage portion communicating with the evaporator side, the inlet-side passage portion, and the outlet-side passage portion. And a valve body that changes the communication state of the communication path formed between the valve body and a gas such as carbon dioxide gas is sealed inside to sense the refrigerant condition on the radiator side, and responds to the refrigerant condition on the radiator side. A sensing element for controlling the movement of the valve body, A leaking means for leaking refrigerant from the inlet-side passage to the outlet-side passage in a state where the communication state of the communication passage is minimized by the valve body between the outlet-side passage and the outlet-side passage. It may be configured.
このような構成によれば、 始動時の冷媒温度が高温であり、 連通路が 弁体によって連通状態を最小にする場合、 例えば、 連通路を閉塞するよ うな場合であっても、 冷媒はリーク手段を介して入口側通路部から出口 側通路部へ流れるので、 放熱器で冷却された低い温度の冷媒を膨張装置 に流すことができ、 これによつて膨張装置の感受素子に封入されている 封入ガスを冷却することができ、 徐々に冷媒温度が下がってきて膨張装 置が正常に機能するようになった段階で、 弁体によって入口側通路部と 出口側通路部との間の連通状態が通常通りに制御されるようになる。 また、 リーク手段を設けたことにより、 低負荷の定常運転時に膨張装 置が閉じても (弁体が弁座に着座した状態になっても) リーク手段によ つて低圧側へ冷媒を供給することが可能となり、 低圧圧力の低下を抑え て圧縮機の吐出容量が小さくなる不都合を回避することができ、 もって 膨張装置流入側の圧力を早期に高めることを可能にし、 速やかな膨張装 置の開放を促し、 間欠的にサイクルが大きく変動する不都合を抑えるこ とができる。 According to such a configuration, even when the refrigerant temperature at the time of starting is high and the communication path minimizes the communication state by the valve element, for example, when the communication path is closed, the refrigerant leaks. Flow from the inlet side passage to the outlet side passage through the means, the low temperature refrigerant cooled by the radiator is expanded At the stage when the refrigerant gas can be cooled and the temperature of the refrigerant gradually decreases to allow the expansion device to function normally. Thus, the communication between the inlet-side passage and the outlet-side passage is controlled by the valve body as usual. In addition, the provision of the leak means supplies the refrigerant to the low-pressure side by the leak means even if the expansion device is closed during steady operation at low load (even if the valve element is seated on the valve seat). It is possible to prevent the disadvantage that the discharge capacity of the compressor is reduced by suppressing the reduction of the low pressure, thereby enabling the pressure on the inflow side of the expansion device to be increased at an early stage, and the expansion device to be mounted quickly. Opening is encouraged, and the inconvenience of large intermittent cycle fluctuations can be suppressed.
ここで、 リーク手段は、 前記入口側通路部と前記出口側通路部との間 に形成されるオリフィスであっても、 弁体と連通路との間に隙間 (クリ ァランス) を設けることによって構成されるものであっても、 弁体に形 成された溝や弁体が着座する弁座に形成された溝によって構成されるも のであってもよい。  Here, even if the leak means is an orifice formed between the inlet-side passage portion and the outlet-side passage portion, it is constituted by providing a clearance (clearance) between the valve body and the communication passage. Or a groove formed in the valve body or a groove formed in the valve seat on which the valve body sits.
リーク手段をオリフィスをもって構成する場合には、 オリフィスは、 十分な冷凍効率を確保する必要からサブクール (S C ) が生じ得る範囲 であり、 且つ、 膨張装置の閉塞状態を回避することができると共に目詰 まりを防ぐ配慮から、 直径を 0 . 3 mn!〜 1 . 5 mmの範囲内、 より好 ましくは、 直径を約 0 . 3〜0 . 5 mmに設定することが好ましい。 また、 リーク手段を弁体と連通路との隙間 (クリアランス) をもって 構成する場合や、 弁体や弁座に溝を形成することによって構成する場合 には、 前記隙間 (クリアランス) 又は溝によって冷媒がリークする部分 の総断面積をおよそ 0 . 0 7〜0 . 2 0 mm 2 (直径 0 . 3〜0 . 5 mmの孔の断面積相当) とすることが好しい。 さらに、 オリフィスに代えて、 連通路とは別に前記入口側通路部と前 記出口側通路部との間を連通する他の連通路を設け、 この他の連通路に 前記入口側通路部の圧力が所定圧以上となった場合に開弁するリリーフ 弁を設ける構成であってもよい。 When the leak means is configured with an orifice, the orifice is in a range where subcooling (SC) can occur due to the need to secure sufficient refrigeration efficiency, and can prevent the expansion device from being clogged and clogged. 0.3 mn in diameter to prevent ball It is preferable to set the diameter in the range of ~ 1.5 mm, more preferably in the range of about 0.3-0.5 mm. In the case where the leak means is formed with a gap (clearance) between the valve body and the communication passage, or in the case where the leak means is formed by forming a groove in the valve body or the valve seat, the refrigerant flows through the gap (clearance) or the groove. The total cross-sectional area of the leaking part is preferably about 0.07 to 0.20 mm 2 (corresponding to the cross-sectional area of a hole having a diameter of 0.3 to 0.5 mm). Further, instead of the orifice, another communication passage communicating between the inlet-side passage and the outlet-side passage is provided separately from the communication passage, and the pressure of the inlet-side passage is provided in the other communication passage. May be provided with a relief valve that opens when the pressure exceeds a predetermined pressure.
このような構成によれば、 始動時の冷媒温度が高温であり、 連通路が 弁体によって閉塞状態であっても、 高圧圧力が所定圧以上となった場合 には、 リリーフ弁が開かれて入口側通路部から出口側通路部へ冷媒が流 れるので、 放熱器で冷却された比較的低い温度の冷媒を膨張装置に流す ことができ、 これによつて膨張装置の感受素子に封入されているガスを 冷却することができ、 徐々に冷媒温度が下がってきて膨張装置が正常に 機能するようになつた段階で、 弁体によって入口側通路部と出口側通路 部との間の連通状態が通常通りに制御されるようになる。 図面の簡単な説明  According to such a configuration, even when the refrigerant temperature at the time of startup is high and the communication passage is closed by the valve body, the relief valve is opened when the high pressure exceeds a predetermined pressure. Since the refrigerant flows from the inlet-side passage to the outlet-side passage, the relatively low-temperature refrigerant cooled by the radiator can flow to the expansion device, and is thereby sealed in the sensing element of the expansion device. Gas can be cooled and the temperature of the refrigerant gradually decreases, and the expansion device can function normally.At this stage, the communication between the inlet-side passage and the outlet-side passage is established by the valve element. It will be controlled as usual. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 冷媒として超臨界冷媒を用いた本発明にかかる冷凍サイク ルの構成例を示す図である。 第 2図は、 第 1図に係る冷凍サイクルの膨 張装置を拡大した断面図である。 第 3図は、 炭酸ガス (C 0 2 ) を封入 した第 1の減圧調節弁と、 不活性ガスを封入した第 2の減圧調節弁との 膨張装置入口側における冷媒温度と冷媒圧力との関係を示す特性線図で ある。 第 4図は、 膨張装置としてダイヤフラム型を用い、 リーク手段と してオリフィスを用いた構成例を示す拡大断面図である。 第 5図は、 第 4図で示す膨張装置の変形例を示す拡大断面図である。 第 6図は、 従来 の膨張装置と、 第 4図で示すオリフィス付き膨張装置と、 第 5図で示す リリーフ弁付き膨張装置との膨張装置入口側における冷媒温度と冷媒圧 力との関係を示す特性線図である。 第 7図は、 第 4図のダイヤフラム型 に代えてベロ一ズ型の膨張装置を示す拡大断面図である。 第 8図は、 第 P T / FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention using a supercritical refrigerant as a refrigerant. FIG. 2 is an enlarged sectional view of the expansion device of the refrigeration cycle according to FIG. Figure 3 is a first pressure reducing and regulating valve, the relationship between the refrigerant temperature and the refrigerant pressure at the expansion device inlet side of the second pressure reducing control valve which is filled with an inert gas sealed carbon dioxide (C 0 2) FIG. FIG. 4 is an enlarged cross-sectional view showing a configuration example using a diaphragm type expansion device and an orifice as a leak means. FIG. 5 is an enlarged sectional view showing a modification of the expansion device shown in FIG. FIG. 6 shows the relationship between the refrigerant temperature and the refrigerant pressure at the expansion device inlet side of the conventional expansion device, the expansion device with an orifice shown in FIG. 4, and the expansion device with a relief valve shown in FIG. FIG. 6 is a characteristic diagram. FIG. 7 is an enlarged sectional view showing a bellows-type inflator in place of the diaphragm type in FIG. Figure 8 shows PT /
9  9
