明細 : Details :
L一アミノ酸の製造法 Method for producing L-amino acid
技術分野 本発明は、 発酵法による L一アミノ酸の製造法、 特に L一リジン及び L—グル 夕ミン酸の製造法に関する。 L—リジンは飼料添加物等として、 L—グルタミン 酸は調味料原料等として広く用いられている。 背景技術 従来、 L一リジン及び L—グルタミン酸等の L一アミノ酸は、 これらの L—ァ ミノ酸生産能を有するブレビパクテリゥム属ゃコリネバクテリゥム属に属するコ リネ型細菌を用いて発酵法により工業生産されている。 これらのコリネ型細菌は、 生産性を向上させるために、 自然界から分離した菌株または該菌株の人工変異株 が用いられている。 TECHNICAL FIELD The present invention relates to a method for producing L-amino acid by a fermentation method, particularly to a method for producing L-lysine and L-glutamic acid. L-Lysine is widely used as a feed additive, and L-glutamic acid is widely used as a seasoning material. BACKGROUND ART Conventionally, L-amino acids such as L-lysine and L-glutamic acid have been fermented using a coryneform bacterium belonging to the genus Brevipacterium or Corynebacterium having the ability to produce these L-amino acids. It is industrially produced by the law. For these coryneform bacteria, strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
また、 組換え D N A技術により L—アミノ酸の生合成酵素を増強することによ つて、 L一アミノ酸の生産能を増加させる種々の技術が開示されている。 例えば、 Lーリジン生産能を有するコリネ型細菌.において、 L—リジン及び Lースレオニ ンによるフィードバック阻害が解除されたァスパルトキナーゼをコ一ドする遺伝 子 (変異型 lysC) 、 ジヒドロジピコリン酸レダクタ一ゼ遺伝子 (dapB) 、 ジヒド ロジピコリン酸シン夕一ゼ遺伝子 (dapA) 、 ジアミノピメリン酸デカルポキシラ —ゼ遺伝子 (lysA) 遺伝子、 及びジアミノピメ リン酸デヒ ドロゲナ一ゼ遺伝子 ( ddh) ( 096/40934) を導入することにより、 同細菌の: L—リジン生産能が向 上することが知られている。 In addition, various techniques for increasing the ability to produce L-amino acids by enhancing L-amino acid biosynthetic enzymes by recombinant DNA techniques have been disclosed. For example, in a coryneform bacterium having the ability to produce L-lysine, a gene coding for aspartokinase (mutant lysC) whose feedback inhibition by L-lysine and L-threonine has been released, a dihydrodipicolinate reductor, Ze gene (dapB), dihydrodipicolinate synthase gene (dapA), diaminopimelate decarpoxyla-ze gene (lysA) gene, and diaminopimephosphate dehydrogenase gene (ddh) (096/40934) It is known that this improves the L-lysine-producing ability of the bacterium.
また、 コリネパクテリゥム属細菌において、 グルタミン酸デヒ ドロゲナーゼ遺 伝子、 イソクェン酸デヒドロゲナーゼ遺伝子、 アコニッ ト酸ヒドラ夕ーゼ遺伝子、 及びクェン酸シン夕ーゼ遺伝子を増強することによって、 L一グル夕ミン酸の生 産能を増加させる技術が開示されている (特開昭 63- 214189号) 。
ところで、 r R N Aをコードする遺伝子は、 ェシエリヒア ' コリでは既にクロ —ニングされ、 塩基配列が報告されている (16S RNA遺伝子: Brosius, J. et al., Proc. Natl. Acad. Sci. USA, 75, 4801-4805 (1978)。 23S rRNA遺伝子 : Brosi us, J. et al., Proc. Natl. Acad. Sci. USA, 77, 201-204 (1980)。 5S rRNA遺 伝子 : Singh, B. et al., Biochim. Biophys. Acta, 698, 252-259 ( 1982)) 。 また、 ェシエリヒア ' コリでは、 1 6 S rRNA, 23 S rR A, 5 S r RNAのそれそれをコードする遺伝子が、 グルタミン酸の tRNAをコードする遺伝 子 (Glu-tRNA- 2) と共にオペロン (rrnBオペロン) を形成していることが知られ ている。 In addition, in the bacterium of the genus Corynepacterium, the L-glutamic acid dehydrogenase gene, the isocitrate dehydrogenase gene, the aconitate hydrase gene, and the citrate synthase gene are enhanced to increase L-glutamic acid. A technique for increasing the productivity of minic acid has been disclosed (JP-A-63-214189). By the way, the gene encoding rRNA has already been cloned in Escherichia coli and its nucleotide sequence has been reported (16S RNA gene: Brosius, J. et al., Proc. Natl. Acad. Sci. USA, 75, 4801-4805 (1978) 23S rRNA gene: Brosius, J. et al., Proc. Natl. Acad. Sci. USA, 77, 201-204 (1980) 5S rRNA gene: Singh, B et al., Biochim. Biophys. Acta, 698, 252-259 (1982)). In Escherichia coli, the genes encoding the 16S rRNA, 23S rRA, and 5S rRNA are different from the operon (rrnB operon) together with the gene encoding glutamate tRNA (Glu-tRNA-2). ) Is known to form.
また、 微生物の r RN Αの発現量と生育速度には正の相関があることが知られ てレヽる (Bremer, H. et al., Modulation oi chemical composition and other parameters of the cell growth rate . In Escherichia coli and Salmonella t yphimurium: Cellular and Molecular Biology, pp.1527-1542. Edited by F.C. Neidhardt et al . , Washington, DC: American Society for Microbiology) が、 r RNAの発現量と L—アミノ酸等の発酵生産物の生産性との関係は知られてい ない。 発明の開示 本発明は、 従来よりもさらに改良された発酵法による L—リジン又は Lーグル 夕ミン酸等の L一アミノ酸の製造法、 及びそれに用いる菌株を提供することを課 題とする。 It is also known that there is a positive correlation between the expression level of rRNΑ and the growth rate of microorganisms (Bremer, H. et al., Modulation oi chemical composition and other parameters of the cell growth rate. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1527-1542.Edited by FC Neidhardt et al., Washington, DC: American Society for Microbiology) The relationship with product productivity is unknown. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing an L-amino acid such as L-lysine or L-glutamic acid by a fermentation method which has been further improved, and a strain used therefor.
本発明者等は、 上記課題を解決するために鋭意検討を行った結果、 エシ リヒ ァ ' コリの rRNAをコードするオペロンをコリネ型細菌に導入し、 rRNAの 発現量を増強することにより、 L—リジン又は L—グル夕ミン酸の生産量を増大 させることができること、 及びこれらの L—アミノ酸の生産速度を高めることが できることを見出し、 本発明を完成するに至った。 The present inventors have conducted intensive studies in order to solve the above problems, and as a result, introduced an operon encoding rRNA of Escherichia coli into a coryneform bacterium, thereby enhancing the expression level of rRNA. The present inventors have found that the production amount of lysine or L-glucamic acid can be increased, and that the production rate of these L-amino acids can be increased, thereby completing the present invention.
すなわち本発明は、 以下のとおりである。 That is, the present invention is as follows.
( 1 ) 細胞中の rRNA遺伝子の発現が増強され、 かつ L—アミノ酸生産能を有 するコリネ型細菌。
( 2) 前記 L—アミノ酸が、 L—リジン及び L一グル夕ミン酸から選ばれる ( 1 ) のコリネ型細菌。 (1) A coryneform bacterium with enhanced rRNA gene expression in cells and L-amino acid producing ability. (2) The coryneform bacterium according to (1), wherein the L-amino acid is selected from L-lysine and L-glucamic acid.
( 3) 前記 rRNA遺伝子が、 1 6 S r RNA遺伝子、 2 3 S r RNA遺伝子 及び 5 S r R N A遺伝子から選ばれる 1、 2又は 3種である ( 1 ) のコリネ型 細菌。 (3) The coryneform bacterium according to (1), wherein the rRNA gene is one, two, or three selected from 16 S r RNA gene, 23 S r RNA gene, and 5 S r RNA gene.
(4) 前記 rRNA遺伝子がェシヱリヒア属細菌由来の r r nオペロンである前 記 ( 3 ) のコリネ型細菌。 (4) The coryneform bacterium according to the above (3), wherein the rRNA gene is an rrn operon derived from a bacterium belonging to the genus Escherichia.
( 5) 前記 rRNA遺伝子の発現の増強が、 前記細菌細胞内の r RNA遺伝子の コピー数を高めることによるものである ( 1 ) のコリネ型細菌。 (5) The coryneform bacterium according to (1), wherein the expression of the rRNA gene is enhanced by increasing the copy number of the rRNA gene in the bacterial cell.
(6) 前記 ( 1 ) 〜 ( 5 ) のいずれか一項に記載のコリネ型細菌を培地に培養し、 該培養物中に L一アミノ酸を生成蓄積せしめ、 該培養物から L一アミノ酸を採取 することを特徴とする L—アミノ酸の製造法。 (6) The coryneform bacterium according to any one of (1) to (5) is cultured in a medium, L-amino acids are produced and accumulated in the culture, and L-amino acids are collected from the culture. A process for producing L-amino acids.
(7) 前記 L—アミノ酸が、 L—リジン及び L—グルタミン酸から選ばれる (6) の方法。 (7) The method according to (6), wherein the L-amino acid is selected from L-lysine and L-glutamic acid.
本発明において、 1 6 S rRNA遺伝子、 23 S rRNA遺伝子もしくは 5 S r RNA遺伝子、 又はこれらの任意の 1、 2又は 3種、 又はこれらを含むォ ペロンを総称して、 r RN A遺伝子ということがある。 In the present invention, the 16 S rRNA gene, 23 S rRNA gene or 5 S rRNA gene, or any one, two or three of these, or an operon containing them, is collectively referred to as rRNA gene. There is.
以下、 本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
< 1 >本発明のコリネ型細菌 <1> Coryneform bacterium of the present invention
本発明のコリネ型細菌は、 L—アミノ酸生産能を有し、 細胞中の 1 6 S r R N A遺伝子の発現が増強されたコリネ型細菌である。 L一アミノ酸としては、 L —リジン、 L一グルタ ミン酸、 Lースレオニン、 L一口イシン、 L一イソ ΠΙイシ ン、 L一パリン、 L一フエ二ルァラニン等の種々の L—アミノ酸が挙げられる。 これらの中では、 L一リジン及び L—グルタミン酸が好ましい。 以下、 本発明の 実施の形態を、 主として Lーリジン生産能又は L一グル夕ミン酸生産能を有する コリネ型細菌について説明するが、 本発明は、 他の L一アミノ酸についても同様 に適用され得る。 The coryneform bacterium of the present invention is a coryneform bacterium having an L-amino acid-producing ability and having enhanced expression of the 16SrRNA gene in cells. Examples of the L-amino acid include various L-amino acids such as L-lysine, L-glutamic acid, L-threonine, L-one-isine, L-isodicine, L-parin, and L-phenylalanine. Among these, L-lysine and L-glutamic acid are preferred. Hereinafter, embodiments of the present invention will be described mainly with respect to a coryneform bacterium having L-lysine-producing ability or L-glucaminic acid-producing ability, but the present invention can be similarly applied to other L-amino acids. .
本発明でいうコリネ型細菌としては、 バージーズ · マニュアル · ォブ ·デ夕一
ミネィティブ ·ノ、、クテリオロジ一 ( Bergey' s Manual of Determinative Bacter i ology) 第 8版 599頁 (1974) に定義されている一群の微生物であり、 好気性, グ ラム陽性, 非抗酸性, 胞子形成能を有しない桿菌であり、 従来ブレビバクテリウ ム属に分類されていたが現在コリネパクテリゥム属細菌として統合された細菌を 含み (Int . J . Syst . Bacteriol . , 41, 55 ( 1981 ) ) 、 またコリネバクテリゥム 属と非常に近縁なブレビパクテリゥム属細菌及びミクロバテリゥム属細菌を含む。 Lーリジン又は L—グル夕ミン酸の製造に好適に用いられるコリネ型細菌の菌株 としては、 例えば以下に示すものが挙げられる。 コリネバクテリゥム · ァセ トァシドフィルム ATCC 13870 The coryneform bacteria referred to in the present invention include: A group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, 8th Edition, p. 599 (1974), aerobic, Gram-positive, nonacid-fast, sporulation It is a bacillus that has no function and includes bacteria that were previously classified into the genus Brevibacterium but are now integrated as Corynebacterium genus (Int. J. Syst. Bacteriol., 41, 55 (1981)). In addition, it includes bacteria of the genus Brevipacterium and those of the genus Microbacterium which are very closely related to the genus Corynebacterium. Examples of the strains of coryneform bacteria suitably used for producing L-lysine or L-glucamic acid include, for example, those shown below. Corynebacterium acetate film ATCC 13870
コリネパクテリゥム · ァセ トグル夕ミクム ATCC15806 Corynepaterum Case Toggle Evening Mikum ATCC15806
コリネバクテリゥム · カルナェ ATCC15991 Corynebacterium carnaet ATCC15991
コリネバクテリゥム · グル夕ミクム ATCC13032 Corynebacterium · Guru Yu Mikum ATCC13032
(ブレビバクテリウム · ディノ、リカタム) ATCC14020 (Brevibacterium dino, lycatum) ATCC14020
(ブレビバクテリウム · ラク トフアーメンタム) ATCC13869 (Brevibacterium lactofamentum) ATCC13869
〔コリネバクテリウム · リリウム) ATCC15990 [Corynebacterium lilium] ATCC15990
(ブレビバクテリウム · フラバム) ATCC14067 (Brevibacterium flavum) ATCC14067
コリネバクテリゥム メラセコーラ ATCC17965 Corynebacterium meracecola ATCC17965
ブレビパクテリゥム サッカロリティクム ATCC 14066 Brevipacterium Saccharoritum ATCC 14066
ブレビバクテリゥム インマリオフィルム ATCC 14068 Brevibacterium Inmario Film ATCC 14068
ブレビパクテリゥム ロゼゥム ATCC13825 Brevi Pacterium Rosemze ATCC13825
ブレビバクテリゥム チォゲ二夕リス ATCC19240 Brevibacterium Choge Niyu Squirrel ATCC19240
ミクロパクテリゥム アンモニアフィラム ATCC15354 Micropacterium Ammonia Filum ATCC15354
コリネバクテリゥム サーモアミノゲネス AJ12340 ( FERM BP- 1539 ) これらを入手するには、 例えばアメリカン ' タイプ ' カルチャー ' コレクショ ンより分譲を受けることができる。 すなわち、 各微生物ごとに対応する登録番号 が付与されており、 この登録番号を引用して分譲を受けることができる。 各微生 物に対応する登録番号はァメリカン · タイプ ' カルチヤ一 ' コレクションのカタ ログに記載されている。 また、 AJ12340株は、 通商産業省工業技術院生命工学ェ
業技術研究所にブダぺス ト条約に基づいて寄託されている。 Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539) These can be obtained, for example, from the American 'Type' Culture 'collection. That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration number corresponding to each micro-organism is found in the catalog of the American Type 'Kartya I' collection. The AJ12340 strain is a member of the Ministry of International Trade and Industry It has been deposited with the National Institute of Technology under the Budapest Treaty.