7図で示す膨張装置の変形例を示す拡大断面図である。 第 9図は、 オリ フイスの径に対するサブクールの変化を示す特性線図である。 第 1 0図 は、 リーク手段として球状の弁体に溝を形成した構成例を示す弁体付近 の拡大図である。 第 1 1図は、 リーク手段として球状の弁体が着座する 弁座に溝を形成した構成例を示す弁座付近の拡大図である。 第 1 2図は- リーク手段として二一ドル形状の弁体に溝を形成した構成例を示し、 ( a ) は、 弁体が弁座に着座した状態をしめす図であり、 (b ) は、 弁 体の拡大斜視図である。 第 1 3図は、 リーク手段としてニードル形状の 弁体が着座する弁座に溝を形成した構成例を示す弁座付近の拡大図であ る。 第 1 4図は、 リーク手段としてスプール形状の弁体を場合の構成例 を示す図である。 第 1 5図は、 第 1 4図のスプール形状の弁体を説明す るための説明図であり、 (a ) は弁体を側方から見た図であり、 (b ) は (a ) の 1 5 B— 1 5 B線で切断した断面図である。 第 1 6図は、 従 来のハンチングの様子を説明するために蒸発器の出口側の冷媒温度の時 間的変化を示した線図である。 第 1 7図は、 膨張装置の弁体に第 1 2図 で示すニードル形状の弁体を用いてリーク部分の総断面積を約 0 . 1 2 5 6 m m 2に設定した場合のサイクルのハンチングの様子を説明するた めに蒸発器の出口側の冷媒温度の時間的変化を示した線図である。 発明を実施するための最良の形態 FIG. 8 is an enlarged sectional view showing a modification of the expansion device shown in FIG. FIG. 9 is a characteristic diagram showing a change in subcooling with respect to the diameter of the orifice. FIG. 10 is an enlarged view of the vicinity of a valve body showing a configuration example in which a groove is formed in a spherical valve body as a leak means. FIG. 11 is an enlarged view of the vicinity of a valve seat showing a configuration example in which a groove is formed in a valve seat on which a spherical valve element is seated as a leak means. Fig. 12 shows an example of a configuration in which a groove is formed in a 21 dollar-shaped valve body as a leak means, (a) is a view showing a state where the valve body is seated on a valve seat, and (b) is a view showing It is an expansion perspective view of a valve body. FIG. 13 is an enlarged view of the vicinity of a valve seat showing a configuration example in which a groove is formed in a valve seat on which a needle-shaped valve element is seated as a leak means. FIG. 14 is a diagram showing a configuration example in the case of using a spool-shaped valve body as a leak means. FIG. 15 is an explanatory view for explaining the spool-shaped valve element shown in FIG. 14, in which (a) is a view of the valve element viewed from the side, and (b) is (a). FIG. 3 is a cross-sectional view taken along line 15B--15B of FIG. FIG. 16 is a diagram showing the temporal change of the refrigerant temperature at the outlet side of the evaporator in order to explain the state of the conventional hunting. The first 7 figures total cross-sectional area of about 0.1 2 5 6 cycles hunting when set as mm 2 of the first leak portion with a valve body of the needle shape shown in Figure 2 the valve body of the expansion device FIG. 4 is a diagram showing a temporal change of a refrigerant temperature on an outlet side of an evaporator in order to explain the state of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の態様を図面に基づいて説明する。 第 1図にお いて、 冷凍サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒を冷却する放 熱器 3、 高圧ラインと低圧ラインとの冷媒を熱交換する内部熱交換器 4 冷媒を減圧する膨張装置 5、 冷媒を蒸発気化する蒸発器 6、 蒸発器 6か ら流出された冷媒を気液分離するアキュムレータ Ίを有して構成されて いる。 このサイクルでは、 圧縮機 2の吐出側 (D ) を放熱器 3を介して 内部熱交換器 4の高圧通路 4 aに接続し、 この高圧通路 4 aの流出側を 膨張装置 5に接続し、 圧縮機 2の吐出側から膨張装置 5に至る経路を高 圧ライン 8としている。 また、 膨張装置 5の流出側は、 蒸発器 6に接続 され、 この蒸発器 6の流出側は、 アキュムレータ 7を介して内部熱交換 器 4の低圧通路 4 bに接続されている。 そして、 低圧通路 4 bの流出側 を圧縮機 2の吸入側 (S ) に接続し、 膨張装置 5の流出側から圧縮機 2 に至る経路を低圧ライン 9としている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line 4, and a pressure reduction for the refrigerant. It comprises an expansion device 5, an evaporator 6 for evaporating and evaporating the refrigerant, and an accumulator for gas-liquid separation of the refrigerant flowing out of the evaporator 6. In this cycle, the discharge side (D) of the compressor 2 is connected via the radiator 3 Connected to the high-pressure passage 4a of the internal heat exchanger 4, the outlet side of the high-pressure passage 4a is connected to the expansion device 5, and the path from the discharge side of the compressor 2 to the expansion device 5 is a high-pressure line 8. . The outlet side of the expansion device 5 is connected to the evaporator 6, and the outlet side of the evaporator 6 is connected to the low-pressure passage 4 b of the internal heat exchanger 4 via the accumulator 7. The outflow side of the low-pressure passage 4 b is connected to the suction side (S) of the compressor 2, and the path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.
この冷凍サイクル 1においては、 冷媒として臨界点の低い冷媒、 例え ば、 二酸化炭素 (C 0 2 ) が用いられており、 圧縮機 2で圧縮された冷 媒は、 高温高圧の冷媒として放熱器 3に入り、 ここで放熱して冷却する その後、 内部熱交換器 4において蒸発器 6から流出する低温冷媒と熱交 換して更に冷やされ、 液化されることなく膨張装置 5へ送られる。 そし て、 この膨張装置 5において減圧されて低温低圧の湿り蒸気となり、 蒸 発器 6においてここを通過する空気と熱交換してガス状となり、 しかる 後に内部熱交換器 4において高圧ライン 8の高温冷媒と熱交換して加熱 され、 圧縮機 2へ戻される。 In this refrigeration cycle 1, a low critical point refrigerant as a refrigerant, For example, carbon dioxide (C 0 2) is used and refrigerant compressed by the compressor 2, radiator 3 as a high-temperature high-pressure refrigerant Then, heat is radiated and cooled here. Then, the internal heat exchanger 4 exchanges heat with the low-temperature refrigerant flowing out of the evaporator 6 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to form a gaseous state. It is heated by exchanging heat with the refrigerant and returned to the compressor 2.
前記膨張装置 5は、 第 2図にも示されるように、 ハウジング 1 0に内 部熱交換器 4の高圧通路 4 aに通じる (放熱器側に通じる) 入口側通路 部 1 1と蒸発器 6に通じる出口側通路部 1 2と、 これら通路部が開口す る高圧空間 1 3とが設けられ、 高圧空間 1 3に第 1及び第 2の減圧調節 弁 1 4、 1 5が収納されている。  As shown in FIG. 2, the expansion device 5 communicates with the housing 10 through the high-pressure passage 4 a of the internal heat exchanger 4 (which communicates with the radiator side). And a high-pressure space 13 where these passages are opened. The first and second pressure-reducing control valves 14 and 15 are housed in the high-pressure space 13. .
高圧空間 1 3は、 境壁 1 6によって 2つの調節弁収納空間 1 7、 1 8 に画成され、 これら 2つの調節弁収納空間 1 7、 1 8は境壁 1 6に形成 された通孔 1 9によって連通され、 一方の調節弁収納空間 1 7には入口 側通路部 1 1が開口すると共に出口側通路部 1 2に通じる第 1の連通路 2 0が開口し、 他方の調節弁収納空間 1 8には出口側通路部 1 2に通じ る第 2の連通路 2 1が開口している。 The high-pressure space 13 is defined by the boundary wall 16 into two control valve storage spaces 17 and 18, and these two control valve storage spaces 17 and 18 are through holes formed in the boundary wall 16. The control valve storage space 17 has an opening on the inlet side passage 11 and a first communication passage 20 communicating with the outlet side passage 12 on the other side. The space 18 communicates with the exit passageway 1 2 The second communication passage 21 is open.
一方の調節弁収納空間 1 7には第 1の減圧調節弁 1 4が収納され、 こ の第 1の減圧調節弁 1 4は、 第 1の連通路 2 0の高圧空間 1 3に開口す る開口部分に形成された弁座 2 2に着座する弁体 2 3と、 この弁体 2 3 にロッド 2 4を介して接合された第 1のべローズ 2 5とから成り、 この 第 1のべローズ 2 5内には所定量の炭酸ガス (C 0 2 ) が封入されてい る。 また、 他方の調節弁収納空間 1 8には第 2の減圧調節弁 1 5が収納 され、 この第 2の減圧調節弁 1 5は、 第 1の減圧調節弁 1 4と同様、 第A first pressure reducing control valve 14 is stored in one control valve storage space 17, and the first pressure reducing control valve 14 opens to the high pressure space 13 of the first communication passage 20. The valve body 23 includes a valve body 23 seated on a valve seat 22 formed in an opening portion, and a first bellows 25 joined to the valve body 23 via a rod 24. Rose 2 5 predetermined amount of carbon dioxide in the (C 0 2) is that is sealed. A second pressure reducing control valve 15 is stored in the other control valve storage space 18. The second pressure reducing control valve 15 is similar to the first pressure reducing control valve 14.
2の連通路 2 1の高圧空間 1 3に開口する開口部分に形成された弁座 2 6に着座する弁体 2 7と、 この弁体 2 7にロッ ド 2 8を介して接合され た第 2のべローズ 2 9とから成り、 この第 2のべローズ 2 9内には所定 量の不活性ガスが封入されている。 A valve body 27 seated on a valve seat 26 formed at an opening portion of the communication passage 21 of the second 2 opening to the high-pressure space 13, and a valve body 27 joined to the valve body 27 via a rod 28. The second bellows 29 is filled with a predetermined amount of inert gas.
この第 1及び第 2の減圧調節弁 1 4、 1 5の閧弁圧や弁体 2 3、 2 7 の動きは、 ベローズ内部に封入する気体量を変更することによって調整 され、 各減圧調節弁 1 4、 1 5は、 高圧空間 1 3の圧力やべローズ周囲 の冷媒温度に応動するようになつており、 それそれの膨張装置入口冷媒 温度と冷媒圧力との特性は、 第 3図に示されるような特性を有している 即ち、 炭酸ガス (C 0 2 ) が封入された第 1の減圧調節弁 1 4は、 ほ ぼ線形的に膨張装置入口冷媒温度の上昇に伴って膨張装置入口冷媒圧力 が上昇していく特性を有しているのに対し、 不活性ガスが封入された第The valve pressures of the first and second pressure reducing valves 14 and 15 and the movement of the valve bodies 23 and 27 are adjusted by changing the amount of gas filled in the bellows. 14 and 15 respond to the pressure of the high-pressure space 13 and the refrigerant temperature around the bellows, and the characteristics of the refrigerant temperature and the refrigerant pressure at the expansion device inlet are shown in Fig. 3. That is, the first pressure-reducing control valve 14 filled with carbon dioxide gas (C 0 2 ) almost linearly expands at the expansion device inlet as the refrigerant temperature rises. While the refrigerant pressure has the characteristic of rising, the inert gas
2の減圧調節弁 1 5は、 膨張装置入口冷媒温度に拘わらず、 膨張装置入 ロ冷媒圧力がほぼ一定となる特性を有している。 The pressure-reducing control valve 15 of 2 has such a characteristic that the refrigerant pressure at the expansion device inlet is substantially constant irrespective of the expansion device inlet refrigerant temperature.