また、 上記菌株以外にも、 これらの菌株から誘導された L—リジン生産能又は L—グルタミン酸生産能を有する変異株等も、 本発明に利用できる。 この様な人 ェ変異株としては次の様なものがある。 S— ( 2—アミノエチル) 一システィン In addition to the above strains, mutants having L-lysine-producing ability or L-glutamic acid-producing ability derived from these strains can also be used in the present invention. Such human mutants include the following. S— (2-aminoethyl) one cysteine
(以下、 「AEC」 と略記する) 耐性変異株 (例えば、 ブレビパクテリゥム . ラク トフアーメンタム AJ11082 ( NRRL B- 11470) 、 特公昭 56- 1914号、 特公昭 56-1915 号、 特公昭 57- 14157号、 特公昭 57- 14158号、 特公昭 57-30474号、 特公昭 58- 10075 号、 特公昭 59- 4993号、 特公昭 61- 35840号、 特公昭 62- 24074号、 特公昭 62- 36673 号、 特公平 5-11958号、 特公平 7- 112437号、 特公平 7- 112438号参照) 、 その成長 に L一ホモセリン等のアミノ酸を必要とする変異株 (特公昭 48- 28078号、 特公昭 56- 6499号) 、 AECに耐性を示し、 更に L—ロイシン、 L一ホモセリン、 L一プロ リ ン、 Lーセリ ン、 L—アルギニン、 L—ァラニン、 L—パリン等のアミノ酸を 要求する変異株 (米国特許第 3708395号及び第 3825472号) 、 D L—ひ—アミノー £—カブロラク夕ム、 ひ一ァミノ一ラウリルラク夕ム、 ァスパラギン酸一アナ口 グ、 スルファ剤、 キノィ ド、 N—ラウロイルロイシンに耐性を示す L—リジン生 産変異株、 ォキザ口酢酸脱炭酸酵素 (デカルボキシラーゼ) または呼吸系酵素阻 害剤の耐性を示す L一リジン生産変異株 (特開昭 50-53588号、 特閧昭 50- 31093号、 特開昭 52-102498号、 特開昭 53- 9394号、 特開昭 53-86089号、 特開昭 55- 9783号、 特開昭 55- 9759号、 特開昭 56- 32995号、 特開昭 56-39778号、 特公昭 53- 43591号、 特公昭 53- 1833号) 、 イノシ トールまたは酢酸を要求する L—リジン生産変異株(Hereinafter abbreviated as "AEC") Resistant mutants (for example, Brevipacterium. Lactofamentum AJ11082 (NRRL B-11470), JP-B-56-1914, JP-B-56-1915, and JP-B-57 -No. 14157, No. 57-14158, No. 57-30474, No. 58-10075, No. 59-4993, No. 61-35840, No. 62-24074, No. 62-240 36673, Japanese Patent Publication No. 5-11958, Japanese Patent Publication No. 7-112437, Japanese Patent Publication No. 7-112438), mutants that require amino acids such as L-homoserine for their growth (Japanese Patent Publication No. 48-28078, No. 56-6499), resistant to AEC, and requires mutations requiring amino acids such as L-leucine, L-homoserine, L-prolin, L-serine, L-arginine, L-alanine, L-parin, etc. (US Pat. Nos. 3,708,395 and 3,825,472), DL-Amino- £ -Cabrolact, Hi-amino-lau Lulacum, aspartate mono-analog, sulfa drug, quinoid, L-lysine-producing mutant resistant to N-lauroylleucine, oxaxate acetate decarboxylase (decarboxylase) or respiratory enzyme inhibitor L-lysine-producing mutants exhibiting the resistance of (Japanese Patent Application Laid-Open Nos. 50-53588, 50-31093, 52-102498, 53-9394, and 53-86089) JP-A-55-9783, JP-A-55-9759, JP-A-56-32995, JP-A-56-39778, JP-B-53-43591, JP-B-53-1833), Inositol Or L-lysine-producing mutant that requires acetic acid
(特開昭 55- 9784号、 特開昭 56- 8692号) 、 フルォロピルビン酸または 34°C以上の 温度に対して感受性を示す L一リジン生産変異株 (特開昭 55-9783号、 特開昭 53 - 86090号) 、 エチレングリコールに耐性を示し、 L—リジンを生産するブレビバ クテリゥム属またはコリネパクテリゥム属の生産変異株 (米国特許第 4411997号) 。 なお、 本明細書において 「L一アミノ酸生産能」 とは、 コリネ型細菌を培地に 培養したときに、 培地中に有意な量の L一アミノ酸を蓄積する能力、 又は菌体中 のアミノ酸含量を増加させる能力をいう。
„ (JP-A-55-9784, JP-A-56-8892), L-lysine-producing mutants sensitive to fluoropyruvic acid or a temperature of 34 ° C or higher (JP-A-55-9783, (Showa 53-86090), a mutant strain of the genus Brevibacterium or Corynepacterium which is resistant to ethylene glycol and produces L-lysine (US Patent No. 4411997). As used herein, "L-amino acid-producing ability" refers to the ability of a coryneform bacterium to accumulate a significant amount of L-amino acid in a medium when cultured in the medium, or the amino acid content in the cells. The ability to increase. „
< 2 > r R N A遺伝子の発現の増強 <2> Enhancement of rRNA gene expression
コリネ型細菌細胞中の r RN A遺伝子の発現を増強するには、 r RN A遺伝子 断片を、 該細菌で機能するべクタ一、 好ましくはマルチコピー型のベクターと連 結して組み換え D N Aを作製し、 これを L—リジン又は L—グルタミン酸生産能 を有するコリネ型細菌に導入して形質転換すればよい。 形質転換株の細胞内の r RN A遺伝子のコピー数が上昇する結果、 r R N A遺伝子の発現が増強される。 増強される r RN A遺伝子としては、 1 6 S r RNA遺伝子、 23 S r RNA 遺伝子及び 5 S r RN A遺伝子から選ばれる任意の 1、 2又は 3種が挙げられ るが、 3種とも増強されることが好ましい。 ェシエリヒア · コリでは、 1 6 S rRNA遺伝子、 23 S :¾ 遺伝子及び53 r RNA遺伝子は、 グルタミ ン酸の tRNAをコードする遺伝子 (Glu- tRNA- 2) と共に rrnBオペロンによってコー ドされている。 In order to enhance the expression of the rRNA gene in coryneform bacterium cells, the rRNA gene fragment is ligated with a vector, preferably a multicopy type vector, which functions in the bacterium to produce recombinant DNA. Then, this may be introduced into a coryneform bacterium capable of producing L-lysine or L-glutamic acid for transformation. As a result of the increase in the copy number of the rRNA gene in the cells of the transformed strain, the expression of the rRNA gene is enhanced. The rRNA gene to be enhanced includes any one, two or three selected from 16 S rRNA gene, 23 SrRNA gene and 5 SrRNA gene, and all three are enhanced. Is preferably performed. In Escherichia coli, the 16S rRNA gene, the 23S: ¾ gene and the 53rRNA gene are encoded by the rrnB operon together with a gene encoding glutamate tRNA (Glu-tRNA-2).
rRNA遺伝子は、 コリネ型細菌の遺伝子を用いることも、 ェシヱリヒア属細 菌等の他の生物由来の遺伝子のいずれも使用することができる。 As the rRNA gene, a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
ェシヱリヒア . コリの各 rRNA遺伝子及びそれらを含むオペロン (rrnB) の 塩基配列は既に明らかにされている (16S RNA遺伝子 : Brosius, J. et al., Pro c. Natl. Acad. Sci. USA, 75, 4801-4805 (1978)。 23S rRNA遺伝子: Brosius, J. et al., Proc. Natl. Acad. Sci. USA, 77, 201-204 (1980)。 5S rRNA遺伝子 : Singh, B. et al., Biochim. Biophys. Acta, 698, 252-259 (1982)。 rrnB: E MBL/GenBank/DDBJ accession No. J01695) ので、 その塩基配列に基づいて作製 したプライマーを用いてェシエリヒア ' コリ染色体 DNAを銪型とする P CR法 (PCR : polymerase chain reaction; White, T.J. et al ; Trends Genet. 5, 185(1989)参照) によって、 各 r RNA遺伝子又は rrnBオペロンを取得すること ができる。 rrnBオペロンは、 例えば配列表配列番号 1及び 2に示すプライマ一を 用いて取得することができる。 コリネ型細菌等の他の微生物の r RN A遺伝子も、 同様にして取得され得る。 The nucleotide sequences of each rRNA gene of Escherichia coli and the operon (rrnB) containing them have already been elucidated (16S RNA gene: Brosius, J. et al., Proc. Natl. Acad. Sci. USA, 75 , 4801-4805 (1978) 23S rRNA gene: Brosius, J. et al., Proc. Natl. Acad. Sci. USA, 77, 201-204 (1980) 5S rRNA gene: Singh, B. et al. Acta, 698, 252-259 (1982) rrnB: EMBL / GenBank / DDBJ accession No. J01695), so that the Escherichia coli chromosome DNA was purified using primers prepared based on the base sequence. Each rRNA gene or rrnB operon can be obtained by the PCR method (PCR: polymerase chain reaction; White, TJ et al; see Trends Genet. 5, 185 (1989)). The rrnB operon can be obtained, for example, using the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing. RRNA genes of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
尚、 rrnBオペロンを取得する際に、 同オペロンに Glu- tRNA- 2が含まれていても よいが、 含まれていなくてもよい。 When the rrnB operon is obtained, the operon may contain Glu-tRNA-2, but it does not have to contain Glu-tRNA-2.