上記構成において、 高温外気の下で放置されていた冷凍サイクルが始 動すると、 膨張装置入口の冷媒温度やべローズ内の封入ガスの温度は高 い状態にあり、 第 1の減圧調節弁 1 4だけでは、 第 1の弁体 2 3を開弁 するのに異常に高い圧力を得なければならず、 力ットォフスィツチが作 動してしまう不都合がある。 しかしながら、 上述の構成のように、 圧力 にのみ依存する不活性ガスを封入した第 2の減圧調節弁 1 5が並設され ているので、 サイクル始動時の温度が高い場合でも、 所定の設定圧以上 になれば第 2の弁体 2 7は開成されるので、 放熱器 3で放熱された冷媒 が膨張装置 5の一方の弁体収納空間 1 7から通孔 1 9を通って他方の弁 体収納空間 1 8へ流れ、 しかる後に第 2の連通路 2 1を介して出口側通 路部 1 2に流れることから、 始動時のスムーズなサイクル運転を保障す ることができる。 In the above configuration, when the refrigeration cycle that has been left under high-temperature outside air starts, the temperature of the refrigerant at the inlet of the expansion device and the temperature of the charged gas in the bellows are high, and the first pressure reducing valve 14 Alone would require an unusually high pressure to open the first valve element 23, creating a force switch. There is an inconvenience of moving. However, as described above, since the second pressure reducing valve 15 filled with an inert gas that depends only on the pressure is provided in parallel, even if the temperature at the start of the cycle is high, the predetermined set pressure can be obtained. When this occurs, the second valve element 27 is opened, so that the refrigerant radiated by the radiator 3 passes through the through hole 19 from one valve element storage space 17 of the expansion device 5 and the other valve element. Since the gas flows into the storage space 18 and then flows through the second communication passage 21 to the outlet-side passage portion 12, a smooth cycle operation at the time of starting can be ensured.
その後、 膨張装置 5を通過する冷媒温度が低下してくると、 第 1の減 圧調整弁 1 4が働き出し、 圧力が低下することによりいままで圧力調整 を行っていた第 2の減圧調節弁 1 5は閉じ、 通常の減圧制御へ移行する 即ち、 第 3図で示す特性線の Aよりも冷媒温度が高いところでは、 実線 で示される第 2の減圧調節弁 1 5が機能し、 Aよりも冷媒温度が低いと ころでは、 破線で示される第 1の減圧調節弁 1 4が機能することになる また、 このような構成によれば、 サイクルの始動時のみならず、 車両 が急加速した場合等のように、 圧縮機の回転数が上がって高圧側圧力が 急激に上昇した場合でも、 第 2の減圧調節弁 1 5が働いて第 2の連通路 2 1が開成されるので、 冷媒を低圧側へ流すことにより高圧カツトスィ ツチの作動を避けることができ、 高圧カッ トスィツチが頻繁に作動する ことによる圧縮機の O NZ O F Fを避けることができ、 空調フィーリン グの悪化を防止することができる。  Thereafter, when the temperature of the refrigerant passing through the expansion device 5 decreases, the first pressure-reducing control valve 14 is activated, and the pressure is reduced. 15 closes and shifts to normal pressure reduction control.In other words, where the refrigerant temperature is higher than A in the characteristic line shown in FIG. 3, the second pressure reduction control valve 15 shown by the solid line functions, and Also, when the refrigerant temperature is low, the first pressure-reducing control valve 14 shown by the broken line functions.In addition, according to such a configuration, not only at the time of starting the cycle, but also the vehicle accelerates rapidly. Even in the case where the high-pressure side pressure suddenly rises due to an increase in the rotation speed of the compressor, as in the case, etc., the second communication passage 21 is opened by the operation of the second pressure reducing control valve 15, and the refrigerant To the low pressure side, the operation of the high pressure cutter switch can be avoided, ONZOFF of the compressor due to frequent operation of the high-pressure cut switch can be avoided, and deterioration of air conditioning feeling can be prevented.
さらに、 第 1の減圧調節弁 1 4を第 2の減圧調節弁 1 5よりも上流側 に配置したことから、 冷媒温度の高いサイクル始動時には必ず第 1の減 圧調節弁 1 4の周囲を冷媒が流通することになるため、 第 1の減圧調節 弁 1 4の冷却が促進され、 第 1の減圧調節弁 1 4を正常動作させるまで の時間を短くすることができ、 第 2の減圧調節弁 1 5から第 1の減圧調 節弁 1 4への移行を速やかにすると共に、 2つの減圧調節弁 1 4、 1 5 の作動をスムーズに繋げることができる。 しかも、 2つの減圧調節弁 1 4、 1 5を膨張装置 5に一体に設けたことから、 別体にすることによる スペースの確保が不要となり、 また、 コス ト面でも有利となり、 許容耐 圧を大きくしなくて済むことから、 各コンポーネントの耐圧設計値を低 くすることができ、 その結果、 各コンポーネントを小型、 軽量にするこ とができる。 Furthermore, since the first pressure reducing control valve 14 is arranged upstream of the second pressure reducing valve 15, the refrigerant around the first pressure reducing valve 14 always starts when a cycle in which the refrigerant temperature is high is started. Flow, the cooling of the first pressure reducing valve 14 is promoted, and the time until the first pressure reducing valve 14 operates normally can be shortened. 15 to 1st decompression The transition to the node valve 14 can be promptly performed, and the operations of the two pressure reducing control valves 14 and 15 can be smoothly connected. Moreover, since the two pressure-reducing control valves 14 and 15 are provided integrally with the expansion device 5, it is not necessary to secure a space by separating them, and the cost is also advantageous, and the allowable pressure resistance is reduced. Since it is not necessary to increase the size, the withstand voltage design value of each component can be reduced, and as a result, each component can be reduced in size and weight.
第 4図にこの発明の他の構成例が示され、 この例では、 膨張装置 5の 高圧空間 1 3にダイヤフラム式減圧調節弁 3 0が収納されている。 高圧 空間 1 3と出口側通路部 1 2との間には連通路 3 1が形成され、 減圧調 節弁 3 0は、 弁ホルダ 3 2に収納されると共に連通路 3 1の高圧空間 1 3に開口する開口部分に形成された弁座 3 3に着座する弁体 3 4と、 こ の弁体 3 4にロヅ ド 3 5を介して接合されるダイヤフラム 3 6とを有し 弁ホルダ 3 2には、 弁体 3 4の収納部分を高圧空間 1 3と連通する通路 部 3 7と、 ロッド 3 5を挿通し、 通路部 3 7と連通してダイヤフラム 3 6のロッ ド側の面に高圧空間内の冷媒を導く通路部 3 8とが形成され、 弁ホルダ 3 2に形成されたパネ受け 3 9と前記弁体 3 4との間にスプリ ング 4 0を弾装し、 弁体 3 4を常時連通路 3 1を閉塞する方向に付勢し ている。 また、 ダイヤフラム 3 6は弁ホルダ 3 2と弁カバー 4 1とに挟 持されて固定され、 弁カバー 4 1とダイヤフラム 3 6とによって密閉空 間 4 2を形成し、 この密閉空間 4 2に所定量の炭酸ガス (C 0 2 ) が封 入されている。 そして、 この減圧調節弁 3 0の近傍には、 入口側通路部 1 1から出口側通路部 1 2へ冷媒をリークさせるリーク手段が設けられ このリーク手段は、 この例では、 高圧空間 1 3と出口側通路部 1 2とを 連通するオリフィス 4 3として形成されている。 このオリフィス 4 3は 入口側通路部 1 1に対して減圧調節弁 3 0よりも下流側に形成されてい る。 尚、 他の構成は前記構成例と同様であるので、 同一箇所に同一番号 を付して説明を省略する。 FIG. 4 shows another configuration example of the present invention. In this example, a diaphragm type pressure reducing control valve 30 is housed in a high pressure space 13 of an expansion device 5. A communication passage 31 is formed between the high-pressure space 13 and the outlet-side passage portion 12, and the pressure reducing control valve 30 is housed in the valve holder 32 and the high-pressure space 13 of the communication passage 31 is formed. A valve body 34 seated on a valve seat 33 formed in an opening portion opened to the outside, and a diaphragm 36 joined to the valve body 34 via a load 35 valve holder 3 2 has a passage portion 37 communicating the storage portion of the valve element 34 with the high-pressure space 13 and a rod 35, and communicates with the passage portion 3 7 on the rod-side surface of the diaphragm 36. A passage portion 38 for guiding the refrigerant in the high-pressure space is formed, and a spring 40 is elastically mounted between a panel receiver 39 formed in the valve holder 32 and the valve body 34, and a valve body 3 is provided. 4 is constantly urged in a direction to close the communication passage 31. In addition, the diaphragm 36 is sandwiched and fixed between the valve holder 32 and the valve cover 41, and a sealed space 42 is formed by the valve cover 41 and the diaphragm 36. Determination of carbon dioxide (C 0 2) is sealed entrance. In the vicinity of the pressure-reducing control valve 30, a leak means for leaking the refrigerant from the inlet-side passage portion 11 to the outlet-side passage portion 12 is provided. The orifice 43 is formed to communicate with the outlet side passage portion 12. The orifice 43 is formed downstream of the pressure-reducing control valve 30 with respect to the inlet-side passage portion 11. You. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted.
このような構成においては、 高圧圧力が大きくなるほどオリフィス 4 3から低圧側へ流れる冷媒が増えることから、 炭酸ガス (C 0 2 ) を封 入した減圧調節弁 3 0のみによってサイクルを制御していた従来のもの (第 6図の破線で示す) に比べ、 さらにオリフィスを設けた本構成では 膨張装置入口冷媒温度と冷媒圧力との関係を第 6図の一点鎖線に示され るように傾きを小さくすることができ、 その結果、 高温外気の下で放置 されていた冷凍サイクルが始動した場合でも、 高圧圧力を抑えることが 可能となり、 高圧カットスィッチが頻繁に作動することによる圧縮機の O NZ O F Fを避けることができ、 空調フィ一リングの悪化を防止する ことができる。 In such a configuration, since the refrigerant flowing from the more orifice 4 3 high pressure increases to the low pressure side is increased, controlled the cycles by the carbon dioxide (C 0 2) only sealing vacuum regulating valve 3 0 off to Compared to the conventional one (indicated by the broken line in Fig. 6), in this configuration with an orifice further, the slope between the refrigerant temperature and the refrigerant pressure at the inlet of the expansion device has a smaller slope as shown by the dashed line in Fig. 6. As a result, even if a refrigeration cycle that has been left under high-temperature outside air starts, it is possible to suppress the high-pressure pressure, and the high-pressure cut switch is frequently activated, thereby turning off the compressor. Can be avoided, and deterioration of the air conditioning filling can be prevented.
また、 オリフィス 4 3が減圧調節弁 3 0よりも下流側に設けられ、 冷 媒温度が高い場合にオリフィス 4 3を介して高圧空間 1 3から出口側通 路部 1 2に冷媒が流れることから、 減圧調節弁 3 0の周囲に放熱器 3で 放熱された冷媒が流通することとなり、 減圧調節弁 3 0の冷却を促進す ることができる。 その後、 膨張装置 5を通過する冷媒温度が低下してく ると、 いままで閉じていた減圧調節弁 3 0が開成し、 通常の減圧制御へ 移行することができ、 始動時のスムーズなサイクル運転を保障すること ができる。  Also, the orifice 43 is provided downstream of the pressure-reducing control valve 30, and when the refrigerant temperature is high, the refrigerant flows from the high-pressure space 13 through the orifice 43 to the outlet side passageway 12. However, the refrigerant radiated by the radiator 3 flows around the pressure-reducing control valve 30, and cooling of the pressure-reducing control valve 30 can be promoted. Thereafter, when the temperature of the refrigerant passing through the expansion device 5 decreases, the pressure-reducing control valve 30 that has been closed is opened, and the normal pressure-reducing control can be performed. We can guarantee it.
さらに、 許容耐圧を大きくしなくて済むことから、 各コンポーネント の耐圧設計値を低くすることができ、 その結果、 各コンポーネントを小 型、 軽量にすることができ、 車両が急加速した場合等のように、 圧縮機 の回転数が上がって高圧側圧力が急激に上昇した場合でも、 前記構成例 と同様に対応することができる。  Furthermore, since the allowable withstand voltage does not need to be increased, the withstand voltage design value of each component can be reduced, and as a result, each component can be reduced in size and weight, such as when the vehicle suddenly accelerates. Thus, even when the number of revolutions of the compressor increases and the high-pressure side pressure sharply increases, it is possible to cope with the same as in the above configuration example.
特に、 本構成のオリフィス 4 3によれば、 弁体 3 4が弁座 3 3に着座 するような場合でも高圧側から低圧側へ冷媒をリークさせることができ るので、 圧縮機として低圧ラインの圧力によって容量が制御される容量 可変型のものを用い、 且つ、 このサイクルを高圧圧力が臨界圧以下とな る亜臨界領域で動作するような低負荷域での運転において、 膨張装置の 弁体が弁座に着座して連通路 3 1を閉塞してしまうような場合でも、 ォ リフィス 4 3を介して冷媒を低圧側へ供給することができるので、 低圧 圧力の著しい低下や圧縮機の吐出量の著しい減少を抑えることができ、 冷凍サイクルが間欠的に大きな変動を起こす現象を回避することができ o In particular, according to the orifice 43 of this configuration, the valve element 34 is seated on the valve seat 33. Even in such a case, the refrigerant can leak from the high pressure side to the low pressure side, so that a variable capacity compressor whose capacity is controlled by the pressure of the low pressure line is used as the compressor and In operation in a low-load region where the valve operates in a subcritical region below the critical pressure, even when the valve element of the expansion device sits on the valve seat and closes the communication passage 31, the Since the refrigerant can be supplied to the low-pressure side via 43, it is possible to suppress a remarkable decrease in the low-pressure pressure and a remarkable decrease in the discharge amount of the compressor, and avoid the phenomenon that the refrigerating cycle intermittently fluctuates greatly. Can o
第 5図にこの発明のさらに他の構成例が示され、 この構成例が第 4図 で示す構成と異なる点は、 オリフィスの代わりに、 所定の圧力以上とな つた場合に開弁するリリーフ弁 4 5を設けたことにある。 ここで、 リリ ーフ弁 4 5は、 連通路 3 1とは別に通孔 4 6を設け、 この通孔 4 6に出 口側通路部側から弁体 4 7を着座させ、 スプリング 4 8によりこの弁体 4 7を常時通孔 4 6を閉塞する方向へ付勢するようにしたものであり、 所定の圧力とは、 高圧圧力と、 低圧圧力及びスプリング圧との差圧がバ ランスした圧力をいい、 この圧力よりも高圧圧力が大きい場合に弁体が 移動して通孔 4 6を開くようになつている。 また、 リリーフ弁 4 5は、 入口側通路部 1 1に対して減圧調節弁 3 0よりも下流側に配置されてい る。 尚、 他の構成は前記構成例と同様であるので、 同一箇所に同一番号 を付して説明を省略する。  FIG. 5 shows still another configuration example of the present invention. This configuration example is different from the configuration shown in FIG. 4 in that a relief valve that opens when a predetermined pressure or more is used instead of an orifice 4 5 has been established. Here, the relief valve 45 is provided with a through hole 46 separately from the communication passage 31, and a valve element 47 is seated in the through hole 46 from the outlet side passage portion side, and a spring 48 is used. The valve element 47 is constantly urged in a direction to close the through hole 46. The predetermined pressure is a pressure at which a differential pressure between the high pressure, the low pressure, and the spring pressure is balanced. When the high pressure is higher than this pressure, the valve element moves to open the through hole 46. In addition, the relief valve 45 is disposed downstream of the pressure reducing control valve 30 with respect to the inlet-side passage portion 11. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted.
このような構成においては、 高圧圧力が所定の圧力より大きくなれば リリーフ弁 4 5が開となることから、 炭酸ガス (C 0 2 ) を封入した減 圧調節弁 3 0のみによってサイクルを制御していた従来のもの (第 6図 の破線で示す) に比べ、 膨張装置入口冷媒温度と冷媒圧力との関係を第 6図の実線で示すようにすることができ、 その結果、 高温外気の下で放 置されていた冷凍サイクルが始動した場合でも、 高圧圧力を抑えること が可能となり、 高圧カッ トスィツチが頻繁に作動することによる圧縮機 の O NZ O F Fを避けることができ、 空調フィーリングの悪化を防止す ることができる。 In such a configuration, since the high pressure is a relief valve 4 5 opens if greater than a predetermined pressure, control the cycle by only reducing pressure adjusting valve 3 0 encapsulating the carbon dioxide (C 0 2) Compared with the conventional one (shown by the broken line in FIG. 6), the relationship between the refrigerant temperature at the inlet of the expansion device and the refrigerant pressure can be shown by the solid line in FIG. Release in Even if the installed refrigeration cycle starts, it is possible to suppress the high pressure and prevent the ONZ OFF of the compressor due to frequent operation of the high pressure cut switch, preventing deterioration of air conditioning feeling can do.
また、 リリーフ弁 4 5は減圧調節弁 3 0よりも下流側に設けられ、 冷 媒温度が高い場合にはリリーフ弁 4 5を介して高圧空間 1 3から冷媒が 出口側通路部 1 2に流れることから、 減圧調節弁 3 0の周囲に放熱器 3 で放熱された冷媒が流通することとなり、 減圧調節弁 3 0の冷却を促進 することができる。 その後、 膨張装置 5を通過する冷媒温度が低下して くると、 いままで閉じていた減圧調節弁 3 0が開成し、 通常の減圧制御 へ移行することができ、 始動時のスムーズなサイクル運転を保障するこ とができる。  In addition, the relief valve 45 is provided downstream of the pressure-reducing control valve 30, and when the refrigerant temperature is high, the refrigerant flows from the high-pressure space 13 to the outlet-side passage portion 12 via the relief valve 45. Therefore, the refrigerant radiated by the radiator 3 flows around the pressure reducing control valve 30, and the cooling of the pressure reducing valve 30 can be promoted. Thereafter, when the temperature of the refrigerant passing through the expansion device 5 decreases, the pressure-reducing control valve 30 that has been closed is opened, and it is possible to shift to normal pressure-reducing control. It can be guaranteed.
さらに、 この構成においても、 許容耐圧を大きくしなくて済むことか ら、 各コンポーネントの耐圧設計値を低くすることができ、 その結果、 各コンポーネントを小型、 軽量にすることができ、 車両が急加速した場 合等のように、 圧縮機の回転数が上がって高圧側圧力が急激に上昇した 場合でも、 前記構成例と同様に対応することができる。 また、 所定圧に なるまでは開弁しない点でォリフイスの場合とは異なるが、 開弁圧の調 節ゃ通孔 4 6の径の大きさによりオリフィスと同じ機能を持たせること は十分可能であり、 間欠的なサイクルの変動を抑制できる構成となり得 るものである。  Furthermore, also in this configuration, since the allowable withstand voltage does not need to be increased, the withstand voltage design value of each component can be reduced, and as a result, each component can be reduced in size and weight, and the vehicle can be rapidly mounted. In the case where the high-pressure side pressure suddenly rises due to an increase in the number of revolutions of the compressor, such as in the case of acceleration, it is possible to cope with the above-described configuration example. Although it differs from the case of the orifice in that the valve is not opened until the pressure reaches a predetermined value, it is sufficiently possible to provide the same function as the orifice by adjusting the valve opening pressure and the diameter of the through hole 46. Yes, it can be a configuration that can suppress intermittent cycle fluctuations.
尚、 第 4図や第 5図で示した膨張装置 5の構成はダイャフラムを用い た減圧調節弁の例を示したが、 第 7図や第 8図に示されるように、 高圧 側冷媒の温度と圧力 (冷媒条件) によって開度が調節されるべローズ 5 1を用いた減圧調節弁 5 0によって代用してもよい。 このような膨張装 置によれば、 ベローズ内に封入されるガスが高圧側の冷媒温度を感知す ることによってべローズ内の容積を増大又は減少すると共に、 高圧側の 冷媒圧力によってもベローズ 5 1が伸縮し、 もって、 高圧側の冷媒温度 と冷媒圧力との関係によってべローズ 5 1にロヅ ド 3 5を介して接続さ れた弁体 3 4の位置、 即ち、 弁開度が調節されるようになっており、 ベ ローズ内に封入されるガス量やガスの種類を調節することによって冷媒 温度と冷媒圧力との関係が所定の最適特性となるように設定され、 ダイ ャフラムを用いた膨張装置と同様の作用効果を得ることができるように なっている。 The configuration of the expansion device 5 shown in FIGS. 4 and 5 shows an example of a pressure reducing control valve using a diaphragm, but as shown in FIGS. 7 and 8, the temperature of the high-pressure side refrigerant is reduced. Alternatively, a pressure-reducing control valve 50 using a bellows 51 whose opening is controlled by pressure and pressure (refrigerant condition) may be used instead. According to such an expansion device, the gas sealed in the bellows senses the refrigerant temperature on the high pressure side. As a result, the volume inside the bellows is increased or decreased, and the bellows 51 expands and contracts also due to the high-pressure side refrigerant pressure, so that the bellows 51 is lowered according to the relationship between the high-pressure side refrigerant temperature and the refrigerant pressure. The position of the valve element 34 connected via the valve 35, that is, the valve opening, is adjusted. By adjusting the amount and type of gas sealed in the bellows, The relationship between the refrigerant temperature and the refrigerant pressure is set so as to have predetermined optimum characteristics, so that the same operation and effect as those of the expansion device using the diaphragm can be obtained.