染色体 D NAは、 DNA供与体である細菌から、 例えば、 斎藤、 三浦の方法
(H.Saito and K.Miura Biochem. Biophys .Acta, 72, 619,( 1963)、 生物工学実験 書、 日本生物工学会編、 9 7〜9 8頁、 培風館、 1 9 9 2年参照) 等により調製 することができる。 Chromosomal DNA is obtained from bacteria that are DNA donors, for example, according to the method of Saito and Miura. (See H. Saito and K. Miura Biochem. Biophys. Acta, 72, 619, (1963), Bioengineering Experiments, edited by The Society of Biotechnology, pages 97-98, Baifukan, 1992), etc. It can be prepared by
P C R法により増幅された r R NA遺伝子は、 ェシエリヒア · コリ及び/又は コリネ型細菌の細胞内において自律複製可能なベクター D N Aに接続して組換え D N Aを調製し、 これをェシヱリヒア ' コリ細胞に導入しておく と、 後の操作が しゃすくなる。 ェシエリヒア · コリ細胞内において自律複製可能なベクタ一とし ては、 プラスミ ドベクタ一が好ましく、 宿主の細胞内で自立複製可能なものが好 ましく、 例えば pUC19、 pUC18、 pBR322、 pHSG299, pHSG399, pHSG398、 RSFIOIO 等が挙げられる。 The rRNA gene amplified by the PCR method is connected to autonomously replicable vector DNA in the cells of Escherichia coli and / or coryneform bacteria to prepare recombinant DNA, which is introduced into Escherichia coli cells. Doing so will make subsequent operations difficult. As a vector capable of autonomous replication in Escherichia coli cells, a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.For example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSFIOIO and the like.
コリネ型細菌の細胞内において自律複製可能なベクターとしては、 PAM330 (特 開昭 58-67699号公報参照) 、 pHM1519 (特開昭 58-77895号公報参照) 等が挙げら れる。 また、 これらのベクタ一からコリネ型細菌中でプラスミ ドを自律複製可能 にする能力を持つ D N A断片を取り出し、 前記ェシエリヒア · コリ用のベクター に挿入すると、 ェシエリヒア · コリ及びコリネ型細菌の両方で自律複製可能ない わゆるシャ トルべクタ一として使用することができる。 Examples of vectors capable of autonomous replication in coryneform bacteria cells include PAM330 (see Japanese Patent Publication No. 58-67699) and pHM1519 (see Japanese Patent Application Laid-Open No. 58-77895). In addition, a DNA fragment having the ability to enable autonomous replication of plasmid in coryneform bacteria is extracted from one of these vectors, and inserted into the above-mentioned vector for Escherichia coli, whereby both Escherichia coli and coryneform bacteria become autonomous. It can be used as a shuttle vector that cannot be duplicated.
このようなシャ トルベクターとしては、 以下のものが挙げられる。 尚、 それそ れのベクターを保持する微生物及び国際寄託機関の受託番号をかっこ内に示した。 Such shuttle vectors include the following. Microorganisms carrying the respective vectors and the accession numbers of the international depository organizations are shown in parentheses.
PAJ655 ェシエリヒア'コリ AJ11882(FERM BP- 136) PAJ655 Escherichia Cori AJ11882 (FERM BP-136)
コリネハ、、クテリウム 'ク、、ルタミクム SR8201 (ATCC39135) Coryneha, Cterium 'C, Rutamicum SR8201 (ATCC39135)
PAJ1844 ェシエリヒアつ1 MJ11883(FERM BP- 137) PAJ1844 Escherichia 1 MJ11883 (FERM BP-137)
コリネハ、、クテリゥム'ク、、ルタミクム SR8202(ATCC39136) Coryneha, Cterium ',, Rutamicum SR8202 (ATCC39136)
PAJ611 ェシエリヒア リ AJU884(FERM BP- 138) PAJ611 Escherichia AJU884 (FERM BP-138)
PAJ3148 コリネハ、、クテリゥム 'ク、、ルタミクム SR8203(ATCC39137) PAJ3148 Coryneha, Cterium 'C, Rutamicum SR8203 (ATCC39137)
PAJ440 ハ、、チルス'ス、、フ、、チリス AJ1190UFERM BP-140) (PAJ440 C, Chils's, F, Chillis AJ1190UFERM BP-140)
PHC ェシエリヒア ·]リ AJ12617(FERM BP- 3532) r R NA遺伝子とコリネ型細菌で機能するべクタ一を連結して組み換え D N A を調製するには、 r R N A遺伝子の末端に合うような制限酵素でベクタ一を切断
o PHC Escherichia l] AJ12617 (FERM BP-3532) To prepare recombinant DNA by linking the rRNA gene and a vector that functions in coryneform bacteria, use a restriction enzyme that matches the end of the rRNA gene. Cut vector o
する。 連結は、 Τ 4 D N Aリガ一ゼ等のリガーゼを用いて行うのが普通である。 上記のように調製した組み換え D N Aをコリネ型細菌に導入するには、 これま でに報告されている形質転換法に従って行えばよい。 例えば、 ェシヱリヒア ' コ リ K— 1 2について報告されているような、 受容菌細胞を塩化カルシウムで処 理して D N Aの透過性を増す方法 (Mandel,M.and Higa,A.,J. Mol. Biol., 53, 159 ( 1970)) があり、 バチルス . ズブチリスについて報告されているような、 増 殖段階の細胞からコンビテン トセルを調製して DN Aを導入する方法 ( Duncan, C.H. , Wilson, G. A. and Young,F.E., Gene, 1, 153 (1977)) がある。 あるいは、 バチルス · ズブチリス、 放線菌類及び酵母について知られているような、 DNA 受容菌の細胞を、 組換え D N Aを容易に取り込むプロ トプラス トまたはスフエロ プラス トの状態にして組換え DNAを DNA受容菌に導入する方法 ( Chang, S. a nd Choen,S.N.,Molec. Gen. Genet., 168, 111 (1979) Bibb,M. J. , Ward, J.M.and Hop ood,0. A., Nature, 274, 398 (1978);Hinnen,A. ,Hicks, J.B.and Fink,G.R. , Proc. Natl. Acad. Sci. USA, 75 1929 (1978)) も応用できる。 本発明の実施例 で用いた形質転換の方法は、 電気パルス法 (特開平 2— 20 779 1号公報参照) である。 I do. Ligation is usually performed using a ligase such as Τ4DNA ligase. In order to introduce the recombinant DNA prepared as described above into a coryneform bacterium, the transformation may be performed according to the transformation method reported so far. For example, a method of increasing the permeability of DNA by treating recipient cells with calcium chloride, as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)), and a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus subtilis (Duncan, CH, Wilson, GA and Young, FE, Gene, 1, 153 (1977)). Alternatively, the DNA of the recipient DNA is transformed into a protoplast or spheroplast that readily incorporates the recombinant DNA, as is known for Bacillus subtilis, actinomycetes, and yeast. (Chang, S. and Chond, SN, Molec. Gen. Genet., 168, 111 (1979) Bibb, MJ, Ward, JMand Hopood, 0.A., Nature, 274, 398 ( 1978); Hinnen, A., Hicks, JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)). The transformation method used in Examples of the present invention is the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791).
r R N A遺伝子の増強は、 r RN A遺伝子を上記宿主の染色体 D N A上に多コ ピ一存在させることによつても達成できる。 コリネ型細菌に属する微生物の染色 体 DN A上に r RN A遺伝子を多コピーで導入するには、 染色体 DN A上に多コ ピー存在する配列を標的に利用して相同組換えにより行う。 染色体 D N A上に多 コピー存在する配列としては、 レぺッティブ DNA、 転移因子の端部に存在する ィンバ一テイツ ド · リピー卜が利用できる。 あるいは、 特開平 2— 1 09 985 号公報に開示されているように、 r RN A遺伝子をトランスポゾンに搭載してこ れを転移させて染色体 D N A上に多コピー導入することも可能である。 いずれの 方法によっても形質転換株内の r R N A遺伝子のコピー数が上昇する結果、 r R N A遺伝子の発現が増強される。 Enhancement of the rRNA gene can also be achieved by causing multiple copies of the rRNA gene to be present on the chromosome DNA of the host. In order to introduce multiple copies of the rRNA gene into the chromosome DNA of a microorganism belonging to a coryneform bacterium, homologous recombination is performed by using a sequence present in multiple copies on the chromosomal DNA as a target. As a sequence present in multiple copies on the chromosome DNA, it is possible to use reactive DNA, or an integrated repeat present at the end of a transposable element. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, it is also possible to carry the rRNA gene on a transposon, transfer it, and introduce multiple copies on the chromosome DNA. Either method increases the copy number of the rRNA gene in the transformed strain, resulting in enhanced expression of the rRNA gene.
r RNA遺伝子の発現の増強は、 上記の遺伝子増幅による以外に、 染色体 DN A上又はプラスミ ド上の rRN A遺伝子のプロモーター等の発現調節配列を強力 なものに置換することによつても達成される。 たとえば、 l a cプロモータ一、
t r pプロモーター、 t r cプロモ一夕一、 t a cプロモー夕一、 ラムダファー ジの PRプロモーター、 PLプロモーター等が強力なプロモ一夕一として知られて いる。 これらのプロモータ一への置換により、 r R N A遺伝子の発現が増強され る。 Enhancement of the expression of the rRNA gene can be achieved by replacing the expression regulatory sequence such as the promoter of the rRNA gene on the chromosomal DNA or plasmid with a strong one, in addition to the gene amplification described above. You. For example, lac promoter one, trp promoter, trc promoter Isseki one, tac promoter evening one, P R promoter of lambda phages, the P L promoter, and the like have been known as a powerful promoter Isseki scratch. The substitution of these promoters enhances the expression of the rRNA gene.