ところで、 上述したオリフィス 4 3の直径は、 0 . 3 mm〜 l . 5 m mの範囲で設定されることが好ましい。 これは、 C 0 2 サイクルで容量 可変型圧縮機を用い、 且つ、 このサイクルを高圧圧力が亜臨界域となる 低負荷状態で運転するような場合を想定すると、 前述した如く膨張装置 の弁体が弁座に着座して閉塞し続けてしまう現象が生じるが、 弁体が弁 座に着座しても低圧側へ冷媒を供給することができればこのような現象 を回避することができることから、 このような低圧側への冷媒の供給を 実現するために必要な大きさを少なく とも確保しなければならない。 即 ち、 限りなくオリフィス 4 3の径を小さくすると、 このような効果が期 待できなくなることから、 おのずとオリフィス径の下限が設定されるこ ととなる。 また、 本発明者らの研究によれば、 上述した現象を回避でき る効果を得つつ、 冷媒中に混合されるオイル等によってオリフィス 4 3 が目詰まりを起こさないようにする必要があるため、 これらを考慮して 研究を重ねた結果、 オリフィス 4 3の直径は 0 . 3 m m以上にしなけれ ばならないとの結論を得るに至っている。 The diameter of the orifice 43 is preferably set in a range of 0.3 mm to 1.5 mm. It uses a C 0 variable displacement compressor in two cycles, and, when the high pressure of this cycle is assumed as operating at a low load condition to be subcritical region, valve body as the expansion device described above However, even if the valve body is seated on the valve seat and the refrigerant can be supplied to the low pressure side, such a phenomenon can be avoided. It is necessary to secure at least the size required to supply the refrigerant to the low-pressure side. That is, if the diameter of the orifice 43 is reduced as much as possible, such an effect cannot be expected, so that the lower limit of the orifice diameter is naturally set. Further, according to the study of the present inventors, it is necessary to prevent the orifice 43 from being clogged by oil or the like mixed in the refrigerant while obtaining the effect of avoiding the above-described phenomenon. As a result of repeated studies taking these factors into account, the conclusion was reached that the diameter of the orifice 43 must be at least 0.3 mm.
また、 オリフィス 4 3の径としては、 冷凍サイクルとしての効率 (吸 収熱量又は成績係数) を考慮してサブクールが生じ得る高圧圧力が得ら れる程度の径とすることが望ましいことから、 オリフィス 4 3の直径を 徐々に小さくしてサブクールが出始める直径を実験によって計測した結 果により、 第 9図に示される如く、 サブクールが出はじめる (サブクー ルの特性線が立ち上がり始める) オリフィス 4 3の直径が 1 . 5 mmで あったことから、 これを上限としてこれよりも径を小さくすることが好 ましいとの結論を得るに至っている。 以上のことから、 結局、 オリフィ ス 4 3の直径は、 0 . 3 mm〜 l . 5 mmの範囲で設定することが好ま しいとの知見を得るに至った。 In addition, it is desirable that the diameter of the orifice 43 should be large enough to obtain a high pressure at which subcooling can occur in consideration of the efficiency of the refrigeration cycle (heat absorption or coefficient of performance). 3 diameter As a result of experimentally measuring the diameter at which the subcool begins to emerge with a gradual reduction, the subcool begins to emerge (the characteristic line of the subcool begins to rise) as shown in Fig. 9. The diameter of the orifice 43 is 1.5 mm, it was concluded that it would be preferable to use this as the upper limit and make the diameter smaller than this. From the above, it was eventually found that it is preferable to set the diameter of the orifice 43 in the range of 0.3 mm to 1.5 mm.
第 1 0図及び第 1 1図に、 前記膨張装置のリーク手段としてオリフィ ス 4 3の代りに弁体 3 4が連通路 3 1の連通状態を最小とする状態にお いても (この例では弁体 3 4が弁座 3 3に着座した状態においても) 少 量の冷媒が高圧側から低圧側へ流れる経路を形成した例が示されている このうち、 第 1 0図に示される構成は、 球形をなす弁体 3 4の周囲に弁 座 3 3と当接する部分をよぎるように高圧空間 1 3から連通路 3 1にか けて溝 5 5を形成するようにしたものであり、 特に、 この例では、 弁体 の中央部分の径を小さくするようにして溝が形成されている。 また、 第 1 1図に示される構成は、 弁座 3 3に高圧空間 1 3から連通路 3 1にか けて溝 5 6を形成したものである。 これらの溝 5 5 , 5 6は、 弁体 3 4 が弁座 3 3に着座した状態で、 直径 0 . 3 mm〜 l . 5 mmの径を有す るオリフィスの通路断面と同程度の通路断面 (溝断面) が得られるよう に形成することが好ましい。  10 and 11 show that the valve means 34 as the leak means of the expansion device can minimize the communication state of the communication passage 31 instead of the orifice 43 (in this example, (Even in the state where the valve element 34 is seated on the valve seat 33) An example is shown in which a path through which a small amount of refrigerant flows from the high pressure side to the low pressure side is formed. Of these, the configuration shown in FIG. A groove 55 is formed from the high-pressure space 13 to the communication passage 31 so as to cross the part of the spherical valve element 34 that comes into contact with the valve seat 33. In this example, the groove is formed so as to reduce the diameter of the central portion of the valve body. In the configuration shown in FIG. 11, a groove 56 is formed in the valve seat 33 from the high-pressure space 13 to the communication passage 31. These grooves 55 and 56 have a passage approximately the same as the passage cross section of the orifice having a diameter of 0.3 mm to 1.5 mm when the valve element 34 is seated on the valve seat 33. It is preferable to form so that a cross section (groove cross section) can be obtained.
このような構成においてもオリフイスを設けた場合と同様の作用効果 が得られる他、 特にォリフイスを形成する余裕が弁座の近傍に得られな い場合などにおいて有益な構成である。  In this configuration, the same operation and effect as the case where the orifice is provided can be obtained. In addition, the configuration is useful particularly when there is not enough room for forming the orifice near the valve seat.
ところで、 弁体の形状としては、 上述のように球形としてもよいが、 第 1 2図 (a ) 及び (b ) に示されるように、 ニードル形状とすること がより好ましいとの知見を得ている。 これは、 弁体を球形とする場合に は、 弁体のリフト量の変化に対する連通路の開口面積の変化が大きく、 僅かな弁体のリフトでも一気に冷媒が流れやすくなり、 弁体のリフト量 の調節を慎重にしなければ、 大きな圧力変動を誘発しやすいことによる ものである。 By the way, the shape of the valve body may be spherical as described above, but as shown in FIGS. 12 (a) and (b), it has been found that it is more preferable to form the valve body into a needle shape. I have. This is when the valve body is spherical The change in the opening area of the communication passage with respect to the change in the valve lift is large, so that even a small lift of the valve makes it easy for the refrigerant to flow at a stretch, and if the valve lift is not carefully adjusted, large pressure fluctuations will occur. This is because it is easy to induce
このため、 弁形状を球形からニードル形状に変更することによって、 特にリフト初期において連通路 3 1の有効開口面積の変化を小さくし、 膨張弁が開いても高圧側の冷媒が低圧側へ一気に流れ込まないようにす ることが可能となる。  For this reason, by changing the valve shape from a spherical shape to a needle shape, the change in the effective opening area of the communication passage 31 is reduced, especially in the initial stage of the lift, and even when the expansion valve is opened, the refrigerant on the high pressure side flows into the low pressure side at a stretch. Can be eliminated.
この例に用いられるニードル形状を有する弁体 6 0としては、 第 1 2 図に示されるように、 円錐台形状をなしているもので、 円錐面に弁座 3 3と当接する部分をよぎるように高圧空間 1 3から連通路 3 1にかけて 溝 6 1を形成するようにしたものであり、 特に、 この例では、 弁体 6 0 の周囲の 3箇所に溝 6 1を設けることによって、 リーク手段を構成する ようにしている。  The needle-shaped valve element 60 used in this example has a frusto-conical shape as shown in FIG. 12 and crosses a portion in contact with the valve seat 33 on the conical surface. A groove 61 is formed from the high-pressure space 13 to the communication passage 31 at the bottom. Particularly, in this example, by providing the groove 61 at three places around the valve body 60, the leak means is formed. Are configured.
この弁体 6 0が弁座 3 3に着座した状態で弁座 3 3との間に形成され る通路断面積の合計、 即ち、 溝断面の合計は、 直径 0 . 3 mm〜 l . 5 mmの範囲内の径を有するオリフィスの通路断面と同程度の通路断面と すればよいが、 より好ましくは、 約 0 . 3〜0 . 5 mmの直径を有する 孔の面積 (0 . 0 7〜0 . 2 0 mm 2 ) と同程度に設定することが最 も効果的があるとの知見を得ている。 The total cross-sectional area of the passage formed between the valve body 60 and the valve seat 33 in a state where the valve body 60 is seated on the valve seat 33, that is, the total of the groove cross sections is 0.3 mm to 1.5 mm in diameter. The passage cross section may be substantially the same as the passage cross section of the orifice having a diameter within the range of, more preferably, the area of the hole having a diameter of about 0.3 to 0.5 mm (0.07 to 0. 20 mm 2 ) has been found to be most effective when set to the same level.
また、 弁体 6 0に溝を形成する変わりに、 第 1 3図に示されるように 弁座 3 3の側に高圧空間 1 3から連通路 3 1にかけて溝 6 2を形成した ものであっても、 さらには、 弁座 3 3の脇に、 同図の破線で示されるよ うに、 オリフィス 6 3を形成するようにしたものであってもよい。 特に 弁座側の溝 6 2は、 この例においては、 連通路 3 1の内面に該通路の軸 方向に溝を形成することによって実現している。 このような弁座側の溝 6 2やオリフィス 6 3においても、 弁体 6 0が弁座 3 3に着座した状態 において、 入口側通路部 1 1と出口側通路部 1 2との間に、 全体として 直径が 0 . 3 π!〜 1 . 5 mmの孔の面積と同程度の通路断面が得られる ように、 より好ましくは直径が約 0 . 3〜0 . 5 mmの孔の面積 (0 . 0 7 - 0 . 2 0 mm 2 ) と同程度の通路断面が得られるように形成さ れている。 Instead of forming a groove in the valve body 60, a groove 62 is formed on the valve seat 33 side from the high-pressure space 13 to the communication passage 31 as shown in FIG. Further, an orifice 63 may be formed beside the valve seat 33, as shown by a broken line in FIG. Particularly, in this example, the groove 62 on the valve seat side is realized by forming a groove on the inner surface of the communication passage 31 in the axial direction of the passage. Such a groove on the valve seat side Also in the case of the valve body 62 and the orifice 63, when the valve body 60 is seated on the valve seat 33, the diameter as a whole is 0.3 π between the inlet side passage portion 11 and the outlet side passage portion 12. ! More preferably, the area of the hole having a diameter of about 0.3 to 0.5 mm (0.07 to 0.20 mm) is obtained so as to obtain a passage cross section equivalent to the area of the hole of about 1.5 mm. It is formed so that the same cross section as 2 ) can be obtained.
このようなニードル形状の弁体を用いたことにより、 弁体がリフ卜す る初期において開口面積の増大割合を鈍らせることができるので、 弁体 のリフト初期に冷媒が低圧ラインに多量に流れてしまうことを防ぐこと ができ、 球状の弁体を用いた場合よりも圧力変動を抑えることが可能と なり、 吹出空気温度の大きな変動を低減することができる。  By using such a needle-shaped valve element, the rate of increase in the opening area can be reduced at the initial stage of the valve element lifting, so that a large amount of refrigerant flows into the low-pressure line at the initial stage of the valve element lifting. Can be prevented, and pressure fluctuation can be suppressed as compared with the case where a spherical valve element is used, and a large fluctuation of the blown air temperature can be reduced.
実際に、 上述したニードル形状の弁体を用いて、 約 0 . 4 mmの直径 を有する孔の面積と同程度の断面積を有するリーク部分を形成した場合 のサイクル状態を調べてみると、 第 1 7図に示されるように、 ハンチン グが解消され、 蒸発器 6の出口側での冷媒の温度変化がなくなつたこと が認められ、 これにより、 ハンチングに伴う吹出空気温度の変化を 3 °C 前後にまで抑えることができるに至った。  Actually, when the above-described needle-shaped valve element was used to examine a cycle state when a leak portion having a cross-sectional area approximately equal to the area of a hole having a diameter of about 0.4 mm was examined, As shown in Fig. 17, hunting was eliminated, and it was recognized that there was no change in the temperature of the refrigerant at the outlet side of the evaporator 6, and as a result, the change in the outlet air temperature due to hunting was reduced by 3 °. C can be suppressed to around.
第 1 4図、 第 1 5図においてリーク手段の他の構成例が示され、 この 例においては、 弁体 6 5を弁座を設けて着座させるものではなく、 連通 孔 3 1に入り込むスプール形状に形成し、 連通路 3 1の連通状態を最小 とする状態において入口側通路部 1 1から出口側通路部 1 2 (高圧空間 1 3から連通路 3 1 ) へ冷媒をリークさせるリーク手段を、 弁体 6 5が 連通路 3 1に挿入された状態で、 弁体 6 5と連通路 3 1との間に所定の 隙間 (クリアランス) 6 6を設けることによって構成するようにした点 に特徴がある。  FIGS. 14 and 15 show another configuration example of the leak means. In this example, the valve body 65 is not provided with a valve seat and is not seated, but a spool shape which enters the communication hole 31. A leak means for leaking refrigerant from the inlet side passage portion 11 to the outlet side passage portion 12 (the high pressure space 13 to the communication passage 31) in a state where the communication state of the communication passage 31 is minimized, It is characterized in that a predetermined gap (clearance) 66 is provided between the valve body 65 and the communication path 31 in a state where the valve body 65 is inserted into the communication path 31. is there.
この例においても、 連通孔 3 1に挿入される弁体 6 5の挿入端部を円 錐台形状とし、 弁体 6 5のリフトに対する開口面積の増大割合を鈍らせ るようにし、 弁体のリフト初期において冷媒が多量に低圧ラインに流れ てしまうことを防ぐようにな形状となっている。 また、 弁体 6 5を連通 路に挿入した状態で形成される弁体 6 5と連通路 3 1との間の隙間 (ク リアランス) 6 6は、 全体として、 直径が 0 . 3 mm〜 l . 5 mmの孔 の面積と同程度の通路断面が得られるように、 より好ましくは直径が 0 3〜0 . 5 mmの孔の面積 (0 . 0 7〜0 . 2 0 mm 2 ) と同程度の 通路断面が得られるように調節することが望ましい。 Also in this example, the insertion end of the valve body 65 inserted into the communication hole 31 is circular. The valve is shaped like a frustum to reduce the rate of increase in the opening area of the valve body 65 with respect to the lift, and to prevent a large amount of refrigerant from flowing into the low-pressure line at the beginning of the valve body lift. I have. The clearance (clearance) 66 between the valve body 65 and the communication passage 31 formed when the valve body 65 is inserted into the communication passage has a diameter of 0.3 mm to l as a whole. More preferably, the same area as a hole having a diameter of 0.3 to 0.5 mm (0.07 to 0.20 mm 2 ) is used so that a passage cross section equivalent to the area of a hole of 0.5 mm is obtained. It is desirable to adjust so that a passage cross section of a certain degree can be obtained.
このような構成においても、 第 1 2図のニードル形状の弁体を用いた 場合と同様、 弁体のリフ トに対する開口面積の増大割合を鈍らせること で、 弁体のリフト初期において冷媒が多量に低圧ラインに流れてしまう ことを防ぎ、 大きな圧力変動を抑えて、 吹出空気温度の大きな変動を低 減することができるようになる。 産業上の利用可能性  Even in such a configuration, as in the case of using the needle-shaped valve element shown in FIG. 12, by increasing the rate of increase in the opening area of the valve element with respect to the lift, a large amount of refrigerant is generated at the beginning of the valve element lift. In this way, it is possible to prevent the air from flowing into the low-pressure line, suppress large pressure fluctuations, and reduce large fluctuations in the outlet air temperature. Industrial applicability
以上述べたように、 この発明によれば、 冷媒として臨界点の低い冷媒 即ち、 二酸化炭素 (c o 2 ) 等のように超臨界域で使用可能な冷媒を用 いる冷凍サイクルにおいて、 膨張装置に入口側通路部と出口側通路部と の間の連通状態を変化させる第 1及び第 2の弁体を設け、 第 1の弁体を 内部に炭酸ガスが封入された第 1の感受素子によって制御し、 第 2の弁 体を内部に不活性ガスが封入された第 2の感受素子によって制御するよ うにしたので、 2つの異なる特性を持った感受素子を使うことにより、 サイクル始動時に不活性ガスを封入した第 2の感受素子が働いて放熱器 で冷却された冷媒を膨張装置に流して圧力を制御し、 冷媒温度が下がつ てきた後には、 炭酸ガスを封入した第 1の感受素子が働いて通常の制御 を行うことができ、 スムーズなサイクルの始動運転を確保することがで きる。 As described above, according to the present invention, in a refrigeration cycle using a refrigerant having a low critical point as a refrigerant, that is, a refrigerant that can be used in a supercritical region such as carbon dioxide (co 2 ), an inlet to an expansion device is provided. First and second valve bodies for changing the communication between the side passage portion and the outlet side passage portion are provided, and the first valve body is controlled by a first sensing element in which carbon dioxide gas is sealed. However, since the second valve element is controlled by the second sensing element in which an inert gas is sealed, the inert gas is used at the start of the cycle by using the sensing elements having two different characteristics. The enclosed second sensing element works to flow the refrigerant cooled by the radiator to the expansion device to control the pressure, and after the refrigerant temperature decreases, the first sensing element containing the carbon dioxide gas is activated. Can work and perform normal control, It is possible to ensure the start-up operation of a cycle Wear.
また、 急加速時に圧縮機の回転数が上がって高圧側圧力が急激に上昇 した場合においても、 不活性ガスを封入した第 2の感受素子が働くこと により冷媒を低圧側へ流すことができ、 高圧力ッ トスィツチの頻繁な作 動により圧縮機が頻繁に O NZ O F Fしてしまうことを避けることがで き、 空調フィーリングを損なうことがなくなる。  In addition, even when the rotation speed of the compressor increases during rapid acceleration and the high-pressure side pressure increases rapidly, the second sensing element filled with the inert gas works so that the refrigerant can flow to the low-pressure side. Frequent operation of the high-pressure switch can prevent the compressor from being frequently turned off and the air conditioning feeling will not be impaired.
さらに、 2つの感受素子を一体にして膨張装置を構成したので、 サイ クルの設置スペース等の点でも負担をかけることがなくなり、 炭酸ガス を封入した感受素子と不活性ガスを封入した感受素子とを膨張装置内に 一体に組み込んだことで、 2つの弁体の作動をスムーズにつなげること ができる。  Furthermore, because the inflator is constructed by integrating the two sensing elements, there is no burden on the installation space of the cycle, etc., and a sensing element filled with carbon dioxide and a sensing element filled with inert gas are used. By integrating the two in the expansion device, the operation of the two valve bodies can be smoothly connected.
超臨界冷媒を冷媒とする冷凍サイクルの膨張装置に、 ガスを封入した 感受素子で制御される弁体によって連通状態を制御する構成に加えて、 弁体が弁座に着座した状態において入口側通路部から出口側通路部へ冷 媒をリークさせるリーク手段を設ける構成とすれば、 冷媒温度が高いサ ィクル始動時でもリーク手段を介して冷媒を入口側通路部から出口側通 路部へ流すことができ、 膨張装置の冷却を促進すると共に、 冷媒温度が 下がってきた後には、 ガスを封入した感受素子が働いて通常の減圧制御 へ移行させることができ、 スムーズなサイクルの始動運転を保障するこ とができる。  In addition to the configuration in which the communication state is controlled by a valve element controlled by a sensing element filled with gas, the inlet side passage when the valve element is seated on a valve seat is connected to the expansion device of the refrigeration cycle using supercritical refrigerant as the refrigerant. If a configuration is provided in which a leak means is provided to allow the refrigerant to leak from the section to the outlet side passage section, the refrigerant can flow from the inlet side passage section to the outlet side passage section via the leak means even at the start of a cycle where the refrigerant temperature is high. In addition to accelerating the cooling of the expansion device, after the refrigerant temperature has dropped, the gas-filled sensing element works to shift to normal pressure reduction control, ensuring a smooth cycle start operation. be able to.