また、 本発明のコリネ型細菌は、 r RN A遺伝子の発現の増強に加えて、 L一 ァミノ酸生合成経路又は解糖系等の酵素遺伝子を強化することによって、 それら の酵素活性が増強されてもよい。 例えば、 L一リジンの製造に利用可能な遺伝子 の例としては、 L一リジン及び L—スレオニンによる相乗的なフィ一ドバック阻 害が実質的に解除されたァスパルトキナーゼひサブュニッ ト蛋白質又は/?サブュ ニッ ト蛋白質をコードする遺伝子 (W094/25605国際公開パンフレッ ト) 、 コ リネ ホルム細菌由来の野生型ホスホエノ一ルビルビン酸カルボキシラーゼ遺伝子 (特 開昭 60- 87788号公報) 、 コリネホルム細菌由来の野生型ジヒドロジビコリン酸合 成酵素をコードする遺伝子 (特公平 6- 55149号公報) 等が知られている。 In addition, the coryneform bacterium of the present invention has enhanced enzymatic activities of the L-amino acid biosynthetic pathway or glycolytic pathway, in addition to enhancing the expression of the rRNA gene, thereby enhancing their enzymatic activities. You may. For example, examples of genes that can be used for the production of L-lysine include aspartokinase subunit protein and / or the synergistic feedback inhibition by L-lysine and L-threonine has been substantially released. ? Subunit protein-encoding gene (W094 / 25605 international publication pamphlet); Coryneform bacterium-derived wild-type phosphoenolpyruvate carboxylase gene (Japanese Patent Publication No. 60-87788); Coryneform bacterium-derived wild-type Genes encoding dihydrodibicolinate synthase (Japanese Patent Publication No. 6-55149) are known.
さらに、 Lーリジンの生合成経路から分岐して L—リジン以外の化合物を生成 する反応を触媒する酵素の活性が低下または欠損していてもよい。 L -グル夕ミ ン酸の生合成経路から分岐して L一グル夕ミン酸以外の化合物を生成する反応を 触媒する酵素としては、 ホモセリンデヒドロゲナ一ゼがある (W0 95/23864参照) 。 また、 L—グルタミン酸の製造に利用可能な遺伝子の例としては、 解糖系のホ スフォフルク トキナーゼ (P FK、 特開昭 6 3— 1 0 2692号) 、 アナプレ□ ティック経路のホスホエノ一ルビルビン酸カルボキシラーゼ (P E P C、 特開昭 6 0— 87 788号、 特開昭 62— 55 08 9号) 、 T C A回路のクェン酸合成 酵素 (C S、 特開昭 62— 20 1 5 85号、 特開昭 6 3— 1 1 9 6 88号) 、 ァ コニッ ト酸ヒドラ夕一ゼ (ACO、 特開昭 6 2— 2 94086号) 、 イソクェン 酸デヒ ドロゲナーゼ ( I CDH、 特開昭 62— 1 668 90号、 特開昭 63 - 2 14 1 89号) 等がある。 Furthermore, the activity of an enzyme that catalyzes a reaction that produces a compound other than L-lysine by branching off from the L-lysine biosynthetic pathway may be reduced or lacking. Homoserine dehydrogenase is an enzyme that catalyzes a reaction that diverges from the L-glucamic acid biosynthetic pathway to produce a compound other than L-glucamic acid (see WO95 / 23864). Examples of genes that can be used for the production of L-glutamic acid include glycosylated phosphofructokinase (PFK, JP-A-63-102692), and phosphoenolpyruvate carboxylase of the anapretictic pathway. (PEPC, JP-A-60-87788, JP-A-62-55809), citrate synthase in the TCA cycle (CS, JP-A-62-201585, JP-A-63 — 1 196 88), aconitic acid hydra type (ACO, JP-A-62-294086), isocitrate dehydrogenase (ICDH, JP-A 62-166890), JP-A-63-214189).
さらに、 L一グル夕ミン酸の生合成経路から分岐して L一グル夕ミン酸以外の 化合物を生成する反応を触媒する酵素の活性が低下または欠損していてもよい。 L一グル夕ミン酸の生合成経路から分岐して L一グル夕ミン酸以外の化合物を生 成する反応を触媒する酵素としては、 ひケ トグルタール酸デヒ ドロゲナ一ゼ (ひ
K G D H ) 、 イソクェン酸リア一ゼ、 リン酸ァセチルトランスフェラーゼ、 酢酸 キナーゼ、 ァセトヒ ドロキシ酸シン夕一ゼ、 ァセ卜乳酸シン夕ーゼ、 ギ酸ァセチ ルトランスフェラーゼ、 乳酸デヒドロゲナ一ゼ、 グルタミン酸デカルボキシラー ゼ、 1—ピロリンデヒ ドロゲナーゼ、 等がある。 Furthermore, the activity of an enzyme that catalyzes a reaction that branches off from the biosynthetic pathway of L-glucaminic acid to produce a compound other than L-glucaminic acid may be reduced or defective. Enzymes that catalyze the reaction that diverges from the biosynthetic pathway of L-glucaminic acid to produce compounds other than L-glucaminic acid include ketoglutarate dehydrogenase (Hg). KGDH), isoquinate lyase, acetyl phosphate transferase, acetate kinase, acetate hydroxysynthesis, acetate lactate synthase, formate acetyl transferase, lactate dehydrogenase, glutamate decarboxylase , 1-pyrroline dehydrogenase, and the like.
さらに、 L一グルタミン酸生産能を有するコリネ型細菌に、 界面活性剤等のビ ォチン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のビ ォチンを含有する培地中にてピオチン作用抑制物質の非存在下で L—グル夕ミン 酸を生産させることができる (W096/06180号参照) 。 このようなコリネ型細菌と しては、 W096/06180号に記載されているブレビパクテリゥム · ラク トフアーメン タム AJ13029が挙げられる。 AJ13029株は、 1994年 9月 2日付けで工業技術院生命 工学工業技術研究所 (郵便番号 305- 8566 日本国茨城県つくば巿東一丁目 1番 3号) に、 受託番号 FERM P- 14501として寄託され、 1 9 9 5年 8月 1 日にブダぺス ト条 約に基づく国際寄託に移管され、 受託番号 FERM BP- 5189が付与されている。 Furthermore, by imparting a temperature-sensitive mutation to a biotin action inhibitor such as a surfactant to a coryneform bacterium capable of producing L-glutamic acid, the biotin action inhibitor in a medium containing an excessive amount of biotin can be added. L-glutamic acid can be produced in the absence of E. coli (see W096 / 06180). Examples of such coryneform bacteria include Brevipacterium lactofermentum AJ13029 described in W096 / 06180. AJ13029 strain was registered on September 2, 1994 with the Institute of Biotechnology, Industrial Science and Technology (Postal Code 305-8566, Tsukuba East 1-3-1, Ibaraki, Japan) under the accession number FERM P-14501. Deposited and transferred to an international deposit under the Budapest Convention on August 1, 1995, and given accession number FERM BP-5189.
また、 L一リジン及び L—グルタミン酸生産能を有するコリネ型細菌に、 ピオ チン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のピオ チンを含有する培地中にてピオチン作用抑制物質の非存在下で L—リジン及び L 一グルタミン酸を同時生産させることができる (W096/06180号参照) 。 このよう な菌株としては、 W096/06180号に記載されているブレビパクテリゥム ' ラク トフ アーメンタム AJ12993株が挙げられる。 同株は 1 9 9 4年 6月 3日付けで工業技 術院生命工学工業技術研究所 (郵便番号 305-8566 日本国茨城県つくば巿東一丁 目 1番 3号) に、 受託番号 FERM P- 14348で寄託され、 1 9 9 5年 8月 1日にブダぺ スト条約に基づく国際寄託に移管され、 受託番号 FERM BP-5188が付与されている。 In addition, a coryneform bacterium having the ability to produce L-lysine and L-glutamic acid is subjected to a temperature-sensitive mutation against a biotin-inhibiting substance, so that the biotin-inhibiting substance can be expressed in a medium containing an excessive amount of biotin. L-lysine and L-glutamic acid can be produced simultaneously in the absence (see W096 / 06180). Such strains include Brevipacterium 'Lactofamentum AJ12993 strain described in W096 / 06180. The strain was granted to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (June 3, 1904, Tsukuba 1-chome 1-3, Ibaraki, Japan 305-8566, Japan) on June 3, 1994, with accession number FERM. Deposited under P-14348, transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5188.
< 3 > L—アミノ酸の生産 <3> L-amino acid production
r R N A遺伝子の発現が増強され、 かつ L—リジン酸生産能を有するコリネ型 細菌を好適な培地で培養すれば、 L一リジンが培地に蓄積する。 また、 r R N A 遺伝の発現が増強され、 かつ L一グル夕ミン酸生産能を有するコリネ型細菌を好 適な培地で培養すれば、 L一グル夕ミン酸が培地に蓄積する。 When a coryneform bacterium having enhanced rRNA gene expression and L-lysine acid-producing ability is cultured in a suitable medium, L-lysine is accumulated in the medium. In addition, when coryneform bacteria having enhanced rRNA gene expression and L-glucamic acid-producing ability are cultured in a suitable medium, L-glucaminic acid accumulates in the medium.
さらに、 r R N A遺伝子の発現が増強され、 かつ L一リジン及び Lーグルタミ
ン酸生産能を有するコリネ型細菌を培地で培養すれば、 L—リジン及び Lーグル 夕ミン酸が培地に蓄積する。 L—リジンと L—グルタミン酸を同時に醮酵生産す る場合には、 Lーリジン生産菌を L一グル夕 ミン酸の生産条件下で培養してもよ いし、 あるいは Lーリジン生産能を有するコリネ型細菌と L—グル夕ミン酸生産 能を有するコリネ型細菌を混合培養してもよい (特開平 5— 3 7 9 3号公報) 。 本発明の微生物を用いて L一リジン及び/又は L—グル夕ミン酸を製造するの に用いる培地は、 炭素源、 窒素源、 無機イオン及び必要に応じその他の有機微量 栄養素を含有する通常の培地である。 炭素源としては、 グルコース、 ラク トース、 ガラク トース、 フラク ト一ス、 シュクロース、 廃糖蜜、 澱粉加水分解物などの炭 水化物、 エタノールやイノシトールなどのアルコール類、 酢酸、 フマール酸、 ク ェン酸、 コハク酸等の有機酸類を用いることができる。 Furthermore, the expression of rRNA gene is enhanced, and L-lysine and L-glutamic acid When a coryneform bacterium capable of producing an acid is cultured in a medium, L-lysine and L-glutamic acid accumulate in the medium. When L-lysine and L-glutamic acid are simultaneously produced by fermentation, the L-lysine-producing bacterium may be cultured under conditions for producing L-glutamic acid, or a coryneform strain having L-lysine-producing ability may be used. Bacteria and coryneform bacteria having an ability to produce L-glucamic acid may be mixed and cultured (Japanese Patent Application Laid-Open No. 5-37993). The medium used for producing L-lysine and / or L-glucamic acid using the microorganism of the present invention may be a conventional medium containing a carbon source, a nitrogen source, inorganic ions, and if necessary, other organic micronutrients. Medium. Carbon sources include carbohydrates such as glucose, lactose, galactose, fructose, sucrose, molasses, starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, and quen. Organic acids such as acid and succinic acid can be used.
窒素源としては、 硫酸アンモニゥム、 硝酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム、 酢酸アンモニゥム等の無機アンモニゥム塩、 アンモニア、 ペプトン、 肉エキス、 酵母エキス、 酵母エキス、 コーン ' スティ一ブ ' リカー、 大豆加水分解物などの有機窒素、 アンモニアガス、 アンモニア水等を用いること ができる。 Nitrogen sources include inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, and ammonium acetate, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'Stib' liquor, and soybean hydrolysis. Organic nitrogen, ammonia gas, aqueous ammonia, etc., can be used.
無機イオンとしては、 リン酸カリウム、 硫酸マグネシウム、 鉄イオン、 マンガ ンイオン等が少量添加される。 有機微量栄養素としては、 ビタミン などの要 求物質または酵母エキス等を必要に応じ適量含有させることが望ましい。 As inorganic ions, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added. As organic trace nutrients, it is desirable to include a required substance such as a vitamin or a yeast extract in an appropriate amount as necessary.
培養は、 振とう培養、 通気撹拌培養等による好気的条件下で 1 6〜 7 2時間実 施するのがよく、 培養温度は 3 0 X;〜 4 5 °Cに、 培養中 p Hは 5〜 9に制御する。 尚、 p H調整には無機あるいは有機の酸性あるいはアルカリ性物質、 更にアンモ ニァガス等を使用することができる。 Culture is preferably carried out for 16 to 72 hours under aerobic conditions such as shaking culture, aeration and agitation culture, and the culture temperature is 30 X; Control to 5-9. For pH adjustment, an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
発酵液からの L一リジンの採取は、 通常イオン交換樹脂法、 沈澱法その他の公 知の方法を組み合わせることにより実施できる。 また、 L一グルタミン酸を採取 する方法も常法によって行えばよく、 例えばイオン交換樹脂法、 晶析法等による ことができる。 具体的には、 L一グルタミン酸を陰イオン交換樹脂により吸着、 分離させるか、 または中和晶析させればよい。 L—リジン及び L一グルタミン酸 の両方を製造する場合、 これらを混合物として用いる場合には、 これらのァミノ
酸を相互に分離することは不要である。 発明を実施するための最良の形態 以下、 本発明を実施例によりさらに具体的に説明する。 The collection of L-lysine from the fermentation broth can usually be carried out by a combination of an ion exchange resin method, a precipitation method and other known methods. The method for collecting L-glutamic acid may be a conventional method, for example, an ion exchange resin method, a crystallization method, or the like. Specifically, L-glutamic acid may be adsorbed and separated by an anion exchange resin, or may be neutralized and crystallized. When producing both L-lysine and L-glutamic acid, when these are used as a mixture, these aminos It is not necessary to separate the acids from each other. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to examples.
く 1 >ェシエリヒア ' コリ W3110株の r RNA遺伝子 (rrnBオペロン) のクロ一 ニング Cloning of rRNA gene (rrnB operon) of Escherichia coli W3110 strain
ェシエリヒア · コリ W3110株の rrnBオペロンの塩基配列は既に明らかにされて いる (EMBL/GenBank/DDBJ accession No. J01695) 。 報告されている塩基配列に 基づいて配列表配列番号 1及び 2に示すプライマーを合成し、 ェシエリヒア · コ リ W3110株の染色体 D N Aを錶型にして P CR法により rrnBオペロンを増幅した。 合成したブライマ一の内、 配列番号 1は、 EMBL/GenBank/DDBJ accession No. J01695に登録されている rrnB遺伝子の塩基配列の 251番目から 270番目の塩基に至 る配列に相当し、 配列番号 2は、 7488番目から 7508番目の塩基に至る配列に相当 する。 尚、 配列番号 1及び 2の塩基配列には制限酵素 Kpnlの認識配列が挿入され ている。 The nucleotide sequence of the rrnB operon of Escherichia coli W3110 strain has already been determined (EMBL / GenBank / DDBJ accession No. J01695). Based on the reported nucleotide sequence, primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing were synthesized, and the chromosomal DNA of Escherichia coli W3110 strain was transformed into type III to amplify the rrnB operon by the PCR method. Among the synthesized primers, SEQ ID NO: 1 corresponds to the sequence from 251st to 270th base of the rrnB gene base sequence registered in EMBL / GenBank / DDBJ accession No. J01695, and SEQ ID NO: 2 Corresponds to the sequence from base 7488 to base 7508. In addition, the recognition sequence of the restriction enzyme Kpnl is inserted into the nucleotide sequences of SEQ ID NOS: 1 and 2.
ェシヱリヒア . コリ W3110株の染色体 D Ν Αの調製は常法によった (生物工学 実験書、 日本生物工学会編、 9 7〜9 8頁、 培風館、 1 9 9 2年) 。 また、 P C R反応は、 P CR法最前線 (関谷剛男ほか編、 共立出版社、 1 9 8 9年) 1 8 5 頁に記載されている標準反応条件を用いた。 The chromosome DΝ of Escherichia coli W3110 was prepared by a conventional method (Bioengineering Experiments, edited by The Biotechnology Society of Japan, pages 97-98, Baifukan, 1992). For the PCR reaction, the standard reaction conditions described on page 185 of the PCR method forefront (edited by Takeo Sekiya et al., Kyoritsu Shuppan, 1989) were used.
生成した P CR産物を常法により精製後、 制限酵素 Kpnlを反応させ、 制限酵素 Kpnlで切断したプラスミ ド pVK7と、 ライゲーシヨンキッ ト (宝酒造社製) を用い て連結した。 The resulting PCR product was purified by a conventional method, reacted with a restriction enzyme Kpnl, and ligated with a plasmid pVK7 cut with the restriction enzyme Kpnl using a ligation kit (Takara Shuzo).
前記の PVK7は、 以下のようにして、 ェシエリヒア ' コリ用ベクタ一である pHSG 299 (Kmr; Takeshita, S. et al., Gene, 61, 63-74, (1987)参照) にブレビバ クテリゥム · ラク トフアーメンタムのクリブティ ックプラスミ ドである pAM330を 結合することによって構築した。 PAM330は、 ブレビパクテリゥム ' ラク トファー メンタム ATCC13869株より調製した。 pHSG299を一箇所切断酵素である Aval I (宝 酒造 (株) 製) にて切断し、 T4 DNAポリメラ一ゼにて平滑末端化したのち、 Hind III (宝酒造 (株) 製) にて切断し、 T4 DNAポリメラ一ゼにて平滑末端化した pAM
7 PVK7 Said, as follows, is a vector one for Eshierihia 'coli pHSG 299 (Km r;. Takeshita , S. et al, Gene, 61, 63-74, (1987) see) Burebiba Kuteriumu-in It was constructed by combining pAM330, a lactofamentum cribtic plasmid. PAM330 was prepared from Brevipacterium 'lactofermentum ATCC13869 strain. pHSG299 is cut with Aval I (Takara Shuzo Co., Ltd.) which is a one-site cleavage enzyme, blunt-ended with T4 DNA polymerase, and then cut with Hind III (Takara Shuzo Co., Ltd.). PAM blunt-ended with T4 DNA polymerase 7
13 13
330と接続した。 pHSG299に対する pAM330の挿入方向により、 生成した 2種類のブ ラスミ ドを pVK6、 pVK7と命名し、 pVK7を以下の実験に用いた。 pVK7は、 E. coli 及びブレビパクテリゥム · ラク トフアーメンタムの細胞中で自律複製可能であり、 かつ、 pHSG299由来のマルチプルクローニングサイ 卜と、 lacZ' 及びマーカーと してカナマイシン耐性遺伝子を保持している。 Connected to 330. The two kinds of generated plasmids were named pVK6 and pVK7 according to the insertion direction of pAM330 into pHSG299, and pVK7 was used in the following experiments. pVK7 is capable of autonomous replication in E. coli and Brevibacterium lactofermentum cells and has a multiple cloning site derived from pHSG299, lacZ 'and a kanamycin resistance gene as a marker. ing.
上記のようにして得られた rrnBオペロンが挿入されたプラスミ ドを用いて、 ェ シエリ ヒア . コ リ JM109のコンビテン トセル (宝酒造社製) を形質転換し、 IPTG (イソプロピル一 /?— D—チォガラク トピラノシ ド) 10〃 g/ml、 X-Gal ( 5 -ブ ロモ一 4—クロ口一 3—イ ン ドリル一 /?— D—ガラク トシ ド) 40〃g/ml及びカナ マイシン 25〃g/mlを含む L培地 (パク ト ト リブトン 10g/L、 パク トイ一ス トェキ ス トラク ト 5g/L、 NaCl 5g/L、 寒天 15g/L、 pH7.2) に塗布し、 一晩培養後、 出現 した白色のコロニーを釣り上げ、 単コロニー分離し、 形質転換株を得た。 Using the plasmid into which the rrnB operon obtained as described above was inserted, a competent cell of Escherichia coli JM109 (manufactured by Takara Shuzo Co., Ltd.) was transformed, and IPTG (isopropyl-1-/?-D-thiogalacto) was transformed. Topiranoside) 10〃 g / ml, X-Gal (5-bromo 4- 4-cloth 3-indolyl /?-D-galactoside) 40〃 g / ml and kanamycin 25〃 g / ml Applied to L medium containing 10 ml / ml (Pacto Tributon 10 g / L, Pactoistractose tract 5 g / L, NaCl 5 g / L, Agar 15 g / L, pH 7.2), appeared after overnight culture The isolated white colonies were picked and separated into single colonies to obtain a transformant.
形質転換株からアルカリ法 (生物工学実験書、 日本生物工学会編、 1 0 5頁、 培風館、 1 9 9 2年) を用いてプラスミ ドを調製した後、 ベクターに挿入された DN A断片の制限酵素地図を作成し、 報告されている rrnBオペロンの制限酵素地 図と比較し、 同一制限酵素地図を有する DN A断片が挿入されているプラスミ ド を pVKRRNと名付けた。 Plasmid was prepared from the transformant using the alkaline method (Bioengineering Experiments, edited by The Biotechnology Society of Japan, p. 105, Baifukan, 1992), and the DNA fragment inserted into the vector was prepared. A restriction map was constructed and compared with the reported restriction map of the rrnB operon. The plasmid into which the DNA fragment having the same restriction map had been inserted was named pVKRRN.
く 3 >コリネ型細菌の L—グル夕ミン酸生産株への pVKRRNの導入と L一グル夕ミ ン酸生産 <3> Introduction of pVKRRN into L-glucamic acid producing strain of coryneform bacterium and L-glucamic acid production
ブレビパクテリゥム . ラク トフアーメンタム AJ13029を電気パルス法 (特開平 2 -207791号公報参照) によりブラスミ ド pVKRRNで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ13029/pVKRRNを用いて L一グル夕ミン酸生産の ための培養を以下のように行った。 25〃g/mlのカナマイシンを含む CM 2 Bプレ 一ト培地にて培養して得た AJ13029/pVKRRNの菌体を、 25〃g/mlのカナマイシンを 含む表 1に示す組成の種培養培地に接種し、 3 1. 5°Cで 2 4時間振とう培養し て種培養を得た。 表 1に示す組成の本培養培地を 5 0 0ml容ガラス製ジャーファ ーメンターに 3 0 0mlずつ分注し加熱殺菌した後、 上記種培養を 4 0ml接種した。 撹拌速度を 80 0〜 1 3 0 Orpin, 通気量を 1 / 2〜 1 / 1 vvmとし、 培養温度 3 1. 5°Cにて培養を開始した。 培養液の pHはアンモニアガスで 7. 5に維持し
た。 培養を開始してから 8時間後に培養温度を 37てにシフ ト した。 コントロー ルとしてコリネバクテリゥム属細菌 AJ13029株に、 pVK7を電気パルス法により形 質転換した菌株を上記と同様にして培養した。 表 1 濃 度 Brevibacterium lactofermentum AJ13029 was transformed with the plasmid pVKRRN by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the resulting transformant. Using the resulting transformant AJ13029 / pVKRRN, culture for producing L-glucamic acid was performed as follows. AJ13029 / pVKRRN cells obtained by culturing on a CM2B plate medium containing 25 μg / ml kanamycin were added to a seed culture medium containing 25 μg / ml kanamycin and having the composition shown in Table 1. Inoculation was performed and shaking culture was performed at 31.5 ° C for 24 hours to obtain a seed culture. The main culture medium having the composition shown in Table 1 was dispensed into a 500-ml glass jar fermenter in an amount of 300 ml each, sterilized by heating, and then inoculated with 40 ml of the above seed culture. The culture was started at a culture temperature of 31.5 ° C with a stirring speed of 800 to 130 Orpin and an aeration rate of 1/2 to 1/1 vvm. The pH of the culture was maintained at 7.5 with ammonia gas. Was. Eight hours after the start of the culture, the culture temperature was shifted to 37. As a control, a strain obtained by transforming pVK7 into a corynebacterium bacterium AJ13029 by an electric pulse method was cultured in the same manner as described above. Table 1 Concentration
成 分 Component
本培養 グルコース 5 g/dl 1 5 g/dl Main culture glucose 5 g / dl 15 g / dl
KH2P 04 0. 1 /dl 0 2 g/dlKH 2 P 0 4 0.1 / dl 0 2 g / dl
Mg S 04 · 7 H 20 0. 04 g/dl 0 1 5 g/dlMg S 047 H 2 0 0.004 g / dl 0 15 g / dl
F e S 04 · 7 H20 1 mg/dl 1 5 mg/dlF e S 047 H 2 0 1 mg / dl 15 mg / dl
M n S 04 · 4 H 20 1 mg/dl 1 5 mg/dl 大豆蛋白加水分解液 2 ml/dl 5 ml/dl ピオチン 5 0 i g/1 2 0 0 g/dl サイアミン塩酸塩 2 00 j g/1 3 0 0 g/dl M n S 0 4・ 4 H 2 0 1 mg / dl 15 mg / dl Soybean protein hydrolyzate 2 ml / dl 5 ml / dl Pyotin 50 ig / 1 200 g / dl Thiamin hydrochloride 200 jg / 1 3 0 0 g / dl
培養終了後、 培養液中の L一グル夕ミン酸蓄積量を旭化成工業社製バイオテツ クアナライザー A S— 2 1 0により測定した。 このときの結果を表 2に示した。 After completion of the culture, the accumulated amount of L-glucaminic acid in the culture solution was measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 2 shows the results.
菌 株 L -ク'、ルタミン酸生成量(g/dL) 培養時間(h) Strain L-q ', glutamic acid production (g / dL) Culture time (h)
AJ13029/pVK7 1 9. 7 24 AJ13029 / pVK7 1 9.7 24
AJ13029/pVKRRN 20. 9 1 7 AJ13029 / pVKRRN 20.9 1 7
く 4〉コリネ型細菌の L一リジン生産株への pVKRRNの導入と L—リジン生産 ブレビパクテリゥム ' ラク トファーメン夕ム AJ11082を電気パルス法 (特開平 2 - 207791号公報参照) によりプラスミ ド pVKRRNで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ11082/pVKRRNを用いて L—リジン生産のための
培養を以下のように行った。 25〃g/mlのカナマイシンを含む CM 2 Bプレート培 地にて培養して得た AJ11082/pVKRRN株の菌体を、 25〃g/mlのカナマイシンを含む 下記組成の L一リジン生産培地に接種し、 31.5°Cにて培地中の糖が消費されるま で振とう培養した。 コントロールとしてコリネパクテリゥム属細菌 AJ11082株に、 pVK7を電気パルス法により形質転換した菌株を上記と同様にして培養した。 4> Introduction of pVKRRN into L-lysine-producing strain of coryneform bacterium and production of L-lysine Brevipacterium 'Lact fermentum AJ11082 was purified by electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791). And the obtained transformant was obtained. Using the resulting transformant AJ11082 / pVKRRN for L-lysine production Culture was performed as follows. AJ11082 / pVKRRN strain obtained by culturing on a CM2B plate medium containing 25 μg / ml kanamycin is inoculated into an L-lysine production medium containing 25 μg / ml kanamycin and having the following composition Then, shaking culture was performed at 31.5 ° C until the sugar in the medium was consumed. As a control, a strain in which pVK7 was transformed into a corynebacterium bacterium AJ11082 by an electric pulse method was cultured in the same manner as described above.
〔Lーリジン生産培地〕 (L-lysine production medium)
炭酸カルシウム以外の下記成分 ( 1 L中) を溶解し、 K0Hで pH8.0に調製し、 11 5°Cで 15分殺菌した後、 別に乾熱殺菌した炭酸カルシウムを 50g加える。 Dissolve the following components (in 1 L) other than calcium carbonate, adjust to pH 8.0 with K0H, sterilize at 115 ° C for 15 minutes, and add 50 g of dry-heat sterilized calcium carbonate.
グルコース 100 g 100 g glucose
(NH4) 2 S〇4 55 g
(NH 4 ) 2 S〇 4 55 g
ピオチン 500 US Piotin 500 US
チアミン 2000 US
Thiamine 2000 US
ニコチンァ - ド 5 mg Nicotine-5 mg
蛋白質加水分解物 (豆濃) 30 ml Protein hydrolyzate (bean concentrate) 30 ml
炭酸カルシウム 50 g 培養終了後、 培養液中の L—グル夕ミン酸蓄積量を旭化成工業社製バイオテツ クアナライザー A S— 2 1 0により測定した。 このときの結果を表 3に示した。 After culturing 50 g of calcium carbonate, the accumulated amount of L-glucamic acid in the culture solution was measured using a Biotech Analyzer AS210 manufactured by Asahi Kasei Corporation. Table 3 shows the results.
菌 株 L - ―リジン生成量(g/dL) 培養時間(h) Strain L--Lysine production (g / dL) Incubation time (h)
AJ13029/pVK7 28. 9 7 2 AJ13029 / pVK7 28. 9 7 2
AJ13029/pVKRRN 3 0. 4 5 7
< 5 >コリネ型細菌の L一リジン及び L—グル夕ミン酸生産株への pVKRRNの導入 と L—リジン及び L一グル夕ミン酸同時生産 AJ13029 / pVKRRN 3 0.4 5 7 Introduction of pVKRRN into L-lysine and L-glucamic acid producing strains of <5> coryneform bacteria and simultaneous production of L-lysine and L-glucamic acid
ブレビパクテリゥム · ラク トファーメンタム AJ12993を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド pVKRRNで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ12993/pVKRRNを用いて L—リジン及び Lーグル 夕ミン酸生産のための培養を以下のように行った。 25〃g/mlのカナマイシンを含 む C M 2 Bプレート培地にて培養して得た AJ12993/pVKRRN株の菌体を、 25〃g/ml のカナマイシンを含む前記 L一リジン生産培地に接種して 31 . 5°Cにて培養した。 培養を開始してから 1 2時間後に培養温度を 3 4 °Cにシフ トし、 培地中の糖が消 費されるまで振とう培養した。 コントロールとしてコリネパクテリゥム属細菌 AJ 12993株に、 pVK7を電気パルス法により形質転換した菌株を上記と同様にして培 養した。 Brevipacterium lactofermentum AJ12993 was transformed with plasmid pVKRRN by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the obtained transformant. Using the obtained transformant AJ12993 / pVKRRN, cultivation for producing L-lysine and L-glutamic acid was performed as follows. Cells of the AJ12993 / pVKRRN strain obtained by culturing on a CM2B plate medium containing 25 μg / ml kanamycin were inoculated into the L-lysine production medium containing 25 μg / ml kanamycin. The cells were cultured at 31.5 ° C. After 12 hours from the start of the culture, the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed. As a control, a strain obtained by transforming pVK7 into a corynebacterium bacterium AJ12993 by an electric pulse method was cultured in the same manner as described above.
培養終了後、 培養液中の L—リジン及び L—グル夕ミン酸蓄積量を旭化成工業 社製バィォテヅクアナライザー A S— 2 1 0により測定した。 このときの結果を 表 4に示した。 表 4 菌 株 L-リシ、'ン生成量(g/dl ) いク、、ルタミン酸生成量(g/dl ) 培養時間 After completion of the culture, the accumulated amounts of L-lysine and L-glucamic acid in the culture solution were measured with a biotech analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 4 shows the results. Table 4 Strain L-lysine, glutamic acid production (g / dl), glutamic acid production (g / dl) Culture time
AJ12993/pVK7 1 0 5 1 8 9 6 0 AJ12993 / pVK7 1 0 5 1 8 9 6 0
AJ12993/pVK RN 1 1 3 2 0 3 4 4 AJ12993 / pVK RN 1 1 3 2 0 3 4 4
産業上の利用可能件 本発明により、 コリネ型細菌の L—リジン、 L—グルタミン酸、 Lースレオニ ン、 L—ロイシン、 L一イソロイシン、 L一バリン、 L一フエ二ルァラニン等の L—アミノ酸の生産能を向上させることができる。 また、 これらの L—アミノ酸 の生産速度を改善することができる。
INDUSTRIAL APPLICABILITY According to the present invention, production of L-amino acids such as L-lysine, L-glutamic acid, L-threonine, L-leucine, L-isoleucine, L-valine, and L-phenylalanine of coryneform bacteria Performance can be improved. In addition, the production rate of these L-amino acids can be improved.