このような構成においても、 サイクル始動時の高圧圧力の異常上昇を 抑えることができるので、 各コンポーネン卜の耐圧設計値を低くするこ とができ、 各コンポーネントを小型、 軽量にすることができる。  Even in such a configuration, an abnormal increase in the high pressure at the start of the cycle can be suppressed, so that the withstand voltage design value of each component can be reduced, and each component can be reduced in size and weight.
また、 リーク手段を設けたことにより、 低負荷時での定常運転時に膨 張装置が閉じてもリーク手段によつて低圧側へ冷媒を供給することが可 能となり、 低圧圧力の低下を抑えて圧縮機の吐出容量が小さくなる不都 合を回避することができ、 もって、 膨張装置流入側の圧力を早期に高め ることが可能となり、 速やかな膨張装置の開放を促し、 間欠的にサイク ルが大きく変動する不都合も抑えることができる。 In addition, the provision of the leak means makes it possible to supply the refrigerant to the low-pressure side by the leak means even when the expansion device is closed during a steady operation at a low load, thereby suppressing a decrease in the low-pressure pressure. Inconvenience of reduced compressor displacement Can be avoided and the pressure on the inflow side of the inflator can be increased at an early stage, promptly opening the inflator, and the inconvenience of large intermittent cycle fluctuations can also be suppressed. .
弁体によって連通路の連通状態を最小とする状態において入口側通路 部から出口側通路部へ冷媒をリークさせるリーク手段は、 入口側通路部 と出口側通路部との間に形成されたオリフィスであっても、 弁体と連通 路との間に所定の隙間 (クリアランス) を設けることによって構成され るものであっても、 弁体に形成された溝や弁体が着座する弁座に形成さ れた溝によって構成されるものであってもよく、 リーク手段をオリフィ スをもって構成する場合や隙間 (ク リアランス) 、 溝によって構成され る場合には、 直径が 0 . 3 mm〜 l . 5 mmの通路断面積を有するよう に、 より好ましくは、 直径がおよそ 0 . 3〜0 . 5 mmの通路断面積を 有するように設定されることが好ましく、 このような範囲でオリフィス の径ゃ隙間 (ク リアランス) 、 溝を形成すれば、 サイクル変動を効果的 に回避できると共に、 オリフィスの目詰まりを防ぐことができる。 また、 リーク手段をリ リーフ弁で構成した場合には、 冷媒温度が高い サイクル始動時でもリ リーフ弁を介して冷媒を入口側通路部から出口側 通路部へ流すことができ、 膨張装置の冷却を促進すると共に、 冷媒温度 が下がってきた後には、 ガスを封入した感受素子が働いて通常の減圧制 御へ移行させることができ、 同様にスムーズなサイクルの始動運転を保 障することができる。  The leak means for leaking the refrigerant from the inlet side passage portion to the outlet side passage portion in a state where the communication state of the communication passage is minimized by the valve body is an orifice formed between the inlet side passage portion and the outlet side passage portion. Even if it is configured by providing a predetermined gap (clearance) between the valve element and the communication path, the groove formed in the valve element and the valve seat formed on the valve element seat the valve element. The diameter may be 0.3 mm to 1.5 mm when the leak means is constituted by an orifice, or by a gap (clearance) or a groove. It is preferable that the diameter of the orifice is set so as to have a passage cross-sectional area of about 0.3 to 0.5 mm. Clearance) If grooves are formed, cycle fluctuations can be effectively avoided and clogging of the orifice can be prevented. Also, if the leak means is composed of a relief valve, the refrigerant can flow from the inlet-side passage to the outlet-side passage through the relief valve even at the start of the cycle when the refrigerant temperature is high, thus cooling the expansion device. After the refrigerant temperature drops, the sensing element filled with gas works to shift to normal depressurization control, which also helps to ensure smooth cycle start operation. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷媒を圧縮して運転条件により高圧ラインの冷媒を超臨界状態 とする圧縮機と、 前記圧縮機によって圧縮された冷媒を冷却する放熱器 と、 前記放熱器で冷却された冷媒を減圧する膨張装置と、 前記膨張装置 によって減圧された冷媒を蒸発させる蒸発器とによって少なくとも構成 される冷凍サイクルにおいて、 1. A compressor that compresses the refrigerant to make the refrigerant in a high-pressure line in a supercritical state depending on operating conditions, a radiator that cools the refrigerant compressed by the compressor, and depressurizes the refrigerant cooled by the radiator. In a refrigeration cycle configured at least by an expansion device and an evaporator that evaporates the refrigerant decompressed by the expansion device,
前記膨張装置は、  The inflation device,
放熱器側と連通する入口側通路部と、  An inlet-side passage communicating with the radiator,
蒸発器側と連通する出口側通路部と、  An outlet-side passage portion communicating with the evaporator side;
前記入口側通路部と前記出口側通路部との間に設けられ、 前記入口側 通路部と前記出口側通路部との間の連通状態を変化させる第 1及び第 2 の弁体と、  First and second valve bodies provided between the inlet-side passage portion and the outlet-side passage portion to change a communication state between the inlet-side passage portion and the outlet-side passage portion;
内部に炭酸ガスが封入されて前記放熱器側の冷媒条件を感知し、 この 放熱器側の冷媒条件に応じて前記第 1の弁体の動きを制御する第 1の感 受素子と、  A first sensing element for sensing a refrigerant condition on the radiator side with carbon dioxide gas sealed therein and controlling a movement of the first valve element according to the refrigerant condition on the radiator side;
内部に不活性ガスが封入されて前記放熱器側の冷媒圧力を感知し、 こ の放熱器側の冷媒圧力に応じて前記第 2の弁体の動きを制御する第 2の 感受素子と  A second sensing element for sensing the refrigerant pressure on the radiator side with an inert gas sealed therein and controlling the movement of the second valve element according to the refrigerant pressure on the radiator side;
を有することを特徴とする冷凍サイクル。 A refrigeration cycle comprising:
2 . 冷媒を圧縮して運転条件により高圧ラインの冷媒を超臨界状態 とする圧縮機と、 前記圧縮機によって圧縮された冷媒を冷却する放熱器 と、 前記放熱器で冷却された冷媒を減圧する膨張装置と、 前記膨張装置 によって減圧された冷媒を蒸発させる蒸発器とによって少なくとも構成 される冷凍サイクルにおいて、  2. A compressor that compresses the refrigerant to make the refrigerant in the high pressure line in a supercritical state depending on operating conditions, a radiator that cools the refrigerant compressed by the compressor, and depressurizes the refrigerant that is cooled by the radiator. In a refrigeration cycle configured at least by an expansion device and an evaporator that evaporates the refrigerant decompressed by the expansion device,
前記膨張装置は、 放熱器側と連通する入口側通路部と、 The inflation device, An inlet-side passage communicating with the radiator,
蒸発器側と連通する出口側通路部と、  An outlet-side passage portion communicating with the evaporator side;
前記入口側通路部と前記出口側通路部との間に形成された連通路の連 通状態を変化させる弁体と、  A valve body that changes a communication state of a communication path formed between the inlet-side passage portion and the outlet-side passage portion;
内部にガスが封入されて前記放熱器側の冷媒条件を感知し、 この放熱 器側の冷媒条件に応じて前記弁体の動きを制御する感受素子と、 前記弁体によって前記連通路の連通状態が最小となる状態において前 記入口側通路部から前記出口側通路部へ冷媒をリークさせるリーク手段 と  A gas is sealed inside to sense a refrigerant condition on the radiator side, and a sensing element for controlling the movement of the valve element according to the refrigerant condition on the radiator side; and a communication state of the communication passage by the valve element. A leak means for leaking refrigerant from the entry side passage to the exit side passage in a state where
を有することを特徴とする冷凍サイクル。  A refrigeration cycle comprising:
3 . 前記リーク手段は、 前記連通路とは別に前記入口側通路部と前 記出口側通路部との間に形成されたォリフィスであることを特徴とする 請求項 2記載の冷凍サイクル。  3. The refrigeration cycle according to claim 2, wherein the leak means is an orifice formed between the inlet-side passage and the outlet-side passage apart from the communication passage.
4 . 前記オリフィスは、 直径が 0 . 3 mm〜 l . 5 mmの間で設定 されることを特徴とする請求項 3記載の冷凍サイクル。  4. The refrigeration cycle according to claim 3, wherein the orifice has a diameter set between 0.3 mm and 1.5 mm.
5 . 前記リーク手段は、 前記弁体と前記連通路との間に隙間を設け ることによって構成されることを特徴とする請求項 2記載の冷凍サイク ル。  5. The refrigeration cycle according to claim 2, wherein the leak means is configured by providing a gap between the valve body and the communication passage.
6 . 前記隙間の総断面積を約 0 . 0 7〜0 . 2 0 mm 2に設定する ことを特徴とする請求項 5記載の冷凍サイクル。 6. About 0 to total cross-sectional area of the gap. 0 7 to 0.2 0 refrigerating cycle according to claim 5, wherein the set to mm 2.
7 . 前記リーク手段は、 前記弁体に形成された溝によって構成され ることを特徴とする請求項 2記載の冷凍サイクル。  7. The refrigeration cycle according to claim 2, wherein the leak means is constituted by a groove formed in the valve body.
8 . 前記リーク手段は、 前記弁体が着座する弁座に形成された溝に よって構成されることを特徴とする請求項 2記載の冷凍サイクル。  8. The refrigeration cycle according to claim 2, wherein the leak means is constituted by a groove formed in a valve seat on which the valve body is seated.
9 . 前記溝によって前記入口側通路部から前記出口側通路部へ冷媒 をリークさせる部分の総断面積を約 0 . 0 7〜0 . 2 0 mm 2に設定す ることを特徴とする請求項 7又は 8記載の冷凍サイクル。 9. The total cross-sectional area of the portion where the coolant leaks from the inlet side passage portion to the outlet side passage portion by the groove is set to about 0.07 to 0.20 mm 2 . 9. The refrigeration cycle according to claim 7, wherein:
1 0 . 前記オリフィスの代わりに、 前記連通路とは別に前記入口側 通路部と前記出口側通路部との間を連通する他の連通路を設け、 この他 の連通路に前記入口側通路部の圧力が所定圧以上となった場合に開弁す るリリーフ弁を設けたことを特徴とする請求項 3記載の冷凍サイクル。  10. In place of the orifice, another communication passage communicating between the inlet-side passage and the outlet-side passage is provided separately from the communication passage, and the other communication passage is provided with the inlet-side passage. 4. The refrigeration cycle according to claim 3, further comprising a relief valve that opens when the pressure of the refrigeration system exceeds a predetermined pressure.
1 1 . 前記弁体は、 前記連通路内を移動するスプール形状を有して いることを特徴とする請求項 5記載の冷凍サイクル。  11. The refrigeration cycle according to claim 5, wherein the valve element has a spool shape that moves in the communication passage.
1 2 . 前記弁体は、 ニードル形状を有していることを特徴とする請 求項 7又は 8記載の冷凍サイクル。  12. The refrigeration cycle according to claim 7, wherein the valve element has a needle shape.
1 3 . 前記冷媒は、 二酸化炭素であることを特徴とする請求項 1 又は 2記載の冷凍サイクル。  13. The refrigeration cycle according to claim 1, wherein the refrigerant is carbon dioxide.
PCT/JP2000/004324 1999-07-16 2000-06-30 Refrigerating cycle WO2001006183A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20371399 1999-07-16
JP11/203713 1999-07-16
JP28754699 1999-10-08
JP11/287546 1999-10-08

Publications (1)

Publication Number Publication Date
WO2001006183A1 true WO2001006183A1 (en) 2001-01-25

Family

ID=26514077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004324 WO2001006183A1 (en) 1999-07-16 2000-06-30 Refrigerating cycle

Country Status (1)

Country Link
WO (1) WO2001006183A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065635A (en) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp Freezing cycle
EP1482259A1 (en) * 2003-05-27 2004-12-01 Valeo Climatisation Expansion device for air conditioning system
EP1519128A2 (en) * 2003-09-25 2005-03-30 TGK Co., Ltd. Refrigeration cycle
FR2867261A1 (en) * 2004-03-03 2005-09-09 Otto Egelhof Gmbh & Co Kg RETAINING VALVE AND METHOD FOR CONTROLLING THE SAME
FR2868830A1 (en) * 2004-04-09 2005-10-14 Valeo Climatisation Sa IMPROVED RELIEF DEVICE FOR AIR CONDITIONING CIRCUIT
WO2006079408A1 (en) * 2005-01-27 2006-08-03 Otto Egelhof Gmbh & Co. Kg Expansion valve
CN1296663C (en) * 2005-09-15 2007-01-24 上海交通大学 Throttle orifice plate of transcritical carbon dioxide refrigerating system
EP1715263A3 (en) * 2005-04-21 2007-09-12 Behr GmbH & Co. KG Air conditioning device, in particular for a motor vehicle
WO2007147280A2 (en) * 2006-06-23 2007-12-27 Heig-Vd Adsorption-type cold generation device and retaining valve mounted on this device
FR2912495A1 (en) * 2007-02-14 2008-08-15 Valeo Systemes Thermiques Lever component for being installed in air conditioning system loop, has regulating device with circulation channel for providing circulation of subcritical refrigerant fluid between inlet and outlet
FR2934039A1 (en) * 2008-07-18 2010-01-22 Valeo Systemes Thermiques Air conditioning loop for motor vehicle, has compressor, and thermostatic expansion valve whose intrinsic parameter is chosen based on variable i.e. slope of valve, relative to thermal efficiency of internal heat exchanger
DE102009032871A1 (en) 2008-07-30 2010-02-04 DENSO CORPORATION, Kariya-shi Vehicle air conditioning system for air conditioning passenger compartment of e.g. hybrid vehicle, has cooling medium flow restriction devices for opening passage to enable flow of cooling medium from one section to other section
DE102005009831B4 (en) 2004-03-03 2018-08-02 Otto Egelhof Gmbh & Co. Kg Method for producing a valve arrangement, in particular for an expansion valve and a valve arrangement
EP3534088A4 (en) * 2016-10-28 2019-10-30 Mitsubishi Electric Corporation Air conditioner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165778U (en) * 1984-04-10 1985-11-02 カルソニック株式会社 Automotive cooling system
JPS63129169U (en) * 1987-02-16 1988-08-24
JPH0198381U (en) * 1987-12-22 1989-06-30
JPH0220063U (en) * 1988-07-21 1990-02-09
WO1990007683A1 (en) * 1989-01-09 1990-07-12 Sinvent As Trans-critical vapour compression cycle device
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH05196307A (en) * 1992-01-16 1993-08-06 Sanyo Electric Co Ltd Injection valve for refrigeration cycle
WO1994014016A1 (en) * 1992-12-11 1994-06-23 Sinvent A/S Trans-critical vapour compression device
EP0786632A2 (en) * 1996-01-25 1997-07-30 Denso Corporation Refrigerating system with pressure control valve
EP0837291A2 (en) * 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JPH11248272A (en) * 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JP2000097523A (en) * 1998-09-24 2000-04-04 Zexel Corp Inflation device of super-critical refrigeration cycle
EP1001229A2 (en) * 1998-11-12 2000-05-17 Ford-Werke Aktiengesellschaft Expansion element and valve unit for use therewith

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165778U (en) * 1984-04-10 1985-11-02 カルソニック株式会社 Automotive cooling system
JPS63129169U (en) * 1987-02-16 1988-08-24
JPH0198381U (en) * 1987-12-22 1989-06-30
JPH0220063U (en) * 1988-07-21 1990-02-09
WO1990007683A1 (en) * 1989-01-09 1990-07-12 Sinvent As Trans-critical vapour compression cycle device
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH05196307A (en) * 1992-01-16 1993-08-06 Sanyo Electric Co Ltd Injection valve for refrigeration cycle
WO1994014016A1 (en) * 1992-12-11 1994-06-23 Sinvent A/S Trans-critical vapour compression device
EP0786632A2 (en) * 1996-01-25 1997-07-30 Denso Corporation Refrigerating system with pressure control valve
EP0837291A2 (en) * 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JPH11248272A (en) * 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JP2000097523A (en) * 1998-09-24 2000-04-04 Zexel Corp Inflation device of super-critical refrigeration cycle
EP1001229A2 (en) * 1998-11-12 2000-05-17 Ford-Werke Aktiengesellschaft Expansion element and valve unit for use therewith

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065635A (en) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp Freezing cycle
EP1482259A1 (en) * 2003-05-27 2004-12-01 Valeo Climatisation Expansion device for air conditioning system
FR2855596A1 (en) * 2003-05-27 2004-12-03 Valeo Climatisation REGULATOR DEVICE FOR AIR CONDITIONING CIRCUIT
US7299654B2 (en) 2003-05-27 2007-11-27 Valeo Climatisation, S.A. Pressure-reducing device for an air-conditioning circuit
EP1519128A2 (en) * 2003-09-25 2005-03-30 TGK Co., Ltd. Refrigeration cycle
EP1519128A3 (en) * 2003-09-25 2006-04-05 TGK Co., Ltd. Refrigeration cycle
FR2867261A1 (en) * 2004-03-03 2005-09-09 Otto Egelhof Gmbh & Co Kg RETAINING VALVE AND METHOD FOR CONTROLLING THE SAME
DE102005009831B4 (en) 2004-03-03 2018-08-02 Otto Egelhof Gmbh & Co. Kg Method for producing a valve arrangement, in particular for an expansion valve and a valve arrangement
US7243501B2 (en) 2004-04-09 2007-07-17 Valeo Climatisation Expansion device for an air-conditioning system
EP1715264A1 (en) * 2004-04-09 2006-10-25 Valeo Systèmes Thermiques Improved expansion valve for air conditioning circuit
FR2868830A1 (en) * 2004-04-09 2005-10-14 Valeo Climatisation Sa IMPROVED RELIEF DEVICE FOR AIR CONDITIONING CIRCUIT
WO2006079408A1 (en) * 2005-01-27 2006-08-03 Otto Egelhof Gmbh & Co. Kg Expansion valve
EP1715263A3 (en) * 2005-04-21 2007-09-12 Behr GmbH & Co. KG Air conditioning device, in particular for a motor vehicle
CN1296663C (en) * 2005-09-15 2007-01-24 上海交通大学 Throttle orifice plate of transcritical carbon dioxide refrigerating system
WO2007147280A2 (en) * 2006-06-23 2007-12-27 Heig-Vd Adsorption-type cold generation device and retaining valve mounted on this device
WO2007147280A3 (en) * 2006-06-23 2008-02-21 Heig Vd Adsorption-type cold generation device and retaining valve mounted on this device
FR2912495A1 (en) * 2007-02-14 2008-08-15 Valeo Systemes Thermiques Lever component for being installed in air conditioning system loop, has regulating device with circulation channel for providing circulation of subcritical refrigerant fluid between inlet and outlet
FR2934039A1 (en) * 2008-07-18 2010-01-22 Valeo Systemes Thermiques Air conditioning loop for motor vehicle, has compressor, and thermostatic expansion valve whose intrinsic parameter is chosen based on variable i.e. slope of valve, relative to thermal efficiency of internal heat exchanger
DE102009032871A1 (en) 2008-07-30 2010-02-04 DENSO CORPORATION, Kariya-shi Vehicle air conditioning system for air conditioning passenger compartment of e.g. hybrid vehicle, has cooling medium flow restriction devices for opening passage to enable flow of cooling medium from one section to other section
EP3534088A4 (en) * 2016-10-28 2019-10-30 Mitsubishi Electric Corporation Air conditioner

Similar Documents

Publication Publication Date Title
KR100392121B1 (en) capacity control system of capacity variable type compressor
WO2001006183A1 (en) Refrigerating cycle
JP5292537B2 (en) Expansion device
JP4172006B2 (en) Refrigeration cycle
JP2000035250A (en) Supercritical freezing cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
JP2006189240A (en) Expansion device
WO2001027543A1 (en) Refrigerating cycle
JP2008138812A (en) Differential pressure valve
JP4348571B2 (en) Refrigeration cycle
US6209793B1 (en) Thermostatic expansion valve in which a valve seat is movable in a flow direction of a refrigerant
JP2004142701A (en) Refrigeration cycle
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP2004093106A (en) Expansion valve
JP2007278616A (en) Expansion device
JP2002221376A (en) Refrigerating cycle
US6966195B2 (en) Air conditioning system
JPH11201568A (en) Supercritical refrigeration cycle
JP2006292184A (en) Expansion device
JP2008164239A (en) Pressure regulation valve
US6966365B2 (en) Outflow prevention device
WO2001063185A1 (en) Refrigerating cycle
JP3528433B2 (en) Vapor compression refrigeration cycle
JP2001116398A (en) Refrigeration cycle
JP2001116399A (en) Refrigeration cycle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 510778

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase