[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001098526A2 - Receptor fingerprinting, sensory perception, and biosensors of chemical sensants - Google Patents

Receptor fingerprinting, sensory perception, and biosensors of chemical sensants Download PDF

Info

Publication number
WO2001098526A2
WO2001098526A2 PCT/US2001/020122 US0120122W WO0198526A2 WO 2001098526 A2 WO2001098526 A2 WO 2001098526A2 US 0120122 W US0120122 W US 0120122W WO 0198526 A2 WO0198526 A2 WO 0198526A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
odorant
receptor
sensory
receptors
Prior art date
Application number
PCT/US2001/020122
Other languages
French (fr)
Other versions
WO2001098526A9 (en
Inventor
Sergey Zozulya
Lubert Stryer
Original Assignee
Senomyx, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/804,291 external-priority patent/US20030088059A1/en
Application filed by Senomyx, Inc. filed Critical Senomyx, Inc.
Priority to AU2001270121A priority Critical patent/AU2001270121A1/en
Publication of WO2001098526A2 publication Critical patent/WO2001098526A2/en
Publication of WO2001098526A9 publication Critical patent/WO2001098526A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH

Definitions

  • the invention relates to the use of sensory G protein-coupled receptor complexes that recognize chemical sensants, particularly those involving olfactory and taste receptors; polypep-tide fragments and mutants thereof; classes of such receptors; polynucleotides encoding such receptors, fragments and mutants thereof, and representatives of receptor classes; genetic vectors including such polynucleotides; and cells and non-human organisms engineered to express such receptor complexes, fragments and mutants of an olfactory or taste receptor, and representatives of receptor classes to simulate sensory perception of odorants and tastants.
  • the invention also relates to the use of such products as a biosensor or component thereof to detect, to identify, to measure, or otherwise process the event of binding between the receptor and its cognate ligand (i.e., chemical sensant).
  • the invention has application, for example, in the design and formu-lation of odorant and tastant compositions.
  • the olfactory and taste systems provide sensory information about the chemical environ-ment.
  • Olfactory receptors and taste receptors recognize, respectively, "odorants” and “tastants,” collectively referred to as “sensants” or “sensory receptor ligands” herein.
  • a "primary” sensant is an odorant or tastant ligand that substantially binds to sensory receptors with a ligand-binding site of a single amino acid sequence.
  • Olfactory and taste receptors belong to the superfamily of seven-transmembrane guanyl nucleotide-binding proteins: such receptors are, however, also recognized as distinct families, or sub-genuses, of olfactory or taste receptors (see Raming Nature 361 :353, 1993). These receptors control diverse physiological functions such as media-ting signaling from an external chemical stimulus across the membrane containing the receptor into a cell, endocrine function, exocrine function, heart rate, lipolysis, and carbohydrate metabolism. Thus, the dissection of these diverse functions into component signals is needed.
  • WO 00/15269 discloses methods and apparatus for odor reproduction.
  • the total affinities of a specific odorant with a group of receptors was called the affinity fingerprint of the odorant.
  • This odorant fingerprint was represented by a vector of affinity values. It was proposed to repro-duce an arbitrary odor by inputting its sensed odorant fingerprint into a device, which has a palate of predetermined odorants and produces a composite odor using predetermined odorant finger-prints by minimizing the difference between vectors representing the sensed odorant fingerprint and the predetermined odorant fingerprints.
  • This reference does not teach or suggest the human olfactory receptors disclosed herein.
  • WO 00/70343 discloses biosensors and sense replication systems using G- protein coupled receptors (GPCR). It was proposed to mimic the response of the G- protein signal transduction system by detecting the affinity of a stimulus to a plurality of GPCR, codifying such information into electronic signals, and reproducing the stimulus by converting the codified information into a combination of stimulant entities. But this reference also does not teach or suggest the human olfactory receptors disclosed herein.
  • WO 01/27158 discloses olfactory receptors and their use to determine the correspondence between individual odorant receptors and particular odors. It was proposed that the interactions between an odor and olfactory receptors can be used to represent the odor and to re-create it. This reference, however, does not teach or suggest the human olfactory receptors disclosed herein.
  • the present invention addresses the need for better understanding of these ligand-receptor interactions by using a large set of identified sensory receptors. Even if the receptor set used is incomplete ( . e. , a partial set of all sensory receptors encoded in the genome), a large number of sensants will be detected. Moreover, redundancy in the chemical structures recognized by the sensory receptors or combinatorial processing of signals from different sensory receptors would allow broad coverage of chemically diverse sensants (e.g., by selection of a representative class of sensory receptors). Also provided are, ter alia, methods for utilizing such sensory receptors and biosensors to simulate sensory perception.
  • OLFR mammalian olfactory G-protein-coupled receptors
  • TASR mammalian taste G-protein-coupled receptors
  • chimeric proteins or other polypeptides with altered ligand-binding and/or signaling properties can be made from two or more different sensory receptors by mixing domains.
  • the invention provides methods for representing the sensory perception of one or more chemicals (e.g., a primary sensant or mixture thereof) and/or for predicting the sensory percep-tion of one or more chemicals in a mammal (e.g., human) using the aforementioned products. Given a known member of a ligand-receptor binding pair, one or both members of the pair (i.e., ligand, receptor, or both) may be detected, identified, and/or measured under binding conditions.
  • Novel molecules or combinations of molecules which elicit a desired and predetermined sensory perception in a mammal can be generated by determining a value of sensory perception in a mammal for a known molecule or combination thereof; determining a value of sensory perception in a mammal for one or more unknown molecules or combinations thereof; comparing the value of sensory perception in a mammal for one or more unknown corn-positions to the value of sensory perception in a mammal for one or more known compositions; selecting a molecule or combination of molecules that elicits a predetermined sensory perception in a mammal; and mixing two or more unknown molecules or combinations thereof to form a molecule or combination thereof that elicits a predetermined sensory perception in a mammal.
  • the combining step yields a single molecule or a combination thereof that elicits a predetermined sensory perception in a mammal.
  • primary odorants that uniquely bind to olfactory receptors with a single ligand-binding domain may be such novel molecules.
  • Variants thereof may be used (1) to enhance stimulation of a limited response by olfactory receptors with a single ligand-binding domain or (2) to block stimulation of olfactory receptors with a single ligand-binding domain to reduce or inhibit olfactory perception.
  • An alternative method for identifying primary odorants is to identify the mutated receptors in genetic anosmias because that odorant would be expected to be recognized by only one or a few olfactory receptors affected by the mutation.
  • U.S. Patent No. 5,691,188 describes how upon binding of ligand to receptor, the receptor presumably undergoes a conformational change leading to activation of the G protein.
  • the G proteins are comprised of three subunits: a guanyl nucleotide binding ⁇ subunit, a ⁇ subunit, and a ⁇ subunit. G proteins cycle between two forms, depending on whether GDP or GTP is bound to the ⁇ subunit. When GDP is bound, the G protein exists as a heterotrimer: the G ⁇ complex. When GTP is bound, the ⁇ subunit dissociates from the heterotrimer, leaving a G ⁇ complex.
  • G ⁇ complex When a G ⁇ complex operatively associates with an activated G protein coupled receptor in a cell membrane, the rate of exchange of GTP for bound GDP is increased and the rate of disso-ciation of the bound G ⁇ subunit from the G ⁇ complex increases.
  • the free G ⁇ subunit and G ⁇ complex are thus capable of transmitting a signal to downstream elements of a variety of signal transduction pathways.
  • a high-resolution X-ray crystal structure is available for rhodopsin, a guanyl nucleotide binding protein, has been solved (Palczewski et al, Science 289:739, 2000). Using this structure, the portions of the amino acid sequence of sensant receptors that are responsible for ligand binding can be identified.
  • Sensory Perception - Olfaction Genes encoding the olfactory receptors are active primarily in olfactory neurons (Axel Sci. Amer. 273:154, 1995). Individual olfactory receptor types are expressed in subsets of cells distributed in distinct zones of the olfactory epithelium (Breer Semin. Cell Biol. 5:25, 1994). The human genome contains thousands of genes that encode a diverse repertoire of olfactory receptors (Rouquier Nat. Genet. 18:243, 1998; Trask Hwm. Mol. Genet. 7:2007, 1998).
  • Mammals are believed to have five basic taste modalities: sweet, bitter, sour, salty, and umami (the taste of monosodium glutamate). See, e.g., Kawamura et al, Introduction to Umami: A Basic Taste (1987); Kinnamon et al, Ann. Rev. Physiol, 54:715, 1992; Lindemann, Physiol. Rev., 76:718, 1996; Stewart et al, Am. J. Physiol, 272:1, 1997. Numerous physiological studies in animals have shown that taste receptor cells may selectively respond to different chemical stimuli. See, e.g., Akabas et al, Science, 242:1047, 1988; Gilbertson et al, J. Gen. Physiol, 100:803, 1992; Bernhardt et al, J. Physiol, 490:325, 1996; Cummings et al, J. Neurophysiol, 75:1256, 1996.
  • taste receptor cells are assembled into taste buds that are distributed into different papillae in the tongue epithelium.
  • Cirristopapillae found at the very back of the tongue, contain hundreds, e.g., mice, to thousands, e.g., human, of taste buds.
  • foli-ate papillae localized to the posterior lateral edge of the tongue, only contain dozens to hundreds of taste buds.
  • fungiform papillae contain only a single or a few taste buds, and are at the front of the tongue. r
  • nucleic acids encoding the sensory receptors and other related polypep-tides can be isolated from a variety of sources, genetically engineered, amplified, synthesized, and or expressed recombinantly according to the methods disclosed in WO 00/35374, which is herein incorporated by reference in its entirety. These nucleic acids provide probes for the identification of cells expressing sensory receptors, as the nucleic acids are specifically expressed in such cells. They can also serve as tools for the generation of sensory topographical maps that elucidate the relationship between cells expressing sensory receptors and sensory neurons leading to particular regions of the brain. Furthermore, the nucleic acids and the polypeptides they encode can be used as probes to elucidate olfactant- or tastant- induced behaviors.
  • Nucleic acid molecules encoding a sensory receptor comprising a nucleic acid sequence that is at least 75%, 85%, 90%, 95%, or 99% identical to a nucleic acid sequence selected from those known in the prior art or disclosed herein are considered variants.
  • Other nucleic acid molecules comprising a nucleic acid sequence that encodes a polypeptide having an amino acid sequence at least 75%, 85%, 90%, 95%, or 99% identical to an amino acid sequence selected from those known in the prior art or disclosed herein are also considered variants. Further variants contain amino acid sequence differences in at most ten, five, four, three, two, or one amino acid residue(s).
  • nucleic acid sequences may be selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ D NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ D NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO:
  • Nucleic acid molecule comprising a nucleic acid sequence that encodes a fragment of a polypeptide having an amino acid sequence selected from those known in the prior art or dis-closed herein; wherein the fragment is at least ten, 20, 30, 50, 70, 100, or 150 amino acid resi-dues in length, are useful as probes, primers, and to construct hybrids or chimerae.
  • Polypeptides comprising an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence selected from those known in the prior art or disclosed herein are considered variants. Further variants contain amino acid sequence differ-ences in at most ten, five, four, three, two, or one amino acid residue(s).
  • Other polypeptides comprising a fragment of a polypeptide having an amino acid sequence selected from those known in the prior art or disclosed herein; wherein the fragment is at least 40, 60, 80, 100, 150, 200, or 250 amino acid residues in length, are useful as specific binders of sensants, competitive binders, antigens, and to construct hybrids or chimerae.
  • Exemplary amino acid sequences may be selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ DD NO: 7, SEQ DD NO: 9, SEQ ED NO: 11, SEQ DD NO: 13, SEQ ID NO: 15, SEQ TD NO: 17, SEQ ID NO: 19, SEQ TD NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ TD NO: 27, SEQ ED NO: 29, SEQ TD NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ED NO: 37, SEQ DD NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ TD NO: 49, SEQ ED NO: 51, SEQ DD NO: 53, SEQ ED NO: 55, SEQ DD NO: 57, SEQ ED NO: 59, SEQ DD NO: 61, SEQ ID NO: 63, SEQ TD NO: 65, S
  • modulators e.g., activators, inhibitors, stimu-lators, enhancers, agonists, and antagonists
  • Such modulators of signal transduction are useful for pharmacological or genetic modu-lation of signaling pathways.
  • These methods of screening can be used to identify high affinity agonists and antagonists of sensory cell activity.
  • modulator compounds can then be used in the pharmaceutical, food, and cosmetic industries to customize odorants or tastants.
  • the invention provides assays for sensory modulation, where the sensory receptors, or fragments or variants thereof, act as direct or indirect reporter molecules for the effect of modulators on signal transduction.
  • Sensory receptors, or fragments or variants thereof can be used in assays, e.g., to measure changes in ion concentration, membrane potential, current flow, ion flux, transcription, signal transduction, receptor-ligand interaction, second messenger concen-trations, in vitro, in vivo, and ex vivo.
  • sensory receptors, or fragments or variants thereof can be used as an indirect reporters via attachment to second reporter molecules, such as green fluorescent protein (see, e.g., Mistili et al, Nature Biotech., 15:961, 1997).
  • the sensory receptors, or fragments or variants thereof can be expressed in host cells, and modulation of signal transduction via sensory receptor activity can be assayed by measuring changes in Ca 2+ levels.
  • Methods of assaying for modulators of signal transduction include in vitro ligand binding assays using the sensory receptors, or fragments or variants thereof. More particularly, such assays can use the sensory receptors; portions thereof such as the extracellular or transmembrane domains; chimeric proteins comprising one or more of such domains; oocyte receptor expression; tissue culture cell receptor expression; transcriptional activation of the receptor; G-protein binding to the receptor; ligand binding assays; voltage, membrane potential and conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP and inositol triphosphate; changes in intracellular Ca levels; and neurotransmitter release.
  • the invention also provides for methods of detecting sensory receptor nucleic acid and protein expression, allowing for the investigation of taste transduction regulation and specific identification of sensory receptor cells.
  • the sensory receptors, fragments, and variants of the invention can also be used to generate monoclonal and polyclonal antibodies useful for identi-fying a sensory receptor cells.
  • Sensory receptor cells can be identified using techniques such as reverse transcription and amplification of mRNA, isolation of total RNA or poly A + RNA, Northern blotting, dot blotting, in situ hybridization, RNase protection, SI digestion, probing DNA microchip arrays, Western blots, and the like.
  • amino acid sequences of the sensory receptors and polypeptides of the invention can be identified by putative translation of the coding nucleic acid sequences. These various amino acid sequences and the coding nucleic acid sequences may be compared to one another or to other sequences according to a number of methods. For example, in sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, as described below for the BLASTN and BLASTP programs, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
  • a “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of. contiguous positions after the two sequences are optimally aligned.
  • Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g. , by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman & Wunsch, J. Mol.
  • HSPs high scoring sequence pairs
  • T is referred to as the neighborhood word score threshold (Altschul et al, Altschul et al, Nucl. Acids Res. 25:3389, 1977 and Altschul et al, J. Mol. Biol. 215:403, 1990).
  • HSPs high scoring sequence pairs
  • Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always ⁇ 0).
  • M forward score for a pair of matching residues; always > 0
  • N penalty score for mismatching residues; always ⁇ 0.
  • a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
  • W wordlength
  • E expectation
  • PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a so- called “tree” or “dendogram” showing the clustering relationships used to create the alignment (see, e.g., Figure 2).
  • PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, JMol. Evol. 35:351, 1987. The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151, 1989.
  • the program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids.
  • the multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments.
  • the program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters.
  • PILEUP a reference sequence is compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.
  • PILEUP can be obtained from the GCG sequence analysis software package, e.g., version 7. 0
  • the nucleic acid molecules of the present invention are typically intronless and encode putative sensory receptor proteins generally having lengths of about 300 to about 400 amino acid residues that contain seven transmembrane domains, as predicted by hydrophobicity plotting analysis, indicating that they belong to the G protein-coupled receptor superfamily, which includes the subset of taste and olfactory receptors.
  • putative sensory receptor proteins generally having lengths of about 300 to about 400 amino acid residues that contain seven transmembrane domains, as predicted by hydrophobicity plotting analysis, indicating that they belong to the G protein-coupled receptor superfamily, which includes the subset of taste and olfactory receptors.
  • each of the 256 sensory receptors identified herein has a characteristic sequence signature of an olfactory receptor.
  • novel human receptors have amino acid sequences distinctly different from the previously known human sensory receptors, which suggests their different specificity in sensant recognition. Therefore, these novel sensory receptors and their genes can be used, alone or in combination with known sensory receptors, in developing detec-tion systems and assays for chemically distinct types of sensants not recognized by the known sensory receptors, as well as for diagnostic and research purposes.
  • purified refers to the state of being free of other, dissimilar compounds with which the compound of the invention is normally associated in its natural state, so that the “purified,” “substantially purified,” and “isolated” subject comprises at least 0.5%, 1%, 5%, 10%, or 20%, and most preferably at least 50% or 75% of the mass, by weight, of a given sample. In one preferred embodiment, these terms refer to the compound of the invention comprising at least 95% of the mass, by weight, of a given sample.
  • nucleic acid or protein when referring to a nucleic acid or protein, of nucleic acids or proteins, also refers to a state of purification or concentration different than that which occurs naturally in the mammalian, especially human, body.
  • nucleic acid or protein or classes of nucleic acids or proteins, described herein may be isolated, or otherwise associated with structures or compounds to which they are not normally associated in nature, according to a variety of methods and processes known to those of skill in the art.
  • amplifying and amplification refer to the use of any suitable amplification methodology for generating or detecting recombinant or naturally expressed nucleic acid, as described in detail, below.
  • the invention provides methods and reagents (e.g., specific degenerate oligonucleotide primer pairs) for amplifying (e.g. , by polymerase chain reaction, PCR) naturally expressed (e.g. , genomic or mRNA) or recombinant (e.g., cDNA) nucleic acids of the invention (e.g., sensant-binding sequences of the invention) in vivo or in vitro.
  • amplifying e.g. , by polymerase chain reaction, PCR
  • naturally expressed e.g. , genomic or mRNA
  • recombinant e.g., cDNA
  • 7- transmembrane receptor means a polypeptide belonging to a superfamily of transmembrane proteins that have seven domains that span the plasma membrane seven times (thus, the seven domains are called “transmembrane” or "TM" domains TM I to TM Nil).
  • the families of olfactory and taste receptors each belong to this super-family.
  • Seven-transmembrane receptor polypeptides have similar and characteristic primary, secondary and tertiary structures, as discussed in further detail below.
  • expression vector refers to any recombinant expression system for the purpose of expressing a nucleic acid sequence of the invention in vitro or in vivo, constitutively or inducibly, in any cell, including prokaryotic, yeast, fungal, plant, insect or mammalian cell.
  • the term includes linear or circular expression systems.
  • the term includes expression systems that remain episomal or integrate into the host cell genome.
  • the expression systems can have the ability to self-replicate or not, i.e., drive only transient expression in a cell.
  • the term includes recombinant expression "cassettes which contain only the minimum elements needed for transcription of the recombinant nucleic acid.
  • the term “library” means a preparation that is a mixture of different nucleic acid or polypeptide molecules, such as the library of recombinantly generated sensory, particularly olfactory or taste, receptor ligand-binding domains generated by amplification of nucleic acid with degenerate primer pairs, or an isolated collection of vectors that incorporate the amplified sensant-binding domains, or a mixture of cells each randomly transfected with at least one vector encoding a sensory receptor.
  • nucleic acid or “nucleic acid sequence” refers to a deoxy- ribonucleotide or ribonucleotide oligonucleotide in either single- or double-stranded form.
  • the term encompasses nucleic acids, i.e., oligonucleotides, containing known analogs of natural nucleotides.
  • the term also encompasses nucleic-acid-like structures with synthetic backbones, see e.g., Oligonucleo-tides and Analogues, a Practical Approach, ed. F. Eckstein, Oxford Univ. Press (1991); Anti-sense Strategies, Annals of the N.Y. Academy of Sciences, Vol. 600, Eds. Baserga et al. (NYAS 1992); Milligan (1993) J. Med. Chem.
  • sensory receptor refers to sequences derived from a sensory receptor that substantially incorporates transmembrane domains II to N ⁇ (TM ⁇ to NH).
  • the domain may be capable of binding a sensant.
  • conservative variant refers to a polypeptide which has a modified amino acid sequence, such that the change(s) do not substantially alter the poly-peptide's (the conservative variant's) structure and/or activity, as defined herein.
  • conservatively modified variations of an amino acid sequence i.e., amino acid substitutions, additions or deletions of those residues that are not critical for protein activity, or substitution of amino acids with residues having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non-polar, etc.) such that the substitutions of even critical amino acids does not substantially alter structure and/or activity.
  • Conservative substitution tables providing function-ally similar amino acids are well known in the art.
  • one exemplary guideline to select conservative substitutions includes (original residue followed by exemplary substitution): Ala/Gly or Ser; Arg/Lys; Asn/Gln or His; Asp/Glu; Cys/Ser; Gin/ Asn; Gly/ Asp; Gly/ Ala or Pro; His/ Asn or Gin; Ile/Leu or Nal; Leu/Ile or val; Lys/ Arg or Gin or Glu; Met/Leu or Tyr or He; Phe/Met or Leu or Tyr; Ser/Thr; Thr/Ser; Trp/Tyr; Tyr/Trp or Phe; Nal/Ile or Leu.
  • An alternative exemplary guideline uses the following six groups, each containing amino acids that are conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine ( ⁇ ), Glutamine (Q); 4) Arginine (R), Lysine (I); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (N); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); (see also, e.g., Creighton, Proteins, W.H. Freeman, 1984; Schultz & Schimer, Principles of Protein Structure, Springer-Nerlag, 1979).
  • substitutions are not the only possible conservative substitutions. For example, for some purposes, one may regard all charged amino acids as conservative substitutions for each other whether they are positive or negative. In addition, individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence can also be considered “conservatively modified variations.”
  • the terms “mimetic” and “peptidomimetic” refer to a synthetic chemical compound that has substantially the same structural and/or functional characteristics of the polypeptides, e.g., translocation domains or sensant-binding domains or chimeric receptors of the invention.
  • the mimetic can be either entirely composed of synthetic, non-natural analogs of amino acids, or, is a chimeric molecule of partly natural peptide amino acids and partly non-natural analogs of amino acids.
  • the mimetic can also incorporate any amount of natural amino acid conservative substitutions as long as such substitutions also do not substantially alter the mimetic's structure and/or activity.
  • routine experi-mentation will determine whether a mimetic is within the scope of the invention, i.e., that its structure and/or function is not substantially altered.
  • Polypeptide mimetic compositions can contain any combination of non-natural structural components, which are typically from three structural groups: a) residue linkage groups other than the natural amide bond ("peptide bond") linkages; b) non-natural residues in place of naturally occurring amino acid residues; or c) residues which induce secondary structural mimicry, i.e., to induce or stabilize a secondary structure, e.g., a beta turn, gamma turn, beta sheet, alpha helix conformation, and the like.
  • a polypeptide can be characterized as a mimetic when all or some of its residues are joined by chemical means other than natural peptide bonds.
  • peptide bonds can be joined by peptide bonds, other chemical bonds or coupling means, such as, e.g., glutaraldehyde, N-hydroxysuccinimide esters, bifunctional maleimides, N,N'-dicyclohexylcarbod ⁇ mide (DCC) or N,N'- diisopropylcarbodiimide (DIC).
  • a polypeptide can also be characterized as a mimetic by containing all or some non-natural residues in place of naturally occurring amino acid residues; non-natural residues are well described in the scientific and patent literature.
  • recombinant refers to a polynucleotide synthesized or otherwise manipulated in vitro (e.g., “recombinant polynucleotide”), to methods of using recombinant polynucleotides to produce gene products in cells or other biological systems, or to a polypeptide ("recombinant protein") encoded by a recombinant polynucleotide.
  • transmembrane domain means a polypeptide domain that can completely span the plasma membrane.
  • the general secondary and tertiary structure of transmembrane domains, in particular the seven transmembrane domains of 7- transmembrane receptors such as olfactory receptors, are well known in the art. Thus, primary structure sequence can be designed or predicted based on known transmembrane domain sequences, as described in detail below.
  • Isolation and expression of the sensory receptors, or fragments or variants thereof, of the invention can be performed as described below.
  • PCR primers can be used for the amplification of nucleic acids encoding olfactory receptor ligand binding regions and libraries of these nucleic acids can thereby be generated.
  • Libraries of expression vectors can then be used to infect or transfect host cells for the functional expression of these libraries. These genes and vectors can be made and expressed in vitro or in vivo.
  • nucleic acid sequences of the invention and other nucleic acids used to practice this invention may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed recombinantly. Any recombinant expression system can be used, including, in addition to mammalian cells, e.g., bacterial, yeast, insect or plant systems.
  • these nucleic acids can be synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Carruthers, Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982); Adams, Am. Chem. Soc. 105:661 (1983); Belousov, Nucleic Acids Res. 25:3440-3444 (1997); Frenkel, Eree Radio. Biol Med. 19:373-380 (1995); Blommers, Biochemistry 33:7886-7896 (1994); Narang, Meth. Enzymol 68:90 (1979); Brown, Meth. Enzymol 68:109 (1979); Beaucage, Tetra. Lett. 22:1859 (1981); U.S. Patent No. 4,458,066. Double-stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence..
  • nucleic acids such as, for example, for generating mutations in sequences, subcloning, labeling probes, sequencing, hybridization and the like are well described in the scientific and patent literature. See, e.g., Sambrook, ed., Molecular Cloning: a Laboratory manual (2nd ed.), Nols. 1- 3, Cold Spring Harbor Laboratory (1989); Current Protocols in Molecular Biology, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); Laboratoi ⁇ Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part I, Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993).
  • Nucleic acids, vectors, capsids, polypeptides, and the like can be analyzed and quantified by any of a number of general means well known to those of skill in the art. These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromato-graphy (TLC), and hyperdiffusion chromatography, various immunological methods, e.g., fluid or gel precipitin reactions, immunodiffusion, immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), immunofluorescent assay, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g., SDS-PAGE), RT-PCR, quantita-tive PCR, other nucleic acid or target or signal amplification methods, radiolabeling, scintillation counting, and affinity chromat
  • Oligonucleotide primers are used to amplify nucleic acid encoding an olfactory receptor ligand-binding region.
  • the nucleic acids described herein can also be cloned or measured quan-titatively using amplification techniques.
  • primer pair sequences (see below), the skilled artisan can select and design suitable oligonucleotide amplification primers.
  • Amplification methods are also well known in the art, and include, e.g., polymerase chain reaction, PCR (PCR Protocols, a Guide to Methods and Applications, ed. Innis. Academic Press, NY, 1990 and PCR Strategies, ed.
  • LCR ligase chain reaction
  • transcription amplification see, e.g., Kwoh, Proc. Natl. Acad. Sci. USA 86:1173, 1989
  • self-sustained sequence replication see, e.g., Guatelli, Proc. Natl. Acad. Sci. USA 87:1874, 1990
  • Q Beta replicase amplification see, e.g., Smith, J. Clin. Microbiol.
  • the nucleic acids may be cloned according to methods known in the art, if desired, into any of a variety of vectors using routine molecular biological methods; methods for cloning in vitro amplified nucleic acids are described, e.g., U.S. Patent No. 5,426,039.
  • restriction enzyme sites can be "built into” the PCR primer pair. For example, Pst I and Bsp El sites were designed into the exemplary primer pairs of the invention.
  • restriction sites have a sequence that, when ligated, are "in-frame” with respect to the 7-membrane receptor "donor" coding sequence into which they are spliced (the sensant-binding region-coding sequence is internal to the 7-membrane polypeptide, thus, if it is desired that the construct be translated downstream of a restriction enzyme splice site, out of frame results should be avoided; this may not be necessary if the inserted sensant-binding domain comprises substantially most of the transmembrane N ⁇ region).
  • the primers can be designed to retain the original sequence of the "donor" 7-membrane receptor (the Pst I and Bsp El sequence in he primers of the invention generate an insert that, when ligated into the Pst I/Bsp El cut vector, encode residues found in the "donor" mouse olfactory receptor M4 sequence).
  • the primers can encode amino acid residues that are conservative substitutions (e.g., hydrophobic for hydrophobic residue, see above discussion) or functionally benign substitutions (e.g., do not prevent plasma membrane insertion, cause cleavage by peptidase, cause abnormal folding of receptor, and the like).
  • the primer pairs are designed to selectively amplify sensant-binding regions of olfactory receptor proteins. These domain regions may vary for different sensnants, and more particularly odorants; thus, what may be a minimal binding region for one sensant, and more particularly odorants, may be too limiting for a second potential ligand. Thus, domain regions of different sizes comprising different domain structures may be amplified; for example, transmembrane (TM) domains H through N ⁇ , HI through N ⁇ , HI through NI or H through VI, or variations thereof (e.g., only a subsequence of a particular domain, mixing the order of the domains, and the like), of a 7-transmembrane sensory receptor.
  • TM transmembrane
  • a nucleic acid sequence encoding domain regions ⁇ through N ⁇ can be generated by PCR ampli-fication using a primer pair.
  • a degenerate primer can be designed from a nucleic acid that encodes the amino acid sequence LFLLYL.
  • Such a degenerate primer can be used to generate a binding domain incorpo-rating TM I through TM HI, TM I through TM IN, TM I through TM N, TM I through TM VI or TM I through TM VH.
  • a degenerate primer (of at least about 17 residues) can be designed from a nucleic acid that encodes the amino acid sequence M(A G)(Y/F)DRYVAI (encoded by a nucleic acid sequence such as
  • Such a degenerate primer can be used to generate a binding domain incorporating TM HI through TM IN, TM m through TM N, TM m through TM NI or TM m through TM V ⁇ .
  • a degenerate primer (of at least about 17 residues) can be designed from nucleic acid encoding an amino acid sequence TC(G/A)SHL, encoded by a sequence such as 5'- AG(G/A)TG ⁇ (G/C)(T/A) ⁇ (G/C)C(G/A)CA- ⁇ GT-3'.
  • Such a degenerate primer can be used to generate a binding domain incorporating TM I through TM VI, TM H through TM VI, TM m through TM VI or TM TV * through TM VI).
  • CODEHOP COnsensus-DEgenerate Hybrid Oligonucleotide Primer
  • oligonucleotide primer pairs are well known in the art. "Natural" base pairs or synthetic base pairs can be used. For example, use of artificial nucleobases offers a versatile approach to manipulate primer sequence and generate a more complex mixture of amplification products. Various families of artificial nucleobases are capable of assuming multiple hydrogen bonding orientations through internal bond rotations to provide a means for degenerate molecular recognition. Incorporation of these analogs into a single position of a PCR primer allows for generation of a complex library of amplification products. See, e.g., Hoops, Nucleic Acids Res. 25:4866, 1997. Nonpolar molecules can also be used to mimic the shape of natural DNA bases.
  • a non-hydrogen-bonding shape mimic for adenine can replicate efficiently and selectively against a nonpolar shape mimic for thymine (see, e.g., Morales, Nat. Struct. Biol. 5:950, 1998).
  • two degenerate bases can be the pyrimidine base 6H, 8H-3,4-dihydropyrimido[4,5-c][l,2]oxazin-7-one or the purine base ⁇ 6-methoxy-2,6-diaminopurine (see, e.g., Hill, Proc. Natl, Acad. Sci. USA 95:4258, 1998).
  • Exemplary degenerate primers of the invention incorporate the nucleobase analog 5'-Dimethoxytrityl-N-benzoyl-2'-deoxy-Cytidine, 3'-[(2- cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (the term "P" in the sequences, see above).
  • This pyrimidine analog hydrogen bonds with purines, including A and G residues.
  • Exemplary primer pairs for amplification of olfactory receptor transmembrane domains ⁇ through NH include:
  • Nucleic acids that encode ligand-binding regions of olfactory receptors are generated by amplification (e.g., PCR) of appropriate nucleic acid sequences using degenerate primer pairs.
  • the amplified nucleic acid can be genomic DNA from any cell or tissue or mRNA or cDNA derived from olfactory receptor-expressing cells, e.g., olfactory neurons or olfactory epithelium.
  • Isolation from olfactory receptor-expressing cells is well known in the art (cells expressing naturally or inducibly expressing olfactory receptors can be used to express the hybrid olfactory receptors of the invention to screen for potential odorants and odorant effect on cell physiology, as described below).
  • cells can be identified by olfactory marker protein (OMP), an abundant cytoplasmic protein expressed almost exclusively in mature olfactory sensory neurons (see, e.g., Buiakova, Proc. Natl. Acad. Sci. USA 93:9858, 1996). Shirley, Eur. J. Biochem.
  • OMP olfactory marker protein
  • Hybrid protein-coding sequences comprising nucleic acids sensory receptors fused to the translocation sequences described herein may be constructed. Also provided are hybrid receptors comprising the translocation motifs and ligand-binding domains of sensory receptors. These nucleic acid sequences can be operably linked to transcriptional or translational control elements, e.g., transcription and translation initiation sequences, promoters and enhancers, transcription and translation terminators, polyadenylation sequences, and other sequences useful for transcribing DNA into RNA.
  • transcriptional or translational control elements e.g., transcription and translation initiation sequences, promoters and enhancers, transcription and translation terminators, polyadenylation sequences, and other sequences useful for transcribing DNA into RNA.
  • vectors, transgenics, and a promoter fragment can be employed to direct expression of the desired nucleic acid in all tissues.
  • Olfactory cell-specific transcriptional elements can also be used to express the fusion polypeptide receptor, including, e.g., a 6.7 kb region upstream of the M4 olfactory receptor coding region. This region was sufficient to direct expression in olfactory epithelium with wild type zonal restriction and distributed neuronal expression for endogenous olfactory receptors (Qasba, J. Neurosci. 18:227, 1998).
  • Receptor genes are normally expressed in a small subset of neurons throughout a zonally restricted region of the sensory epithelium.
  • the transcriptional or translational control elements can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods.
  • Fusion proteins may also comprise the translocation motif described herein. However, these fusion proteins can also comprise additional elements for, e.g., protein detection, purification, or other applications.
  • Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts or histidine-tryptophan modules or other domains that allow purification on immobilized metals; maltose binding protein; protein A domains that allow purification on immobilized immunoglobulin; or the domain utilized in the FLAGS extension/ affinity purification system (Immunex Corp, Seattle WA).
  • cleavable linker sequences such as Factor Xa (see, e.g., Ottavi, Biochi-mie 80:289, 1998), subtilisin protease recognition motif (see, e.g., Polyak, Protein Eng. 10:615, 1997); enterokinase (Invitrogen, San Diego, CA), and the like, between the translocation domain (for efficient plasma membrane expression) and the rest of the newly translated polypeptide may be useful to facilitate purification.
  • one construct can include a nucleic acid sequence encoding a polypeptide linked to six histidine residues followed by a thioredoxin, an enterokinase cleavage site (see, e.g., Williams, Biochemistry 34:1787, 1995), and an amino terminal translocation domain.
  • the histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the desired protein(s) from the remainder of the fusion protein.
  • Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well described in the scientific and patent literature, see, e.g., Kroll, DNA Cell. Biol. 12:441, 1993).
  • Expression vectors either as individual expression vectors or as libraries of expression vectors, comprising the olfactory binding domain-encoding sequences may be introduced into a genome or into the cytoplasm or a nucleus of a cell and expressed by a variety of conventional techniques, well described in the scientific and patent literature. See, e.g., Roberts, Nature 328:731, 1987; Berger supra; Schneider, Protein Expr. Purif. 6435:10, 1995; Sambrook; Tijssen; Ausubel. Product information from manufacturers of biological reagents and experimental equipment also provide information regarding known biological methods.
  • the vectors can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods.
  • the nucleic acids can be expressed in expression cassettes, vectors or viruses which are stably or transiently expressed in cells (e.g., episomal expression systems).
  • Selection markers can be incorporated into expression cassettes and vectors to confer a selectable phenotype on transformed cells and sequences. For example, selection markers can code for episomal maintenance and replication such that integration into the host genome is not required.
  • the marker may encode antibiotic resistance (e.g., chloramphenicol, kanamycin, G418, bleomycin, hygromycin) or herbicide resistance (e.g., chlorosulfuron or Basta) to permit selection of those cells transformed with the desired DNA sequences (see, e.g., Blondelet-Rouault, Gene 190:315, 1997; Aubrecht, J. Pharmacol. Exp. Ther. 281:992, 1997). Because selectable marker genes conferring resistance to substrates like neomycin or hygromycin can only be utilized in tissue culture, chemoresistance genes are also used as selectable markers in vitro and in vivo.
  • antibiotic resistance e.g., chloramphenicol, kanamycin, G418, bleomycin, hygromycin
  • herbicide resistance e.g., chlorosulfuron or Basta
  • a chimeric nucleic acid sequence may encode a sensant-binding domain within any 7-transmembrane polypeptide.
  • Seven-transmembrane receptors belong to a superfamily of trans-membrane (TM) proteins having seven domains that traverse a plasma membrane seven times. Each of the seven domains spans the plasma membrane (TM I to TM VII). Because 7-trans-membrane receptor polypeptides have similar primary sequences and secondary and tertiary structures, structural domains (e.g., TM domains) can be readily identified by sequence analysis. For example, homology modeling, Fourier analysis and helical periodicity detection can identify and characterize the seven domains with a 7-transmembrane receptor sequence.
  • FFT Fast Fourier Transform
  • the library sequences include receptor sequences that correspond to TM ligand-binding domains, including, e.g., TM H to VH, TM H to VI, TM in to VH, and TM m to V ⁇ , that have been amplified (e.g., PCR) from mRNA of or cDNA derived from, e.g., olfactory receptor-expressing neurons or genomic DNA.
  • TM ligand-binding domains including, e.g., TM H to VH, TM H to VI, TM in to VH, and TM m to V ⁇ , that have been amplified (e.g., PCR) from mRNA of or cDNA derived from, e.g., olfactory receptor-expressing neurons or genomic DNA.
  • TM domain sequences can include a various TM domains or variations thereof, as described above. These sequences can be derived from any 7-transmembrane receptor. Because these polypeptides have similar primary sequences and secondary and tertiary structures, the seven domains can be identified by various analyses well known in the art, including, e.g., homology modeling, Fourier analysis and helical periodicity (see, e.g., Pilpel supra), as described above. Using this information sequences flanking the seven domains can be identified and used to design degenerate primers for amplification of various combinations of TM regions and subsequences.
  • the present invention also includes not only the DNA and proteins having the specified amino acid sequences, but also DNA fragments, particularly fragments of, for example, 40, 60, 80, 100, 150, 200, or 250 nucleotides, or more, as well as protein fragments of, for example, 10, 20, 30, 50, 70, 100, or 150 amino acids, or more.
  • chimeric proteins comprising at least 10, 20, 30, 50, 70, 100, or 150 amino acids, or more, of one of at least one of the sensory receptors described herein, coupled to additional amino acids representing all or part of another G protein receptor, preferably a member of the 7-transmembrane superfamily.
  • These chimerae can be made from the instant receptors and a G protein receptor described herein, or they can be made by combining two or more of the present proteins.
  • one portion of the chimera corresponds to and is derived from one or more of the domains of the 7-transmembrane protein described herein, and the remaining portion or portions come from another G protein-coupled receptor.
  • Chimeric receptors are well known in the art, and the techniques for creating them and the selection and boundaries of domains or fragments of G protein-coupled receptors for incorpo-ration therein are also well known. Thus, this knowledge of those skilled in the art can readily be used to create such chimeric receptors.
  • the use of such chimeric receptors can provide, for example, an olfactory selectivity characteristic of one of the receptors specifically disclosed herein, coupled with the signal transduction characteristics of another receptor, such as a well known receptor used in prior art assay systems.
  • a domain such as a ligand binding domain, an extracellular domain, a transmembrane domain (e.g., one comprising seven transmembrane regions and corresponding extracellular and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc., can be covalently linked to a heterologous protein.
  • an extracellular domain can be linked to a heterologous GPCR transmembrane domain, or a heterologous CGPCR extracellular domain can be linked to a transmembrane domain.
  • heterologous proteins of choice can include, e.g., green fluorescent protein, ⁇ -gal, glutamtate receptor, and the rhodopsin presequence.
  • Polymorphic variants, alleles, and interspecies homologs that are substantially identical to a sensory receptor disclosed herein can be isolated using the nucleic acid probes described above.
  • expression libraries can be used to isolate sensory receptors and polymorphic variants, alleles, and interspecies homologs thereof, by detecting expressed homologs immunologically with antisera or purified antibodies made against a sensory receptor-derived polypeptide, which also recognize and selectively bind to the sensory receptor homolog.
  • host cells for expressing the sensory receptors, fragments, or variants of the invention.
  • a cloned gene or nucleic acid such as cDNAs encoding the sensory receptors, fragments, or variants thereof
  • the nucleic acid sequence of interest is subcloned into an expression vector that contains a strong promoter to direct transcription, a transcription translation terminator, and if for a nucleic acid encoding a protein, a ribosome binding site for translational initiation.
  • Suitable prokaryotic and eukaryotic expression systems are well known in the art and described, e.g., in Sambrook et al.
  • Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, liposomes, microinjection, plasmid vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at lest one gene into the host cell capable of expressing the olfactory receptor, fragment, or variant of interest.
  • the transfected cells are cultured under conditions favoring expression of the receptor, fragment, or variant of interest, which is then recovered from the culture using standard techniques. Examples of such techniques are well known in the art. See, e.g., WO 00/06593, which is incorporated by reference in a manner consistent with this disclosure.
  • Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (see, e.g., Huse et al, Science, 246:1275, 1989; Ward et al, Nature, 341:544, 1989).
  • a number of sensory receptor-comprising immunogens may be used to produce antibody specifically reactive with a sensory receptor family member.
  • a recombinant sensory receptor protein, or an antigenic fragment thereof can be isolated as described herein. Suitable antigenic regions include, e.g., the conserved motifs that are used to identify members of the sensory receptor family.
  • Recombinant proteins can be expressed in eukaryotic or prokaryotic cells as described above, and purified as generally described above.
  • Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies.
  • a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen.
  • Naturally occurring protein may also be used either in pure or impure form.
  • the product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated, for subsequent use in immunoassays to measure the protein.
  • mice is immunized with the protein using an adjuvant (e.g., Freund's adjuvant) and a standard immunization protocol with periodic boosts.
  • an adjuvant e.g., Freund's adjuvant
  • the animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the sensory receptor.
  • blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (see Harlow & Lane, supra).
  • Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see Kohler & Milstein, Eur. J. Immunol, 6:511, 1976). Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, retroviruses, or other methods well known in the art. Colonies arising from single clones of immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse et al, Science, 246:1275, 1989.
  • Monoclonal antibodies or polyclonal sera are collected and titered against antigen in an immunoassay, for example, a solid phase immunoassay with the antigen immobilized on a solid support.
  • an immunoassay for example, a solid phase immunoassay with the antigen immobilized on a solid support.
  • polyclonal antisera with a titer of 10 4 or greater are selected and tested for their cross reactivity against non-sensory receptor proteins, or even other sensory receptor family members or other related proteins from other organisms, using a competitive binding immuno-assay.
  • Specific polyclonal antisera and monoclonal antibodies will usually bind with a Kd of at least about 0.1 mM, more usually at least about 1 pM, optionally at least about 0.1 p.M or better, and optionally 0.01 pM or better.
  • Sensory receptor proteins can be detected and/or quantified using any of a number of well recognized immunological binding assays (see, e.g., U.S. Patent Nos. 4,366,241; 4,376,110; 4,517,288; and 4,837,168).
  • immunological binding assays see also Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993); Basic and Clinical Immunology (Stites & Terr, eds., 7th ed., 1991).
  • Immunological binding assays typically use an antibody that specifically binds to a protein or antigen of choice (in this case a sensory receptor family member or an antigenic subsequence thereof).
  • the antibody e.g. , anti-sensory receptor
  • the antibody may be produced by any of a number of means well known to those of skill in the art and as described above.
  • Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen.
  • the labeling agent may itself be one of the moieties comprising the antibody/antigen complex.
  • the labeling agent may be a labeled sensory receptor polypeptide or a labeled anti-sensory receptor antibody.
  • the labeling agent may be a third moiety, such a secondary antibody, that specifically binds to the antibody/sensory receptor complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived).
  • Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G may also be used as the label agent.
  • the labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically bind, such as streptavidin.
  • detectable moieties are well known to those skilled in the art.
  • incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, optionally from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, antigen, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C. a.
  • Immunoassays for detecting a sensory receptor protein in a sample may be either competi-tive or noncompetitive.
  • Noncompetitive immunoassays directly measure the amount of antigen.
  • the anti-sensory receptor antibodies are bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture the sensory receptor protein present in the test sample.
  • the sensory receptor protein thus immobilized is then bound by a labeling agent, such as a second anti-sensory receptor antibody bearing a label.
  • the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived.
  • the second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, e.g., streptavidin, to provide a detectable moiety.
  • a detectable moiety such as biotin
  • streptavidin another molecule specifically binds
  • the amount of sensory receptor protein present in the sample is measured indirectly by measuring the amount of a known, added (exogenous) sensory receptor protein displaced (competed away) from an anti-sensory receptor antibody by the unknown sensory receptor protein present in a sample.
  • a known amount of sensory receptor protein is added to a sample and the sample is then contacted with an antibody that specifically binds to the sensory receptor.
  • the amount of exogenous sensory receptor protein bound to the antibody is inversely proportional to the concentration of sensory receptor protein present in the sample.
  • the antibody is immobilized on a solid substrate.
  • the amount of sensory receptor protein bound to the antibody may be determined either by measuring the amount of sensory receptor protein present in a sensory receptor/antibody complex, or alternatively by measuring the amount of remaining uncomplexed protein.
  • the amount of sensory receptor protein may be detected by providing a labeled sensory receptor molecule.
  • a hapten inhibition assay is another preferred competitive assay.
  • the known sensory receptor protein is immobilized on a solid substrate.
  • a known amount of anti-sensory receptor antibody is added to the sample, and the sample is then contacted with the immobilized sensory receptor.
  • the amount of anti-sensory receptor antibody bound to the known immobilized sensory receptor protein is inversely proportional to the amount of sensory receptor protein present in the sample.
  • the amount of immobilized antibody may be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection may be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above. c. Cross-reactivity determinations
  • Immunoassays in the competitive binding format can also be used for cross- reactivity determinations.
  • a protein at least partially encoded by the nucleic acid sequences disclosed herein can be immobilized to a solid support.
  • Proteins are added to the assay that compete for binding of the antisera to the immobilized antigen.
  • the ability of the added proteins to compete for binding of the antisera to the immobi-lized protein is compared to the ability of the sensory receptor polypeptide encoded by the nucleic acid sequences disclosed herein to compete with itself.
  • the percentage cross- reactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% cross-reactivity with each of the added proteins listed above are selected and pooled.
  • the cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, e.g., distantly related homologs.
  • peptides comprising amino acid sequences representing conserved motifs that are used to identify members of the sensory receptor family can be used in cross-reactivity determinations.
  • the immunoabsorbed and pooled antisera are then used in a competitive binding immu-noassay as described above to compare a second protein, thought to be perhaps an allele or poly-morphic variant of a sensory receptor family member, to the immunogen protein (i.e., sensory receptor protein encoded by the nucleic acid sequences disclosed herein).
  • the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined.
  • the second protein required to inhibit 50% of binding is less than 10 times the amount of the protein encoded by nucleic acid sequences disclosed herein required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to a sensory receptor immunogen.
  • Antibodies raised against sensory receptor conserved motifs can also be used to prepare antibodies that specifically bind only to GPCRs of the sensory receptor family, but not to GPCRs from other families.
  • Polyclonal antibodies that specifically bind to a particular member of the sensory receptor family can be make by subtracting out cross-reactive antibodies using other sensory receptor family members.
  • Species-specific polyclonal antibodies can be made in a similar way.
  • antibodies specific to human T2R01 can be made by, subtracting out antibodies that are cross-reactive with orthologous sequences, e.g., rat OLFR1 or mouse OLFR1. d.
  • Other assay formats e.g., rat OLFR1 or mouse OLFR1.
  • Western blot (immunoblot) analysis is used to detect and quantify the presence of sensory receptor protein in the sample.
  • the technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind the sensory receptor protein.
  • the anti-sensory receptor polypeptide antibodies specifically bind to the sensory receptor poly-peptide on the solid support.
  • These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the anti-sensory receptor antibodies.
  • LOA liposome immunoassays
  • the particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay.
  • the detectable group can be any material having a detectable physical or chemical property.
  • Such detectable labels have been well- developed in the field of immuno-assays and, in general, most any label useful in such methods can be applied to the present invention.
  • a label is any composition detectable by spectroscopic, photochemical, bio-chemical, immunochemical, electrical, optical or chemical means.
  • Useful labels in the present invention include magnetic beads (e.g., DYNABEADSTM, fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., 3 H, 125 1, 35 S, 14 C, or 32 P), enzymes (e.g., horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic beads (e.g., polystyrene, polypropylene, latex, etc.).
  • magnetic beads e.g., DYNABEADSTM, fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like)
  • radiolabels e.g., 3 H, 125 1, 35 S, 14 C, or 32 P
  • enzymes e.g., horseradish peroxida
  • the label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels maybe used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.
  • Non-radioactive labels are often attached by indirect means.
  • a ligand molecule e.g., biotin
  • the ligand then binds to another molecules (e.g., streptavidin) molecule, which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound.
  • a signal system such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound.
  • the ligands and their targets can be used in any suitable combination with antibodies that recognize a sensory receptor protein, or secondary antibodies that recognize anti-sensory receptor.
  • the molecules can also be conjugated directly to signal generating compounds, e.g., by conjugation with an enzyme or fluorophore.
  • Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidotases, particularly peroxidases.
  • Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, etc.
  • Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, e.g., luminol.
  • the label may be detected using a scintillation counter or with photographic film as in autoradiography.
  • the label may be detected by exciting the fluoro-chrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, with photographic film, or using electronic detectors such as charge coupled devices (CCDs) or photomultipliers.
  • CCDs charge coupled devices
  • enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product.
  • simple colorimetric labels may be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.
  • aggluti-nation assays can be used to detect the presence of the target antibodies.
  • antigen-coated particles are agglutinated by samples comprising the target antibodies.
  • none of the components need be labeled and the presence of the target antibody is detected by simple visual inspection.
  • test compound specifically binds to a mammalian sensory, and more particularly, olfactory receptor of the invention, both in vitro and in vivo are described below, as are methods and compositions for determining whether a test compound is neurotoxic to an olfactory neuron expressing an olfactory transmembrane receptor polypeptide.
  • Any aspect of cell physiology can be monitored to assess the effect of sensant-binding to a naturally- occurring or chimeric olfactory receptor.
  • assays may be performed on intact cells expressing an olfactory receptor, on permeabilized cells or on membrane fractions produced by standard methods.
  • Olfactory receptors are normally located on the specialized cilia of olfactory neurons. These receptors bind odorants and initiate the transduction of chemical stimuli into electrical signals. An activated or inhibited G-protein will in turn alter the properties of target enzymes, channels, and other effector proteins.
  • the classic examples are the activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G-protein, phospholipase C by Gq and other cognate G-proteins, and modulation of diverse channels by Gi and other G- proteins. Downstream consequences can also be examined such as generation of diacyl glycerol and IP3 by phospholipase C, and in turn, for calcium mobilization by IP3.
  • the sensory receptor protein of the assay will typically be selected from a natural poly-peptide or conservatively modified variant thereof. Generally, the amino acid sequence identity will be at least 75%, 85%, 90%, 95%, or 99%.
  • the polypeptide of the assays can comprise a domain of a sensory receptor protein, such as an extracellular domain, transmembrane region, transmembrane domain, cytoplasmic domain, ligand binding domain, subunit association domain, active site, and the like. Either the sensory receptor protein or a domain thereof can be covalently linked to a heterologous protein to create a chimeric protein used in the assays described herein.
  • Modulators of sensory receptor activity can be tested using sensory receptor polypeptides as described above, either recombinant or naturally occurring. Protein can be isolated, expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal, either recombinant or naturally occurring.
  • Modulation can be tested using one of the in vitro or in vivo assays described herein. 1. In vitro binding assays
  • Sensory perception can also be examined in vitro with soluble or solid state reactions, using a full-length sensory receptor-GPCR or a chimeric molecule such as an extracellular domain or transmembrane region, or combination thereof, of a sensory receptor covalently linked to a heterologous signal transduction domain, or a heterologous extracellular domain and/or transmembrane region covalently linked to the transmembrane and/or cytoplasmic domain of a sensory receptor.
  • ligand-binding domains of the protein of interest can be used in vitro in soluble or solid state reactions to assay for ligand binding.
  • a chimeric receptor will be made that comprises all or part of a sensory receptor polypeptide, as well an additional sequence that facilitates the localization of the sensory receptor to the membrane, such as a rhodopsin, e.g., an N-terminal fragment of a rhodopsin protein.
  • Ligand binding to a sensory receptor protein, a domain, or chimeric protein can be tested in solution, in a bilayer membrane, attached to a solid phase, in a lipid monolayer, or in vesicles. Binding of a modulator can be tested using, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbence, refractive index) hydrodynamic (e.g., shape), chromatographic, or solubility properties. Sensory receptors with large (e.g., approximately 600 amino acid residues) extracellular N- terminal segments. These N-terminal segments are thought to form ligand-binding domains, and are therefore useful in biochemical assays to identify sensory receptor agonists and antagonists.
  • spectroscopic characteristics e.g., fluorescence, absorbence, refractive index
  • hydrodynamic e.g., shape
  • Sensory receptors with large (e.g., approximately 600 amino acid residues) extracellular N- terminal segments are thought to form ligand
  • Receptor-G-protein interactions can also be examined. For example, binding of the G-protein to the receptor or its release from the receptor can be examined. For example, in the absence of GTP, an activator will lead to the formation of a tight complex of a G protein (all three subunits) with the receptor. This complex can be detected in a variety of ways, as noted above. Such an assay can be modified to search for inhibitors, e.g., by adding an activator to the receptor and G protein in the absence of GTP, which form a tight complex, and then screen for inhibitors by looking at dissociation of the receptor-G protein complex. In the presence of GTP, release of the alpha subunit of the G protein from the other two G protein subunits serves as a criterion of activation.
  • G-protein An activated or inhibited G-protein will in turn alter the properties of target enzymes, channels, and other effector proteins.
  • the classic examples are the activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G-protein, phospholipase C by Gq and other cognate G proteins, and modulation of diverse channels by Gi and other G proteins.
  • Fluorescence Polarization (“FP") based assays may be used to detect and monitor sensant binding.
  • Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity.
  • Fluores-cence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polari- zation is rapid and does not destroy the sample.
  • this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
  • This section describes how fluorescence polarization can be used in a simple and quantitative way to measure the binding of odorants to the sensory receptors of the invention.
  • a fluorescently labeled molecule When a fluorescently labeled molecule is excited with plane polarized light, it emits light that has a degree of polarization that is inversely proportional to its molecular rotation. Large fluorescently labeled molecules remain relatively stationary during the excited state ( 4 nano-seconds in the case of fluorescein) and the polarization of the light remains relatively constant between excitation and emission. Small fluorescently labeled molecules rotate rapidly during the excited state and the polarization changes significantly between excitation and emission.
  • a single-stranded fluorescein-labeled oligonucleotide has a relatively low polarization value but when it is hybridized to a complementary strand, it has a higher polariza-tion value.
  • fluorescence-labeled sensants or auto-fluorescent sensants may be used.
  • the Beacon® and Beacon 2000TM System may be used in connection with these assays. Such systems typically express polarization in millipolarization units (1
  • the rotational relaxation time is small ( « 1 nanosecond) for small molecules
  • the invention provides soluble assays using molecules such as a domain such as ligand binding domain, an extracellular domain, a transmembrane domain (e.g., one comprising seven transmembrane regions and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc.; a domain that is covalently linked to a heterologous protein to create a chimeric molecule; a sensory receptor protein; or a cell or tissue expressing a sensory receptor protein, either naturally occurring or recombinant.
  • molecules such as a domain such as ligand binding domain, an extracellular domain, a transmembrane domain (e.g., one comprising seven transmembrane regions and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc.; a domain that is covalently linked to a heterologous protein to create a chimeric molecule
  • the invention provides solid phase based in vitro assays in a high throughput format, where the domain, chimeric molecule, sensory receptor protein, or cell or tissue expressing the sensory receptor is attached to a solid phase substrate.
  • the high throughput assays of the invention it is possible to screen up to several thousand different modulators or ligands in a single day.
  • each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, if concentra-tion or incubation time effects are to be observed, every 5-10 wells can test a single modulator.
  • a single standard microtiter plate can assay about 100 (e.g., 96) modulators.
  • the molecule of interest can be bound to the solid state component, directly or indirectly, via covalent or non covalent linkage, e.g., via a tag.
  • the tag can be any of a variety of compo-nents.
  • a molecule which binds the tag (a tag binder) is fixed to a solid support, and the tagged molecule of interest (e.g., the taste transduction molecule of interest) is attached to the solid support by interaction of the tag and the tag binder.
  • tags and tag binders can be used, based upon known molecular interactions well described in the literature.
  • a tag has a natural binder, for example, biotin, protein A, or protein G
  • tag binders avidin, streptavidin, neutravidin, the Fc region of an immunoglobulin, etc.
  • Antibodies to molecules with natural binders such as biotin are also widely available and appropriate tag binders (see, SIGMA Immunochemicals 1998 catalogue SIGMA, St. Louis MO).
  • any haptenic or antigenic compound can be used in combination with an appro-priate antibody to form a tag/tag binder pair.
  • the tag is a first antibody and the tag binder is a second antibody which recognizes the first antibody.
  • receptor-ligand inter-actions are also appropriate as tag and tag-binder pairs.
  • agonists and antagonists of cell membrane receptors e.g., cell receptor-ligand interactions such as transfemn, c-kit, viral receptor ligands, cytokine receptors, chemokine receptors, interleukin receptors, describing arrays of biopolymers fixed to solid substrates).
  • Non-chemical approaches for fixing tag binders to substrates include other common methods, such as heat, cross-linking by UN radiation, and the like. 4.
  • Computer-based assays Yet another assay for compounds that modulate sensory receptor protein activity involves computer assisted drug design, in which a digital or analog processing system is used to generate a three-dimensional structure of a sensory receptor protein based on the structural information encoded by its amino acid sequence. The input amino acid sequence interacts directly and actively with a preestablished algorithm in a computer program to yield secondary, tertiary, and quaternary structural models of the protein. The models of the protein structure are then examined to identify regions of the structure that have the ability to bind, e.g., ligands. These regions are then used to identify ligands that bind to the protein.
  • the three-dimensional structural model of the protein is generated by entering protein amino acid sequences of at least 10 amino acid residues or corresponding nucleic acid sequences encoding a sensory receptor polypeptide into the computer system.
  • the nucleotide sequence encoding the polypeptide, or the amino acid sequence thereof can be any of those described herein, or fragments or variants thereof.
  • the amino acid sequence represents the primary sequence or subsequence of the protein, which encodes the structural information of the protein.
  • At least 10 residues of the amino acid sequence are entered into the computer system from computer keyboards, computer readable substrates that include, but are not limited to, electronic storage media (e.g., magnetic diskettes, tapes, cartridges, and chips), optical media (e.g., CD ROM), information distributed by internet sites, and by RAM.
  • the three-dimensional structural model of the protein is then generated by the interaction of the amino acid sequence and the computer system, using software known to those of skill in the art.
  • the amino acid sequence represents a primary structure that encodes the information necessary to form the secondary, tertiary and quaternary structure of the protein of interest.
  • the software looks at certain parameters encoded by the primary sequence to generate the structural model.
  • energy terms primarily include electrostatic potentials, hydrophobic potentials, solvent accessible surfaces, and hydrogen bonding.
  • Secon-dary energy terms include van der Waals potentials.
  • Biological molecules form the structures that minimize the energy terms in a cumulative fashion. The computer program is therefore using these terms encoded by the primary structure or amino acid sequence to create the secon-dary structural model.
  • the tertiary structure of the protein encoded by the secondary structure is then formed on the basis of the energy terms of the secondary structure.
  • the user at this point can enter addi-tional variables such as whether the protein is membrane bound or soluble, its location in the body, and its cellular location, e.g., cytoplasmic, surface, or nuclear. These variables along with the energy terms of the secondary structure are used to form the model of the tertiary structure.
  • the computer program matches hydrophobic faces of secondary structure with like, and hydrophilic faces of secondary structure with like.
  • potential ligand binding regions are identified by the computer system.
  • Three-dimensional structures for potential ligands are generated by entering amino acid or nucleotide sequences or chemical formulas of compounds, as described above. The three-dimensional structure of the potential ligand is then compared to that of the sensory receptor protein to identify ligands that bind to the protein. Binding affinity between the protein and ligands is determined using energy terms to determine which ligands have an enhanced probability of binding to the protein.
  • Computer systems are also used to screen for mutations, polymorphic variants, alleles and interspecies homologs of sensory receptor genes. Such mutations can be associated with disease states or genetic traits. As described above, GeneChipTM and related technology can also be used to screen for mutations, polymorphic variants, alleles and interspecies homologs. Once the variants are identified, diagnostic assays can be used to identify patients having such mutated genes. Identification of the mutated sensory receptor genes involves receiving input of a first nucleic acid or amino acid sequence of a sensory receptor gene, or conservatively modified versions thereof. The sequence is entered into the computer system as described above. The first nucleic acid or amino acid sequence is then compared to a second nucleic acid or amino acid sequence that has substantial identity to the first sequence.
  • the second sequence is entered into the computer system in the manner described above. Once odorant dependent activation monitored. Control samples (untreated with activators or inhibitors) are assigned a relative sensory receptor activity value of 100. Inhibition of a sensory receptor protein is achieved when the sensory receptor activity value relative to the control is about 90%, optionally 50%, optionally 25-0%. Activation of a sensory receptor protein is achieved when the sensory receptor activity value relative to the control is 110%, optionally 150%, 200-500%, or 1000-2000%.
  • Changes in ion flux may be assessed by determining changes in polarization (i.e., electri-cal potential) of the cell or membrane expressing a sensory receptor protein.
  • polarization i.e., electri-cal potential
  • One means to deter-mine changes in cellular polarization is by measuring changes in current, and thereby measuring changes in polarization, with voltage-clamp and patch-clamp techniques, e.g., the "cell-attached" mode, the "inside-out” mode, and the "whole cell” mode (see, e.g., Ackerman et al, New Engl. JMed., 336:1575, 1997).
  • Whole cell currents are conveniently determined using the standard.
  • Other known assays include: assays to measure ion flux using radiolabeled or fluorescent probes such as voltage-sensitive dyes (see, e.g., Nestergarrd-Bogind et al, J.
  • the compounds to be tested are present in the range from 1 pM to 100 mM.
  • the effects of the test compounds upon the function of the polypeptides can be measured by examining any of the parameters described above. Any suitable physiological change that affects GPCR activity can be used to assess the influence of a test compound on the polypeptides of this invention.
  • the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca 2+ , DP3, cGMP, or cAMP.
  • effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca 2+ , DP3, cGMP, or cAMP.
  • Prefened assays for G-protein coupled receptors include cells that are loaded with ion or voltage sensitive dyes to report receptor activity. Assays for determining activity of such receptors can also use known agonists and antagonists for other G-protein coupled receptors as negative or positive controls to assess activity of tested compounds. In assays for identifying modulatory compounds (e.g., agonists, antagonists), changes in the level of ions in the cytoplasm or membrane voltage will be monitored using an ion sensitive or membrane voltage fluorescent indicator, respectively. Among the ion-sensitive indicators and voltage probes that may be employed are those disclosed in the Molecular Probes 1997 Catalog.
  • promiscuous G-proteins such as G ⁇ l 5 and G ⁇ l 6 can be used in the assay of choice (Wilkie et al, Proc. Natl. Acad. Sci., 88:10049, 1991). Such promiscuous G-proteins allow coupling of a wide range of receptors.
  • Receptor activation typically initiates subsequent intracellular events, e.g., increases in second messengers such as IP3, which releases intracellular stores of calcium ions.
  • second messengers such as IP3
  • Activation of some G-protein coupled receptors stimulates the formation of inositol triphosphate (EP3) through phospholipase C-mediated hydrolysis of phosphatidylinositol (Berridge & Irvine, Nature 312:315, 1984).
  • EP3 in turn stimulates the release of intracellular calcium ion stores.
  • a change in cytoplasmic calcium ion levels, or a change in second messenger levels such as IP3 can be used to assess G-protein coupled receptor function.
  • Cells expressing such G-protein coupled receptors may exhibit increased cytoplasmic calcium levels as a result of contribution from both intracellular stores and via activation of ion channels, in which case it may be desirable although not necessary to conduct such assays in calcium-free buffer, optionally supplemented with a chelating agent such as EGTA, to distinguish fluorescence response resulting from calcium release from internal stores.
  • Other assays can involve determining the activity of receptors which, when activated, result in a change in the level of intracellular cyclic nucleotides, e.g., cAMP or cGMP, by activating or inhibiting enzymes such as adenylate cyclase.
  • cyclic nucleotide-gated ion channels e.g., rod photoreceptor cell channels and olfactory neuron channels that are permeable to cations upon activation by binding of cAMP or cGMP (see, e.g., Altenhofen et al, Proc. Natl. Acad. Sci., 88:9868, 1991 and Dhallan et al, Nature 347:184, 1990).
  • cyclic nucleotide levels it may be preferable to expose the cells to agents that increase intracellular cyclic nucleotide levels, e.g., forskolin, prior to adding a receptor-activating compound to the cells in the assay.
  • agents that increase intracellular cyclic nucleotide levels e.g., forskolin
  • Cells for this type of assay can be made by co-transfection of a host cell with DNA encoding a cyclic nucleotide-crated ion channel, GPCR phosphatase and DNA encoding a receptor (e.g., certain glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, serotonin receptors, and the like), which, when activated, causes a change in cyclic nucleotide levels in the cytoplasm.
  • a receptor e.g., certain glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, serotonin receptors, and the like
  • sensory receptor protein activity is measured by expressing a sensory receptor gene in a heterologous cell with a promiscuous G-protein that links the receptor to a phospholipase C signal transduction pathway (see Offermanns & Simon, J Biol. Chem., 270:15175, 1995).
  • the cell line is HEK-293 (which does not naturally express sensory receptor genes) and the promiscuous G-protein is Gal 5 (Offermanns & Simon, supra).
  • Modu-lation of olfactory transduction is assayed by measuring changes in intracellular Ca 2+ levels, which change in response to modulation of the sensory receptor signal transduction pathway via administration of a molecule that associates with a sensory receptor protein. Changes in Ca 2+ levels are optionally measured using fluorescent Ca 2+ indicator dyes and fluorometric imaging.
  • the changes in intracellular cAMP or cGMP can be measured using immunoassays.
  • the method described in Felley-Bosco et al, Am. J. Resp. Cell and Mol Biol, 11:159, 1994, may be used to determine the level of cGMP.
  • an assay kit for measuring cAMP and/or cGMP is described in U.S. Patent No. 4,115,538, herein incorporated by reference.
  • phosphatidyl inositol (PI) hydrolysis can be analyzed according to U.S. Patent No. 5,436,128, herein incorporated by reference. Briefly, the assay involves labeling of cells with 3H-myoinositol for 48 or more hrs. The labeled cells are treated with a test compound for one hour. The treated cells are lysed and extracted in chloroform-methanol-water after which the inositol phosphates were separated by ion exchange chromatography and quantified by scintillation counting. Fold stimulation is determined by calculating the ratio of cpm in the presence of agonist, to cpm in the presence of buffer control. Likewise, fold inhibition is determined by calculating the ratio of cpm in the presence of antagonist, to cpm in the presence of buffer control (which may or may not contain an agonist).
  • transcription levels can be measured to assess the effects of a test compound on signal transduction.
  • a host cell containing a sensory receptor protein of interest is contacted with a test compound for a sufficient time to effect any interactions, and then the level of gene expression is measured.
  • the amount of time to effect such interactions may be empiri-cally determined, such as by running a time course and measuring the level of transcription as a function of time.
  • the amount of transcription may be measured by using any method known to those of skill in the art to be suitable. For example, mRNA expression of the protein of interest may be detected using northern blots or their polypeptide products may be identified using immunoassays. Alternatively, transcription based assays using reporter gene maybe used as described in U.S. Patent No.
  • the reporter genes can be, e.g., chloramphenicol acetyltransferase, luciferase, '3-galactosidase and alkaline phosphatase.
  • the protein of interest can be used as an indirect reporter via attachment to a second reporter such as green fluorescent protein (see, e.g., Mistili & Spector, Nature Biotech. 15:961, 1997).
  • the amount of transcription is then compared to the amount of transcription in either the same cell in the absence of the test compound, or it may be compared with the amount of transcription in a substantially identical cell that lacks the sensory receptor protein of interest.
  • a substantially identical cell maybe derived from the same cells from which the recombinant cell was prepared but which had not been modified by introduction of heterologous DNA. Any difference in the amount of transcription indicates that the test compound has in some manner altered the activity of the sensory receptor protein of interest.
  • Non-human animals expressing one or more sensory receptor sequences of the invention can also be used for receptor assays.
  • Such expression can be used to determine whether a test compound specifically binds to a mammalian olfactory transmembrane receptor polypeptide in vivo by contacting a non-human animal stably or transiently transfected with a nucleic acid encoding an olfactory receptor or ligand binding region thereof with a test compound and determining whether the animal reacts to the test compound by specifically binding to the receptor polypeptide.
  • translocation domains in the fusion polypeptides generates a cell expressing high levels of olfactory receptor.
  • Animals transfected or infected with the vectors of the invention are particularly useful for assays to identify and characterize odorants/ligands that can bind to a specific or sets of receptors.
  • Such vector-infected animals expressing libraries of human olfactory sequences can be used for in vivo screening of odorants and their effect on, e.g., cell physiology (e.g., on olfactory neurons), on the CNS (e.g., olfactory bulb activity), or behavior.
  • Means to infect/express the nucleic acids and vectors, either individually or as libraries, are well known in the art.
  • a variety of individual cell, organ or whole animal parameters can be measured by a variety of means.
  • recording of stimulant-induced waves (bulbar responses) from the main olfactory bulb or accessory olfactory bulb is a useful tool for measuring quantitative stable olfactory responses.
  • electrodes When electrodes are located on the olfactory bulb surface it is possible to record stable responses over a period of several days (see, e.g., Kashiwayanagi, Brain Res. Protoc. 1:287, 1997).
  • electroolfactogram recordings were made with a four- electrode assembly from the olfactory epithelium overlying the endoturbinate bones facing the nasal septum.
  • Extracellular potassium activity (aK) measurements can also be carried out in in vivo. An increase in aK can be measured in the mucus and the proximal part of the nasal epithelium (see, e.g., Khayari, Brain Res. 539:1, 1991).
  • the sensory receptor sequences of the invention can be for example expressed in animal nasal epithelium by delivery with an infecting agent, e.g., adenovirus expression vector.
  • an infecting agent e.g., adenovirus expression vector.
  • Recom-binant adeno virus-mediated expression of a recombinant gene in olfactory epithelium using green fluorescent protein as a marker is described by, e.g., Touhara, Proc. Natl. Acad. Sci. USA 96:4040, 1999.
  • the endogenous olfactory receptor genes can remain functional and wild-type (native) activity can still be present. In other situations, where it is desirable that all olfactory receptor activity is by the introduced exogenous hybrid receptor, use of a knockout line is preferred.
  • Methods for the construction of non-human transgenic animals, particularly transgenic mice, and the selection and preparation of recombinant constructs for generating transformed cells are well known in the art.
  • Construction of a "knockout” cell and animal is based on the premise that the level of expression of a particular gene in a mammalian cell can be decreased or . completely abrogated by introducing into the genome a new DNA sequence that serves to interrupt some portion of the DNA sequence of the gene to be suppressed.
  • "gene trap insertion” can be used to disrupt a host gene
  • mouse embryonic stem (ES) cells can be used to produce knockout transgenic animals (see, e.g., Holzschu, Transgenic Res 6:97, 1997).
  • the insertion of the exogenous is typically by homologous recombination between complementary nucleic acid sequences.
  • the exogenous sequence is some portion of the target gene to be modified, such as exonic, intronic or transcriptional regulatory sequences, or any genomic sequence which is able to affect the level of the target gene's expression; or a combination thereof.
  • Gene targeting via homologous recombi-nation in pluripotential embryonic stem (ES) cells allows one to modify precisely the genomic sequence of interest. Any technique can be used to create, screen for, propagate, a knockout animal, e.g., see Bijvoet, Hum. Mol. Genet. 7:53, 1998); Moreadith, J. Mol. Med. 75:208, 1997; Tojo, Cytotechnology 19:161, 1995; Mudgett, Methods Mol Biol 48:167, 1995; Longo, Transgenic Res.
  • nucleic acid libraries can also be used as reagents to produce "knockout” human cells and their progeny.
  • the compounds tested as modulators of a sensory receptor family member can be any small chemical compound, or a biological entity, such as a protein, sugar, nucleic acid or lipid. Alternatively, modulators can be genetically altered versions of a sensory receptor gene. Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds-can be dissolved in aqueous or organic (especially DMSO-based) solutions are used.
  • the assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma- Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs, Switzerland) and the like.
  • high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator or ligand compounds).
  • potential modulator or ligand compounds potential modulator compounds
  • Such "combinatorial chemical libraries” or “ligand libraries” are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired charac-teristic activity.
  • the compounds thus identified can serve as conventional "lead compounds” or can themselves be used as potential or actual therapeutics.
  • a combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks” such as reagents.
  • a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (i.e. , the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing, of chemical building blocks.
  • combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175; Furka, Int. J. Pept. Prot. Res. 37:487, 1991; and Houghton et al, Nature 354:84, 1991).
  • peptide libraries see, e.g., U.S. Patent No. 5,010,175; Furka, Int. J. Pept. Prot. Res. 37:487, 1991; and Houghton et al, Nature 354:84, 1991.
  • Other chemistries for generating chemical diversity libraries can also be used.
  • Such chemistries include, but are not limited to: peptoids (e.g., WO 91/19735), encoded peptides (e.g., WO 93/20242), random bio-oligomers (e.g., WO 92/00091), benzodiazepines (e.g., U.S. Patent No. 5,288,514), diversomers such as hydantoins, benzodiaze-pines and dipeptides (Hobbs et al, Proc. Nat. Acad. Sci. 90:6909, 1993), vinylogous polypep-tides (Hagihara et ⁇ /., J 4rn r. Chem. Soc.
  • a method for simulating a fragrance or flavor sensed by a mammal comprising: for each of a plurality of sensory receptors, or fragments or variants thereof, ascertaining the extent to which the sensory receptor interacts with the fragrance and or flavor; and combining a plurality of compounds, each having a previously-determined interaction with one or more of the sensory receptors, in amounts that together provide a stimulation profile that mimics the profile for the fragrance and or flavor. Interaction of a fragrance and/or flavor with a sensory receptor can be determined using any of the binding or reporter assays described herein.
  • the interactions can be aggregated or a profile generated using known signal processing techniques (e.g., a neural network) as described below.
  • the sensory receptor, or fragments or variants thereof e.g., fusion proteins with reporters, chimeric proteins
  • the plurality of compounds may then be combined to form a mixture. If desired, one or more of the plurality of the compounds can be combined covalently.
  • the combined compounds substantially stimulate at least 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99% or all of the receptors that are substantially stimulated by the fragrance or flavor.
  • a method in which a plurality of standard compounds are tested against a plurality of sensory receptors, or fragments or variants thereof, to ascertain the extent to which the sensory receptors each interact with each standard compound, thereby generating a receptor stimulation profile for each standard compound.
  • These receptor stimulation profiles may then be stored in a relational database on data storage medium.
  • the method may further comprise providing a desired receptor-stimulation profile for an odor and/or taste; comparing the desired receptor stimulation profile to the relational database; and ascertaining one or more combinations of standard compounds that most closely match the desired receptor-stimulation profile.
  • the method may further comprise combining standard compounds in one or more of the ascertained combinations to simulate the odor and/or taste.
  • a further aspect of the invention is to provide a method for representing sensory percep-tion of a particular odor and/or taste in a mammal (e.g., human), comprising: providing values X ⁇ to X n representative of the quantitative stimulation of each of n sensory receptors of the mammal; where n is greater than or equal to 5, n is greater than or equal to 10, n is greater than or equal to 20, n is greater than or equal to 50, n is greater than or equal to 75, n is greater than or equal to 100, n is greater than or equal to 125, n is greater than or equal to 150, n is greater than or equal to 175, n is greater than or equal to 200, n is greater than or equal to 225, n is greater than or equal to 250, n is greater than or equal to 275, n is greater than or equal to 300, n is greater than or equal to 325, or n is greater than or equal to 350; and generating from the values a quantitative representation of sensory perception.
  • the sensory receptors may be a receptor disclosed herein, or fragments or variants thereof.
  • the representation may constitute a point or a volume in n-dimensional space, may constitute a graph or a spectrum, or may constitutes a matrix of quantita-tive representations.
  • the providing step may comprise contacting a plurality of recombi-nantly-produced sensory receptors, or fragments or variants thereof, with a composition and quantitatively measuring the interaction of the composition with the receptors.
  • the maximum number of taste receptors that are needed to mimic the native repertoire e.g. , about 50
  • the maximum number of olfactory receptors that are needed e.g., about 350. But the number of sensory receptors that need to be represented in an assay to provide useful results may be much less.
  • the sensory receptors used in this method may include a receptor disclosed herein, or fragment or variant thereof.
  • the maximum number of taste receptors that are needed to mimic the native repertoire e.g., about 50
  • the maximum number of olfactory receptors that are needed e.g. , about 350. But the number of sensory receptors that need to be represented in an assay to provide useful results may be much less.
  • Assaying for ligand-receptor binding in a large set of sensory receptors is envisioned to mimic the function of the nose or tongue in sensory perception of chemical sensants.
  • the resultant signal is a summa-tion of the interactions of all sensory receptors in the set: none, one, or a few of which have ligand-binding domains that are a perfect fit for the sensant; some of which have ligand-binding domains that are only an imperfect fit for the sensant; and most of which do not significantly bind to the sensant.
  • the individual sensory receptor's binding affinity for sensant varies accordingly.
  • a suitably large set of ligand-binding domains from sensory receptors will be analogous to any ability of the native repertoire of olfactory or taste receptors to tolerate varying degrees of mismatch between ligand and ligand-binding domain.
  • the complication of desensiti-zation of sensory receptor signaling will also be avoided by using the invention instead of prepa-rations of nasal or tongue epithelium containing native sensory receptors.
  • the event of binding between ligand and receptor can be separated from more complicated downstream signaling events in the epithelial cells. But the latter events can be reconstituted in the invention by transferring the sensory receptor of interest into appropriate host cells containing an intact and functional signaling pathway.
  • Sensory modulators can be administered directly to a mammal (e.g., human) for modu-lation of sensory perception in vivo. Administration is by any of the routes normally used for introducing a modulator compound into ultimate contact with the tissue to be treated (e.g., nose or tongue).
  • the olfactory modulators are administered in any suitable manner, optionally with acceptable carriers. Suitable methods of administering such modulators are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
  • Acceptable carriers are determined at least in part by the particular components of the composition to be administered (e.g., stabilizing the sensants), as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington 's Pharmaceutical Sciences, 17th ed. 1985).
  • the sensory modulators can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichloro-difluoromethane, propane, nitrogen, and the like that may or may not contribute to sensory perception.
  • pressurized acceptable propellants such as dichloro-difluoromethane, propane, nitrogen, and the like that may or may not contribute to sensory perception.
  • Other possible formulation include dry or liquid forms, powders or tablets, solutions of polar (e.g., water) or nonpolar (e.g., alcohol) solvents, emulsions or suspensions, creams, gels, lotions, and syrups.
  • Formulations suitable for administration include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain antioxidants; buffers, bacteriostats, and solutes that render the formulation isotonic, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
  • compositions can be administered, for example, by orally, topically, intravenously, intraperitoneally, intravesically, or intrathecally.
  • the compositions are administered orally or nasally.
  • the formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.
  • Solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
  • the modu-lators can also be administered as part a of prepared drug, food, or cosmetic.
  • an un-pleasant odor or taste e.g., sulfur or bitter, respectively
  • a pleasant odor or taste can be mimicked or enhanced.
  • Primary sensants are prefened because the subset of activated cells is kept small and the effects limited to projection into a specific region of the brain.
  • novel olfactants or combinations thereof that bind only a few olfactory receptors would also be useful.
  • the dose administered to a mammal should be sufficient to effect a bene-ficial response in the subject over time.
  • the dose will be determined by the efficacy of the parti-cular sensory modulators employed and the condition of the subject, as well as the body weight or surface area of the area to be treated.
  • the size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular subject.
  • the effective amount of the modulator to be administered in a physician may evaluate circulating plasma levels of the sensory modulator, modulator toxicities,, and the production of anti-modulator antibodies.
  • the dose equivalent of a modulator is from about 1 ng/kg to 10 mg/kg for the typical mammal.
  • sensory modulators can be administered at a rate determined by the ED 50 of the modulator, and the side-effects of the inhibitor at various concentrations, as applied to the mass and overall health of the mammal. Administration can be accomplished via single or divided doses.
  • Sensory receptor genes are useful tools for identifying cells expressing sensory receptors, for forensics and paternity determinations, and for examining signal transduction in isolated cells.
  • Sensory receptor family member-specific reagents that specifically hybridize to sensory receptor nucleic acids, such AOFLF1 probes and primers, and sensory receptor specific reagents that specifically bind to a sensory receptor protein, e.g., anti-sensory receptor antibodies are used to examine expression in cells and regulation of signal trans-duction.
  • one or more family member-specific reagents may be used to detect poly-morphisms that are linked to genetic anosmia or to detect allelic exclusion.
  • Nucleic acid assays for the presence of DNA and RNA for a sensory receptor family member in a sample include numerous techniques are known to those skilled in the art, such as Southern analysis, Northern analysis, dot blots, RNase protection, SI analysis, amplification techniques such as PCR, and in situ hybridization.
  • in situ hybridization for example, the target nucleic acid is liberated from its cellular sunoundings in such as to be available for hybrid-ization within the cell while preserving the cellular morphology for subsequent interpretation and analysis.
  • a sensory receptor protein can be detected with the various immunoassay techniques described above.
  • the test sample is typically compared to both a positive control (e.g., a sample expressing a recombinant sensory receptor protein) and a negative control.
  • kits for screening for novel modulators of sensory receptor family members can be prepared from readily available materials and reagents, as well as any of the aforementioned products.
  • kits can comprise any one or more of the following materials: sensory receptor nucleic acids or proteins, reaction tubes, and instructions for testing sensory receptor activity.
  • the kit contains a biologically active sensory receptor.
  • AOLFRl sequences can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Examples AOLFRl sequences:
  • AOLFR12 sequences MERNHNPDNCNVLNFFFADKXNK-RRNFGQIVSDVGRICYSVSLSLGEPTTMGRNNLTRPSEFIL LGLSSRPEDQKPLFAVFLPIY ITVIGNLLIILAIRSDTRLQTPMYFFLSILSFVDICYVTVIIPKMLV NFLSETKTISYGECLTQMYFFLAFGNTDSYLLAAMAIDRYVAICNPFHYITIMSHRCCVLLLVLS FCIPHFHSLLHILLTNQLIFCASNVIHHFFCDDQPVLKLSCSSHFVKEITVMTEGLAVIMTPFSCIII SYLRILITVLKIPSAAGK-1-U AFSTCGSHLTVVTLFYGSISYVYFQPLSNYTVKDQIATIIYTVLTP MLNPF-CYSL-RNKD KQGLA LMHRMKCQ (SEQ ID NO: 23) ATGGAAAGAAACCACAATCCAGATAATTGTAATGTTTTAAATTTTCTTTGCTGATAAGA
  • AOLFR16 sequences MRRNCTLVTEFILLGLTSRRELQILLFTLFLAIYMVTVAGNLGMIVLIQANAWLHMPMYFFLSH LSFVDLCFSSNVTPKMLEIFLSEKJ SISYPACLVQCYLFIALVHVEIYILAVMAFDRYMAICNPLL YGSRMSKSVCSFLITVPYVYGALTGLMETMWTYNLAFCGPNEINHFYCADPPLIKLACSDTYN KELSMFIVAGWNLSFSLFIICISYLYIFPAILKIRSTEGRQKAFSTCGSHLTAVTIFYATLFFMYLR PPSKESVEQG-O ⁇ VAVFYTTVIPMLNLIIYSLRNK-NV- ALIK ⁇ LSMKIYFS (SEQ ID NO: 31)
  • AOLFR26 sequences MAAKNSSVTEFILEGLTHQPGLRIPLFFLFLGFYTVTVVGNLGLITLIGLNSHLHTPMYFFLFNLS LIDFCFSTTITPKMLMSFVSRKNIISFTGCMTQLFFFCFFVVSESFILSAMAYDRYVAICNPLLYT VTMSCQVCLLLLLGAYGMGFAGAMAHTGSIMNLTFCADNLVNHFMCDILPLLELSCNSSYMN ELVVFIVVAVDVGMPIVTVFISYALILSSILHNSSTEGRSKAFSTCSSHIIWSLFFGSGAFMYLKP LSILPLEQGKVSSLFYTIIVPVLNPLIYSLRNKDVKVALRRTLGRKIFS (SEQ ID NO: 49)
  • AOLFR37 sequences MEKANETSPVMGFVLLRLSAHPELEKTFFVLILLMYLVILLGNGVLILVTILDSRLHTPMYFFLG NLSFLDICFTTSSVPLVLDSFLTPQETISFSACAVQMALSFAMAGTECLLLSMMAFDRYVAICNP LRYSVIMSKAAYMPMAASSWAIGGAASVVHTSLAIQLPFCGDNVINHFTCEILAVL LACADIS INVISMEVTNVIFLGVPVLFISFSY IITTILRIPSAEGRKKVFSTCSAHLTVVIVFYGTLFFMYG KPKSKDSMGADKEDLSDKLIPLFYGVVTPMLNPIIYSLPJ> «I)VKAAVRRLLRPKGFTQ (SEQ ID NO: 69)
  • AOLFR38 sequences MYLVTVLRNLLIILAVSSDSHLHTPMCFFLSNLC ADIGFTSAMVPKMIVDMQSHSRVISYAGC LTQMSFFVLFACIEDMLLTVMAYDRFVAICHPLHYPVIiSWPHLGVFLVLVSFFLSLLDSQLHSW IVLQFTFFKNVEISNFVCDPSQLLNLACSDSVINSIFIYLDSIMFGFLPISGILLSYANNVPSILRISS SDRKSKAFSTCGSHLAWCLFYGTGIGVYLTSAVSPPPRNGVVASVMYAVVTPMLNPFIYSLR NRDIQSALWRLRSRTVESHDLLSQDLLHPFSCVGE GQPH (SEQ ID NO: 71)
  • AOLFR60 sequences MFLPNDTQFHPSSFLLLGIPGLETLHIWIGFPFCAVYMIALIGNFTILLVIKTDSSLHQPMFYFLA MLATTDVGLSTATIP- ⁇ LGIFWINLRGIIFEACLTQMFFIHNFTLMESAVLVAMAYDSYVAICN PLQYSAILTNKVVSVIGLGVFVRALIFVIPSILLILRLPFCGNHVIPHTYCEHMGLAHLSCASIKINI IYGLCAICNLVFDITVIALSYVHILCAVFRLPTHEPRLKSLSTCGSHVCVILAFYTPALFSFMTHC FGRNVPRYIHILLANLYVVWPMLNPVIYGVRTKQIYKCVK- LLQEQGMEKEEYLIHTRF (SEQ ID NO: 109)
  • AOLFR66 sequences MSFLNGTSLTPASFILNGIPGLED VHLWISFPLCTMYSIAITGNFGLMYLIYCDEALHRPMYVFL ALLSFTDVLMCTSTLPNTLFIL TNLKEroFKACLAQMFFVHTFTGMESGVLMLMALDHCVAI CFPLRYATILTNSVLAKAGFLTFLRGVMLVIPSTFLTKRLPYCKGNVIPHTYCDHMSVAKISCGN VRVNAIYGLIVALLIGGFDILCITISYTMILQAWSLSSADARQKAFSTCTAHFCAIVLTYVPAFF TFFTHHFGGHTIPLHII]V-ANLYLLMPPTMNPIVYGVT TRQVRESVIRFFLKGKDNSHNF (SEQ ID NO: 121)
  • AOLFR72 sequences MAPENFTRVTEFILTGVSSCPELQIPLFL LVLYGLTMAGNLGIITLTSVDSRLQTPMYFFLQHL AL- ⁇ STLGNSTVIAPKMLINFLVK- TTSFYECATQLGGFLFFIVSEVIMLALJN ⁇ YMVWSRRLCLLLVSLTYLYGFSTAIWSSYVFSVSYCSSNIINHFYCDNVPLLALSCSDTYLPE TVWISAATNVNGSLIIVLVSYFNIVLSILKICSSEGRK AFSTCASHMMAVTIFYGTLLF- ⁇ RSNHSLDTDDKMASWYTLVIPMLNPLIYSLRNKDVKTALQRFMTNLCYSFKTM (SEQ ID NO: 133)
  • AOLFR89 sequences MLDPSISSHTLYLHSLFPQGLRKGTMWQKNQTSLADFILEGLFDDSLTHLFLFSLTMWFLLAVS GNTLTILLIC-TOPQLHTPMYFLLSQLSLMDLMHVSTTILKMATNYLSGKKSISFVGCATQHFLYL CLGGAECFLLAVMSYDRYVAICHPLRYAVL- -D «-KVGLMMAVMSWLGASVNSLIHMAILMHF PFCGPRKVYIffYCEFPAVVKLVCGDITVYETTVYISSILLLLPIFLISTSYVFILQSVIQMRSSGSK RNAFATCGSHLTVVSLWFGACIFSYMRPRSQCTLLQNKVGSVFYSIITPTLNSLIYTLR-NKDVA KALRRVLRRDVITQCIQRLQLWLPRV (SEQ ID NO: 165)
  • AOLFR94 sequences METWVNQSYTDGFFLLGIFSHSTADLVLFSVVMAVFTVALCGNVLLIFLIYMDPHLHTPMYFF LSQLSLMDLMLVCTNVPKMAANFLSGRKSISFVGCGIQIGLFVCLVGSEGLLLGLMAYDRYVA ISHPLHYPILMNQRVCLQITGSSWAFGIIDGLIQMVV ⁇ MNFPYCGLRKVNHFFCEMLSLLKLAC VDTSLFEKVIFACCVFMLLFPFSIIVASYAHILGTVLQMHSAQAWKKALATCSSHLTAVTLFYG AAMFIYLRPRHYRAPSHDKVASIFYTVLTPMLNPLIYSLRNREVMGALRKGLDRCRIGSQH (SEQ ID NO: 175)
  • AOLFR95 sequences MLGSKPRVHLYILPCASQQVSTMGDRGTSNHSEMTDFILAGFRVRPELHILLFLLFLFVYAMILL GNVGMMTIIMTDPRLNTPMYFFLGNLSFIDLFYSSVIEPKAMINFWSENKSISFAGCVAQLFLFA LLIVTEGFLLAAMAYDRFIAICNPLLYSVQMSTRLCTQLVAGSYFCGCISSVIQTSMTFTLSFCAS -I vT)HFYCDSRPLQRLSCSDLFIHRMISFSLSCIIILPTIIVIIVSYMYIVSTVLKIHSTEGHKKAFST CSSHLGVVSVLYGA FMYLTPDRFPELSKVASLCYSLVTPMLNPLIYSLRNKDVQEALKKFLE KKNIIL (SEQ ID NO: 177)
  • AOLFR96 sequences MICENHTRVTEFILLGFTNNPEMQVSLFIFFLAIYTVTLLGNFLIVTVTSVDLALQTPMYFFLQN LSLLEVCFTLVMVPKMLVDLVSPRKIISFVGCGTQMYFFFFFGSSECFLLSMMAYDRFVAICNP LHYSV-OS -NRSLCLWMAIGSWMSGV VSMLQTAWMMALPFCGPNAVDHFFCDGPPVLKLVTV DTTMYEMQALASTLLFIMFPFCLILVSYTRIIITILRMSSATGRQKAFSTCSSHLIWSLFYGTASL TYLRPKSNQSPESKKLVSLSYTVITPMLNPIIYGLRNNEVKGAVKRTITQKVLQKLDVF (SEQ ID NO: 179)
  • AOLFR97 sequences MTEFHLQSQMPSIRLIFRRLSLGRIKPSQSPRCSTSFMVVPSFSIAEHWRRMKGANLSQGMEFEL LGLTTDPQLQRLLFWFLGMYTATLLGNLVMFLLIHVSATLHTPMYSLLKSLSFLDFCYSSTVV PQTLVNFLAK-RKVISYFGCMTQMFFYAGFATSECYLIAAMAYDRYAAICNPLLYSTIMSPEVC ASLIVGSYSAGFLNSLIHTGCIFSLKFCGAHWTHFFCDGPPILSLSCVDTSLCEILLFIFAGFNLLS CTLTILISYFLILNTILKMSSAQGRFKAFSTCASHLTAICLFFGTTLFMYLRPRSSYSLTQDRTVA VIYTVVIPVLNPLMYSLPJ IKDVKKALIKV GRKTME (SEQ ID NO: 181)
  • AOLFR99 sequences MERVNETVV-REVIFLGFSSLARLQQLLFVIFLLLYLFTLGTNAIIISTIVLDRALHIPMYFFLAILSC SEICYTFIIVPKMLVDLLSQKKTISFLGCAIQMFSFLFLGCSHSFLLAVMGYDRYLAICNPLRYSV LMGHGVCMGLVA--AACACGFTVAQIITSLVFHLPFYSSNQLHHFFCDIAPVLKLASHHNHFSQIV IFMLCTLVLAIPLLLILVSYVHILSAILQFPSTLGRCKAFSTCVSHLIIVTVHYGCASFIYLRPQSNY SSSQDALISVSYTIITPLFNPMIYSLRNKEFKSALCKIVRRTISLL (SEQ ID NO: 185)
  • HYPTLMTPTLCAEI GCWLGGLAGPVVEISLISRLPFCGPNRIQHVFCDFPPVLSLACTDTSINV LVDFVINSCKILATFLLILCSYVQIICTVLRIPSAAGKRKAISTCASHFTVVLIFYGSILSMYVQLK KSYSLDYDQALAVVYSVLTPFLNPFr ⁇ SLRNKEIKEAVRRQLKRIGILA (SEQ ID NO: 187)
  • AOLFR105 sequences MQGLNHTSVSEFILVGFSAFPHLQLMLFLLFLLMYLFTLLGNLLIMATVWSERSLHMPMYLFLC ALSITEILYTVAIIPRMLADLLSTQRSIAFLACASQMFFSFSFGFTHSFLLTVMGYDRYVAICHPL RYNVLMSLRGCTCRVGCSWAGGLVMGMWTSAIFHLAFCGHKEIHHFFCHVPPLLKLACGDD VLVVAKGVGLVCITALLGCFLLILLSYAFrVAAILKIPSAEGRNl- A FSTCASHLTVVVNHYGFAS VIYLKPKGPQSPEGDTLMGITYTVLTPFLSPIIFSLR-NKELKVAMKKTCFTKLFPQNC (SEQ ID NO: 193)
  • AOLFR106 sequences METANYTKVTEFVLTGLSQTPEVQLVLFVIFLSFYLFILPGNILIICTISLDPHLTSPMYFLLANLA FLDIWYSSITAPEMLIDFFVERKIISFDGCIAQLFFLHFAGASEMFLLTVMAFDLYTAICRPLHYA TIMNQRLCCILVALSWRGGFms ⁇ QVALIVRLPFCGPNELDSYFCDITQVVRIACANTFPEELVM ICSSGLISVVCLIALLMSYAFLLALFKKLSGSGENTNRAMSTCYSHITIWLMFGPSIYIYARPFD SFSLDKVYSVFNTLIFPLRNPIIYTLPJ ⁇ JKEVKAAMRKLVTKYILCKEK (SEQ ID NO: 195)
  • AOLFR114 sequences MERINHTSSVSEFILLGLSSRPEDQKTLFVLFLIVYLVTITGNLLIILAIRFNPHLQTPMYFFLSFLS LTDICFTTSVW-IO lLMNFLSEK-KTISYAGCLTQMYFLYALGNSDSCLLAVMAFDRYVAVCDPF HYVTTMSHHHCVLLVAFSCSFPHLHSLLHTLLLNRLTFCDSNVIHHFLCDLSPVLKLSCSSIFVN EIVQMTEAPIVLVT-RFLCL FSYIRILTTVLOPSTSGKRKAFSTCGFYLTVVTLFYGSIFCVYLQP PSTYAVKDHVATIVYTVLSSMLNPFIYSLRNKDLKQGLRKLMSKP.S (SEQ ID NO: 209) ATGGAAAGAATCAACCACACCAGCAGTGTCTCCGAGTTTATCCTCCTGGGACTCTCCTCCC GGCCTGAGGACCAAAAGACACTCTTTGTTCTCTTCCTCATCGTGT
  • AOLFR116 sequences MDEANHSVVSEFVFLGLSDSRKIQLLLFLFFSVFYVSSLMGNLLIVLTVTSDPRLQSPMYFLLAN LSIINLVFCSSTAJPKMIYDLFR-KHKTISFGGCVVQffFIED VGGTEMVLLIAMAFDRYVAICKPLH YLTIMNPQRCILFLVISWIIGIIHSVIQLAFWDLLFCGPNELDSFFCDLPRFIKLACIETYTLGFMV TANSGFISLASFLILIISYIFILVTVQKKSSGGIFKAFSMLSAHVIVWLVFGPLIFFYIFPFPTSHLD KFLAIFDAVITPVLNPVIYTFRNKEMMVAMRRRCSQFVNYSKIF (SEQ ID NO: 213)
  • AOLFR118 sequences MNHMSASLKISNSSKFQVSEFILLGFPGIHSWQHWLSLPLALLYLSALAANTLILIIIWQNPSLQQ PMYIFLGILCMVDMGLATTIIPKILAIFWFDAKVISLPECFAQIYAIHFFVGMESGILLCMAFDRY VAICHPLRYPSIVTSSLILKATLFMVLRNGLFVTPVPVLAAQRDYCSKNEIEHCLCSNLGVTSLA CDDRRPNSICQLVLAWLGMGSDLSLIILSYILILYSVLRLNSAEAAAKALSTCSSHLTLILFFYTIV VVISVTHLTEMKATLIPVLLNVLHNIIPPSLNPTVYALQTKELRAAFQKVLFALTKEIRS (SEQ ID NO: 217)
  • AOLFR120 sequences MQP YTKNWTQVTEF VMMGFAGIHEAHLLFFILFLTMYLFTLVENLAIILWGLDHRLRRPMYF FLTHLSCLEIWYTSVTVPKMLAGFIGVDGGKNISYAGCLSQLFIFTFLGATECFLLAAMAYDRY VAICMPLHYGAFVSWGTCIRLAAACWLVGFLTPILPIYLLSQLTFCGPNVIDHFSCDASPLLALS CSDVTWKETVDFLVSLAVLLASSMVIAVSYGNIVWTLLHIRSAAERWKAFSTCAAHLTWSLF YGTLFFMYVQTKVTSSIr ⁇ NKVVSWYSVVTPMLNPLIYSLRNKEVKGALGRVFSLNFWKGQ (SEQ ID NO: 221)
  • AOLFR121 sequences MKRKNFTEVSEFIFLGFSSFGKHQITLFWFLTVYILTLVANIIIVTIICIDHHLHTPMYFFLSMLA SSETVYTLVIVPRMLLSLIFHNQPISLAGCATQMFFFVILATNNCFLLTAMGYDRYVAICRPLRY TVIMSKGLCAQLVCGSFGIGLTMAVLHVTAMFNLPFCGTVVDHFFCDIYPVMKLSCIDTTINEII NYGVSSFVIFVPIGLIFISYVLVISSILQLASAEGRKKTFATCVSHLTVV ⁇ VHCGCASIAYLKPKSES SIEKDLVLSVTYTIITPLLNPVVYSLRNKEVKDALCRVVGRNIS (SEQ ID NO: 223)
  • AOLFR124 sequences MNHSVVTEFIILGLTK-KPELQGIIFLFFLIVYLVAFLGNMLIIIA- YNNTLHTPMYVFLLTLAVV DIICTTSIIPKMLGTMLTSENTISYAGCMSQLFLFTWSLGAEMVLFTTMAYDRYVAICFPLHYST VM- raHMCVALLSMVMAIAVTNSWVHTALIMRLTFCGPNTIDHFFCEIPPLLALSCSPVPJNEV MVYVADITLAIGDFILTCISYGFIIVAILRIRTVEGKRKAFSTCSSHLTVVTLYYSPVIYTYIRPASS YTFERDKWAALYTLVTPTLNPMVYSFQNREMQAGIRKVFAFLKH (SEQ ID NO: 229)
  • AOLFR127 sequences MSNEDMEQDNTTLLTEFVLTGLTYQPE KMPLFLVFLVIYLITIV NLGLLALIWNDPQLHIPM YFFLGSLAEVDAWISSTVTP-KMLVNFLAK-NRMISLSECMIQFFSFAFGGTTECFLLATMAYDRY VAICKPLLYPVIMNNSLCIRLLAFSFLGGFLHALIHEVLIFRLTFCNSNIIHHFYCDIIPLFMISCTD PSINELMWILSGSIQVFTIVTVLNSYTFALFTILKKKSVRGVRKAFSTCGAHLLSVSLYYGPLIF MYLI ⁇ ASPQADDQDMIDSVFYT ⁇ iPLLNPIIYSLRNKQVIDSFTKMVKRNV (SEQ ID NO: 235)
  • AOLFR133 sequences MTEFIFLVLSPNQEVQRVCFVIFLFLYTAIVLGNFLIVLTVMTSRSLGSPMYFFLSYLSFMEICYS SATAPKX,ISDLLAERKVISWWGCMAQLFFLHFFGGTEIFLLTVMAYDHYVAICKPLSYTTIMN WQVCTVLVGIAWVGGFMHSFAQILLIFHLLFCGPNVINHYFCDLVPLLKLACSDTFLIGLLIVAN GGTLSVISFGVLLASYMVILLHLRTWSSEGWCKALSTCGSHFAWILFFGPCVFNSLRPSTTLPI DKMVAWYTVITAILNPVIYSLRNAEMRKAMKRLWIRTLRLNEK (SEQ ID NO: 245)
  • AOLFR136 sequences MTMENYSMAAQFVLDGLTQQAELQLPLFLLFLGIYWTVVGNLGMILLIAVSPLLHTPMYYFL SSLSFVDFCYSSVITPKMLVNFLGKKNTILYSECMVQLFFFWFVVAEGYLLTAMAYDRYVAIC SPLLYNAIMSSWVCSLLVLAAFFLGFLSALTHTSAMMKLSFCKSHIINHYFCDVLPLLNLSCSNT HLNELLLFIIAGFNTLVPTLAVAVSYAFILYSILHIRSSEGRSKAFGTCSSHLMAVVIFFGSITFMY FK PSSNSLDQEKVSSVFYTTVIPMLNPLIYSLRNKDVKKALRKVLVGK (SEQ ID NO: 251)
  • AOLFR140 sequences MLTLNKTDLIPASFILNGVPGLEDTQLWISFPFCSMYVVAMVGNCGLLYLIHYEDALHKPMYY FLAMLSFTDLVMCSSTIPKALCIFWFHLKDIGFDECLVQMFFIHTFTGMESGVLMLMALDRYV AICYPLRYSTILTNPVIAKVGTATFLRGVLLIIPFTFLTKRLPYCRGNILPHTYCDHMSVAKLSCG NVKVNAIYGLMVALLIGGFDILCITISYTMILRAWSLSSADARQKAFNTCTAHICAIVFSYTPAF FSFFSHRFGEHIIPPSCHIIVANIYLLLPPTMNPIVYGVKTKQIRDCVIRILSGSKDTKSYSM (SEQ ID NO: 259)
  • AOLFR141 sequences MSSTLGHNMESPNHTDVDPSVFFLLGIPGLEQFHLWLSLPVCGLGTATIVGNITILVWATEPVL HKPVYLFLCMLSTIDLAASVSTVPKLLAIFWCGAGHISASACLAQMFFIHAFCMMESTVLLAM AFDRYVAICHPLRYATILTDTIIAHIGVAAWRGSLLMLPCPFLIGRLNFCQSHVILHTYCEHMA VVKLACGDTRPNRVYGLTAALLVIGVDLFCIGLSYALSAQAVLRLSSHEARSKALGTCGSHVC VILISYTPALFSFFTHRFGHHVPVHIHILLANVYLLLPPALNPVVYGVKTKQIRKRVVRVFQSGQ GMGIKASE (SEQ ID NO: 261)
  • AOLFR150 sequences MELGNVTRVKEFIFLGLTQSQDQSLVLFLFLCLVYMTTLLGNLLIMVTVTCESRLHTPMYFLLR NLAILDICFSSTTAPKVLLDLLSKKKTISYTSCMTQIFLFHLLGGADIFSLSVMAFDCYMAISKPL HYVTIMSRGQCTALISASWMGGFVHSIVQISLLLPLPFCGPNVLDTFYCDVPQVLKLTCTDTFA LEFLMISNNGLVTTLWFIFLLVSYTVILMTLRSQAGGGRRKAISTCTSPHHCGDPAFCALHLCLC PALHCPPHRKGHLCHLHCHLPSAEPFDLHSEEPGNEVSHEKTEEKTRAF (SEQ ID NO: 277)
  • AOLFR159 sequences MGPRNQTAVSEFLLMKVTEDPELKLIPFSLFLSMYLVTILGNLLILLAVISDSHLHTPMYFLLFN LSFTDICLTTTTVPKILVNIQAQNQSITYTGCLTQICLVLVFAGLESCFLAVMAYDRYVAICHPL RYTVLMNVHFWGLLILLSMFMSTMDALVQSLMVLQLSFCKNVEIPLFFCEWQVIKLACSDTL INNILIYFASSVFGAIPLSGIIFSYSQIVTSVLRMPSARGKYKAFSTCGCHLSVFSLFYGTAFGVYIS SAVAESSRITAVASVMYTVVPQMMNPFIYSLRNKEMK1 LRKLIGRLFPF (SEQ ID NO: 291)
  • AOLFR161 sequences MEPRNQTSASQFILLGLSEKPEQETLLFSLFFCMYLVMWGNLLIILAISIDSHLHTPMYFFLANL SLVDFCLATNTIPKMLVSLQTGSKAISYPCCLIQMYFFHFFGIVDSVIIAMMAYDRFVAICHPLH YAKIMSLRLCRLLVGALWAFSCFISLTHILLMARLVFCGSHEVPHYFCDLTPILRLSCTDTSVNR IFILIVAGMVIATPFVCILASYARILVAIMKVPSAGGRKKAFSTCSSHLSWALFYGTTIGVYLCP SSVLTTVKEKASAVMYTAVTPMLNPFIYSLRNRDLKGALRKLVNRKITSSS (SEQ ID NO: 295)
  • AOLFR170 sequences MSFTSLIPSLCFSLTLPFLFCYLSLLPFLSAFLFITRWLLAFLSLFSVSVPVSSVSSSMVLCLYLSVS ASPSVFCFSCMQGPILWIMANLSQPSEFVLLGFSSFGELQALLYGPFLMLYLLAFMGNTIIIVMVI ADTHLHTPMYFFLGNFSLLEILVTMTAVPRMLSDLLVPHKVITFTGCMVQFYFHFSLGSTSFLIL TDMALD-RFVAICHPLRYGTLMSRAMCVQLAGAAWAAPFLAMVPTVLSRAHLDYCHGDVINH FFCDNEPLLQLSCSDTRLLEF DFLMALTFVLSSFLVTLISYGYIVTTVLRIPSASSCQKAFSTCG SHLTLVFIGYSSTIFLYVRPGKAHSVQVRKVVALVTSVLTPFLNPFILTFCNQTVKTVLQGQMQ RLKGLCKAQ (SEQ ID NO: 313)
  • AOLFR171 sequences MVGNLLIWVTTIGSPSLGSLMYFFLAYLSLMDAIYSTAMSPKLMIDLLCDKIAISLSACMGQLFI EHLLGGAEWLLVVMAYDRYVAISKPLHYLNIMNRLVCILLLVVAMIGGFVHSVVQIVFLYSLP ICGPNVIDHSVCDMYPLLELLCLDTYFIGLTWANGGIICMVIFTFLLISCGVILNFLKTYSQEER HKALPTCISHIIVVALWWCIFMYVRPVSNFPFDKLMTVFYSIITLMLNPLIYSLRQSEM-O ⁇ AM KNLWCEKLSIVRKRVSPTLNIFIPSSKATNRR (SEQ ID NO: 315)
  • AOLFR180 sequences MTNKMYAIYIKNLNYFSFLIVQCLQPTMAIFNNTTSSSSNFLLTAFPGLECAHVWISIPVCCLYTI ALLGNSMIFLVIITK-RRLH-KPMYYFLSMLAAVDLCLTITTLPTVLGVLWFHAREISFKACFIQMF FVHAFSLLESSVLVAMAFDRFVAICNPLNYATILTDRMVLVIGLVICIRPAVFLLPLLVAINTVSF HGGHELSHPFCYHPEVIKYTYSKPWISSFWGLFLQLYLNGTDVLFILFSYVLILRTVLGIVARKK QQKALSTCVCHICAVTIFYVPLISLSLAHRLFHSTPRVLCSTLANIYLLLPPVLNPIIYSLKTKTIR QAMFQLLQSKGSWGFNVRGLRGRWD (SEQ ID NO: 331)
  • AOLFR182 sequences MTLGSLGNSSSSVSATFLLSGIPGLERMHIWISIPLCFMYLVSIPGNCTILFIIKTERSLHEPMYLFL SMLALIDLGLSLCTLPTVLGIFWVGAREISHDACFAQLFFIHCFSFLESSVLLSMAFDRFVAICHP LHYVSILTNTVIGRIGLVSLGRSVALIFPLPFMLKRFPYCGSPVLSHSYCLHQEVMKLACADMK ANSIYGMFVIVSTVGIDSLLILFSYALILRTVLSIASRAERFKALNTCVSHICAVLLFYTPMIGLSV IHRFGKQAPHLVQVVMGFMYLLFPPVMNPIVYSVKTKQIRDRVTHAFCY (SEQ ID NO: 335)
  • AOLFR196 sequences MLESNYTMPTEFLFVGFTDYLPLRVTLFLVFLLVYTLTMVGNILLIILVNINSSLQIPMYYFLSNL SFLDISCSTAITPKMLANFLASRKSISPYGCALQMFFFASFADAECLILAAMAYDRYAAICNPLL YTTLMSRRVCVCFIVLAYFSGSTTSLVHVCLTFRLSFCGSNIVNHFFCDIPPLLALSCTDTQINQL LLFALCSFIQTSTFWIFISYFCILITVLSIKSSGGRSKTFSTCASHLIAVTLFYGALLFMYLQPTTS YSLDTDKVVA YTVWPMFNPIIYSFRN ⁇ VKN ⁇ ID NO: 363)
  • AOLFR199 sequences MDTGNKTLPQDFLLLGFPGSQTLQLSLFMLFLVMYILTVSGNVAILMLVSTSHQLHTPMYFFLS NLSFLEIWYTTAAVPKALAILLGRSQTISFTSCLLQMYFVFSLGCTEYFLLAAMAYDRCLAICYP LHYGAIMSSLLSAQLALGSWVCGFVAIAVPTALISGLSFCGPRAINHFFCDIAP IALACTNTQA VELVAFVIAVWILSSCLITFVSYVYIISTILRIPSASGRSKAFSTCSSHLTWLIWYGSTVFLHVR TSIKDALDLIKAVHVLNTVVTPVLNPFIYTLRNKEVRETLLKKWKGK (SEQ ID NO: 369)
  • AOLFR212 sequences MAGNNFTEVTVFILSGFANHPELQVSLFLMFLFIYLFTVLGNLGLITLIRMDSQLHTPMYFFLSN LAFIDIFYSSTVTPKALVNFQSNRRSISFVGCFVQMYFFVGLVCCECFLLGSMAYNRYIAICNPL LYSVVMSQKVSNWLGVMPYVIGFTSSLISVWVISSLAFCDSSINHFFCDTTALLALSCVDTFGT EMVSFVLAGFTLLSSLLIITVTYIIIISAILRIQSAAGRQKAFSTCASHLMAVTIFYGSLIFTYLQPD NTSSLTQAQVASWYTIVIPMLNPLIYSLR--SIKDVKNALLRVIHRKLFP (SEQ ID NO: 395)
  • AOLFR214 sequences MDKSNSSWSEFVLLGLCSSQKLQLFYFCFFSVLYTVIVLGNLLIILTVTSDTSLHSPMYFLLGN LSFVDICQASFATPKMIADFLSAHETISFSGCIAQIFFIHLFTGGEMVLLVSMAYDRYVAICKPLY YVVIMSRRTCTVLVMISWAVSLVHTLSQLSFTVNLPFCGPNVVDSFFCDLPRVTKLACLDSYIIE ILIVVNSGILSLSTFSLLVSSY ⁇ iLVTVWLKSSAAMAKAFSTLASHIAVVILFFGPCIFIYVWPFTIS PLD-mAIFYTVFTPVLNPIIYTLRM ⁇ MKAAV ⁇ (SEQ ID NO: 399)
  • AOLFR221 sequences MRNLSGGHVEEFVLVGFPTTPPLQLLLFVLFFAIYLLTLLENALIVFTIWLAPSLHRPMYFFLGH LSFLELWYINVTIPRLLAAFLTQDGRVSYVGCMTQLYFFIALACTECVLLAVMAYDRYLAICGP LLYPSLMPSSLATRLAAASWGSGFFSSMMKLLFISQLSYCGPNIINHFFCDISPLLNLTCSDKEQA ELVDFLLALVMILLPLLAWSSYTAIIAAILRIPTSRGRHKAFSTCAAHLAWVIYYSSTLFTYAR PRAMYTFNIM ISVLYTIIWFFNPAIYCLRNKEVKEAFRKTVMGRCHYPRDVQD (SEQ ID NO: 413).
  • AOLFR222 sequences MGQTNVTSWRDFVFLGFSSSGELQLLLFALFLSLYLVTLTSNVFIIIAIRLDSHLHTPMYLFLSFL SFSETCYTLGIIPRMLSGLAGGDQAISYVGCAAQMFFSASWACTNCFLLAAMGFDRYVAICAPL HYASHMNPTLCAQLVITSFLTGYLFGLGMTLVIFHLSFCSSHEIQHFFCDTPPVLSLACGDTGPS ELRIFILSLLVLLVSFFFITISYAYILAAILRIPSAEGQKKAFSTCASHLTWIIHYGCASFVYLRPK ASYSLERDQLIAMTYTWTPLLNPIVYSLRTRAIQTALRNAFRGRLLGKG (SEQ ID NO: 415).
  • AOLFR241 sequences MPQILIFTYLNMFYFFPPLQILAENLTMVTEFLLLGFSSLGEIQLALFWFLFLYLVILSGNVTIIS VIHLDKSLHTPMYFFLGILSTSETFYTFVILPKMLINLLSVARTISFNCCALQMFFFLGFAITNCLL LGVMGYDRYAAICHPLHYPTLMSWQVCGKLAAACAIGGFLASLTWNLVFSLPFCSANKVNH YFCDISAVILLACTNTDVNEFVIFICGVLVLVVPFLFICVSYLCILRTILKIPSAEGRRKAFSTCAS HLSVVIVHYGCASFIYLRPTANYVSNKDRLVTVTYTIVTPLLNPMVYSLR KDVQLAIRKVLG KKGSLKLYN (SEQ ID NO: 451).
  • AOLFR242 sequences MNTTLFHPYSFLLLGIPGLESMHLWVGFPFFAVFLTAVLGNITILFVIQTDSSLHHPMFYFLAILS SIDPGLSTSTIPKMLGTFWFTLREISFEGCLTQMFFIHLCTGMESAVLVAMAYDCYVAICDPLCY TLVLTNKWSVMALAIFLRPLVFVIPFVLFILRLPFCGHQIIPHTYGEHMGIARLSCASIRVNIIYG LCAISILVFDIIAIVISYVQILCAVFLLSSHDARLKAFSTCGSHVCVMLTFYMPAFFSFMTHRFGR NIPHFIHILLANFYWIPPALNSVIYGVRTKQIRAQVLKMFFNK (SEQ ID NO: 453).
  • AOLFR245 sequences MDLKNGSLVTEFILLGFFGRWELQIFFFVTFSLIYGATVMGNILIMVTVTCRSTLHSPLYFLLGN LSFLDMCLSTATTPKMIIDLLTDHKTISVWGCVTQMFFMHFFGGAEMTLLIIMAFDRYVAICKP LHYRTIMSHKLLKGFAILSWIIGFLHSISQIVLTMNLPFCGHNVINNIFCDLPLVIKLACIETYTLE LFVIADSGLLSFTCFILLLVSYIVILVSVPKKSSHGLSKALSTLSAHIIWTLFFGPCIFIYVWPFSSL ASNKTLAVFYTVITPLLNPSIYTLRNKKMQEAIRKLRFQYVSSAQNF (SEQ ID NO: 459).
  • AOLFR254 sequences MTNTSSSDFTLLGLLVNSEAAGIVFTVILAVFLGAVTANLVMIFLIQVDSRLHTPMYFLLSQLSI MDTLFICTTVPKLLADMVSKEKIISFVACGIQIFLYLTMIGSEFFLLGLMAYDCYVAVCNPLRYP VLMNRKKCLLLAAGAWFGGSLDGFLLTPITMNVPYCGSRSINHFFCEIPAVLKLACADTSLYET LMYICCVLMLLIPISIISTSYSLILLTIHRMPSAEGRKKAFTTCSSHLTVVSIFYGAAFYTYVLPQS FHTPEQDKVVSAFYTIVTPMLNPLIYSLRNKDVIGAFKKVFACCSSAQKVATSDA (SEQ ID NO: 477).
  • AOLFR130B sequences MEGKNQTAPSEFIILGFDHLNELQYLLFTIFFLTYICTLGGNVFIIWTIADSHLHTPMYYFLGNL ALIDICYTTTNVPQMMVHLLSEKKIISYGGCVTQLFAFIFFVGSECLLLAAMAYDRYIAICKPLR YSFIMNKALCSWLAASCWTCGFLNSVLHTVLTFHLPFCGNNQINYFFCDIPPLLILSCGDTSLNE LALLSIGILISWTPFLCIILSYLYIISTILRIRSSEGRHKAFSTCASHLLIVILYYGSAIFTYVRPISSYS LEKD-RLISVLYSVVTPMLNPVIYTLRNKDIKEAVKAIGRKWQPPVFSSDI (SEQ ID NO: 493)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The use of sensory G protein-coupled receptors that recognize chemical sensants, particularly those involving olfactory and taste receptors; polypeptide fragments and mutants thereof; classes of such receptors; polynucleotides encoding such receptors, fragments and mutants thereof, and representatives of receptor classes; genetic vectors including such polynucleotides; and cells and non-human organisms engineered to express such receptor complexes, fragments and mutants of an olfactory or taste receptor, and representatives of receptor classes to simulate sensory perception of odorants and tastants is described. The use of such products as a biosensor or a components thereof to detect, identify, measure, or otherwise process the event of binding between the receptor and its cognate ligand (i.e., chemical sensant) is also described. The invention has application, for example, in the design and formulation of odorant and tastant compositions.

Description

RECEPTOR FINGERPRINTING, SENSORY PERCEPTION, AND BIOSENSORS OF CHEMICAL SENSANTS
Cross Reference to Related Application
This application is related to U.S. Provisional Serial No. 60/213,812, filed June 22, 2000, and U.S. Serial No. 09/804,291, filed March 13, 2001, which are incorporated by reference in their entirety.
Background of the Invention
Field of the Invention
The invention relates to the use of sensory G protein-coupled receptor complexes that recognize chemical sensants, particularly those involving olfactory and taste receptors; polypep-tide fragments and mutants thereof; classes of such receptors; polynucleotides encoding such receptors, fragments and mutants thereof, and representatives of receptor classes; genetic vectors including such polynucleotides; and cells and non-human organisms engineered to express such receptor complexes, fragments and mutants of an olfactory or taste receptor, and representatives of receptor classes to simulate sensory perception of odorants and tastants. The invention also relates to the use of such products as a biosensor or component thereof to detect, to identify, to measure, or otherwise process the event of binding between the receptor and its cognate ligand (i.e., chemical sensant). The invention has application, for example, in the design and formu-lation of odorant and tastant compositions.
Description of the Related Art
The olfactory and taste systems provide sensory information about the chemical environ-ment. Olfactory receptors and taste receptors recognize, respectively, "odorants" and "tastants," collectively referred to as "sensants" or "sensory receptor ligands" herein. A "primary" sensant is an odorant or tastant ligand that substantially binds to sensory receptors with a ligand-binding site of a single amino acid sequence. Olfactory and taste receptors belong to the superfamily of seven-transmembrane guanyl nucleotide-binding proteins: such receptors are, however, also recognized as distinct families, or sub-genuses, of olfactory or taste receptors (see Raming Nature 361 :353, 1993). These receptors control diverse physiological functions such as media-ting signaling from an external chemical stimulus across the membrane containing the receptor into a cell, endocrine function, exocrine function, heart rate, lipolysis, and carbohydrate metabolism. Thus, the dissection of these diverse functions into component signals is needed.
But the complexities of sensory perception of chemical sensants prevent easy translation of the olfaction and taste systems to a machine sensor. For example, U.S. Patent Nos. 5,675,070; 5,918,257; 5,928,609; and 6,085,576 disclose machine sensors that use various chemistries, but they do not take advantage of the specificity of olfactory and taste receptors for their cognate ligands to produce a biosensor.
WO 00/15269 discloses methods and apparatus for odor reproduction. The total affinities of a specific odorant with a group of receptors was called the affinity fingerprint of the odorant. This odorant fingerprint was represented by a vector of affinity values. It was proposed to repro-duce an arbitrary odor by inputting its sensed odorant fingerprint into a device, which has a palate of predetermined odorants and produces a composite odor using predetermined odorant finger-prints by minimizing the difference between vectors representing the sensed odorant fingerprint and the predetermined odorant fingerprints. This reference, however, does not teach or suggest the human olfactory receptors disclosed herein. WO 00/70343 discloses biosensors and sense replication systems using G- protein coupled receptors (GPCR). It was proposed to mimic the response of the G- protein signal transduction system by detecting the affinity of a stimulus to a plurality of GPCR, codifying such information into electronic signals, and reproducing the stimulus by converting the codified information into a combination of stimulant entities. But this reference also does not teach or suggest the human olfactory receptors disclosed herein.
WO 01/27158 discloses olfactory receptors and their use to determine the correspondence between individual odorant receptors and particular odors. It was proposed that the interactions between an odor and olfactory receptors can be used to represent the odor and to re-create it. This reference, however, does not teach or suggest the human olfactory receptors disclosed herein.
Dissecting the function of sensory receptors by binding sensory receptors of a clone of cells expressing a single sensory receptor gene, fragmentation of sensory receptors to provide ligand-binding or signal-transducing domains thereof, and construction of fusion sensory recep-tor proteins will separate the diverse physiological functions associated with sensory perception at the level of ligand- receptor binding. Furthermore, novel "primary sensants" that are identified and isolated by the methods described herein may be used to further define the function of the cognate sensory receptor by uniquely enhancing or, in the alternative, blocking stimulation of sensory receptors with a single ligand-binding domain.
The present invention addresses the need for better understanding of these ligand-receptor interactions by using a large set of identified sensory receptors. Even if the receptor set used is incomplete ( . e. , a partial set of all sensory receptors encoded in the genome), a large number of sensants will be detected. Moreover, redundancy in the chemical structures recognized by the sensory receptors or combinatorial processing of signals from different sensory receptors would allow broad coverage of chemically diverse sensants (e.g., by selection of a representative class of sensory receptors). Also provided are, ter alia, methods for utilizing such sensory receptors and biosensors to simulate sensory perception. To analyze ligand-receptor interactions and their effects on cell signaling and the processing of those signals in sensory perception, specific sensants and their cognate receptor complexes are detected, identified, and measured under binding conditions. Fragrances and flavorings can be detected, identified, measured, and/or custom designed by the methods herein described. In addition, drugs that incorporate artificial odors and/or tastes can be formulated.
Summary of the Invention Large gene families encoding mammalian olfactory G-protein-coupled receptors (OLFR) and mammalian taste G-protein-coupled receptors (TASR) are known in the prior art or are disclosed herein. An object of the invention to provide fragments and variants of such OLFRs and TASRs which retain odorant- or tastant- binding activity, respectively. The large number of sensory receptors that are made available herein and now amendable to manipulation raises the confidence that a substantially complete, or at least functional, repertoire of sensory receptors is provided. It is an object of the invention to provide nucleic acid sequences or molecules that encode such sensory receptors, or fragments or variants thereof. Another object is to provide expression vectors which include nucleic acid sequences that encode such sensory receptors, or fragments or variants thereof. It is yet another object of the invention to provide human or non-human cells which functionally express at least one of such sensory receptors, or fragments or variants thereof. Still another object is to provide sensory receptor fusion proteins or other polypeptides which include at least a fragment of at least one of such sensory receptors. In particular, fusions with reporter molecules or other heterologous amino acid sequences may maintain the original ligand-properties while changing the signaling properties to allow easier detection of sensant binding to the receptor (e.g., change in fluorescent signal). Moreover, chimeric proteins or other polypeptides with altered ligand-binding and/or signaling properties can be made from two or more different sensory receptors by mixing domains. The invention provides methods for representing the sensory perception of one or more chemicals (e.g., a primary sensant or mixture thereof) and/or for predicting the sensory percep-tion of one or more chemicals in a mammal (e.g., human) using the aforementioned products. Given a known member of a ligand-receptor binding pair, one or both members of the pair (i.e., ligand, receptor, or both) may be detected, identified, and/or measured under binding conditions.
Novel molecules or combinations of molecules which elicit a desired and predetermined sensory perception in a mammal (e.g., human) can be generated by determining a value of sensory perception in a mammal for a known molecule or combination thereof; determining a value of sensory perception in a mammal for one or more unknown molecules or combinations thereof; comparing the value of sensory perception in a mammal for one or more unknown corn-positions to the value of sensory perception in a mammal for one or more known compositions; selecting a molecule or combination of molecules that elicits a predetermined sensory perception in a mammal; and mixing two or more unknown molecules or combinations thereof to form a molecule or combination thereof that elicits a predetermined sensory perception in a mammal. The combining step yields a single molecule or a combination thereof that elicits a predetermined sensory perception in a mammal. In particular, primary odorants that uniquely bind to olfactory receptors with a single ligand-binding domain may be such novel molecules. Variants thereof may be used (1) to enhance stimulation of a limited response by olfactory receptors with a single ligand-binding domain or (2) to block stimulation of olfactory receptors with a single ligand-binding domain to reduce or inhibit olfactory perception. An alternative method for identifying primary odorants is to identify the mutated receptors in genetic anosmias because that odorant would be expected to be recognized by only one or a few olfactory receptors affected by the mutation.
Detailed Description of the Invention Perception of Chemical Sensants
U.S. Patent No. 5,691,188 describes how upon binding of ligand to receptor, the receptor presumably undergoes a conformational change leading to activation of the G protein. The G proteins are comprised of three subunits: a guanyl nucleotide binding α subunit, a β subunit, and a γ subunit. G proteins cycle between two forms, depending on whether GDP or GTP is bound to the α subunit. When GDP is bound, the G protein exists as a heterotrimer: the Gαβγ complex. When GTP is bound, the α subunit dissociates from the heterotrimer, leaving a Gβγ complex. When a Gαβγ complex operatively associates with an activated G protein coupled receptor in a cell membrane, the rate of exchange of GTP for bound GDP is increased and the rate of disso-ciation of the bound Gα subunit from the Gαβγ complex increases. The free Gα subunit and Gβγ complex are thus capable of transmitting a signal to downstream elements of a variety of signal transduction pathways. These events from the basis for a multiplicity of different cell signaling phenomena, including for example the signaling phenomena that are identified as neurological sensory perceptions such as taste and/or smell. A high-resolution X-ray crystal structure is available for rhodopsin, a guanyl nucleotide binding protein, has been solved (Palczewski et al, Science 289:739, 2000). Using this structure, the portions of the amino acid sequence of sensant receptors that are responsible for ligand binding can be identified.
Sensory Perception - Olfaction Genes encoding the olfactory receptors are active primarily in olfactory neurons (Axel Sci. Amer. 273:154, 1995). Individual olfactory receptor types are expressed in subsets of cells distributed in distinct zones of the olfactory epithelium (Breer Semin. Cell Biol. 5:25, 1994). The human genome contains thousands of genes that encode a diverse repertoire of olfactory receptors (Rouquier Nat. Genet. 18:243, 1998; Trask Hwm. Mol. Genet. 7:2007, 1998). An understanding of an animal's ability to detect and discriminate among the thousands of distinct odorants or tastants, and more particularly to distinguish, for example beneficial tastants or odorants from toxic tastants or odorants, is complicated by the fact that sensory receptors belong to a multigene family with over a thousand members, and the odorant receptors number at least 500 to 1,000. Moreover, each sensory receptor neuron may express only one or a few of these receptors. With respect to odorant receptors, any given olfactory neuron can respond to a small set of odorant ligands. In addition, odorant discrimination for a given neuron may depend on the ligand specificity of the one or few receptors it expresses.
Sensory Perception - Taste
Mammals are believed to have five basic taste modalities: sweet, bitter, sour, salty, and umami (the taste of monosodium glutamate). See, e.g., Kawamura et al, Introduction to Umami: A Basic Taste (1987); Kinnamon et al, Ann. Rev. Physiol, 54:715, 1992; Lindemann, Physiol. Rev., 76:718, 1996; Stewart et al, Am. J. Physiol, 272:1, 1997. Numerous physiological studies in animals have shown that taste receptor cells may selectively respond to different chemical stimuli. See, e.g., Akabas et al, Science, 242:1047, 1988; Gilbertson et al, J. Gen. Physiol, 100:803, 1992; Bernhardt et al, J. Physiol, 490:325, 1996; Cummings et al, J. Neurophysiol, 75:1256, 1996.
In mammals, taste receptor cells are assembled into taste buds that are distributed into different papillae in the tongue epithelium. Circumvallate papillae, found at the very back of the tongue, contain hundreds, e.g., mice, to thousands, e.g., human, of taste buds. By contrast, foli-ate papillae, localized to the posterior lateral edge of the tongue, only contain dozens to hundreds of taste buds. Moreover, fungiform papillae contain only a single or a few taste buds, and are at the front of the tongue. r
AC010814, AC018700, AC021304, AC008620, AC011537, AC010760, AC027641, AC017103, AC024729, AC024257, AC025115, AP001524, AP000916, AC010814, AL162254, AC025234, AP001521, AC026090, AC019088, AC016856, AC016787, AC009594, AC026038, AQ628489, AC025942, AL163152, AC026975, AC024654, AP001803, AP001804, AL353767, AP001884, AC026083, AC018793, AP000818, AL353894, AL049734, AL355366, AC011464, AC037472, AC036111, AC019093, AC027239, AC027522, AC009545, AC021333, AC036216, AC021935, AC022762, AL356019, AC055861, AC018375, AC072059, AC068339, AC022891, AL357039, AP002345, AC044810, AC073113, AC024399, AC023564, AL390860, AC074365, AP002826, AL359636, AL391534, AC055731, AC076959, AP002826, AC019088, AC009779, AL445307, AP002512, AP000818, AC079190) by virtue of their sequence homology to some of the known human and other mammalian olfactory receptor genes. Similarly, genes encoding five and thirty-six (36) distinct, novel human T1R and T2R taste receptors, respectively, have been identified in genome sequence databases.
Alternatively, nucleic acids encoding the sensory receptors and other related polypep-tides can be isolated from a variety of sources, genetically engineered, amplified, synthesized, and or expressed recombinantly according to the methods disclosed in WO 00/35374, which is herein incorporated by reference in its entirety. These nucleic acids provide probes for the identification of cells expressing sensory receptors, as the nucleic acids are specifically expressed in such cells. They can also serve as tools for the generation of sensory topographical maps that elucidate the relationship between cells expressing sensory receptors and sensory neurons leading to particular regions of the brain. Furthermore, the nucleic acids and the polypeptides they encode can be used as probes to elucidate olfactant- or tastant- induced behaviors.
Nucleic acid molecules encoding a sensory receptor comprising a nucleic acid sequence that is at least 75%, 85%, 90%, 95%, or 99% identical to a nucleic acid sequence selected from those known in the prior art or disclosed herein are considered variants. Other nucleic acid molecules comprising a nucleic acid sequence that encodes a polypeptide having an amino acid sequence at least 75%, 85%, 90%, 95%, or 99% identical to an amino acid sequence selected from those known in the prior art or disclosed herein are also considered variants. Further variants contain amino acid sequence differences in at most ten, five, four, three, two, or one amino acid residue(s).
Exemplary nucleic acid sequences may be selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ D NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ D NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ D NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ E NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ED NO: 106, SEQ ED NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ -TO NO: 114, SEQ D NO: 116, SEQ ID NO: 118, SEQ ED NO: 120, SEQ ED NO: 122, SEQ ED NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ED NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ED NO: 140, SEQ D NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ED NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ D NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ED NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ED NO: 190, SEQ JD NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ED NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ED NO: 208, SEQ ID NO: 210, SEQ D NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ TD NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ED NO: 230, SEQ ED NO: 232, SEQ ED NO: 234, SEQ D NO: 236, SEQ ID NO: 238, SEQ ED NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ JD NO: 248, SEQ D NO: 250, SEQ ID NO: 252, SEQ JD NO: 254, SEQ ED NO: 256, SEQ ED NO: 258, SEQ DD NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ED NO: 268, SEQ ED NO: 270, SEQ ED NO: 272, SEQ ED NO: 274, SEQ ED NO: 276, SEQ ED NO: 278, SEQ ED NO: 280, SEQ TD NO: 282, SEQ ID NO: 284, SEQ TD NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ED NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ TD NO: 310, SEQ TD NO: 312, SEQ ID NO: 314, SEQ TD NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ TD NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ TD NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ TD NO: 344, SEQ ID NO: 346, SEQ TD NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ TD NO: 354, SEQ TD NO: 356, SEQ TD NO: 358, SEQ ID NO: 360, SEQ TD NO: 362, SEQ ED NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ TD NO: 370, SEQ ED NO: 372, SEQ DD NO: 374, SEQ DD NO: 376, SEQ DD NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ED NO: 386, SEQ ID NO: 388, SEQ ED NO: 390, SEQ DD NO: 392, SEQ DD NO: 394, SEQ ED NO: 396, SEQ DD NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ED NO: 406, SEQ ED NO: 408, SEQ DD NO: 410, SEQ ED NO: 412, SEQ DD NO: 414, SEQ DD NO: 416, SEQ ED NO: 418, SEQ DD NO: 420, SEQ DD NO: 422, SEQ ED NO: 424, SEQ DD NO: 426, SEQ TD NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ED NO: 434, SEQ DD NO: 436, SEQ ID NO: 438, SEQ TD NO: 440, SEQ ED NO: 442, SEQ DD NO: 444, SEQ DD NO: 446, SEQ TD NO: 448, SEQ TD NO: 450, SEQ ID NO: 452, SEQ TD NO: 454, SEQ ED NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ TD NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ TD NO: 472, SEQ ID NO: 474, SEQ TD NO: 476, SEQ ID NO: 478, SEQ ID NO: 480, SEQ TD NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ TD NO: 498, SEQ ID NO: 500, SEQ ED NO: 502, SEQ ED NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ DD NO: 510; and SEQ DD NO: 512.
Nucleic acid molecule comprising a nucleic acid sequence that encodes a fragment of a polypeptide having an amino acid sequence selected from those known in the prior art or dis-closed herein; wherein the fragment is at least ten, 20, 30, 50, 70, 100, or 150 amino acid resi-dues in length, are useful as probes, primers, and to construct hybrids or chimerae.
Polypeptides comprising an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence selected from those known in the prior art or disclosed herein are considered variants. Further variants contain amino acid sequence differ-ences in at most ten, five, four, three, two, or one amino acid residue(s). Other polypeptides comprising a fragment of a polypeptide having an amino acid sequence selected from those known in the prior art or disclosed herein; wherein the fragment is at least 40, 60, 80, 100, 150, 200, or 250 amino acid residues in length, are useful as specific binders of sensants, competitive binders, antigens, and to construct hybrids or chimerae.
Exemplary amino acid sequences may be selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ DD NO: 7, SEQ DD NO: 9, SEQ ED NO: 11, SEQ DD NO: 13, SEQ ID NO: 15, SEQ TD NO: 17, SEQ ID NO: 19, SEQ TD NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ TD NO: 27, SEQ ED NO: 29, SEQ TD NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ED NO: 37, SEQ DD NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ TD NO: 49, SEQ ED NO: 51, SEQ DD NO: 53, SEQ ED NO: 55, SEQ DD NO: 57, SEQ ED NO: 59, SEQ DD NO: 61, SEQ ID NO: 63, SEQ TD NO: 65, SEQ TD NO: 67, SEQ TD NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ TD NO: 77, SEQ DD NO: 79, SEQ DD NO: 81, SEQ ED NO: 83, SEQ TD NO: 85, SEQ DD NO: 87, SEQ DD NO: 89, SEQ ED NO: 91, SEQ ED NO: 93, SEQ ED NO: 95, SEQ DD NO: 97, SEQ TD NO: 99, SEQ TD NO: 101, SEQ TD NO: 103, SEQ ID NO: 105, SEQ ED NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ED NO: 113, SEQ ED NO: 115, SEQ ED NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ TD NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ TD NO: 129, SEQ ED NO: 131, SEQ DD NO: 133, SEQ ED NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ TD NO: 143, SEQ TD NO: 145, SEQ TD NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ED NO: 153, SEQ ID NO: 155, SEQ ED NO: 157, SEQ DD NO: 159, SEQ TD NO: 161, SEQ ID NO: 163, SEQ ED NO: 165, SEQ ED NO: 167, SEQ ID NO: 169, SEQ ED NO: 171, SEQ ED NO: 173, SEQ ED NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ED NO: 181, SEQ ID NO: 183, SEQ TD NO: 185, SEQ TD NO: 187, SEQ TD NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ TD NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ED NO: 205, SEQ DD NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ED NO: 217, SEQ DD NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ TD NO: 225, SEQ TD NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ TD NO: 237, SEQ ED NO: 239, SEQ DD NO: 241, SEQ DD NO: 243, SEQ DD NO: 245, SEQ TD NO: 247, SEQ ID NO: 249, SEQ DD NO: 251, SEQ DD NO: 253, SEQ DD NO: 255, SEQ TD NO: 257, SEQ ED NO: 259, SEQ DD NO: 261, SEQ DD NO:, 263, SEQ ED NO:, 265, SEQ DD NO: 267, SEQ DD NO: 269, SEQ ED NO: 271, SEQ ED NO: 273, SEQ ID NO: 275, SEQ ED NO: 277, SEQ TD NO: 279, SEQ DD NO: 281, SEQ DD NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ TD NO: 289, SEQ DD NO: 291, SEQ DD NO: 293, SEQ ID NO: 295, SEQ TD NO: 297, SEQ TD NO: 299, SEQ ID NO: 301, SEQ TD NO: 303, SEQ ID NO: 305, SEQ ED NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ DD NO: 313, SEQ DD NO: 315, SEQ ED NO: 317, SEQ ED NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ TD NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ TD NO: 339, SEQ ID NO: 341, SEQ ED NO: 343, SEQ ED NO: 345, SEQ TD NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ED NO: 355, SEQ DD NO: 357, SEQ ID NO: 359, SEQ DD NO: 361, SEQ DD NO: 363, SEQ DD NO: 365, SEQ DD NO: 367, SEQ TD NO: 369, SEQ TD NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ DD NO: 379, SEQ DD NO: 381, SEQ DD NO: 383, SEQ ED NO: 385, SEQ DD NO: 387, SEQ TD NO: 389, SEQ ID NO: 391, SEQ DD NO: 393, SEQ DD NO: 395, SEQ DD NO: 397, SEQ DD NO: 399, SEQ DD NO: 401, SEQ DD NO: 403, SEQ DD NO: 405, SEQ DD NO: 407, SEQ DD NO: 409, SEQ TD NO: 411, SEQ TD NO: 413, SEQ ID NO: 415, SEQ AD NO: 417, SEQ ED NO: 419, SEQ DD NO: 421, SEQ DD NO: 423, SEQ ID NO: 425, SEQ TD NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ED NO: 433, SEQ DD NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ TD NO: 441, SEQ TD NO: 443, SEQ ID NO: 445, SEQ DD NO: 447, SEQ ED NO: 449, SEQ DD NO: 451, SEQ A NO: 453, SEQ ID NO: 455, SEQ TD NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ TD NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ED NO: 471, SEQ DD NO: 473, SEQ DD NO: 475, SEQ DD NO: 477, SEQ DD NO: 479, SEQ DD NO: 481, SEQ TD NO: 483, SEQ ED NO: 485, SEQ DD NO: 487, SEQ DD NO: 489, SEQ DD NO: 491, SEQ ID NO: 493, SEQ DD NO: 495, SEQ ED NO: 497, SEQ DD NO: 499, SEQ DD NO: 501, SEQ DD NO: 503, SEQ ID NO: 505, SEQ HD NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511.
Also provided are methods of screening for modulators, e.g., activators, inhibitors, stimu-lators, enhancers, agonists, and antagonists, of the sensory receptors, or fragments or variants thereof. Such modulators of signal transduction are useful for pharmacological or genetic modu-lation of signaling pathways. These methods of screening can be used to identify high affinity agonists and antagonists of sensory cell activity. These modulator compounds can then be used in the pharmaceutical, food, and cosmetic industries to customize odorants or tastants.
Thus, the invention provides assays for sensory modulation, where the sensory receptors, or fragments or variants thereof, act as direct or indirect reporter molecules for the effect of modulators on signal transduction. Sensory receptors, or fragments or variants thereof, can be used in assays, e.g., to measure changes in ion concentration, membrane potential, current flow, ion flux, transcription, signal transduction, receptor-ligand interaction, second messenger concen-trations, in vitro, in vivo, and ex vivo. In one embodiment, sensory receptors, or fragments or variants thereof, can be used as an indirect reporters via attachment to second reporter molecules, such as green fluorescent protein (see, e.g., Mistili et al, Nature Biotech., 15:961, 1997). In another embodiment, the sensory receptors, or fragments or variants thereof, can be expressed in host cells, and modulation of signal transduction via sensory receptor activity can be assayed by measuring changes in Ca 2+ levels.
Methods of assaying for modulators of signal transduction include in vitro ligand binding assays using the sensory receptors, or fragments or variants thereof. More particularly, such assays can use the sensory receptors; portions thereof such as the extracellular or transmembrane domains; chimeric proteins comprising one or more of such domains; oocyte receptor expression; tissue culture cell receptor expression; transcriptional activation of the receptor; G-protein binding to the receptor; ligand binding assays; voltage, membrane potential and conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP and inositol triphosphate; changes in intracellular Ca levels; and neurotransmitter release.
The invention also provides for methods of detecting sensory receptor nucleic acid and protein expression, allowing for the investigation of taste transduction regulation and specific identification of sensory receptor cells. The sensory receptors, fragments, and variants of the invention can also be used to generate monoclonal and polyclonal antibodies useful for identi-fying a sensory receptor cells. Sensory receptor cells can be identified using techniques such as reverse transcription and amplification of mRNA, isolation of total RNA or poly A+ RNA, Northern blotting, dot blotting, in situ hybridization, RNase protection, SI digestion, probing DNA microchip arrays, Western blots, and the like.
A. Identification and Characterization of Sensory Receptors The amino acid sequences of the sensory receptors and polypeptides of the invention can be identified by putative translation of the coding nucleic acid sequences. These various amino acid sequences and the coding nucleic acid sequences may be compared to one another or to other sequences according to a number of methods. For example, in sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, as described below for the BLASTN and BLASTP programs, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
A "comparison window," as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of. contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g. , by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol 48:443, 1970, by the search for similarity method of Pearson & Lipman, Proc. Natl. Acad Sci. USA 85:2444, 1988, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al, eds. 1995 supplement)). A preferred example of an algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al, Nucl. Acids Res. 25:3389, 1977 and Altschul et al, JMol. Biol. 215:403, 1990, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive- valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, Altschul et al, Nucl. Acids Res. 25:3389, 1977 and Altschul et al, J. Mol. Biol. 215:403, 1990). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad Sci. USA 89:10915, 1989) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.
Another example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a so- called "tree" or "dendogram" showing the clustering relationships used to create the alignment (see, e.g., Figure 2). PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, JMol. Evol. 35:351, 1987. The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151, 1989. The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. Using PILEUP, a reference sequence is compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps. PILEUP can be obtained from the GCG sequence analysis software package, e.g., version 7. 0
(Devereaux et al, Nucl. Acids Res. 12:387, 1984) encoded by the genes were derived by conceptual translation of the corresponding open reading frames. Comparison of these protein sequences to all known proteins in the public sequence databases using BLASTP algorithm revealed their strong homology to the members of the mammalian olfactory receptor family, each of the olfactory receptor sequences having at least 50%, and preferably at least 55%, at least 60%, at least 65%, and most preferably at least 70%, amino acid identity to at least one known member of the family.
The nucleic acid molecules of the present invention are typically intronless and encode putative sensory receptor proteins generally having lengths of about 300 to about 400 amino acid residues that contain seven transmembrane domains, as predicted by hydrophobicity plotting analysis, indicating that they belong to the G protein-coupled receptor superfamily, which includes the subset of taste and olfactory receptors. In addition to the overall structural similarity, each of the 256 sensory receptors identified herein has a characteristic sequence signature of an olfactory receptor. In particular, all 256 sequences contain very close matches to the following consensus amino acid motifs (Mombaerts, 1999; Pilpel, 1999): LHTPMY in intracellular loop 1, MAYDRYNAIC at the end of transmembrane domain 3 and the beginning of intracellular loop 2 , SY at the end of transmembrane domain 5, FSTCSSH in the beginning of transmembrane domain 6, and PMLNPF in transmembrane domain 7. Combination of all the above mentioned structural features of the 256 genes and encoded proteins strongly suggests that they represent novel members of the human olfactory receptor family. As noted above, complete or partial sequences of numerous human and other eukaryotic sensory receptors are currently known. The novel human receptors have amino acid sequences distinctly different from the previously known human sensory receptors, which suggests their different specificity in sensant recognition. Therefore, these novel sensory receptors and their genes can be used, alone or in combination with known sensory receptors, in developing detec-tion systems and assays for chemically distinct types of sensants not recognized by the known sensory receptors, as well as for diagnostic and research purposes.
B. Definitions
The terms "purified," "substantially purified," and "isolated" as used herein refer to the state of being free of other, dissimilar compounds with which the compound of the invention is normally associated in its natural state, so that the "purified," "substantially purified," and "isolated" subject comprises at least 0.5%, 1%, 5%, 10%, or 20%, and most preferably at least 50% or 75% of the mass, by weight, of a given sample. In one preferred embodiment, these terms refer to the compound of the invention comprising at least 95% of the mass, by weight, of a given sample. As used herein, the terms "purified," "substantially purified," and "isolated" "isolated," when referring to a nucleic acid or protein, of nucleic acids or proteins, also refers to a state of purification or concentration different than that which occurs naturally in the mammalian, especially human, body. Any degree of purification or concentration greater than that which occurs naturally in the mammalian, especially human, body, including (1) the purification from other associated structures or compounds or (2) the association with structures or compounds to which it is not normally associated in the mammalian, especially human, body, are within the meaning of "isolated." The nucleic acid or protein or classes of nucleic acids or proteins, described herein, may be isolated, or otherwise associated with structures or compounds to which they are not normally associated in nature, according to a variety of methods and processes known to those of skill in the art. The terms "amplifying" and "amplification" refer to the use of any suitable amplification methodology for generating or detecting recombinant or naturally expressed nucleic acid, as described in detail, below. For example, the invention provides methods and reagents (e.g., specific degenerate oligonucleotide primer pairs) for amplifying (e.g. , by polymerase chain reaction, PCR) naturally expressed (e.g. , genomic or mRNA) or recombinant (e.g., cDNA) nucleic acids of the invention (e.g., sensant-binding sequences of the invention) in vivo or in vitro.
The term "7- transmembrane receptor" means a polypeptide belonging to a superfamily of transmembrane proteins that have seven domains that span the plasma membrane seven times (thus, the seven domains are called "transmembrane" or "TM" domains TM I to TM Nil). The families of olfactory and taste receptors each belong to this super-family. Seven-transmembrane receptor polypeptides have similar and characteristic primary, secondary and tertiary structures, as discussed in further detail below. The term "expression vector" refers to any recombinant expression system for the purpose of expressing a nucleic acid sequence of the invention in vitro or in vivo, constitutively or inducibly, in any cell, including prokaryotic, yeast, fungal, plant, insect or mammalian cell. The term includes linear or circular expression systems. The term includes expression systems that remain episomal or integrate into the host cell genome. The expression systems can have the ability to self-replicate or not, i.e., drive only transient expression in a cell. The term includes recombinant expression "cassettes which contain only the minimum elements needed for transcription of the recombinant nucleic acid.
The term "library" means a preparation that is a mixture of different nucleic acid or polypeptide molecules, such as the library of recombinantly generated sensory, particularly olfactory or taste, receptor ligand-binding domains generated by amplification of nucleic acid with degenerate primer pairs, or an isolated collection of vectors that incorporate the amplified sensant-binding domains, or a mixture of cells each randomly transfected with at least one vector encoding a sensory receptor. The term "nucleic acid" or "nucleic acid sequence" refers to a deoxy- ribonucleotide or ribonucleotide oligonucleotide in either single- or double-stranded form. The term encompasses nucleic acids, i.e., oligonucleotides, containing known analogs of natural nucleotides. The term also encompasses nucleic-acid-like structures with synthetic backbones, see e.g., Oligonucleo-tides and Analogues, a Practical Approach, ed. F. Eckstein, Oxford Univ. Press (1991); Anti-sense Strategies, Annals of the N.Y. Academy of Sciences, Vol. 600, Eds. Baserga et al. (NYAS 1992); Milligan (1993) J. Med. Chem. 36:1923-1937; Antisense Research and Applications (1993, CRC Press), WO 97/03211; WO 96/39154; Mata (1997) Toxicol. Appl. Pharmacol. 144:189-197; Strauss-Soukup (1997) Biochemistry 36:8692-8698; Samstag (1996) Antisense Nucleic Acid Drug Dev 6:153-156.
The term sensory receptor "ligand-binding region" refers to sequences derived from a sensory receptor that substantially incorporates transmembrane domains II to Nπ (TM π to NH). The domain may be capable of binding a sensant.
The terms "conservative variant" or "analog" or "mimetic" refer to a polypeptide which has a modified amino acid sequence, such that the change(s) do not substantially alter the poly-peptide's (the conservative variant's) structure and/or activity, as defined herein. These include conservatively modified variations of an amino acid sequence, i.e., amino acid substitutions, additions or deletions of those residues that are not critical for protein activity, or substitution of amino acids with residues having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non-polar, etc.) such that the substitutions of even critical amino acids does not substantially alter structure and/or activity. Conservative substitution tables providing function-ally similar amino acids are well known in the art.
For example, one exemplary guideline to select conservative substitutions includes (original residue followed by exemplary substitution): Ala/Gly or Ser; Arg/Lys; Asn/Gln or His; Asp/Glu; Cys/Ser; Gin/ Asn; Gly/ Asp; Gly/ Ala or Pro; His/ Asn or Gin; Ile/Leu or Nal; Leu/Ile or val; Lys/ Arg or Gin or Glu; Met/Leu or Tyr or He; Phe/Met or Leu or Tyr; Ser/Thr; Thr/Ser; Trp/Tyr; Tyr/Trp or Phe; Nal/Ile or Leu. An alternative exemplary guideline uses the following six groups, each containing amino acids that are conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (Ν), Glutamine (Q); 4) Arginine (R), Lysine (I); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (N); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); (see also, e.g., Creighton, Proteins, W.H. Freeman, 1984; Schultz & Schimer, Principles of Protein Structure, Springer-Nerlag, 1979). One of skill in the art will appreciate that the above-identified substitutions are not the only possible conservative substitutions. For example, for some purposes, one may regard all charged amino acids as conservative substitutions for each other whether they are positive or negative. In addition, individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence can also be considered "conservatively modified variations." The terms "mimetic" and "peptidomimetic" refer to a synthetic chemical compound that has substantially the same structural and/or functional characteristics of the polypeptides, e.g., translocation domains or sensant-binding domains or chimeric receptors of the invention. The mimetic can be either entirely composed of synthetic, non-natural analogs of amino acids, or, is a chimeric molecule of partly natural peptide amino acids and partly non-natural analogs of amino acids. The mimetic can also incorporate any amount of natural amino acid conservative substitutions as long as such substitutions also do not substantially alter the mimetic's structure and/or activity. As with polypeptides of the invention which are conservative variants, routine experi-mentation will determine whether a mimetic is within the scope of the invention, i.e., that its structure and/or function is not substantially altered. Polypeptide mimetic compositions can contain any combination of non-natural structural components, which are typically from three structural groups: a) residue linkage groups other than the natural amide bond ("peptide bond") linkages; b) non-natural residues in place of naturally occurring amino acid residues; or c) residues which induce secondary structural mimicry, i.e., to induce or stabilize a secondary structure, e.g., a beta turn, gamma turn, beta sheet, alpha helix conformation, and the like. A polypeptide can be characterized as a mimetic when all or some of its residues are joined by chemical means other than natural peptide bonds. Individual peptidomimetic residues can be joined by peptide bonds, other chemical bonds or coupling means, such as, e.g., glutaraldehyde, N-hydroxysuccinimide esters, bifunctional maleimides, N,N'-dicyclohexylcarbodϋmide (DCC) or N,N'- diisopropylcarbodiimide (DIC). Linking groups that can be an alternative to the traditional amide bond ("peptide bond") linkages include, e.g., ketomethylene (e.g., -C(=O)-CH2- for -C(=O)-NH-), aminomethylene (CH2-NH), ethylene, olefin
(CH=CH), ether (CH2-O), thioether (CH2-S), tetrazole (CN4), thiazole, retroamide, thioamide, or ester (see, e.g., Spatola (1983) in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 7, pp 267-357, "Peptide Backbone Modifications," Marcell Dekker, NY). A polypeptide can also be characterized as a mimetic by containing all or some non-natural residues in place of naturally occurring amino acid residues; non-natural residues are well described in the scientific and patent literature. As used herein, "recombinant" refers to a polynucleotide synthesized or otherwise manipulated in vitro (e.g., "recombinant polynucleotide"), to methods of using recombinant polynucleotides to produce gene products in cells or other biological systems, or to a polypeptide ("recombinant protein") encoded by a recombinant polynucleotide. "Recombinant means" also encompass the ligation of nucleic acids having various coding regions or domains or promoter sequences from different sources into an expression cassette or vector for expression of, e.g., inducible or constitutive expression of a fusion protein comprising a translocation domain of the invention and a nucleic acid sequence amplified using a primer of the invention. The term "transmembrane domain" means a polypeptide domain that can completely span the plasma membrane. The general secondary and tertiary structure of transmembrane domains, in particular the seven transmembrane domains of 7- transmembrane receptors such as olfactory receptors, are well known in the art. Thus, primary structure sequence can be designed or predicted based on known transmembrane domain sequences, as described in detail below.
C. Isolation and Expression of Olfactory Receptors Isolation and expression of the sensory receptors, or fragments or variants thereof, of the invention can be performed as described below. PCR primers can be used for the amplification of nucleic acids encoding olfactory receptor ligand binding regions and libraries of these nucleic acids can thereby be generated. Libraries of expression vectors can then be used to infect or transfect host cells for the functional expression of these libraries. These genes and vectors can be made and expressed in vitro or in vivo. One of skill will recognize that desired phenotypes for altering and controlling nucleic acid expression can be obtained by modulating the expression or activity of the genes and nucleic acids (e.g., promoters, enhancers and the like) within the vectors of the invention. Any of the known methods described for increasing or decreasing expression or activity can be used. The invention can be practiced in conjunction with any method or protocol known in the art, which are well described in the scientific and patent literature. The nucleic acid sequences of the invention and other nucleic acids used to practice this invention, whether RNA, cDNA, genomic DNA, vectors, viruses or hybrids thereof, may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed recombinantly. Any recombinant expression system can be used, including, in addition to mammalian cells, e.g., bacterial, yeast, insect or plant systems.
Alternatively, these nucleic acids can be synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Carruthers, Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982); Adams, Am. Chem. Soc. 105:661 (1983); Belousov, Nucleic Acids Res. 25:3440-3444 (1997); Frenkel, Eree Radio. Biol Med. 19:373-380 (1995); Blommers, Biochemistry 33:7886-7896 (1994); Narang, Meth. Enzymol 68:90 (1979); Brown, Meth. Enzymol 68:109 (1979); Beaucage, Tetra. Lett. 22:1859 (1981); U.S. Patent No. 4,458,066. Double-stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence..
Techniques for the manipulation of nucleic acids, such as, for example, for generating mutations in sequences, subcloning, labeling probes, sequencing, hybridization and the like are well described in the scientific and patent literature. See, e.g., Sambrook, ed., Molecular Cloning: a Laboratory manual (2nd ed.), Nols. 1- 3, Cold Spring Harbor Laboratory (1989); Current Protocols in Molecular Biology, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); Laboratoiγ Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part I, Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993). Nucleic acids, vectors, capsids, polypeptides, and the like can be analyzed and quantified by any of a number of general means well known to those of skill in the art. These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromato-graphy (TLC), and hyperdiffusion chromatography, various immunological methods, e.g., fluid or gel precipitin reactions, immunodiffusion, immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), immunofluorescent assay, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g., SDS-PAGE), RT-PCR, quantita-tive PCR, other nucleic acid or target or signal amplification methods, radiolabeling, scintillation counting, and affinity chromatography.
Oligonucleotide primers are used to amplify nucleic acid encoding an olfactory receptor ligand-binding region. The nucleic acids described herein can also be cloned or measured quan-titatively using amplification techniques. Using exemplary degenerate primer pair sequences, (see below), the skilled artisan can select and design suitable oligonucleotide amplification primers. Amplification methods are also well known in the art, and include, e.g., polymerase chain reaction, PCR (PCR Protocols, a Guide to Methods and Applications, ed. Innis. Academic Press, NY, 1990 and PCR Strategies, ed. Innis, Academic Press, NY, 1995), ligase chain reaction (LCR) (see, e.g., Wu, Genomics 4:560, 1989; Landegren, Science 241:1077, 1988; Barringer, Gene 89:117, 1990); transcription amplification (see, e.g., Kwoh, Proc. Natl. Acad. Sci. USA 86:1173, 1989); and, self-sustained sequence replication (see, e.g., Guatelli, Proc. Natl. Acad. Sci. USA 87:1874, 1990); Q Beta replicase amplification (see, e.g., Smith, J. Clin. Microbiol. 35:1477, 1997); automated Q-beta replicase amplification assay (see, e.g., Burg, Mol. Cell. Probes 10:257, 1996) and other RNA polymerase mediated techniques (e.g., NASBA, Cangene, Mississauga, Ontario); see also Berger, Methods Enzymol. 152:307, 1987; Sambrook; Ausubel; U.S. Patent Nos. 4,683,195 and 4,683,202; Sooknanan, Biotechnology 13:563, 1995. Once amplified, the nucleic acids, either individually or as libraries, may be cloned according to methods known in the art, if desired, into any of a variety of vectors using routine molecular biological methods; methods for cloning in vitro amplified nucleic acids are described, e.g., U.S. Patent No. 5,426,039. To facilitate cloning of amplified sequences, restriction enzyme sites can be "built into" the PCR primer pair. For example, Pst I and Bsp El sites were designed into the exemplary primer pairs of the invention. These particular restriction sites have a sequence that, when ligated, are "in-frame" with respect to the 7-membrane receptor "donor" coding sequence into which they are spliced (the sensant-binding region-coding sequence is internal to the 7-membrane polypeptide, thus, if it is desired that the construct be translated downstream of a restriction enzyme splice site, out of frame results should be avoided; this may not be necessary if the inserted sensant-binding domain comprises substantially most of the transmembrane Nπ region). The primers can be designed to retain the original sequence of the "donor" 7-membrane receptor (the Pst I and Bsp El sequence in he primers of the invention generate an insert that, when ligated into the Pst I/Bsp El cut vector, encode residues found in the "donor" mouse olfactory receptor M4 sequence). Alternatively, the primers can encode amino acid residues that are conservative substitutions (e.g., hydrophobic for hydrophobic residue, see above discussion) or functionally benign substitutions (e.g., do not prevent plasma membrane insertion, cause cleavage by peptidase, cause abnormal folding of receptor, and the like).
The primer pairs are designed to selectively amplify sensant-binding regions of olfactory receptor proteins. These domain regions may vary for different sensnants, and more particularly odorants; thus, what may be a minimal binding region for one sensant, and more particularly odorants, may be too limiting for a second potential ligand. Thus, domain regions of different sizes comprising different domain structures may be amplified; for example, transmembrane (TM) domains H through Nπ, HI through Nπ, HI through NI or H through VI, or variations thereof (e.g., only a subsequence of a particular domain, mixing the order of the domains, and the like), of a 7-transmembrane sensory receptor.
As domain structures and sequence of many 7-membrane proteins, particularly olfactory receptors, are known, the skilled artisan can readily select domain-flanking and internal domain sequences as model sequences to design degenerate amplification primer pairs. For example, a nucleic acid sequence encoding domain regions π through Nπ can be generated by PCR ampli-fication using a primer pair. To amplify a nucleic acid comprising transmembrane domain I (TM I) sequence, a degenerate primer can be designed from a nucleic acid that encodes the amino acid sequence LFLLYL. Such a degenerate primer can be used to generate a binding domain incorpo-rating TM I through TM HI, TM I through TM IN, TM I through TM N, TM I through TM VI or TM I through TM VH.
To amplify a nucleic acid comprising a transmembrane domain in (TM HI) sequence, a degenerate primer (of at least about 17 residues) can be designed from a nucleic acid that encodes the amino acid sequence M(A G)(Y/F)DRYVAI (encoded by a nucleic acid sequence such as
5'-ATGG(G/C)CT(A/T)TGACCG(C/A T)T(AT)(C/T)GT- 3'). Such a degenerate primer can be used to generate a binding domain incorporating TM HI through TM IN, TM m through TM N, TM m through TM NI or TM m through TM Vπ. To amplify a transmembrane domain NI (TM NI) sequence, a degenerate primer (of at least about 17 residues) can be designed from nucleic acid encoding an amino acid sequence TC(G/A)SHL, encoded by a sequence such as 5'- AG(G/A)TGΝ(G/C)(T/A)Ν(G/C)C(G/A)CA-ΝGT-3'. Such a degenerate primer can be used to generate a binding domain incorporating TM I through TM VI, TM H through TM VI, TM m through TM VI or TM TV* through TM VI).
Paradigms to design degenerate primer pairs are well known in the art. For example, a COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy computer program is accessible as http://blocks.fhcrc.org/codehop.html, and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences, as known olfactory receptor ligand-binding regions (see, e.g., Rose, Nucl. Acids Res. 26:1628, 1998; Singh, Biotechniques 24:318, 1998).
Means to synthesize oligonucleotide primer pairs are well known in the art. "Natural" base pairs or synthetic base pairs can be used. For example, use of artificial nucleobases offers a versatile approach to manipulate primer sequence and generate a more complex mixture of amplification products. Various families of artificial nucleobases are capable of assuming multiple hydrogen bonding orientations through internal bond rotations to provide a means for degenerate molecular recognition. Incorporation of these analogs into a single position of a PCR primer allows for generation of a complex library of amplification products. See, e.g., Hoops, Nucleic Acids Res. 25:4866, 1997. Nonpolar molecules can also be used to mimic the shape of natural DNA bases. A non-hydrogen-bonding shape mimic for adenine can replicate efficiently and selectively against a nonpolar shape mimic for thymine (see, e.g., Morales, Nat. Struct. Biol. 5:950, 1998). For example, two degenerate bases can be the pyrimidine base 6H, 8H-3,4-dihydropyrimido[4,5-c][l,2]oxazin-7-one or the purine base Ν6-methoxy-2,6-diaminopurine (see, e.g., Hill, Proc. Natl, Acad. Sci. USA 95:4258, 1998). Exemplary degenerate primers of the invention incorporate the nucleobase analog 5'-Dimethoxytrityl-N-benzoyl-2'-deoxy-Cytidine, 3'-[(2- cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (the term "P" in the sequences, see above). This pyrimidine analog hydrogen bonds with purines, including A and G residues. Exemplary primer pairs for amplification of olfactory receptor transmembrane domains π through NH include:
(a) 5 '-GGGGTCCGGAG(A/G)(C/G)(A G)TA(A/G/T)AT(A/G/P)A(A G/P)(A G/P)GG- 3' and 5'-
GGGGCTGCAGACACC(A C/G/T)ATGTA(C/T)(C/T)T(A C/G/T)TT(C/T)(C/T)T- 3'.
(b) 5 '-GGGGTCCGGAG(A/G)(C/G)T(A/G)A(A G/T)AT(A/G/P)A(A/G/P)(A G/P)GG- 3' and 5'-
GGGGCTGCAGACACC(AC/G/T)ATGTA(C/T)(C/T)T(A C/G/T)TT(C/T)(C/T)T- 3'.
(c) 5'- GGGGTCCGGAG(A G)(C/G)T(A/G)A(A G/T)AT(A/G/C/T)A(A/G/C/T)(A G/C/T) GG-3' and
5'-GGGGCTGCAGACACC(A C/G/T)ATGTA(C/T)(C/T)T(A/C/G/T) TT(C/T)(C/T)T-3'. Nucleic acids that encode ligand-binding regions of olfactory receptors are generated by amplification (e.g., PCR) of appropriate nucleic acid sequences using degenerate primer pairs. The amplified nucleic acid can be genomic DNA from any cell or tissue or mRNA or cDNA derived from olfactory receptor-expressing cells, e.g., olfactory neurons or olfactory epithelium.
Isolation from olfactory receptor-expressing cells is well known in the art (cells expressing naturally or inducibly expressing olfactory receptors can be used to express the hybrid olfactory receptors of the invention to screen for potential odorants and odorant effect on cell physiology, as described below). For example, cells can be identified by olfactory marker protein (OMP), an abundant cytoplasmic protein expressed almost exclusively in mature olfactory sensory neurons (see, e.g., Buiakova, Proc. Natl. Acad. Sci. USA 93:9858, 1996). Shirley, Eur. J. Biochem. 32:485, 1983), describes a rat olfactory preparation suitable for biochemical studies in vitro on olfactory mechanisms. Cultures of adult rat olfactory receptor neurons are described by Vargas, Chem. Senses 24:211, 1999). Because these cultured neurons exhibit typical voltage-gated currents and are responsive to application of odorants, they can also be used to express the hybrid olfactory receptors of the invention for odorant screening (endogenous olfactory receptor can be initially blocked, if desired, by, e.g. , antisense, knockout, and the like). U.S. Patent No. 5,869,266 describes culturing human olfactory neurons for neurotoxicity tests and screening. Murrell, J. Neurosci. 19:8260, 1999), describes differentiated olfactory receptor-expressing cells in culture that respond to odorants, as measured by an influx of calcium. Hybrid protein-coding sequences comprising nucleic acids sensory receptors fused to the translocation sequences described herein may be constructed. Also provided are hybrid receptors comprising the translocation motifs and ligand-binding domains of sensory receptors. These nucleic acid sequences can be operably linked to transcriptional or translational control elements, e.g., transcription and translation initiation sequences, promoters and enhancers, transcription and translation terminators, polyadenylation sequences, and other sequences useful for transcribing DNA into RNA. In construction of recombinant expression cassettes, vectors, transgenics, and a promoter fragment can be employed to direct expression of the desired nucleic acid in all tissues. Olfactory cell-specific transcriptional elements can also be used to express the fusion polypeptide receptor, including, e.g., a 6.7 kb region upstream of the M4 olfactory receptor coding region. This region was sufficient to direct expression in olfactory epithelium with wild type zonal restriction and distributed neuronal expression for endogenous olfactory receptors (Qasba, J. Neurosci. 18:227, 1998). Receptor genes are normally expressed in a small subset of neurons throughout a zonally restricted region of the sensory epithelium. The transcriptional or translational control elements can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods.
Fusion proteins, either having C-terminal or, more preferably, N-terminal translocation sequences, may also comprise the translocation motif described herein. However, these fusion proteins can also comprise additional elements for, e.g., protein detection, purification, or other applications. Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts or histidine-tryptophan modules or other domains that allow purification on immobilized metals; maltose binding protein; protein A domains that allow purification on immobilized immunoglobulin; or the domain utilized in the FLAGS extension/ affinity purification system (Immunex Corp, Seattle WA). The inclusion of a cleavable linker sequences such as Factor Xa (see, e.g., Ottavi, Biochi-mie 80:289, 1998), subtilisin protease recognition motif (see, e.g., Polyak, Protein Eng. 10:615, 1997); enterokinase (Invitrogen, San Diego, CA), and the like, between the translocation domain (for efficient plasma membrane expression) and the rest of the newly translated polypeptide may be useful to facilitate purification. For example, one construct can include a nucleic acid sequence encoding a polypeptide linked to six histidine residues followed by a thioredoxin, an enterokinase cleavage site (see, e.g., Williams, Biochemistry 34:1787, 1995), and an amino terminal translocation domain. The histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the desired protein(s) from the remainder of the fusion protein. Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well described in the scientific and patent literature, see, e.g., Kroll, DNA Cell. Biol. 12:441, 1993). Expression vectors, either as individual expression vectors or as libraries of expression vectors, comprising the olfactory binding domain-encoding sequences may be introduced into a genome or into the cytoplasm or a nucleus of a cell and expressed by a variety of conventional techniques, well described in the scientific and patent literature. See, e.g., Roberts, Nature 328:731, 1987; Berger supra; Schneider, Protein Expr. Purif. 6435:10, 1995; Sambrook; Tijssen; Ausubel. Product information from manufacturers of biological reagents and experimental equipment also provide information regarding known biological methods. The vectors can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods.
The nucleic acids can be expressed in expression cassettes, vectors or viruses which are stably or transiently expressed in cells (e.g., episomal expression systems). Selection markers can be incorporated into expression cassettes and vectors to confer a selectable phenotype on transformed cells and sequences. For example, selection markers can code for episomal maintenance and replication such that integration into the host genome is not required. For example, the marker may encode antibiotic resistance (e.g., chloramphenicol, kanamycin, G418, bleomycin, hygromycin) or herbicide resistance (e.g., chlorosulfuron or Basta) to permit selection of those cells transformed with the desired DNA sequences (see, e.g., Blondelet-Rouault, Gene 190:315, 1997; Aubrecht, J. Pharmacol. Exp. Ther. 281:992, 1997). Because selectable marker genes conferring resistance to substrates like neomycin or hygromycin can only be utilized in tissue culture, chemoresistance genes are also used as selectable markers in vitro and in vivo.
A chimeric nucleic acid sequence may encode a sensant-binding domain within any 7-transmembrane polypeptide. Seven-transmembrane receptors belong to a superfamily of trans-membrane (TM) proteins having seven domains that traverse a plasma membrane seven times. Each of the seven domains spans the plasma membrane (TM I to TM VII). Because 7-trans-membrane receptor polypeptides have similar primary sequences and secondary and tertiary structures, structural domains (e.g., TM domains) can be readily identified by sequence analysis. For example, homology modeling, Fourier analysis and helical periodicity detection can identify and characterize the seven domains with a 7-transmembrane receptor sequence. Fast Fourier Transform (FFT) algorithms can be used to assess the dominant periods that characterize profiles of the hydrophobicity and variability of analyzed sequences. To predict TM domains and their boundaries and topology, a "neural network algorithm" by "PHD server" can be used, as done by Pilpel, Protein Science 8:969, 1999; Rost, Protein Sci. 4:521, 1995. Periodicity detection enhancement and alpha helical periodicity index can be done as by, e.g., Donnelly, Protein Sci. 2:55-70 (1993). Other alignment and modeling algorithms are well known in the art, see, e.g., Peitsch, Receptors Channels 4:161, 1996; Cronet, Protein Eng. 6:59, (1993) (homology and "discover modeling"); http://bioinfo.weizmann.ac.il/.
The library sequences include receptor sequences that correspond to TM ligand-binding domains, including, e.g., TM H to VH, TM H to VI, TM in to VH, and TM m to Vπ, that have been amplified (e.g., PCR) from mRNA of or cDNA derived from, e.g., olfactory receptor-expressing neurons or genomic DNA.
Libraries of sensory receptor ligand-binding TM domain sequences can include a various TM domains or variations thereof, as described above. These sequences can be derived from any 7-transmembrane receptor. Because these polypeptides have similar primary sequences and secondary and tertiary structures, the seven domains can be identified by various analyses well known in the art, including, e.g., homology modeling, Fourier analysis and helical periodicity (see, e.g., Pilpel supra), as described above. Using this information sequences flanking the seven domains can be identified and used to design degenerate primers for amplification of various combinations of TM regions and subsequences.
The present invention also includes not only the DNA and proteins having the specified amino acid sequences, but also DNA fragments, particularly fragments of, for example, 40, 60, 80, 100, 150, 200, or 250 nucleotides, or more, as well as protein fragments of, for example, 10, 20, 30, 50, 70, 100, or 150 amino acids, or more.
Also contemplated are chimeric proteins, comprising at least 10, 20, 30, 50, 70, 100, or 150 amino acids, or more, of one of at least one of the sensory receptors described herein, coupled to additional amino acids representing all or part of another G protein receptor, preferably a member of the 7-transmembrane superfamily. These chimerae can be made from the instant receptors and a G protein receptor described herein, or they can be made by combining two or more of the present proteins. In one preferred embodiment, one portion of the chimera corresponds to and is derived from one or more of the domains of the 7-transmembrane protein described herein, and the remaining portion or portions come from another G protein-coupled receptor.
Chimeric receptors are well known in the art, and the techniques for creating them and the selection and boundaries of domains or fragments of G protein-coupled receptors for incorpo-ration therein are also well known. Thus, this knowledge of those skilled in the art can readily be used to create such chimeric receptors. The use of such chimeric receptors can provide, for example, an olfactory selectivity characteristic of one of the receptors specifically disclosed herein, coupled with the signal transduction characteristics of another receptor, such as a well known receptor used in prior art assay systems.
For example, a domain such as a ligand binding domain, an extracellular domain, a transmembrane domain (e.g., one comprising seven transmembrane regions and corresponding extracellular and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc., can be covalently linked to a heterologous protein. For instance, an extracellular domain can be linked to a heterologous GPCR transmembrane domain, or a heterologous CGPCR extracellular domain can be linked to a transmembrane domain. Other heterologous proteins of choice can include, e.g., green fluorescent protein, β-gal, glutamtate receptor, and the rhodopsin presequence. Polymorphic variants, alleles, and interspecies homologs that are substantially identical to a sensory receptor disclosed herein can be isolated using the nucleic acid probes described above. Alternatively, expression libraries can be used to isolate sensory receptors and polymorphic variants, alleles, and interspecies homologs thereof, by detecting expressed homologs immunologically with antisera or purified antibodies made against a sensory receptor-derived polypeptide, which also recognize and selectively bind to the sensory receptor homolog.
Also within the scope of the invention are host cells for expressing the sensory receptors, fragments, or variants of the invention. To obtain high levels of expression of a cloned gene or nucleic acid, such as cDNAs encoding the sensory receptors, fragments, or variants thereof, the nucleic acid sequence of interest is subcloned into an expression vector that contains a strong promoter to direct transcription, a transcription translation terminator, and if for a nucleic acid encoding a protein, a ribosome binding site for translational initiation. Suitable prokaryotic and eukaryotic expression systems are well known in the art and described, e.g., in Sambrook et al. Any of the well known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, liposomes, microinjection, plasmid vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at lest one gene into the host cell capable of expressing the olfactory receptor, fragment, or variant of interest. After the expression vector is introduced into the cells, the transfected cells are cultured under conditions favoring expression of the receptor, fragment, or variant of interest, which is then recovered from the culture using standard techniques. Examples of such techniques are well known in the art. See, e.g., WO 00/06593, which is incorporated by reference in a manner consistent with this disclosure. D. Immunological Detection of Sensory Receptor Polypeptides
In addition to the detection of sensory receptor genes and gene expression using nucleic acid hybridization technology, one can also use immunoassays to detect sensory receptors, e.g., to identify olfactory receptor cells, and variants of sensory receptor family members. Immunoassays can be used to qualitatively or quantitatively analyze the sensory receptors. A general overview of the applicable technology can be found in Harlow & Lane, Antibodies: A Laboratory Manual (1988). 1. Antibodies to sensory receptor family members
Methods of producing polyclonal and monoclonal antibodies that react specifically with a sensory receptor family member are known to those of skill in the art (see, e.g., Coligan, Current Protocols in Immunology, 1991; Goding, Monoclonal Antibodies: Principles and Practice, 2d ed., 1986; Harlow & Lane, supra; and Kohler & Milstein, Nature, 256:495, 1975). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (see, e.g., Huse et al, Science, 246:1275, 1989; Ward et al, Nature, 341:544, 1989). A number of sensory receptor-comprising immunogens may be used to produce antibody specifically reactive with a sensory receptor family member. For example, a recombinant sensory receptor protein, or an antigenic fragment thereof, can be isolated as described herein. Suitable antigenic regions include, e.g., the conserved motifs that are used to identify members of the sensory receptor family. Recombinant proteins can be expressed in eukaryotic or prokaryotic cells as described above, and purified as generally described above. Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies. Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Naturally occurring protein may also be used either in pure or impure form. The product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated, for subsequent use in immunoassays to measure the protein.
Methods of production of polyclonal antibodies are known to those of skill in the art. Mice, hamsters, rats, guinea pigs, rabbits, goats, or chickens is immunized with the protein using an adjuvant (e.g., Freund's adjuvant) and a standard immunization protocol with periodic boosts. The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the sensory receptor. When appropriately high titers of antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (see Harlow & Lane, supra). Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see Kohler & Milstein, Eur. J. Immunol, 6:511, 1976). Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, retroviruses, or other methods well known in the art. Colonies arising from single clones of immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse et al, Science, 246:1275, 1989.
Monoclonal antibodies or polyclonal sera are collected and titered against antigen in an immunoassay, for example, a solid phase immunoassay with the antigen immobilized on a solid support. Typically, polyclonal antisera with a titer of 104 or greater are selected and tested for their cross reactivity against non-sensory receptor proteins, or even other sensory receptor family members or other related proteins from other organisms, using a competitive binding immuno-assay. Specific polyclonal antisera and monoclonal antibodies will usually bind with a Kd of at least about 0.1 mM, more usually at least about 1 pM, optionally at least about 0.1 p.M or better, and optionally 0.01 pM or better.
Once sensory receptor family member specific antibodies are available, individual sensory receptor proteins can be detected by a variety of immunoassay methods. For a review of immu-nological and immunoassay procedures, see Basic and Clinical Immunology (Stites & Terr eds., 7th ed., 1991). Moreover, the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in Enzyme Immunoassay (Maggio, ed., 1980); and Harlow & Lane, supra. 2. Immunological binding assays
Sensory receptor proteins can be detected and/or quantified using any of a number of well recognized immunological binding assays (see, e.g., U.S. Patent Nos. 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, see also Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993); Basic and Clinical Immunology (Stites & Terr, eds., 7th ed., 1991). Immunological binding assays (or immunoassays) typically use an antibody that specifically binds to a protein or antigen of choice (in this case a sensory receptor family member or an antigenic subsequence thereof). The antibody (e.g. , anti-sensory receptor) may be produced by any of a number of means well known to those of skill in the art and as described above.
Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen. The labeling agent may itself be one of the moieties comprising the antibody/antigen complex. Thus, the labeling agent may be a labeled sensory receptor polypeptide or a labeled anti-sensory receptor antibody. Alternatively, the labeling agent may be a third moiety, such a secondary antibody, that specifically binds to the antibody/sensory receptor complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived). Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G may also be used as the label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (see, e.g., Kronval et al, J. Immunol, 111:1401, 1973; Akerstrom et /., J. Immunol, 135:2589, 1985). The labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically bind, such as streptavidin. A variety of detectable moieties are well known to those skilled in the art.
Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, optionally from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, antigen, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C. a. Non-competitive assay formats
Immunoassays for detecting a sensory receptor protein in a sample may be either competi-tive or noncompetitive. Noncompetitive immunoassays directly measure the amount of antigen. In one preferred "sandwich" assay, for example, the anti-sensory receptor antibodies are bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture the sensory receptor protein present in the test sample. The sensory receptor protein thus immobilized is then bound by a labeling agent, such as a second anti-sensory receptor antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, e.g., streptavidin, to provide a detectable moiety. b. Competitive assay formats In competitive assays, the amount of sensory receptor protein present in the sample is measured indirectly by measuring the amount of a known, added (exogenous) sensory receptor protein displaced (competed away) from an anti-sensory receptor antibody by the unknown sensory receptor protein present in a sample. In one competitive assay, a known amount of sensory receptor protein is added to a sample and the sample is then contacted with an antibody that specifically binds to the sensory receptor. The amount of exogenous sensory receptor protein bound to the antibody is inversely proportional to the concentration of sensory receptor protein present in the sample. In a particularly preferred embodiment, the antibody is immobilized on a solid substrate. The amount of sensory receptor protein bound to the antibody may be determined either by measuring the amount of sensory receptor protein present in a sensory receptor/antibody complex, or alternatively by measuring the amount of remaining uncomplexed protein. The amount of sensory receptor protein may be detected by providing a labeled sensory receptor molecule.
A hapten inhibition assay is another preferred competitive assay. In this assay the known sensory receptor protein is immobilized on a solid substrate. A known amount of anti-sensory receptor antibody is added to the sample, and the sample is then contacted with the immobilized sensory receptor. The amount of anti-sensory receptor antibody bound to the known immobilized sensory receptor protein is inversely proportional to the amount of sensory receptor protein present in the sample. Again, the amount of immobilized antibody may be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection may be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above. c. Cross-reactivity determinations
Immunoassays in the competitive binding format can also be used for cross- reactivity determinations. For example, a protein at least partially encoded by the nucleic acid sequences disclosed herein can be immobilized to a solid support.
Proteins (e.g., sensory receptor proteins and homologs) are added to the assay that compete for binding of the antisera to the immobilized antigen. The ability of the added proteins to compete for binding of the antisera to the immobi-lized protein is compared to the ability of the sensory receptor polypeptide encoded by the nucleic acid sequences disclosed herein to compete with itself. The percentage cross- reactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% cross-reactivity with each of the added proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, e.g., distantly related homologs. In addition, peptides comprising amino acid sequences representing conserved motifs that are used to identify members of the sensory receptor family can be used in cross-reactivity determinations.
The immunoabsorbed and pooled antisera are then used in a competitive binding immu-noassay as described above to compare a second protein, thought to be perhaps an allele or poly-morphic variant of a sensory receptor family member, to the immunogen protein (i.e., sensory receptor protein encoded by the nucleic acid sequences disclosed herein). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the protein encoded by nucleic acid sequences disclosed herein required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to a sensory receptor immunogen.
Antibodies raised against sensory receptor conserved motifs can also be used to prepare antibodies that specifically bind only to GPCRs of the sensory receptor family, but not to GPCRs from other families. Polyclonal antibodies that specifically bind to a particular member of the sensory receptor family, can be make by subtracting out cross-reactive antibodies using other sensory receptor family members. Species-specific polyclonal antibodies can be made in a similar way. For example, antibodies specific to human T2R01 can be made by, subtracting out antibodies that are cross-reactive with orthologous sequences, e.g., rat OLFR1 or mouse OLFR1. d. Other assay formats
Western blot (immunoblot) analysis is used to detect and quantify the presence of sensory receptor protein in the sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind the sensory receptor protein. The anti-sensory receptor polypeptide antibodies specifically bind to the sensory receptor poly-peptide on the solid support. These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the anti-sensory receptor antibodies.
Other assay formats include liposome immunoassays (LIA) using liposomes designed to bind specific molecules (e.g., antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard techniques (see Monroe et al, Amer. Clin. Prod. Rev., 5:34, 1986). e. Reduction of non-specific binding
One of skill in the art will appreciate that it is often desirable to minimize non-specific binding in immunoassays. Particularly, where the assay involves an antigen or antibody immo-bilized on a solid substrate it is desirable to minimize the amount of non-specific binding to the substrate. Means of reducing such non-specific binding are well known to those of skill in the art. Typically, this technique involves coating the substrate with a proteinaceous composition. In particular, protein compositions such as bovine serum albumin (BSA), nonfat powdered milk, and gelatin are widely used with powdered milk being most preferred, f. Labels
The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay. The detectable group can be any material having a detectable physical or chemical property. Such detectable labels have been well- developed in the field of immuno-assays and, in general, most any label useful in such methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, photochemical, bio-chemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include magnetic beads (e.g., DYNABEADS™, fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., 3H, 1251, 35S, 14C, or 32P), enzymes (e.g., horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic beads (e.g., polystyrene, polypropylene, latex, etc.).
The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels maybe used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.
Non-radioactive labels are often attached by indirect means. Generally, a ligand molecule (e.g., biotin) is covalently bound to the molecule. The ligand then binds to another molecules (e.g., streptavidin) molecule, which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound. The ligands and their targets can be used in any suitable combination with antibodies that recognize a sensory receptor protein, or secondary antibodies that recognize anti-sensory receptor. The molecules can also be conjugated directly to signal generating compounds, e.g., by conjugation with an enzyme or fluorophore. Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidotases, particularly peroxidases. Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, etc. Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, e.g., luminol. For a review of various labeling or signal producing systems that maybe used, see U.S. Patent No. 4,391,904.
Methods for detecting labels are well known. Thus, for example, where the label is a radioactive label, it may be detected using a scintillation counter or with photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluoro-chrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, with photographic film, or using electronic detectors such as charge coupled devices (CCDs) or photomultipliers. Similarly, enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. Finally, simple colorimetric labels may be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.
Some assay formats do not require the use of labeled components. For instance, aggluti-nation assays can be used to detect the presence of the target antibodies. In this case, antigen-coated particles are agglutinated by samples comprising the target antibodies. In this format, none of the components need be labeled and the presence of the target antibody is detected by simple visual inspection.
E. Detection of Olfactory Modulators
Methods and compositions for determining whether a test compound specifically binds to a mammalian sensory, and more particularly, olfactory receptor of the invention, both in vitro and in vivo are described below, as are methods and compositions for determining whether a test compound is neurotoxic to an olfactory neuron expressing an olfactory transmembrane receptor polypeptide. Any aspect of cell physiology can be monitored to assess the effect of sensant-binding to a naturally- occurring or chimeric olfactory receptor. These assays may be performed on intact cells expressing an olfactory receptor, on permeabilized cells or on membrane fractions produced by standard methods.
Olfactory receptors are normally located on the specialized cilia of olfactory neurons. These receptors bind odorants and initiate the transduction of chemical stimuli into electrical signals. An activated or inhibited G-protein will in turn alter the properties of target enzymes, channels, and other effector proteins. The classic examples are the activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G-protein, phospholipase C by Gq and other cognate G-proteins, and modulation of diverse channels by Gi and other G- proteins. Downstream consequences can also be examined such as generation of diacyl glycerol and IP3 by phospholipase C, and in turn, for calcium mobilization by IP3.
The sensory receptor protein of the assay will typically be selected from a natural poly-peptide or conservatively modified variant thereof. Generally, the amino acid sequence identity will be at least 75%, 85%, 90%, 95%, or 99%. Optionally, the polypeptide of the assays can comprise a domain of a sensory receptor protein, such as an extracellular domain, transmembrane region, transmembrane domain, cytoplasmic domain, ligand binding domain, subunit association domain, active site, and the like. Either the sensory receptor protein or a domain thereof can be covalently linked to a heterologous protein to create a chimeric protein used in the assays described herein. Modulators of sensory receptor activity can be tested using sensory receptor polypeptides as described above, either recombinant or naturally occurring. Protein can be isolated, expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal, either recombinant or naturally occurring.
Modulation can be tested using one of the in vitro or in vivo assays described herein. 1. In vitro binding assays
Sensory perception can also be examined in vitro with soluble or solid state reactions, using a full-length sensory receptor-GPCR or a chimeric molecule such as an extracellular domain or transmembrane region, or combination thereof, of a sensory receptor covalently linked to a heterologous signal transduction domain, or a heterologous extracellular domain and/or transmembrane region covalently linked to the transmembrane and/or cytoplasmic domain of a sensory receptor. Furthermore, ligand-binding domains of the protein of interest can be used in vitro in soluble or solid state reactions to assay for ligand binding. In numerous embodiments, a chimeric receptor will be made that comprises all or part of a sensory receptor polypeptide, as well an additional sequence that facilitates the localization of the sensory receptor to the membrane, such as a rhodopsin, e.g., an N-terminal fragment of a rhodopsin protein.
Ligand binding to a sensory receptor protein, a domain, or chimeric protein can be tested in solution, in a bilayer membrane, attached to a solid phase, in a lipid monolayer, or in vesicles. Binding of a modulator can be tested using, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbence, refractive index) hydrodynamic (e.g., shape), chromatographic, or solubility properties. Sensory receptors with large (e.g., approximately 600 amino acid residues) extracellular N- terminal segments. These N-terminal segments are thought to form ligand-binding domains, and are therefore useful in biochemical assays to identify sensory receptor agonists and antagonists. Similar assays have been used with other GPCRs, such as the metabo-tropic glutamate receptors (e.g., Han &Hampson, J Biol. Chem. 274:10008, 1999). These assays might involve displacing a radioactively or fluorescently labeled ligand, and measuring changes in intrinsic fluorescence or changes in proteolytic susceptibility, etc.
Receptor-G-protein interactions can also be examined. For example, binding of the G-protein to the receptor or its release from the receptor can be examined. For example, in the absence of GTP, an activator will lead to the formation of a tight complex of a G protein (all three subunits) with the receptor. This complex can be detected in a variety of ways, as noted above. Such an assay can be modified to search for inhibitors, e.g., by adding an activator to the receptor and G protein in the absence of GTP, which form a tight complex, and then screen for inhibitors by looking at dissociation of the receptor-G protein complex. In the presence of GTP, release of the alpha subunit of the G protein from the other two G protein subunits serves as a criterion of activation.
An activated or inhibited G-protein will in turn alter the properties of target enzymes, channels, and other effector proteins. The classic examples are the activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G-protein, phospholipase C by Gq and other cognate G proteins, and modulation of diverse channels by Gi and other G proteins.
Downstream consequences can also be examined such as generation of diacyl glycerol and IP3 by phospholipase C, and in turn, for calcium mobilization by IP3. 2. Fluorescence Polarization Assays
In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor sensant binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluores-cence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polari- zation is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels. This section describes how fluorescence polarization can be used in a simple and quantitative way to measure the binding of odorants to the sensory receptors of the invention. When a fluorescently labeled molecule is excited with plane polarized light, it emits light that has a degree of polarization that is inversely proportional to its molecular rotation. Large fluorescently labeled molecules remain relatively stationary during the excited state ( 4 nano-seconds in the case of fluorescein) and the polarization of the light remains relatively constant between excitation and emission. Small fluorescently labeled molecules rotate rapidly during the excited state and the polarization changes significantly between excitation and emission. There-fore, small molecules have low polarization values and large molecules have high polarization values. For example, a single-stranded fluorescein-labeled oligonucleotide has a relatively low polarization value but when it is hybridized to a complementary strand, it has a higher polariza-tion value. When using FP to detect and monitor odorant- binding which may activate or inhibit the sensory receptors of the invention, fluorescence-labeled sensants or auto-fluorescent sensants may be used.
Fluorescence polarization (P) is defined as: p = Intu -Int Intu + Int Where El is the intensity of the emission light parallel to the excitation light plane and frit _L is the intensity of the emission light perpendicular to the excitation light plane. P, being a ratio of light intensities, is a dimensionless number. For example, the Beacon® and Beacon 2000™ System may be used in connection with these assays. Such systems typically express polarization in millipolarization units (1
Polarization Unit =1000 mP Units).
The relationship between molecular rotation and size is described by the Perrin equation and the reader is referred to Jolley J. Anal. Toxicol. 5, 236, 1981 which gives a thorough expla-nation of this equation. Summarily, the Perrin equation states that polarization is directly propor-tional to the rotational relaxation time, the time that it takes a molecule to rotate through an angle of approximately 68.5°. Rotational relaxation time is related to viscosity (η), absolute tempera-ture (T), molecular volume (V), and the gas constant (R) by the following equation:
3ηV
Rotational Re laxationTime =
RE
The rotational relaxation time is small (« 1 nanosecond) for small molecules
(e.g., fluorescein) and large (« 100 nanoseconds) for large molecules (e.g., immunoglobulins). If viscosity and temperature are held constant, rotational relaxation time, and therefore polarization, is directly related to the molecular volume. Changes in molecular volume may be due to inter-actions with other molecules, dissociation, polymerization, degradation, hybridization, or confor-mational changes of the fluorescently labeled molecule. For example, fluorescence polarization has been used to measure enzymatic cleavage of large fluorescein labeled polymers by proteases, DNases, and RNases. It also has been used to measure equilibrium binding for protein/protein interactions, antibody/antigen binding, and protein/DNA binding. 3. Soluble and solid state high throughput assays
In yet another embodiment, the invention provides soluble assays using molecules such as a domain such as ligand binding domain, an extracellular domain, a transmembrane domain (e.g., one comprising seven transmembrane regions and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc.; a domain that is covalently linked to a heterologous protein to create a chimeric molecule; a sensory receptor protein; or a cell or tissue expressing a sensory receptor protein, either naturally occurring or recombinant. In another embodiment, the invention provides solid phase based in vitro assays in a high throughput format, where the domain, chimeric molecule, sensory receptor protein, or cell or tissue expressing the sensory receptor is attached to a solid phase substrate. In the high throughput assays of the invention, it is possible to screen up to several thousand different modulators or ligands in a single day. In particular, each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, if concentra-tion or incubation time effects are to be observed, every 5-10 wells can test a single modulator. Thus, a single standard microtiter plate can assay about 100 (e.g., 96) modulators. If 1536 well plates are used, then a single plate can easily assay from about 1000 to about 1500 different compounds. It is possible to assay several different plates per day; assay screens for up to about 6,000-20,000 different compounds is possible using the integrated systems of the invention. More recently, microfluidic approaches to reagent manipulation have been developed.
The molecule of interest can be bound to the solid state component, directly or indirectly, via covalent or non covalent linkage, e.g., via a tag. The tag can be any of a variety of compo-nents. In general, a molecule which binds the tag (a tag binder) is fixed to a solid support, and the tagged molecule of interest (e.g., the taste transduction molecule of interest) is attached to the solid support by interaction of the tag and the tag binder.
A number of tags and tag binders can be used, based upon known molecular interactions well described in the literature. For example, where a tag has a natural binder, for example, biotin, protein A, or protein G, it can be used in conjunction with appropriate tag binders (avidin, streptavidin, neutravidin, the Fc region of an immunoglobulin, etc.). Antibodies to molecules with natural binders such as biotin are also widely available and appropriate tag binders (see, SIGMA Immunochemicals 1998 catalogue SIGMA, St. Louis MO). Similarly, any haptenic or antigenic compound can be used in combination with an appro-priate antibody to form a tag/tag binder pair. Thousands of specific antibodies are commercially available and many additional antibodies are described in the literature. For example, in one common configuration, the tag is a first antibody and the tag binder is a second antibody which recognizes the first antibody. In addition to antibody-antigen interactions, receptor-ligand inter-actions are also appropriate as tag and tag-binder pairs. For example, agonists and antagonists of cell membrane receptors (e.g., cell receptor-ligand interactions such as transfemn, c-kit, viral receptor ligands, cytokine receptors, chemokine receptors, interleukin receptors, describing arrays of biopolymers fixed to solid substrates). Non-chemical approaches for fixing tag binders to substrates include other common methods, such as heat, cross-linking by UN radiation, and the like. 4. Computer-based assays Yet another assay for compounds that modulate sensory receptor protein activity involves computer assisted drug design, in which a digital or analog processing system is used to generate a three-dimensional structure of a sensory receptor protein based on the structural information encoded by its amino acid sequence. The input amino acid sequence interacts directly and actively with a preestablished algorithm in a computer program to yield secondary, tertiary, and quaternary structural models of the protein. The models of the protein structure are then examined to identify regions of the structure that have the ability to bind, e.g., ligands. These regions are then used to identify ligands that bind to the protein.
The three-dimensional structural model of the protein is generated by entering protein amino acid sequences of at least 10 amino acid residues or corresponding nucleic acid sequences encoding a sensory receptor polypeptide into the computer system. The nucleotide sequence encoding the polypeptide, or the amino acid sequence thereof, can be any of those described herein, or fragments or variants thereof. The amino acid sequence represents the primary sequence or subsequence of the protein, which encodes the structural information of the protein. At least 10 residues of the amino acid sequence (or a nucleotide sequence encoding 10 amino acids) are entered into the computer system from computer keyboards, computer readable substrates that include, but are not limited to, electronic storage media (e.g., magnetic diskettes, tapes, cartridges, and chips), optical media (e.g., CD ROM), information distributed by internet sites, and by RAM. The three-dimensional structural model of the protein is then generated by the interaction of the amino acid sequence and the computer system, using software known to those of skill in the art. The amino acid sequence represents a primary structure that encodes the information necessary to form the secondary, tertiary and quaternary structure of the protein of interest. The software looks at certain parameters encoded by the primary sequence to generate the structural model. These parameters are referred to as "energy terms," and primarily include electrostatic potentials, hydrophobic potentials, solvent accessible surfaces, and hydrogen bonding. Secon-dary energy terms include van der Waals potentials. Biological molecules form the structures that minimize the energy terms in a cumulative fashion. The computer program is therefore using these terms encoded by the primary structure or amino acid sequence to create the secon-dary structural model.
The tertiary structure of the protein encoded by the secondary structure is then formed on the basis of the energy terms of the secondary structure. The user at this point can enter addi-tional variables such as whether the protein is membrane bound or soluble, its location in the body, and its cellular location, e.g., cytoplasmic, surface, or nuclear. These variables along with the energy terms of the secondary structure are used to form the model of the tertiary structure. In modeling the tertiary structure, the computer program matches hydrophobic faces of secondary structure with like, and hydrophilic faces of secondary structure with like.
Once the structure has been generated, potential ligand binding regions are identified by the computer system. Three-dimensional structures for potential ligands are generated by entering amino acid or nucleotide sequences or chemical formulas of compounds, as described above. The three-dimensional structure of the potential ligand is then compared to that of the sensory receptor protein to identify ligands that bind to the protein. Binding affinity between the protein and ligands is determined using energy terms to determine which ligands have an enhanced probability of binding to the protein.
Computer systems are also used to screen for mutations, polymorphic variants, alleles and interspecies homologs of sensory receptor genes. Such mutations can be associated with disease states or genetic traits. As described above, GeneChip™ and related technology can also be used to screen for mutations, polymorphic variants, alleles and interspecies homologs. Once the variants are identified, diagnostic assays can be used to identify patients having such mutated genes. Identification of the mutated sensory receptor genes involves receiving input of a first nucleic acid or amino acid sequence of a sensory receptor gene, or conservatively modified versions thereof. The sequence is entered into the computer system as described above. The first nucleic acid or amino acid sequence is then compared to a second nucleic acid or amino acid sequence that has substantial identity to the first sequence. The second sequence is entered into the computer system in the manner described above. Once odorant dependent activation monitored. Control samples (untreated with activators or inhibitors) are assigned a relative sensory receptor activity value of 100. Inhibition of a sensory receptor protein is achieved when the sensory receptor activity value relative to the control is about 90%, optionally 50%, optionally 25-0%. Activation of a sensory receptor protein is achieved when the sensory receptor activity value relative to the control is 110%, optionally 150%, 200-500%, or 1000-2000%.
Changes in ion flux may be assessed by determining changes in polarization (i.e., electri-cal potential) of the cell or membrane expressing a sensory receptor protein. One means to deter-mine changes in cellular polarization is by measuring changes in current, and thereby measuring changes in polarization, with voltage-clamp and patch-clamp techniques, e.g., the "cell-attached" mode, the "inside-out" mode, and the "whole cell" mode (see, e.g., Ackerman et al, New Engl. JMed., 336:1575, 1997). Whole cell currents are conveniently determined using the standard. Other known assays include: assays to measure ion flux using radiolabeled or fluorescent probes such as voltage-sensitive dyes (see, e.g., Nestergarrd-Bogind et al, J.
Membrane Biol, 88:67, 1988; Gonzales & Tsien, Chem. Biol, 4:269, 1997; Daniel et al, J. Pharmacol. Meth., 25:185, 1991; Holevinsky et al, J. Membrane Biology, 137:59, 1994). Generally, the compounds to be tested are present in the range from 1 pM to 100 mM. The effects of the test compounds upon the function of the polypeptides can be measured by examining any of the parameters described above. Any suitable physiological change that affects GPCR activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca2+, DP3, cGMP, or cAMP.
Prefened assays for G-protein coupled receptors include cells that are loaded with ion or voltage sensitive dyes to report receptor activity. Assays for determining activity of such receptors can also use known agonists and antagonists for other G-protein coupled receptors as negative or positive controls to assess activity of tested compounds. In assays for identifying modulatory compounds (e.g., agonists, antagonists), changes in the level of ions in the cytoplasm or membrane voltage will be monitored using an ion sensitive or membrane voltage fluorescent indicator, respectively. Among the ion-sensitive indicators and voltage probes that may be employed are those disclosed in the Molecular Probes 1997 Catalog. For G-protein coupled receptors, promiscuous G-proteins such as Gαl 5 and Gαl 6 can be used in the assay of choice (Wilkie et al, Proc. Natl. Acad. Sci., 88:10049, 1991). Such promiscuous G-proteins allow coupling of a wide range of receptors.
Receptor activation typically initiates subsequent intracellular events, e.g., increases in second messengers such as IP3, which releases intracellular stores of calcium ions. Activation of some G-protein coupled receptors stimulates the formation of inositol triphosphate (EP3) through phospholipase C-mediated hydrolysis of phosphatidylinositol (Berridge & Irvine, Nature 312:315, 1984). EP3 in turn stimulates the release of intracellular calcium ion stores. Thus, a change in cytoplasmic calcium ion levels, or a change in second messenger levels such as IP3 can be used to assess G-protein coupled receptor function. Cells expressing such G-protein coupled receptors may exhibit increased cytoplasmic calcium levels as a result of contribution from both intracellular stores and via activation of ion channels, in which case it may be desirable although not necessary to conduct such assays in calcium-free buffer, optionally supplemented with a chelating agent such as EGTA, to distinguish fluorescence response resulting from calcium release from internal stores. Other assays can involve determining the activity of receptors which, when activated, result in a change in the level of intracellular cyclic nucleotides, e.g., cAMP or cGMP, by activating or inhibiting enzymes such as adenylate cyclase. There are cyclic nucleotide-gated ion channels, e.g., rod photoreceptor cell channels and olfactory neuron channels that are permeable to cations upon activation by binding of cAMP or cGMP (see, e.g., Altenhofen et al, Proc. Natl. Acad. Sci., 88:9868, 1991 and Dhallan et al, Nature 347:184, 1990). In cases where activation of the receptor results in a decrease in cyclic nucleotide levels, it may be preferable to expose the cells to agents that increase intracellular cyclic nucleotide levels, e.g., forskolin, prior to adding a receptor-activating compound to the cells in the assay. Cells for this type of assay can be made by co-transfection of a host cell with DNA encoding a cyclic nucleotide-crated ion channel, GPCR phosphatase and DNA encoding a receptor (e.g., certain glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, serotonin receptors, and the like), which, when activated, causes a change in cyclic nucleotide levels in the cytoplasm.
In a preferred embodiment, sensory receptor protein activity is measured by expressing a sensory receptor gene in a heterologous cell with a promiscuous G-protein that links the receptor to a phospholipase C signal transduction pathway (see Offermanns & Simon, J Biol. Chem., 270:15175, 1995). Optionally the cell line is HEK-293 (which does not naturally express sensory receptor genes) and the promiscuous G-protein is Gal 5 (Offermanns & Simon, supra). Modu-lation of olfactory transduction is assayed by measuring changes in intracellular Ca2+ levels, which change in response to modulation of the sensory receptor signal transduction pathway via administration of a molecule that associates with a sensory receptor protein. Changes in Ca2+ levels are optionally measured using fluorescent Ca2+ indicator dyes and fluorometric imaging.
In one embodiment, the changes in intracellular cAMP or cGMP can be measured using immunoassays. The method described in Offermanns & Simon, J. Biol. Chem., 270:15175, 1995, maybe used to determine the level of cAMP. Also, the method described in Felley-Bosco et al, Am. J. Resp. Cell and Mol Biol, 11:159, 1994, may be used to determine the level of cGMP. Further, an assay kit for measuring cAMP and/or cGMP is described in U.S. Patent No. 4,115,538, herein incorporated by reference.
In another embodiment, phosphatidyl inositol (PI) hydrolysis can be analyzed according to U.S. Patent No. 5,436,128, herein incorporated by reference. Briefly, the assay involves labeling of cells with 3H-myoinositol for 48 or more hrs. The labeled cells are treated with a test compound for one hour. The treated cells are lysed and extracted in chloroform-methanol-water after which the inositol phosphates were separated by ion exchange chromatography and quantified by scintillation counting. Fold stimulation is determined by calculating the ratio of cpm in the presence of agonist, to cpm in the presence of buffer control. Likewise, fold inhibition is determined by calculating the ratio of cpm in the presence of antagonist, to cpm in the presence of buffer control (which may or may not contain an agonist).
In another embodiment, transcription levels can be measured to assess the effects of a test compound on signal transduction. A host cell containing a sensory receptor protein of interest is contacted with a test compound for a sufficient time to effect any interactions, and then the level of gene expression is measured. The amount of time to effect such interactions may be empiri-cally determined, such as by running a time course and measuring the level of transcription as a function of time. The amount of transcription may be measured by using any method known to those of skill in the art to be suitable. For example, mRNA expression of the protein of interest may be detected using northern blots or their polypeptide products may be identified using immunoassays. Alternatively, transcription based assays using reporter gene maybe used as described in U.S. Patent No. 5,436,128, herein incorporated by reference. The reporter genes can be, e.g., chloramphenicol acetyltransferase, luciferase, '3-galactosidase and alkaline phosphatase. Furthermore, the protein of interest can be used as an indirect reporter via attachment to a second reporter such as green fluorescent protein (see, e.g., Mistili & Spector, Nature Biotech. 15:961, 1997).
The amount of transcription is then compared to the amount of transcription in either the same cell in the absence of the test compound, or it may be compared with the amount of transcription in a substantially identical cell that lacks the sensory receptor protein of interest. A substantially identical cell maybe derived from the same cells from which the recombinant cell was prepared but which had not been modified by introduction of heterologous DNA. Any difference in the amount of transcription indicates that the test compound has in some manner altered the activity of the sensory receptor protein of interest.
6. Transgenic non-human animals expressing sensory receptors
Non-human animals expressing one or more sensory receptor sequences of the invention, particularly human olfactory receptor sequences, can also be used for receptor assays. Such expression can be used to determine whether a test compound specifically binds to a mammalian olfactory transmembrane receptor polypeptide in vivo by contacting a non-human animal stably or transiently transfected with a nucleic acid encoding an olfactory receptor or ligand binding region thereof with a test compound and determining whether the animal reacts to the test compound by specifically binding to the receptor polypeptide.
Use of translocation domains in the fusion polypeptides generates a cell expressing high levels of olfactory receptor. Animals transfected or infected with the vectors of the invention are particularly useful for assays to identify and characterize odorants/ligands that can bind to a specific or sets of receptors. Such vector-infected animals expressing libraries of human olfactory sequences can be used for in vivo screening of odorants and their effect on, e.g., cell physiology (e.g., on olfactory neurons), on the CNS (e.g., olfactory bulb activity), or behavior. Means to infect/express the nucleic acids and vectors, either individually or as libraries, are well known in the art. A variety of individual cell, organ or whole animal parameters can be measured by a variety of means. For example, recording of stimulant-induced waves (bulbar responses) from the main olfactory bulb or accessory olfactory bulb is a useful tool for measuring quantitative stable olfactory responses. When electrodes are located on the olfactory bulb surface it is possible to record stable responses over a period of several days (see, e.g., Kashiwayanagi, Brain Res. Protoc. 1:287, 1997). In this study, electroolfactogram recordings were made with a four- electrode assembly from the olfactory epithelium overlying the endoturbinate bones facing the nasal septum. Four electrodes were fixed along the dorsal-to-ventral axis of one turbinate bone or were placed in conesponding positions on four turbinate bones and moved together up toward the top of the bone. See also, Scott, J. Neurophysiol 77:1950, 1997; Scott, J. Neuro-physiol 75:2036, 1996; Ezeh, J Neurophysiol. 73:2207, 1995. In other systems, fluorescence changes in nasal epithelium can be measured using the dye di-4-ANEPPS, which is applied on the rat's nasal septum and medial surface of the turbinates (see, e.g., Youngentob, J. Neuro-physiol. 73:387,
1995). Extracellular potassium activity (aK) measurements can also be carried out in in vivo. An increase in aK can be measured in the mucus and the proximal part of the nasal epithelium (see, e.g., Khayari, Brain Res. 539:1, 1991).
The sensory receptor sequences of the invention can be for example expressed in animal nasal epithelium by delivery with an infecting agent, e.g., adenovirus expression vector. Recom-binant adeno virus-mediated expression of a recombinant gene in olfactory epithelium using green fluorescent protein as a marker is described by, e.g., Touhara, Proc. Natl. Acad. Sci. USA 96:4040, 1999.
The endogenous olfactory receptor genes can remain functional and wild-type (native) activity can still be present. In other situations, where it is desirable that all olfactory receptor activity is by the introduced exogenous hybrid receptor, use of a knockout line is preferred. Methods for the construction of non-human transgenic animals, particularly transgenic mice, and the selection and preparation of recombinant constructs for generating transformed cells are well known in the art.
Construction of a "knockout" cell and animal is based on the premise that the level of expression of a particular gene in a mammalian cell can be decreased or . completely abrogated by introducing into the genome a new DNA sequence that serves to interrupt some portion of the DNA sequence of the gene to be suppressed. Also, "gene trap insertion" can be used to disrupt a host gene, and mouse embryonic stem (ES) cells can be used to produce knockout transgenic animals (see, e.g., Holzschu, Transgenic Res 6:97, 1997). The insertion of the exogenous is typically by homologous recombination between complementary nucleic acid sequences. The exogenous sequence is some portion of the target gene to be modified, such as exonic, intronic or transcriptional regulatory sequences, or any genomic sequence which is able to affect the level of the target gene's expression; or a combination thereof. Gene targeting via homologous recombi-nation in pluripotential embryonic stem (ES) cells allows one to modify precisely the genomic sequence of interest. Any technique can be used to create, screen for, propagate, a knockout animal, e.g., see Bijvoet, Hum. Mol. Genet. 7:53, 1998); Moreadith, J. Mol. Med. 75:208, 1997; Tojo, Cytotechnology 19:161, 1995; Mudgett, Methods Mol Biol 48:167, 1995; Longo, Transgenic Res. 6:321, 1997; U.S. Patents Nos. 5,616,491; 5,464,764; 5,631,153; 5,487,992; 5,627,059; 5,272,071; WO 91/09955; WO93/09222; WO 96/29411; WO 95/31560; WO 91/12650.
The nucleic acid libraries can also be used as reagents to produce "knockout" human cells and their progeny.
F. Modulators The compounds tested as modulators of a sensory receptor family member can be any small chemical compound, or a biological entity, such as a protein, sugar, nucleic acid or lipid. Alternatively, modulators can be genetically altered versions of a sensory receptor gene. Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds-can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma- Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs, Switzerland) and the like.
In one prefened embodiment, high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator or ligand compounds). Such "combinatorial chemical libraries" or "ligand libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired charac-teristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics. A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (i.e. , the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing, of chemical building blocks.
Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175; Furka, Int. J. Pept. Prot. Res. 37:487, 1991; and Houghton et al, Nature 354:84, 1991). Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (e.g., WO 91/19735), encoded peptides (e.g., WO 93/20242), random bio-oligomers (e.g., WO 92/00091), benzodiazepines (e.g., U.S. Patent No. 5,288,514), diversomers such as hydantoins, benzodiaze-pines and dipeptides (Hobbs et al, Proc. Nat. Acad. Sci. 90:6909, 1993), vinylogous polypep-tides (Hagihara et α/., J 4rn r. Chem. Soc. 114:6568, 1992), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann et al, J. Amer. Moreover, a method is provided for simulating a fragrance or flavor sensed by a mammal (e.g., human), comprising: for each of a plurality of sensory receptors, or fragments or variants thereof, ascertaining the extent to which the sensory receptor interacts with the fragrance and or flavor; and combining a plurality of compounds, each having a previously-determined interaction with one or more of the sensory receptors, in amounts that together provide a stimulation profile that mimics the profile for the fragrance and or flavor. Interaction of a fragrance and/or flavor with a sensory receptor can be determined using any of the binding or reporter assays described herein. The interactions can be aggregated or a profile generated using known signal processing techniques (e.g., a neural network) as described below. The sensory receptor, or fragments or variants thereof (e.g., fusion proteins with reporters, chimeric proteins) may be expressed in cells; otherwise, ligand-binding domain(s) may be fixed to a substrate (e.g., planar, bead, or fiber) that is solid or porous. The plurality of compounds may then be combined to form a mixture. If desired, one or more of the plurality of the compounds can be combined covalently. The combined compounds substantially stimulate at least 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99% or all of the receptors that are substantially stimulated by the fragrance or flavor.
In yet another aspect of the invention, a method is provided in which a plurality of standard compounds are tested against a plurality of sensory receptors, or fragments or variants thereof, to ascertain the extent to which the sensory receptors each interact with each standard compound, thereby generating a receptor stimulation profile for each standard compound. These receptor stimulation profiles may then be stored in a relational database on data storage medium. The method may further comprise providing a desired receptor-stimulation profile for an odor and/or taste; comparing the desired receptor stimulation profile to the relational database; and ascertaining one or more combinations of standard compounds that most closely match the desired receptor-stimulation profile. The method may further comprise combining standard compounds in one or more of the ascertained combinations to simulate the odor and/or taste. A further aspect of the invention is to provide a method for representing sensory percep-tion of a particular odor and/or taste in a mammal (e.g., human), comprising: providing values X\ to Xn representative of the quantitative stimulation of each of n sensory receptors of the mammal; where n is greater than or equal to 5, n is greater than or equal to 10, n is greater than or equal to 20, n is greater than or equal to 50, n is greater than or equal to 75, n is greater than or equal to 100, n is greater than or equal to 125, n is greater than or equal to 150, n is greater than or equal to 175, n is greater than or equal to 200, n is greater than or equal to 225, n is greater than or equal to 250, n is greater than or equal to 275, n is greater than or equal to 300, n is greater than or equal to 325, or n is greater than or equal to 350; and generating from the values a quantitative representation of sensory perception. The sensory receptors may be a receptor disclosed herein, or fragments or variants thereof. The representation may constitute a point or a volume in n-dimensional space, may constitute a graph or a spectrum, or may constitutes a matrix of quantita-tive representations. Also, the providing step may comprise contacting a plurality of recombi-nantly-produced sensory receptors, or fragments or variants thereof, with a composition and quantitatively measuring the interaction of the composition with the receptors. The maximum number of taste receptors that are needed to mimic the native repertoire (e.g. , about 50) may be less than the maximum number of olfactory receptors that are needed (e.g., about 350). But the number of sensory receptors that need to be represented in an assay to provide useful results may be much less.
It is yet another aspect of the invention to provide a method for predicting the sensory perception in a mammal (e.g., human) generated by one or more molecules or combinations of molecules yielding unknown olfactory perception in the mammal, comprising: providing values X\ to Xn representative of the quantitative stimulation of each of n sensory receptors of the mammal; where n is greater than or equal to 5, n is greater than or equal to 10, n is greater than or equal to 20, n is greater than or equal to 50, n is greater than or equal to 75, n is greater than or equal to 100, n is greater than or equal to 125, n is greater than or equal to 150, n is greater than or equal to 175, n is greater than or equal to 200, n is greater than or equal to 225, n is greater than or equal to 250, n is greater than or equal to 275, n is greater than or equal to 300, n is greater than or equal to 325, or n is greater than or equal to 350; for one or more molecules or combinations of molecules yielding known sensory perception in a mammal; and generating from the values a quantitative representation of sensory perception in a mammal for the one or more molecules or combinations of molecules yielding known sensory perception in a mammal, providing values Xi to Xπ representative of the quantitative stimulation of each of n sensory receptors of the mammal; where n is greater than or equal to 5, n is greater than or equal to 10, n is greater than or equal to 20, n is greater than or equal to 50, n is greater than or equal to 75, n is greater than or equal to 100, n is greater than or equal to 125, n is greater than or equal to 150, n is greater than or equal to 175, n is greater than or equal to 200, n is greater than or equal to 225, n is greater than or equal to 250, n is greater than or equal to 275, n is greater than or equal to 300, n is greater than or equal to 325, or n is greater than or equal to 350; for one or more mole-cules or combinations of molecules yielding unknown sensory perception in a mammal; and generating from the values a quantitative representation of sensory perception in a mammal for the one or more molecules or combinations of molecules yielding unknown sensory perception in a mammal, and predicting the olfactory perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown sensory perception in a mammal by comparing the quantitative representation of sensory perception in a mammal for the one or more molecules or combinations of molecules yielding unknown sensory perception in a mammal to the quantitative representation of sensory perception in a mammal for the one or more molecules or combinations of molecules yielding known sensory perception in a mammal. The sensory receptors used in this method may include a receptor disclosed herein, or fragment or variant thereof. The maximum number of taste receptors that are needed to mimic the native repertoire (e.g., about 50) may be less than the maximum number of olfactory receptors that are needed (e.g. , about 350). But the number of sensory receptors that need to be represented in an assay to provide useful results may be much less.
Assaying for ligand-receptor binding in a large set of sensory receptors is envisioned to mimic the function of the nose or tongue in sensory perception of chemical sensants. For a set of sensory receptors with a redundancy of ligand-binding domains, the resultant signal is a summa-tion of the interactions of all sensory receptors in the set: none, one, or a few of which have ligand-binding domains that are a perfect fit for the sensant; some of which have ligand-binding domains that are only an imperfect fit for the sensant; and most of which do not significantly bind to the sensant. The individual sensory receptor's binding affinity for sensant varies accordingly. Thus, a suitably large set of ligand-binding domains from sensory receptors will be analogous to any ability of the native repertoire of olfactory or taste receptors to tolerate varying degrees of mismatch between ligand and ligand-binding domain. The complication of desensiti-zation of sensory receptor signaling will also be avoided by using the invention instead of prepa-rations of nasal or tongue epithelium containing native sensory receptors. For example, the event of binding between ligand and receptor can be separated from more complicated downstream signaling events in the epithelial cells. But the latter events can be reconstituted in the invention by transferring the sensory receptor of interest into appropriate host cells containing an intact and functional signaling pathway.
H. Administration of Novel Sensant Compositions
Sensory modulators can be administered directly to a mammal (e.g., human) for modu-lation of sensory perception in vivo. Administration is by any of the routes normally used for introducing a modulator compound into ultimate contact with the tissue to be treated (e.g., nose or tongue). The olfactory modulators are administered in any suitable manner, optionally with acceptable carriers. Suitable methods of administering such modulators are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route. Acceptable carriers are determined at least in part by the particular components of the composition to be administered (e.g., stabilizing the sensants), as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington 's Pharmaceutical Sciences, 17th ed. 1985).
The sensory modulators, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichloro-difluoromethane, propane, nitrogen, and the like that may or may not contribute to sensory perception. Other possible formulation include dry or liquid forms, powders or tablets, solutions of polar (e.g., water) or nonpolar (e.g., alcohol) solvents, emulsions or suspensions, creams, gels, lotions, and syrups.
Formulations suitable for administration include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain antioxidants; buffers, bacteriostats, and solutes that render the formulation isotonic, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, by orally, topically, intravenously, intraperitoneally, intravesically, or intrathecally. Optionally, the compositions are administered orally or nasally. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials. Solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. The modu-lators can also be administered as part a of prepared drug, food, or cosmetic. In particular, an un-pleasant odor or taste (e.g., sulfur or bitter, respectively) may not be perceived as such and/or its effects reduced by blocking the binding between sensant ligand and sensory receptor by adding a competitor ligand that blocks binding between cognate ligand and receptor, or inhibiting or reducing signal transduction. In contrast, a pleasant odor or taste can be mimicked or enhanced. Primary sensants are prefened because the subset of activated cells is kept small and the effects limited to projection into a specific region of the brain. But novel olfactants or combinations thereof that bind only a few olfactory receptors (e.g., having less than five different ligand-binding domains) would also be useful. The dose administered to a mammal (e.g., human) should be sufficient to effect a bene-ficial response in the subject over time. The dose will be determined by the efficacy of the parti-cular sensory modulators employed and the condition of the subject, as well as the body weight or surface area of the area to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular subject. In determining the effective amount of the modulator to be administered in a physician may evaluate circulating plasma levels of the sensory modulator, modulator toxicities,, and the production of anti-modulator antibodies. In general, the dose equivalent of a modulator is from about 1 ng/kg to 10 mg/kg for the typical mammal. For administration, sensory modulators can be administered at a rate determined by the ED50 of the modulator, and the side-effects of the inhibitor at various concentrations, as applied to the mass and overall health of the mammal. Administration can be accomplished via single or divided doses. I. Kits
Sensory receptor genes, or fragments or variants thereof are useful tools for identifying cells expressing sensory receptors, for forensics and paternity determinations, and for examining signal transduction in isolated cells. Sensory receptor family member-specific reagents that specifically hybridize to sensory receptor nucleic acids, such AOFLF1 probes and primers, and sensory receptor specific reagents that specifically bind to a sensory receptor protein, e.g., anti-sensory receptor antibodies are used to examine expression in cells and regulation of signal trans-duction. For example, one or more family member-specific reagents may be used to detect poly-morphisms that are linked to genetic anosmia or to detect allelic exclusion.
Nucleic acid assays for the presence of DNA and RNA for a sensory receptor family member in a sample include numerous techniques are known to those skilled in the art, such as Southern analysis, Northern analysis, dot blots, RNase protection, SI analysis, amplification techniques such as PCR, and in situ hybridization. In in situ hybridization, for example, the target nucleic acid is liberated from its cellular sunoundings in such as to be available for hybrid-ization within the cell while preserving the cellular morphology for subsequent interpretation and analysis. The following articles provide an overview of the art of in situ hybridization: Singer et al, Biotechniques, 4:230-250 (1986); Haase et al, Methods in Virology, vol. VH, pp. 189-226 (1984); and Nucleic Acid Hybridization: A Practical Approach (Names et al, eds. 1987). In addition, a sensory receptor protein can be detected with the various immunoassay techniques described above. The test sample is typically compared to both a positive control (e.g., a sample expressing a recombinant sensory receptor protein) and a negative control.
The present invention also provides for kits for screening for novel modulators of sensory receptor family members. Such kits can be prepared from readily available materials and reagents, as well as any of the aforementioned products. For example, such kits can comprise any one or more of the following materials: sensory receptor nucleic acids or proteins, reaction tubes, and instructions for testing sensory receptor activity. Optionally, the kit contains a biologically active sensory receptor. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Examples AOLFRl sequences:
MKTFSSFLQIGRNMHQGNQTTITEFILLGFFKQDEHQNLLFVLFLGMYLVTVIGNGLIIVAISLD TYLHTPMYLFLANLSFADISSISNSVPKMLVNIQTKSQSISYESCITQMYFSIVFWIDNLLLGTM AYDHFVAICHPLNYTILMRPRFGILLTVIS FLSNIIALTHTLLLIQLLFCNHNTLPHFFCDLAPLL KLSCSDTLINELVLFIVGLSVIIFPFTLSFFSYVCIIRAVLRVSSTQGKWKAFSTCGSHLTWLLFY GTIVGVYFFPSSTHPEDTDKIGAVLFTVNTPMIOTFIYSLRNKDMKGALRKLINRKISSL (SEQ ID NO: l)
ATGAAGACTTTTAGTTCCTTTCTTCAGATCGGCAGAAATATGCATCAAGGAAACCAAACCA CCATCACTGAATTCATTCTCCTGGGATTTTTCAAGCAGGATGAGCATCAAAACCTCCTCTTT GTGCTTTTCTTGGGTATGTACCTGGTCACTGTGATTGGGAACGGGCTCATCATTGTGGCTA TCAGCTTGGATACGTACCTTCATACCCCCATGTATCTCTTCCTTGCCAATCTATCCTTTGCT GATATTTCCTCCATTTCCAACTCAGTCCCCAAAATGCTGGTGAATATTCAAACCAAGAGTC AATCCATCTCTTATGAGAGCTGCATCACACAGATGTACTTTTCTATTGTGTTTGTCGTCATT GACAATTTGCTCTTGGGGACCATGGCCTATGACCACTTTGTGGCGATCTGCCACCCTCTGA ATTATACAATTCTCATGCGGCCCAGGTTCGGCATTTTGCTCACAGTCATCTCATGGTTCCTC AGTAATATTATTGCTCTGACACACACCCTTCTGCTCATTCAATTGCTCTTCTGTAACCACAA CACTCTCCCACACTTCTTCTGTGACTTGGCCCCTCTGCTCAAACTGTCCTGTTCAGATACAT TGATCAATGAGCTTGTGTTGTTTATTGTGGGTTTATCAGTTATCATCTTCCCCTTTACACTC AGCTTCTTTTCCTATGTCTGCATCATCAGAGCTGTCCTGAGAGTATCTTCCACACAGGGAA AGTGGAAAGCCTTCTCCACTTGTGGCTCTCACCTGACAGTTGTATTACTGTTCTACGGAAC CATTGTAGGCGTGTACTTTTTCCCCTCCTCCACTCACCCTGAGGACACTGATAAGATTGGT GCTGTCCTATTCACTGTGGTGACACCCATGATAAACCCCTTCATCTACAGCTTGAGGAATA AGGATATGAAAGGTGCCCTGAGAAAGCTCATCAATAGAAAAATTTCTTCCCTTTGA (SEQ ID NO: 2)
AOLFR2 sequences:
MMMVLRNLSMEPTFALLGFTDYPKLQIPLFL LLMYVITVVGNLGMIIIIK-1-NPKFHTPMYFFL SHLSFVDFCYSSIVTPKLLENLVMADKSIFYFSCMMQYFLSCTAWTESFLLAVMAYDRFVAIC NPLLYTVAMSQRLCALLVAGSYLWGMFGPLVLLCYALRLNFSGPNVINHFFCEYTALISVSGS DILIPHLLLFSFATFNEMCTLLIILTSYVFIFVTVLKIRSVSGRHKAFSTWASHLTAITIFHGTILFL YCWNSKNSRQTVKVASWYTVVNPMLOTPIYSLRNKDVKDAFWKLIHTQVPFH (SEQ ID NO: 3)
ATGATGATGGTTTTAAGGAATCTGAGCATGGAGCCCACCTTTGCCCTTTTAGGTTTCACAG ATTACCCAAAGCTTCAGATTCCTCTCTTCCTTGTGTTTCTGCTCATGTATGTTATCACAGTG GTAGGAAACCTTGGGATGATCATAATAATCAAGATTAACCCCAAATTTCACACTCCTATGT ACTTTTTCCTTAGTCACCTCTCTTTTGTTGATTTTTGTTACTCTTCCATTGTCACTCCCAAGC TGCTTGAGAACTTGGTAATGGCAGATAAAAGCATCTTCTACTTTAGCTGCATGATGCAGTA CTTCCTGTCCTGCACTGCTGTGGTGACAGAGTCTTTCTTGCTGGCAGTGATGGCCTATGAC CGCTTTGTGGCCATCTGCAATCCTCTGCTTTATACAGTGGCCATGTCACAGAGGCTCTGTG CCCTGCTGGTGGCTGGGTCATATCTCTGGGGCATGTTTGGCCCCTTGGTACTCCTTTGTTAT GCTCTCCGGTTAAACTTCTCTGGACCTAATGTAATCAACCACTTCTTTTGTGAGTATACTGC TCTCATCTCTGTGTCTGGCTCTGATATACTCATCCCCCACCTGCTGCTTTTCAGCTTCGCCA CCTTCAATGAGATGTGTACACTACTGATCATCCTCACTTCCTATGTTTTCATTTTTGTGACT GTACTAAAAATCCGTTCTGTTAGTGGGCGCCACAAAGCCTTCTCCACCTGGGCCTCCCACC TGACTGCTATCACCATCTTCCATGGGACCATCCTTTTCCTTTACTGTGTACCCAACTCCAAA AACTCTCGGCAAACAGTCAAAGTGGCCTCTGTATTTTACACAGTTGTCAACCCCATGCTGA ACCCTCCGATCTACAGCCTAAGGAATAAAGACGTGAAGGATGCTTTCTGGAAGTTAATACA TACACAAGTTCCATTTCACTGA (SEQ ID NO: 4)
AOLFR3 sequences:
MLLTDRNTSGTTFTLLGFSDYPELQVPLFLVFL YNVTVLGNIGLIVIIKINPKLHTPMYFFLSQ LSFVDFCYSSIIAP- LVNLVVKDRTISFLGCVVQFFFFCTC
LYTVDMSQKLCVLLWGSYAWGVSCSLELTCSALKLCFHGFNTINHFFCEFSSLLSLSCSDTYI NQWLLFFLATFNEISTLLIVLTSYAFIVVTILKMRSVSGRRKAFSTCASHLTAITIFHGTILFLYCV PNSKNSRHTVKVASVFYTVVIPMLNPLIYSLRN DVKDTVTEILDTKVFSY (SEQ ID NO: 5)
ATGCTGCTGACAGATAGAAATACAAGTGGGACCACGTTCACCCTCTTGGGCTTCTCAGATT ACCCAGAACTGCAAGTCCCACTCTTCCTGGTTTTTCTGGCCATCTACAATGTCACTGTGCTA GGGAATATTGGGTTGATTGTGATCATCAAAATCAACCCCAAACTGCATACCCCCATGTACT TTTTCCTCAGCCAACTCTCCTTTGTGGATTTCTGCTATTCCTCCATCATTGCTCCCAAGATG TTGGTGAACCTTGTTGTCAAAGACAGAACCATTTCATTTTTAGGATGCGTAGTACAATTCT TTTTCTTCTGTACCTTTGTGGTCACTGAATCCTTTTTATTAGCTGTGATGGCCTATGACCGC TTCGTGGCCATTTGCAACCCTCTGCTCTACACAGTTGACATGTCCCAGAAACTCTGCGTGC TGCTGGTTGTGGGATCCTATGCCTGGGGAGTCTCATGTTCCTTGGAACTGACGTGCTCTGC TTTAAAGTTATGTTTTCATGGTTTCAACACAATCAATCACTTCTTCTGTGAGTTCTCCTCAC TACTCTCCCTTTCTTGCTCTGATACTTACATCAACCAGTGGCTGCTATTCTTTCTTGCCACC TTTAATGAAATCAGCACACTACTCATCGTTCTCACATCTTATGCGTTCATTGTTGTAACCAT CCTCAAGATGCGTTCAGTCAGTGGGCGCCGCAAAGCCTTCTCCACCTGTGCCTCCCACCTG ACTGCCATCACCATCTTCCATGGCACCATCCTCTTCCTTTACTGTGTGCCCAACTCCAAAAA CTCCAGGCACACAGTCAAAGTGGCCTCTGTGTTTTACACCGTGGTGATCCCCATGTTGAAT CCCCTGATCTACAGTCTGAGAAATAAAGATGTCAAGGATACAGTCACCGAGATACTGGAC ACCAAAGTCTTCTCTTACTGA (SEQ ID NO: 6)
AOLFR4 sequences:
MENQNNVTEFILLGLTENLELWKIFSAVFLVMYVATVLENLLIVVTIITSQSLRSPMYFFLTFLS LLDVMFSSWAPKVIVDTLSKSTTISLKGCLTQLFVEHFFGGVGIILLTVMAYDRYVAICKPLHY TIIMSPRVCCLMVGGAWVGGFMHAMIQLLFMYQIPFCGPNIIDHFICDLFQLLTLACTDTHILGL LVTLNSGMMCVAIFLILIASYTVILCSLKSYSSKGRHK LSTCSSHLTVVVLFFVPCIFLYMRPV VTHPIDKAMAVSDSIITPMLNPLIYTLRNAEVKSAMKKLWMKWEALAGK (SEQ ID NO: 7)
ATGGAAAATCAAAACAATGTGACTGAATTCATTCTTCTGGGTCTCACAGAGAACCTGGAGC TGTGGAAAATATTTTCTGCTGTGTTTCTTGTCATGTATGTAGCCACAGTGCTGGAAAATCT ACTTATTGTGGTAACTATTATCACAAGTCAGAGTCTGAGGTCACCTATGTATTTTTTTCTTA CCTTCTTGTCCCTTTTGGATGTCATGTTCTCATCTGTCGTTGCCCCCAAGGTGATTGTAGAC ACCCTCTCCAAGAGCACTACCATCTCTCTCAAAGGCTGCCTCACCCAGCTGTTTGTGGAGC ATTTCTTTGGTGGTGTGGGGATCATCCTCCTCACTGTGATGGCCTATGACCGCTACGTGGC CATCTGTAAGCCCCTGCACTACACGATCATCATGAGTCCACGGGTGTGCTGCCTAATGGTA GGAGGGGCTTGGGTGGGGGGATTTATGCACGCAATGATACAACTTCTCTTCATGTATCAAA TACCCTTCTGTGGTCCTAATATCATAGATCACTTTATATGTGATTTGTTTCAGTTGTTGACA CTTGCCTGCACGGACACCCACATCCTGGGCCTCTTAGTTACCCTCAACAGTGGGATGATGT GTGTGGCCATCTTTCTTATCTTAATTGCGTCCTACACGGTCATCCTATGCTCCCTGAAGTCT TACAGCTCTAAAGGGCGGCACAAAGCCCTCTCTACCTGCAGCTCCCACCTCACGGTGGTTG TATTGTTCTTTGTCCCCTGTATTTTCTTGTACATGAGGCCTGTGGTCACTCACCCCATAGAC AAGGCAATGGCTGTGTCAGACTCAATCATCACACCCATGTTAAATCCCTTGATCTATACAC TGAGGAATGCAGAGGTGAAAAGTGCCATGAAGAAACTCTGGATGAAATGGGAGGCTTTGG CTGGGAAATAA (SEQ ID NO: 8)
AOLFR5 sequences:
MGKENCTTVAEFILLGLSDVPELRVCLFLLFLLIYGVTLLANLGMIALIQVSSRLHTPMYFFLSH LSSVDFCYSSIIVPKMLANIFNKDKAISFLGCMVQFYLFCTCWTEVFLLAV AYDRFVAICNPL LYTVTMSWKVRVELASCCYFCGTVCSLIHLCLALRIPFYRSNVINHFFCDLPPVLSLACSDITVN ETLLFLVATLNESVTIMIILTSYLLILTTILKMGSAEGRHKAFSTCASHLTAITVFHGTVLSIYCRP SSGNSGDADKVATVTYTVNIPMLNSVr SLRNKDVKEALRKVMGSKIHS (SEQ ID NO: 9)
ATGGGCAAGGAAAACTGCACCACTGTGGCTGAGTTCATTCTCCTTGGACTATCAGATGTCC CTGAGTTGAGAGTCTGCCTCTTCCTGCTGTTCCTTCTCATCTATGGAGTCACGTTGTTAGCC AACCTGGGCATGATTGCACTGATTCAGGTCAGCTCTCGGCTCCACACCCCCATGTACTTTT TCCTCAGCCACTTGTCCTCTGTAGATTTCTGCTACTCCTCAATAATTGTGCCAAAAATGTTG GCTAATATCTTTAACAAGGACAAAGCCATCTCCTTCCTAGGGTGCATGGTGCAATTCTACT TGTTTTGCACTTGTGTGGTCACTGAGGTCTTCCTGCTGGCCGTGATGGCCTATGACCGCTTT GTGGCCATCTGTAACCCTTTGCTATACACAGTCACCATGTCTTGGAAGGTGCGTGTGGAGC TGGCTTCTTGCTGCTACTTCTGTGGGACGGTGTGTTCTCTGATTCATTTGTGCTTAGCTCTT AGGATCCCCTTCTATAGATCTAATGTGATTAACCACTTTTTCTGTGATCTACCTCCTGTCTT AAGTCTTGCTTGCTCTGATATCACTGTGAATGAGACACTGCTGTTCCTGGTGGCCACTTTG AATGAGAGTGTTACCATCATGATCATCCTCACCTCCTACCTGCTAATTCTCACCACCATCCT GAAGATGGGCTCTGCAGAGGGCAGGCACAAAGCCTTCTCCACCTGTGCTTCCCACCTCACA GCTATCACTGTCTTCCATGGAACAGTCCTTTCCATTTATTGCAGGCCCAGTTCAGGCAATA GTGGAGATGCTGACAAAGTGGCCACCGTGTTCTACACAGTCGTGATTCCTATGCTGAACTC TGTGATCTACAGCCTGAGAAATAAAGATGTGAAAGAAGCTCTCAGAAAAGTGATGGGCTC CAAAATTCACTCCTAG (SEQ ID NO: 10)
AOLFR6 sequences:
MMASERNQSSTPTFILLGFSEYPEIQVPLFLVFLFVYTVTVNGNLGMIIIIRLNSKLHTIMYFFLS HLSLTDFCFSTWTPKLLENLWEYRTISFSGCIMQFCFACIFG VTETFMLAAMAYDRFVAVCK PLLYTTIMSQKLCALLVAGSYTWGIVCSLILTYFLLDLSFCESTFINNFICDHSVIVSASYSDPYIS QRLCFIIAIFNEVSSLIIILTSYMLIFTTIMKMRSASGRQKTFSTCASHLTAITIFHGTILFLYCVPNP KTSSLIVTVAS YTVAIPMLNPLIYSLRNKDINNMFEKLVVTKLIYH (SEQ ID NO: 11)
ATGATGGCATCTGAAAGAAATCAAAGCAGCACACCCACTTTTATTCTCTTGGGTTTTTCAG AATACCCAGAAATCCAGGTTCCACTCTTTCTGGTTTTCTTGTTCGTCTACACAGTCACTGTA GTGGGGAACTTGGGCATGATAATAATCATCAGACTCAATTCAAAACTCCATACAATCATGT ACTTTTTCCTTAGTCACTTGTCCTTGACAGACTTCTGTTTTTCCACTGTAGTTACACCTAAA CTGTTGGAGAACTTGGTTGTGGAATACAGAACCATCTCTTTCTCTGGTTGCATCATGCAAT TTTGTTTTGCTTGCATTTTTGGAGTGACAGAAACTTTCATGTTAGCAGCGATGGCTTATGAC CGTTTTGTGGCAGTTTGTAAACCCTTGCTGTATACCACTATTATGTCTCAGAAGCTCTGTGC TCTTCTGGTGGCTGGGTCCTATACATGGGGGATAGTGTGCTCCCTGATACTCACATATTTT CTTCTTGACTTATCGTTTTGTGAATCTACCTTCATAAATAATTTTATCTGTGACCACTCTGT AATTGTTTCTGCCTCCTACTCAGACCCCTATATCAGCCAGAGGCTATGCTTTATTATTGCCA TATTCAATGAGGTGAGCAGCCTAATTATCATTCTGACATCATATATGCTTATTTTCACTACC ATTATGAAGATGCGATCTGCAAGTGGGCGCCAGAAAACTTTCTCCACCTGTGCCTCCCACC TGACAGCCATCACTATCTTCCATGGAACTATCCTTTTCCTTTACTGTGTTCCTAATCCTAAA ACTTCTAGCCTCATAGTTACAGTGGCTTCTGTGTTTTACACAGTGGCGATTCCAATGCTGA ACCCATTGATCTACAGCCTTAGGAACAAAGATATCAATAACATGTTTGAAAAATTAGTTGT CACCAAATTGATTTACCACTGA (SEQ ID NO: 12)
AOLFR7 sequences:
MSYFYRLKLMKEAVLVKLPFTSLPLLLQTLSRKSRDMEIKNYSSSTSGFILLGLSSNPQLQKPLF AIFLIMYLLAAVGNVLIIPAIYSDPRLHTPMYFFLSNLSFMDICFTTVIVPKMLVNFLSETKVISY VGCLAQMYFFMAFGNTDSYLLAS1VIAIDRLVAICWLHYDVNMKPRHCLLMLLGSCSISHLHSL FRVLLMSRLSFCASHIIKHFFCDTQPVLKLSCSDTSSSQMVVMTETLAVIVTPFLCIIFSYLRIMV TVLRIPSAAGKWKAFSTCGSHLTAVALFYGSΠYVYFRPLSMYSVVRDRVATVMYTVVTPMLN PFIYSLR KDMKRGLKKLQDRIYR (SEQ ID NO: 13)
ATGAGCTATTTTTACAGGCTTAAGCTTATGAAAGAAGCTGTCTTGGTCAAACTGCCCTTTA CATCTCTCCCACTGCTTCTCCAAACCCTATCCAGGAAGTCCAGAGACATGGAGATAAAGAA CTACAGCAGCAGCACCTCAGGCTTCATCCTCCTGGGCCTCTCTTCCAACCCTCAGCTGCAG AAACCTCTCTTTGCCATCTTCCTCATCATGTACCTGCTCGCTGCGGTGGGGAATGTGCTCAT CATCCCGGCCATCTACTCTGACCCCAGGCTCCACACCCCTATGTACTTTTTTCTCAGCAACT TGTCTTTCATGGATATCTGCTTCACAACAGTCATAGTGCCTAAGATGCTGGTGAATTTTCTA TCAGAGACAAAGGTTATCTCCTATGTGGGCTGCCTGGCCCAGATGTACTTCTTTATGGCAT TTGGGAACACTGACAGCTACCTGCTGGCCTCTATGGCCATCGACCGGCTGGTGGCCATCTG CAACCCCTTACACTATGATGTGGTTATGAAACCACGGCATTGCCTGCTCATGCTATTGGGT TCTTGCAGCATCTCCCACCTACATTCCCTGTTCCGCGTGCTACTTATGTCTCGCTTGTCTTT CTGTGCCTCTCACATCATTAAGCACTTTTTCTGTGACACCCAGCCTGTGCTAAAGCTCTCCT GCTCTGACACATCCTCCAGCCAGATGGTGGTGATGACTGAGACCTTAGCTGTCATTGTGAC CCCCTTCCTGTGTATCATCTTCTCCTACCTGCGAATCATGGTCACTGTGCTCAGAATCCCCT CTGCAGCCGGGAAGTGGAAGGCCTTCTCTACCTGTGGCTCCCACCTCACTGCAGTAGCCCT TTTCTATGGGAGTATTATTTATGTCTATTTTAGGCCCCTGTCCATGTACTCAGTGGTTAGGG ACCGGGTAGCCACAGTTATGTACACAGTAGTGACACCCATGCTGAACCCTTTCATCTACAG CCTGAGGAACAAAGATATGAAGAGGGGTTTGAAGAAATTACAGGACAGAATTTACCGGTA A (SEQ ID NO: 14)
AOLFR8 sequences:
MATSNHSSGAEFILAGLTQRPELQLPLFLLFLGIYWTWGNLGMIFLIALSSQLYPPVYYFLSH LSFIDLCYSSVITPKMLVNFVPEENIISFLECITQLYFFLIFVIAEGYLLTAMEYDRYVAICRPLLY NIVMSHRVCSIMMAWYSLGFLWATVHTTRMSVLSFCRSHTVSHYFCDILPLLTLSCSSTHINEI LLFIIGGVNTLATTLAVLISYAFIFSSILGIHSTEGQSKAFGTCSSHLLAVGIFFGSITFMYFKPPSS TTMEl^KVSS YITIIPMLNPLIYSLRNK ViasrALK-KMTRGRQSS (SEQ ID NO: 15)
ATGGCTACTTCAAACCATTCTTCAGGGGCTGAGTTTATCCTGGCAGGCTTGACACAACGCC CAGAACTTCAACTGCCACTCTTCCTCCTGTTCCTTGGAATATATGTGGTCACAGTGGTGGG GAACCTGGGCATGATCTTCTTAATTGCTCTCAGTTCTCAACTTTACCCTCCAGTGTATTATT TTCTCAGTCATTTGTCTTTCATTGATCTCTGCTACTCCTCTGTCATTACCCCTAAGATGCTG GTGAACTTTGTTCCAGAGGAGAACATTATCTCCTTTCTGGAATGCATTACTCAACTTTATTT CTTCCTTATTTTTGTAATTGCAGAAGGCTACCTTCTGACAGCCATGGAATATGACCGTTAT GTTGCTATCTGTCGCCCACTGCTTTACAATATTGTCATGTCCCACAGGGTCTGTTCCATAAT GATGGCTGTGGTATACTCACTGGGTTTTCTGTGGGCCACAGTCCATACTACCCGCATGTCA GTGTTGTCATTCTGTAGGTCTCATACGGTCAGTCATTATTTTTGTGATATTCTCCCCTTATT GACTCTGTCTTGCTCCAGCACCCACATCAATGAGATTCTGCTGTTCATTATTGGAGGAGTT AATACCTTAGCAACTACACTGGCGGTCCTTATCTCTTATGCTTTCATTTTCTCTAGTATCCT TGGTATTCATTCCACTGAGGGGCAATCCAAAGCCTTTGGCACTTGTAGCTCCCATCTCTTG GCTGTGGGCATCTTTTTTGGGTCTATAACATTCATGTATTTCAAGCCCCCTTCCAGCACTAC TATGGAAAAAGAGAAGGTGTCTTCTGTGTTCTACATCACAATAATCCCCATGCTGAATCCT CTAATCTATAGCCTGAGGAACAAGGATGTGAAAAATGCACTGAAGAAGATGACTAGGGGA AGGCAGTCATCCTGA (SEQ ID NO: 16)
AOLFR9 sequences:
MLARNNSLVTEFILAGLTDRPEFWQPFFFLFLVIYIVTMVGNLGLITLFGLNSHLHTPMYYFLFN LSFIDLCYSSVFTPK LMOTVSKKNIISNVGCMTRLFFFLFFVISECYMLTSMAYDRYVAICNPL LYKVTMSHQVCSMLTFAAYIMGLAGATAHTGCMFRLTFCSANIINHYLCDILPLLQLSCTSTYV NEVVVLIVVGTNITWSCTILISYΛΠFIVTSILHIKSTQGRSKAFSTCSSHVIALSLFFGSAAFMYIKY SSGSMEQGKVFSWYTNVVPMLNPLIYSLR KDVT VALRKALI IQRRNIF (SEQ ID NO: 17)
ATGCTGGCTAGAAACAACTCCTTAGTGACTGAATTTATTCTTGCTGGATTAACAGATCGTC
AACCTTGGCTTGATCACTCTTTTCGGTCTAAATTCTCACCTCCACACACCAATGTACTATTT CCTCTTCAATCTCTCCTTCATTGATCTCTGTTACTCCTCTGTTTTCACTCCCAAAATGCTAAT GAACTTTGTGTCAAAAAAGAATATTATCTCCAATGTTGGGTGCATGACTCGGCTGTTTTTC TTTCTCTTTTTCGTCATCTCTGAATGTTACATGTTGACCTCAATGGCATATGATCGCTATGT GGCCATCTGTAATCCATTGCTGTATAAGGTCACCATGTCCCATCAGGTCTGTTCTATGCTCA CTTTTGCTGCTTACATAATGGGATTGGCTGGAGCCACGGCCCACACCGGGTGCATGTTTAG ACTCACCTTCTGCAGTGCTAATATCATTAACCATTACTTGTGTGACATACTCCCCCTCCTCC AGCTTTCCTGCACCAGCACCTATGTCAACGAGGTGGTTGTTCTCATTGTTGTGGGTACTAA TATCACGGTACCCAGTTGTACCATCCTCATTTCTTATGTTTTCATTGTCACTAGCATTCTTC ATATCAAATCCACTCAAGGAAGATCAAAAGCCTTCAGTACTTGTAGCTCTCATGTCATTGC TCTGTCTCTGTTTTTTGGGTCAGCGGCATTCATGTATATTAAATATTCTTCTGGATCTATGG AGCAGGGAAAAGTTTTTTCTGTTTTCTACACTAATGTGGTGCCCATGCTCAATCCCCTCATC TACAGTTTGAGGAACAAGGATGTCAAAGTTGCACTGAGGAAAGCTCTGATTAAAATTCAG AGGAGAAATATATTCTAA (SEQ ED NO: 18) AOLFR10 sequences:
MLARNNSLVTEFILAGLTDRPEFRQPLFFLFLVIYIVTMVGNLGLΠLFGLNSHLHTPMYYFLFNL SFIDLCYSSVFTP MLMNFVSK-KNIISYVGCMTQLFFFLFFVISECYILTSMAYDRYVAICNPLLY
KVTMSHQVCSMLTFAAYIMGLAGATAHTGCMLRLTFCSANIINHYLCDILPLLQLSCTSTYVN EVVVLIWGINIMVPSCTILISYVFIVTSILHIKSTQGRSKAFSTCSSHVIALSLFFGSAAFMYIKYS SGSMEQGKVSSVFYTNVWMLNPLIYSLRNKDVKVALRKALIKIQR-RNIF (SEQ ID NO: 19)
ATGCTGGCTAGAAACAACTCCTTAGTGACTGAATTTATTCTTGCTGGATTAACAGATCGTC CAGAGTTCCGGCAACCCCTCTTTTTCCTGTTTCTAGTGATCTACATTGTCACCATGGTAGGC AACCTTGGCTTGATCATTCTTTTCGGTCTAAATTCTCACCTCCACACACCAATGTACTATTT CCTCTTCAATCTCTCCTTCATTGATCTCTGTTACTCCTCTGTTTTCACTCCCAAAATGCTAAT GAACTTTGTATCAAAAAAGAATATTATCTCCTATGTTGGGTGCATGACTCAGCTGTTTTTCT TTCTCTTTTTTGTCATCTCTGAATGCTACATATTGACCTCAATGGCATATGATCGCTATGTG GCCATCTGTAATCCATTGCTGTATAAGGTCACCATGTCCCATCAGGTCTGTTCTATGCTCAC TTTTGCTGCTTACATAATGGGATTGGCTGGAGCCACGGCCCACACCGGGTGCATGCTTAGA CTCACCTTCTGCAGTGCTAATATCATCAACCATTACTTGTGTGACATACTCCCCCTCCTCCA GCTTTCCTGCACCAGCACCTATGTCAACGAGGTGGTTGTTCTCATTGTTGTGGGTATTAAT ATCATGGTACCCAGTTGTACCATCCTCATTTCTTATGTTTTCATTGTCACTAGCATTCTTCA TATCAAATCCACTCAAGGAAGATCAAAAGCCTTCAGTACTTGTAGCTCTCATGTCATTGCT CTGTCTCTGTTTTTTGGGTCAGCGGCATTCATGTATATTAAATATTCTTCTGGATCTATGGA GCAGGGAAAAGTTTCTTCTGTTTTCTACACTAATGTGGTGCCCATGCTCAATCCTCTCATCT ACAGTTTGAGGAACAAGGATGTCAAAGTTGCACTGAGGAAAGCTCTGATTAAAATTCAGA GAAGAAATATATTCTAA (SEQ ID NO: 20)
AOLFRll sequences:
MTLRNSSSVTEFILVGLSEQPELQLPLFLLFLGIYVFTWGNLGLITLIGINPSLHTPMYFFLFNLS FIDLCYSCVFTPKMLNDFVSESIISYVGCMTQLFFFCFFVNSECYVLVSMAYDRYVAICNPLLY MVTMSPRVCFLLMFGSYVVGFAGAMAHTGSMLRLTFCDSNVIDHYLCDVLPLLQLSCTSTHV SELVFFIWGVITMLSSISIVISYALILSNILCIPSAEGRSKAFSTWGSHIIAVALFFGSGTFTYLTTS FPGSiVl fflGRFASVFYTNVWMLNPSIYSLRNKDDKLALGKTLKRVLF (SEQ ID NO: 21)
ATGACTCTGAGAAACAGCTCCTCAGTGACTGAGTTTATCCTTGTGGGATTATCAGAACAGC CAGAGCTCCAGCTCCCTCTTTTCCTTCTATTCTTAGGGATCTATGTGTTCACTGTGGTGGGC AACTTGGGCTTGATCACCTTAATTGGGATAAATCCTAGCCTTCACACCCCCATGTACTTTTT CCTCTTCAACTTGTCCTTTATAGATCTCTGTTATTCCTGTGTGTTTACCCCCAAAATGCTGA ATGACTTTGTTTCAGAAAGTATCATCTCTTATGTGGGATGTATGACTCAGCTATTTTTCTTC TGTTTCTTTGTCAATTCTGAGTGCTATGTGTTGGTATCAATGGCCTATGATCGCTATGTGGC CATCTGCAACCCCCTGCTCTACATGGTCACCATGTCCCCAAGGGTCTGCTTTCTGCTGATGT TTGGTTCCTATGTGGTAGGGTTTGCTGGGGCCATGGCCCACACTGGAAGCATGCTGCGACT GACCTTCTGTGATTCCAACGTCATTGACCATTATCTGTGTGACGTTCTCCCCCTCTTGCAGC TCTCCTGCACCAGCACCCATGTCAGTGAGCTGGTATTTTTCATTGTTGTTGGAGTAATCACC ATGCTATCCAGCATAAGCATCGTCATCTCTTACGCTTTGATACTCTCCAACATCCTCTGTAT TCCTTCTGCAGAGGGCAGATCCAAAGCCTTTAGCACATGGGGCTCCCACATAATTGCTGTT GCTCTGTTTTTTGGGTCAGGGACATTCACCTACTTAACAACATCTTTTCCTGGCTCTATGAA CCATGGCAGATTTGCCTCAGTCTTTTACACCAATGTGGTTCCCATGCTTAACCCTTCGATCT ACAGTTTGAGGAATAAGGATGATAAACTTGCCCTGGGCAAAACCCTGAAGAGAGTGCTCT TCTAA (SEQ ID NO: 22)
AOLFR12 sequences: MERNHNPDNCNVLNFFFADKXNK-RRNFGQIVSDVGRICYSVSLSLGEPTTMGRNNLTRPSEFIL LGLSSRPEDQKPLFAVFLPIY ITVIGNLLIILAIRSDTRLQTPMYFFLSILSFVDICYVTVIIPKMLV NFLSETKTISYGECLTQMYFFLAFGNTDSYLLAAMAIDRYVAICNPFHYITIMSHRCCVLLLVLS FCIPHFHSLLHILLTNQLIFCASNVIHHFFCDDQPVLKLSCSSHFVKEITVMTEGLAVIMTPFSCIII SYLRILITVLKIPSAAGK-1-U AFSTCGSHLTVVTLFYGSISYVYFQPLSNYTVKDQIATIIYTVLTP MLNPF-CYSL-RNKD KQGLA LMHRMKCQ (SEQ ID NO: 23) ATGGAAAGAAACCACAATCCAGATAATTGTAATGTTTTAAATTTTTTCTTTGCTGATAAGA AGAATAAAAGGAGAAATTTTGGACAGATTGTATCAGATGTTGGAAGAATCTGTTACAGTG TTAGTTTATCTTTAGGTGAACCCACAACTATGGGAAGAAATAACCTAACAAGACCCTCTGA ATTCATCCTCCTTGGACTCTCCTCTCGACCTGAGGATCAGAAGCCGCTCTTTGCTGTGTTCC TCCCCATCTACCTTATCACAGTGATAGGAAACCTGCTTATCATCCTGGCCATCCGCTCAGA CACTCGTCTCCAGACGCCCATGTACTTCTTTCTAAGCATCCTGTCTTTTGTTGACATTTGCT ATGTGACAGTCATTATCCCTAAGATGCTGGTGAACTTCTTATCAGAGACAAAGACCATCTC TTACGGTGAGTGTCTGACCCAGATGTACTTTTTCTTAGCCTTTGGAAACACAGACAGTTAC CTGCTAGCAGCCATGGCCATTGACCGCTATGTGGCCATATGTAATCCCTTCCACTACATCA CCATTATGAGTCACAGATGCTGTGTCCTGCTTCTGGTTCTCTCCTTCTGCATTCCACATTTT CACTCCCTCCTGCACATTCTTCTGACTAATCAGCTCATCTTCTGTGCCTCCAATGTCATCCA TCACTTTTTCTGCGATGATCAACCAGTGCTAAAATTGTCCTGTTCCTCCCATTTTGTCAAAG AAATCACAGTAATGACAGAAGGCTTGGCTGTCATAATGACCCCGTTTTCATGCATCATCAT CTCTTATTTAAGAATCCTCATCACTGTTCTGAAGATTCCTTCAGCTGCTGGAAAGCGTAAA GCATTTTCTACCTGTGGCTCTCATCTCACAGTGGTGACCCTGTTTTATGGAAGCATTAGCTA TGTCTATTTTCAGCCCCTGTCCAACTATACTGTCAAGGATCAAATAGCAACAATTATCTAC ACCGTACTGACTCCTATGCTAAATCCATTTATCTATAGTCTGAGGAACAAAGACATGAAGC AGGGTTTGGCAAAGTTGATGCACAGGATGAAATGTCAGTAA (SEQ ID NO: 24)
AOLFR13 sequences:
MDQKNGSSFTGFILLGFSDRPQLELVLFWLLIFYIFTLLGNKTIIVLSHLDPHLHNPMYFFFSNL SFLDLCYTTGIVPQLLVNLRGADKSISYGGCWQLYISLGLGSTECVLLGVMAFDRYAAVCRPL HYTVVMHPCLYVLMASTSWVIGFANSLLQTVLILLLTLCGRNKLEHFLCEVPPLLKLACVDTT MNESELFFVSVIILLVPVAXπFSYSQIV-RAVVRIKSATGQ-RKWGTCGSHLTVNSLFYGTAIYAY LQPGNNYSQDQGKXISLFYTIITPMINPLIYTLRNKDVKGALKKVLWK3 rYDSR (SEQ ID NO: 25)
ATGGATCAGAAAAATGGAAGTTCTTTCACTGGATTTATCCTACTGGGTTTCTCTGACAGGC CTCAGCTGGAGCTAGTCCTCTTTGTGGTTcTTTTGATCTTCTATATCTTCACTTTGCTGGGG AACAAAACCATCATTGTATTATCTCACTTGGACCCACATCTTCACAATCCTATGTATTTTTT CTTCTCCAACCTAAGCTTTTTGGATCTGTGTTACACAACCGGCATTGTTCCACAGCTCCTGG TTAATCTCAGGGGAGCAGACAAATCAATCTCCTATGGTGGTTGTGTAGTTCAGCTGTACAT CTCTCTAGGCTTGGGATCTACAGAATGCGTTCTCTTAGGAGTGATGGCATTTGACCGCTAT GCAGCTGTTTGCAGGCCCCTCCACTACACAGTAGTCATGCACCCTTGTCTGTATGTGCTGA TGGCTTCTACTTCATGGGTCATTGGTTTTGCCAACTCCCTATTGCAGACGGTGCTCATCTTG CTTTTAACACTTTGTGGAAGAAATAAATTAGAACACTTTCTTTGTGAGGTTCCTCCATTGCT CAAGCTTGCCTGTGTTGACACTACTATGAATGAATCTGAACTCTTCTTTGTCAGTGTCATTA TTCTTCTTGTACCTGTTGCATTAATCATATTCTCCTATAGTCAGATTGTCAGGGCAGTCGTG AGGATAAAGTCAGCAACAGGGCAGAGAAAAGTGTTTGGGACATGTGGCTCCCACCTCACA GTGGTTTCCCTGTTCTACGGCACAGCTATCTATGCTtACCTCCAGCCCGGCAACAACTACTC TCAGGATCAGGGCAAGKTCATCTCTCTCTTCTACACCATCATTACACCCATGATCAACCCC CTCATATATACACTGAGGAACAAGGATGTGAAAGGAGCACTTAAGAAGGTGCTCTGGAAG AACTACGACTCCAGATGA(SEQ ID NO: 26)
AOLFR14 sequences:
MALPLLLSPSCFASSQSLSSRMNSENLTRAAVAPAEFVLLGITNRWDLRVALFLTCLPVYLVSL LGNMGMALLIRMDARLHTPMYFFLANLSLLDACYSSAIGPKMLVDLLLPRATIPYTACALQMF VFAGLADTECCLLAAMAYDRYVAIRNPLLYTTAMSQRLCLALLGASGLGGAVSAFVHTTLTF RLSFCRSRKINSFFCDIPPLLAISCSDTSLNELLLFAICGFIQTATVLAITVSYGFIAGAVIHMRSVE GSRRAASTGGSHLTAVAMlVr^GTLIFMYLRPSSSYALDTDKMASVFYTLVIPSLNPLIYSL-RNKE VKEALRQTWSRFHCPGQGSQ (SEQ ID NO: 27)
ATGGCCTTGCCATTGCTCTTATCTCCCTCCTGCTTTGCCTCTTCTCAGTCTCTGTCCAGTAG GATGAACTCAGAGAACCTCACCCGGGCCGCGGTTGCCCCTGCTGAATTCGTCCTCCTGGGC ATCACAAATCGCTGGGACCTGCGTGTGGCCCTCTTCCTGACCTGCCTGCCTGTCTACCTGG TGAGCCTGCTGGGAAACATGGGCATGGCGCTGCTGATCCGCATGGATGCCCGGCTCCACA CACCTATGTACTTCTTCCTGGCCAACCTCTCCCTGCTGGATGCCTGCTATTCCTCCGCCATC GGCCCCAAGATGCTAGTGGACCTGCTGCTGCCCCGAGCCACCATCCCTTACACAGCCTGTG CCCTCCAGATGTTTGTCTTTGCAGGTCTGGCTGATACTGAGTGTTGCTTGCTGGCAGCCAT GGCCTATGACCGCTACGTGGCCATCAGAAACCCACTTCTCTATACAACAGCTATGTCGCAG CGTCTATGCCTGGCCTTGCTGGGAGCATCAGGCCTGGGTGGGGCAGTGAGTGCCTTTGTTC ACACAACCCTCACCTTCCGCCTGAGCTTCTGCCGCTCCCGGAAGATCAATAGCTTCTTCTG CGATATCCCTCCACTGCTGGCCATCTCGTGCAGTGACACCAGTCTCAATGAACTCCTTCTCT TCGCCATCTGTGGCTTCATCCAGACAGCCACGGTGTTAGCTATCACGGTGTCTTATGGCTT CATCGCTGGGGCTGTGATCCACATGCGCTCGGTCGAGGGCAGTCGGCGAGCAGCCTCCAC CGGTGGTTCCCACCTCACAGCCGTGGCCATGATGTACGGGACACTCATTTTCATGTACCTG CGCCCCAGCTCCAGCTATGCCCTGGACACTGACAAGATGGCCTCTGTGTTCTATACCCTGG TCATCCCGTCTCTCAACCCACTCATCTACAGCCTCCGCAATAAGGAGGTCAAGGAGGCCCT CAGGCAGACCTGGAGCCGATTCCACTGTCCAGGGCAGGGGTCCCAGTGA (SEQ ID NO: 28)
AOLFR15 sequences :
MRENNQSSTLEFILLGVTGQQEQEDFFYILFLFIYPITLIGNLLIVLAICSDVRLHNPMYFLLANLS LVDIFFSSVTIPKMLANHLLGSKSISFGGCLTQMYFMIALGNTDSYILAAMAYDRAVAISHPLH YTTIMSPRSCIWLIAGSWVIGNANALPHTLLTASLSFCGNQEVANFYCDITPLLKLSCSDIHFHV KMMYLGVGIFSVPLLCIIVSYIRVFSTVFQVPSTKGVLKAFSTCGSHLTWSLYYGTVMGTYFR PLTNYSLKDAVITVMYTAVTPMLNPFIYSLR RDMKAALR XFNKRISS (SEQ ID NO: 29)
ATGAGGGAAAATAACCAGTCCTCTACACTGGAATTCATCCTCCTGGGAGTTACTGGTCAGC AGGAACAGGAAGATTTCTTCTACATCCTCTTCCTGTTCATTTACCCCATCACATTGATTGGA AACCTGCTCATTGTCCTAGCCATTTGCTCTGATGTTCGCCTTCACAACCCCATGTATTTTCT CCTTGCCAACCTCTCCTTGGTTGACATCTTCTTCTCATCGGTAACCATCCCTAAGATGCTGG CCAACCATCTCTTGGGCAGCAAATCCATCTCTTTTGGGGGATGCCTAACGCAGATGTATTT CATGATAGCCTTGGGTAACACAGACAGCTATATTTTGGCTGCAATGGCATATGATCGAGCT GTGGCCATCAGCCACCCACTTCACTACACAACAATTATGAGTCCACGGTCTTGTATCTGGC TTATTGCTGGGTCTTGGGTGATTGGAAATGCCAATGCCCTCCCCCACACTCTGCTCACAGC TAGTCTGTCCTTCTGTGGCAACCAGGAAGTGGCCAACTTCTACTGTGACATTACCCCCTTG CTGAAGTTATCCTGTTCTGACATCCACTTTCATGTGAAGATGATGTACCTAGGGGTTGGCA TTTTCTCTGTGCCATTACTATGCATCATTGTCTCCTATATTCGAGTCTTCTCCACAGTCTTCC AGGTTCCTTCCACCAAGGGCGTGCTCAAGGCCTTCTCCACCTGTGGTTCCCACCTCACGGT TGTCTCTTTGTATTATGGTACAGTCATGGGCACGTATTTCCGCCCTTTGACCAATTATAGCC TAAAAGACGCAGTGATCACTGTAATGTACACGGCAGTGACCCCAATGTTAAATCCTTTCAT CTACAGTCTGAGAAATCGGGACATGAAGGCTGCCCTGCGGAAACTCTTCAACAAGAGAAT CTCCTCGTAA (SEQ ID NO: 30)
AOLFR16 sequences: MRRNCTLVTEFILLGLTSRRELQILLFTLFLAIYMVTVAGNLGMIVLIQANAWLHMPMYFFLSH LSFVDLCFSSNVTPKMLEIFLSEKJ SISYPACLVQCYLFIALVHVEIYILAVMAFDRYMAICNPLL YGSRMSKSVCSFLITVPYVYGALTGLMETMWTYNLAFCGPNEINHFYCADPPLIKLACSDTYN KELSMFIVAGWNLSFSLFIICISYLYIFPAILKIRSTEGRQKAFSTCGSHLTAVTIFYATLFFMYLR PPSKESVEQG-O^VAVFYTTVIPMLNLIIYSLRNK-NV- ALIKΕLSMKIYFS (SEQ ID NO: 31)
ATGAGAAGAAACTGCACGTTGGTGACTGAGTTCATTCTCCTGGGACTGACCAGTCGCCGG GAATTACAAATTCTCCTCTTCACGCTGTTTCTGGCCATTTACATGGTCACGGTGGCAGGGA ACCTTGGCATGATTGTCCTCATCCAGGCCAACGCCTGGCTCCACATGCCCATGTACTTTTTC CTGAGCCACTTATCCTTCGTGGATCTGTGCTTCTCTTCCAATGTGACTCCAAAGATGCTGG AGATTTTCCTTTCAGAGAAGAAAAGCATTTCCTATCCTGCCTGTCTTGTGCAGTGTTACCTT TTTATCGCCTTGGTCCATGTTGAGATCTACATCCTGGCTGTGATGGCCTTTGACCGGTACAT GGCCATCTGCAACCCTCTGCTTTATGGCAGCAGAATGTCCAAGAGTGTGTGCTCCTTCCTC ATCACGGTGCCTTATGTGTATGGAGCGCTCACTGGCCTGATGGAGACCATGTGGACCTACA ACCTAGCCTTCTGTGGCCCCAATGAAATTAATCACTTCTACTGTGCGGACCCACCACTGAT TAAGCTGGCTTGTTCTGACACCTACAACAAGGAGTTGTCAATGTTTATTGTGGCTGGCTGG AACCTTTCTTTTTCTCTCTTCATCATATGTATTTCCTACCTTTACATTTTCCCTGCTATTTTA AAGATTCGCTCTACAGAGGGCAGGCAAAAAGCTTTTTCTACCTGTGGCTCCCATCTGACAG CTGTCACTATATTCTATGCAACCCTTTTCTTCATGTATCTCAGACCCCCCTCAAAGGAATCT GTTGAACAGGGTAAAATGGTAGCTGTATTTTATACCACAGTAATCCCTATGCTGAACCTTA TAATTTATAGCCTTAGAAATAAAAATGTAAAAGAAGCATTAATCAAAGAGCTGTCAATGA AGATATACTTTTCTTAA (SEQ ID NO: 32)
AOLFR17 sequences:
MLNFTDVTEFILLGLTSRREWQVLFFI1FLVVYIITMVGNIGMMVLIKVSPQLNNPMYFFLSHLS FVDVWFSSNVTPKMLENLFSDKKTITYAGCLVQCFFFIALVHVEIFILAAMAFDRYMAIGNPLL YGSKMSRVVCIRLITFPYIYGFLTSLAATLWTYGLYFCGKIEINHFYCADPPLIKMACAGTFVKE YTMΠLAGIWTYSLTVIΠSYLFILL ILRMRSAEGRQKAFSTCGSHLTAVIIFYGTLIFMYLRRPTE ESVEQGKMVA YTTVIPMLNPMIYSLRNKDVKKAMMKVISRSC (SEQ ID NO: 33)
ATGCTCAATTTCACCGATGTGACAGAGTTCATTCTTTTGGGGCTAACGAGCCGTCGAGAAT GGCAAGTTCTCTTCTTCATCATCTTTCTTGTGGTCTACATCATCACCATGGTGGGCAATATC GGCATGATGGTGTTAATCAAGGTCAGTCCTCAGCTTAACAACCCCATGTACTTTTTCCTCA GTCACTTGTCATTTGTTGATGTGTGGTTTTCTTCCAATGTCACCCCTAAAATGTTGGAAAAC CTGTTTTCAGATAAAAAAACAATTACTTATGCTGGTTGTTTAGTACAGTGTTTCTTCTTCAT TGCTCTTGTCCATGTGGAAATTTTTATTCTTGCTGCGATGGCCTTTGATAGATACATGGCAA TTGGGAATCCTCTGCTTTATGGCAGTAAAATGTCAAGGGTTGTCTGTATTCGACTGATTAC TTTCCCTTACATTTATGGTTTTCTGACGAGTCTGGCAGCAACATTATGGACTTACGGCTTGT ACTTCTGTGGAAAAATTGAGATCAACCATTTCTACTGTGCAGATCCACCTCTCATCAAAAT GGCCTGTGCCGGGACCTTTGTAAAAGAATATACAATGATCATACTTGCCGGCATTAACTTC ACATATTCCCTGACTGTAATTATCATCTCTTACTTATTCATCCTCATTGCCATTCTGCGAAT GCGCTCAGCAGAAGGAAGGCAGAAGGCCTTTTCCACATGTGGGTCCCATCTGACAGCTGT CATTATATTCTATGGTACTCTGATCTTCATGTATCTCAGACGTCCCACAGAGGAGTCTGTG GAGCAGGGGAAGATGGTGGCTGTGTTCTATACCACAGTGATCCCCATGTTGAATCCCATGA TCTACAGTCTGAGGAACAAGGATGTGAAAAAGGCCATGATGAAAGTGATCAGCAGATCAT GTTAA (SEQ ID NO: 34)
AOLFR18 sequences:
MSNTNGSAITEFILLGLTDCPELQSLLFVLFLVVYLVTLLGNLGMIMLMRLDSRLHTPMYFFLT NLAFVDLCYTSNATPQMSTNIVSEKTISFAGCFTQCYIFLALLLTEFYMLAAMAYDRYVAIYDP LRYSV TSRRVCICLATFPYVYGFSDGLFQAILTFRLTFCRSNVINHFYCADPPLIKLSCSDTYVK EHAMFISAGFNLSSSLTIVLVSYAFILAAILRIKSAEGRHKAFSTCGSHMMAVTLFYGTLFCMYI RPPTDKTVEESKIIAVFYTFVSPVLNPLIYSLRNKDVKQALKNVLR (SEQ ID NO: 35)
ATGTCCAACACAAATGGCAGTGCAATCACAGAATTCATTTTACTTGGGCTCACAGATTGCC CGGAACTCCAGTCTCTGCTTTTTGTGCTGTTTCTGGTTGTTTACCTCGTCACCCTGCTAGGC AACCTGGGCATGATAATGTTAATGAGACTGGACTCTCGCCTTCACACGCCCATGTACTTCT TCCTCACTAACTTAGCCTTTGTGGATTTGTGCTATACATCAAATGCAACCCCGCAGATGTC GACTAATATCGTATCTGAGAAGACCATTTCCTTTGCTGGTTGCTTTACACAGTGCTACATTT TCATTGCCCTTCTACTCACTGAGTTTTACATGCTGGCAGCAATGGCCTATGACCGCTATGT GGCCATATATGACCCTCTGCGCTACAGTGTGAAAACGTCCAGGAGAGTTTGCATCTGCTTG GCCACATTTCCCTATGTCTATGGCTTCTCAGATGGACTCTTCCAGGCCATCCTGACCTTCCG CCTGACCTTCTGTAGATCCAATGTCATCAACCACTTCTACTGTGCTGACCCGCCGCTCATTA AGCTTTCTTGTTCTGATACTTATGTCAAAGAGCATGCCATGTTCATATCTGCTGGCTTCAAC CTCTCCAGCTCCCTCACCATCGTCTTGGTGTCCTATGCCTTCATTCTTGCTGCCATCCTCCG GATCAAATCAGCAGAGGGAAGGCACAAGGCATTCTCCACCTGTGGTTCCCATATGATGGC TGTCACCCTGTTTTATGGGACTCTCTTTTGCATGTATATAAGACCACCAACAGATAAGACT GTTGAGGAATCTAAAATAATAGCTGTCTTTTACACCTTTGTGAGTCCGGTACTTAATCCAT TGATCTACAGTCTGAGGAATAAAGATGTGAAGCAGGCCTTGAAGAATGTCCTGAGATGA (SEQ ID NO: 36) AOLFR19 sequences:
METKl^SSSTSGFILLGLSSNPKLQKPLFAIFLIMYLLTAVGNVLIILAIYSDPRLHTPMYFFLSNL SFMDICFTTVIVPKMLVNFLSET-OISYVGCLIQMYFFMAFGNTDSYLLASMAIDRLVAICNPLH YDWMKPWHCLLMLLGSCSISHLHSLFRVLLMSRLSFCASHIIKHFFCDTQPVLKLSCSDTSSSQ MVVMTETLAVIVTPFLCTIFSYLQIIVTVLRIPSAAGKWKAFSTCGSHLTVNVLFYGSVIYVYFR PLSMYSVMKGRVATV VlYTVNTPML ffFr^SLRNKDMKRGLKKLRHRIYS (SEQ ID NO: 37)
ATGGAGACAAAGAATTATAGCAGCAGCACCTCAGGCTTCATCCTCCTGGGCCTCTCTTCCA ACCCTAAGCTGCAGAAACCTCTCTTTGCCATCTTCCTCATCATGTACCTACTCACTGCGGTG GGGAATGTGCTCATCATCCTGGCCATCTACTCTGACCCCAGGCTCCACACCCCTATGTACT TTTTTCTCAGCAACTTGTCTTTCATGGATATCTGCTTCACAACAGTCATAGTGCCTAAGATG CTGGTGAATTTTCTATCAGAGACAAAGATTATCTCTTATGTGGGCTGCCTGATCCAGATGT ACTTCTTCATGGCATTTGGGAACACTGACAGCTACCTGCTGGCCTCTATGGCCATCGACCG GCTGGTGGCCATCTGCAACCCCTTACACTATGATGTGGTTATGAAACCATGGCATTGCCTA CTCATGCTATTGGGTTCTTGCAGCATCTCCCACCTACATTCCCTGTTCCGCGTGCTACTTAT GTCTCGCTTGTCTTTCTGTGCCTCTCACATCATTAAGCACTTTTTCTGTGACACCCAGCCTG TGCTAAAGCTCTCCTGCTCTGACACATCCTCCAGCCAGATGGTGGTGATGACTGAGACCTT AGCTGTCATTGTGACCCCCTTCCTGTGTACCATCTTCTCCTACCTGCAAATCATCGTCACTG TGCTCAGAATCCCCTCTGCAGCCGGGAAGTGGAAGGCCTTCTCTACCTGTGGCTCCCACCT CACTGTAGTGGTCCTGTTCTATGGGAGTGTCATCTATGTCTATTTTAGGCCTCTGTCCATGT ACTCAGTGATGAAGGGCCGGGTAGCCACAGTTATGTACACAGTAGTGACACCCATGCTGA ACCCTTTCATCTACAGCCTGAGGAACAAAGATATGAAAAGGGGTTTGAAGAAATTAAGAC ACAGAATTTACTCATAG (SEQ ID NO: 38)
AOLFR20 sequences:
MVEENHTMKNEFILTGFTDHPELKTLLFWFFAIYLITWGNISLVALIFTHCRLHTPMYIFLGN LALVDSCCACAITPKMLENFFSEGKRISLYECAVQFYFLCTVETADCFLLAAVAYDRYVAICNP LQYHIMMSKi CIQMTTGAFIAGNLHSMIHVGLWRL CGLNHINHFYCDTLPLYRLSCVDPF -I-NELVLFIFSGSVQVFTIGSVLISYLYILLTIFRMKSKEGRAKAFSTCASHFSSVSLFYGSIFFLYIRP NLLEEGGNDIPAAILFTIVVPLLNPFIYSLRNKEVISVLR ILLKIKSQGSVNK (SEQ ID NO: 39)
ATGGTTGAAGAAAATCATACCATGAAAAATGAGTTTATCCTCACAGGATTTACAGATCACC
CTGAGCTGAAGACTCTGCTGTTTGTGGTGTTCTTTGCCATCTATCTGATCACCGTGGTGGG
GAATATTAGTTTGGTGGCACTGATATTTACACACTGTCGGCTTCACACACCAATGTACATC TTTCTGGGAAATCTGGCTCTTGTGGATTCTTGCTGTGCCTGTGCTATTACCCCCAAAATGTT AGAGAACTTCTTTTCTGAGGGCAAAAGGATTTCCCTCTATGAATGTGCAGTACAGTTTTAT TTTCTTTGCACTGTGGAAACTGCAGACTGCTTTCTTCTGGCAGCAGTGGCCTATGACCGCT ATGTGGCCATCTGCAACCCACTGCAGTACCACATCATGATGTCCAAGAAACTCTGCATTCA GATGACCACAGGCGCCTTCATAGCTGGAAATCTGCATTCCATGATTCATGTAGGGCTTGTA TTTAGGTTAGTTTTCTGTGGATTGAATCACATCAACCACTTTTACTGTGATACTCTTCCCTT GTATAGACTCTCCTGTGTTGACCCTTTCATCAATGAACTGGTTCTATTCATCTTCTCAGGTT CAGTTCAAGTCTTTACCATAGGTAGTGTCTTAATATCTTATCTCTATATTCTTCTTACTATT TTCAGAATGAAATCCAAGGAGGGAAGGGCCAAAGCCTTTTCTACTTGTGCATCCCACTTTT CATCAGTTTCATTATTCTATGGATCTATTTTTTTCCTATACATTAGACCAAATTTGCTTGAA GAAGGAGGTAATGATATACCAGCTGCTATTTTATTTACAATAGTAGTTCCCTTACTAAATC CTTTCATTTATAGTCTGAGAAACAAGGAAGTAATAAGTGTCTTAAGAAAAATTCTGCTGAA AATAAAATCTCAAGGAAGTGTGAACAAATGA (SEQ ID NO: 40)
AOLFR21 sequences: MEPRKNVTDFVLLGFTQNPKEQKVLFVMFLLFYTLTMVGNLLIVNTVTVSETLGSPMSFFLAGL TFIDIIYSSSISPRLISDLFFGNNSISFQSFMAQLFIEHLFGGSEVFLLLVMAYDRYVAICKPLHYLV IMRQWVCVXLLWSWVGGFLQSVFQLSIIYGLPFCGPNVIDHFFCDMYPLL XACTDTHVIGLL VVANGGLSCTIAFLLLLISYGVILHSLKKLSQKGRQKAHSTCSSHITVVVFFFVPCIFMCARPAR TFSIDKSVSVFYTVITPMLNPLIYTLRNSEMTSAMKKL (SEQ ID NO: 41) TCACCCTCTCCTTCTGTAAGGACAATCAAATAAACTTCTTCTTCTGTGACCTCCCACCCCTG CTGAAGCTTGCCTGCAGTGACACAGCAAACATCGAGATTGTCATCATCTTCTTTGGCAATT TTGTGATTTTGGCCAATGCCTCCGTCATCCTGATTTCCTATCTGCTCATCATCAAGACCATT TTGAAAGTGAAGTCTTCAGGTGGCAGGGCCAAGACTTTCTCCACATGTGCCTCTCACATCA CTGCTGTGGCCCTTTTCTTTGGAGCCCTTATCTTCATGTATCTGCAAAGTGGCTCAGGCAAA TCTCTGGAGGAAGACAAAGTCGTGTCTGTCTTCTATACAGTGGTCATCCCCATGCTGAACC CTCTGATCTACAGCTTAAGAAACAAAGATGTAAAAGACGCCTTCAGAAAGGTCGCTAGGA GACTCCAGGTGTCCCTGAGCATGTAG (SEQ ID NO: 46)
AOLFR25 sequences:
METGNLTWVSDFVFLGLSQTRELQRFLFLMFLFVYITTVMGNILIIITVTSDSQLHTPMYFLLRN LAVLDLCFSSVTAPKMLVDLLSEKKTISYQGCMGQIFFFHFLGGAMVFFLSVMAFDRLIAISRPL RYVTVMNTQLWVGLVVATWVGGFVHSIVQLALMLPLPFCGPNILDNFYCDVPQVLRLACTDT SLLEFLKISNSGLLDVVWFFLLLMSYLFILVTVILRSHPGEAR-RKAASTCTTHIIVVSMIFVPSIYLY A-RPFTPFPMDKLVSIGHTVMTPMLNPMIYTLRNQDMQAAVRRLGRHRLV (SEQ ID NO: 47)
ATGGAAACAGGGAACCTCACGTGGGTATCAGACTTTGTCTTCCTGGGGCTCTCGCAGACTC GGGAGCTCCAGCGTTTCCTGTTTCTAATGTTCCTGTTTGTCTACATCACCACTGTTATGGGA AACATCCTTATCATCATCACAGTGACCTCTGATTCCCAGCTCCACACACCCATGTACTTTCT GCTCCGAAACCTGGCTGTCCTAGACCTCTGTTTCTCTTCAGTCACTGCTCCCAAAATGCTAG TGGACCTCCTCTCTGAGAAGAAAACCATCTCTTACCAGGGCTGCATGGGTCAGATCTTCTT CTTCCACTTTTTGGGAGGTGCCATGGTCTTCTTCCTCTCAGTGATGGCCTTTGACCGCCTCA TTGCCATCTCCCGGCCCCTCCGCTATGTCACCGTCATGAACACTCAGCTCTGGGTGGGGCT GGTGGTAGCCACCTGGGTGGGAGGCTTTGTCCACTCTATTGTCCAGCTGGCTCTGATGCTC CCACTGCCCTTCTGTGGCCCCAACATTTTGGATAACTTCTACTGTGATGTTCCCCAAGTACT GAGACTTGCCTGCACTGACACCTCACTGCTGGAGTTCCTCAAGATCTCCAACAGTGGGCTG CTGGATGTCGTCTGGTTCTTCCTCCTCCTGATGTCCTACTTATTCATCCTGGTGATGCTGAG GTCACATCCAGGGGAGGCAAGAAGGAAGGCAGCTTCCACCTGCACCACCCACATCATCGT GGTTTCCATGATCTTCGTTCCAAGCATTTACCTCTATGCCCGGCCCTTCACTCCATTCCCTA TGGAC AAGCTTGTGTCCATCGGCCACACAGTCATGACCCCCATGCTCAACCCCATGATCTA TACCCTGAGGAACCAGGACATGCAGGCAGCAGTGAGAAGATTAGGGAGACACCGGCTGGT TTGA (SEQ ID NO: 48)
AOLFR26 sequences: MAAKNSSVTEFILEGLTHQPGLRIPLFFLFLGFYTVTVVGNLGLITLIGLNSHLHTPMYFFLFNLS LIDFCFSTTITPKMLMSFVSRKNIISFTGCMTQLFFFCFFVVSESFILSAMAYDRYVAICNPLLYT VTMSCQVCLLLLLGAYGMGFAGAMAHTGSIMNLTFCADNLVNHFMCDILPLLELSCNSSYMN ELVVFIVVAVDVGMPIVTVFISYALILSSILHNSSTEGRSKAFSTCSSHIIWSLFFGSGAFMYLKP LSILPLEQGKVSSLFYTIIVPVLNPLIYSLRNKDVKVALRRTLGRKIFS (SEQ ID NO: 49)
ATGGCAGCCAAAAACTCTTCTGTGACAGAGTTTATCCTCGAAGGCTTAACCCACCAGCCGG GACTGCGGATCCCCCTCTTCTTCCTGTTTCTGGGTTTCTACACGGTCACCGTGGTGGGGAA CCTGGGCTTGATAACCCTGATTGGGCTGAACTCTCACCTGCACACTCCCATGTACTTCTTCC TTTTTAACCTCTCTTTAATAGATTTCTGTTTCTCCACTACCATCACTCCCAAAATGCTGATG AGTTTTGTCTCAAGGAAGAACATCATTTCCTTCACAGGGTGTATGACTCAGCTCTTCTTCTT CTGCTTCTTTGTCGTCTCTGAGTCCTTCATCCTGTCAGCGATGGCGTATGACCGCTACGTGG CCATCTGTAACCCACTGTTGTACACAGTCACCATGTCTTGCCAGGTGTGTTTGCTCCTTTTG TTGGGTGCCTATGGGATGGGGTTTGCTGGGGCCATGGCCCACACAGGAAGCATAATGAAC CTGACCTTCTGTGCTGACAACCTTGTCAATCATTTCATGTGTGACATCCTTCCTCTCCTTGA GCTCTCCTGCAACAGCTCTTACATGAATGAGCTGGTGGTCTTTATTGTGGTGGCTGTTGAC GTTGGAATGCCCATTGTCACTGTCTTTATTTCTTATGCCCTCATCCTCTCCAGCATTCTACA CAACAGTTCTACAGAAGGCAGGTCCAAAGCCTTTAGTACTTGCAGTTCCCACATAATTGTA GTTTCTCTTTTCTTTGGTTCTGGTGCTTTCATGTATCTCAAACCCCTTTCCATCCTGCCCCTC GAGCAAGGGAAAGTGTCCTCCCTGTTCTATACCATAATAGTCCCCGTGTTAAACCCATTAA TCTATAGCTTGAGGAACAAGGATGTCAAAGTTGCCCTGAGGAGAACTTTGGGCAGAAAAA TCTTTTCTTAA (SEQ ID NO: 50) AOLFR27 sequences:
MPSQNYSIISEFNLFGFSAFPQHLLPILFLLYLLMFLFTLLGNLLIMATIWIEHRLHTPMYLFLCTL SVSEILFTVAITPRMLADLLSTHHSITFVACANQMFFSFMFGFTHSFLLLVMGYDRYVAICHPLR YNVLMSPRDCAHLVACTWAGGSVMGMMVTTIVFHLTFCGSNVIHHFFCHVLSLLKLACENKT SSVIMGVMLVCVTALIGCLFLIILSYVFIVAAILRIPSAEGRHKTFSTCVSHLTVVVTHYSFASFIY LKPKGLHSMYSDALMATTYTWTPFLSPIIFSLP^JKELKNAINKNFYRKFCPPSS (SEQ ID NO: 51)
ATGCCTAGTCAGAACTATAGCATCATATCTGAATTTAACCTCTTTGGCTTCTCAGCCTTCCC CCAGCACCTCCTGCCCATCTTGTTCCTGCTGTACCTCCTGATGTTCCTGTTCACATTGCTGG GCAACCTTCTCATCATGGCCACAATCTGGATTGAACACAGACTCCACACACCCATGTACCT CTTCTTGTGCACCCTCTCCGTCTCTGAGATTCTGTTCACTGTTGCCATCACCCCTCGCATGC TGGCTGATCTGCTTTCCACCCATCATTCCATCACCTTTGTGGCTTGTGCCAACCAGATGTTC TTCTCCTTCATGTTTGGCTTCACTCACTCCTTCCTTCTCCTGGTCATGGGCTATGATCGCTA TGTGGCCATCTGCCACCCACTGCGTTACAATGTGCTCATGAGCCCCCGTGACTGTGCCCAT CTTGTGGCCTGTACCTGGGCTGGTGGCTCAGTCATGGGGATGATGGTGACAACGATAGTTT TCCACCTCACTTTCTGTGGGTCTAATGTGATCCACCATTTTTTCTGTCATGTGCTTTCCCTCT TGAAGTTGGCCTGTGAAAACAAGACATCATCTGTCATCATGGGTGTGATGCTGGTGTGTGT CACAGCCCTGATAGGCTGTTTATTCCTCATCATCCTCTCCTATGTCTTCATTGTGGCTGCCA TCTTGAGGATTCCCTCTGCCGAAGGCCGGCACAAGACATTTTCTACGTGTGTATCCCACCT CACTGTGGTGGTCACGCACTATAGTTTTGCCTCCTTTATCTACCTCAAGCCCAAGGGCCTCC ATTCTATGTACAGTGACGCCTTGATGGCCACCACCTATACTGTCTTCACCCCCTTCCTTAGC CCAATCATTTTCAGCCTAAGGAACAAGGAGCTGAAGAATGCCATAAATAAAAACTTTTACA GAAAATTCTGTCCTCCAAGTTCCTGA (SEQ ID NO: 52)
AOLFR28 sequences:
MPNFTDVTEFTLLGLTCRQELQVLFFVVFLAVYMITLLGNIGMIILISISPQLQSPMYFFLSHLSF ADVCFSSNVTPKMLENLLSETKTISYVGCLVQCYFFL VNHVEVYILAVMAFDRYMAGCXPLL YGSKMSRTVC VRLIS VXYXYGFS VSLICTLWTYGLYFCGNFEINHF YCADPPLIQIACGRVHIKE ITMIVIAGINFTYSLSVVLISYTLIVVAVLRMRSADGRRKAFSTCGSHLTAVSMFYGTPIFMYLR RPTEESVEQGKMVAWYTTV1PMLNPMIYSLRNKDVKEAVNKAITKTYVRQ (SEQ ID NO: 53)
ATGCCTAATTTCACGGATGTGACAGAATTTACTCTCCTGGGGCTGACCTGTCGTCAGGAGC TACAGGTTCTCTTTTTTGTGGTGTTCCTAGCGGTTTACATGATCACTCTGTTGGGAAATATT GGTATGATCATTTTGATTAGCATCAGTCCTCAGCTTCAGAGTCCCATGTACTTTTTCCTGAG TCATCTGTCTTTTGCGGACGTGTGCTTCTCCTCCAACGTTACCCCCAAAATGCTGGAAAACT TATTATCAGAGACAAAAACCATTTCCTATGTGGGATGCTTGGTGCAGTGCTACTTTTTCAT TGCCGTTGTCCACGTGGAGGTCTATATCCTGGCTGTGATGGCCTTTGACAGGTACATGGCC GGCTGCAANCCTCTGCTTTATGGCAGTAAAATGTCTAGGACTGTGTGTGTTCGGCTCATCT CTGTGNNNTATGNNTATGGATTCTCTGTCAGCCTAATATGCACACTATGGACTTATGGCTT ATACTTCTGTGGAAACTTTGAAATCAATCACTTCTATTGTGCAGATCCCCCTCTCATCCAGA TTGCCTGTGGGAGAGTGCACATCAAAGAAATCACAATGATTGTTATTGCTGGAATTAACTT CACATATTCCCTCTCGGTGGTCCTCATCTCCTACACTCTCATTGTAGTAGCTGTGCTACGCA TGCGCTCTGCCGATGGCAGGAGGAAGGCGTTCTCCACCTGTGGGTCCCACTTGACGGCTGT TTCTATGTTTTATGGGACCCCCATCTTCATGTATCTCAGGAGACCCACTGAGGAATCCGTA GAGCAGGGCAAAATGGTGGCTGTGTTTTACACCACAGTAATTCCTATGTTGAATCCCATGA TCTACAGTCTGAGAAATAAGGATGTAAAAGAAGCAGTCAACAAAGCAATCACCAAGACAT ATGTGAGGCAGTAA (SEQ ID NO: 54)
AOLFR29 sequences:
MMSFAPNASHSPVFLLLGFSRANISYTLLFFLFLAIYLTTILGNVTLVLLISWDSRLHSPMYYLLR GLSVIDMGLSTVTLPQLLAHLVSHYPTIPAARCLAQFFFFYAFGVTDTLVIAVMALDRYVAICD PLHYAL\ηvπSfHQRCACLLALSWVVSILHTMLRVGLVLPLCWTGDAGGNVNLPHFFCDHRPLLR ASCSDmSNELAIFFEGGFLMLGPCALI\η SYVRIGAAILRLPSAAGRRRAVSTCGSHLTMVGFL TCCTCTGCCATTTGGCCTTTGTAGACATTGGGTACTCCTCATCAGTCACACCTGTCATGCTC ATGAGCTTCCTAAGGAAAGAAACCTCTCTCCCTGTTGCTGGTTGTGTGGCCCAGCTCTGTT CTGTAGTGACGTTTGGTACGGCCGAGTGCTTCCTGCTGGCTGCCATGGCCTATGATCGCTA TGTGGCCATCTGCTCACCCCTGCTCTACTCTACCTGCATGTCCCCTGGAGTCTGCATCATCT TAGTGGGCATGTCCTACCTGGGTGGATGTGTGAATGCTTGGACATTCATTGGCTGCTTATT AAGACTGTCCTTCTGTGGGCCAAATAAAGTCAATCACTTTTTCTGTGACTATTCACCACTTT TGAAGCTTGCTTGTTCCCATGATTTTACTTTTGAAATAATTCCAGCTATCTCTTCTGGATCT ATCATTGTGGCCACTGTGTGTGTCATAGCCATATCCTACATCTATATCCTCATCACCATCCT GAAGATGCACTCCACCAAGGGCCGCCACAAGGCCTTCTCCACCTGCACCTCCCACCTCACT GCAGTCACTCTGTTCTATGGGACCATTACCTTCATTTATGTGATGCCCAAGTCCAGCTACTC AACTGACCAGAACAAGGTGGTGTCTGTGTTCTACACCGTGGTGATTCCCATGTTGAACCCC CTGATCTACAGCCTCAGGAACAAGGAGATTAAGGGGGCTCTGAAGAGAGAGCTTAGAATA AAAATATTTTCTTGA (SEQ ID NO: 60)
AOLFR32 sequences :
MNSLKDGNHTALTGFILLGLTDDPILRVILFMIILSGNLSIIILIRISSQLHHP YFFLSHLAFADM AYSSSVTPNMLVNFLVERNTVSYLGCAIQLGSAAFFATVECVLLAAMAYDRFVAICSPLLYSTK MSTQVSVQLLLVVYIAGFLIAVSYTTSFYFLLFCGPNQVNHFFCDFAPLLELSCSDISVSTWLSF SSGSπVNTVCVIAVCYrYILITILKMRSTEGHHKAFSTCTSHLTVVTLFYGTITFIYVMPNFSYST DQNKVΥSVLYTVVIPMLNPLIYSLR-NKEIKGALKRELVRKILSHDACYFSRTSNNDIT (SEQ ID NO: 61)
ATGAATTCCCTGAAGGACGGGAATCACACCGCTCTGACGGGGTTCATCCTATTGGGCTTAA CAGATGATCCAATCCTTCGAGTCATCCTCTTCATGATCATCCTATCTGGTAATCTCAGCATA ATTATTCTTATCAGAATTTCTTCTCAGCTCCATCATCCTATGTATTTCTTTCTGAGCCACTT GGCTTTTGCTGACATGGCCTATTCATCTTCTGTCACACCCAACATGCTTGTAAACTTCCTGG TGGAGAGAAATACAGTCTCCTACCTTGGATGTGCCATCCAGCTTGGTTCAGCGGCTTTCTT TGCAACAGTCGAATGCGTCCTTCTGGCTGCCATGGCCTATGACCGCTTTGTGGCAATTTGC AGTCCACTGCTTTATTCAACCAAAATGTCCACACAAGTCAGTGTCCAGCTACTCTTAGTAG TTTACATAGCTGGTTTTCTCATTGCTGTCTCCTATACTACTTCCTTCTATTTTTTACTCTTCT GTGGACCAAATCAAGTCAATCATTTTTTCTGTGATTTCGCTCCCTTACTTGAACTCTCCTGT TCTGATATCAGTGTCTCCACAGTTGTTCTCTCATTTTCTTCTGGATCCATCATTGTGGTCAC TGTGTGTGTCATAGCCGTCTGCTACATCTATATCCTCATCACCATCCTGAAGATGCGCTCCA CTGAGGGGCACCACAAGGCCTTCTCCACCTGCACTTCCCACCTCACTGTGGTTACCCTGTT CTATGGGACCATTACCTTCATTTATGTGATGCCCAATTTTAGCTACTCAACTGACCAGAAC AAGGTGGTGTCTGTGTTGTACACAGTGGTGATTCCCATGTTGAACCCCCTGATCTACAGCC TCAGGAACAAGGAGATTAAGGGGGCTCTGAAGAGAGAGCTTGTTAGAAAAATACTTTCTC ATGATGCTTGTTATTTTAGTAGAACTTCAAATAATGATATTACATAG (SEQ ID NO: 62)
AOLFR34 sequences:
MLEGVEHLLLLLLLTDVNSKELQSGNQTSVSHFILVGLHHPPQLGAPLFLAFLVIYLLTVSGNG LIILTVLVDIRLHRPMCLFLCHLSFLDMTISCAIVPKMLAGFLLGSRIISFGGCVIQLFSFHFLGCT ECFLYTLMAYDRFLAICKPLHYATIMTHRVCNSLALGTWLGGTIHSLFQTSFVFRLPFCGPNRV DYIFCDIPAMLRLACADTAINELVTFADIGFLALTCFMLILTSYGYIVAAILRIPSADGRRNAFST CAAHLTVVIVYYWCTFIYLRPCSQEPLDGVVAWYTVlTPLLNSIIYTLCNKEMKAALQRLGG HKEVQPH (SEQ ID NO: 63)
ATGTTAGAGGGTGTTGAGCATCTCCTTCTGCTACTTCTTTTGACAGATGTGAACAGCAAGG AACTGCAAAGTGGAAACCAGACTTCTGTGTCTCACTTCATTTTGGTGGGCCTGCACCACCC ACCACAGCTGGGAGCGCCACTCTTCTTAGCTTTCCTTGTCATCTATCTCCTCACTGTTTCTG GAAATGGGCTCATCATCCTCACTGTCTTAGTGGACATCCGGCTCCATCGTCCCATGTGCTT GTTCCTGTGTCACCTCTCCTTCTTGGACATGACCATTTCTTGTGCTATTGTCCCCAAGATGC TGGCTGGCTTTCTCTTGGGTAGTAGGATTATCTCCTTTGGGGGCTGTGTAATCCAACTATTT TCTTTCCATTTCCTGGGCTGTACTGAGTGCTTCCTTTACACACTCATGGCTTATGACCGTTT CCTTGCCATTTGTAAGCCCTTACACTATGCTACCATCATGACCCACAGAGTCTGTAACTCCC TGGCTTTAGGCACCTGGCTGGGAGGGACTATCCATTCACTTTTCCAAACAAGTTTTGTATT CCGGCTGCCCTTCTGTGGCCCCAATCGGGTCGACTACATCTTCTGTGACATTCCTGCCATGC TGCGTCTAGCCTGCGCCGATACGGCCATCAACGAGCTGGTCACCTTTGCAGACATTGGCTT CCTGGCCCTCACCTGCTTCATGCTCATCCTCACTTCCTATGGCTATATTGTAGCTGCCATCC TGCGAATTCCGTCAGCAGATGGGCGCCGCAATGCCTTCTCCACTTGTGCTGCCCACCTCAC TGTTGTCATTGTTTACTATGTGCCCTGCACCTTCATTTACCTGCGGCCTTGTTCACAGGAGC CCCTGGATGGGGTGGTAGCTGTCTTTTACACTGTCATCACTCCCTTGCTTAACTCCATCATC TACACACTGTGCAACAAAGAAATGAAGGCAGCATTACAGAGGCTAGGGGGCCACAAGGAA GTGCAGCCTCACTGA (SEQ ID NO: 64)
AOLFR35 sequences:
MEPLNRTEVSEFFLKGFSGYPALEHLLFPLCSAMYLVTLLGNTAIMAVSVLDIHLHTPVYFFLG NLSTLDICYTPTFVPLMLVHLLSSRKTISFAVCAIQMCLSLSTGSTECLLLAITAYDRYLAICQPL RYHVLMSHRLCVLLMGAAWVLCLLKSVTEMVISMRLPFCGHHWSHFTCKILAVLKLACGNT SVSEDFLLAGSILLLPVPLAFICLSYLLILATILRVPSAARCCKAFSTCLAHLAWLLFYGTIIFMY LKPKSKEAHISDEVFTVLYAMVTTMLNPTIYSLRNKEVKEAARKVWGRSRASR (SEQ ID NO: 65)
ATGGAGCCGCTCAACAGAACAGAGGTGTCCGAGTTCTTTCTGAAAGGATTTTCTGGCTACC CAGCCCTGGAGCATCTGCTCTTCCCTCTGTGCTCAGCCATGTACCTGGTGACCCTCCTGGG GAACACAGCCATCATGGCGGTGAGCGTGCTAGATATCCACCTGCACACGCCCGTGTACTTC TTCCTGGGCAACCTCTCTACCCTGGACATCTGCTACACGCCCACCTTTGTGCCTCTGATGCT GGTCCACCTCCTGTCATCCCGGAAGACCATCTCCTTTGCTGTCTGTGCCATCCAGATGTGTC TGAGCCTGTCCACGGGCTCCACGGAGTGCCTGCTACTGGCCATCACGGCCTATGACCGCTA CCTGGCCATCTGCCAGCCACTCAGGTACCACGTGCTCATGAGCCACCGGCTCTGCGTGCTG CTGATGGGAGCTGCCTGGGTCCTCTGCCTCCTCAAGTCGGTGACTGAGATGGTCATCTCCA TGAGGCTGCCCTTCTGTGGCCACCACGTGGTCAGTCACTTCACCTGCAAGATCCTGGCAGT GCTGAAGCTGGCATGCGGCAACACGTCGGTCAGCGAAGACTTCCTGCTGGCGGGCTCCAT CCTGCTGCTGCCTGTACCCCTGGCATTCATCTGCCTGTCCTACTTGCTCATCCTGGCCACCA TCCTGAGGGTGCCCTCGGCCGCCAGGTGCTGCAAAGCCTTCTCCACCTGCTTGGCACACCT GGCTGTAGTGCTGCTTTTCTACGGCACCATCATCTTCATGTACTTGAAGCCCAAGAGTAAG GAAGCCCACATCTCTGATGAGGTCTTCACAGTCCTCTATGCCATGGTCACGACCATGCTGA ACCCCACCATCTACAGCCTGAGGAACAAGGAGGTGAAGGAGGCCGCCAGGAAGGTGTGGG GCAGGAGTCGGGCCTCCAGGTGA (SEQ ID NO: 66)
AOLFR36 sequences:
MYLVTVLRNLLSILAVSSDSHPHTPMYFFLSNLCWADIGFTLATVPKMIVDMGSHSKVISYGG CLTQMSFLVLFACIVDMFLTVMAYDCFVAICRPLHYPVIVNPHLCVFFVLVSFFLSLLDSQLHS WIVLQFTFFKNVEISNFVCEPSQLLKLASYDSVINSIFIYFDNTMFGFLPISGILLSYYKIVPSILRIS SSDGKYKAFSACGCHLAWCLFYGTGIGVYLTSAVAPPLRNGMVASVMYAVVTPMLNPFIYS LRNRDIQSALWRVCNKTVESHDLFHPFSCWEKGQPHSIPTSANPAP (SEQ ID NO: 67)
ATGTATCTGGTCACGGTGCTGAGGAACCTGCTCAGCATCCTGGCTGTCAGCTCTGACTCCC ACCCCCACACACCCATGTACTTCTTCCTCTCCAACCTGTGCTGGGCTGACATCGGTTTCACC TTGGCCACGGTTCCCAAAATGATTGTGGACATGGGGTCGCATAGCAAAGTCATCTCTTATG GGGGCTGCCTGACACAGATGTCTTTCTTGGTACTTTTTGCATGTATAGTAGACATGTTCCT GACTGTGATGGCTTATGACTGCTTTGTAGCCATCTGTCGCCCTCTGCACTACCCAGTCATC GTGAATCCTCACCTCTGTGTCTTCTTCGTTTTGGTGTCCTTTTTCCTTAGCCTGTTGGATTCC CAGCTGCACAGTTGGATTGTGTTACAATTCACCTTCTTCAAGAATGTGGAAATCTCTAATT TTGTCTGTGAGCCATCTCAACTTCTCAAGCTTGCCTCTTATGACAGCGTCATCAATAGCATA TTCATATATTTTGATAATACTATGTTTGGTTTTCTTCCCATTTCAGGGATCCTTTTGTCTTAC TATAAAATTGTCCCCTCCATTCTAAGGATTTCATCATCAGATGGGAAGTACAAAGCCTTCT CAGCCTGTGGCTGTCACCTGGCAGTTGTTTGCTTATTTTATGGAACAGGCATTGGCGTGTA CCTGACTTCAGCTGTGGCACCACCCCTCAGGAATGGTATGGTGGCGTCAGTGATGTACGCT GTGGTCACCCCCATGCTGAACCCTTTCATCTACAGCCTGAGAAACAGGGACATTCAAAGTG CCCTGTGGAGGGTGTGCAACAAAACAGTCGAATCTCATGATCTGTTCCATCCTTTTTCTTG TGTGGTTGAGAAAGGGCAACCACATTCAATCCCTACATCTGCAAATCCTGCCCCTTAG (SEQ ID NO: 68)
AOLFR37 sequences: MEKANETSPVMGFVLLRLSAHPELEKTFFVLILLMYLVILLGNGVLILVTILDSRLHTPMYFFLG NLSFLDICFTTSSVPLVLDSFLTPQETISFSACAVQMALSFAMAGTECLLLSMMAFDRYVAICNP LRYSVIMSKAAYMPMAASSWAIGGAASVVHTSLAIQLPFCGDNVINHFTCEILAVL LACADIS INVISMEVTNVIFLGVPVLFISFSY IITTILRIPSAEGRKKVFSTCSAHLTVVIVFYGTLFFMYG KPKSKDSMGADKEDLSDKLIPLFYGVVTPMLNPIIYSLPJ>«I)VKAAVRRLLRPKGFTQ (SEQ ID NO: 69)
ATGGAAAAAGCCAATGAGACCTCCCCTGTGATGGGGTTCGTTCTCCTGAGGCTCTCTGCCC ACCCAGAGCTGGAAAAGACATTCTTCGTGCTCATCCTGCTGATGTACCTCGTGATCCTGCT GGGCAATGGGGTCCTCATCCTGGTGACCATCCTTGACTCCCGCCTGCACACGCCCATGTAC TTCTTCCTAGGGAACCTCTCCTTCCTGGACATCTGCTTCACTACCTCCTCAGTCCCACTGGT CCTGGACAGCTTTTTGACTCCCCAGGAAACCATCTCCTTCTCAGCCTGTGCTGTGCAGATG GCACTCTCCTTTGCCATGGCAGGAACAGAGTGCTTGCTCCTGAGCATGATGGCATTTGATC GCTATGTGGCCATCTGCAACCCCCTTAGGTACTCCGTGATCATGAGCAAGGCTGCCTACAT GCCCATGGCTGCCAGCTCCTGGGCTATTGGTGGTGCTGCTTCCGTGGTACACACATCCTTG GCAATTCAGCTGCCCTTCTGTGGAGACAATGTCATCAACCACTTCACCTGTGAGATTCTGG CTGTTCTAAAGTTGGCCTGTGCTGACATTTCCATCAATGTGATCAGCATGGAGGTGACGAA TGTGATCTTCCTAGGAGTCCCGGTTCTGTTCATCTCTTTCTCCTATGTCTTCATCATCACCA CCATCCTGAGGATCCCCTCAGCTGAGGGGAGGAAAAAGGTCTTCTCCACCTGCTCTGCCCA CCTCACCGTGGTGATCGTCTTCTACGGGACCTTATTCTTCATGTATGGGAAGCCTAAGTCT AAGGACTCCATGGGAGCAGACAAAGAGGATCTTTCAGACAAACTCATCCCCCTTTTCTATG GGGTGGTGACCCCGATGCTCAACCCCATCATCTATAGCCTGAGGAACAAGGATGTGAAGG CTGCTGTGAGGAGACTGCTGAGACCAAAAGGCTTCACTCAGTGA (SEQ ID NO: 70)
AOLFR38 sequences: MYLVTVLRNLLIILAVSSDSHLHTPMCFFLSNLC ADIGFTSAMVPKMIVDMQSHSRVISYAGC LTQMSFFVLFACIEDMLLTVMAYDRFVAICHPLHYPVIiSWPHLGVFLVLVSFFLSLLDSQLHSW IVLQFTFFKNVEISNFVCDPSQLLNLACSDSVINSIFIYLDSIMFGFLPISGILLSYANNVPSILRISS SDRKSKAFSTCGSHLAWCLFYGTGIGVYLTSAVSPPPRNGVVASVMYAVVTPMLNPFIYSLR NRDIQSALWRLRSRTVESHDLLSQDLLHPFSCVGE GQPH (SEQ ID NO: 71)
ATGTACCTGGTCACGGTGCTGAGGAACCTGCTCATCATCCTGGCTGTCAGCTCTGACTCCC ACCTCCACACCCCCATGTGCTTCTTCCTCTCCAACCTGTGCTGGGCTGACATCGGTTTCACC TCGGCCATGGTTCCCAAGATGATTGTGGACATGCAGTCGCATAGCAGAGTCATCTCTTATG CGGGCTGCCTGACACAGATGTCTTTCTTTGTCCTTTTTGCATGTATAGAAGACATGCTCCTG ACAGTGATGGCCTATGACCGATTTGTGGCCATCTGTCACCCCCTGCACTACCCAGTCATCA TGAATCCTCACCTTGGTGTCTTCTTAGTTTTGGTGTCCTTTTTCCTCAGCCTGTTGGATTCC CAGCTGCACAGTTGGATTGTGTTACAATTCACCTTCTTCAAGAATGTGGAAATCTCCAATT TTGTCTGTGACCCATCTCAACTTCTCAACCTTGCCTGTTCTGACAGTGTCATCAATAGCATA TTCATATATTTAGATAGTATTATGTTTGGTTTTCTTCCCATTTCAGGGATCCTTTTGTCTTAC GCTAACAATGTCCCCTCCATTCTAAGAATTTCATCATCAGATAGGAAGTCTAAAGCCTTCT CCACCTGTGGCTCTCACCTGGCAGTTGTTTGCTTATTTTATGGAACAGGCATTGGCGTGTA CCTGACTTCAGCTGTGTCACCACCCCCCAGGAATGGTGTGGTGGCATCAGTGATGTACGCT GTGGTCACCCCCATGCTGAACCCTTTCATCTACAGCCTGAGAAATAGGGACATTCAAAGTG CCCTGTGGAGGCTGCGCAGCAGAACAGTCGAATCTCATGATCTGTTATCTCAAGATCTGCT CCATCCTTTTTCTTGTGTGGGTGAGAAAGGTCAACCACATTAA (SEQ ID NO: 72)
AOLFR39 sequences:
MGV NHSTVTEFLLSGLTEQAELQLPLFCLFLGIYTVTWGNLSMISIIRLNRQLHTPMYYFLSS
LSFLDFCYSSVITPKMLSGFLCRDRSISYSGCMIQLFFFCVCVISECYMLAAMACDRYVAICSPL LYRVIMSPRVCSLLVAAVFSVGFTDAVIHGGCILRLSFCGSNIIKHYFCDIVPLIKLSCSSTYIDEL LIFVIGGFNMVATSLTIIISYAFILTSILRfflSKKGRCKAFSTCSSHLTAVLMFYGSLMSMYLKPAS SSSLTQEKVSSVFYTTVILMLNPLIYSLRNNEVRNALMKLLRRKISLSPG (SEQ ID NO: 73)
ATGGGTGTAAAAAACCATTCCACAGTGACTGAGTTTCTTCTTTCAGGATTAACTGAACAAG CAGAGCTTCAGCTGCCCCTCTTCTGCCTCTTCTTAGGAATTTACACAGTTACTGTGGTGGG AAACCTCAGCATGATCTCAATTATTAGGCTGAATCGTCAACTTCATACCCCCATGTACTAT TTCCTGAGTAGTTTGTCTTTTTTAGATTTCTGCTATTCTTCTGTCATTACCCCTAAAATGCT ATCAGGGTTTTTATGCAGAGATAGATCCATCTCCTATTCTGGATGCATGATTCAGCTGTTTT TTTTCTGTGTTTGTGTTATTTCTGAATGCTACATGCTGGCAGCCATGGCCTGCGATCGCTAC GTGGCCATCTGCAGCCCACTGCTCTACAGGGTCATCATGTCCCCTAGGGTCTGTTCTCTGC TGGTGGCTGCTGTCTTCTCAGTAGGTTTCACTGATGCTGTGATCCATGGAGGTTGTATACT CAGGTTGTCTTTCTGTGGATCAAACATCATTAAACATTATTTCTGTGACATTGTCCCTCTTA TTAAACTCTCCTGCTCCAGCACTTATATTGATGAGCTTTTGATTTTTGTCATTGGTGGATTT AACATGGTGGCCACAAGCCTAACAATCATTATTTCATATGCTTTTATCCTCACCAGCATCCT GCGCATCCACTCTAAAAAGGGCAGGTGCAAAGCGTTTAGCACCTGTAGCTCCCACCTGACA GCTGTTCTTATGTTTTATGGGTCTCTGATGTCCATGTATCTCAAACCTGCTTCTAGCAGTTC ACTCACCCAGGAGAAAGTATCCTCAGTATTTTATACCACTGTGATTCTCATGTTGAATCCC TTGATATATAGTCTGAGGAACAATGAAGTAAGAAATGCTCTGATGAAACTTTTAAGAAGA AAAATATCTTTATCTCCAGGATAA (SEQ ID NO: 74)
AOLFR40 sequences:
MSNATLLTAFILTGLPHAPGLDAPLFGIFLVVYVLTVLGNLLILLVIRVDSHLHTPMYYFLTNLS FIDMWFSTVTVPKMLMTLVSPSGRTISFHSCVAQLYFFHFLGSTECFLYTVMSYDRYLAISYPL RYTNMMTGRSCALLATGTWLSGSLHSAVQTILTFHLPYCGPNQIQHYFCDAPPILKLACADTS ANEMVIFVNIGLVASGCFVLIVLSYVSIVCSILRIRTSEGRHRAFQTCASHCIWLCFFGPGLFIYL RPGSRDALHGVVAWYTTLTPLF 'VΛ^TLRNKEVKKALLKLKNGSVFAQGE (SEQ ID NO: 75)
ATGTCCAACGCCACCCTACTGACAGCGTTCATCCTCACGGGCCTTCCCCATGCCCCAGGGC TGGACGCCCCCCTCTTTGGAATCTTCCTGGTGGTTTACGTGCTCACTGTGCTGGGGAACCT CCTCATCCTGCTGGTGATCAGGGTGGATTCTCACCTCCACACCCCCATGTACTACTTCCTCA CCAACCTGTCCTTCATTGACATGTGGTTCTCCACTGTCACGGTGCCCAAAATGCTGATGAC CTTGGTGTCCCCAAGCGGCAGGACTATCTCCTTCCACAGCTGCGTGGCTCAGCTCTATTTTT TCCACTTCCTGGGGAGCACCGAGTGTTTCCTCTACACAGTCATGTCCTATGATCGCTACCT GGCCATCAGTTACCCGCTCAGGTACACCAACATGATGACTGGGCGCTCGTGTGCCCTCCTG GCCACCGGCACTTGGCTCAGTGGCTCTCTGCACTCTGCTGTCCAGACCATATTGACTTTCC ATTTGCCCTACTGTGGACCCAACCAGATCCAGCACTACTTCTGTGACGCACCGCCCATCCT GAAACTGGCCTGTGCAGACACCTCAGCCAACGAGATGGTCATCTTTGTGAATATTGGGCTA GTGGCCTCGGGCTGCTTTGTCCTGATAGTGCTGTCCTATGTGTCCATCGTCTGTTCCATCCT GCGGATCCGCACCTCAGAGGGGAGGCACAGAGCCTTTCAGACCTGTGCCTCCCACTGTATC GTGGTCCTTTGCTTCTTTGGCCCTGGTCTTTTCATTTACCTGAGGCCAGGCTCCAGGGACGC CTTGCATGGGGTTGTGGCCGTTTTCTACACCACGCTGACTCCTCTTTTCAACCCTGTTGTGT ACACCCTGAGAAACAAGGAGGTAAAGAAAGCTCTGTTGAAGCTGAAAAATGGGTCAGTAT TTGCTCAGGGTGAATAG(SEQ ID NO: 76)
AOLFR41 sequences:
MNPENWTQVTSFVLLGFPSSHLIQFLVFLGLMVTYIVTATGKLLIIVLSWIDQRLHIQMYFFLRN FSFLELLLVTWVPKMLWILTGDHTISFVSCIIQSYLYFFLGTTDFFLLAVMSLDRYLAICRPLR YETLMNGHVCSQLVLASWLAGFLWVXCPTVLMASLPFCGPNGIDHFFRDSWPLLRLSCGDTH LLKLVAFMLSTLVLLGSLALTSVSYACILATVLRAPTAAERRKAFSTCASHLTVNVIIYGSSIFLY IRMSEAQSKLLN GASVLSCIITPLLNPFIFTLRNDKVQQALREALGWPRLTAvTS KLRVTSQRK (SEQ ID NO: 77)
ATGAACCCTGAAAACTGGACTCAGGTAACAAGCTTTGTCCTTCTGGGTTTCCCCAGTAGCC ACCTCATACAGTTCCTGGTGTTCCTGGGGTTAATGGTGACCTACATTGTAACAGCCACAGG
CAAGCTGCTAATTATTGTGCTCAGCTGGATAGACCAACGCCTGCACATACAGATGTACTTC TTCCTGCGGAATTTCTCCTTCCTGGAGCTGTTGCTGGTAACTGTTGTGGTTCCCAAGATGCT TGTCGTCATCCTCACGGGGGATCACACCATCTCATTTGTCAGCTGCATCATCCAGTCCTACC TCTACTTCTTTCTAGGCACCACTGACTTCTTCCTCTTGGCCGTCATGTCTCTGGATCGTTAC CTGGCAATCTGCCGACCACTCCGCTATGAGACCCTGATGAATGGCCATGTCTGTTCCCAAC TAGTGCTGGCCTCCTGGCTAGCTGGATTCCTCTGGGTCCTTTGCCCCACTGTCCTCATGGCC AGCCTGCCTTTCTGTGGCCCCAATGGTATTGACCACTTCTTTCGTGACAGTTGGCCCTTGCT CAGGCTTTCTTGTGGGGACACCCACCTGCTGAAACTGGTGGCTTTCATGCTCTCTACGTTG GTGTTACTGGGCTCACTGGCTCTGACCTCAGTTTCCTATGCCTGCATTCTTGCCACTGTTCT CAGGGCCCCTACAGCTGCTGAGCGAAGGAAAGCGTTTTCCACTTGCGCCTCGCATCTTACA GTGGTGGTCATCATCTATGGCAGTTCCATCTTTCTCTACATTCGTATGTCAGAGGCTCAGTC CAAACTGCTCAACAAAGGTGCCTCCGTCCTGAGCTGCATCATCACACCCCTCTTGAACCCA TTCATCTTCACTCTCCGCAATGACAAGGTGCAGCAAGCACTGAGAGAAGCCTTGGGGTGGC CCAGGCTCACTGCTGTGATGAAACTGAGGGTCACAAGTCAAAGGAAATGA (SEQ ID NO: 78)
AOLFR42 sequences:
MNPANHSQVAGFVLLGLSQV VELRFWFTWSAVYFMTVVGNLLIVVIVTSDPHLHTTMYFLL GNLSFLDFCYSSITAPRMLVDLLSGNPTISFGGCLTQLFFFHFIGGIKIFLLTVMAYDRYIAISQPL HYTLIMNQTVCALLMAASWVGGFIHSIVQIALTIQLPFCGPDKLDNFYCDVPQLIKXACTDTFV LELLMVSNNGLVTLMCFLVLLGSYTALLVMLRSHSREGRSKALSTCASHIAWTLIFVTCIYVY TRPFRTFPMDKAVSVLYTIVTPMLNPAIYTLRNKEVIMA-MKKLWRRKKDPIGPLEHRPLH (SEQ ID NO: 79)
ATGAATCCAGCAAATCATTCCCAGGTGGCAGGATTTGTTCTACTGGGGCTCTCTCAGGTTT GGGAGCTTCGGTTTGTTTTCTTCACTGTTTTCTCTGCTGTGTATTTTATGACTGTAGTGGGA AACCTTCTTATTGTGGTCATAGTGACCTCCGACCCACACCTGCACACAACCATGTATTTTCT CTTGGGCAATCTTTCTTTCCTGGACTTTTGCTACTCTTCCATCACAGCACCTAGGATGCTGG TTGACTTGCTCTCAGGCAACCCTACCATTTCCTTTGGTGGATGCCTGACTCAACTCTTCTTC TTCCACTTCATTGGAGGCATCAAGATCTTCCTGCTGACTGTCATGGCGTATGACCGCTACA TTGCCATTTCCCAGCCCCTGCACTACACGCTCATTATGAATCAGACTGTCTGTGCACTCCTT ATGGCAGCCTCCTGGGTGGGGGGCTTCATCCACTCCATAGTACAGATTGCATTGACTATCC AGCTGCCATTCTGTGGGCCTGACAAGCTGGACAACTTTTATTGTGATGTGCCTCAGCTGAT CAAATTGGCCTGCACAGATACCTTTGTCTTAGAGCTTTTAATGGTGTCTAACAATGGCCTG GTGACCCTGATGTGTTTTCTGGTGCTTCTGGGATCGTACACAGCACTGCTAGTCATGCTCC GAAGCCACTCACGGGAGGGCCGCAGCAAGGCCCTGTCTACCTGTGCCTCTCACATTGCTGT GGTGACCTTAATCTTTGTGCCTTGCATCTACGTCTATACAAGGCCTTTTCGGACATTCCCCA TGGACAAGGCCGTCTCTGTGCTATACACAATTGTCACCCCCATGCTGAATCCTGCCATCTA TACCCTGAGAAACAAGGAAGTGATCATGGCCATGAAGAAGCTGTGGAGGAGGAAAAAGG ACCCTATTGGTCCCCTGGAGCACAGACCCTTACATTAG (SEQ ID NO: 80)
AO FR43 sequences:
MQKPQLLVPIIATSNGNLVHAAYFLLVGIPGLGPTIHFWLAFPLCFMYALATLGNLTIVLIIRVE RRLHEPMYLFLAMLSTIDLVLSSITMPKMASLFLMGIQEIEFNICLAQMFLIHALSAVESAVLLA MAFDRFVAICHPLRHASVLTGCTVAKIGLSALTRGFVFFFPLPFILKWLSYCQTHTVTHSFCLHQ DIMKLSCTDTRVNVΛπ GLFIILSVMGVDSLFIGFSYILILWAVLELSSRRAALKAFNTCISHLCAV LVFYWLIGLSV\ΗRLGGPTSLLHVNMANTYLLLPPVVNPLVYGAKTKEICSRVLCMFSQGGK (SEQ ID NO: 81)
ATGCAGAAGCCCCAGCTCTTGGTCCCTATCATAGCCACTTCAAATGGAAATCTGGTCCACG CAGCATACTTCCTTTTGGTGGGTATCCCTGGCCTGGGGCCTACCATACACTTTTGGCTGGCT TTCCCACTGTGTTTTATGTATGCCTTGGCCACCCTGGGTAACCTGACCATTGTCCTCATCAT TCGTGTGGAGAGGCGACTGCATGAGCCCATGTACCTCTTCCTGGCCATGCTTTCCACTATT GACCTAGTCCTCTCCTCTATCACCATGCCCAAGATGGCCAGTCTTTTCCTGATGGGCATCCA GGAGATCGAGTTCAACATTTGCCTGGCCCAGATGTTCCTTATCCATGCTCTGTCAGCCGTG GAGTCAGCTGTCCTGCTGGCCATGGCTTTTGACCGCTTTGTGGCCATTTGCCACCCATTGC GCCATGCTTCTGTGCTGACAGGGTGTACTGTGGCCAAGATTGGACTATCTGCCCTGACCAG GGGGTTTGTATTCTTCTTCCCACTGCCCTTCATCCTCAAGTGGTTGTCCTACTGCCAAACAC ATACTGTCACACACTCCTTCTGTCTGCACCAAGATATTATGAAGCTGTCCTGTACTGACAC CAGGGTCAATGTGGTTTATGGACTCTTCATCATCCTCTCAGTCATGGGTGTGGACTCTCTCT TCATTGGCTTCTCATATATCCTCATCCTGTGGGCTGTTTTGGAGCTGTCCTCTCGGAGGGCA GCACTCAAGGCTTTCAACACCTGCATCTCCCACCTCTGTGCTGTTCTGGTCTTCTATGTACC CCTCATTGGGCTCTCGGTGGTGCATAGGCTGGGTGGTCCCACCTCCCTCCTCCATGTGGTT ATGGCTAATACCTACTTGCTGCTACCACCTGTAGTCAACCCCCTTGTCTATGGAGCCAAGA CCAAAGAGATCTGTTCAAGGGTCCTCTGTATGTTCTCACAAGGTGGCAAGTGA (SEQ ID NO: 82)
AOLFR44 sequences:
MSSCNFTHATFVLIGIPGLEKAHFWVGFPLLSMYVVA-MFGNCIVYFIVRTERSLHAPMYLFLC MLAAIDLALSTSTMPKILALFWFDSREISFEACLTQMFFIHALSAIESTILLAMAFDRYVAICHPL RHAAVLNNTVTAQIGIVAVVRGSLFFFPLPLLIKRLAFCHSNVLSHSYCVHQDVMKLAYADTLP NVVYGLTAILLVMGVDVMFISLSYFLIIRTVLQLPSKSERAKAFGTCVSHIGVVLAFYVPLIGLS WHRFGNSLHPIVRWMGDIYLLLPPVINPIIYGAKTKQIRTRVLAMFKISCDKDLQAVGGK (SEQ ID NO: 83)
ATGAGTTCCTGCAACTTCACACATGCCACCTTTGTGCTTATTGGTATCCCAGGATTAGAGA AAGCCCATTTCTGGGTTGGCTTCCCCCTCCTTTCCATGTATGTAGTGGCAATGTTTGGAAAC TGCATCGTGGTCTTCATCGTAAGGACGGAACGCAGCCTGCACGCTCCGATGTACCTCTTTC TCTGCATGCTTGCAGCCATTGACCTGGCCTTATCCACATCCACCATGCCTAAGATCCTTGCC CTTTTCTGGTTTGATTCCCGAGAGATTAGCTTTGAGGCCTGTCTTACCCAGATGTTCTTTAT TCATGCCCTCTCAGCCATTGAATCCACCATCCTGCTGGCCATGGCCTTTGACCGTTATGTGG CCATCTGCCACCCACTGCGCCATGCTGCAGTGCTCAACAATACAGTAACAGCCCAGATTGG CATCGTGGCTGTGGTCCGCGGATCCCTCTTTTTTTTCCCACTGCCTCTGCTGATCAAGCGGC TGGCCTTCTGCCACTCCAATGTCCTCTCGCACTCCTATTGTGTCCACCAGGATGTAATGAA GTTGGCCTATGCAGACACTTTGCCCAATGTGGTATATGGTCTTACTGCCATTCTGCTGGTC ATGGGCGTGGACGTAATGTTCATCTCCTTGTCCTATTTTCTGATAATACGAACGGTTCTGC AACTGCCTTCCAAGTCAGAGCGGGCCAAGGCCTTTGGAACCTGTGTGTCACACATTGGTGT GGTACTCGCCTTCTATGTGCCACTTATTGGCCTCTCAGTGGTACACCGCTTTGGAAACAGC CTTCATCCCATTGTGCGTGTTGTCATGGGTGACATCTACCTGCTGCTGCCTCCTGTCATCAA TCCCATCATCTATGGTGCCAAAACCAAACAGATCAGAACACGGGTGCTGGCTATGTTCAAG ATCAGCTGTGACAAGGACTTGCAGGCTGTGGGAGGCAAGTGA (SEQ ID NO: 84)
AOLFR45 sequences:
MLPSNITSTHPAVFLLVGIPGLEHLHAWISIPFCFAYTLALLGNCTLLFIIQADAALHEPMYLFLA MLATIDLVLSSTTLPKMLAIFWFRDQEINFFACLVQMFFLHSFSIMESAVLLAMAFDRYVAICKP LHYTTVLTGSLITKIGMAAVARAVTLMTPLPFLLRRFHYCRGPVIAHCYCEHMAVVRLACGDT SFNNIYGIAVAMFSWLDLLFVILSYVFILQAVLQLASQEARYKAFGTCVSHIGAILSTYTPVVIS SVMHRVARHAAPRVHILLAIFYLLFPPMVNPIIYGVKTKQIREYVLSLFQRKNM (SEQ ID NO: 85)
TGGAAACAAGAGGTAATCTTTGCAGGTGGGATAGCACAGGTTGAACTCTAATCATATATA CTGTAGAAGGTATATATAGAAGGTGAAGAAGCCCTGTAAAAATTGACAAGGAGATTTCCA GGAGCCATGCTTCCCTCTAATATCACCTCAACACATCCAGCTGTCTTTTTGTTGGTAGGAAT TCCTGGTTTGGAACACCTGCATGCCTGGATCTCCATCCCCTTCTGCTTTGCTTATACTCTGG CCCTGCTAGGCAACTGTACCCTTCTCTTCATTATCCAGGCTGATGCAGCCCTCCATGAACCC ATGTACCTCTTTCTGGCCATGTTGGCAACCATTGACTTGGTTCTTTCTTCTACAACGCTGCC CAAAATGCTTGCCATATTCTGGTTCAGGGATCAGGAGATCAACTTCTTTGCCTGTCTGGTC CAGATGTTCTTCCTTCACTCCTTCTCCATCATGGAGTCAGCAGTGCTGCTGGCCATGGCCTT TGACCGCTATGTGGCCATCTGCAAGCCATTGCACTACACGACGGTCCTGACTGGGTCCCTC ATCACCAAGATTGGCATGGCTGCTGTGGCCCGGGCTGTGACACTAATGACTCCACTCCCCT TCCTGCTCAGACGCTTCCACTACTGCCGAGGCCCAGTGATTGCCCATTGCTACTGTGAACA CATGGCTGTGGTAAGGCTGGCGTGTGGGGACACTAGCTTCAACAATATCTATGGCATTGCT GTGGCCATGTTTAGTGTGGTGTTGGACCTGCTCTTTGTTATCCTGTCTTATGTCTTCATCCT TCAGGCAGTTCTCCAGCTTGCCTCTCAGGAGGCCCGCTACAAAGCATTTGGGACATGTGTG TCTCACATAGGTGCCATCCTGTCCACCTACACTCCAGTAGTCATCTCTTCAGTCATGCACCG TGTAGCCCGCCATGCTGCCCCTCGTGTCCACATACTCCTTGCTATTTTCTATCTCCTTTTCC CACCCATGGTCAATCCTATCATATATGGAGTCAAGACCAAGCAGATTCGTGAGTATGTGCT CAGTCTATTCCAGAGAAAGAACATGTAGATGGATAGTTCTCTTTTTTTATCCCACTTGCCA AGTAATGAGAATGCTGGATTGGGGTTGAGGGGAAAAATCTAAATAGGAAAATTGCAGAGT ATCTTTGACAATTCTCTAGTATGATAAGGAAAATGAGGTTTCATTCCTCACAGATCTACGA GTCAGGTCAAACCAGGAGTGCACCTATAGTCTGGTCTGATAGTAGAGGTTTGACCTTCCCA TTGTCATAGACTCATCACATGGCTAAGGAAGACAAACCTCTCAAAGTGGTATTGTAATCTG GGTGAAAGACAGTAGGACCTTTATTGGCTGAGATTGGCCCAAACAGCTGAGTC (SEQ ID NO: 86)
AOLFR46 sequences:
MNI HCGWH IHTWLNIREDDDSDFKNFIGQIQGLSGNPHSTTSRMYFLCFCTSLLGFKVHWV SRLIXKLYMASPNNDSTAPVSEFLLICFPNFQSWQHWLSLPLSLLFLLAMGANTTLLITIQLEAS LHQPLYYLLSLLSLLDIVLCLTVIPKVLAIFWFDLRSISFPACFLQMFIMNSFLTMESCTFMVMA YDRYVAICHPLRYPSIITDQFVARAWFVIARNAFVSLPVPMLSARLRYCAGNIIKNCICSNLSVS KLSCDDITFNQLYQFVAGWTLLGSDLILIVISYSFILKWLRIKAEGAVAKALSTCGSHFILILFFS TVLLVLVITNLAJRXRIPPDVPILLNILHHLIPPALNPIVYGVRTKEIKQGIQNLLKRL (SEQ ID NO: 87)
ATGAATATAAAACATTGTGGCTGGCATATGATACATACTTGGTTAAATATAAGGGAGGAT
GATGACAGTGATTTTAAAAACTTTATTGGACAGATACAGGGCCTCAGTGGAAACCCACACT
CTACTACGTCTAGAATGTACTTTTTATGTTTCTGTACTTCTCTACTAGGTTTTAAGGTACAC TGGGTCTCCAGATTGATCANGAAACTTTACATGGCATCTCCCAACAATGACTCCACTGCCC CAGTCTCTGAATTCCTCCTCATCTGCTTCCCCAACTTCCAGAGCTGGCAGCACTGGTTGTCT CTGCCCCTCAGCCTTCTCTTCCTCCTGGCCATGGGAGCTAACACCACCCTCCTGATCACCAT CCAGCTGGAGGCCTCTCTGCACCAGCCCCTGTACTACCTGCTCAGCCTCCTCTCCCTGCTGG ACATCGTGCTCTGCCTCACCGTCATCCCCAAGGTCCTGGCCATCTTCTGGTTTGACCTCAGG TCGATCAGCTTCCCAGCCTGCTTCCTCCAGATGTTCATCATGAACAGTTTTTTGACCATGGA GTCCTGCACGTTCATGGTCATGGCCTATGACCGTTATGTGGCCATCTGCCATCCATTGAGA TACCCGTCTATCATCACTGACCAGTTTGTGGCTAGGGCCGTGGTCTTTGTTATAGCCCGGA ATGCCTTTGTTTCTCTTCCTGTTCCCATGCTTTCTGCCAGGCTCAGATACTGTGCAGGAAAC ATAATCAAGAACTGCATCTGCAGTAACCTGTCTGTGTCCAAACTCTCTTGTGATGACATCA CTTTCAATCAGCTCTACCAGTTTGTGGCAGGCTGGACTCTGTTGGGCTCTGATCTTATCCTT ATTGTTATCTCCTATTCTTTTATATTGAAAGTTGTGCTTAGGATCAAGGCCGAGGGTGCTGT GGCCAAGGCCTTGAGCACGTGTGGTTCCCACTTCATCCTCATCCTCTTCTTCAGCACAGTCC TGCTGGTTCTGGTCATCACTAACCTGGCCAGGAAGAGAATTCCTCCAGATGTCCCCATCCT GCTCAACATCCTGCACCACCTCATTCCCCCAGCTCTGAACCCCATTGTTTATGGTGTGAGA ACCAAGGAGATCAAGCAGGGAATCCAAAACCTGCTGAAGAGGTTGTAA (SEQ ID NO: 88)
AOLFR47 sequences:
MSASNITLTHPTAFLLVGIPGLEHLHIWISIPFCLAYTLALLGNCTLLLIIQADAALHEPMYLFLA MLAAIDLVLSSSALPKMLAIFWFRDREINFFACLAQMFFLHSFSIMESAVLLAMAFDRYVAICK PLHYTKVLTGSLITKIGMAAVARAVTLMTPLPFLLRCFHYCRGPVIAHCYCEHMAWRLACGD TSFNNIYGIAVAMFIWLDLLLVILSYIFILQAVLLLASQEARYKAFGTCVSHIGAILAFYTTWIS SVMHRVARHAAPHVHILLAl^YLLFPPMVNPIIYGVKTKQIRESILGWPRKDM (SEQ ID NO: 89)
ATGTCAGCCTCCAATATCACCTTAACACATCCAACTGCCTTCTTGTTGGTGGGGATTCCAG GCCTGGAACACCTGCACATCTGGATCTCCATCCCTTTCTGCTTAGCATATACACTGGCCCTG CTTGGAAACTGCACTCTCCTTCTCATCATCCAGGCTGATGCAGCCCTCCATGAACCCATGT ACCTCTTTCTGGCCATGTTGGCAGCCATCGACCTGGTCCTTTCCTCCTCAGCACTGCCCAAA ATGCTTGCCATATTCTGGTTCAGGGATCGGGAGATAAACTTCTTTGCCTGTCTGGCCCAGA TGTTCTTCCTTCACTCCTTCTCCATCATGGAGTCAGCAGTGCTGCTGGCCATGGCCTTTGAC CGCTATGTGGCTATCTGCAAGCCACTGCACTACACCAAGGTCCTGACTGGGTCCCTCATCA CCAAGATTGGCATGGCTGCTGTGGCCCGGGCTGTGACACTAATGACTCCACTCCCCTTCCT GCTGAGATGTTTCCACTACTGCCGAGGCCCAGTGATCGCTCACTGCTACTGTGAACACATG GCTGTGGTGAGGCTGGCGTGTGGGGACACTAGCTTCAACAATATCTATGGCATCGCTGTGG CCATGTTTATTGTGGTGTTGGACCTGCTCCTTGTTATCCTGTCTTATATCTTTATTCTTCAG GCAGTTCTACTGCTTGCCTCTCAGGAGGCCCGCTACAAGGCATTTGGGACATGTGTCTCTC ATATAGGTGCCATCTTAGCCTTCTACACAACTGTGGTCATCTCTTCAGTCATGCACCGTGTA GCCCGCCATGCTGCCCCTCATGTCCACATCCTCCTTGCCAATTTCTATCTGCTCTTCCCACC CATGGTCAATCCCATAATCTATGGTGTCAAGACCAAGCAAATCCGTGAGAGCATCTTGGGA GTATTCCCAAGAAAGGATATGTAG (SEQ ID NO: 90)
AOLFR48 sequences:
MMVDPNGNESSATYFILIGLPGLEEAQFWLAFPLCSLYLIAVLGNLTIIYIVRTEHSLHEPMYIFL CMLSGIDILISTSSMPKMLAIFWFNSTTIQFDACLLQMFAIHSLSGMESTVLLAMAFDRYVAICH PLRHATVLTLPRVTKIGVAAWRGAALMAPLPVFIKQLPFCRSNILSHSYCLHQDVMKLACDDI RVNVVYGLIVIISAIGLDSLLISFSYLLILKTVLGLTREAQAKAFGTCVSHVCAVFIFYVPFIGLSM VHRFSKRRDSPLPVILANIYLLVPPVLNPIVYGVKTKEIRQRILRLFHVATHASEP (SEQ ID NO: 91)
ATGATGGTGGATCCCAATGGCAATGAATCCAGTGCTACATACTTCATCCTAATAGGCCTCC CTGGTTTAGAAGAGGCTCAGTTCTGGTTGGCCTTCCCATTGTGCTCCCTCTACCTTATTGCT GTGCTAGGTAACTTGACAATCATCTACATTGTGCGGACTGAGCACAGCCTGCATGAGCCCA TGTATATATTTCTTTGCATGCTTTCAGGCATTGACATCCTCATCTCCACCTCATCCATGCCC AAAATGCTGGCCATCTTCTGGTTCAATTCCACTACCATCCAGTTTGATGCTTGTCTGCTACA GATGTTTGCCATCCACTCCTTATCTGGCATGGAATCCACAGTGCTGCTGGCCATGGCTTTT GACCGCTATGTGGCCATCTGTCACCCACTGCGCCATGCCACAGTACTTACGTTGCCTCGTG TCACCAAAATTGGTGTGGCTGCTGTGGTGCGGGGGGCTGCACTGATGGCACCCCTTCCTGT CTTCATCAAGCAGCTGCCCTTCTGCCGCTCCAATATCCTTTCCCATTCCTACTGCCTACACC AAGATGTCATGAAGCTGGCCTGTGATGATATCCGGGTCAATGTCGTCTATGGCCTTATCGT CATCATCTCCGCCATTGGCCTGGACTCACTTCTCATCTCCTTCTCATATCTGCTTATTCTTA AGACTGTGTTGGGCTTGACACGTGAAGCCCAGGCCAAGGCATTTGGCACTTGCGTCTCTCA TGTGTGTGCTGTGTTCATATTCTATGTACCTTTCATTGGATTGTCCATGGTGCATCGCTTTA GCAAGCGGCGTGACTCTCCGCTGCCCGTCATCTTGGCCAATATCTATCTGCTGGTTCCTCCT GTGCTCAACCCAATTGTCTATGGAGTGAAGACAAAGGAGATTCGACAGCGCATCCTTCGA CTTTTCCATGTGGCCACACACGCTTCAGAGCCCTAG (SEQ ID NO: 92)
AOLFR49 sequences:
MLTFHNVCSVPSSFWLTGIPGLESLHVWLSIPFGSMYLVAWGNVTILAWKIERSLHQPMYFF LCMLAAIDLVLSTSTIPKLLGIFWFGACDIGLDACLGQMFLIHCFATVESGIFLAMAFDRYVAIC NPLRHSMVLTYTWGRLGLVSLLRGVLYIGPLPLMIRLRLPLYKTHVISHSYCEHMAVVALTC GDSRVNNVYGLSIGFLVLILDSVAIAASYVMIFRAVMGLATPEARXKTLGTCASHLCAILIFYVP IAVSSLIHRFGQCVPPPVHTLLANFYLLIPPILNPIVYAVRTKQIRESLLQIPRIEMKIR (SEQ ID NO: 93)
ATGCTCACTTTTCATAATGTCTGCTCAGTACCCAGCTCCTTCTGGCTCACTGGCATCCCAGG GCTGGAGTCCCTACACGTCTGGCTCTCCATCCCCTTTGGCTCCATGTACCTGGTGGCTGTG GTGGGGAATGTGACCATCCTGGCTGTGGTAAAGATAGAACGCAGCCTGCACCAGCCCATG TACTTTTTCTTGTGCATGTTGGCTGCCATTGACCTGGTTCTGTCTACTTCCACTATACCCAA ACTTCTGGGAATCTTCTGGTTCGGTGCTTGTGACATTGGCCTGGACGCCTGCTTGGGCCAA ATGTTCCTTATCCACTGCTTTGCCACTGTTGAGTCAGGCATCTTCCTTGCCATGGCTTTTGA TCGCTACGTGGCCATCTGCAACCCACTACGTCATAGCATGGTGCTCACTTATACAGTGGTG GGTCGTTTGGGGCTTGTTTCTCTCCTCCGGGGTGTTCTCTACATTGGACCTCTGCCTCTGAT GATCCGCCTGCGGCTGCCCCTTTATAAAACCCATGTTATCTCCCACTCCTACTGTGAGCAC ATGGCTGTAGTTGCCTTGACATGTGGCGACAGCAGGGTCAATAATGTCTATGGGCTGAGC ATCGGCTTTCTGGTGTTGATCCTGGACTCAGTGGCTATTGCTGCATCCTATGTGATGATTTT CAGGGCCGTGATGGGGTTAGCCACTCCTGAGGCTAGGCTTAAAACCCTGGGGACATGCGC TTCTCACCTCTGTGCCATCCTGATCTTTTATGTTCCCATTGCTGTTTCTTCCCTGATTCACCG ATTTGGTCAGTGTGTGCCTCCTCCAGTCCACACTCTGCTGGCCAACTTCTATCTCCTCATTC CTCCAATCCTCAATCCCATTGTCTATGCTGTTCGCACCAAGCAGATCCGAGAGAGCCTTCT CCAAATACCAAGGATAGAAATGAAGATTAGATGA (SEQ ID NO: 94)
AOLFR50 sequences:
MNLDSFFSFLLKSLIMALSNSSWRLPQPSFFLVGIPGLEESQHWIALPLGILYLLALVGNVTILFII WMDPSLHQSMYLFLSMLAAIDLVVASSTAP-I^LAVLLVRAQEIGYTVCLIQMFFTHAFSSMES GVLVAMALDRYVAICHPLHHSTILHPGVIGHIGMVVLVRGLLLLIPFLILLRKLIFCQATIIGHAY CEHMAVVKLACSETTVNRAYGLTVALLVVGLDVLAIGVSYAHILQAVLKVPGNEARLKAFST CGSHVCVILVFYIPGMFSFLTHRFGHHVPHHVHVLLAILYRLVPPALNPLVYRVKTQKIHQ (SEQ ID NO: 95)
ATGAATTTGGATTCTTTTTTCTCTTTCCTCCTCAAGTCATTGATAATGGCACTTAGCAATTC CAGCTGGAGGCTACCCCAGCCTTCTTTTTTCCTGGTAGGAATTCCGGGTTTAGAGGAAAGC CAGCACTGGATCGCACTGCCCCTGGGCATCCTTTACCTCCTTGCTCTAGTGGGCAATGTTA CCATTCTCTTCATCATCTGGATGGACCCATCCTTGCACCAATCTATGTACCTCTTCCTGTCC ATGCTAGCTGCCATCGACCTGGTTGTGGCCTCCTCCACTGCACCCAAAGCCCTTGCAGTGC TCCTGGTTCGTGCCCAAGAGATTGGTTACACTGTCTGCCTGATCCAGATGTTCTTCACCCAT GCATTCTCCTCCATGGAGTCAGGGGTACTTGTGGCCATGGCTCTGGATCGCTATGTAGCCA TTTGTCACCCCTTGCACCATTCCACAATCCTGCATCCAGGGGTCATAGGGCACATCGGAAT GGTGGTGCTGGTGCGGGGATTACTACTCCTCATCCCCTTCCTCATTCTGTTGCGAAAACTT ATCTTCTGCCAAGCCACCATCATAGGCCATGCCTATTGTGAACATATGGCTGTTGTGAAAC TTGCCTGCTCAGAAACCACAGTCAATCGAGCTTATGGGCTGACTGTGGCCTTGCTTGTGGT TGGGCTGGATGTCCTGGCCATTGGTGTTTCCTATGCCCACATTCTCCAGGCAGTGCTGAAG GTACCAGGAAATGAGGCCCGACTTAAGGCCTTTAGCACATGTGGCTCTCATGTTTGTGTCA TCCTGGTCTTCTATATCCCGGGAATGTTCTCCTTCCTCACTCACCGCTTTGGTCATCATGTA CCCCATCACGTCCATGTTCTTCTGGCCATACTGTATCGCCTTGTGCCACCTGCACTCAATCC TCTTGTCTATAGGGTGAAGACCCAGAAGATCCACCAGTGA (SEQ ID NO: 96)
AOLFR51 sequences:
MCQQILRDCILLIHHLC-πSIR-IO VSLVMLGPAYNHTMETPASFLLVGIPGLQSSHLWLAISLSAM YIIALLGNTIIVTAIWMDSTRHEPMYCFLCVLAAVDIVMASSVVPKMVSIFCSGDSSISFSACFTQ MFFVHLATAVETGLLLTMAEDRYVAICKPLHYϊa LTPQVMLGMSMAITI-RAILAITPLSW HLPFCGSNVWHSYCEHIALARLACADPVPSSLYSLIGSSLMVGSDVAFIAASYILILKAVFGLSS KTAQLKALSTCGSHVG V ALYYLPGMASIYAAWLGQD WPLHTQ VLLADLYVIIPATLNPIIY GMRTKQLRERIWSYLMHVLFDHSNLGS (SEQ ID NO: 97)
ATGTGTCAACAAATCTTACGGGATTGCATTCTTCTCATACATCATTTGTGCATTAACAGGA AAAAAGTCTCACTTGTGATGCTGGGTCCAGCTTATAACCACACAATGGAAACCCCTGCCTC CTTCCTCCTTGTGGGTATCCCAGGACTGCAATCTTCACATCTTTGGCTGGCTATCTCACTGA GTGCCATGTACATCATAGCCCTGTTAGGAAACACCATCATCGTGACTGCAATCTGGATGGA TTCCACTCGGCATGAGCCCATGTATTGCTTTCTGTGTGTTCTGGCTGCTGTGGACATTGTTA TGGCCTCCTCGGTGGTACCCAAGATGGTGAGCATCTTCTGCTCAGGAGACAGCTCAATCAG CTTTAGTGCTTGTTTCACTCAGATGTTTTTTGTCCACTTAGCCACAGCTGTGGAGACGGGG CTGCTGCTGACCATGGCTTTTGACCGCTATGTAGCCATCTGCAAGCCTCTACACTACAAGA GAATTCTCACGCCTCAAGTGATGCTGGGAATGAGTATGGCCATCACCATCAGAGCTATCAT AGCCATAACTCCACTGAGTTGGATGGTGAGTCATCTACCTTTCTGTGGCTCCAATGTGGTT GTCCACTCCTACTGTGAGCACATAGCTTTGGCCAGGTTAGCATGTGCTGACCCCGTGCCCA GCAGTCTCTACAGTCTGATTGGTTCCTCTCTTATGGTGGGCTCTGATGTGGCCTTCATTGCT GCCTCCTATATCTTAATTCTCAAGGCAGTATTTGGTCTCTCCTCAAAGACTGCTCAGTTGAA AGCATTAAGCACATGTGGCTCCCATGTGGGGGTTATGGCTTTGTACTATCTACCTGGGATG GCATCCATCTATGCGGCCTGGTTGGGGCAGGATGTAGTGCCCTTGCACACCCAAGTCCTGC TAGCTGACCTGTACGTGATCATCCCAGCCACCTTAAATCCCATCATCTATGGCATGAGGAC CAAACAACTGCGGGAGAGAATATGGAGTTATCTGATGCATGTCCTCTTTGACCATTCCAAC CTGGGTTCATGA (SEQ ID NO: 98) AOLFR52 sequences:
MLGPAYNHTMETPASFLLVGIPGLQSSHLWLAISLSAMYITALLGNTLIVTAIWMDSTRHEPMY CFLCVLAAVDIV1V1ASSVVPKMVSIFCSGDSSISFSACFTQMFFVHLATAVETGLLLTMAFDRYV AICKΪLHYK-RILTPQVMLGMSMAVTIRAVTFMTPLSWMMNHLPFCGSNVVVHSYCK^ LACADPVPSSLYSLIGSSLMVGSDVAFIAASYILILRAVFDLSSKTAQLKALSTCGSHVGVMALY YLPGMAS-TCAAWLGQDrVTL-OTQVLLAOLY SNLGS (SEQ ID NO: 99)
ATGCTGGGTCCAGCTTACAACCACACAATGGAAACCCCTGCCTCCTTCCTCCTTGTGGGTA TCCCAGGACTGCAATCTTCACATCTTTGGCTGGCTATCTCACTGAGTGCCATGTACATCAC AGCCCTGTTAGGAAACACCCTCATCGTGACTGCAATCTGGATGGATTCCACTCGGCATGAG CCCATGTATTGCTTTCTGTGTGTTCTGGCTGCTGTGGACATTGTTATGGCCTCCTCCGTGGT ACCCAAGATGGTGAGCATCTTCTGCTCGGGAGACAGCTCCATCAGCTTTAGTGCTTGTTTC ACTCAGATGTTTTTTGTCCACTTAGCCACAGCTGTGGAGACGGGGCTGCTGCTGACCATGG CTTTTGACCGCTATGTAGCCATCTGCAAGCCTCTACACTACAAGAGAATTCTCACGCCTCA AGTGATGCTGGGAATGAGTATGGCCGTCACCATCAGAGCTGTCACATTCATGACTCCACTG AGTTGGATGATGAATCATCTACCTTTCTGTGGCTCCAATGTGGTTGTCCACTCCTACTGTAA GCACATAGCTTTGGCCAGGTTAGCATGTGCTGACCCCGTGCCCAGCAGTCTCTACAGTCTG ATTGGTTCCTCTCTTATGGTGGGCTCTGATGTGGCCTTCATTGCTGCCTCCTATATCTTAAT TCTCAGGGCAGTATTTGATCTCTCCTCAAAGACTGCTCAGTTGAAAGCATTAAGCACATGT GGCTCCCATGTGGGGGTTATGGCTTTGTACTATCTACCTGGGATGGCATCCATCTATGCGG CCTGGTTGGGGCAGGATATAGTGCCCTTGCACACCCAAGTGCTGCTAGCTGACCTGTACGT GATCATCCCAGCCACTTTAAATCCCATCATCTATGGCATGAGGACCAAACAATTGCTGGAG GGAATATGGAGTTATCTGATGCACTTCCTCTTTGACCACTCCAACCTGGGTTCATGA (SEQ ID NO: 100)
AOLFR54 sequences:
MSDSNLSDNHLPDTFFLTGffGLEAAHFWIA-ffFCAMYLVALVGNAALILVIAlVroNALHAPMY LFLCLLSLTDLALSSTTV KMLAILWLHAGEISFGGCLAQMFCVΗSIYALESSILLAMAFDRYVA ICNPLRYTTILNHAVIGRIGFVGLFRS VAIVSPFIFLLRRLP YCGHRVMTHTYCEHMGIARLACA NITVΗIVYGLTVALLAMGLDSILIAISYGFILHAVFHLPSHDAQHKALSTCGSHIGIILVFYIPAFF SFLTHRFGHHEVPKHVHIFLANLYVLVPPVLNPILYGARTKEIRSRLLKLLHLGKTSI (SEQ ID NO: 101)
ATGTCAGATTCCAACCTCAGTGATAACCATCTTCCAGACACCTTCTTCTTAACAGGGATCC CAGGGCTGGAGGCTGCCCACTTCTGGATTGCCATCCCTTTCTGTGCCATGTATCTTGTAGC ACTGGTTGGAAATGCTGCCCTCATCCTGGTCATTGCCATGGACAATGCTCTTCATGCACCT ATGTACCTCTTCCTCTGCCTTCTCTCACTCACAGACCTGGCTCTCAGTTCTACCACTGTGCC CAAGATGCTGGCCATTTTGTGGCTCCATGCTGGTGAGATTTCCTTTGGTGGATGCCTGGCC CAGATGTTTTGTGTCCATTCTATCTATGCTCTGGAGTCCTCGATTCTACTTGCCATGGCCTT TGATAGGTATGTGGCTATCTGTAACCCATTAAGGTATACAACCATTCTCAACCATGCTGTC ATAGGCAGAATTGGCTTTGTTGGGCTATTCCGTAGTGTGGCTATTGTCTCCCCCTTCATCTT CTTGCTGAGGCGACTCCCCTACTGTGGTCACCGTGTCATGACACACACATACTGTGAGCAT ATGGGCATCGCCCGACTGGCCTGTGCCAACATCACTGTCAATATTGTCTATGGGCTAACTG TGGCTCTGCTGGCCATGGGACTGGATTCCATTCTCATTGCCATTTCCTATGGCTTTATCCTC CATGCAGTCTTTCACCTTCCATCTCATGATGCCCAGCACAAAGCTCTGAGTACCTGTGGCT CCCACATTGGCATCATCCTGGTTTTCTACATCCCTGCCTTCTTCTCCTTCCTCACCCACCGC TTTGGTCACCACGAAGTCCCCAAGCATGTGCACATCTTTCTGGCTAATCTCTATGTGCTGG TGCCTCCTGTACTCAATCCTATTCTCTATGGAGCTAGAACCAAGGAGATTCGGAGTCGACT TCTAAAACTGCTTCACCTGGGGAAGACTTCAATATGA (SEQ ID NO: 102)
AO FR57 sequences:
MSFQVTYMFYLHWTMEKSNNSTLFILLGFSQNKNIEVLCFVLFLFCYIAIWMGNLLIMISITCTQ LIHQPMYFFLNYLSLSDLCYTSTVTPKLMVDLLAERKTISYNNCMIQLFTTHFFGGIEIFILTGM AYDRYVAICKPLHYTΠMSRQKOVΓΓΠΓVCCTGGFIHSASQFLLTIFVPFCGPNEIDHYFCDVYPLL -O.ACSNIHMIGLLVL NSGLIALVTFVΥLLLSYVFILYTIRAYSAERRSKALATCSSH\ VVVLFF APALFIYIRPVTTFSEDKλ^ALFYTIlAPMFNPLIYTLRNTEMKNAMRKVWCCQILLKRNQLF (SEQ ID NO: 103)
ATGTCATTTCAGGTGACTTATATGTTCTATCTACACTGGACCATGGAAAAAAGCAATAATA GCACTTTGTTTATTCTCTTGGGGTTTTCCCAAAATAAGAACATTGAAGTCCTCTGCTTTGTA TTATTTTTGTTTTGCTACATTGCTATTTGGATGGGAAACTTACTCATAATGATTTCTATCAC GTGCACCCAGCTCATTCACCAACCCATGTATTTCTTCCTCAATTACCTCTCACTCTCCGACC TTTGCTACACATCCACAGTGACCCCCAAATTAATGGTTGACTTACTGGCAGAAAGAAAGAC CATTTCCTATAATAACTGTATGATACAACTCTTTACCACCCATTTTTTTGGAGGCATAGAGA TCTTCATTCTCACAGGGATGGCCTATGACCGCTATGTGGCCATTTGCAAGCCCCTGCACTA CACCATTATTATGAGCAGGCAAAAGTGTAACACAATCATCATAGTTTGTTGTACTGGGGGA TTTATACATTCTGCCAGTCAGTTTCTTCTCACCATCTTTGTACCATTTTGTGGCCCAAATGA GATAGATCACTACTTCTGTGATGTGTATCCTTTGCTGAAATTGGCCTGTTCTAATATACACA TGATAGGTCTCTTAGTCATTGCTAATTCAGGCTTAATTGCTTTGGTGACATTTGTTGTCTTG TTGTTGTCTTATGTTTTTATATTGTATACCATCAGAGCATACTCTGCAGAGAGACGCAGCA AAGCTCTTGCCACTTGTAGTTCTCATGTAATTGTTGTGGTCCTGTTTTTTGCTCCTGCATTG TTCATTTACATTAGACCGGTCACAACATTCTCAGAAGATAAAGTGTTTGCCCTTTTTTATAC CATCATTGCTCCCATGTTCAACCCTCTCATATACACGCTGAGAAACACAGAGATGAAGAAC GCCATGAGGAAAGTGTGGTGTTGTCAAATACTCCTGAAAAGAAATCAACTTTTCTGA (SEQ ID NO: 104)
AOLFR58 sequences:
MFSMTTEALNNFALGCTNLLMTMIPQIDLKQIFLCPNCRLYMIPVGAFIFSLGNMQNQSFVTEF VLLGLSQNPNVQEIVFVVFLFVYIATVGGNMLIVVTILSSPALLVSPMYFFLGFLSFLDACFSSVI TPKMIVDSLYVTKTISFEGCMMQXFAEHFFAGVEVIVLTAMAYDRYVAICKPLHYSSIMNRRL CGILMGVAWTGGLLHSMIQILFTFQLPFCGPNVINHFMCDLYPLLELACTDTHIFGLMVVINSG FICIINFSLLLVSYAVILLSLRTHSSEGRWKALSTCGSHIAVVILFFVPCIFVYTRPPSAFSLDKMA AIFYIILNPLLNPLIYTFRNKEVKQAMRRIWTSIRLMVVSDEKENIKL (SEQ ID NO: 105)
ATGTTCTCAATGACAACAGAAGCACTCAATAATTTTGCACTTGGATGTACCAACTTGTTAA TGACTATGATACCACAAATTGATCTGAAGCAAATTTTCCTTTGTCCTAATTGCAGACTATA CATGATCCCTGTTGGAGCTTTCATCTTTTCCTTGGGAAACATGCAAAACCAAAGCTTTGTA ACTGAGTTTGTCCTCCTGGGACTTTCACAGAATCCAAATGTTCAGGAAATAGTATTTGTTG TATTTTTGTTTGTCTACATTGCAACTGTTGGGGGCAACATGCTAATTGTAGTAACCATTCTC AGCAGCCCTGCTCTTCTGGTGTCTCCTATGTACTTCTTCTTGGGCTTCCTGTCCTTCCTGGA TGCGTGCTTCTCATCTGTCATCACCCCAAAGATGATTGTAGACTCCCTCTATGTGACAAAA ACCATCTCTTTTGAAGGCTGCATGATGCAGCTCTTTGCTGAACACTTCTTTGCTGGGGTGG AGGTGATTGTCCTCACAGCCATGGCCTATGATCGTTATGTGGCCATTTGCAAGCCCTTGCA TTACTCTTCTATCATGAACAGGAGGCTCTGTGGCATTCTGATGGGGGTAGCCTGGACAGGG GGCCTCTTGCATTCCATGATACAAATTCTTTTTACTTTCCAGCTTCCCTTTTGTGGCCCCAA TGTCATCAATCACTTTATGTGTGACTTGTACCCGTTACTGGAGCTTGCCTGCACTGATACTC ACATCTTTGGCCTCATGGTGGTCATCAACAGTGGGTTTATCTGCATCATAAACTTCTCCTTG TTGCTTGTCTCCTATGCTGTCATCTTGCTCTCTCTGAGAACACACAGTTCTGAAGGGCGCTG GAAAGCTCTCTCCACCTGTGGATCTCACATTGCTGTTGTGATTTTGTTCTTTGTCCCATGCA TATTTGTATATACACGACCTCCATCTGCTTTTTCCCTTGACAAAATGGCGGCAATATTTTAT ATCATCTTAAATCCCTTGCTCAATCCTTTGATTTACACTTTCAGGAATAAGGAAGTAAAAC AGGCCATGAGGAGAATATGGAACAGACTGATGGTGGTTTCTGATGAGAAAGAAAATATTA AACTTTAA (SEQ ID NO: 106)
AOLFR59 sequences:
MGD NNSDAVEPIFILRGFPGLEYVHSWLSILFCLAYLVAFMGNVTILSVIWIESSLHQPMYYFI SILAVNDLGMSLSTLPTMLAVLWLDAPEIQASACYAQLFFIHTFTFLESSVLLAMAFDRFVAICH PLHYPTILTNSVIGKIGLACLLRSLGWLPTPLLLRHYHYCHGNALSHAFCLHQDVLRLSCTDA RTNSIYGLCWIATLGVDSIFILLSYVLILNTVLDIASREEQLKALNTCVSHICWLIFFVPVIGVS MVΗ-l^GKHLSPIVHILMADIYLLLPPVLNPIVYSVRTKQIRLGILEKFVLRRRF (SEQ ID NO: 107) ATGGGAGACTGGAATAACAGTGATGCTGTGGAGCCCATATTTATCCTGAGGGGTTTTCCTG GACTGGAGTATGTTCATTCTTGGCTCTCCATCCTCTTCTGTCTTGCATATTTGGTAGCATTT ATGGGTAATGTTACCATCCTGTCTGTCATTTGGATAGAATCCTCTCTCCATCAGCCCATGTA TTACTTTATTTCCATCTTAGCAGTGAATGACCTGGGGATGTCCCTGTCTACACTTCCCACCA TGCTTGCTGTGTTATGGTTGGATGCTCCAGAGATCCAGGCAAGTGCTTGCTATGCTCAGCT GTTCTTCATCCACACATTCACATTCCTGGAGTCCTCAGTGTTGCTGGCCATGGCCTTTGACC GTTTTGTTGCTATCTGCCATCCACTGCACTACCCCACCATCCTCACCAACAGTGTAATTGGC AAAATTGGTTTGGCCTGTTTGCTACGAAGCTTGGGAGTTGTACTTCCCACACCTTTGCTACT GAGACACTATCACTACTGCCATGGCAATGCCCTCTCTCACGCCTTCTGTTTGCACCAGGAT GTTCTAAGATTATCCTGTACAGATGCCAGGACCAACAGTATTTATGGGCTTTGTGTAGTCA TTGCCACACTAGGTGTGGATTCAATCTTCATACTTCTTTCTTATGTTCTGATTCTTAATACT GTGCTGGATATTGCATCTCGTGAAGAGCAGCTAAAGGCACTCAACACATGTGTATCCCATA TCTGTGTGGTGCTTATCTTCTTTGTGCCAGTTATTGGGGTGTCAATGGTCCATCGCTTTGGG AAGCATCTGTCTCCCATAGTCCACATCCTCATGGCAGACATCTACCTTCTTCTTCCCCCAGT CCTTAACCCTATTGTCTATAGTGTCAGAACAAAGCAGATTCGTCTAGGAATTCTCCACAAG TTTGTCCTAAGGAGGAGGTTTTAA (SEQ ID NO: 108)
AOLFR60 sequences: MFLPNDTQFHPSSFLLLGIPGLETLHIWIGFPFCAVYMIALIGNFTILLVIKTDSSLHQPMFYFLA MLATTDVGLSTATIP- ^LGIFWINLRGIIFEACLTQMFFIHNFTLMESAVLVAMAYDSYVAICN PLQYSAILTNKVVSVIGLGVFVRALIFVIPSILLILRLPFCGNHVIPHTYCEHMGLAHLSCASIKINI IYGLCAICNLVFDITVIALSYVHILCAVFRLPTHEPRLKSLSTCGSHVCVILAFYTPALFSFMTHC FGRNVPRYIHILLANLYVVWPMLNPVIYGVRTKQIYKCVK- LLQEQGMEKEEYLIHTRF (SEQ ID NO: 109)
ATGTTCCTTCCCAATGACACCCAGTTTCACCCCTCCTCCTTCCTGTTGCTGGGGATCCCAGG
ACTAGAAACACTTCACATCTGGATCGGCTTTCCCTTCTGTGCTGTGTACATGATCGCACTC
ATAGGGAACTTCACTATTCTACTTGTGATCAAGACTGACAGCAGCCTACACCAGCCCATGT TCTACTTCCTGGCCATGTTGGCCACCACTGATGTGGGTCTCTCAACAGCTACCATCCCTAA GATGCTTGGAATCTTCTGGATCAACCTCAGAGGGATCATCTTTGAAGCCTGCCTCACCCAG ATGTTTTTTATCCACAACTTCACACTTATGGAGTCAGCAGTCCTTGTGGCAATGGCTTATG ACAGCTATGTGGCCATCTGCAATCCACTCCAATATAGCGCCATCCTCACCAACAAGGTTGT TTCTGTGATTGGTCTTGGTGTGTTTGTGAGGGCTTTAATTTTCGTCATTCCCTCTATACTTC TTATATTGCGGTTGCCCTTCTGTGGGAATCATGTAATTCCCCACACCTACTGTGAGCACAT GGGTCTTGCTCATCTATCTTGTGCCAGCATCAAAATCAATATTATTTATGGTTTATGTGCCA TTTGTAATCTGGTGTTTGACATCACAGTCATTGCCCTCTCTTATGTGCATATTCTTTGTGCT GTTTTCCGTCTTCCTACTCATGAGCCCCGACTCAAGTCCCTCAGCACATGTGGTTCACATGT GTGTGTAATCCTTGCCTTCTATACACCAGCCCTCTTTTCCTTTATGACTCATTGCTTTGGCC GAAATGTGCCCCGCTATATCCATATACTCCTAGCCAATCTCTATGTTGTGGTGCCACCAAT GCTCAATCCTGTCATATATGGAGTCAGAACCAAGCAGATCTATAAATGTGTAAAGAAAAT ATTATTGCAGGAACAAGGAATGGAAAAGGAAGAGTACCTAATACATACGAGGTTCTGA (SEQ ID NO: 110)
AOLFR61 sequences:
MSIINTSYVEITTFFLVG1V1PGLEYAHIWISIPICSMYLIAILGNGTILFIIKTEPSLHGPMYYFLSML AMSDLGLSLSSLPTVLSIFLFNAPETSSSACFAQEFFIHGFSVLESSVLLIMSFDRFLAIHNPLRYT SILTTVRVAQIGIVFSFKSMLLVLPFPFTLRSLRYCKKNQLSHSYCLHQDVMKLACSDNRIDVIY GFFGALCLMVDFILIAVSYTLILKTVPGIASK EELKALNTCVSHICAVIIFYLPIINLAWHRFAG HVSPLINVLMANVLLLVPPLMHPIVYCVKTKQIRVRVVAKLCQWKI (SEQ ID NO: 111)
ATGTCCATTATCAACACATCATATGTTGAAATCACCACCTTCTTCTTGGTTGGGATGCCAG GGCTAGAATATGCACACATCTGGATCTCTATCCCCATCTGCAGCATGTATCTTATTGCTATT CTAGGAAATGGCACCATTCTTTTTATCATCAAGACAGAGCCCTCCTTGCATGGGCCCATGT ACTATTTTCTTTCCATGTTGGCTATGTCAGACTTGGGTTTGTCTTTATCATCTCTGCCCACT GTGTTAAGCATCTTCCTGTTCAATGCCCCTGAAACTTCTTCTAGTGCCTGCTTTGCCCAGGA ATTCTTCATTCATGGATTCTCAGTACTGGAGTCCTCAGTCCTCCTGATCATGTCATTTGATA GATTCCTAGCCATCCACAATCCTCTGAGATACACCTCAATCCTGACAACTGTCAGAGTTGC CCAAATAGGGATAGTATTCTCCTTTAAGAGCATGCTCCTGGTTCTTCCCTTCCCTTTCACTT TAAGAAGCTTGAGATATTGCAAGAAAAACCAATTATCCCATTCCTACTGTCTCCACCAGGA TGTCATGAAGTTGGCCTGTTCTGACAACAGAATTGATGTTATCTATGGCTTTTTTGGAGCA CTCTGCCTTATGGTAGACTTTATTCTCATTGCTGTGTCTTACACCCTGATCCTCAAGACTGT ACCGGGAATTGCATCCAAAAAGGAGGAGCTTAAGGCTCTCAATACTTGTGTTTCACACATC TGTGCAGTGATCATCTTCTACCTGCCCATCATCAACCTGGCCGTTGTCCACCGCTTTGCCGG GCATGTCTCTCCCCTCATTAATGTTCTCATGGCAAATGTTCTCCTACTTGTACCTCCGCTGA TGAAACCAATTGTTTATTGTGTAAAAACTAAACAGATTAGAGTGAGAGTTGTAGCAAAATT GTGTCAATGGAAGATTTAA (SEQ ID NO: 112)
AOLFR62 sequences:
MFYHNKSIFHPVTFFLIGIPGLEDFHMWISGPFCSVYLVALLGNATILLVIKVEQTLREPMFYFL AILSTIDLALSATSVPRMLGIFWFDAHEINYGACVAQMFLIHAFTGMEAEVLLAMAFDRYVAIC APLHYATILTSLVLVGISMCIVIRPVLLTLPMVYLIYRLPFCQAHIIAHSYCEHMGIAKLSCGNIRI NGIYGLFWSFFVLNLVLIGISYVYILRAVFRLPSHDAQLKALSTCGAHVGVICVFYIPSVFSFLT HRFGHQIPGYIHILVANLYLIIPPSLNPIIYGVRTKQIRERVLYVFTKK (SEQ ID NO: 113) .
ATGTTTTATCACAACAAGAGCATATTTCACCCAGTCACATTTTTCCTCATTGGAATCCCAGG TOTGGAAGACTTCCACATGTGGATCTCCGGGCCTTTCTGCTCTGTTTACCTTGTGGCTTTGC TGGGCAATGCCACCATTCTGCTAGTCATCAAGGTAGAACAGACTCTCCGGGAGCCCATGTT CTACTTCCTGGCCATTCTTTCCACTATTGATTTGGCCCTTTCTGCAACCTCTGTGCCTCGCA TGCTGGGTATCTTCTGGTTTGATGCTCACGAGATTAACTATGGAGCTTGTGTGGCCCAGAT GTTTCTGATCCATGCCTTCACTGGCATGGAGGCTGAGGTCTTACTGGCTATGGCTTTTGAC CGTTATGTGGCCATCTGTGCTCCACTACATTACGCAACCATCTTGACATCCCTAGTGTTGGT GGGCATTAGCATGTGCATTGTAATTCGTCCCGTTTTACTTACACTTCCCATGGTCTATCTTA TCTACCGCCTACCCTTTTGTCAGGCTCACATAATAGCCCATTCCTACTGTGAGCACATGGG CATTGCAAAATTGTCCTGTGGAAACATTCGTATCAATGGTATCTATGGGCTTTTTGTAGTTT CTTTCTTTGTTCTGAACCTGGTGCTCATTGGCATCTCGTATGTTTACATTCTCCGTGCTGTC TTCCGCCTCCCATCACATGATGCTCAGCTAAAAGCCCTAAGCACGTGTGGCGCTCATGTTG GAGTCATCTGTGTTTTCTATATCCCTTCAGTCTTCTCTTTCCTTACTCATCGATTTGGACAC CAAATACCAGGTTACATTCACATTCTTGTTGCCAATCTCTATTTGATTATCCCACCCTCTCT CAACCCCATCATTTATGGGGTGAGGACCAAACAGATTCGAGAGCGAGTGCTCTATGTTTTT ACTAAAAAATAA (SEQ ID NO: 114)
AOLFR63 sequences:
MSIEVTSYVEITTFFLVGMPGLEYAHIWISIPICSMYLIAILGNGTILFnKTEPSLHEPMYYFLSML AMSDLGLSLSSLPTVLSIFLFNAPEISSNACFAQEFFIHGFSVLESSVLLIMSFDRFLAIHNPLRYTS ILTTVTIVAQIGIVFSFKSMLLVLPFPFTLRNLRYCKKNQLSHSYCLHQDVMKLACSDNRIDVIY GFFGALCLMVDFILIAVSYTLILKTVLGIASKKEQLKALNTCVSHICAVIIFYLPIINLAWHRFAR HVSPLINVLMANVLLLVPPLTNPIVYCVKTKQIRVRVVAKLCQRKI (SEQ ID NO: 115)
ATGTCCATTATCAACACATCATATGTTGAAATCACCACCTTCTTCTTGGTTGGGATGCCAG GGCTAGAATATGCACACATCTGGATCTCTATCCCCATCTGCAGCATGTATCTTATTGCTATT CTAGGAAATGGCACCATTCTTTTTATCATCAAGACAGAGCCCTCCTTGCATGAGCCCATGT ACTATTTTCTTTCCATGTTGGCTATGTCAGACTTGGGTTTGTCTTTATCATCTCTGCCCACT GTGTTAAGCATCTTCCTGTTCAATGCTCCTGAAATTTCATCCAATGCCTGCTTTGCCCAGGA ATTCTTCATTCATGGATTCTCAGTACTGGAGTCCTCAGTCCTCCTGATCATGTCATTTGATA GATTCCTAGCCATCCACAACCCTCTGAGATACACCTCAATCCTGACAACTGTCAGAGTTGC CCAAATAGGGATAGTATTCTCCTTTAAGAGCATGCTCCTGGTTCTTCCCTTCCCTTTCACTT TAAGAAACTTGAGATATTGCAAGAAAAACCAATTATCCCATTCCTACTGTCTCCACCAGGA TGTCATGAAGTTGGCCTGTTCTGACAACAGAATTGATGTTATCTATGGCTTTTTTGGAGCA CTCTGCCTTATGGTAGACTTTATTCTCATTGCTGTGTCTTACACCCTGATCCTCAAGACTGT ACTGGGAATTGCATCCAAAAAGGAGCAGCTTAAGGCTCTCAATACTTGTGTTTCACACATC TGTGCAGTGATCATCTTCTACCTGCCCATCATCAACCTGGCCGTTGTCCACCGCTTTGCCCG GCATGTCTCTCCCCTCATTAATGTTCTCATGGCAAATGTTCTCCTACTTGTACCTCCACTGA CGAACCCAATTGTTTATTGTGTAAAAACTAAACAGATTAGAGTGAGAGTTGTAGCAAAATT GTGTCAACGGAAGATTTAA (SEQ ID NO: 116)
AOLFR64 sequences:
MTILLNSSLQRATFFLTGFQGLEGLHGWISIPFCFIYLTVILGNLTILHVICTDATLHGPMYYFLG MLAVTDLGLCLSTLPTVLGIFWFDTREIGIPACFTQLFFIHTLSSMESSVLLSMSIDRSVAVCNPL HDSTVXTPACIVKMGLSSVLRSALLILPXPFLLKXUϊQYCHSHVI-AHAYCLHLEIMKLACSSIIVN HIYGLFWACTVGVDSLLIFLSYALILRTVLSIASHQERLRALNTCVSHICAVLLFYIPMIGLSLV HRFGEHLPRVVHLFMSYVYLL PLMNPIIYSIKTKQIRQRIIKKFQFIKSLRCFWKD (SEQ ID NO: 117)
ATGACAATTCTTCTTAATAGCAGCCTCCAAAGAGCCACTTTCTTCCTGACGGGCTTCCAAG GTCTAGAAGGTCTCCATGGCTGGATCTCTATTCCCTTCTGCTTCATCTACCTGACAGTTATC TTGGGGAACCTCACCATTCTCCACGTCATTTGTACTGATGCCACTCTCCATGGACCCATGT ACTATTTCTTGGGCATGCTAGCTGTCACAGACTTAGGCCTTTGCCTTTCCACACTGCCCACT GTGCTGGGCATTTTCTGGTTTGATACCAGAGAGATTGGCATCCCTGCCTGTTTCACTCAGC TCTTCTTCATCCACACCTTGTCTTCAATGGAGTCATCAGTTCTGTTATCCATGTCCATTGAC CGCTCCGTGGCCGTCTGCAACCCACTGCATGACTCCACCGTCCTGACACCTGCATGTATTG TCAAGATGGGGCTAAGCTCAGTGCTTAGAAGTGCTCTCCTCATCCTCCCCTTGCCATTCCTC CTGAAGCGCTTCCAATACTGCCACTCCCATGTGCTGGCTCATGCTTATTGTCTTCACCTGGA GATCATGAAGCTGGCCTGCTCTAGCATCATTGTCAATCACATCTATGGGCTCTTTGTTGTG GCCTGCACCGTGGGTGTGGACTCCCTGCTCATCTTTCTCTCATACGCCCTCATCCTTCGCAC CGTGCTCAGCATTGCCTCCCACCAGGAGCGACTCCGAGCCCTCAACACCTGTGTCTCTCAT ATCTGTGCTGTACTGCTCTTCTACATCCCCATGATTGGCTTGTCTCTTGTGCATCGCTTTGG TGAACATCTGCCCCGCGTTGTACACCTCTTCATGTCCTATGTGTATCTGCTGGTACCACCCC TTATGAACCCCATCATCTACAGCATCAAGACCAAGCAAATTCGCCAGCGCATCATTAAGAA GTTTCAGTTTATAAAGTCACTTAGGTGTTTTTGGAAGGATTAA (SEQ ID NO: 118)
AOLFR6S sequences:
MAGRMSTSNHTQFHPSSFLLLGIPGLEDVHIWIGVPFFFVYLVALLGNTALLFVIQTEQSLHEP YYFLA LDSIDLGLSTATIPKMLGIFWFNTKEISFGGCLSHMFFIHFFTAMESIVLVAMAFDRYI AICKPLRYTMILTSKIISLLAGIAVLRSLYMVVPLVFLLLRLPFCGHRIIPHTYCEHMGIARLACAS IKVNIRFGLGNISLLLLDVILIILSYYRILYAVFCLPSWEARLKALNTCGSHIGVILAFFTPAFFSFL THRFGHNIPQYIHIILANLYVWPPALNPVIYGVRTKQIRERVLRIFLKTNH (SEQ ID NO: 119)
ATGGCAGGAAGAATGTCTACGTCTAATCACACCCAGTTCCATCCTTCTTCATTCCTACTGCT
GGGTATCCCAGGGCTAGAAGATGTGCACATTTGGATTGGAGTCCCTTTTTTCTTTGTGTAT
CTTGTTGCACTCCTGGGAAACACTGCTCTCTTGTTTGTGATCCAGACTGAGCAGAGTCTCC ATGAGCCTATGTACTACTTCCTGGCCATGTTGGATTCCATTGACCTGGGCTTGTCTACAGC CACCATCCCCAAAATGTTGGGCATCTTCTGGTTCAATACCAAAGAAATATCTTTTGGAGGC TGCCTTTCTCACATGTTCTTCATCCATTTCTTCACTGCTATGGAGAGCATTGTGTTGGTGGC CATGGCCTTTGACCGCTACATTGCCATTTGCAAACCTCTTCGGTACACCATGATCCTCACCA GCAAAATCATCAGCCTCATTGCAGGCATTGCTGTCCTGAGGAGCCTGTACATGGTTGTTCC ACTGGTGTTTCTCCTTCTGAGGCTGCCCTTCTGTGGGCATCGTATCATCCCTCATACTTATT GTGAGCACATGGGCATTGCCCGTCTGGCCTGTGCCAGCATCAAAGTCAACATTAGGTTTGG CCTTGGCAACATATCTCTCTTGTTACTGGATGTTATCCTTATTATTCTCTCCTATGTCAGGA TCCTGTATGCTGTCTTCTGCCTGCCCTCCTGGGAAGCTCGACTCAAAGCTCTCAACACCTGT GGTTCTCATATTGGTGTTATCTTAGCCTTTTTTACACCAGCATTTTTTTCATTCTTGACACA TCGTTTTGGCCATAATATCCCACAGTATATACATATTATATTAGCCAACCTGTATGTGGTTG TCCCACCAGCCCTCAATCCTGTAATCTATGGAGTCAGGACAAAGCAGATTCGAGAGAGAG TGCTGAGGATTTTTCTCAAGACCAATCACTAA (SEQ ID NO: 120)
AOLFR66 sequences: MSFLNGTSLTPASFILNGIPGLED VHLWISFPLCTMYSIAITGNFGLMYLIYCDEALHRPMYVFL ALLSFTDVLMCTSTLPNTLFIL TNLKEroFKACLAQMFFVHTFTGMESGVLMLMALDHCVAI CFPLRYATILTNSVLAKAGFLTFLRGVMLVIPSTFLTKRLPYCKGNVIPHTYCDHMSVAKISCGN VRVNAIYGLIVALLIGGFDILCITISYTMILQAWSLSSADARQKAFSTCTAHFCAIVLTYVPAFF TFFTHHFGGHTIPLHIHII]V-ANLYLLMPPTMNPIVYGVT TRQVRESVIRFFLKGKDNSHNF (SEQ ID NO: 121)
ATGTCATTTCTAAATGGCACCAGCCTAACTCCAGCTTCATTCATCCTAAATGGCATCCCTG GTTTGGAAGATGTGCATTTGTGGATCTCCTTCCCACTGTGTACCATGTACAGCATTGCTATT ACAGGGAACTTCGGCCTTATGTACCTCATCTACTGTGATGAGGCCTTACACAGACCTATGT ATGTCTTCCTTGCCCTTCTTTCCTTCACAGATGTGCTCATGTGCACCAGCACCCTTCCCAAC ACTCTCTTCATATTGTGGTTTAATCTCAAGGAGATTGATTTTAAAGCCTGCCTCGCCCAGAT GTTCTTTGTGCACACCTTCACAGGGATGGAGTCTGGGGTGCTCATGCTCATGGCCCTGGAC CACTGTGTGGCCATCTGCTTCCCTCTGCGTTATGCCACCATCCTCACTAATTCAGTCATTGC TAAAGCTGGGTTCCTCACTTTTCTTAGGGGTGTGATGCTTGTTATCCCTTCCACTTTCCTCA CCAAGCGCCTTCCATACTGCAAGGGCAACGTCATACCCCACACCTACTGTGACCACATGTC TGTGGCCAAGATATCTTGTGGTAATGTCAGGGTTAACGCCATCTATGGTTTGATAGTTGCC CTGCTGATTGGGGGCTTTGATATCCTGTGCATTACAATCTCCTACACTATGATTCTTCAAGC AGTTGTGAGTCTATCATCAGCAGATGCTCGACAGAAGGCCTTCAGCACCTGCACTGCCCAC TTCTGTGCCATAGTCCTCACCTATGTTCCAGCCTTCTTTACCTTCTTTACACACCATTTTGG GGGACACACCATTCCTCTACACATACATATTATTATGGCTAATCTCTACCTACTAATGCCTC CCACAATGAACCCTATTGTGTATGGGGTGAAAACCAGGCAGGTACGAGAAAGTGTCATTA GGTTCTTTCTTAAGGGAAAGGACAATTCTCATAACTTTTAA (SEQ ID NO: 122)
AOLFR67 sequences:
MSGDNSSSLTPGFFILNGVPGLEATHIWISLPFCFMYIIAVVGNCGLICLISHEEALHRPMYYFLA LLSFTDVTLCTTMVPNMLCIFWFNLKEIDFNACLAQMFFVHMLTGMESGVLMLMALDRYVAI CYPLRYATILTNPVIAKAGLATFLRNYMLIIPFTLLTKRLPYCRGNFIPHTYCDHMSVAKVSCGN FKVNAIYGLMVALLIGVFDICCISVSYTMILQAVMSLSSADARHKAFSTCTSHMCSIVITYVAAF FTFFTHRFVGHNIPNHIHIIVANLYLLLPPTMNPIVYGVKTKQIQEGVIKFLLGDKVSFTYDK (SEQ ID NO: 123)
ATGTCTGGGGACAACAGCTCCAGCCTGACCCCAGGATTCTTTATCTTGAATGGCGTTCCTG GGCTGGAAGCCACACACATCTGGATCTCCCTGCCATTCTGCTTTATGTACATCATTGCTGTC GTGGGGAACTGTGGGCTCATCTGCCTCATCAGCCATGAGGAGGCCCTGCACCGGCCCATGT ACTACTTCCTGGCCCTGCTCTCCTTCACTGATGTCACCTTGTGCACCACCATGGTACCTAAT ATGCTGTGCATATTCTGGTTCAACCTCAAGGAGATTGACTTTAACGCCTGCCTGGCCCAGA TGTTTTTTGTCCATATGCTGACAGGGATGGAGTCTGGGGTGCTCATGCTCATGGCCCTGGA CCGCTATGTGGCCATCTGCTACCCCTTACGCTATGCCACCATCCTTACCAACCCTGTCATCG CCAAGGCTGGTCTTGCCACCTTCTTGAGGAATGTGATGCTCATCATCCCATTCACTCTCCTC ACCAAGCGCCTGCCCTATTGCCGGGGGAACTTCATCCCCCACACCTACTGTGACCATATGT CTGTGGCCAAGGTATCCTGTGGCAATTTCAAGGTCAATGCTATTTATGGTCTGATGGTTGC TCTCCTGATTGGTGTGTTTGATATCTGCTGTATCTCTGTATCTTACACTATGATTTTGCAGG CTGTTATGAGCCTGTCATCAGCAGATGCTCGTCACAAAGCCTTCAGCACCTGCACATCTCA CATGTGTTCCATTGTGATCACCTATGTTGCTGCTTTTTTCACTTTTTTCACTCATCGTTTTGT AGGACACAATATCCCAAACCACATACACATCATCGTGGCCAACCTTTATCTGCTACTGCCT CCTACCATGAACCCAATTGTTTATGGAGTCAAGACCAAGCAGATTCAGGAAGGTGTAATTA AATTTTTACTTGGAGACAAGGTTAGTTTTACCTATGACAAATGA (SEQ ID NO: 124)
AOLFR68 sequences:
MTTHRNDTLSTEASDFLLNCFVRSPSWQHWLSLPLSLLFLLAVGANTTLLMTI LEASLHQPL YYLLSLLSLLDIVLCLTVIPKVLT WFDLRPISFPACFLQMYIMNCFLAMESCTFMVMAYDRY VAICHPLRYPSΠTDHFVVKAAMFILTRNVLMTLPIPILSAQLRYCGRNVIENCICANMSVSRLSC DDVTINHLYQFAGGWTLLGSDLILIFLSYTFILRAVLRLKAEGAVAKALSTCGSHFMLILFFSTIL LVFVLTHVAKKKVSPD VLLNVLHHVIPAALNPΠYGVRTQEIKQGMQRLLKKGC (SEQ ID
NO: 125) ATGACAACACACCGAAATGACACCCTCTCCACTGAAGCTTCAGACTTCCTCTTGAATTGTT TTGTCAGATCCCCCAGCTGGCAGCACTGGCTGTCCCTGCCCCTCAGCCTCCTTTTCCTCTTG GCCGTAGGGGCCAACACCACCCTCCTGATGACCATCTGGCTGGAGGCCTCTCTGCACCAGC CCCTGTACTACCTGCTCAGCCTCCTCTCCCTGCTGGACATCGTGCTCTGCCTCACTGTCATC CCCAAGGTCCTGACCATCTTCTGGTTTGACCTCAGGCCCATCAGCTTCCCTGCCTGCTTCCT CCAGATGTACATCATGAATTGTTTCCTAGCCATGGAGTCTTGCACATTCATGGTCATGGCC TATGATCGTTATGTAGCCATCTGCCACCCACTGAGATATCCATCAATCATCACTGATCACTT TGTAGTCAAGGCTGCCATGTTTATTTTGACCAGAAATGTGCTTATGACTCTGCCCATCCCC ATCCTTTCAGCACAACTCCGTTATTGTGGAAGAAATGTCATTGAGAACTGCATCTGTGCCA ATATGTCTGTTTCCAGACTCTCCTGCGATGATGTCACCATCAATCACCTTTACCAATTTGCT GGAGGCTGGACTCTGCTAGGATCTGACCTCATCCTTATCTTCCTCTCCTACACCTTCATTCT GCGAGCTGTGCTGAGACTCAAGGCAGAGGGTGCCGTGGCAAAGGCCCTAAGCACATGTGG CTCCCACTTCATGCTCATCCTCTTCTTCAGCACCATCCTTCTGGTTTTTGTCCTCACACATGT GGCTAAGAAGAAAGTCTCCCCTGATGTGCCAGTCTTGCTCAATGTTCTCCACCATGTCATT CCTGCAGCCCTTAACCCCATCATTTACGGGGTGAGAACCCAAGAAATTAAGCAGGGAATG CAGAGGTTGTTGAAGAAAGGGTGCTAA (SEQ ID NO: 126)
AOLFR69 sequences:
MSYSIYKSTVNIPLSHGVVHSFCHNMNCNFMHIFKTVLDFNMKNVTEVTLFVLKGFTDNLELQ TIFFFLFLAIYLFTLMGNLGLILWIRDSQLHKPMYYFLSMLSSVDACYSSVITPNMLVDFTTKN KVISFLGCVAQVFLACSFGTTECFLLAAMAYDRYVAIYNPLLYSVSMSPRVYMPLINASYVAGI LHATIHTVATFSLSFCGANEIRRVFCDIPPLLAISYSDTHTNQLLLFYFVGSIELVTILIVLISYGLIL LAILKMYSAEGRRKVFSTCGAHLTGVSIYYGTILFMYVRPSSSYASDHDMIVSIFYTIVIPLLNPV IYSLR-ISIKDVK SMKKMFG ^QVINKVYFHTKK (SEQ ID NO: 127)
ATGTCGTACAGTATATACAAGAGCACAGTTAACATCCCCTTGAGTCATGGTGTTGTTCATT CTTTTTGTCATAATATGAACTGTAACTTTATGCATATCTTCAAGTTTGTTCTAGATTTCAAC ATGAAGAATGTCACTGAAGTTACCTTATTTGTACTGAAGGGCTTCACAGACAATCTTGAAC TGCAGACTATCTTCTTCTTCCTGTTTCTAGCAATCTACCTCTTCACTCTCATGGGAAATTTA GGACTGATTTTAGTGGTCATTAGGGATTCCCAGCTCCACAAACCCATGTACTATTTTCTGA GTATGTTGTCTTCTGTGGATGCCTGCTATTCCTCAGTTATTACCCCAAATATGTTAGTAGAT TTTACGACAAAGAATAAAGTCATTTCATTCCTTGGATGTGTAGCACAGGTGTTTCTTGCTT GTAGTTTTGGAACCACAGAATGCTTTCTCTTGGCTGCAATGGCTTATGATCGCTATGTAGC CATCTACAACCCTCTCCTGTATTCAGTGAGCATGTCACCCAGAGTCTACATGCCACTCATC AATGCTTCCTATGTTGCTGGCATTTTACATGCTACTATACATACAGTGGCTACATTTAGCCT ATCCTTCTGTGGAGCCAATGAAATTAGGCGTGTCTTTTGTGATATCCCTCCTCTCCTTGCTA TTTCTTATTCTGACACTCACACAAACCAGCTTCTACTCTTCTACTTTGTGGGCTCTATCGAG CTGGTCACTATCCTGATTGTTCTGATCTCCTATGGTTTGATTCTGTTGGCCATTCTGAAGAT GTATTCTGCTGAAGGGAGGAGAAAAGTCTTCTCCACATGTGGAGCTCACCTAACTGGAGT GTCAATTTATTATGGGACAATCCTCTTCATGTATGTGAGACCAAGTTCCAGCTATGCTTCG GACCATGACATGATAGTGTCAATATTTTACACCATTGTGATTCCCTTGCTGAATCCCGTCAT CTACAGTTTGAGGAACAAAGATGTAAAAGACTCAATGAAAAAAATGTTTGGGAAAAATCA GGTTATCAATAAAGTATATTTTCATACTAAAAAATAA (SEQ ID NO: 128)
AOLFR70 sequences:
MDSTFTGYNLYNLQVKTEMDKLSSGLDIYRNPLKNKTEVTMFILTGFTDDFELQVFLFLLFFAI YLFTLIGNLGLVVLVIEDS LHNPMYYFLSVLSFLDACYSTVVTPKMLVT ΠFLAKNKSISFIGCA TQMLLFVTFGTTECFLLAAMAYΏHYVAIYNPLLYSVSMSPRVYVPLITASYVAGILHATIHIVA TFSLSFCGSNEIRHVFCDMPPLLAISCSDTHTNQLLLFYFVGSIEIVTILIVLISCDFILLSILKMHSA KGRQKAFSTCGSHLTGVTIYHGTILVSYMIIPSSSYASDHDIIVSIFYTIVIPKLNPΠYSLRNK VK KAVKKMLKLVYK (SEQ ID NO: 129)
ATGGACTCCACTTTCACAGGCTATAACCTTTATAACCTGCAAGTAAAAACTGAAATGGACA AGTTGTCATCAGGTTTGGATATATACAGGAATCCACTGAAGAACAAGACTGAAGTCACCA TGTTTATATTGACAGGCTTCACAGATGATTTTGAGCTGCAAGTCTTCCTATTTTTACTATTT TTTGCAATCTATCTCTTTACCTTGATAGGCAATTTAGGGCTGGTTGTGTTGGTCATTGAGG ATTCCTGGCTCCACAACCCCATGTATTATTTTCTTAGTGTTTTATCATTCTTGGATGCTTGC TATTCTACAGTTGTCACTCCAAAAATGTTGGTCAATTTCCTGGCAAAAAATAAATCCATTT CATTTATCGGATGTGCAACACAGATGCTTCTTTTTGTTACTTTTGGAACTACAGAATGTTTT CTCTTGGCTGCAATGGCTTATGATCACTATGTAGCCATCTACAACCCTCTCCTGTATTCAGT GAGCATGTCACCCAGAGTCTATGTGCCACTCATCACTGCTTCCTACGTTGCTGGCATTTTAC ATGCTACTATACATATAGTGGCTACATTTAGCCTGTCCTTCTGTGGATCCAATGAAATTAG GCATGTCTTTTGTGATATGCCTCCTCTCCTTGCTATTTCTTGTTCTGACACTCACACAAACC AGCTTCTACTCTTCTACTTTGTGGGTTCTATTGAGATAGTCACTATCCTGATTGTCCTCATT TCCTGTGATTTCATTCTGTTGTCCATTCTGAAGATGCATTCTGCTAAGGGAAGGCAAAAGG CCTTCTCTACATGTGGCTCTCACCTAACTGGAGTGACAATTTATCATGGAACAATTCTCGTC AGTTATATGAGACCAAGTTCCAGCTATGCTTCAGACCATGACATCATAGTGTCAATATTTT ACACAATTGTGATTCCCAAGTTGAATCCCATCATCTATAGTTTGAGGAACAAAGAAGTAAA AAAGGCAGTGAAGAAAATGTTGAAATTGGTTTACAAATGA (SEQ ID NO: 130)
AOLFR71 sequences:
MGRR--^mTNVPDFILTGLSDSEEVQMALFILFLLIYLITMLGNVGMILIIRLDLQLHTPMYFFLTH LSFIDLSYSTVITPKTLANLLTSNYISFMGCFAQMFFFVFLGAAECFLLSSMAYDRYVAICSPLRY PVIMSKRLCCALVTGPYYISFINSFVNVVWMSRLHFCDSNVVRHFFCDTSPILALSCMDTYDIEI MIHILAGSTLMVSLITISASYVSILST-ILKINSTSGKQ ALSTCASHLLGVTIFYGTMIFTYLKPR SYSLGRDQVASVFYTIVIPMLNPLIYSLRNKEVKNALIRVMQRRQDSR (SEQ ID NO: 131)
ATGGGTAGAAGAAATAACACAAATGTGCCTGACTTCATCCTTACGGGACTGTCAGATTCTG AAGAGGTCCAGATGGCCCTCTTTATACTATTTCTCCTGATATACCTAATTACTATGCTGGGC AATGTGGGGATGATATTGATAATCCGCCTGGACCTCCAGCTTCACACTCCCATGTATTTTT TCCTTACTCACTTGTCATTTATTGACCTCAGTTACTCAACTGTCATCACACCTAAAACCTTA GCGAACTTACTGACTTCCAACTATATTTCCTTCATGGGCTGCTTTGCCCAGATGTTCTTTTT TGTCTTCTTGGGAGCTGCTGAATGTTTTCTTCTCTCATCAATGGCCTATGATCGCTACGTAG CTATCTGCAGTCCTCTACGTTACCCAGTTATTATGTCCAAAAGGCTGTGTTGCGCTCTTGTC ACtGGGCCCTATGTGATTAGCTTTATCAACTCCTTTGTCAATGTGGTTTGGATGAGCAGAC TGCATTTCTGCGACTCAAATGTAGTTCGTCACTTTTTCTGCGACACGTCTCCAATTTTAGCT CTGTCCTGCATGGACACATACGACATTGAAATCATGATACACATTTTAGCTGGTTCCACCC TGATGGTGTCCCTTATCACAATATCTGCATCCTATGTGTCCATTCTCTCTACCATCCTGAAA ATTAATTCCACTTCAGGAAAGCAGAAAGCTTTGTCTACTTGTGCCTCTCATCTCTTGGGAG TCACCATCTTTTATGGAACTATGATTTTTACTTATTTAAAACCAAGAAAGTCTTATTCTTTG GGAAGGGATCAAGTGGCTTCTGTTTTTTATACTATTGTGATTCCCATGCTGAATCCACTCAT TTATAGTCTTAGAAACAAAGAAGTTAAAAATGCTCTCATTAGAGTCATGCAGAGAAGACA GGACTCCAGGTAA (SEQ ID NO: 132)
AOLFR72 sequences: MAPENFTRVTEFILTGVSSCPELQIPLFL LVLYGLTMAGNLGIITLTSVDSRLQTPMYFFLQHL AL-πSTLGNSTVIAPKMLINFLVK- TTSFYECATQLGGFLFFIVSEVIMLALJN^ YMVWSRRLCLLLVSLTYLYGFSTAIWSSYVFSVSYCSSNIINHFYCDNVPLLALSCSDTYLPE TVWISAATNVNGSLIIVLVSYFNIVLSILKICSSEGRK AFSTCASHMMAVTIFYGTLLF-^ RSNHSLDTDDKMASWYTLVIPMLNPLIYSLRNKDVKTALQRFMTNLCYSFKTM (SEQ ID NO: 133)
ATGGCTCCTGAAAATTTCACCAGGGTCACTGAGTTTATTCTTACAGGTGTCTCTAGCTGTC CAGAGCTCCAGATTCCCCTCTTCCTGGTCTTTCTGGTGCTCTATGGGCTGACCATGGCAGG GAACCTGGGCATCATCACCCTCACCAGTGTTGACTCTCGACTTCAAACCCCCATGTACTTTT TCCTGCAACATCTGGCTCTCATTAATCTTGGTAACTCTACTGTCATTGCCCCTAAAATGCTG ATTAACTTTTTAGTAAAGAAGAAAACTACCTCATTCTATGAATGTGCCACCCAACTGGGAG GGTTCTTGTTCTTTATTGTATCGGAGGTAATCATGCTGGCTTTGATGGCCTGTGACCGCTAT GTGGCTATTTGTAACCCTCTGCTGTACATGGTGGTGGTGTCTCGGCGGCTCTGCCTCCTGCT GGTCTCCCTCACATACCTCTATGGCTTTTCTACAGCTATTGTGGTTTCATCTTATGTATTCT CTGTGTCTTATTGCTCTTCTAATATAATCAATCATTTTTACTGTGATAATGTTCCTCTGTTA GCATTATCTTGCTCTGATACTTACTTACCAGAAACAGTTGTCTTTATATCTGCAGCAACAA ATGTGGTTGGTTCCTTGATTATAGTTCTAGTATCTTATTTCAATATTGTTTTGTCTATTTTA AAAATATGTTCATCAGAAGGAAGGAAAAAAGCCTTTTCTACCTGTGCTTCACATATGATGG CAGTCACAATTTTTTATGGGACATTGCTATTCATGTATGTGCAGCCCCGAAGTAACCATTC ATTGGATACTGATGATAAGATGGCTTCTGTGTTTTACACGTTGGTAATTCCTATGCTGAAT CCCTTGATCTACAGCCTGAGGAATAAGGATGTGAAGACTGCTCTACAGAGATTCATGACA AATCTGTGCTATTCCTTTAAAACAATGTAA (SEQ ID NO: 134)
AOLFR73 sequences:
JVl-NHVVKHNHTAVTKVTEFILMGITDNPGLQAPLFGLFLIIYLVTVIGNLGMVILTYLDS-^HTP MYFFLRHLSITDLGYSTVIAPKMLVNFIVHKNTIS YNWYATQLAFFEIFIISELFILSAMAYDRYV AICKPLLYVIIMAEKVLWVLVIVPYLYSTFVSLFLTIKLFKLSFCGSNIISYFYCDCIPLMSILCSDT NELELIILIFSGCNLLFSLSIVLISYMFILVAILRMNSRKGRYKAFSTCSSHLTVVIMFYGTLLFIYL QPKSSHTLAIDKMASWYTLLIPMLNPLIYSLRN EV DALKRTLTNRFKIPI (SEQ ID NO: 135)
ATGAATCATGTGGTAAAACACAATCACACGGCAGTGACCAAGGTGACTGAATTTATTCTCA TGGGGATTACAGACAACCCTGGGCTGCAGGCTCCACTGTTTGGACTCTTCCTCATCATATA TCTGGTCACAGTGATAGGCAATCTGGGCATGGTTATCTTGACCTACTTGGACTCCAAGCTA CACACCCCCATGTACTTTTTCCTTAGACATTTGTCAATCACTGATCTTGGTTACTCCACTGT CATTGCCCCGAAGATGTTAGTAAACTTCATAGTGCACAAAAACACAATTTCTTACAATTGG TATGCCACTCAGCTAGCATTCTTTGAGATTTTCATCATCTCTGAGCTCTTTATTCTATCAGC AATGGCCTATGATCGCTACGTAGCCATCTGTAAACCTCTTCTGTACGTGATCATCATGGCA GAGAAAGTACTTTGGGTGCTGGTAATTGTTCCCTATCTCTATAGCACGTTTGTGTCACTATT TCTCACAATTAAGTTATTTAAACTGTCCTTCTGTGGCTCAAACATAATCAGCTATTTTTACT GTGACTGTATCCCTCTGATGTCCATACTCTGTTCTGACACAAATGAATTAGAATTAATAAT TTTGATCTTCTCAGGCTGTAATTTGCTCTTCTCCCTCTCAATTGTTCTCATATCCTACATGTT TATTCTAGTGGCCATTCTCAGAATGAACTCAAGGAAAGGGAGGTACAAAGCCTTCTCCACC TGTAGCTCTCATCTGACAGTGGTGATCATGTTCTATGGGACATTGTTATTTATTTACTTGCA ACCCAAGTCCAGTCATACTTTGGCTATTGATAAAATGGCCTCAGTGTTTTATACCCTGTTG ATTCCTATGCTGAATCCGTTGATCTACAGCCTAAGGAACAAAGAAGTAAAAGATGCTCTAA AGAGAACTTTAACCAATCGATTCAAAATTCCCATTTAA (SEQ ID NO: 136)
AOLFR74 sequences:
MEQHNLTTVNEFILTGITDIAELQAPLFALFLMIYVISVMGNLGMIVLTKLDSRLQTPMYFFLRH LAFMDLGYSTTVGPKMLVM?VVDKNIISYYFCATQLAFFLVFIGSELFILSAMSYDLYVAICNPL LYTVIMSRRVCQVLVAIPYLYCTFISLLVTIKIFTLSFCGYNVISHFYCDSLPLLPLLCSNTHEIELI ILIFAAIDLISSLLIVLLSYLLILVAILRMNSAGRQKAFSTCGAHLTWIVFYGTLLFMYVQPKSSH SFDTDKVASIFYTLVIPMLNPLIYSLR-ISfKDVXYALIU .TWNNLCNIFV (SEQ ID NO: 137)
ATGGAACAACACAATCTAACAACGGTGAATGAATTCATTCTTACGGGAATCACAGATATC GCTGAGCTGCAGGCACCATTATTTGCATTGTTCCTCATGATCTATGTGATCTCAGTGATGG GCAATTTGGGCATGATTGTCCTCACCAAGTTGGACTCCAGGTTGCAAACCCCTATGTACTT TTTTCTCAGACATCTGGCTTTCATGGATCTTGGTTATTCAACAACTGTGGGACCCAAAATG TTAGTAAATTTTGTTGTGGATAAGAATATAATTTCTTATTATTTTTGTGCAACACAGCTAGC TTTCTTTCTTGTGTTCATTGGTAGTGAACTTTTTATTCTCTCAGCCATGTCCTACGACCTCT ATGTGGCCATCTGTAACCCTCTGCTATACACAGTAATCATGTCACGAAGGGTATGTCAGGT GCTGGTAGCAATCCCTTACCTCTATTGCACATTCATTTCTCTTCTAGTCACCATAAAGATTT TTACTTTATCCTTCTGTGGCTACAACGTCATTAGTCATTTCTACTGTGACAGTCTCCCTTTG TTACCTTTGCTTTGTTCAAATACACATGAAATTGAATTGATAATTCTGATCTTTGCAGCTAT TGATTTGATTTCATCTCTTCTGATAGTTCTTTTATCTTACCTGCTCATCCTTGTAGCCATTCT CAGGATGAATTCTGCTGGCAGACAAAAGGCTTTTTCTACCTGTGGAGCCCACCTGACAGTG GTCATAGTGTTCTATGGGACTTTGCTTTTCATGTACGTGCAGCCCAAGTCCAGTCATTCCTT TGACACTGATAAAGTGGCTTCCATATTTTACACCCTGGTTATCCCCATGTTGAATCCCTTGA TCTATAGTTTACGAAACAAAGATGTAAAATATGCCCTACGAAGGACATGGAATAACTTATG TAATATTTTTGTTTAA (SEQ ID NO: 138) AOLFR75 sequences:
MEGKNQTNISEFLLLGFSSWQQQQVLLFALFLCLYLTGLFGNLLILLAIGSDHCLHTPMYFFLA NLSLVDLCLPSATVPKMLLNIQTQTQTISYPGCLAQMYFCMMPANMDNFLLTVMAYDRYVAI CHPLHYSTIMALRLCASLVAAPWVL ILNPLLHTLMMAHLHFCSDNVIHHFFCDINSLLPLSCSD TSLNQLSVLATVGLIFWPSVCILVSYILIVSAVMKVPSAQGKLKAFSTCGSHLALVILFYGANT GVYMSPLSNHSTEKDSAASVIFMVVAPVLNPFIYSLRNNELKGTLKKTLSRPGAVAHACNPSTL GGRGGWIMRSGDRDHPG (SEQ ID NO: 139)
ATGGAAGGGAAAAATCAAACCAATATCTCTGAATTTCTCCTCCTGGGCTTCTCAAGTTGGC AACAACAGCAGGTGCTACTCTTTGCACTTTTCCTGTGTCTCTATTTAACAGGGCTGTTTGGA AACTTACTCATCTTGCTGGCCATTGGCTCGGATCACTGCCTTCACACACCCATGTATTTCTT CCTTGCCAATCTGTCCTTGGTAGACCTCTGCCTTCCCTCAGCCACAGTCCCCAAGATGCTAC TGAACATCCAAACCCAAACCCAAACCATCTCCTATCCCGGCTGCCTGGCTCAGATGTATTT CTGTATGATGTTTGCCAATATGGACAATTTTCTTCTCACAGTGATGGCATATGACCGTTAC GTGGCCATCTGTCACCCTTTACATTACTCCACCATTATGGCCCTGCGCCTCTGTGCCTCTCT GGTAGCTGCACCTTGGGTCATTGCCATTTTGAACCCTCTCTTGCACACTCTTATGATGGCCC ATCTGCACTTCTGCTCTGATAATGTTATCCACCATTTCTTCTGTGATATCAACTCTCTCCTC CCTCTGTCCTGTTCCGACACCAGTCTTAATCAGTTGAGTGTTCTGGCTACGGTGGGGCTGA TCTTTGTGGTACCTTCAGTGTGTATCCTGGTATCCTATATCCTCATTGTTTCTGCTGTGATG AAAGTCCCTTCTGCCCAAGGAAAACTCAAGGCTTTCTCTACCTGTGGATCTCACCTTGCCTT GGTCATTCTTTTCTATGGAGCAAACACAGGGGTCTATATGAGCCCCTTATCCAATCACTCT ACTGAAAAAGACTCAGCCGCATCAGTCATTTTTATGGTTGTAGCACCTGTGTTGAATCCAT TCATTTACAGTTTAAGAAACAATGAACTGAAGGGGACTTTAAAAAAGACCCTAAGCCGGC CGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCA TGAGGTCAGGAGATCGAGACCATCCTGGCTAA (SEQ ID NO: 140)
AOLFR76 sequences:
MENNTEVSEFILLGLTNAPELQVPLFIMFTLIYLITLTGNLGMIILILLDSHLHTPMYFFLSNLSLA GIGYSSAVTPKVLTGLLIEDKAISYSACAAQMFFCAVFATVENYLLSSMAYDRYAAVCNPLHY TTTMTTRVCACLAIGCYVIGFLNASIQIGDTFRLSFCMSNVIHHFFCDKPAVITLTCSEKHISELIL VLISSFNWFALLVTLISYLFILITILKRHTGKGYQKPLSTCGSHLIAIFLFYITVIIMYIRPSSSHSM DTDKIASVTYTMIIPMLSPIVYTLRNKDVI NAFMKVNEKAKYSLDSV (SEQ ID NO: 141)
, ATGGAGAATAATACAGAGGTGAGTGAATTCATCCTGCTTGGTCTAACCAATGCCCCAGAA CTACAGGTTCCCCTCTTTATCATGTTTACCCTCATCTACCTCATCACTCTGACTGGGAACCT GGGGATGATCATATTAATCCTGCTGGACTCTCATCTCCACACTCCCATGTACTTTTTTCTCA GTAACCTGTCTCTTGCAGGCATTGGTTACTCCTCAGCTGTCACTCCAAAGGTTTTAACTGG GTTGCTTATAGAAGACAAAGCCATCTCCTACAGTGCCTGTGCTGCTCAGATGTTCTTTTGT GCAGTCTTTGCCACTGTGGAAAATTACCTCTTGTCCTCAATGGCCTATGACCGCTACGCAG CAGTGTGTAACCCCCTACATTATACCACCACCATGACAACACGTGTGTGTGCTTGTCTGGC TATAGGCTGTTATGTCATTGGTTTTCTGAATGCTTCTATCCAAATTGGAGATACATTTCGCC TCTCTTTCTGCATGTCCAATGTGATTCATCACTTTTTCTGTGACAAACCAGCAGTCATTACT CTGACCTGCTCTGAGAAACACATTAGTGAGTTGATTCTTGTTCTTATATCAAGTTTTAATGT CTTTTTTGCACTTCTTGTTACCTTGATTTCCTATCTGTTCATATTGATCACCATTCTTAAGAG GCACACAGGTAAGGGATACCAGAAGCCTTTATCTACCTGTGGTTCTCACCTCATTGCCATT TTCTTATTTTATATAACTGTCATCATCATGTACATACGACCAAGTTCCAGTCATTCCATGGA CACAGACAAAATTGCATCTGTGTTCTACACTATGATCATCCCCATGCTCAGTCCTATAGTCT ATACCCTGAGGAACAAAGACGTGAAGAATGCATTCATGAAGGTTGTTGAGAAGGCAAAAT ATTCTCTAGATTCAGTCTTTTAA (SEQ ID NO: 142)
AO FR77 sequences:
MGDVNQSVASDFILVGLFSHSGSRQLLFSLVAVMFVIGLLGNTVLLFLIRVDSRLHTPMYFLLS QLSLFDIGCPMVTIP MASDFLRGEGATSYGGGAAQIFFLTLMGVAEGVLLVLMSYDRYVAVC QPLQWVLMRRQVCLLMMGSSWVVGVLNASIQTSITLHFPYCASRIVDHFFCEVPALLKLSCA DTCAYEMALSTSGVLILMLPLSL ^TSYGHVLQAVLSMRSEEARHKAVTTCSSHITVVGLFYGA A MYMVPCAYHSPQQDNVVSLFYSLVTPTLNPLIYSLRNPEVWMALVKVLSRAGLRQMC (SEQ ID NO: 143)
ATGGGGGATGTGAATCAGTCGGTGGCCTCAGACTTCATTCTGGTGGGCCTCTTCAGTCACT CAGGATCACGCCAGCTCCTCTTCTCCCTGGTGGCTGTCATGTTTGTCATAGGCCTTCTGGGC AACACCGTTCTTCTCTTCTTGATCCGTGTGGACTCCCGGCTCCACACACCCATGTACTTCCT GCTCAGCCAGCTCTCCCTGTTTGACATTGGCTGTCCCATGGTCACCATCCCCAAGATGGCA TCAGACTTTCTGCGGGGAGAAGGTGCCACCTCCTATGGAGGTGGTGCAGCTCAAATATTCT TCCTCACACTGATGGGTGTGGCTGAGGGCGTCCTGTTGGTCCTCATGTCTTATGACCGTTA TGTTGCTGTGTGCCAGCCCCTGCAGTATCCTGTACTTATGAGACGCCAGGTATGTCTGCTG ATGATGGGCTCCTCCTGGGTGGTAGGTGTGCTCAACGCCTCCATCCAGACCTCCATCACCC TGCATTTTCCCTACTGTGCCTCCCGTATTGTGGATCACTTCTTCTGTGAGGTGCCAGCCCTA CTGAAGCTCTCCTGTGCAGATACCTGTGCCTACGAGATGGCGCTGTCCACCTCAGGGGTGC TGATCCTAATGCTCCCTCTTTCCCTCATCGCCACCTCCTACGGCCACGTGTTGCAGGCTGTT CTAAGCATGCGCTCAGAGGAGGCCAGACACAAGGCTGTCACCACCTGCTCCTCGCACATCA CGGTAGTGGGGCTCTTTTATGGTGCCGCCGTGTTCATGTACATGGTGCCTTGCGCCTACCA CAGTCCACAGCAGGATAACGTGGTTTCCCTCTTCTATAGCCTTGTCACCCCTACACTCAAC CCCCTTATCTACAGTCTGAGGAATCCGGAGGTGTGGATGGCTTTGGTCAAAGTGCTTAGCA GAGCTGGACTCAGGCAAATGTGCTGA (SEQ ID NO: 144)
AOLFR78 sequences:
MSPDGNHSSDPTEFVLAGLPNLNSARVELFSWLLVΥLLNLTGNVLIVGVNRADTRLQTPMYF FLGNLSCLEILLTSVIIPKMLSNFLSRQHTISFAACITQFYFYFFLGASEFLLLAVMSADRYLAICH PLRYPLLMSGAVCFRVALACWVGGLVPVLGPTVAVALLPFCKQGAWQHFFCDSGPLLRLAC TNTKKLEETDFVLASLVIVSSLLITAVSYGLIVLAVLSIPSASGRQKAFSTCTSHLIVVTLFYGSAI FLYVRPSQSGSVDTN AVTVITTFVTPLLNPFIYALRNEQV EALKDMFRKVVAGVLGNLLLD KCLSEKAVK (SEQ ID NO: 145)
ATGAGTCCTGATGGGAACCACAGTAGTGATCCAACAGAGTTCGTCCTGGCAGGGCTCCCA AATCTCAACAGCGCAAGAGTGGAATTATTTTCTGTGTTTCTTCTTGTCTATCTCCTGAATCT GACAGGCAATGTGTTGATTGTGGGGGTGGTAAGGGCTGATACTCGACTACAGACCCCTAT GTACTTCTTTCTGGGTAACCTGTCCTGCCTAGAGATACTGCTCACTTCTGTCATCATTCCAA AGATGCTGAGCAATTTCCTCTCAAGGCAACACACTATTTCCTTTGCTGCATGTATCACCCA ATTCTATTTCTACTTCTTTCTCGGGGCCTCCGAGTTCTTACTGTTGGCTGTCATGTCTGCGG ATCGCTACCTGGCCATCTGTCATCCTCTGCGCTACCCCTTGCTCATGAGTGGGGCTGTGTG CTTTCGTGTGGCCTTGGCCTGCTGGGTGGGGGGACTCGTCCCTGTGCTTGGTCCCACAGTG GCTGTGGCCTTGCTTCCTTTCTGTAAGCAGGGTGCTGTGGTACAGCACTTCTTCTGCGACA GTGGCCCACTGCTCCGCCTGGCTTGCACCAACACCAAGAAGCTGGAGGAGACTGACTTTGT CCTGGCCTCCCTCGTCATTGTATCTTCCTTGCTGATCACTGCTGTGTCCTACGGCCTCATTG TGCTGGCAGTCCTGAGCATCCCCTCTGCTTCAGGCCGTCAGAAGGCCTTCTCTACCTGTAC CTCCCACTTGATAGTGGTGACCCTCTTCTATGGAAGTGCCATTTTTCTCTATGTGCGGCCAT CGCAGAGTGGTTCTGTGGACACTAACTGGGCAGTGACAGTAATAACGACATTTGTGACAC CACTGTTGAATCCATTCATCTATGCCTTACGTAATGAGCAAGTCAAGGAAGCTTTGAAGGA CATGTTTAGGAAGGTAGTGGCAGGCGTTTTAGGGAATCTTTTACTTGATAAATGTCTCAGT GAGAAAGCAGTAAAGTAA (SEQ ID NO: 146)
AOLFR79 sequences:
MTPGELALASGNHTPVTKFILQGFSNYPDLQELLFGAILLIYAITVVGNLGMMALIFTDSHLQSP MYFFLNVLSFLDICYSSVVTPKLLVNFLVSDKSISFEGCVVQLAFFVNHVTAESFLLASMAYDR FLAICQPLHYGSIMTRGTCLQLVAVSYAFGGANSAIQTGNVFALPFCGPNQLTHYYCDIPPLLH LACANTATARWLYVFSALVTLLPAAVILTSYCLVLVAIGRMRSVAGREKDLSTCASHFLAIAI FYGTVNFTYVQPHGSTTWTNGQVVSVTYTIIIPMLNPFIYSLRNKEVKGALQR-^ (SEQ ID NO: 147)
ATGACACCTGGAGAACTAGCCCTTGCCAGTGGCAACCACACCCCAGTCACCAAGTTCATCT TGCAGGGATTCTCCAATTATCCAGACCTCCAGGAGCTTCTCTTCGGAGCCATCCTGCTCAT CTATGCCATAACAGTGGTGGGCAACTTGGGAATGATGGCACTCATCTTCACAGACTCCCAT CTCCAAAGCCCAATGTATTTCTTCCTCAATGTCCTCTCGTTTCTTGATATTTGTTACTCTTCT GTGGTCACACCTAAGCTCTTGGTCAACTTCCTGGTCTCTGACAAGTCCATCTCTTTTGAGG GCTGTGTGGTCCAGCTCGCCTTCTTTGTAGTGCATGTGACAGCTGAGAGCTTCCTGCTGGC CTCCATGGCCTATGACCGCTTCCTAGCCATCTGTCAACCCCTCCATTATGGTTCTATCATGA CCAGGGGGACCTGTCTCCAGCTGGTAGCTGTGTCCTATGCATTTGGTGGAGCCAACTCCGC TATCCAGACTGGAAATGTCTTTGCCCTGCCTTTCTGTGGGCCCAACCAGCTAACACACTAC TACTGTGACATACCACCCCTTCTCCACCTGGCTTGTGCCAACACAGCCACAGCAAGAGTGG TCCTCTATGTCTTTTCTGCTCTGGTCACCCTTCTGCCTGCTGCAGTCATTCTCACCTCCTACT GCTTGGTCTTGGTGGCCATTGGGAGGATGCGCTCAGTAGCAGGGAGGGAGAAGGACCTCT CCACTTGTGCCTCCCACTTTCTGGCCATTGCCATTTTCTATGGCACTGTGGTTTTCACCTAT GTTCAGCCCCATGGATCTACTAACAATACCAATGGCCAAGTAGTGTCCGTCTTCTACACCA TCATAATTCCCATGCTCAATCCCTTCATCTATAGCCTCCGCAACAAGGAGGTGAAGGGCGC TCTGCAGAGGAAGCTTCAGGTCAACATCTTTCCCGGCTGA (SEQ ID NO: 148)
AO FR80 sequences:
MEG-DSFKTA MQFFFRPFSPDPEVQMLIFVVFLMMYLTSLGGNATIAVIVQINHSLHTPMYFFLA NLAVLEIFYTSSITPLALANLLSMGKTPVSITGCGTQMFFFVFLGGADCVLLVVMAYDRFIAICH PLRYRLIMSWSLCVELLVGSLVLGFLLSLPLTILIFHLPFCHNDEIYHFYCDMPAVMRLACADTR VΉKTALYIISFIVLSIPLSLISISYVFIVVAILRIRSAEGRQQAYSTCSSHILVVLLQYGCTSFIYLSPS SSYSPEMGRVVSVAYTFITPILNPLIYSLRNKELKDALRKALRKF (SEQ ID NO: 149)
ATGGAAGGAATAAATAAAACTGCAAAGATGCAGTTTTTCTTTCGTCCATTCTCACCTGACC CTGAGGTCCAGATGCTGATTTTTGTGGTCTTCCTGATGATGTATCTGACCAGCCTCGGTGG AAATGCTACAATTGCAGTCATTGTTCAGATCAATCATTCCCTCCACACCCCCATGTACTTTT TCCTGGCTAATCTGGCAGTTCTAGAAATCTTCTATACATCTTCCATCACCCCATTGGCCTTG GCAAACCTCCTTTCAATGGGCAAAACTCCTGTTTCCATCACGGGATGTGGCACCCAGATGT TTTTCTTTGTCTTCTTGGGTGGGGCTGATTGTGTCCTGCTGGTAGTCATGGCTTATGACCGG TTTATAGCGATCTGTCACCCTCTGCGATACAGGCTCATCATGAGCTGGTCCTTGTGTGTGG AGCTGCTGGTAGGCTCCTTGGTGCTGGGGTTCCTGTTGTCACTGCCACTCACCATTTTAATC TTCCATCTCCCATTCTGCCACAATGATGAGATCTACCACTTCTACTGTGACATGCCTGCAGT CATGCGCCTGGCTTGTGCAGACACACGCGTTCACAAGACTGCTCTGTATATCATCAGCTTC ATCGTCCTTAGCATCCCCCTCTCATTGATCTCCATCTCCTATGTCTTCATCGTGGTAGCCAT TTTACGGATCCGGTCAGCAGAAGGGCGCCAGCAAGCCTACTCTACCTGCTCTTCTCACATC TTAGTGGTCCTCCTGCAGTATGGCTGCACCAGCTTTATATACTTGTCCCCCAGTTCCAGCTA CTCTCCTGAGATGGGCCGGGTGGTATCTGTGGCCTACACATTTATCACTCCCATTTTAAAC CCCTTGATCTATAGTTTGAGGAACAAGGAACTGAAAGATGCCCTAAGGAAAGCATTGAGA AAATTCTAG (SEQ ID NO: 150)
AOLFR81 sequences:
MGVKNHSTVTEFLLSGLTEQAELQLPLFCLFLGIYTVTVVGNLSMISIIRLNRQLHTPMYYFLSS LSFLDFCYSSVITPKMMKLWMESHLIVPETRPSPRMMSNQTLVTEFILQGFSEHPEYRVFLFSCF LFLYSGALTGNVLITLAITFNPGLHAPMYFFLLNLATMDIICTSSIMPKALASLVSEESSISYGGC MAQLYFLTWAASSELLLLTVMAYDRYAAICHPLHYSSMMSKVFCSGLATAVWLLCAVNTAIH TGLMLRLDFCGPNVIIHFFCEWPLLLLSCSSTYVNGVMIVLADAFYGIVNFLMTIASYGFIVSSI LKVKTAWGRQKAFSTCSSHLTVVCMYYTAVFYAYISPVSGYSAGKSKLAGLLYTVLSPTLNPL IYTLRNKEVKAALRKLFPFFRN (SEQ ID NO: 151)
ATGAAGCTGTGGATGGAGAGTCACCTGATAGTCCCAGAAACCCGTCCCAGCCCAAGGATG ATGAGTAACCAGACGTTGGTAACCGAGTTCATCCTGCAGGGCTTTTCGGAGCACCCAGAAT ACCGGGTGTTCTTATTCAGCTGTTTCCTCTTCCTCTACTCTGGGGCCCTCACAGGTAATGTC CTCATCACCTTGGCCATCACGTTCAACCCTGGGCTCCACGCTCCTATGTACTTTTTCTTACT CAACTTGGCTACTATGGACATTATCTGCACCTCTTCCATCATGCCCAAGGCGCTGGCCAGT CTGGTGTCGGAAGAGAGCTCCATCTCCTACGGGGGCTGCATGGCCCAGCTCTATTTCCTCA CGTGGGCTGCATCCTCAGAGCTGCTGCTCCTCACGGTCATGGCCTATGACCGGTACGCAGC CATCTGCCACCCGCTGCATTACAGCAGCATGATGAGCAAGGTGTTCTGCAGCGGGCTGGCC ACAGCCGTGTGGCTGCTCTGCGCCGTCAACACGGCCATCCACACGGGGCTGATGCTGCGCT TGGATTTCTGTGGCCCCAATGTCATTATCCATTTCTTCTGCGAGGTCCCTCCCCTGCTGCTT CTCTCCTGCAGCTCCACCTACGTCAACGGTGTCATGATTGTCCTGGCGGATGCTTTCTACG GCATAGTGAACTTCCTGATGACCATCGCGTCCTATGGCTTCATCGTCTCCAGCATCCTGAA GGTGAAGACTGCCTGGGGGAGGCAGAAAGCCTTCTCCACCTGCTCTTCCCACCTCACCGTG GTGTGCATGTATTACACCGCTGTCTTCTACGCCTACATAAGCCCGGTCTCTGGCTACAGCG CAGGGAAGAGCAAGTTGGCTGGCCTGCTGTACACTGTGCTGAGTCCTACCCTCAACCCCCT CATCTATACTTTGAGAAACAAGGAGGTCAAAGCAGCCCTCAGGAAGCTTTTCCCTTTCTTC AGAAATTAA (SEQ ID NO: 152)
AOLFR82 sequences:
MQLNNNVTEFILLGLTQDPF Oα VIFLRLYLGTLLGNLLIIISVKASQAL NPMFFFLFYLSL SDTCLSTSIAPRMIVDALLKXTTISFSECMIQVFSSHVFGCLEIFILILTAVDRYVDICKPLHYMTII SQWVCGVLMAVAWVGSCVHSLVQIFLALSLPFCGPNVINHCFCDLQPLLKQACSETYVNNLLL VSNSGAICAVSYVMLIFSYVIFLHSLRNHSAEVIKKALSTCVSHIIVVILFFGPCIFMYTCPATVFP MDKM1AWYTVGTSFLNPVIYTLKNTEVKSAM-RKLWSKKLITDDKR (SEQ ID NO: 153)
ATGCAACTGAATAATAATGTGACTGAGTTCATTCTGCTTGGATTGACACAGGATCCTTTTT GGAAGAAAATAGTGTTTGTTATTTTTTTGCGTCTCTACTTGGGAACACTGTTGGGTAATTT GCTAATCATTATTAGTGTCAAGGCCAGCCAGGCACTTAAGAACCCAATGTTCTTCTTCCTT TTCTACTTATCTTTATCTGATACTTGCCTCTCTACTTCCATAGCCCCTAGAATGATTGTGGA TGCCCTTTTGAAGAAGACAACTATCTCCTTCAGCGAGTGCATGATCCAAGTCTTTTCATCC CATGTCTTTGGCTGCCTGGAGATCTTCATCCTCATCCTCACGGCTGTTGACCGCTATGTGGA CATCTGTAAGCCCCTGCACTACATGACCATCATAAGCCAGTGGGTCTGTGGTGTTTTGATG GCTGTGGCCTGGGTGGGATCCTGTGTGCATTCTTTAGTTCAGATTTTTCTTGCCCTGAGTTT GCCATTCTGTGGCCCCAATGTGATCAATCACTGTTTCTGTGACTTGCAGCCCTTGTTGAAA CAAGCCTGTTCAGAAACCTATGTGGTTAACCTACTCCTGGTTTCCAATAGTGGGGCCATTT GTGCAGTGAGTTATGTCATGCTAATATTCTCCTATGTCATCTTCTTGCATTCTCTGAGAAAC CACAGTGCTGAAGTGATAAAGAAAGCACTTTCCACATGTGTCTCCCACATCATTGTGGTCA TCTTGTTCTTTGGACCTTGCATATTTATGTACACATGCCCTGCAACCGTATTCCCCATGGAT AAGATGATAGCTGTATTTTATACAGTTGGAACATCTTTTCTCAACCCTGTGATTTACACGCT GAAGAATACAGAAGTGAAAAGTGCCATGAGGAAGCTTTGGAGCAAGAAATTGATCACAGA TGACAAAAGATAA (SEQ ID NO: 154)
AOLFR83 sequences:
MGNWTAAVTEFVLLGFSLSREVELLLLVLLLPTFLLTLLGNLLIISTVLSCSRLHTPMYFFLCNL SILDILFTSVISPKVLANLGSRDKTISFAGCITQCYFYFFLGTVEFLLLTVMSYDRYATICCPLRYT TMRPSVCIGTVNFSWVGGFLSVLFPTILISQLPFCGSNIINHFFCDSGPLLALACADTTAIELMDF MLSSMVILCCIVLVAYSYTYIILTIVRIPSASGRKKAFNTCASHLTIVIIPSGITVFIYVTPSQKEYL EINKIPLVXSS TPFLNPFIYTLRNDTVQGVLRDW^ GRACSSPPCVYSVKLQC (SEQ ID NO: 155)
ATGGGTAACTGGACTGCAGCGGTGACTGAGTTTGTTCTGCTGGGGTTTTCCCTGAGCAGGG AGGTGGAGCTGCTGCTCCTGGTGCTCCTGCTGCCCACGTTCCTGCTGACTCTTCTGGGGAA CCTGCTCATCATCTCCACTGTGCTGTCCTGCTCCCGCCTCCACACCCCCATGTACTTCTTCT TGTGCAACCTCTCTATCCTGGACATCCTCTTCACCTCAGTCATCTCTCCAAAAGTGTTGGCC AACTTAGGATCTAGGGATAAAACCATCTCCTTTGCCGGATGTATCACCCAGTGCTATTTCT ACTTTTTCTTGGGCACAGTTGAGTTCCTCCTGCTGACGGTCATGTCCTATGACCGTTATGCC ACCATCTGCTGCCCCCTGCGGTACACCACCATCATGAGACCTTCTGTCTGCATTGGGACCG TTGTATTCTCTTGGGTGGGAGGCTTCCTGTCTGTGCTCTTTCCAACCATCCTCATCTCCCAG CTGCCCTTCTGTGGCTCCAATATCATTAACCACTTCTTCTGTGACAGTGGACCCTTGCTGGC CCTGGCCTGTGCAGACACCACTGCCATCGAGCTGATGGATTTTATGCTTTCTTCCATGGTC ATCCTCTGCTGCATAGTCCTCGTGGCCTATTCCTATACGTACATCATCTTGACCATAGTGCG CATTCCTTCTGCAAGTGGAAGGAAGAAGGCCTTTAATACCTGTGCTTCCCACCTGACCATA GTCATCATTCCTAGTGGCATCACTGTGTTTATCTATGTGACTCCCTCCCAGAAAGAATATCT GGAGATCAACAAGATCCCTTTGGTTCTGAGCAGTGTGGTGACTCCATTCCTCAACCCCTTT ATATATACTCTGAGGAATGACACAGTGCAGGGAGTCCTCAGGGATGTGTGGGTCAGGGTT CGAGGAGTTTTTGAAAAGAGGATGAGGGCAGTGCTGAGAAGCAGATTATCCTCCAACAAA GACCACCAAGGAAGGGCTTGCTCTTCTCCACCATGTGTCTATTCTGTAAAGCTCCAGTGTT AG (SEQ ID NO: 156)
AOLFR85 sequences:
MGAKNNVTEFVLFGLFESREMQHTCFV ^FLFHVLTVLGNLLVIITINARKITLKSPMYFFLSQL SFADICYPSTTΓPIGVIIADTFVEHKΠSFNGCMTQLFSAHFFGGTEIFLLTAMAYDRYVAICRPLHY TAIMDCRKCGLLAGASWLAGFLHSILQTLLTVQLPFCGPNEIDNFFCDVHPLLKLACADTYMV GLIWANSGMISLASFFILIISYVIILLNLRSQSSEDRRKAVSTCGSHVITVLLVLMPPMFMYIRPS TTLAADKLIILFNIVMPPLLNPLIYTLRNNDVK^AMRKLFRVKRSLGEK (SEQ ID NO: 157)
ATGGGTGCCAAGAACAATGTGACTGAGTTTGTTTTATTTGGCCTTTTTGAGAGCAGAGAGA TGCAGCATACATGCTTTGTGGTATTCTTCCTCTTTCATGTGCTCACTGTCCTGGGGAACCTT CTGGTCATCATCACCATCAATGCTAGAAAGACCCTGAAGTCTCCCATGTATTTCTTCCTGA GCCAGTTGTCTTTTGCTGACATATGTTATCCATCCACTACCATACCCAAGATGATTGCTGAC ACTTTTGTGGAGCATAAGATCATCTCCTTCAATGGCTGCATGACCCAGCTCTTTTCTGCCCA CTTCTTTGGTGGCACTGAGATCTTCCTCCTTACAGCCATGGCCTATGACCGCTATGTGGCC ATCTGTAGGCCCCTGCACTACACAGCCATCATGGATTGCCGGAAGTGTGGCCTGCTAGCGG GGGCCTCCTGGTTAGCTGGCTTCCTGCATTCCATCCTGCAGACCCTCCTCACGGTTCAGCTG CCTTTTTGTGGGCCCAATGAGATAGACAACTTCTTCTGTGATGTTCATCCCCTGCTCAAGTT GGCCTGTGCAGACACCTACATGGTAGGTCTCATCGTGGTGGCCAACAGCGGTATGATTTCT TTAGCATCCTTTTTTATCCTTATCATTTCCTATGTTATCATCTTACTGAACCTAAGAAGCCA GTCATCTGAGGACCGGCGTAAGGCTGTCTCCACATGTGGCTCACACGTAATCACTGTCCTT TTGGTTCTCATGCCCCCCATGTTCATGTACATTCGTCCCTCCACCACCCTGGCTGCTGACAA ACTTATCATCCTCTTTAACATTGTGATGCCACCTTTGCTGAACCCTTTGATCTATACACTAA GGAACAACGATGTGAAAAATGCCATGAGGAAGCTGTTTAGGGTCAAGAGGAGCTTAGGGG AGAAGTGA (SEQ ID NO: 158)
AOLFR86 sequences:
MQLVLLLMFLLVFIGNTAPAFSVTLESMDIPQNITEFFMLGLSQNSEVQRVLFVVFLLIYWTVC GNMLIVVTITSSPTLASPVYFFLANLSFIDTFYSSSMAPKLIADSLYEGRTISYECCMAQLFGAHF LGGVEIILLTVMAYDRYVAICKΪLIINTTIMTRHLCAMLVGVAWLGGFLHSLVQLLLVLWLPFC GPNVINHFACDLYPLLEVACTNTYVIGLLWANSGLICLLNFLMLAASYIVILYSLRSHSADGRC KALSTCGAHFIVVALFFVPCIFTYVHPFSTLProKN ALFYGILTPMLNPLIYTLRNEEVKNi^ KLFTW (SEQ ID NO: 159)
ATGCAATTAGTTCTATTACTTATGTTTCTCCTTGTCTTTATAGGCAATACTGCACCTGCATT CTCAGTGACCTTGGAATCTATGGACATACCACAAAATATCACAGAATTTTTCATGCTGGGG CTCTCACAGAACTCAGAGGTACAGAGAGTTCTCTTTGTGGTCTTTTTGCTGATCTATGTGG TCACGGTTTGTGGCAACATGCTCATTGTGGTCACTATCACCTCCAGCCCCACGCTGGCTTC CCCTGTGTATTTTTTCCTGGCCAACCTATCCTTTATTGACACCTTTTATTCTTCTTCTATGGC TCCTAAACTCATTGCTGACTCATTGTATGAGGGGAGAACCATCTCTTATGAGTGCTGCATG GCTCAGCTCTTTGGAGCTCATTTTTTGGGAGGTGTTGAGATCATTCTGCTCACAGTGATGG CTTATGACCGCTATGTGGCCATCTGTAAGCCCCTGCACAATACTACCATCATGACCAGGCA TCTCTGTGCCATGCTTGTAGGGGTGGCTTGGCTTGGGGGCTTCCTGCATTCATTGGTTCAG CTCCTCCTGGTCCTTTGGTTGCCCTTCTGTGGGCCCAATGTGATCAATCACTTTGCCTGTGA CTTGTACCCTTTGCTGGAAGTTGCCTGCACCAATACGTATGTCATTGGTCTGCTGGTGGTT GCCAACAGTGGTTTAATCTGCCTGTTGAACTTCCTCATGCTGGCTGCCTCCTACATTGTCAT CCTGTACTCCTTGAGGTCCCACAGTGCAGATGGGAGATGCAAAGCCCTCTCCACCTGTGGA GCCCACTTCATTGTTGTTGCCTTGTTCTTTGTGCCCTGTATATTTACTTATGTGCATCCATTT TCTACTTTACCTATAGACAAAAATATGGCATTATTTTATGGTATTCTGACACCTATGTTGAA TCCACTCATTTATACCCTGAGAAATGAAGAGGTAAAAAATGCCATGAGAAAGCTCTTTACA TGGTAA (SEQ ID NO: 160) AOLFR87 sequences:
Nπ INIAQLSLGFIDLG]PSVLQOLTKIILLF YVS
LLGLTQNAEAQKLLFAWTLIYFLTMVT>NLIIVVTITTSPALDSPVYFFLSFFSFIDGCSSSTMAP KMIFDLLTEKKTISFSGCMTQLFVEHFFGGVEIILLVVMAYDCYVAICKPLYYLITMNRQVCGL LVAMAWVGGFLHALIQMLLIVWLPFCGPNVIDHFICDLFPLLKLSCTDTHVFGLFVAANSGLM CMLIFSILITSYVLILCSQRKALSTCAFHITVYVLFFVPCILVYLRPMITFPIDKAVSVFYTVVTPM LNPLIYTLRNTEVKNAMKQL SQIIWGNNLCD (SEQ ID NO: 161)
ATGAATAACATAGCTCAACTTAGTCTTGGGTTTATAGATTTAGGGATTCCATCAGTGTTAC AGAAAATAATCCTGACCAAAATTATTTTATTGTTCAAAATGTATGTGTCAAATTGCAATCC TTGTGCTATTCACAGAAAAATCAATTATCCAAATACCAAACTGGATTTCGAGCAAGTGAAC AACATAACGGAATTCATCTTGCTTGGCCTGACACAGAACGCAGAGGCACAGAAACTCTTGT TTGCTGTGTTTACACTCATCTACTTTCTCACCATGGTAGACAACCTAATCATTGTGGTGACA ATCACCACCAGCCCAGCCCTGGACTCCCCCGTGTATTTTTTTCTGTCTTTCTTTTCCTTCAT AGATGGCTGCTCCTCTTCTACCATGGCCCCCAAAATGATATTTGACTTACTCACTGAAAAG AAAACTATTTCCTTCAGTGGGTGCATGACCCAGCTCTTTGTAGAACATTTCTTTGGGGGAG TTGAGATCATTCTGCTCGTGGTGATGGCCTATGACTGCTATGTGGCCATCTGCAAGCCCCT GTACTACCTGATCACAATGAACAGGCAGGTATGTGGCCTCCTGGTGGCCATGGCATGGGTC GGGGGATTTCTTCACGCTCTGATTCAAATGCTTTTAATAGTCTGGCTGCCCTTCTGTGGCCC CAATGTCATTGACCATTTCATCTGTGACCTTTTCCCTCTGCTAAAACTCTCCTGCACTGACA CTCACGTCTTTGGACTCTTTGTTGCCGCCAACAGTGGGCTGATGTGTATGCTCATTTTTTCT ATTCTTATTACCTCTTACGTCCTAATCCTCTGCTCACAGCGGAAGGCTCTCTCTACCTGCGC CTTCCATATCACTGTAGTCGTCCTATTCTTTGTTCCCTGTATATTGGTGTACCTTCGACCCA TGATCACCTTCCCTATTGATAAAGCTGTGTCTGTGTTTTATACTGTGGTAACACCCATGTTA AACCCTTTAATCTACACCCTCAGAAACACAGAGGTGAAAAATGCCATGAAGCAGCTCTGG AGCCAAATAATCTGGGGTAACAATTTGTGTGATTAG (SEQ ID NO: 162)
AOLFR88 sequences:
MWQKNQTSLADFILEGLFDDSLTHLFLFSLTMWFLIAVSGNTLTILLICIDPQLHTPMYFLLSQ LSLMDLMHVSTIILKMATNYLSGKKSISF VGCATQHFLYLCLGGAECFLLAVMSYDRYVAICH PLRYAVLMNKKVGLMMAVMSWLGASVNSLIHMAILMHFPFCGPRKVYHFYCEFPAVVKLVC GDITVYETTVYISSILLLLPIFLISTSYVFILQSVIQMRSSGSKR AFATCGSHLTWSLWFGACIFS YMRPRSQCTLLQNKVGSVFYSIITPTLNSLIYTLRNKDVAKALRJR.VLRRDVITQCIQRLQLWLP RV (SEQ ID NO: 163)
ATGTGGCAGAAGAATCAGACCTCTCTGGCAGACTTCATCCTTGAGGGGCTCTTCGATGACT CCCTTACCCACCTTTTCCTTTTCTCCTTGACCATGGTGGTCTTCCTTATTGCGGTGAGTGGC AACACCCTCACCATTCTCCTCATCTGCATTGATCCCCAGCTTCATACACCAATGTATTTCCT GCTCAGCCAGCTCTCCCTCATGGATCTGATGCATGTCTCCACAATCATCCTGAAGATGGCT ACCAACTACCTATCTGGCAAGAAATCTATCTCCTTTGTGGGCTGTGCAACCCAGCACTTCC TCTATTTGTGTCTAGGTGGTGCTGAATGTTTTCTCTTAGCTGTCATGTCCTATGACCGCTAT GTTGCCATCTGTCATCCACTGCGCTATGCTGTGCTCATGAACAAGAAGGTGGGACTGATGA TGGCTGTCATGTCATGGTTGGGGGCATCCGTGAACTCCCTAATTCACATGGCGATCTTGAT GCACTTCCCTTTCTGTGGGCCTCGGAAAGTCTACCACTTCTACTGTGAGTTCCCAGCTGTTG TGAAGTTGGTATGTGGCGACATCACTGTGTATGAGACCACAGTGTACATCAGCAGCATTCT CCTCCTCCTCCCCATCTTCCTGATTTCTACATCCTATGTCTTCATCCTTCAAAGTGTCATTCA GATGCGCTCATCTGGGAGCAAGAGAAATGCCTTTGCCACTTGTGGCTCCCACCTCACGGTG GTTTCTCTTTGGTTTGGTGCCTGCATCTTCTCCTACATGAGACCCAGGTCCCAGTGCACTCT ATTGCAGAACAAAGTTGGTTCTGTGTTCTACAGCATCATTACGCCCACATTGAATTCTCTG ATTTATACTCTCCGGAATAAAGATGTAGCTAAGGCTCTGAGAAGAGTGCTGAGGAGAGAT GTTATCACCCAGTGCATTCAACGACTGCAATTGTGGTTGCCCCGAGTGTAG (SEQ ID NO: 164)
AOLFR89 sequences: MLDPSISSHTLYLHSLFPQGLRKGTMWQKNQTSLADFILEGLFDDSLTHLFLFSLTMWFLLAVS GNTLTILLIC-TOPQLHTPMYFLLSQLSLMDLMHVSTTILKMATNYLSGKKSISFVGCATQHFLYL CLGGAECFLLAVMSYDRYVAICHPLRYAVL- -D«-KVGLMMAVMSWLGASVNSLIHMAILMHF PFCGPRKVYIffYCEFPAVVKLVCGDITVYETTVYISSILLLLPIFLISTSYVFILQSVIQMRSSGSK RNAFATCGSHLTVVSLWFGACIFSYMRPRSQCTLLQNKVGSVFYSIITPTLNSLIYTLR-NKDVA KALRRVLRRDVITQCIQRLQLWLPRV (SEQ ID NO: 165)
ATGCTGGACCCCAGTATTTCCAGTCACACTCTTTATCTCCACTCTCTGTTTCCTCAGGGATT GAGAAAGGGGACAATGTGGCAGAAGAATCAGACCTCTCTGGCAGACTTCATCCTTGAGGG GCTCTTCGATGACTCCCTTACCCACCTTTTCCTTTTCTCCTTGACCATGGTGGTCTTCCTTAT TGCGGTGAGTGGCAACACCCTCACCATTCTCCTCATCTGCATTGATCCCCAGCTTCATACA CCAATGTATTTCCTGCTCAGCCAGCTCTCCCTCATGGATCTGATGCATGTCTCCACAACCAT CCTGAAGATGGCTACCAACTACCTATCTGGCAAGAAATCTATCTCCTTTGTGGGCTGTGCA ACCCAGCACTTCCTCTATTTGTGTCTAGGTGGTGCTGAATGTTTTCTCTTAGCTGTCATGTC CTATGACCGCTATGTTGCCATCTGTCATCCACTGCGCTATGCTGTGCTCATGAACAAGAAG GTGGGACTGATGATGGCTGTCATGTCATGGTTGGGGGCATCCGTGAACTCCCTAATTCACA TGGCGATCTTGATGCACTTCCCTTTCTGTGGGCCTCGGAAAGTCTACCACTTCTACTGTGA GTTCCCAGCTGTTGTGAAGTTGGTATGTGGCGACATCACTGTGTATGAGACCACAGTGTAC ATCAGCAGCATTCTCCTCCTCCTCCCCATCTTCCTGATTTCTACATCCTATGTCTTCATCCTT CAAAGTGTCATTCAGATGCGCTCATCTGGGAGCAAGAGAAATGCCTTTGCCACTTGTGGCT CCCACCTCACGGTGGTTTCTCTTTGGTTTGGTGCCTGCATCTTCTCCTACATGAGACCCAGG TCCCAGTGCACTCTATTGCAGAACAAAGTTGGTTCTGTGTTCTACAGCATCATTACGCCCA CATTGAATTCTCTGATTTATACTCTCCGGAATAAAGATGTAGCTAAGGCTCTGAGAAGAGT GCTGAGGAGAGATGTTATCACCCAGTGCATTCAACGACTGCAATTGTGGTTGCCCCGAGTG TAG (SEQ ID NO: 166)
AOLFR90 sequences:
MFSMTTEALNNFALGCTNLLMTMIPQIDLKQIFLCPNCRLYMIPVGAFIFSLGNMQNQSFVTEF VLLGLSQNPNVQEIVFWFLFVYIATVGGNMLIWTILSSPALLVSPMYFFLGFLSFLDACFSSVI TPKMIVDSLYVTKTISFEGCMMQLFAEHFFAGVEVIVLTAJVlAYORYVAICKϊLHYSSI-Vπ^R-RL CGILMGVAWTGGLLHSMIQILFTFQLPFCGPNVINHFMCDLYPLLELACTDTHIFGLMWINSG FICIINFSLLLVSYAVILLSLRTHSSEGR KALSTCGSHLAVVILFFVPCIFVYTRPPSAFSLDKMA AIFYIILNPLLNPLIYTFRNKΕVKQA RRIWNRLMVVSDEKΕNIKL (SEQ ID NO: 167)
ATGTTCTCAATGACAACAGAAGCACTCAATAATTTTGCACTTGGATGTACCAACTTGTTAA TGACTATGATACCACAAATTGATCTGAAGCAAATTTTCCTTTGTCCTAATTGCAGACTATA CATGATCCCTGTTGGAGCTTTCATCTTTTCCTTGGGAAACATGCAAAACCAAAGCTTTGTA ACTGAGTTTGTCCTCCTGGGACTTTCACAGAATCCAAATGTTCAGGAAATAGTATTTGTTG TATTTTTGTTTGTCTACATTGCAACTGTTGGGGGCAACATGCTAATTGTAGTAACCATTCTC AGCAGCCCTGCTCTTCTGGTGTCTCCTATGTACTTCTTCTTGGGCTTCCTGTCCTTCCTGGA TGCGTGCTTCTCATCTGTCATCACCCCAAAGATGATTGTAGACTCCCTCTATGTGACAAAA ACCATCTCTTTTGAAGGCTGCATGATGCAGCTCTTTGCTGAACACTTCTTTGCTGGGGTGG AGGTGATTGTCCTCACAGCCATGGCCTATGATCGTTATGTGGCCATTTGCAAGCCCTTGCA TTACTCTTCTATCATGAACAGGAGGCTCTGTGGCATTCTGATGGGGGTAGCCTGGACAGGG GGCCTCTTGCATTCCATGATACAAATTCTTTTTACTTTCCAGCTTCCCTTTTGTGGCCCCAA TGTCATCAATCACTTTATGTGTGACTTGTACCCGTTACTGGAGCTTGCCTGCACTGATACTC ACATCTTTGGCCTCATGGTGGTCATCAACAGTGGGTTTATCTGCATCATAAACTTCTCCTTG TTGCTTGTCTCCTATGCTGTCATCTTGCTCTCTCTGAGAACACACAGTTCTGAAGGGCGCTG GAAAGCTCTCTCCACCTGTGGATCTCACATTGCTGTTGTGATTTTGTTCTTTGTCCCATGCA TATTTGTATATACACGACCTCCATCTGCTTTTTCCCTTGACAAAATGGCGGCAATATTTTAT ATCATCTTAAATCCCTTGCTCAATCCTTTGATTTACACTTTCAGGAATAAGGAAGTAAAAC AGGCCATGAGGAGAATATGGAACAGACTGATGGTGGTTTCTGATGAGAAAGAAAATATTA AACTTTAA (SEQ ID NO: 168)
AOLFR91 sequences:
MGNWSTVTEITLLAFPALLEIWSLFVVLVNTYTLTATGMTIISLIWIDHRLQTPMYFFLSNLSFL DILYTTVITPKLLACLLGEEKTISFAGCMIQTYFYFFLGTVEFILLAVMSFDRYMAICDPLHYTVI MNSRACLLLVLGCWVGAFLSVLFPTIVVTRLPYCRKΕ-π [HFFCDIAPLLQVACINTHLIEKIN^ SALVILSSLAFTTGSYVYIISTILRIPSTQGRQKAFSTCASHITVVSIAHGSNIFVYVRPNQNSSLD YDKVAAVLITWTPLLNPFIYSLRNEKVQEVLRETVNRIMTLIQRKT (SEQ ID NO: 169)
ATGGGAAACTGGAGCACTGTGACTGAAATCACCCTAATTGCCTTCCCAGCTCTCCTGGAGA TTCGAATATCTCTCTTCGTGGTTCTTGTGGTAACTTACACATTAACAGCAACAGGAAACAT CACCATCATCTCCCTGATATGGATTGATCATCGCCTGCAAACTCCAATGTACTTCTTCCTCA GTAATTTGTCCTTTCTGGATATCTTATACACCACTGTCATTACCCCAAAGTTGTTGGCCTGC CTCCTAGGAGAAGAGAAAACCATATCTTTTGCTGGTTGCATGATCCAAACATATTTCTACT TCTTTCTGGGGACGGTGGAGTTTATCCTCTTGGCGGTGATGTCCTTTGACCGCTACATGGC TATCTGCGACCCACTGCACTACACGGTCATCATGAACAGCAGGGCCTGCCTTCTGCTGGTT CTGGGATGCTGGGTGGGAGCCTTCCTGTCTGTGTTGTTTCCAACCATTGTAGTGACAAGGC TACCTTACTGTAGGAAAGAAATTAATCATTTCTTCTGTGACATTGCCCCTCTTCTTCAGGTG GCCTGTATAAATACTCACCTCATTGAGAAGATAAACTTTCTCCTCTCTGCCCTTGTCATCCT GAGCTCCCTGGCATTCACTACTGGGTCCTACGTGTACATAATTTCTACCATCCTGCGTATCC CCTCCACCCAGGGCCGTCAGAAAGCTTTTTCTACCTGTGCTTCTCACATCACTGTTGTCTCC ATTGCCCACGGGAGCAACATCTTTGTGTATGTGAGACCCAATCAGAACTCCTCACTGGATT ATGACAAGGTGGCCGCTGTCCTCATCACAGTGGTGACCCCTCTCCTGAACCCTTTTATCTA CAGCTTGAGGAATGAGAAGGTACAGGAAGTGTTGAGAGAGACAGTGAACAGAATCATGAC CTTGATACAAAGGAAAACTTGA (SEQ ID NO: 170)
AOLFR92 sequences:
MRNGTVITEFILLGFPVIQGLQTPLFIAIFLTYILTLAGNGLIIATVWAEPRLQIPMYFFLCNLSFLE IWYTTTVIPKXLGTFWARTVICMSCCLLQAFFHFFVGTTEFLILTIMSFDRYLTICNPLHHPTIM TSKLCLQLALSSWWGFTIVFCQTMLLIQLPFCGNNVISHFYCDVGPSLKAACIDTSILELLGVIA TILVIPGSLLFNMISYIYILSAILRIPSATGHQKTFSTCASHLTVVSLLYGAVLFMYLRPTAHSSFK E-^KVVSVLNTILTPLLNPFIYTIRNKEVKGALRKAMTCPKTGHAK (SEQ ID NO: 171)
ATGAGAAATGGCACAGTAATCACAGAATTCATCCTGCTAGGCTTTCCTGTTATCCAAGGCC TACAAACACCTCTCTTTATTGCAATCTTTCTCACCTACATATTAACCCTTGCAGGCAATGGG CTTATTATTGCCACTGTGTGGGCTGAGCCCAGGCTACAAATTCCAATGTACTTCTTCCTTTG TAACTTGTCTTTCTTAGAAATCTGGTACACCACCACAGTCATCCCCAAACTGCTAGGAACC TTTGTAGTGGCAAGAACAGTAATCTGCATGTCCTGCTGCCTGCTGCAGGCCTTCTTCCACT TCTTCGTGGGCACCACCGAGTTCTTGATCCTCACTATCATGTCTTTTGACCGCTACCTCACC ATCTGCAATCCCCTTCACCACCCCACCATCATGACCAGCAAACTCTGCCTGCAGCTGGCCC TGAGCTCCTGGGTGGTGGGCTTCACCATTGTCTTTTGTCAGACGATGCTGCTCATCCAGTT GCCATTCTGTGGCAATAATGTTATCAGTCATTTCTACTGTGATGTTGGGCCCAGTTTGAAA GCCGCCTGCATAGACACCAGCATTTTGGAACTCCTGGGCGTCATAGCAACCATCCTTGTGA TCCCAGGGTCACTTCTCTTTAATATGATTTCTTATATCTACATTCTGTCCGCAATCCTACGA ATTCCTTCAGCCACTGGCCACCAAAAGACTTTCTCTACCTGTGCCTCGCACCTGACAGTTGT CTCCCTGCTCTACGGGGCTGTTCTGTTCATGTACCTAAGACCCACAGCACACTCCTCCTTTA AGATTAATAAGGTGGTGTCTGTGCTAAATACTATCCTCACCCCCCTTCTGAATCCCTTTATT TATACTATTAGAAACAAGGAGGTGAAGGGAGCCTTAAGAAAGGCAATGACTTGCCCAAAG ACTGGTCATGCAAAGTAA (SEQ ID NO: 172)
AOLFR93 sequences:
MLMNYSSATEFYLLGFPGSEELHHILFAIFFFFYLVTLMGNTVIIMIVCVDKRLQSPMYFFLGHL SALEILVTTIIVPVMLWGLLLPGMQTIYLSACWQLFLYLAVGTTEFALLGAMAVDRYVAVCN PLRYNIIMNT TCNFVVLVSWVFGFLFQIWPVYVMFQLTYCKSNVVTSINFF NTLFTEFILFLMAVFVLFGSLIPTIVSNAYIISTILKIPSSSGRRKSFSTCASHFTCWIGYGSCLFLY VKPKQTQAADYN VNSLMVSVVTPFLNPFIFTLRNDKVIEALRDGVKRCCQLFRN (SEQ ID NO: 173)
ATGTTGATGAATTACTCTAGTGCCACTGAATTTTATCTCCTTGGCTTCCCTGGCTCTGAAGA ACTACATCATATCCTTTTTGCTATATTCTTCTTTTTCTACTTGGTGACATTAATGGGAAACA CAGTCATCATCATGATTGTCTGTGTGGATAAACGTCTGCAGTCCCCCATGTATTTCTTCCTC GGCCACCTCTCTGCCCTGGAGATCCTGGTCACAACCATAATCGTCCCCGTGATGCTTTGGG GATTGCTGCTCCCTGGGATGCAGACAATATATTTGTCTGCCTGTGTTGTCCAGCTCTTCTTG TACCTTGCTGTGGGGACAACAGAGTTCGCATTACTTGGAGCAATGGCTGTGGACCGTTATG TGGCTGTCTGTAACCCTCTGAGGTACAACATCATTATGAACAGACACACCTGCAACTTTGT GGTTCTTGTGTCATGGGTGTTTGGGTTTCTTTTTCAAATCTGGCCGGTCTATGTCATGTTTC AGCTTACTTACTGCAAATCAAATGTGGTGAACAATTTTTTTTGTGACCGAGGGCAATTGCT CAAACTATCCTGCAATAATACTCTTTTCACGGAGTTTATCCTCTTCTTAATGGCTGTTTTTG TTCTCTTTGGTTCTTTGATCCCTACAATTGTCTCCAACGCCTACATCATCTCCACCATTCTC AAGATCCCGTCATCCTCTGGCCGGAGGAAATCCTTCTCCACTTGTGCCTCCCACTTCACCTG TGTTGTGATTGGCTACGGCAGCTGCTTGTTTCTCTACGTGAAACCCAAGCAAACGCAGGCA GCTGATTACAATTGGGTAGTTTCCCTGATGGTTTCAGTAGTAACTCCTTTCCTCAATCCTTT CATCTTCACCCTCCGGAATGATAAAGTCATAGAGGCCCTTCGGGATGGGGTGAAACGCTGC TGTCAACTATTCAGGAATTAG (SEQ ID NO: 174)
AOLFR94 sequences: METWVNQSYTDGFFLLGIFSHSTADLVLFSVVMAVFTVALCGNVLLIFLIYMDPHLHTPMYFF LSQLSLMDLMLVCTNVPKMAANFLSGRKSISFVGCGIQIGLFVCLVGSEGLLLGLMAYDRYVA ISHPLHYPILMNQRVCLQITGSSWAFGIIDGLIQMVV ^MNFPYCGLRKVNHFFCEMLSLLKLAC VDTSLFEKVIFACCVFMLLFPFSIIVASYAHILGTVLQMHSAQAWKKALATCSSHLTAVTLFYG AAMFIYLRPRHYRAPSHDKVASIFYTVLTPMLNPLIYSLRNREVMGALRKGLDRCRIGSQH (SEQ ID NO: 175)
ATGGAGACGTGGGTGAACCAGTCCTACACAGATGGCTTCTTCCTCTTAGGCATCTTCTCCC
ACAGTACTGCTGACCTTGTCCTCTTCTCCGTGGTTATGGCGGTCTTCACAGTGGCCCTCTGT
GGGAATGTCCTCCTCATCTTCCTCATCTACATGGACCCTCACCTTCACACCCCCATGTACTT CTTCCTCAGCCAGCTCTCCCTCATGGACCTCATGTTGGTCTGTACCAATGTGCCAAAGATG GCAGCCAACTTCCTGTCTGGCAGGAAGTCCATCTCCTTTGTGGGCTGTGGCATACAAATTG GCCTCTTTGTCTGTCTTGTGGGATCTGAGGGGCTCTTGCTGGGACTCATGGCTTATGACCG CTATGTGGCCATTAGCCACCCACTTCACTATCCCATCCTCATGAATCAGAGGGTCTGTCTCC AGATTACTGGGAGCTCCTGGGCCTTTGGGATAATCGATGGCTTGATCCAGATGGTGGTAGT AATGAATTTCCCCTACTGTGGCTTGAGGAAGGTGAACCATTTCTTCTGTGAGATGCTATCC TTGTTGAAGCTGGCCTGTGTAGACACATCCCTGTTTGAGAAGGTGATATTTGCTTGCTGTG TCTTCATGCTTCTCTTCCCATTCTCCATCATCGTGGCCTCCTATGCTCACATTCTAGGGACT GTGCTGCAAATGCACTCTGCTCAGGCCTGGAAAAAGGCCCTGGCCACCTGCTCCTCCCACC TGACAGCTGTCACCCTCTTCTATGGGGCAGCCATGTTCATCTACCTGAGGCCTAGGCACTA CCGGGCCCCCAGCCATGACAAGGTGGCCTCTATCTTCTACACGGTCCTTACTCCCATGCTC AACCCCCTCATTTACAGCTTGAGGAACAGGGAGGTGATGGGGGCACTGAGGAAGGGGCTG GACCGCTGCAGGATCGGCAGCCAGCACTGA (SEQ ID NO: 176)
AOLFR95 sequences: MLGSKPRVHLYILPCASQQVSTMGDRGTSNHSEMTDFILAGFRVRPELHILLFLLFLFVYAMILL GNVGMMTIIMTDPRLNTPMYFFLGNLSFIDLFYSSVIEPKAMINFWSENKSISFAGCVAQLFLFA LLIVTEGFLLAAMAYDRFIAICNPLLYSVQMSTRLCTQLVAGSYFCGCISSVIQTSMTFTLSFCAS -I vT)HFYCDSRPLQRLSCSDLFIHRMISFSLSCIIILPTIIVIIVSYMYIVSTVLKIHSTEGHKKAFST CSSHLGVVSVLYGA FMYLTPDRFPELSKVASLCYSLVTPMLNPLIYSLRNKDVQEALKKFLE KKNIIL (SEQ ID NO: 177)
ATGCTAGGATCCAAACCAAGAGTTCATTTGTATATTTTGCCCTGTGCCTCTCAACAGGTTTC
TACCATGGGTGACAGGGGAACAAGCAATCACTCAGAAATGACTGACTTCATTCTTGCAGG
CTTCAGGGTACGCCCAGAGCTCCACATTCTCCTCTTCCTGCTATTTTTGTTTGTTTATGCCA TGATCCTTCTAGGGAATGTTGGGATGATGACCATTATTATGACTGATCCTCGGCTGAACAC ACCAATGTATTTTTTCCTAGGCAATCTCTCCTTCATTGATCTTTTCTATTCATCTGTTATTGA ACCCAAGGCTATGATCAACTTCTGGTCTGAAAACAAGTCTATCTCCTTTGCAGGCTGTGTG GCCCAGCTCTTTCTCTTTGCCCTCCTCATTGTGACTGAGGGATTTCTCCTGGCGGCCATGGC TTATGACCGCTTTATTGCCATCTGCAACCCTCTGCTCTACTCTGTTCAAATGTCCACACGTC TGTGTACTCAGTTGGTGGCTGGTTCCTATTTTTGTGGCTGCATTAGCTCAGTTATTCAGACT AGCATGACATTTACTTTATCTTTTTGCGCTTCTCGGGCTGTTGACCACTTTTACTGTGATTC TCGCCCACTTCAGAGACTGTCTTGTTCTGATCTCTTTATCCATAGAATGATATCTTTTTCCT TATCATGTATTATTATCTTGCCTACTATCATAGTCATTATAGTATCTTACATGTATATTGTG TCCACAGTTCTAAAGATACATTCTACTGAGGGACATAAGAAGGCCTTCTCCACCTGCAGCT CTCACCTGGGAGTTGTGAGTGTGCTGTATGGTGCTGTCTTTTTTATGTATCTCACTCCTGAC AGATTTCCTGAGCTGAGTAAAGTGGCATCCTTATGTTACTCCCTAGTCACTCCCATGTTGA ATCCTTTGATTTACTCTCTGAGGAACAAAGATGTCCAAGAGGCTCTAAAAAAATTTCTAGA GAAGAAAAATATTATTCTTTGA (SEQ ID NO: 178)
AOLFR96 sequences: MICENHTRVTEFILLGFTNNPEMQVSLFIFFLAIYTVTLLGNFLIVTVTSVDLALQTPMYFFLQN LSLLEVCFTLVMVPKMLVDLVSPRKIISFVGCGTQMYFFFFFGSSECFLLSMMAYDRFVAICNP LHYSV-OS -NRSLCLWMAIGSWMSGV VSMLQTAWMMALPFCGPNAVDHFFCDGPPVLKLVTV DTTMYEMQALASTLLFIMFPFCLILVSYTRIIITILRMSSATGRQKAFSTCSSHLIWSLFYGTASL TYLRPKSNQSPESKKLVSLSYTVITPMLNPIIYGLRNNEVKGAVKRTITQKVLQKLDVF (SEQ ID NO: 179)
ATGATCTGTGAAAATCACACCAGAGTCACTGAATTTATTCTTCTTGGTTTTACAAACAACC CCGAGATGCAAGTTTCCCTCTTTATTTTTTTCCTGGCCATTTATACAGTCACTTTGTTGGGC AACTTTCTTATTGTCACAGTTACCAGTGTGGATCTCGCACTTCAAACACCCATGTACTTCTT TCTTCAAAATCTGTCACTTCTTGAAGTATGTTTCACCTTGGTTATGGTGCCAAAAATGCTTG TAGATCTAGTGTCCCCAAGGAAAATTATCTCTTTTGTGGGCTGTGGTACCCAGATGTACTT CTTCTTCTTCTTTGGCAGTTCTGAATGTTTCCTTCTCTCCATGATGGCTTATGATCGCTTTGT GGCCATCTGTAACCCTCTCCATTATTCAGTCATAATGAACAGGTCCCTATGCTTGTGGATG GCCATAGGCTCTTGGATGTCCGGTGTTCCTGTGTCTATGCTACAGACAGCTTGGATGATGG CCCTTCCTTTCTGTGGACCAAATGCCGTGGACCACTTTTTCTGTGATGGTCCCCCAGTGTTA AAACTAGTCACAGTGGATACAACCATGTATGAAATGCAAGCACTTGCCTCCACACTCCTGT TTATCATGTTTCCCTTTTGTCTCATTTTGGTTTCCTACACCCGCATTATCATAACAATTCTG AGGATGTCCTCTGCCACTGGCCGCCAGAAGGCATTTTCTACTTGTTCCTCACACCTCATTGT GGTGTCCCTCTTCTACGGAACAGCCAGTCTGACCTACCTGCGGCCCAAATCAAACCAGTCC CCTGAGAGCAAGAAGCTAGTGTCATTGTCCTACACTGTCATCACACCTATGCTAAACCCCA TCATCTACGGCCTGAGGAACAATGAAGTGAAAGGGGCTGTCAAGAGGACAATCACTCAAA AAGTCTTACAGAAGTTAGATGTGTTTTGA (SEQ ID NO: 180)
AOLFR97 sequences: MTEFHLQSQMPSIRLIFRRLSLGRIKPSQSPRCSTSFMVVPSFSIAEHWRRMKGANLSQGMEFEL LGLTTDPQLQRLLFWFLGMYTATLLGNLVMFLLIHVSATLHTPMYSLLKSLSFLDFCYSSTVV PQTLVNFLAK-RKVISYFGCMTQMFFYAGFATSECYLIAAMAYDRYAAICNPLLYSTIMSPEVC ASLIVGSYSAGFLNSLIHTGCIFSLKFCGAHWTHFFCDGPPILSLSCVDTSLCEILLFIFAGFNLLS CTLTILISYFLILNTILKMSSAQGRFKAFSTCASHLTAICLFFGTTLFMYLRPRSSYSLTQDRTVA VIYTVVIPVLNPLMYSLPJ IKDVKKALIKV GRKTME (SEQ ID NO: 181)
ATGACAGAGTTTCATCTGCAAAGCCAAATGCCCTCAATAAGACTCATCTTCAGAAGGCTGT CCTTAGGCAGAATTAAACCCAGTCAGAGCCCCAGGTGTTCAACCTCATTTATGGTGGTGCC TTCTTTCTCCATCGCAGAGCACTGGAGAAGGATGAAAGGGGCAAACCTGAGCCAAGGGAT GGAGTTTGAGCTCTTGGGCCTCACCACTGACCCCCAGCTCCAGAGGCTGCTCTTCGTGGTG TTCCTGGGCATGTACACAGCCACTCTGCTGGGGAACCTGGTCATGTTCCTCCTGATCCATG TGAGTGCCACCCTGCACACACCCATGTACTCCCTCCTGAAGAGCCTCTCCTTCTTGGATTTC TGCTACTCCTCCACGGTTGTGCCCCAGACCCTGGTGAACTTCTTGGCCAAGAGGAAAGTGA TCTCTTATTTTGGCTGCATGACTCAGATGTTCTTCTATGCGGGTTTTGCCACCAGTGAGTGC TATCTCATCGCTGCCATGGCCTATGACCGCTATGCCGCTATTTGTAACCCCCTGCTCTACTC AACCATCATGTCTCCTGAGGTCTGTGCCTCGCTGATTGTGGGCTCCTACAGTGCAGGATTC CTCAATTCTCTTATCCACACTGGCTGTATCTTTAGTCTGAAATTCTGCGGTGCTCATGTCGT CACTCACTTCTTCTGTGATGGGCCACCCATCCTGTCCTTGTCTTGTGTAGACACCTCACTGT GTGAGATCCTGCTCTTCATTTTTGCTGGTTTCAACCTTTTGAGCTGCACCCTCACCATCTTG ATCTCCTACTTCTTAATTCTCAACACCATCCTGAAAATGAGCTCGGCCCAGGGCAGGTTTA AGGCATTTTCCACCTGTGCATCCCACCTCACTGCCATCTGCCTCTTCTTTGGCACAACACTT TTTATGTACCTGCGCCCCAGGTCCAGCTACTCCTTGACCCAGGACCGCACAGTTGCTGTCA TCTACACAGTGGTGATCCCAGTGCTGAACCCCCTCATGTACTCTTTGAGAAACAAGGATGT GAAGAAAGCTTTAATAAAGGTTTGGGGTAGGAAAACAATGGAATGA (SEQ ID NO: 182)
AOLFR98 sequences:
MRGFNKTTVVTQFILVGFSSLGELQLLLFVIFLLLYLTILVANVTIMAVIRFSWTLHTPMYGFLFI LSFSESCYTFVIIPQLLVΉLLSDTKTISFMACATQLFFFLGFACTNCLLIAVMGYDRYVAICHPLR YTLIINKRLGLELISLSGATGFFLALVATNLICDMRFCGPNRVNHYFCDMAPVIKXACTDTHVKE LAJ FSLSILVMVPFLLILISYGFIVNRTILKIPSAEGKKAFVTCASHLTVNFVHYGCASIIYLRPKSK SASDKDQLVAVTYTWTPLLNPLVYSLRNKEVKTALKRVLGMPVATKMS (SEQ ID NO: 183)
ATGCGAGGTTTCAACAAAACCACTGTGGTTACACAGTTCATCCTGGTGGGTTTCTCCAGCC TGGGGGAGCTCCAGCTGCTGCTTT-TTGTCATCTTTCTTCTCCTATACTTGACAATCCTGGTG GCCAATGTGACCATCATGGCCGTTATTCGCTTCAGCTGGACTCTCCACACTCCCATGTATG GCTTTCTATTCATCCTTTCATTTTCTGAGTCCTGCTACACTTTTGTCATCATCCCTCAGCTGC TGGTCCACCTGCTCTCAGACACCAAGACCATCTCCTTCATGGCCTGTGCCACCCAGCTGTT CTTTTTCCTTGGCTTTGCTTGCACCAACTGCCTCCTCATTGCTGTGATGGGATATGATCGCT ATGTAGCAATTTGTCACCCTCTGAGGTACACACTCATCATAAACAAAAGGCTGGGGTTGGA GTTGATTTCTCTCTCAGGAGCCACAGGTTTCTTTATTGCTTTGGTGGCCACCAACCTCATTT GTGACATGCGTTTTTGTGGCCCCAACAGGGTTAACCACTATTTCTGTGACATGGCACCTGT TATCAAGTTAGCCTGCACTGACACCCATGTGAAAGAGCTGGCTTTATTTAGCCTCAGCATC CTGGTAATTATGGTGCCTTTTCTGTTAATTCTCATATCCTATGGCTTCATAGTTAACACCAT CCTGAAGATCCCCTCAGCTGAGGGCAAGAAGGCCTTTGTCACCTGTGCCTCACATCTCACT GTGGTCTTTGTCCACTATGGCTGTGCCTCTATCATCTATCTGCGGCCCAAGTCCAAGTCTGC CTCAGACAAGGATCAGTTGGTGGCAGTGACCTACACAGTGGTTACTCCCTTACTTAATCCT CTTGTCTACAGTCTGAGGAACAAAGAGGTAAAAACTGCATTGAAAAGAGTTCTTGGAATG CCTGTGGCAACCAAGATGAGCTAA (SEQ ID NO: 184)
AOLFR99 sequences: MERVNETVV-REVIFLGFSSLARLQQLLFVIFLLLYLFTLGTNAIIISTIVLDRALHIPMYFFLAILSC SEICYTFIIVPKMLVDLLSQKKTISFLGCAIQMFSFLFLGCSHSFLLAVMGYDRYLAICNPLRYSV LMGHGVCMGLVA--AACACGFTVAQIITSLVFHLPFYSSNQLHHFFCDIAPVLKLASHHNHFSQIV IFMLCTLVLAIPLLLILVSYVHILSAILQFPSTLGRCKAFSTCVSHLIIVTVHYGCASFIYLRPQSNY SSSQDALISVSYTIITPLFNPMIYSLRNKEFKSALCKIVRRTISLL (SEQ ID NO: 185)
ATGGAGCGGGTCAATGAGACTGTGGTGAGAGAGGTCATCTTCCTCGGCTTCTCATCCCTGG CCAGGCTGCAGCAGCTGCTCTTTGTTATCTTCCTGCTCCTCTACCTGTTCACTCTGGGCACC AATGCAATCATCATTTCCACCATTGTCCTGGACAGGGCCCTTCATATCCCCATGTACTTCTT CCTTGCCATCCTCTCTTGCTCTGAGATTTGCTACACCTTCATCATTGTACCCAAGATGCTGG TTGACCTGCTGTCCCAGAAGAAGACCATTTCTTTCCTGGGCTGTGCCATCCAAATGTTTTCC TTCCTCTTCCTTGGCTGCTCTCACTCCTTTCTGCTGGCAGTCATGGGTTATGATCGTTACAT AGCCATCTGTAACCCACTGCGCTACTCAGTGCTAATGGGACATGGGGTGTGTATGGGACTA GTGGCTGCTGCCTGTGCCTGTGGCTTCACTGTTGCACAGATCATCACATCCTTGGTATTTCA CCTGCCTTTTTATTCCTCCAATCAACTACATCACTTCTTCTGTGACATTGCTCCTGTCCTCA AGCTGGCATCTCACCATAACCACTTTAGTCAGATTGTCATCTTCATGCTCTGTACATTGGTC CTGGCTATCCCCTTATTGTTGATCTTGGTGTCCTATGTTCACATCCTCTCTGCCATACTTCA GTTTCCTTCCACACTGGGTAGGTGCAAAGCTTTTTCTACCTGTGTATCTCACCTCATTATTG TCACTGTCCACTATGGCTGTGCCTCCTTTATCTACTTAAGGCCTCAGTCCAACTACTCCTCA AGCCAGGATGCTCTAATATCAGTATCCTACACTATTATAACTCCATTGTTCAACCCAATGA TTTATAGCTTGAGAAATAAAGAGTTCAAATCAGCTCTTTGTAAAATTGTGAGAAGAACAAT TTCCCTGTTGTAA (SEQ ID NO: 186)
AOLFR101 sequences:
MDTGNWSQVAEFIILGFPHLQGVQIYLFLLLLLIYLMTVLGNLLIFLWCLDSRLHTPMYHFVSI LSFSELGYTAATIPKMLANLLSEKKTISFSGCLLQIYFFHSLGATECYLLTAMAYDRYLAICRPL
HYPTLMTPTLCAEI GCWLGGLAGPVVEISLISRLPFCGPNRIQHVFCDFPPVLSLACTDTSINV LVDFVINSCKILATFLLILCSYVQIICTVLRIPSAAGKRKAISTCASHFTVVLIFYGSILSMYVQLK KSYSLDYDQALAVVYSVLTPFLNPFr^SLRNKEIKEAVRRQLKRIGILA (SEQ ID NO: 187)
ATGGACACAGGGAACTGGAGCCAGGTAGCAGAATTCATCATCTTGGGCTTCCCCCATCTCC AGGGTGTCCAGATTTATCTCTTCCTCTTGTTGCTTCTCATTTACCTCATGACTGTGTTGGGA AACCTGCTGATATTCCTGGTGGTCTGCCTGGACTCCCGGCTTCACACACCCATGTACCACT TTGTCAGCATTCTCTCCTTCTCAGAGCTTGGCTATACAGCTGCCACCATCCCTAAGATGCTG GCAAACTTGCTCAGTGAGAAAAAGACCATTTCATTCTCTGGGTGTCTCCTGCAGATCTATT TCTTTCACTCCCTTGGAGCGACTGAGTGCTATCTCCTGACAGCTATGGCCTACGATAGGTA TTTAGCCATCTGCCGGCCCCTCCACTACCCAACCCTCATGACCCCAACACTTTGTGCAGAG ATTGCCATTGGCTGTTGGTTGGGAGGCTTGGCTGGGCCAGTAGTTGAAATTTCCTTGATTT CACGCCTCCCATTCTGTGGCCCCAATCGCATTCAGCACGTCTTTTGTGACTTCCCTCCTGTG CTGAGTTTGGCTTGCACTGATACGTCTATAAATGTCCTAGTAGATTTTGTTATAAATTCCTG CAAGATCCTAGCCACCTTCCTGCTGATCCTCTGCTCCTATGTGCAGATCATCTGCACAGTGC TCAGAATTCCCTCAGCTGCCGGCAAGAGGAAGGCCATCTCCACGTGTGCCTCCCACTTCAC TGTGGTTCTCATCTTCTATGGGAGCATCCTTTCCATGTATGTGCAGCTGAAGAAGAGCTAC TCACTGGACTATGACCAGGCCCTGGCAGTGGTCTACTCAGTGCTCACACCCTTCCTCAACC CCTTCATCTACAGCTTGCGCAACAAGGAGATCAAGGAGGCTGTGAGGAGGCAGCTAAAGA GAATTGGGATATTGGCATGA (SEQ ID NO: 188)
AOLFR102 sequences:
MPVGKLVFNQSEPTEFVFRAFTTATEFQVLLFLLFLLLYLMILCGNTAIIWWCTHSTLRTPMYF FLSNLSFLELCYTTVYVPLMLSNILGAQKPISLAGCGAQMFFFVTLGSTDCFLLAIMAYDRYVAI CHPLHYTLIMTRELCTQMLGGALGLALFPSLQLTALIFTLPFCGHHQEINHFLCDVPPVLRLACA DIRVHQAVLYWSILVLTIPFLLICVSYVFITCAILSIRSAEGRRRAFSTCSFHLTWLLQYGCCSL VYLRPRSSTSEDEDSQIALVYTFVTPLLNPLLYSLRNKDVKGALRSAIIRKAASDAN (SEQ ID NO: 189)
ATGCCTGTGGGGAAACTTGTCTTCAACCAGTCTGAGCCCACTGAGTTTGTGTTCCGTGCGT TCACCACAGCCACTGAATTCCAGGTTCTTCTCTTCCTTCTCTTCCTCCTCCTCTACTTGATG ATCCTCTGTGGCAACACAGCCATCATCTGGGTGGTGTGCACACACAGCACCCTCCGCACCC CGATGTATTTCTTCCTGTCCAACCTGTCTTTCCTGGAACTCTGCTACACCACCGTGGTAGTA CCCTTGATGCTTTCCAACATTTTGGGGGCCCAGAAGCCCATTTCGTTGGCTGGATGTGGGG CCCAAATGTTCTTCTTTGTCACCCTCGGCAGCACGGACTGTTTCCTCTTGGCGATCATGGCC TATGACCGCTATGTGGCTATCTGCCACCCGCTGCACTACACCCTCATCATGACCCGCGAGC TGTGCACGCAGATGCTGGGTGGGGCCCTGGGCCTGGCCCTCTTCCCCTCCCTGCAGCTCAC CGCCTTAATCTTCACCCTGCCCTTTTGCGGCCACCACCAGGAAATCAACCACTTCCTCTGCG ATGTGCCTCCCGTCCTGCGCCTGGCCTGCGCTGACATCCGCGTGCACCAGGCTGTCCTCTA TGTCGTGAGCATCCTCGTGCTGACCATCCCCTTCCTGCTCATCTGCGTCTCCTACGTGTTCA TCACCTGTGCCATCCTGAGCATCCGTTCTGCCGAGGGCCGCCGCCGGGCCTTCTCCACCTG CTCCTTCCACCTCACCGTGGTCCTGCTGCAGTATGGCTGCTGCAGCCTCGTGTACCTGCGTC CTCGGTCCAGCACCTCAGAGGATGAGGACAGCCAAATCGCGTTGGTCTACACCTTTGTCAC CCCCTTACTCAACCCTTTGCTTTACAGCCTTAGGAACAAGGATGTCAAAGGTGCTCTGAGG AGTGCCATTATCCGTAAAGCAGCCTCTGACGCCAACTGA (SEQ ID NO: 190)
AO FR103 sequences:
MAEMNLTLVTEFLLIAFTEYPEWALPLFLLLLFMYLITVLGNLEMIILILMDHQLHAPMYFLLSH LAFMDVCYSSITVPQMLAVLLEHGAALSYTRCAAQFFLFTFFGSIDCYLLALMAYDRYLAVCQ PLLYVTILTQQARLSLVAGAYVAGLISALVRTVSAFTLSFCGTSEIDFIFCDLPPLLKLTCGESYT QEVLIIMFAIFVIPASMVYILVSYLFIIVAIMGIPAGSQAKTFSTCTSHLTAVSLFFGTLIFMYLRG NSDQSSEKNRVYSVLYTEVIPMLNPLIYSLRNKEVKEALRKILNRAKLS (SEQ ID NO: 191)
ATGGCAGAGATGAACCTCACCTTGGTGACCGAGTTCCTCCTTATTGCATTCACTGAATATC CTGAATGGGCACTCCCTCTCTTCCTCTTGTTATTATTTATGTATCTCATCACCGTATTGGGG AACTTAGAGATGATTATTCTGATCCTCATGGATCACCAGCTCCACGCTCCAATGTATTTCCT TCTGAGTCACCTCGCTTTCATGGACGTCTGCTACTCATCTATCACTGTCCCCCAGATGCTGG CAGTGCTGCTGGAGCATGGGGCAGCTTTATCTTACACACGCTGTGCTGCTCAGTTCTTTCT GTTCACCTTCTTTGGTTCCATCGACTGCTACCTCTTGGCCCTCATGGCCTATGACCGCTACT TGGCTGTGTGCCAGCCCCTGCTTTATGTCACCATCCTGACACAGCAGGCCCGCTTGAGTCT TGTGGCTGGGGCTTACGTTGCTGGTCTCATCAGTGCCTTGGTGCGGACAGTCTCAGCCTTC ACTCTCTCCTTCTGTGGAACCAGTGAGATTGACTTTATTTTCTGTGACCTCCCTCCTCTGTT AAAGTTGACCTGTGGGGAGAGCTACACTCAAGAAGTGCTGATTATTATGTTTGCCATTTTT GTCATCCCTGCTTCCATGGTGGTGATCTTGGTGTCCTACCTGTTTATCATCGTGGCCATCAT GGGGATCCCTGCTGGAAGCCAGGCCAAGACCTTCTCCACCTGCACCTCCCACCTCACTGCT GTGTCACTCTTCTTTGGTACCCTCATCTTCATGTACTTGAGAGGTAACTCAGATCAGTCTTC GGAGAAGAATCGGGTAGTGTCTGTGCTTTACACAGAGGTCATCCCCATGTTGAATCCCCTC ATCTACAGCCTGAGGAACAAGGAAGTGAAGGAGGCCCTGAGAAAAATTCTCAATAGAGCC AAGTTGTCCTAA (SEQ ID NO: 192)
AOLFR105 sequences: MQGLNHTSVSEFILVGFSAFPHLQLMLFLLFLLMYLFTLLGNLLIMATVWSERSLHMPMYLFLC ALSITEILYTVAIIPRMLADLLSTQRSIAFLACASQMFFSFSFGFTHSFLLTVMGYDRYVAICHPL RYNVLMSLRGCTCRVGCSWAGGLVMGMWTSAIFHLAFCGHKEIHHFFCHVPPLLKLACGDD VLVVAKGVGLVCITALLGCFLLILLSYAFrVAAILKIPSAEGRNl- A FSTCASHLTVVVNHYGFAS VIYLKPKGPQSPEGDTLMGITYTVLTPFLSPIIFSLR-NKELKVAMKKTCFTKLFPQNC (SEQ ID NO: 193)
ATGCAGGGGCTAAACCACACCTCCGTGTCTGAATTCATCCTCGTTGGCTTCTCTGCCTTCCC CCACCTCCAGCTGATGCTCTTCCTGCTGTTCCTGCTGATGTACCTGTTCACGCTGCTGGGCA ACCTGCTCATCATGGCCACTGTCTGGAGCGAGCGCAGCCTCCACATGCCCATGTACCTCTT CCTGTGTGCCCTCTCCATCACCGAGATCCTCTACACCGTGGCCATCATCCCGCGCATGCTG GCCGACCTGCTGTCCACCCAGCGCTCCATCGCCTTCCTGGCCTGTGCCAGTCAGATGTTCTT CTCCTTCAGCTTCGGCTTCACCCACTCCTTCCTGCTCACTGTCATGGGCTACGACCGCTACG TGGCCATCTGCCACCCCCTGCGTTACAACGTGCTCATGAGCCTGCGGGGCTGCACCTGCCG GGTGGGCTGCTCCTGGGCTGGTGGCTTGGTCATGGGGATGGTGGTGACCTCGGCCATTTTC CACCTCGCCTTCTGTGGACACAAGGAGATCCACCATTTCTTCTGCCACGTGCCACCTCTGTT GAAGTTGGCCTGTGGAGATGATGTGCTGGTGGTGGCCAAAGGCGTGGGCTTGGTGTGTAT CACGGCCCTGCTGGGCTGTTTTCTCCTCATCCTCCTCTCCTATGCCTTCATCGTGGCCGCCA TCTTGAAGATCCCTTCTGCTGAAGGTCGGAACAAGGCCTTCTCCACCTGTGCCTCTCACCT CACTGTGGTGGTCGTGCACTATGGCTTTGCCTCCGTCATTTACCTGAAGCCCAAAGGTCCC CAGTCTCCGGAAGGAGACACCTTGATGGGCATCACCTACACGGTCCTCACACCCTTCCTCA GCCCCATCATCTTCAGCCTCAGGAACAAGGAGCTGAAGGTCGCCATGAAGAAGACTTGCTT CACCAAACTCTTTCCACAGAACTGCTGA (SEQ ID NO: 194)
AOLFR106 sequences: METANYTKVTEFVLTGLSQTPEVQLVLFVIFLSFYLFILPGNILIICTISLDPHLTSPMYFLLANLA FLDIWYSSITAPEMLIDFFVERKIISFDGCIAQLFFLHFAGASEMFLLTVMAFDLYTAICRPLHYA TIMNQRLCCILVALSWRGGFmsπQVALIVRLPFCGPNELDSYFCDITQVVRIACANTFPEELVM ICSSGLISVVCLIALLMSYAFLLALFKKLSGSGENTNRAMSTCYSHITIWLMFGPSIYIYARPFD SFSLDKVYSVFNTLIFPLRNPIIYTLPJ^JKEVKAAMRKLVTKYILCKEK (SEQ ID NO: 195)
ATGGAAACTGCAAATTACACCAAGGTGACAGAATTTGTTCTCACTGGCCTATCCCAGACTC CAGAGGTCCAACTAGTCCTATTTGTTATATTTCTATCCTTCTATTTGTTCATCCTACCAGGA AATATCCTTATCATTTGCACCATCAGTCTAGACCCTCATCTGACCTCTCCTATGTATTTCCT GTTGGCTAATCTGGCCTTCCTTGATATTTGGTACTCTTCCATTACAGCCCCTGAAATGCTCA TAGACTTCTTTGTGGAGAGGAAGATAATTTCTTTTGATGGATGCATTGCACAGCTCTTCTT CTTACACTTTGCTGGGGCTTCGGAGATGTTCTTGCTCACAGTGATGGCCTTTGACCTCTACA CTGCTATCTGCCGACCCCTCCACTATGCTACCATCATGAATCAACGTCTCTGCTGTATCCTG GTGGCTCTCTCCTGGAGGGGGGGCTTCATTCATTCTATCATACAGGTGGCTCTCATTGTTC GACTTCCTTTCTGTGGGCCCAATGAGTTAGACAGTTACTTCTGTGACATCACACAGGTTGT CCGGATTGCCTGTGCCAACACCTTCCCAGAGGAGTTAGTGATGATCTGTAGTAGTGGTCTG ATCTCTGTGGTGTGTTTGATTGCTCTGTTAATGTCCTATGCCTTCCTTCTGGCCTTGTTCAA GAAACTTTCAGGCTCAGGTGAGAATACCAACAGGGCCATGTCCACCTGCTATTCCCACATT ACCATTGTGGTGCTAATGTTTGGGCCATCCATCTACATTTATGCTCGCCCATTTGACTCGTT TTCCCTAGATAAAGTGGTGTCTGTGTTCAATACTTTAATATTCCCTTTACGTAATCCCATTA TTTACACATTGAGAAACAAGGAAGTAAAGGCAGCCATGAGGAAGTTGGTCACCAAATATA TTTTGTGTAAAGAGAAGTGA (SEQ ID NO: 196)
AOLFR107 sequences:
MELWNFTLGSGFILVGILNDSGSPELLCATITILYLLALISNGLLLLAITMEARLHMPMYLLLGQ LSLMDLLFTSWTPKALADFLRRENTISFGGCALQMFLALTMGGAEDLLLAFMAYDRYVAICH PLTYMTLMSSRACWLMVATSWILASLSALIYTVYTMHYPFCRAQEIRHLLCEIPHLLKVACAD TSRYELMVYVMGVTFLIPSLAAILASYTQILLTVLHMPSNEGRKKALVTCSSHLTVYGMFYGA ATFMYVLPSSFHSTRQDNIISVFYTIVTPALNPLIYSLRNKEVMRALRRVLGKYMLPAHSTL (SEQ ID NO: 197)
ATGGAGCTCTGGAACTTCACCTTGGGAAGTGGCTTCATTTTGGTGGGGATTCTGAATGACA GTGGGTCTCCTGAACTGCTCTGTGCTACAATTACAATCCTATACTTGTTGGCCCTGATCAG CAATGGCCTACTGCTCCTGGCTATCACCATGGAAGCCCGGCTCCACATGCCCATGTACCTC CTGCTTGGGCAGCTCTCTCTCATGGACCTCCTGTTCACATCTGTTGTCACTCCCAAGGCCCT TGCGGACTTTCTGCGCAGAGAAAACACCATCTCCTTTGGAGGCTGTGCCCTTCAGATGTTC CTGGCACTGACAATGGGTGGTGCTGAGGACCTCCTACTGGCCTTCATGGCCTATGACAGGT ATGTGGCCATTTGTCATCCTCTGACATACATGACCCTCATGAGCTCAAGAGCCTGCTGGCT CATGGTGGCCACGTCCTGGATCCTGGCATCCCTAAGTGCCCTAATATATACCGTGTATACC ATGCACTATCCCTTCTGCAGGGCCCAGGAGATCAGGCATCTTCTCTGTGAGATCCCACACT TGCTGAAGGTGGCCTGTGCTGATACCTCCAGATATGAGCTCATGGTATATGTGATGGGTGT GACCTTCCTGATTCCCTCTCTTGCTGCTATACTGGCCTCCTATACACAAATTCTACTCACTG TGCTCCATATGCCATCAAATGAGGGGAGGAAGAAAGCCCTTGTCACCTGCTCTTCCCACCT GACTGTGGTTGGGATGTTCTATGGAGCTGCCACATTCATGTATGTCTTGCCCAGTTCCTTCC ACAGCACCAGACAAGACAACATCATCTCTGTTTTCTACACAATTGTCACTCCAGCCCTGAA TCCACTCATCTACAGCCTGAGGAATAAGGAGGTCATGCGGGCCTTGAGGAGGGTCCTGGG AAAATACATGCTGCCAGCACACTCCACGCTCTAG (SEQ ID NO: 198)
AOLFR108 sequences:
MCSFFLCQTGKQAKISMGEENQTFVSKFIFLGLSQDLQTQILLFILFLIIYLLTVLGNQLIIILIFLD SRLHTPMYTFLRNLSFADLCFSTSIVPQVLVHFLVKRKTISFYGCMTQIIVFLLVGCTECALLAV MSYDRYVAVCKPLYYSTIMTQRVCLWLSFRSWASGALVSLVDTSFTFHLPYWGQNIINHYFCE PPALLKLASIDTYSTEMAIFSMGWILLAPVSLILGSYWNIISTVIQMQSGEGRLKAFSTCGSHLI VVVLFYGSGIFTYMRPNSKTTKELDKMISWYTAVTPMLNPIIYSLRNKDVKGALRKLVGRKC FSHRQ (SEQ ID NO: 199)
ATGTGTTCTTTTTTCTTGTGCCAAACAGGTAT^CAGGCAAAAATATCAATGGGAGAAGAAA ACCAAACCTTTGTGTCCAAGTTTATCTTCCTGGGTCTTTCACAGGACTTGCAGACCCAGAT CCTGCTATTTATCCTTTTCCTCATCATTTATCTGCTGACCGTGCTTGGAAACCAGCTCATCA TCATTCTCATCTTCCTGGATTCTCGCCTTCACACTCCCATGTATTTTTTTCTTAGAAATCTCT CCTTTGCAGATCTCTGTTTCTCTACTAGCATTGTCCCTCAAGTGTTGGTTCACTTCTTGGTA AAGAGGAAAACCATTTCTTTTTATGGGTGTATGACACAGATAATTGTCTTTCTTCTGGTTG GGTGTACAGAGTGTGCGCTGCTGGCAGTGATGTCCTATGACCGGTATGTGGCTGTCTGCAA GCCCCTGTACTACTCTACCATCATGACACAACGGGTGTGTCTCTGGCTGTCCTTCAGGTCCT GGGCCAGTGGGGCACTAGTGTCTTTAGTAGATACCAGCTTTACTTTCCATCTTCCCTACTG GGGACAGAATATAATCAATCACTACTTTTGTGAACCTCCTGCCCTCCTGAAGCTGGCTTCC ATAGACACTTACAGCACAGAAATGGCCATCTTTTCAATGGGCGTGGTAATCCTCCTGGCCC CTGTCTCCCTGATTCTTGGTTCTTATTGGAATATTATCTCCACTGTTATCCAGATGCAGTCT GGGGAAGGGAGACTCAAGGCTTTTTCCACCTGTGGCTCCCATCTTATTGTTGTTGTCCTCTT CTATGGGTCAGGAATATTCACCTACATGCGACCAAACTCCAAGACTACAAAAGAACTGGA TAAAATGATATCTGTGTTCTATACAGCGGTGACTCCAATGTTGAACCCCATAATTTATAGC TTGAGGAACAAAGATGTCAAAGGGGCTCTCAGGAAACTAGTTGGGAGAAAGTGCTTCTCT CATAGGCAGTGA (SEQ ID NO: 200) AOLFR109 sequences:
MLIWGSrVTEFILVGFQQSSTSTRALLFALFLALYSLTMAMNGLIIFITS TDPKLNSPMYFFLG HLSLLDVCFITTTIPQMLIHLWRDHIVSFVCCMTQMYFVFCVGVAECILLAFMAYDRYVAICY PLNYVPIISQKVCVRLVGTAWFFGLINGIFLEYISFREPFRRDNHIESFFCEAPIVIGLSCGDPQFSL WAIFADAIWILSPMVLTVTSYVHILATILSKASSSGRGKTFSTCASHLTWIFLYTSAMFSYMN PHSTHGPDKDKPFSLLYTIITPMCNPIIYSFRNKEIKEAMVRALGRTRLAQPQSV (SEQ ID NO: 201)
ATGCTAAGGAATGGCAGCATAGTGACGGAATTTATCCTCGTGGGCTTTCAGCAGAGCTCCA CTTCCACACGAGCATTGCTCTTTGCCCTCTTCTTGGCCCTCTACAGCCTCACCATGGCCATG AATGGCCTCATCATCTTTATCACCTCCTGGACAGACCCCAAGCTCAACAGCCCCATGTACT TCTTCCTCGGCCATCTGTCTCTCCTGGATGTCTGCTTCATCACCACTACCATCCCACAGATG TTGATCCACCTCGTGGTCAGGGACCACATTGTCTCCTTTGTATGTTGCATGACCCAGATGT ACTTTGTCTTCTGTGTTGGTGTGGCCGAGTGCATCCTCTTGGCTTTCATGGCCTATGACCGT TATGTTGCTATCTGCTACCCACTTAACTATGTCCCGATCATAAGCCAGAAGGTCTGTGTCA GGCTTGTGGGAACTGCCTGGTTCTTTGGGCTGATCAATGGCATCTTTCTCGAGTATATTTC ATTCCGAGAGCCCTTCCGCAGAGACAACCACATAGAAAGCTTCTTCTGTGAGGCCCCCATA GTGATTGGCCTCTCTTGTGGGGACCCTCAGTTTAGTCTGTGGGCAATCTTTGCCGATGCCA TCGTGGTAATTCTCAGCCCCATGGTGCTCACTGTCACTTCCTATGTGCACATCCTGGCCACC ATCCTCAGCAAAGCCTCCTCCTCAGGTCGGGGGAAGACTTTCTCTACTTGTGCCTCTCACC TGACTGTGGTCATCTTTCTCTACACTTCAGCTATGTTCTCTTACATGAACCCCCACAGCACA CATGGGCCTGACAAAGACAAACCTTTCTCCCTCCTGTACACCATCATTACCCCCATGTGCA ACCCCATCATTTATAGTTTCCGCAACAAGGAAATTAAGGAGGCCATGGTGAGGGCACTTG GAAGAACCAGGCTGGCCCAGCCACAGTCTGTCTAG (SEQ ID NO: 202)
AOLFR110 sequences:
MKIANNTWTEFILLGLTQSQDIQLLVFVLILIFYLIILPGNFLIIFTIRSDPGLTAPLYLFLGNLAFL DASYSFrVAPRMLVDFLSEKKVISYRGCITQLFFLHFLGGGEGLLLVNMAFDRYIAICRPLHCST VMNPRACYAMMLALWLGGFVHSIIQ VVLILRLPFCGPNQLDNFFCD VRQVIKLACTDMF WEL LMVFNSGLMTLLCFLGLLASYAVILCHVRRAASEGKNKAMSTCTTRVIIILLMFGPAIFIYMCPF RALPA-DKMVSLFHTVIFPLMNPMIYTLRNQEVKTSMKRLLSRHVVCQVDFIIRN (SEQ ID NO: 203)
ATGAAGATAGCAAACAACACAGTAGTGACAGAATTTATCCTCCTTGGTCTGACTCAGTCTC AAGATATTCAGCTCTTGGTCTTTGTGCTGATCTTAATTTTCTACCTTATCATCCTCCCTGGA AATTTTCTCATTATTTTCACCATAAGGTCAGACCCTGGGCTCACAGCCCCCCTCTATTTATT TCTGGGCAACTTGGCCTTCCTGGATGCATCCTACTCCTTCATTGTGGCTCCCAGGATGTTGG TGGACTTCCTCTCTGAGAAAAAGGTAATCTCCTACAGAGGCTGCATCACTCAGCTCTTTTT CTTGCACTTCCTTGGAGGAGGGGAGGGATTACTCCTTGTTGTGATGGCCTTTGACCGCTAC ATCGCCATCTGCCGGCCTCTGCACTGTTCAACTGTCATGAACCCTAGAGCCTGCTATGCAA TGATGTTGGCTCTGTGGCTTGGGGGTTTTGTCCACTCCATTATCCAGGTGGTCCTCATCCTC CGCTTGCCTTTTTGTGGCCCAAACCAGCTGGACAACTTCTTCTGTGATGTCCGACAGGTCA TCAAGCTGGCTTGCACCGACATGTTTGTGGTGGAGCTTCTAATGGTCTTCAACAGTGGCCT GATGACACTCCTGTGCTTTCTGGGGCTTCTGGCTTCCTATGCAGTCATCCTCTGCCATGTTC GTAGGGCAGCTTCTGAAGGGAAGAACAAGGCCATGTCCACGTGCACCACTCGTGTCATTA TTATACTTCTTATGTTTGGACCTGCTATCTTCATCTACATGTGCCCTTTCAGGGCCTTACCA GCTGACAAGATGGTTTCTCTCTTTCACACAGTGATCTTTCCATTGATGAATCCTATGATTTA TACCCTTCGCAACCAGGAAGTGAAAACTTCCATGAAGAGGTTATTGAGTCGACATGTAGTC TGTCAAGTGGATTTTATAATAAGAAACTGA (SEQ ID NO: 204)
AOLFR111 sequences:
MCYIYLIFKEWTLIFYFSLLLFLQITPAI-MANLTIVTEFILMGFSTNK-NMCILHSILFLLIYLCALM GNVLIMITTLDHHLHTPVYFFLKNLSFLDLCLISVTAPKSIANSLIHNNSISFLGCVSQVFLLLSS ASAELLLLTVMSFDRYTAICHPLHYD VTMDRSTCVQRATVSWLYGGLIAVMHTAGTFSLS YCG SNMVHQFFCDIPQLLAISCSENLIREIALILINVVLDFCCFIViπTYVHVFSTVKKIPSTEGQSKAY SICLPHLLVVLFLSTGFIAYLI^ASESPSILDAVISWYTMLPPTFNPΠYSLRNKAIKVALGMLIKG KLTKK (SEQ ID NO: 205)
ATGTGTTATATATATTTAATATTTAAAGAGTGGACATTGATATTTTACTTCAGTCTTCTCCT ' TTTCCTGCAGATTACTCCTGCAATAATGGCAAATCTCACAATCGTGACTGAATTTATCCTTA TGGGGTTTTCTACCAATAAAAATATGTGCATTTTGCATTCGATTCTCTTCTTGTTGATTTAT TTGTGTGCCCTGATGGGGAATGTCCTCATTATCATGATCACAACTTTGGACCATCATCTCC ACACCCCCGTGTATTTCTTCTTGAAGAATCTATCTTTCTTGGATCTCTGCCTTATTTCAGTC ACGGCTCCCAAATCTATCGCCAATTCTTTGATACACAACAACTCCATTTCATTCCTTGGCTG TGTTTCCCAGGTCTTTTTGTTGCTTTCTTCAGCATCTGCAGAGCTGCTCCTCCTCACGGTGA TGTCCTTTGACCGCTATACTGCTATATGTCACCCTCTGCACTATGATGTCATCATGGACAGG AGCACCTGTGTCCAAAGAGCCACTGTGTCTTGGCTGTATGGGGGTCTGATTGCTGTGATGC ACACAGCTGGCACCTTCTCCTTATCCTACTGTGGGTCCAACATGGTCCATCAGTTCTTCTGT GACATTCCCCAGTTATTAGCTATTTCTTGCTCAGAAAATTTAATAAGAGAAATTGCACTCA TCCTTATTAATGTAGTTTTGGATTTCTGCTGTTTTATTGTCATCATCATTACCTATGTCCAC GTCTTCTCTACAGTCAAGAAGATCCCTTCCACAGAAGGCCAGTCAAAAGCCTACTCTATTT GCCTTCCACACTTGCTGGTTGTGTTATTTCTTTCCACTGGATTCATTGCTTATCTGAAGCCA GCTTCAGAGTCTCCTTCTATTTTGGATGCTGTAATTTCTGTGTTCTACACTATGCTGCCCCC AACCTTTAATCCCATTATATACAGTTTGAGAAACAAGGCCATAAAGGTGGCTCTGGGGATG TTGATAAAGGGAAAGCTCACCAAAAAGTAA (SEQ ID NO: 206)
AOLFR113 sequences:
MKFWHGFSSHLNPMFSSFLLYLSLPWINTTIQAWLNLCSLALPVWAMSGAGFLSCCYWHTCSP SWTCSSSQSSDWMQLCTHLCTTLSVFFPSWSCGIQLPLSLRCCLIFSVRRKPFLLQDASFRPTSS TPWGACECYLLTA-MAYDRYLAICRPLHYPIIMTTTLCAKMAAACWTCGFLCPISEVILASQLPF CAYNEIQHIFCDFPPLLSLAC 3TSANILVDFAINAFIILITFFFIMISYARIIGAVLKIKTASGRKK AFSTCASHLAVVLIFFGSIIFMYVRL-OCSYSLTLDRTLAIVYSVLTPMVNPπYSLRNKEIIKAIKR TIFQKGDKASLAHL (SEQ ID NO: 207)
ATGTGTCAACAAATCTTACGGGATTGCATTCTTCTCATACATCATTTGTGCATTAACAGGA AAAAAGTCTCACTTGTGATGCTGGGTCCAGCTTATAACCACACAATGGAAACCCCtGCCTC CTTCCTCCTTGTGGGTATCCCAGGACTGCAATCTTCACATCTTTGGCTGGCTATCTCACTGA GTGCCATGTACATCATAGCCCTGTTAGGAAACACCATCATCGTGACTGCAATCTGGATGGA TTCCACTCGGCATGAGCCCATGTATTGCTTTCTGTGTGTTCTGGCTGCTGTGGACATTGTTA TGGCCTCCTCGGTGGTACCCAAGATGGTGAGCATCTTCTGCTCAGGAGACAGCTCAATCAG CTTTAGTGCTTGTTTCACTCAGATGTTTTTTGTCCACTTAGCCACAGCTGTGGAGACGGGG CTGCTGCTGACCATGGCTTTTGACCGCTATGTAGCCATCTGCAAGCCTCTACACTACAAGA GAATTCTCACGCCTCAAGTGATGCTGGGAATGAGTATGGCCATCACCATCAGAGCTATCAT AGCCATAACTCCACTGAGTTGGATGGTGAGTCATCTACCTTTCTGTGGCTCCAATGTGGTT GTCCACTCCTACTGTGAGCACATAGCTTTGGCCAGGTTAGCATGTGCTGACCCCGTGCCCA GCAGTCTCTACAGTCTGATTGGTTCCTCTCTTATGGTGGGCTCTGATGTGGCCTTCATTGCT GCCTCCTATATCTTAATTCTCAAGGCAGTATTTGGTCTCTCCTCAAAGACTGCTCAGTTGAA AGCATTAAGCACATGTGGCTCCCATGTGGGGGTTATGGCTTTGTACTATCTACCTGGGATG GCATCCATCTATGCGGCCTGGTTGGGGCAGGATGTAGTGCCCTTGCACACCCAAGTCCTGC TAGCTGACCTGTACGTGATCATCCCAGCCACCTTAAATCCCATCATCTATGGCATGAGGAC CAAACAACTGCGGGAGAGAATATGGAGTTATCTGATGCATGTCCTCTTTGACCATTCCAAC CTGGGTTCATGA (SEQ ID NO: 208)
AOLFR114 sequences: MERINHTSSVSEFILLGLSSRPEDQKTLFVLFLIVYLVTITGNLLIILAIRFNPHLQTPMYFFLSFLS LTDICFTTSVW-IO lLMNFLSEK-KTISYAGCLTQMYFLYALGNSDSCLLAVMAFDRYVAVCDPF HYVTTMSHHHCVLLVAFSCSFPHLHSLLHTLLLNRLTFCDSNVIHHFLCDLSPVLKLSCSSIFVN EIVQMTEAPIVLVT-RFLCL FSYIRILTTVLOPSTSGKRKAFSTCGFYLTVVTLFYGSIFCVYLQP PSTYAVKDHVATIVYTVLSSMLNPFIYSLRNKDLKQGLRKLMSKP.S (SEQ ID NO: 209) ATGGAAAGAATCAACCACACCAGCAGTGTCTCCGAGTTTATCCTCCTGGGACTCTCCTCCC GGCCTGAGGACCAAAAGACACTCTTTGTTCTCTTCCTCATCGTGTACCTGGTCACCATAAC AGGGAACCTGCTCATCATCCTGGCCATTCGCTTCAACCCCCATCTTCAGACCCCTATGTATT TCTTCTTGAGTTTTCTGTCTCTCACTGATATTTGCTTTACAACAAGCGTTGTCCCCAAGATG CTGATGAACTTCCTGTCAGAAAAGAAGACCATCTCCTATGCTGGGTGTCTGACACAGATGT ATTTTCTCTATGCCTTGGGCAACAGTGACAGCTGCCTTCTGGCAGTCATGGCCTTTGACCG CTATGTGGCCGTCTGTGACCCTTTCCACTATGTCACCACCATGAGCCACCACCACTGTGTCC TGCTGGTGGCCTTCTCCTGCTCATTTCCTCACCTCCACTCACTCCTGCACACACTTCTGCTG AATCGTCTCACCTTCTGTGACTCCAATGTTATCCACCACTTTCTCTGTGACCTCAGCCCTGT GCTGAAATTGTCCTGCTCTTCCATATTTGTCAATGAAATTGTGCAGATGACAGAAGCACCT ATTGTTTTGGTGACTCGTTTTCTCTGCATTGCTTTCTCTTATATACGAATCCTCACTACAGT TCTCAAGATTCCCTCTACTTCTGGGAAACGCAAAGCCTTCTCCACCTGTGGTTTTTACCTCA CCGTGGTGACGCTCTTTTATGGAAGCATCTTCTGTGTCTATTTACAGCCCCCATCCACCTAC GCTGTCAAGGACCACGTGGCAACAATTGTTTACACAGTTTTGTCATCCATGCTCAATCCTT TTATCTACAGCCTGAGAAACAAAGACCTGAAACAGGGCCTGAGGAAGCTTATGAGCAAGA GATCCTAG (SEQ ID NO: 210)
AOLFR115 sequences:
MEGFYLRRSHELQGMGKPGRVNQTTVSDFLLLGLSE PEEQPLLFGIFLGMYLVTMVGNLLII LAISSDPHLHTPMYFFLANLSLTDACFTSASIPKMLANIHTQSQIISYSGCLAQLYFLLMFGGLD NCLLAVMAYDRYVAICQPLHYSTSMSPQLCALMLGVC VLTNCPALMHTLLLTRVAFCAQK AIPHFYCDPSALLKLACSDTHVNELMIITMGLLFLTVPLLLIVFSYVRIFWAVFVISSPGGRWKA FSTCGSHLTVVLLFYGSLMGVYLLPPSTYSTERESRAAVLYMVIIPTLNPFIYSLR-NRDMKEALG KLFVSGKTFFL (SEQ ID NO: 211)
ATGGAAGGTTTTTATCTGCGCAGATCACACGAACTACAAGGGATGGGAAAACCAGGCAGA GTGAACCAAACCACTGTTTCAGACTTCCTCCTTCTAGGACTCTCTGAGTGGCCAGAGGAGC AGCCTCTTCTGTTTGGCATCTTCCTTGGCATGTACCTGGTCACCATGGTGGGGAACCTGCTC ATTATCCTGGCCATCAGCTCTGACCCACACCTCCATACTCCCATGTACTTCTTTCTGGCCAA CCTGTCATTAACTGATGCCTGTTTCACTTCTGCCTCCATCCCCAAAATGCTGGCCAACATTC ATACCCAGAGTCAGATCATCTCGTATTCTGGGTGTCTTGCACAGCTATATTTCCTCCTTATG TTTGGTGGCCTTGACAACTGCCTGCTGGCTGTGATGGCATATGACCGCTATGTGGCCATCT GCCAACCACTCCATTACAGCACATCTATGAGTCCCCAGCTCTGTGCACTAATGCTGGGTGT GTGCTGGGTGCTAACCAACTGTCCTGCCCTGATGCACACACTGTTGCTGACCCGCGTGGCT TTCTGTGCCCAGAAAGCCATCCCTCATTTCTATTGTGATCCTAGTGCTCTCCTGAAGCTTGC CTGCTCAGATACCCATGTAAACGAGCTGATGATCATCACCATGGGCTTGCTGTTCCTCACT GTTCCCCTCCTGCTGATCGTCTTCTCCTATGTCCGCATTTTCTGGGCTGTGTTTGTCATCTC ATCTCCTGGAGGGAGATGGAAGGCCTTCTCTACCTGTGGTTCTCATCTCACGGTGGTTCTG CTCTTCTATGGGTCTCTTATGGGTGTGTATTTACTTCCTCCATCAACTTACTCTACAGAGAG GGAAAGTAGGGCTGCTGTTCTCTATATGGTGATTATTCCCACGCTAAACCCATTCATTTAT AGCTTGAGGAACAGAGACATGAAGGAGGCTTTGGGTAAACTTTTTGTCAGTGGAAAAACA TTCTTTTTATGA (SEQ ID NO: 212)
AOLFR116 sequences: MDEANHSVVSEFVFLGLSDSRKIQLLLFLFFSVFYVSSLMGNLLIVLTVTSDPRLQSPMYFLLAN LSIINLVFCSSTAJPKMIYDLFR-KHKTISFGGCVVQffFIED VGGTEMVLLIAMAFDRYVAICKPLH YLTIMNPQRCILFLVISWIIGIIHSVIQLAFWDLLFCGPNELDSFFCDLPRFIKLACIETYTLGFMV TANSGFISLASFLILIISYIFILVTVQKKSSGGIFKAFSMLSAHVIVWLVFGPLIFFYIFPFPTSHLD KFLAIFDAVITPVLNPVIYTFRNKEMMVAMRRRCSQFVNYSKIF (SEQ ID NO: 213)
ATGGATGAAGCCAATCACTCTGTGGTCTCTGAGTTTGTGTTCCTGGGACTCTCTGACTCGC GGAAGATCCAGCTCCTCCTCTTCCTCTTTTTCTCAGTGTTCTATGTATCAAGCCTGATGGGA AATCTCCTCATTGTGCTAACTGTGACCTCTGACCCTCGTTTACAGTCCCCCATGTACTTCCT GCTGGCCAACCTTTCCATCATCAATTTGGTATTTTGTTCCTCCACAGCTCCCAAGATGATTT ATGACCTTTTCAGGAAGCACAAGACCATCTCTTTTGGGGGCTGTGTAGTTCAGATCTTCTT TATCCATGCAGTTGGGGGAACTGAGATGGTGCTGCTCATAGCCATGGCTTTTGACCGATAT GTGGCCATATGTAAGCCTCTCCACTACCTGACCATCATGAACCCACAAAGGTGCATTTTGT TTTTAGTCATTTCCTGGATTATAGGTATTATTCACTCAGTGATTCAGTTGGCTTTTGTTGTA GACCTGCTGTTCTGTGGCCCTAATGAATTAGATAGTTTCTTTTGTGATCTTCCTCGATTTAT CAAACTGGCTTGCATAGAGACCTACACATTGGGATTCATGGTTACTGCCAATAGTGGATTT ATTTCTCTGGCTTCTTTTTTAATTCTCATAATCTCTTACATCTTTATTTTGGTGACTGTTCAG AAAAAATCTTCAGGTGGTATATTCAAGGCTTTCTCTATGCTGTCAGCTCATGTCATTGTGG TGGTTTTGGTCTTTGGGCCATTAATCTTTTTCTATATTTTTCCATTTCCCACATCACATCTTG ATAAATTCCTTGCCATCTTTGATGCAGTTATCACTCCCGTTTTGAATCCAGTCATCTATACT TTTAGAAATAAAGAGATGATGGTGGCAATGAGAAGACGATGCTCTCAGTTTGTGAATTAC AGTAAAATCTTTTAA (SEQ ID NO: 214)
AOLFR117 sequences:
MNNTIVFVIKIQIEKSDLKYRAISLQEISKISLLFWVLLLVISRLLLAMTLGNSTEVTEFYLLGFGA QHEFWCILFIVFLLIYVTSIMGNSGIILLINTDSRFQTLTYFFLQHLAFVDICYTSAITPKMLQSFT EEKJSfLILFQGCVIQFLVYATFATSDCYLLAMMAVDPYVAICKPLHYTVIMSRTVCIRLVAGSYI MGSINASVQTGFTCSLSFCKSNSINHFFCDVPPILALSCSNVDINIMLLWFVGSNLIFTGLWIFS YIYIMATILKMSSSAGRKKSFSTCASHLTAVTIFYGTLSYMYLQSHSNNSQENMKVAFIFYGTVI PMLNPLIYSLRNKEVKEALKVIGKKLF (SEQ ID NO: 215)
ATGAATAACACTATTGTATTTGTCATAAAAATACAAATAGAAAAAAGTGACTTGAAATATA GAGCCATTTCATTGCAAGAAATCTCAAAGATTTCCCTTCTTTTCTGGGTCCTTCTCTTGGTC ATTTCTAGACTTTTACTAGCCATGACACTAGGAAACAGCACTGAAGTCACTGAATTCTATC TTCTGGGATTTGGTGCCCAGCATGAGTTTTGGTGTATCCTCTTCATTGTATTCCTTCTCATC TATGTGACCTCCATAATGGGTAATAGTGGAATAATCTTACTCATCAACACAGATTCCAGAT TTCAAACACTCACGTACTTTTTTCTACAACATTTGGCTTTTGTTGATATCTGTTACACTTCT GCTATCACTCCCAAGATGCTCCAAAGCTTCACAGAAGAAAAGAATTTGATATTATTTCAGG GCTGTGTGATACAATTCTTAGTTTATGCAACATTTGCAACCAGTGACTGTTATCTCCTGGCT ATGATGGCAGTGGATCCTTATGTTGCCATCTGTAAGCCCCTTCACTATACTGTAATCATGT CCCGAACAGTCTGCATCCGTTTGGTAGCTGGTTCATACATCATGGGCTCAATAAATGCCTC TGTACAAACAGGTTTTACATGTTCACTGTCCTTCTGCAAGTCCAATAGCATCAATCACTTTT TCTGTGATGTTCCCCCTATTCTTGCTCTTTCATGCTCCAATGTTGACATCAACATCATGCTA CTTGTTGTCTTTGTGGGATCTAACTTGATATTCACTGGGTTGGTCGTCATCTTTTCCTACAT CTACATCATGGCCACCATCCTGAAAATGTCTTCTAGTGCAGGAAGGAAAAAATCCTTCTCA ACATGTGCTTCCCACCTGACCGCAGTCACCATTTTCTATGGGACACTCTCTTACATGTATTT GCAGTCTCATTCTAATAATTCCCAGGAAAATATGAAAGTGGCCTTTATATTTTATGGCACA GTTATTCCCATGTTAAATCCTTTAATCTATAGCTTGAGAAATAAGGAAGTAAAAGAAGCTT TAAAAGTGATAGGGAAAAAGTTATTTTAA (SEQ ID NO: 216)
AOLFR118 sequences: MNHMSASLKISNSSKFQVSEFILLGFPGIHSWQHWLSLPLALLYLSALAANTLILIIIWQNPSLQQ PMYIFLGILCMVDMGLATTIIPKILAIFWFDAKVISLPECFAQIYAIHFFVGMESGILLCMAFDRY VAICHPLRYPSIVTSSLILKATLFMVLRNGLFVTPVPVLAAQRDYCSKNEIEHCLCSNLGVTSLA CDDRRPNSICQLVLAWLGMGSDLSLIILSYILILYSVLRLNSAEAAAKALSTCSSHLTLILFFYTIV VVISVTHLTEMKATLIPVLLNVLHNIIPPSLNPTVYALQTKELRAAFQKVLFALTKEIRS (SEQ ID NO: 217)
ATGAATCATATGTCTGCATCTCTCAAAATCTCCAATAGCTCCAAATTCCAGGTCTCTGAGTT
CATCCTGCTGGGATTCCCGGGCATTCACAGCTGGCAACACTGGCTATCTCTGCCCCTGGCA
CTACTGTATCTCTCAGCACTTGCTGCAAACACCCTCATCCTCATCATCATCTGGCAGAACCC TTCTTTACAGCAGCCCATGTATATTTTCCTTGGCATCCTCTGTATGGTAGACATGGGTCTGG CCACTACTATCATCCCTAAGATCCTGGCCATCTTCTGGTTTGATGCCAAGGTTATTAGCCTC CCTGAGTGCTTTGCTCAGATTTATGCCATTCACTTCTTTGTGGGCATGGAGTCTGGTATCCT ACTCTGCATGGCTTTTGATAGATATGTGGCTATTTGTCACCCTCTTCGCTATCCATCAATTG TCACCAGTTCCTTAATCTTAAAAGCTACCCTGTTCATGGTGCTGAGAAATGGCTTATTTGTC ACTCCAGTGCCTGTGCTTGCAGCACAGCGTGATTATTGCTCCAAGAATGAAATTGAACACT GCCTGTGCTCTAACCTTGGGGTCACAAGCCTGGCTTGTGATGACAGGAGGCCAAACAGCAT TTGCCAGTTGGTTCTGGCATGGCTTGGAATGGGGAGTGATCTAAGTCTTATTATACTGTCA TATATTTTGATTCTGTACTCTGTACTTAGACTGAACTCAGCTGAAGCTGCAGCCAAGGCCC TGAGCACTTGTAGTTCACATCTCACCCTCATCCTTTTCTTTTACACTATTGTTGTAGTGATT TCAGTGACTCATCTGACAGAGATGAAGGCTACTTTGATTCCAGTTCTACTTAATGTGTTGC ACAACATCATCCCCCCTTCCCTCAACCCTACAGTTTATGCACTTCAGACCAAAGAACTTAG GGCAGCCTTCCAAAAGGTGCTGTTTGCCCTTACAAAAGAAATAAGATCTTAG (SEQ ID NO: 218)
AOLFR119 sequences: MPLFNSLCWFPTIHVTPPSFILNGIPGLERVHVWISLPLCTMYIIFLVGNLGLVYLIYYEESLHHP MYFFFGHALSLIDLLTCTTTLPNALCIFWFSLKEINFNACLAQMFFVHGFTGVESGVLMLMALD RYIAICYPLRYATTLTNPIIAKAELATFLRGVLLMIPFPFLVK-I^PFCQSNIISHTYCDHMSVVKL SCASIKVNVIYGLMVALLIGVFDICCISLSYTLILKAAISLSSSDARQKAFSTCTAHISAIIITYVPA FFTFFAHRFGGHTIPPSLHIIVANLYLLLPPTLNPIVYGVKTKQIRKSVIKFFQGDKGAG (SEQ ID NO: 219)
ATGCCTCTATTTAATTCATTATGCTGGTTTCCAACAATTCATGTGACTCCTCCATCTTTTAT TCTTAATGGAATACCTGGTCTGGAAAGAGTACATGTATGGATCTCCCTCCCACTCTGCACA ATGTACATCATCTTCCTTGTGGGGAATCTTGGTCTTGTGTACCTCATTTATTATGAGGAGTC CTTACATCATCCGATGTATTTTTTTTTTGGCCATGCTCTCTCCCTCATTGACCTCCTTACCTG CACCACCACTCTACCCAATGCACTCTGCATCTTCTGGTTCAGTCTCAAAGAAATTAACTTCA ATGCTTGCTTGGCCCAGATGTTCTTTGTTCATGGGTTCACAGGTGTGGAGTCTGGGGTGCT CATGCTCATGGCTCTAGACCGCTATATAGCCATTTGCTACCCTTTGCGTTATGCTACCACAC TCACCAACCCTATCATTGCCAAGGCTGAGCTTGCCACCTTCCTGAGGGGTGTATTGCTGAT GATTCCTTTCCCATTCTTGGTTAAGCGTTTGCCTTTCTGCCAAAGCAATATTATCTCCCATA CGTACTGCGACCACATGTCTGTAGTAAAGCTATCTTGTGCCAGCATCAAGGTCAATGTAAT CTATGGTCTAATGGTTGCTCTCCTGATTGGAGTGTTTGACATTTGTTGTATATCTTTGTCTT ACACTTTGATCCTCAAGGCAGCGATCAGCCTCTCTTCATCAGATGCTCGGCAGAAGGCTTT CAGCACCTGCACTGCCCATATATCTGCCATCATCATCACCTATGTTCCAGCATTCTTCACTT TCTTTGCCCACCGTTTTGGGGGACACACAATTCCCCCTTCTCTTCACATCATTGTGGCTAAT CTTTATCTTCTTCTTCCCCCAACTCTAAACCCTATTGTTTATGGAGTAAAGACAAAACAGAT ACGCAAGAGTGTCATAAAGTTCTTCCAGGGTGATAAGGGTGCAGGTTGA (SEQ ID NO: 220)
AOLFR120 sequences: MQP YTKNWTQVTEF VMMGFAGIHEAHLLFFILFLTMYLFTLVENLAIILWGLDHRLRRPMYF FLTHLSCLEIWYTSVTVPKMLAGFIGVDGGKNISYAGCLSQLFIFTFLGATECFLLAAMAYDRY VAICMPLHYGAFVSWGTCIRLAAACWLVGFLTPILPIYLLSQLTFCGPNVIDHFSCDASPLLALS CSDVTWKETVDFLVSLAVLLASSMVIAVSYGNIVWTLLHIRSAAERWKAFSTCAAHLTWSLF YGTLFFMYVQTKVTSSIrøNKVVSWYSVVTPMLNPLIYSLRNKEVKGALGRVFSLNFWKGQ (SEQ ID NO: 221)
ATGCAACCATATACCAAAAACTGGACCCAGGTAACTGAATTTGTCATGATGGGCTTTGCTG GCATCCATGAAGCACACCTCCTCTTCTTCATACTCTTCCTCACCATGTACCTGTTCACCTTG GTGGAGAATTTGGCCATCATTTTAGTGGTGGGTTTGGACCACCGACTACGGAGACCCATGT ATTTCTTCCTGACACACTTGTCCTGCCTTGAAATCTGGTACACTTCTGTTACAGTGCCCAAG ATGCTGGCTGGTTTTATTGGGGTGGATGGTGGCAAGAATATCTCTTATGCTGGTTGCCTAT CCCAGCTCTTCATCTTCACCTTTCTTGGGGCAACTGAGTGTTTCCTACTGGCTGCCATGGCC TATGATCGTTATGTGGCCATTTGTATGCCTCTCCACTATGGGGCTTTTGTGTCCTGGGGCAC CTGCATCCGTCTGGCAGCTGCCTGTTGGCTGGTAGGTTTCCTCACACCCATCTTGCCAATCT ACCTCTTGTCTCAGCTAACATTTTGTGGCCCAAATGTCATTGACCATTTCTCCTGTGATGCC TCACCCTTGCTAGCCTTGTCGTGCTCAGATGTCACTTGGAAGGAGACTGTGGATTTCCTGG TGTCTCTGGCTGTGCTACTGGCCTCCTCTATGGTCATTGCTGTGTCCTATGGCAACATCGTC TGGACACTGCTGCACATCCGCTCAGCTGCTGAGCGCTGGAAGGCCTTCTCTACCTGTGCAG CTCACCTGACTGTGGTGAGCCTCTTCTATGGCACTCTTTTCTTTATGTATGTCCAGACCAAG GTGACCTCCTCCATCAACTTCAACAAGGTGGTATCTGTCTTCTACTCTGTTGTCACGCCCAT GCTCAATCCTCTCATCTACAGTCTTAGGAACAAGGAAGTGAAGGGAGCTCTGGGTCGAGTC TTTTCTCTCAACTTTTGGAAGGGACAGTGA (SEQ IDNO: 222)
AOLFR121 sequences: MKRKNFTEVSEFIFLGFSSFGKHQITLFWFLTVYILTLVANIIIVTIICIDHHLHTPMYFFLSMLA SSETVYTLVIVPRMLLSLIFHNQPISLAGCATQMFFFVILATNNCFLLTAMGYDRYVAICRPLRY TVIMSKGLCAQLVCGSFGIGLTMAVLHVTAMFNLPFCGTVVDHFFCDIYPVMKLSCIDTTINEII NYGVSSFVIFVPIGLIFISYVLVISSILQLASAEGRKKTFATCVSHLTVVΓVHCGCASIAYLKPKSES SIEKDLVLSVTYTIITPLLNPVVYSLRNKEVKDALCRVVGRNIS (SEQ ID NO: 223)
ATGAAGAGAAAGAACTTCACAGAAGTGTCAGAATTCATTTTCTTGGGATTTTCTAGCTTTG GAAAGCATCAGATAACCCTCTTTGTGGTTTTCCTAACTGTCTACATTTTAACTCTGGTTGCT AACATCATCATTGTGACTATCATCTGCATTGACCATCATCTCCACACTCCCATGTATTTCTT CCTAAGCATGCTGGCTAGTTCAGAGACGGTGTACACACTGGTCATTGTGCCACGAATGCTT TTGAGCCTCATTTTTCATAACCAACCTATCTCCTTGGCAGGCTGTGCTACACAAATGTTCTT TTTTGTTATCTTGGCCACTAATAATTGCTTCCTGCTTACTGCAATGGGGTATGACCGCTATG TGGCCATCTGCAGACCCCTGAGATACACTGTCATCATGAGCAAGGGACTATGTGCCCAGCT GGTGTGTGGGTCCTTTGGCATTGGTCTGACTATGGCAGTTCTCCATGTGACAGCCATGTTC AATTTGCCGTTCTGTGGCACAGTGGTAGACCACTTCTTTTGTGACATTTACCCAGTCATGA AACTTTCTTGCATTGATACCACTATCAATGAGATAATAAATTATGGTGTAAGTTCATTTGT GATTTTTGTGCCCATAGGCCTGATATTTATCTCCTATGTCCTTGTCATCTCTTCCATCCTTC AAATTGCCTCAGCTGAGGGCCGGAAGAAGACCTTTGCCACCTGTGTCTCCCACCTCACTGT GGTTATTGTCCACTGTGGCTGTGCCTCCATTGCCTACCTCAAGCCGAAGTCAGAAAGTTCA ATAGAAAAAGACCTTGTTCTCTCAGTGACGTACACCATCATCACTCCCTTGCTGAACCCTG TTGTTTACAGTCTGAGAAACAAGGAGGTAAAGGATGCCCTATGCAGAGTTGTGGGCAGAA ATATTTCTTAA (SEQ ID NO: 224)
AOLFR122 sequences:
MEWENQTILVEFFLKGHSVHPRLELLFFVLIFIMYWILLGNGTLILISILDPHLHTPMYFFLGNL SFLDICYTTTSIPSTLVSFLSERKTISFSGCAVQMFLGLAMGTTECVLLGMMAFDRYVAICNPLR YPIIMSKNAYVPMAVGSWFAGIVNSAVQTTFVVQLPFCRΩ HFSCEILAVMKLACADISGN EFLMLVATILFTLMPLLLIVISYSLIISSILKIHSSEGRSKAFSTCSAHLTWIIFYGTILFMYMKPKS KETLNSDDLDATD- ISMFYGVMTPMMNPLIYSLi KDVKΕAVKHLPNRRFFSK (SEQ ID NO: 225)
ATGGAATGGGAAAACCAAACCATTCTGGTGGAATTTTTTCTGAAGGGACATTCTGTTCACC CAAGGCTTGAGTTACTCTTTTTTGTGCTAATCTTCATAATGTATGTGGTCATCCTTCTGGGG AATGGTACTCTCATTTTAATCAGCATCTTGGACCCTCACCTTCACACCCCTATGTACTTCTT TCTGGGGAACCTCTCCTTCTTGGACATCTGCTACACCACCACCTCTATTCCCTCCACACTAG TGAGCTTCCTTTCAGAAAGAAAGACCATTTCCTTTTCTGGCTGTGCAGTGCAGATGTTCCTT GGCTTGGCCATGGGGACAACAGAGTGTGTGCTTCTGGGCATGATGGCCTTTGACCGCTATG TGGCTATCTGCAACCCTCTGAGATATCCCATCATCATGAGCAAGAATGCCTATGTACCCAT GGCTGTTGGGTCCTGGTTTGCAGGGATTGTCAACTCTGCAGTACAAACTACATTTGTAGTA CAATTGCCTTTCTGCAGGAAGAATGTCATCAATCATTTCTCATGTGAAATTCTAGCTGTCAT GAAGTTGGCCTGTGCTGACATCTCAGGCAATGAGTTCCTCATGCTTGTGGCCACAATATTG TTCACATTGATGCCACTGCTCTTGATAGTTATCTCTTACTCATTAATCATTTCCAGCATCCT CAAGATTCACTCCTCTGAGGGGAGAAGCAAAGCTTTCTCTACCTGCTCAGCCCATCTGACT GTGGTCATAATATTCTATGGGACCATCCTCTTCATGTATATGAAGCCCAAGTCTAAAGAGA CACTTAATTCAGATGACTTGGATGCTACCGACAAAATTATATCCATGTTCTATGGGGTGAT GACTCCCATGATGAATCCTTTAATCTACAGTCTTAGAAACAAGGATGTGAAAGAGGCAGT AAAACACCTACCGAACAGAAGGTTCTTTAGCAAGTGA (SEQ ID NO: 226)
AOLFR123 sequences:
MYRFTDFDVSNISIYLNHVLFYTTQQAGDLEHMETRNYSAMTEFFLVGLSQYPELQLFLFLLCL IMYMIILLGNSLLIIITILDSRLHTPMYFFLGNLSFLDICYTSSSIPPMLIIFMSERKSISFIGCALQM VVSLGLGSTECVLLAVMAYDHYVAICNPLRYSIIMNGVLYVQMAAWSWIIGCLTSLLQTVLT MMLPFCGNNVIDHITCEILALLKLVCSDITINVLIMTVTNIVSLVILLLLIFISYVFILSSILRINCAE GRKKAFSTCSAHSIVVILFYGSALFMYMKPKSKNTNTSDEπGLSYGVVSPMLNPIIYSLR-NKEV KEAVKKVLSRHLHLLKM (SEQ ID NO: 227)
ATGTACAGATTTACAGATTTTGATGTATCAAACATTTCAATTTACCTGAATCATGTCCTTTT CTATACTACCCAGCAGGCAGGTGACCTAGAACACATGGAGACAAGAAATTACTCTGCCAT GACTGAATTCTTTCTGGTGGGGCTTTCCCAATATCCAGAGCTCCAGCTTTTTCTGTTCCTGC TCTGCCTCATCATGTACATGATAATCCTCCTGGGAAATAGCCTCCTCATTATCATCACCATC TTGGATTCTCGCCTCCATACTCCCATGTATTTCTTTCTTGGAAACCTCTCATTCTTGGACAT CTGTTACACATCCTCATCCATTCCTCCAATGCTTATTATATTTATGTCTGAGAGAAAATCCA TCTCCTTCATTGGCTGTGCTCTGCAGATGGTTGTGTCCCTTGGCTTGGGCTCCACTGAGTGT GTCCTCCTGGCTGTGATGGCCTATGACCACTATGTGGCCATCTGCAACCCACTGAGGTACT CCATCATCATGAACGGAGTGCTGTATGTGCAAATGGCTGCATGGTCCTGGATCATAGGCTG TCTGACCTCCCTATTGCAAACAGTTCTGACAATGATGTTGCCTTTCTGTGGGAATAATGTC ATTGATCATATTACCTGTGAAATTTTGGCCCTTCTAAAACTTGTTTGTTCAGATATCACCAT CAATGTGCTTATCATGACAGTGACAAATATTGTTTCACTGGTGATTCTTCTACTGTTAATTT TCATCTCCTATGTGTTTATTCTCTCTTCCATCCTGAGAATTAATTGTGCTGAGGGAAGAAAG AAAGCCTTCTCTACCTGTTCAGCGCACTCGATTGTGGTCATCTTATTCTACGGTTCAGCCCT TTTTATGTACATGAAACCCAAGTCAAAGAACACTAATACATCTGATGAGATTATTGGGCTG TCTTATGGAGTGGTAAGCCCAATGTTAAATCCCATCATCTATAGCCTCAGGAATAAAGAGG TCAAAGAGGCTGTAAAGAAAGTCCTGAGCAGACATCTGCATTTATTGAAAATGTGA (SEQ ID NO: 228)
AOLFR124 sequences: MNHSVVTEFIILGLTK-KPELQGIIFLFFLIVYLVAFLGNMLIIIA- YNNTLHTPMYVFLLTLAVV DIICTTSIIPKMLGTMLTSENTISYAGCMSQLFLFTWSLGAEMVLFTTMAYDRYVAICFPLHYST VM- raHMCVALLSMVMAIAVTNSWVHTALIMRLTFCGPNTIDHFFCEIPPLLALSCSPVPJNEV MVYVADITLAIGDFILTCISYGFIIVAILRIRTVEGKRKAFSTCSSHLTVVTLYYSPVIYTYIRPASS YTFERDKWAALYTLVTPTLNPMVYSFQNREMQAGIRKVFAFLKH (SEQ ID NO: 229)
ATGAATCACAGCGTTGTAACTGAGTTCATTATTCTGGGCCTCACCAAAAAGCCTGAACTCC AGGGAATTATCTTCCTCTTTTTTCTCATTGTCTATCTTGTGGCTTTTCTCGGCAACATGCTC ATCATCATTGCCAAAATCTATAACAACACCTTGCATACGCCCATGTATGTTTTCCTTCTGAC ACTGGCTGTTGTGGACATCATCTGCACAACAAGCATCATACCGAAGATGCTGGGGACCAT GCTAACATCAGAAAATACCATTTCATATGCAGGCTGCATGTCCCAGCTCTTCTTGTTCACA TGGTCTCTGGGAGCTGAGATGGTTCTCTTCACCACCATGGCCTATGACCGCTATGTGGCCA TTTGTTTCCCTCTTCATTACAGTACTGTTATGAACCACCATATGTGTGTAGCCTTGCTCAGC ATGGTCATGGCTATTGCAGTCACCAATTCCTGGGTGCACACAGCTCTTATCATGAGGTTGA CTTTCTGTGGGCCAAACACCATTGACCACTTCTTCTGTGAGATACCCCCATTGCTGGCTTTG TCCTGTAGCCCTGTAAGAATCAATGAGGTGATGGTGTATGTTGCTGATATTACCCTGGCCA TAGGGGACTTTATTCTTACCTGCATCTCCTATGGTTTTATCATTGTTGCTATTCTCCGTATC CGCACAGTAGAAGGCAAGAGGAAGGCCTTCTCAACATGCTCATCTCATCTCACAGTGGTG ACCCTTTACTATTCTCCTGTAATCTACACCTATATCCGCCCTGCTTCCAGCTATACATTTGA AAGAGACAAGGTGGTAGCTGCACTCTATACTCTTGTGACTCCCACATTAAACCCGATGGTG TACAGCTTCCAGAATAGGGAGATGCAGGCAGGAATTAGGAAGGTGTTTGCATTTCTGAAA CACTAG (SEQ ID NO: 230)
AOLFR125 sequences:
MTNQTQMMEFLLVRFTENWVLLRLHALLFSLIYLTAVLMNLVIILLMILDHRLHλlAMYFFLRH LSFLDLCLISATVPKSILNSVASTDSISFLGCVLQLFLWLLAGSEIGILTAMSYDRYAAICCPLHC EAVMSRGLCVQLMALSWLNRGALGLLYTAGTFSLNFYGSDELHQFFCDVPALLKLTCSKEHAI ISVSVAIGVCYAFSCLVCIWSYVYIFSAVLRISQRQRQSKAFSNCVPHLIWTVFLVTGAVAYL KPGSDAPSILDLLVSVFYSVAPPTLNPVIYCLKMIODIKSALSKVLWNVRSSGVMKDD (SEQ ID NO: 231) ATGACCAATCAGACACAGATGATGGAATTCTTGCTTGTGAGATTTACTGAGAATTGGGTGC TCCTGAGGCTGCATGCTTTGCTCTTCTCACTGATCTACCTCACGGCTGTGCTGATGAATTTA GTCATCATTCTCCTCATGATTCTGGACCATCGTCTCCACATGGCAATGTACTTTTTCCTCCG ACATTTGTCCTTCTTAGACCTGTGTCTCATTTCTGCCACAGTCCCCAAATCCATCCTCAACT CTGTCGCCTCCACTGACTCCATCTCCTTCCTGGGGTGTGTGTTGCAGCTCTTCTTGGTGGTA CTGCTGGCTGGATCAGAGATTGGCATCCTTACTGCCATGTCCTATGACCGCTATGCTGCCA TCTGCTGCCCCCTACACTGTGAGGCTGTCATGAGCAGAGGGCTCTGTGTCCAGTTGATGGC TCTGTCCTGGCTCAACAGAGGGGCCTTGGGACTCTTGTACACAGCTGGAACATTCTCTCTG AATTTTTATGGCTCTGATGAGCTACATCAGTTCTTCTGCGATGTCCCTGCCCTACTAAAGCT CACTTGTTCTAAAGAACATGCCATCATTAGTGTCAGTGTGGCCATTGGGGTCTGTTATGCA TTTTCATGTTTAGTTTGCATTGTAGTTTCCTATGTGTACATTTTCTCTGCTGTGTTAAGGAT ATCACAGAGACAGAGACAATCCAAAGCCTTTTCCAACTGTGTGCCTCACCTCATTGTTGTC ACTGTGTTTCTTGTAACAGGTGCTGTTGCTTATTTAAAGCCAGGGTCTGATGCACCTTCTAT TCTAGACTTGCTGGTGTCTGTGTTCTATTCTGTCGCACCTCCAACCTTGAACCCTGTTATCT ACTGTCTGAAGAACAAGGACATTAAATCCGCTCTGAGTAAAGTCCTGTGGAATGTTAGAA GCAGTGGGGTAATGAAAGATGACTAA (SEQ ID NO: 232)
AOLFR126 sequences:
MFLYLCFIFQRTCSEEMEEENATLLTEFVLTGFLHQPDCKIPLFLAFLVIYLITIMGNLGLIVLIW KDPHLHIPMYLFLGSLAFVDASLSSTVTPKMLINFLAKSKMISLSECMVQFFSLVTTVTTECFLL ATMAYDRYVAICKALLYPVIMTNELCIQLLVLSFIGGLLHALIHEAFSFRLTFCNSNIIQHFYCDII PLLKISCTDSSINFLMVFIFAGSVQVFTIGTILISYTIILFTILEKKSIKGIRKAVSTCGAHLLSVSLY YGPLTFKYLGSASPQADDQDMMESLFYTVIWLLNPMIYSLRNKQVIASFTKMFKSNV (SEQ ID NO: 233)
ATGTTCCTTTACCTTTGCTTCATTTTTCAGAGGACATGCAGTGAGGAGATGGAAGAGGAAA ATGCAACATTGCTGACAGAGTTTGTTCTCACAGGATTTTTACATCAACCTGACTGTAAAAT ACCGCTCTTCCTGGCATTCTTGGTAATATATCTCATCACCATCATGGGGAATCTTGGTCTAA TTGTTCTCATCTGGAAAGACCCTCACCTTCATATCCCAATGTACTTATTCCTTGGGAGTTTA GCCTTTGTGGATGCTTCGTTATCATCCACAGTGACTCCGAAGATGCTGATCAACTTCTTAG CTAAGAGTAAGATGATATCTCTCTCTGAATGCATGGTACAATTTTTTTCCCTTGTAACCACT GTAACCACAGAATGTTTTCTCTTGGCAACAATGGCATATGATCGCTATGTAGCCATTTGCA AAGCTTTACTTTATCCAGTCATTATGACCAATGAACTATGCATTCAGCTATTAGTCTTGTCA TTTATAGGTGGCCTTCTTCATGCTTTAATCCATGAAGCTTTTTCATTCAGATTAACCTTCTG TAATTCCAACATAATACAACACTTTTACTGTGACATTATCCCATTGTTAAAGATTTCCTGTA CTGATTCCTCTATTAACTTTCTAATGGTTTTTATTTTCGCAGGTTCTGTTCAAGTTTTTACCA TTGGAACTATTCTTATATCTTATACAATTATCCTCTTTACAATCTTAGAAAAGAAGTCTATC AAAGGGATACGAAAAGCTGTCTCCACCTGTGGGGCTCATCTCTTATCTGTATCTTTATACT ATGGCCCCCTCACCTTCAAATATCTGGGCTCTGCATCTCCGCAAGCAGATGACCAAGATAT GATGGAGTCTCTATTTTACACTGTCATAGTTCCTTTATTAAATCCCATGATCTACAGCCTGA GAAACAAGCAAGTAATAGCTTCATTCACAAAAATGTTCAAAAGCAATGTTTAG (SEQ ID NO: 234)
AOLFR127 sequences: MSNEDMEQDNTTLLTEFVLTGLTYQPE KMPLFLVFLVIYLITIV NLGLLALIWNDPQLHIPM YFFLGSLAEVDAWISSTVTP-KMLVNFLAK-NRMISLSECMIQFFSFAFGGTTECFLLATMAYDRY VAICKPLLYPVIMNNSLCIRLLAFSFLGGFLHALIHEVLIFRLTFCNSNIIHHFYCDIIPLFMISCTD PSINELMWILSGSIQVFTIVTVLNSYTFALFTILKKKSVRGVRKAFSTCGAHLLSVSLYYGPLIF MYLI^ASPQADDQDMIDSVFYTπiPLLNPIIYSLRNKQVIDSFTKMVKRNV (SEQ ID NO: 235)
ATGTCGAATGAGGACATGGAACAGGATAATACAACATTGCTGACAGAGTTTGTTCTCACA GGACTTACATATCAGCCAGAGTGGAAAATGCCCCTGTTCTTGGTGTTCTTGGTGATCTATC TCATCACTATTGTGTGGAACCTTGGTCTGATTGCTCTTATCTGGAATGACCCACAACTTCAC ATCCCCATGTACTTTTTTCTTGGGAGTTTAGCCTTTGTTGATGCTTGGATATCTTCCACAGT AACTCCCAAAATGTTGGTTAATTTCTTGGCCAAAAACAGGATGATATCTCTGTCTGAATGC ATGATTCAATTTTTTTCCTTTGCATTTGGTGGAACTACAGAATGTTTTCTCTTGGCAACAAT GGCATATGATCGCTATGTAGCCATATGCAAACCTTTACTATATCCAGTGATTATGAACAAT TCACTATGCATACGGCTGTTAGCCTTCTCATTTTTAGGTGGCTTCCTCCATGCCTTAATTCA TGAAGTCCTTATATTCAGATTAACCTTCTGCAATTCTAACATAATACATCATTTTTACTGTG ATATTATACCACTGTTTATGATTTCCTGTACTGACCCTTCTATTAATTTTCTAATGGTTTTTA TTTTGTCTGGCTCAATTCAGGTATTCACCATTGTGACAGTTCTTAATTCTTACACATTTGCT CTTTTCACAATCCTAAAAAAGAAGTCTGTTAGAGGCGTAAGGAAAGCCTTTTCCACCTGTG GAGCCCATCTCTTATCTGTCTCTTTATATTATGGCCCACTTATCTTCATGTATTTGCGCCCT GCATCTCCACAAGCAGATGACCAAGATATGATAGACTCTGTCTTTTATACAATCATAATTC CTTTGCTAAATCCCATTATCTACAGTCTGAGAAATAAACAAGTAATAGATTCATTCACAAA AATGGTAAAAAGAAATGTTTAG (SEQ ID NO: 236)
AOLFR128 sequences:
METQNLTVVTEFILLGLTQSQDAQLLVFVLVLIFYLIILPGNFLIIFTIKSDPGLTAPLYFFLGNLA LLDASYSFIWPRMLVDFLSEKKVISYRSCITQLFFLHFLGAGEMFLLWMAFDRYIAICRPLHY STIMNPRACYALSLVLWLGGFIHSIVQVALILHLPFCGPNQLDNFFCDVPQVIKLACTNTFVVEL LMVSNSGLLSLLCFLGLLASYAVILCRIREHSSEGKSKAISTCTTHIIIIFLMFGPAIFIYTCPFQAFP ADKWSLFHTVIFPLMNPVIYTLRNQEVKASMRKLLSQHMFC (SEQ ID NO: 237)
ATGGAAACACAGAACCTCACAGTGGTGACAGAATTCATTCTTCTTGGTCTGACCCAGTCTC AAGATGCTCAACTTCTGGTCTTTGTGCTAGTCTTAATTTTCTACCTTATCATCCTCCCTGGA AATTTCCTCATCATTTTCACCATAAAGTCAGACCCTGGGCTCACAGCCCCCCTCTATTTCTT TCTGGGCAACTTGGCCTTACTGGATGCATCCTACTCCTTCATTGTGGTTCCCAGGATGTTG GTGGACTTCCTCTCTGAGAAGAAGGTAATCTCCTATAGAAGCTGCATCACTCAGCTCTTTT TCTTGCATTTTCTTGGAGCGGGAGAGATGTTCCTCCTCGTTGTGATGGCCTTTGACCGCTAC ATCGCCATCTGCCGGCCTTTACACTATTCAACCATCATGAACCCTAGAGCCTGCTATGCAT TATCGTTGGTTCTGTGGCTTGGGGGCTTTATCCATTCCATTGTACAAGTAGCCCTTATCCTG CACTTGCCTTTCTGTGGCCCAAACCAGCTCGATAACTTCTTCTGTGATGTTCCACAGGTCAT CAAGCTGGCCTGCACCAATACCTTTGTGGTGGAGCTTCTGATGGTCTCCAACAGTGGCCTG CTCAGCCTCCTGTGCTTCCTGGGCCTTCTGGCCTCCTATGCAGTCATCCTCTGTCGTATAAG GGAGCACTCCTCTGAAGGAAAGAGCAAGGCTATTTCCACATGCACCACCCATATTATCATT ATATTTCTCATGTTTGGACCTGCTATTTTCATCTACACTTGCCCCTTCCAGGCTTTCCCAGC TGACAAGGTAGTTTCTCTTTTCCATACTGTCATCTTTCCTTTGATGAACCCTGTTATTTATA CGCTTCGCAACCAGGAGGTGAAAGCTTCCATGAGGAAGTTGTTAAGTCAACATATGTTTTG CTGA (SEQ ID NO: 238)
AOLFR129 sequences:
MALYFSLILHGMSDLFFLSTGHPRASCRMEAMKLLNQSQVSEFILLGLTSSQDVEFLLFALFSVI YVVTVLGNLLIIVTVFNTPNLNTPMYFLLGNLSFVDMTLASFATPKVILNLLKKQKVISFAGCFT QIFLLHLLGGVEMVLLVSMAFDRYVAICKPLHYMTIMNKKVCVLLWTSWLLGLLHSGFQIPF AVNLPFCGPNVVDSIFCDLPLVTKLACIDIYFVQVVIVANSGIISLSCFIILLISYSLILITIKNHSPT GQS AIISTLTAΉITVVILFFGPCIFIYIWPFGNHSVDKFLA YTΠTPILNPIIYTLRNKEMKISMK KLWRAFVNSREDT (SEQ ID NO: 239)
ATGGCTCTTTATTTTTCACTCATACTCCATGGTATGAGTGATCTTTTCTTTCTCTCTACAGG TCATCCAAGAGCGAGCTGTAGGATGGAGGCCATGAAACTATTAAATCAATCTCAAGTGTC AGAATTCATTTTGCTGGGACTGACCAGCTCCCAGGATGTAGAGTTTCTTCTCTTTGCCCTCT TCTCGGTTATCTATGTGGTCACAGTTTTGGGTAACCTTCTTATTATAGTCACAGTGTTTAAC ACCCCTAACCTGAATACTCCCATGTATTTTCTCCTTGGTAATCTCTCTTTTGTAGATATGAC CCTTGCTTCTTTTGCCACCCCTAAGGTGATTCTGAACTTGTTAAAAAAGCAGAAGGTAATT TCTTTTGCTGGGTGCTTCACTCAGATATTTCTCCTTCACTTACTGGGTGGGGTTGAAATGGT ACTGTTGGTCTCCATGGCTTTTGACAGATATGTGGCCATTTGTAAGCCCCTACACTACATG ACCATCATGAACAAGAAGGTATGTGTTTTGCTTGTAGTGACCTCATGGCTCTTGGGTCTCC TTCACTCAGGGTTTCAGATACCATTTGCTGTGAACTTGCCCTTTTGTGGTCCCAATGTGGTA GACAGCATTTTTTGTGACCTCCCTTTGGTTACTAAGCTTGCCTGTATAGACATATATTTTGT ACAGGTAGTCATTGTTGCCAACAGTGGCATAATCTCCCTGAGCTGTTTCATTATTTTGCTTA TCTCCTACAGTCTGATCCTCATAACCATTAAGAACCACTCTCCTACTGGGCAATCTAAAGC CCGTTCCACTTTGACTGCTCACATCACAGTGGTGATTCTCTTCTTTGGCCCATGCATCTTTA TCTACATTTGGCCCTTCGGCAACCACTCTGTAGATAAGTTCCTTGCTGTGTTTTATACCATC ATCACTCCTATCTTGAATCCAATTATCTATACTCTGAGAAACAAAGAAATGAAGATATCCA TGAAAAAACTCTGGAGAGCTTTTGTGAATTCTAGAGAAGATACTTAG (SEQ ID NO: 240)
AOLFR131 sequences:
MASTSNVTELIFTGLFQDPAVQSVCFVVFLPVYLATWGNGLIVLTVSISKSLDSPMYFFLSCLS LVEISYSSTIAPKFIIDLLAKIKTISLEGCLTQIFFFHFFGVAEILLIVVMAYDCYVAICKPLHYMNI ISRQLCHLLVAGSWLGGFCHSIIQILVIIQLPFCGPNVIDHYFCDLQPLFKLACTDTFMEGVIVLA NSGLFSVFSFLILVSSYIVILVNLR-NHSAEGRHKALSTCASHITWILFFGPAIFLYMRPSSTFTED KLVAVFYTVITPMLNPIIYTLRNAEVKIAIRRLWSKKENPGRE (SEQ ID NO: 241)
ATGGCCAGTACAAGTAATGTGACTGAGTTGATTTTCACTGGCCTTTTCCAGGATCCAGCTG TGCAGAGTGTATGCTTTGTGGTGTTTCTCCCCGTGTACCTTGCCACGGTGGTGGGCAATGG CCTCATCGTTCTGACGGTCAGTATCAGCAAGAGTCTGGATTCTCCCATGTACTTCTTCCTTA GCTGCCTGTCCTTGGTGGAGATCAGTTATTCCTCCACTATCGCCCCTAAATTCATCATAGAC TTACTTGCCAAGATTAAAACCATCTCTCTGGAAGGCTGTCTGACTCAGATATTCTTCTTCCA CTTCTTTGGGGTTGCTGAGATCCTTTTGATTGTGGTGATGGCCTATGATTGCTACGTGGCC ATTTGCAAGCCTCTTCATTATATGAACATTATCAGTCGTCAACTGTGTCACCTTCTGGTGGC TGGTTCCTGGCTGGGGGGCTTTTGTCACTCCATAATTCAGATTCTCGTTATCATCCAATTGC CCTTCTGTGGTCCCAATGTGATTGACCACTATTTCTGTGACCTCCAGCCTTTATTCAAGCTT GCCTGCACTGACACCTTCATGGAGGGGGTTATTGTGTTGGCCAACAGTGGATTATTCTCTG TCTTCTCCTTCCTCATCTTGGTGTCCTCTTATATTGTCATTCTGGTCAACTTGAGGAACCAT TCTGCAGAGGGGAGGCACAAAGCCCTCTCCACCTGTGCTTCTCACATCACAGTGGTCATCT TGTTTTTTGGACCTGCTATCTTCCTCTACATGCGACCTTCTTCCACTTTCACTGAAGATAAA CTTGTGGCTGTATTCTACACGGTCATCACCCCCATGCTGAACCCCATCATTTACACACTCAG GAATGCAGAGGTGAAAATCGCCATAAGAAGATTGTGGAGCAAAAAGGAGAATCCAGGGA GGGAGTGA (SEQ ID NO: 242)
AOLFR132 sequences:
MVATNNVTEIIFVGFSQNWSEQRVISVMFLLMYTAVVLGNGLIVVTILASKVLTSPMYFFLSYL SFVEICYCSVMAPKLIFDSFIKRKVISLKGCLTQMFSLHFFGGTEAFLLMVMAYDRYVAICKPL HYMAEVπS[QRMCGLLVPJAWGGGLLHSVGQTFLIFQLPFCGPNIMDHYFCDVHPVLELACADT FFISLLIITNGGSISVVSFFVLMASYLIILHFLRSHNLEGQHK LSTCASHVTVVDLFFIPCSLVYIR PCVTLPADOVAVFYT\^TPLLNPVIYSFRNAEVKNAMRRFIGGKVI (SEQ ID NO: 243)
ATGGTTGCTACAAACAATGTGACTGAAATAATTTTCGTGGGATTTTCCCAGAATTGGAGTG AGCAGAGGGTCATTTCTGTGATGTTTCTCCTCATGTACACAGCTGTTGTGCTGGGCAATGG CCTCATTGTGGTGACCATCCTGGCCAGCAAAGTGCTCACCTCCCCCATGTATTTCTTTCTCA GCTACTTATCCTTTGTGGAGATCTGCTACTGTTCTGTCATGGCCCCCAAGCTTATCTTTGAC TCCTTTATCAAGAGGAAAGTCATTTCTCTCAAGGGCTGCCTCACACAGATGTTTTCCCTCC ATTTCTTTGGTGGCACTGAGGCCTTTCTCCTGATGGTGATGGCCTATGACCGCTATGTGGC CATCTGCAAGCCCTTGCACTACATGGCCATCATGAACCAGCGAATGTGTGGTCTCCTCGTG AGGATAGCATGGGGCGGGGGCCTGCTGCATTCTGTTGGGCAAACCTTCCTGATTTTCCAGC TCCCGTTCTGTGGCCCCAACATCATGGACCACTACTTCTGTGATGTCCACCCAGTGCTGGA GCTGGCCTGCGCAGACACCTTCTTCATTAGCCTGCTGATCATCACCAATGGCGGCTCCATC TCCGTAGTCAGTTTCTTCGTGCTGATGGCTTCCTACCTGATCATCCTGCACTTCCTGAGAAG CCACAACTTGGAGGGGCAGCACAAGGCCCTCTCCACCTGTGCCTCTCATGTCACAGTTGTC GACCTGTTCTTCATACCTTGCTCCTTGGTCTATATTAGGCCCTGTGTCACCCTCCCTGCAGA CAAGATAGTTGCTGTATTTTATACAGTGGTCACACCTCTCTTAAACCCTGTGATTTACTCCT TCAGGAATGCTGAAGTGAAAAATGCCATGAGGAGATTTATTGGGGGAAAAGTAATTTGA (SEQ ID NO: 244)
AOLFR133 sequences: MTEFIFLVLSPNQEVQRVCFVIFLFLYTAIVLGNFLIVLTVMTSRSLGSPMYFFLSYLSFMEICYS SATAPKX,ISDLLAERKVISWWGCMAQLFFLHFFGGTEIFLLTVMAYDHYVAICKPLSYTTIMN WQVCTVLVGIAWVGGFMHSFAQILLIFHLLFCGPNVINHYFCDLVPLLKLACSDTFLIGLLIVAN GGTLSVISFGVLLASYMVILLHLRTWSSEGWCKALSTCGSHFAWILFFGPCVFNSLRPSTTLPI DKMVAWYTVITAILNPVIYSLRNAEMRKAMKRLWIRTLRLNEK (SEQ ID NO: 245)
ATGACTGAATTCATTTTTCTGGTACTTTCTCCCAACCAGGAGGTGCAGAGGGTTTGCTTTG TGATATTTCTGTTCTTGTACACAGCAATTGTGCTGGGGAATTTCCTCATTGTGCTCACTGTC ATGACCAGCAGAAGCCTTGGTTCCCCCATGTACTTCTTCCTCAGCTACCTCTCCTTCATGGA GATCTGCTACTCCTCCGCTACAGCCCCCAAACTCATCTCAGATCTGCTGGCTGAAAGGAAA GTCATATCTTGGTGGGGCTGCATGGCACAGCTTTTCTTCTTGCACTTCTTTGGTGGCACTGA GATTTTCCTGCTCACTGTGATGGCCTATGACCACTATGTGGCCATCTGCAAGCCCCTCAGC TACACCACCATCATGAACTGGCAGGTGTGTACTGTCCTTGTAGGAATAGCATGGGTGGGA GGCTTCATGCATTCCTTTGCACAAATCCTTCTCATCTTCCACCTGCTCTTCTGTGGCCCCAA TGTGATCAATCACTATTTCTGTGACCTAGTTCCCCTTCTCAAACTTGCCTGCTCTGACACCT TCCTCATTGGTCTGCTGATTGTTGCCAATGGAGGCACCCTGTCTGTGATCAGTTTTGGGGT CCTCTTAGCATCCTATATGGTCATCTTGCTCCATCTGAGAACCTGGAGCTCTGAAGGGTGG TGCAAAGCCCTCTCCACCTGTGGGTCCCATTTCGCTGTGGTTATCTTGTTCTTTGGGCCCTG CGTCTTCAACTCTCTGAGGCCTTCTACCACTCTGCCCATAGACAAGATGGTGGCTGTGTTCT ACACAGTGATAACCGCGATCCTGAACCCTGTCATCTACTCTCTGAGAAATGCTGAAATGAG GAAGGCCATGAAGAGGCTGTGGATTAGGACATTGAGACTAAATGAGAAATAG (SEQ ID NO: 246)
AOLFR134 sequences:
MTTIILEVDNHTVTTRFILLGFPTRPAFQLLFFSIFLATYLLTLLENLLIILAIHSDGQLHKPMYFFL SHLSFLEMWYVTVISPKMLVDFLSHDKSISFNGCMTQLYFFVTFVCTEYILLAIMAFDRYVAIC NPLRYPVIMTNQLCGTLAGGCWFCGLMTAMIKMVFIAQLHYCGMPQINHYFCDISPLLNVSCE DASQAEMVDFFLALMVIAIPLCWVASYAAILATILRIPSAQGRQKAFSTCASHLTWILFYSMT LFTYA-iπ'KLMYAYNSNKVVSVLYTVIVPLLNPIIYCLRNHEVKAALRKTIHCRGSGPQGNGAFS S (SEQ ID NO: 247)
ATGACCACCATAATTCTGGAAGTAGATAATCATACAGTGACAACACGTTTCATTCTTCTGG GGTTTCCAACACGACCAGCCTTCCAGCTTCTCTTTTTCTCCATTTTCCTGGCAACCTATCTG CTGACACTGCTGGAGAATCTTCTTATCATCTTAGCTATCCACAGTGATGGGCAGCTGCATA AGCCCATGTACTTCTTCTTGAGCCACCTCTCCTTCCTGGAGATGTGGTATGTCACAGTCATC AGCCCCAAGATGCTTGTTGACTTCCTCAGTCATGACAAGAGTATTTCCTTCAATGGCTGCA TGACTCAACTTTACTTTTTTGTGACCTTTGTCTGCACTGAGTACATCCTTCTTGCTATCATG GCCTTTGACCGCTATGTAGCCATTTGTAATCCACTACGCTACCCAGTCATCATGACCAACC AGCTCTGTGGCACACTGGCTGGAGGATGCTGGTTCTGTGGACTCATGACTGCCATGATTAA GATGGTTTTTATAGCACAACTTCACTACTGTGGCATGCCTCAGATCAATCACTACTTTTGTG ATATCTCTCCACTCCTTAACGTCTCCTGTGAGGATGCCTCACAGGCTGAGATGGTGGACTT CTTCTTGGCCCTCATGGTCATTGCTATTCCTCTTTGTGTTGTGGTGGCATCCTACGCTGCTA TCCTTGCCACCATCCTCAGGATCCCTTCTGCTCAGGGCCGCCAAAAGGCATTCTCCACCTG TGCCTCCCACCTGACCGTCGTAATTCTCTTCTATTCCATGACACTTTTCACCTATGCCCGTC CCAAACTCATGTATGCCTACAATTCCAACAAAGTGGTATCTGTTCTCTACACTGTCATTGTT CCACTCCTCAACCCCATCATTTACTGTCTGAGGAACCATGAAGTAAAGGCAGCCCTCAGAA AGACCATACATTGCAGAGGAAGTGGGCCCCAGGGAAATGGGGCTTTCAGTAGTTAA (SEQ ID NO: 248)
AOLFR135 sequences:
MIFPSHDSQAFTSVDMEVGNCTILTEFILLGFSADSQWQPILFGVFLMLYLITLSGNMTLVILIRT DSHLHTPMYFFIGNLSFLDFWYTSVYTPKILASCVSEDKRISLAGCGAQLFFSCVVAYTECYLL AAMAYDRHAAICNPLLYSGTMSTALCTGLVAGSYIGGFLNAIAHTANTFRLHFCGKNIIDHFFC DAPPLVKMSCTNTRVYEKVLLGVVGFTVLSSILAILISYVNILLAILRIHSASGRHKAFSTCASHL ISVMLFYGSLLFMYSRPSSTYSLERDKVAALFYTVINPLLNPLIYSLR-NKDIKEAF-RKATQTIQPQ T (SEQ ID NO: 249) ATGATTTTCCCTTCTCATGATAGTCAGGCTTTCACCTCCGTGGACATGGAAGTGGGAAATT GCACCATCCTGACTGAATTCATCTTGTTGGGTTTCTCAGCAGATTCCCAGTGGCAGCCGAT TCTATTTGGAGTGTTTCTGATGCTCTATTTGATAACCTTGTCAGGAAACATGACCTTGGTTA TCTTAATCCGAACTGATTCCCACTTGCATACACCTATGTACTTTTTCATTGGCAATCTGTCT TTTTTGGATTTCTGGTATACCTCTGTGTATACCCCCAAAATCCTGGCCAGTTGTGTCTCAGA AGATAAGCGCATTTCCTTGGCTGGATGTGGGGCTCAGCTGTTTTTTTCCTGTGTTGTAGCCT ACACTGAATGCTATCTCCTGGCAGCCATGGCATATGACCGCCATGCAGCAATTTGTAACCC ATTGCTTTATTCAGGTACCATGTCCACCGCCCTCTGTACTGGGCTTGTTGCTGGCTCCTACA TAGGAGGATTTTTGAATGCCATAGCCCATACTGCCAATACATTCCGCCTGCATTTTTGTGG TAAAAATATCATTGACCACTTTTTCTGTGATGCACCACCATTGGTAAAAATGTCCTGTACA AACACCAGGGTCTACGAAAAAGTCCTGCTTGGTGTGGTGGGCTTCACAGTACTCTCCAGCA TTCTTGCTATCCTGATTTCCTATGTCAACATCCTCCTGGCTATCCTGAGAATCCACTCAGCT TCAGGAAGACACAAGGCATTCTCCACCTGTGCTTCCCACCTCATCTCAGTCATGCTCTTCTA TGGATCATΓGTTGTTTATGTATTCAAGGCCTAQTTCCACCTACTCCCTAGAGAGGGACAAA GTAGCTGCTCTGTTCTACACCGTGATCAACCCACTGCTCAACCCTCTCATCTATAGCCTGAG AAACAAAGATATCAAAGAGGCCTTCAGGAAAGCAACACAGACTATACAACCACAAACATG A (SEQ ID NO: 250)
AOLFR136 sequences: MTMENYSMAAQFVLDGLTQQAELQLPLFLLFLGIYWTVVGNLGMILLIAVSPLLHTPMYYFL SSLSFVDFCYSSVITPKMLVNFLGKKNTILYSECMVQLFFFWFVVAEGYLLTAMAYDRYVAIC SPLLYNAIMSSWVCSLLVLAAFFLGFLSALTHTSAMMKLSFCKSHIINHYFCDVLPLLNLSCSNT HLNELLLFIIAGFNTLVPTLAVAVSYAFILYSILHIRSSEGRSKAFGTCSSHLMAVVIFFGSITFMY FK PSSNSLDQEKVSSVFYTTVIPMLNPLIYSLRNKDVKKALRKVLVGK (SEQ ID NO: 251)
ATGACCATGGAAAATTATTCTATGGCAGCTCAGTTTGTCTTAGATGGTTTAACACAGCAAG CAGAGCTCCAGCTGCCCCTCTTCCTCCTGTTCCTGGGAATCTATGTGGTCACAGTAGTGGG CAACCTGGGCATGATTCTCCTGATTGCAGTCAGCCCTCTACTTCACACCCCCATGTACTATT TCCTCAGCAGCTTGTCCTTCGTCGATTTCTGCTATTCCTCTGTCATTACTCCCAAAATGCTG GTGAACTTCCTAGGAAAGAAGAATACAATCCTTTACTCTGAGTGCATGGTCCAGCTCTTTT TCTTTGTGGTCTTTGTGGTGGCTGAGGGTTACCTCCTGACTGCCATGGCATATGATCGCTA TGTTGCCATCTGTAGCCCACTGCTTTATAATGCGATCATGTCCTCATGGGTCTGCTCACTGC TAGTGCTGGCTGCCTTCTTCTTGGGCTTTCTCTCTGCCTTGACTCATACAAGTGCCATGATG AAACTGTCCTTTTGCAAATCCCACATTATCAACCATTACTTCTGTGATGTTCTTCCCCTCCT CAATCTCTCCTGCTCCAACACACACCTCAATGAGCTTCTACTTTTTATCATTGCGGGGTTTA ACACCTTGGTGCCCACCCTAGCTGTTGCTGTCTCCTATGCCTTCATCCTCTACAGCATCCTT CACATCCGCTCCTCAGAGGGCCGGTCCAAAGCTTTTGGAACATGCAGCTCTCATCTCATGG CTGTGGTGATCTTCTTTGGGTCCATTACCTTCATGTATTTCAAGCCCCCTTCAAGTAACTCC CTGGACCAGGAGAAGGTGTCCTCTGTGTTCTACACCACGGTGATCCCCATGCTGAACCCTT TAATATACAGTCTGAGGAATAAGGATGTGAAGAAAGCATTAAGGAAGGTCTTAGTAGGAA AATGA (SEQ ID NO: 252)
AOLFR137 sequences:
MSPENQSSVSEFLLLGLPIRPEQQAVFFALFLGMYLTTVLGNLLIMLLIQLDSHLHTPMYFFLSH LALTDISFSSVTVPKMLMNMQTQHLAVFYKGCISQTYFFIFFADLDSFLITSMAYDRYVAICHPL HYATIMTQSQCVMLVAGSWVIACACALLHTLLLAQLSFCADHIIPHYFCDLGALLKLSCSDTSL NQLAIFTAALTAIMLPFLCILVSYGHIGVTILQIPSTKGICKALSTCGSHLSWTIYYRTIIGLYFLP PSSNTNDK IASVIYTAVTPMLNPFIYSLRNKDIKGALRKLLSRSGAVAHACNLSTLGG (SEQ ID NO: 253)
ATGAGCCCTGAGAACCAGAGCAGCGTGTCCGAGTTCCTCCTCCTGGGCCTCCCCATCCGGC CAGAGCAGCAGGCCGTGTTCTTCGCCCTGTTCCTGGGCATGTACCTGACCACGGTGCTGGG GAACCTGCTCATCATGCTGCTCATCCAGCTAGACTCTCACCTTCACACCCCCATGTACTTCT TCCTTAGCCACTTGGCCCTCACTGACATCTCCTTTTCATCTGTCACTGTCCCTAAGATGCTG ATGAACATGCAGACTCAGCACCTAGCCGTCTTTTACAAGGGATGCATTTCACAGACATATT TTTTCATATTTTTTGCTGACTTAGACAGTTTCCTTATCACTTCAATGGCATATGACAGGTAT GTGGCCATCTGTCATCCTCTACATTATGCCACCATCATGACTCAGAGCCAGTGTGTCATGC TGGTGGCTGGGTCCTGGGTCATCGCTTGTGCGTGTGCTCTTTTGCATACCCTCCTCCTGGCC CAGCTTTCCTTCTGTGCTGACCACATCATCCCTCACTACTTCTGTGACCTTGGTGCCCTGCT CAAGTTGTCCTGCTCAGACACCTCCCTCAATCAGTTAGCAATCTTTACAGCAGCATTGACA GCCATTATGCTTCCATTCCTGTGCATCCTGGTTTCTTATGGTCACATTGGGGTCACCATCCT CCAGATTCCCTCTACCAAGGGCATATGCAAAGCCTTGTCCACTTGTGGATCCCACCTCTCA GTGGTGACTATCTATTATCGGACAATTATTGGTCTCTATTTTCTTCCCCCATCCAGCAACAC CAATGACAAGAACATAATTGCTTCAGTGATATACACAGCAGTCACTCCCATGTTGAACCCA TTCATTTACAGTCTGAGAAATAAAGACATTAAGGGAGCCCTAAGAAAACTCTTGAGTAGG TCAGGCGCAGTGGCTCATGCCTGTAATCTCAGCACTTTGGGAGGCTGA (SEQ ID NO: 254)
AOLFR138 sequences:
MLNFTDVTEFILLGLTSRREWQVLFFIVFLWYIITWGNIGMMLLIKVSPQLNSPMYFFLSHLS FVDVWFSSNVTPKMLENLFSDKKTISYADCLAQCFFFIALVHVEIFILAAIAFDRYTVIGNPLLY GS ^SRGVCIRLITFPYIYGFLTSLTATLWTYGLYFCG- EINHFYCADPPLIKMACAGTFVKEY TMLILAGINFTYSLTVIIISYLFILIAILRMRSAEGRQKAFSTCGSHPTAVIIFYGTLIFMYLRRPTE ESVEQGIGVIVAVFYTTVIPMLNPMIYSLR-SIKDVKKAMMKVISRSC (SEQ ID NO: 255)
ATGCTCAATTTCACCGATGTGACAGAGTTCATTCTTTTGGGGCTAACGAGCCGTCGGGAAT GGCAAGTTCTCTTCTTCATCGTTTTTCTTGTGGTCTACATTATCACCGTGGTGGGCAATATC GGCATGATGTTGTTAATCAAGGTCAGTCCTCAGCTTAACAGCCCCATGTACTTTTTCCTCA GTCACTTGTCATTTGTTGATGTGTGGTTTTCTTCCAATGTCACCCCTAAAATGTTGGaAAAT CTGTTATCAGATAAAAAAACAATTTCTTATGCTGGCTGTTTAGCACAGTGTTTCTTCTTCAT TGCTCTTGTCCATGTGGAAATTTTTATTCTTGCTGCGATTGCCTTTGATAGATACACAGTGA TTGGAAATCCTTTGCTTTATGGCAGCAAAATGTCAAGGGATGTCTGTATTCGACTGATTAC TTTCCCTTACATTTATGGTTTTCTGACGAGTCTGACAGCAACATTATGGACTTATGGCTTGT ACTTCTGTGGAAAAATTGAGATCAACCATTTCTACTGTGCAGATCCACCTCTCATCAAAAT GGCCTGTGCCGGGACCTTTGTAAAAGAATATACAATGCTCATACTTGCCGGCATCAACTTC ACATATTCCCTGACTGTAATTATCATCTCTTACTTATTCATCCTCATTGCCATTCTGCGAAT GCGCTCAGCAGAAGGAAGGCAGAAGGCCTTTTCCACATGTGGGTCCCATCTGACAGCTGT CATCATATTCTATGGTACTCTGATCTTCATGTATCTCAGACGTCCCACAGAGGAGTCTGTG GAGCAGGGGAAGATGGTGGCTGTGTTCTATACCACAGTGATCCCCATGTTGAATCCCATGA TCTACAGTCTGAGGAACAAGGATGTGAAAAAGGCCATGATGAAAGTGATCAGCAGATCAT GTTAA (SEQ ID NO: 256)
AOLFR139 sequences:
MGFPGIHSWQHWLSLPLALLYLLALSANILILIIESIKEAALHQPMYYFLGILAMADIGLATTIMP KILAILWFNAKTISLLECFAQMYAIHCFVAMESSTFVCMAIDRYVAICRPLRYPSIITESFVFKAN GFMALRNSLCLISVPLLAAQRHYCSQNQIEHCLCSNLGVTSLSCDDRRINSINQVLLAWTLMGS DLGLIILSYALILYSVLKLNSPEAASKALSTCTSHLILILFFYTVIIVISITRSTGMRVPLIPVLLNVL HNVIPPALNPMVYALKNKELRQGLYKVLRLGVKGT (SEQ ID NO: 257)
ATGGGATTCCCTGGCATTCACAGTTGGCAGCACTGGCTCTCCCTGCCCCTGGCTCTGCTCT ACCTCTTAGCTCTCAGTGCCAACATCCTTATCCTGATCATCATCAACAAAGAGGCAGCACT GCACCAGCCTATGTACTATTTCCTGGGCATCTTGGCTATGGCAGACATAGGCCTGGCTACC ACCATCATGCCTAAGATTTTGGCCATCTTATGGTTCAATGCTAAGACCATCAGTCTCCTGG AGTGCTTTGCTCAGATGTATGCCATACATTGCTTTGTGGCCATGGAATCAAGTACCTTTGT CTGCATGGCTATTGATAGATATGTAGCCATTTGTCGACCGCTACGATATCCATCAATCATC ACTGAATCTTTTGTTTTCAAAGCAAATGGGTTCATGGCACTGAGAAACAGCCTGTGTCTCA TCTCAGTGCCTCTGTTGGCTGCCCAGAGGCATTACTGCTCCCAGAATCAAATTGAGCACTG TCTTTGTTCTAACCTTGGAGTCACTAGCCTATCTTGTGATGATCGAAGAATCAATAGCATT AACCAGGTCCTTTTGGCTTGGACACTCATGGGAAGTGACCTGGGTTTGATTATTTTATCAT ATGCTCTAATACTTTACTCTGTCCTGAAGCTGAACTCTCCAGAAGCTGCATCCAAGGCCTT AAGTACCTGCACCTCCCACCTCATCTTAATCCTTTTCTTCTACACAGTCATCATTGTGATTT CCATTACTCGTAGTACAGGAATGAGAGTTCCCCTTATTCCAGTTCTACTTAATGTGCTACA CAATGTCATTCCCCCTGCCCTGAACCCCATGGTATATGCACTCAAGAACAAGGAACTCAGG CAAGGCTTATACAAGGTACTTAGACTGGGAGTGAAGGGCACCTGA (SEQ ID NO: 258)
AOLFR140 sequences: MLTLNKTDLIPASFILNGVPGLEDTQLWISFPFCSMYVVAMVGNCGLLYLIHYEDALHKPMYY FLAMLSFTDLVMCSSTIPKALCIFWFHLKDIGFDECLVQMFFIHTFTGMESGVLMLMALDRYV AICYPLRYSTILTNPVIAKVGTATFLRGVLLIIPFTFLTKRLPYCRGNILPHTYCDHMSVAKLSCG NVKVNAIYGLMVALLIGGFDILCITISYTMILRAWSLSSADARQKAFNTCTAHICAIVFSYTPAF FSFFSHRFGEHIIPPSCHIIVANIYLLLPPTMNPIVYGVKTKQIRDCVIRILSGSKDTKSYSM (SEQ ID NO: 259)
ATGCTAACACTGAATAAAACAGACCTAATACCAGCTTCATTTATTCTGAATGGAGTCCCAG
GACTGGAAGACACACAACTCTGGATTTCCTTCCCATTCTGCTCTATGTATGTTGTGGCTAT
GGTAGGGAATTGTGGACTCCTCTACCTCATTCACTATGAGGATGCCCTGCACAAACCCATG TACTACTTCTTGGCCATGCTTTCCTTTACTGACCTTGTTATGTGCTCTAGTACAATCCCTAA AGCCCTCTGCATCTTCTGGTTTCATCTCAAGGACATTGGATTTGATGAATGCCTTGTCCAG ATGTTCTTCATCCACACCTTCACAGGGATGGAGTCTGGGGTGCTTATGCTTATGGCCCTGG ATCGCTATGTGGCCATCTGCTACCCCTTACGCTATTCAACTATCCTCACCAATCCTGTAATT GCAAAGGTTGGGACTGCCACCTTCCTGAGAGGGGTATTACTCATTATTCCCTTTACTTTCCT CACCAAGCGCCTGCCCTACTGCAGAGGCAATATACTTCCCCATACCTACTGTGACCACATG TCTGTAGCCAAATTGTCCTGTGGTAATGTCAAGGTCAATGCCATCTATGGTCTGATGGTTG CCCTCCTGATTGGGGGCTTTGACATACTGTGTATCACCATCTCCTATACCATGATTCTCCGG GCAGTGGTCAGCCTCTCCTCAGCAGATGCTCGGCAGAAGGCCTTTAATACCTGCACTGCCC ACATTTGTGCCATTGTTTTCTCCTATACTCCAGCTTTCTTCTCCTTCTTTTCCCACCGCTTTG GGGAACACATAATCCCCCCTTCTTGCCACATCATTGTAGCCAATATTTATCTGCTCCTACCA CCCACTATGAACCCTATTGTCTATGGGGTGAAAACCAAACAGATACGAGACTGTGTCATAA GGATCCTTTCAGGTTCTAAGGATACCAAATCCTACAGCATGTGA (SEQ ID NO: 260)
AOLFR141 sequences: MSSTLGHNMESPNHTDVDPSVFFLLGIPGLEQFHLWLSLPVCGLGTATIVGNITILVWATEPVL HKPVYLFLCMLSTIDLAASVSTVPKLLAIFWCGAGHISASACLAQMFFIHAFCMMESTVLLAM AFDRYVAICHPLRYATILTDTIIAHIGVAAWRGSLLMLPCPFLIGRLNFCQSHVILHTYCEHMA VVKLACGDTRPNRVYGLTAALLVIGVDLFCIGLSYALSAQAVLRLSSHEARSKALGTCGSHVC VILISYTPALFSFFTHRFGHHVPVHIHILLANVYLLLPPALNPVVYGVKTKQIRKRVVRVFQSGQ GMGIKASE (SEQ ID NO: 261)
ATGTCCAGCACTCTTGGCCACAACATGGAATCTCCTAATCACACTGATGTTGACCCTTCTG
TCTTCTTCCTCCTGGGCATCCCAGGTCTGGAACAATTTCATTTGTGGCTCTCACTCCCTGTG
TGTGGCTTAGGCACAGCCACAATTGTGGGCAATATAACTATTCTGGTTGTTGTTGCCACTG AACCAGTCTTGCACAAGCCTGTGTACCTTTTTCTGTGCATGCTCTCAACCATCGACTTGGCT GCCTCTGTCTCCACAGTTCCCAAGCTACTGGCTATCTTCTGGTGTGGAGCCGGACATATAT CTGCCTCTGCCTGCCTGGCACAGATGTTCTTCATTCATGCCTTCTGCATGATGGAGTCCACT GTGCTACTGGCCATGGCCTTTGATCGCTACGTGGCCATCTGCCACCCACTCCGCTATGCCA CAATCCTCACTGACACCATCATTGCCCACATAGGGGTGGCAGCTGTAGTGCGAGGCTCCCT GCTCATGCTCCCATGTCCCTTCCTTATTGGGCGTTTGAACTTCTGCCAAAGCCATGTGATCC TACACACGTACTGTGAGCACATGGCTGTGGTGAAGCTGGCCTGTGGAGACACCAGGCCTA ACCGTGTGTATGGGCTGACAGCTGCACTGTTGGTCATTGGGGTTGACTTGTTTTGCATTGG TCTCTCCTATGCCCTAAGTGCACAAGCTGTCCTTCGCCTCTCATCCCATGAAGCTCGGTCCA AGGCCCTAGGGACCTGTGGTTCCCATGTCTGTGTCATCCTCATCTCTTATACACCAGCCCTC TTCTCCTTTTTTACACACCGCTTTGGCCATCACGTTCCAGTCCATATTCACATTCTTTTGGC CAATGTTTATCTGCTTTTGCCACCTGCTCTTAATCCTGTGGTATATGGAGTTAAGACCAAAC AGATCCGTAAAAGAGTTGTCAGGGTGTTTCAAAGTGGGCAGGGAATGGGCATCAAGGCAT CTGAGTGA (SEQ ID NO: 262) AOLFR143 sequences:
MLGLNGTPFQPATLQLTGIPGIQTGLTWVALIFCILYMISIVGNLSILTLVFWEPALHQPMYYFL SMLALNDLGVSFSTLPTVISTFCFNYNHVAFNACLVQMFFIHTFSFMESGILLAMSLDRFVAICY PLRYVTVLTHNRILAMGLGILTKSFTTLFPFPFVVKRLPFCKGNVLHHSYCLHPDLMKVACGDI HVNNIYGLLVIIFTYGMDSTFILLSYALILRAMLVIISQEQRLKALNTCMSHICAVLAFYVPIIAVS MIHRFWKSAPPWHVMMSNVYLFVPPMLNPIIYSVKTKEIRKGILKFFHKSQA (SEQ ID NO: 263)
ATGCTGGGTCTCAATGGCACCCCCTTCCAGCCAGCAACACTCCAGCTGACAGGCATTCCTG GGATACAAACAGGCCTCACCTGGGTTGCCCTGATTTTCTGCATCCTCTACATGATCTCCATT GTAGGTAACCTCAGCATTCTCACTCTGGTGTTTTGGGAGCCTGCTCTGCATCAGCCCATGT ACTACTTCCTCTCTATGCTCGCTCTCAATGATCTGGGAGTGTCCTTTTCTACACTTCCCACT GTGATTTCTACTTTCTGCTTCAACTACAACCATGTTGCGTTTAATGCTTGCCTGGTCCAGAT GTTCTTCATCCACACTTTCTCCTTCATGGAGTCAGGCATACTGCTGGCCATGAGCTTGGATC GCTTTGTGGCTATTTGTTATCCATTACGCTATGTCACTGTGCTCACTCACAACCGTATATTG GCTATGGGTCTGGGCATCCTTACCAAGAGTTTCACCACTCTCTTCCCTTTCCCTTTTGTGGT GAAACGACTGCCCTTCTGCAAAGGCAATGTTTTGCATCACTCCTACTGTCTCCATCCAGAT CTCATGAAAGTAGCATGTGGAGACATCCATGTTAACAACATTTATGGGCTCTTGGTGATCA TTTTTACCTATGGTATGGACTCAACTTTCATCCTGCTTTCCTACGCATTGATCCTGAGAGCC ATGCTGGTCATCATATCCCAGGAACAGCGGCTCAAGGCACTCAACACCTGCATGTCACACA TCTGTGCAGTGCTGGCCTTTTATGTGCCCATAATTGCTGTCTCCATGATTCACCGCTTCTGG AAAAGTGCTCCACCTGTTGTTCATGTCATGATGTCCAATGTCTACCTGTTTGTACCACCCAT GCTCAACCCTATCATCTACAGTGTGAAAACCAAGGAGATCCGCAAAGGGATTCTCAAGTTC TTCCATAAATCCCAGGCCTGA (SEQ ID NO: 264)
AOLFR144 sequences:
MGLFNVTHPAFFLLTGIPGLESSHSWLSGPLCVMYAVALGGNTVILQAVRVEPSLHEPMYYFL SMLSFSDVAISMATLPTVLRTFCLNARNITFDACLIQMFLIHFFSMMESGILLAMSFDRYVAICD PLRYATVLTTEVIAAMGLGAAARSFITLFPLPFLIKRLPICRSNVLSHSYCLHPDMMRLACADISI NSIYGLF VLVSTFGMDLFFIFLS YVLILRS VMATASREERLKALNTC VSHILAVLAFYVPMIGVS TVHRFG-KHVPCYIHVLMSNVYLFVPPVLNPLIYSAKTKEIRRAIFRMFHHIKI (SEQ ID NO: 265)
ATGGGGTTGTTCAATGTCACTCACCCTGCATTCTTCCTCCTGACTGGTATCCCTGGTCTGGA GAGCTCTCACTCCTGGCTGTCAGGGCCCCTCTGCGTGATGTATGCTGTGGCCCTTGGGGGA AATACAGTGATCCTGCAGGCTGTGCGAGTGGAGCCCAGCCTCCATGAGCCCATGTACTACT TCCTGTCCATGTTGTCCTTCAGTGATGTGGCCATATCCATGGCCACACTGCCCACTGTACTC CGAACCTTCTGCCTCAATGCCCGCAACATCACTTTTGATGCCTGTCTAATTCAGATGTTTCT TATTCACTTCTTCTCCATGATGGAATCAGGTATTCTGCTGGCCATGAGTTTTGACCGCTATG TGGCCATTTGTGACCCCTTGCGCTATGCAACTGTGCTCACCACTGAAGTCATTGCTGCAAT GGGTTTAGGTGCAGCTGCTCGAAGCTTCATCACCCTTTTCCCTCTTCCCTTTCTTATTAAGA GGCTGCCTATCTGCAGATCCAATGTTCTTTCTCACTCCTACTGCCTGCACCCAGACATGATG AGGCTTGCCTGTGCTGATATCAGTATCAACAGCATCTATGGACTCTTTGTTCTTGTATCCAC CTTTGGCATGGACCTGTTTTTTATCTTCCTCTCCTATGTGCTCATTCTGCGTTCTGTCATGG CCACTGCTTCCCGTGAGGAACGCCTCAAAGCTCTCAACACATGTGTGTCACATATCCTGGC TGTACTTGCATTTTATGTGCCAATGATTGGGGTCTCCACAGTGCACCGCTTTGGGAAGCAT GTCCCATGCTACATACATGTCCTCATGTCAAATGTGTACCTATTTGTGCCTCCTGTGCTCAA CCCTCTCATTTATAGCGCCAAGACAAAGGAAATCCGCCGAGCCATTTTCCGCATGTTTCAC CACATCAAAATATGA (SEQ ID NO: 266) AOLFR145 sequences:
MSVQYSLSPQFMLLSNITQFSPIFYLTSFPGLEGIKHWIFIPFFFMYMVAISGNCFILIIIKTNPRLH TPMYYLLSLLALTDLGLCVSTLPTTMGIFWFNSQSIYFGACQIQMFCIHSFSFMESSVLLMMSFD RFVAICHPLRYSVIITGQQWRAGLIVIFRGPVATIPIVLLLKAFPYCGSWLSHSFCLHQEVIQLA CTDTTFNNLYGLMVWFTVMLDLVLIALSYGLILHTVAGLASQEEQRRAFQTCTAHLCAVLVF FVPMMGLSLVHRFGKHAPPA LLMANVYLFWPMLNPπYSIKTKEIHRAIIKLLGLKKASK (SEQ ID NO: 267)
ATGTCAGTCCAATATTCGCTCAGTCCTCAATTCATGCTGCTATCCAACATTACTCAGTTTAG CCCCATATTCTATCTCACCAGCTTTCCTGGATTGGAAGGCATCAAACACTGGATTTTCATCC CCTTTTTCTTTATGTACATGGTTGCCATCTCAGGCAATTGTTTCATTCTGATCATTATTAAG ACCAACCCTCGTCTGCACACACCCATGTACTATCTACTATCCTTGCTGGCCCTCACTGACCT GGGGCTGTGTGTGTCCACGTTGCCCACCACTATGGGGATCTTCTGGTTTAACTCCCAGAGT ATCTACTTTGGAGCGTGTCAAATCCAGATGTTCTGCATCCACTCTTTTTCCTTCATGGAGTC CTCAGTGCTCCTCATGATGTCCTTTGACCGCTTTGTGGCCATCTGCCACCCTCTGAGGTATT CGGTCATTATCACTGGCCAGCAAGTGGTCAGAGCAGGCCTAATTGTCATCTTCCGGGGACC TGTGGCCACTATCCCTATTGTCCTCCTCCTGAAGGCTTTTCCCTACTGTGGATCTGTGGTCC TCTCCCACTCATTTTGCCTGCACCAGGAAGTGATACAGCTGGCCTGCACAGATACCACCTT CAATAATCTGTATGGACTGATGGTGGTAGTTTTCACTGTGATGCTGGACCTGGTGCTCATC GCACTGTCCTATGGACTCATCCTGCACACAGTAGCAGGCCTGGCCTCCCAAGAGGAGCAGC GCCGTGCCTTTCAGACATGCACCGCTCATCTCTGTGCTGTGCTAGTATTCTTTGTGCCCATG ATGGGGCTGTCCCTGGTGCACCGTTTTGGGAAGCATGCCCCACCTGCTATTCATCTTCTTAT GGCCAATGTCTACCTTTTTGTGCCTCCCATGCTTAACCCAATCATATACAGCATTAAGACC AAGGAGATCCACCGTGCCATTATCAAACTCCTAGGTCTTAAAAAGGCCAGTAAATGA (SEQ ID NO: 268
AOLFR146 sequences:
MSQVTNTTQEGIYFILTDIPGFEASHIWISIPVCCLYTISIMGNTTILTVIRTEPSVHQRMYLFLSM LALTDLGLTLTTLPTVMQLLWFNVRRISSEACFAQFFFLHGFSFMESSVLLAMSVDCYVAICCP LHYASILTNEVIGRTGLAIICCCVLAVLPSLFLLKRLPFCHSHLLSRSYCLHQDMIRLVCADIRLN SWYGFALALLIIIVDPLLIVISYTLILKNILGTATWAERLRALNNCLSHILAVLVLYIPMVGVSMT H-RFAJmASPLVHVIMANIYLLA-PPVMNPEYSVKNKQIQWGML^ (SEQ ID NO:
269)
ATGTCCCAGGTGACTAACACCACACAAGAAGGCATCTACTTCATCCTCACGGACATCCCTG GATTTGAGGCCTCCCACATCTGGATCTCCATCCCCGTCTGCTGTCTCTACACCATCTCCATC ATGGGCAATACCACCATCCTCACTGTCATTCGCACAGAGCCATCTGTCCACCAGCGCATGT ATCTGTTTCTCTCCATGCTGGCCCTGACGGACCTGGGTCTCACCCTCACCACCCTACCCACA GTCATGCAGCTTCTCTGGTTCAACGTTCGTAGAATCAGCTCTGAGGCCTGTTTTGCTCAGTT TTTCTTCCTTCATGGATTCTCCTTTATGGAGTCTTCTGTCCTCCTGGCTATGTCCGTTGACT GCTATGTGGCCATCTGCTGTCCCCTCCATTATGCCTCCATCCTCACCAATGAAGTCATTGGT AGAACTGGGTTAGCCATCATTTGCTGCTGTGTTCTGGCGGTTCTTCCCTCCCTTTTCTTACT CAAGCGACTGCCTTTCTGCCACTCCCACCTTCTCTCTCGCTCCTATTGCCTCCACCAGGATA TGATCCGCCTGGTCTGTGCTGACATCAGGCTCAACAGCTGGTATGGATTTGCTCTTGCCTT GCTCATTATTATCGTGGATCCTCTGCTCATTGTGATCTCCTATACACTTATTCTGAAAAATA TCTTGGGCACAGCCACCTGGGCTGAGCGACTCCGTGCCCTCAATAACTGCCTGTCCCACAT TCTAGCTGTCCTGGTCCTCTACATTCCCATGGTTGGTGTATCTATGACTCATCGCTTTGCCA AGCATGCCTCTCCACTGGTCCATGTTATCATGGCCAATATCTACCTGCTGGCACCCCCGGT GATGAACCCCATCATTTACAGTGTAAAGAACAAGCAGATCCAATGGGGAATGTTAAATTTC CTTTCCCTCAAAAATATGCATTCAAGATGA (SEQ ID NO: 270)
AOLFR147 sequences:
MPSASAMIIFNLSSYNPGPFILVGIPGLEQFHVWIGIPFCIIYIVAWGNCILLYLIVVEHSLHEPMF FFLSMLAMTDLILSTAGVPKALSIFWLGAREITFPGCLTQMFFLHYNFVLDSAILMAMAFDHYV AICSPLRYTTILTPKTIIKSAMGISFRSFCIILPDVFLLTCLPFCRTRIIPHTYCEHIGVAQLACADISI NFWYGFCVPIMTVISDVILIAVSYAHILCAVFGLPSQDACQKALGTCGSHVCVILMFYTPAFFSI LAHRFGIINVSRTFHIMFANLYIVIPPALNPMVYGVKTKQIRDKVILLFSKGTG (SEQ ID NO: 271)
ATGCCATCTGCCTCTGCCATGATCATTTTCAACCTGAGCAGTTACAATCCAGGACCCTTCAT TCTGGTAGGGATCCCAGGCCTGGAGCAATTCCATGTGTGGATTGGAATTCCCTTCTGTATC ATCTACATTGTAGCTGTTGTGGGAAACTGCATCCTTCTCTACCTCATTGTGGTGGAGCATA GTCTTCATGAACCCATGTTCTTCTTTCTCTCCATGCTGGCCATGACTGACCTCATCTTGTCC ACAGCTGGTGTGCCTAAAGCACTCAGTATCTTTTGGCTAGGGGCTCGCGAAATCACATTCC CAGGATGCCTTACACAAATGTTCTTCCTTCACTATAACTTTGTCCTGGATTCAGCCATTCTG ATGGCCATGGCATTTGATCACTATGTAGCTATCTGTTCTCCCTTGAGATATACCACCATCTT GACTCCCAAGACCATCATCAAGAGTGCTATGGGCATCTCCTTTCGAAGCTTCTGCATCATC CTGCCAGATGTATTCTTGCTGACATGCCTGCCTTTCTGCAGGACACGCATCATACCCCACA CATACTGTGAGCATATAGGTGTTGCCCAGCTCGCCTGTGCTGATATCTCCATCAACTTCTG GTATGGCTTTTGTGTTCCCATCATGACGGTCATCTCAGATGTGATTCTCATTGCTGTTTCCT ACGCACACATCCTCTGTGCTGTCTTTGGCCTTCCCTCCCAAGATGCCTGCCAGAAAGCCCT CGGCACTTGTGGTTCTCATGTCTGTGTCATCCTCATGTTTTATACACCTGCCTTTTTCTCCA TCCTCGCCCATCGCTTTGGACACAATGTCTCTCGCACCTTCCACATCATGTTTGCCAATCTC TACATTGTTATCCCACCTGCACTCAACCCCATGGTTTACGGAGTGAAGACCAAGCAGATCA GAGATAAGGTTATACTTTTGTTTTCTAAGGGTACAGGATGA (SEQ ID NO: 272)
AOLFR148 sequences:
MPTVNHSGTSHTVFHLLGIPGLQDQHMWISIPFFISYVTALLGNSLLIFIILTKRSLHEPMYLFLC MLAGADIVLSTCTIPQALAIFWFRAGDISLDRCITQLFFIHSTFISESGILLVMAFDHYIAICYPLR YTTILTNALIKKICVTVSLRSYGTIFPIIFLLKRLTFCQNNIIPHTFCEHIGLAKYACNDIRINIWYG FSILMSTWLDWLIFISYMLILHAVFHMPSPDACHKALNTFGSHVCIIILFYGSGIFTILTQRFGR HIPPCIHIPLANVCILAPPMLNPIIYGIKTKQIQEQWQFLFIKQKITLV (SEQ ID NO: 273)
ATGCCTACTGTAAACCACAGTGGCACTAGCCACACAGTCTTCCACTTGCTGGGCATCCCTG GCCTACAGGACCAGCACATGTGGATTTCTATCCCATTCTTCATTTCCTATGTCACCGCCCTT CTTGGGAACAGCCTGCTCATCTTCATTATCCTCACAAAGCGCAGCCTCCATGAACCCATGT ACCTCTTCCTCTGCATGCTGGCTGGAGCAGACATTGTCCTCTCCACGTGCACCATTCCTCAG GCCTTAGCTATCTTCTGGTTCCGTGCTGGGGACATCTCCCTGGATCGTTGCATCACTCAGCT CTTCTTCATCCATTCCACCTTCATCTCTGAGTCAGGGATCTTGCTGGTGATGGCCTTTGACC ACTATATTGCCATATGCTACCCACTGAGGTACACCACCATTCTTACAAATGCTCTGATCAA GAAAATTTGTGTGACTGTCTCTCTGAGAAGTTATGGTACAATTTTCCCTATCATATTTCTTT TAAAAAGATTGACTTTCTGCCAGAATAATATTATTCCACACACCTTTTGTGAACACATTGG CCTAGCCAAATATGCATGTAATGACATTCGAATAAACATTTGGTATGGGTTTTCCATTCTA ATGTCGACGGTGGTCTTAGATGTTGTACTAATTTTTATTTCCTATATGCTGATTCTCCATGC TGTCTTCCACATGCCTTCTCCAGATGCTTGCCACAAAGCTCTCAACACATTTGGCTCCCATG TCTGCATCATCATCCTCTTTTATGGGTCTGGCATCTTCACAATCCTTACCCAGAGGTTTGGA CGCCACATTCCACCTTGTATCCACATCCCGTTGGCTAATGTCTGCATTCTGGCTCCACCTAT GCTGAATCCCATTATTTATGGGATCAAAACCAAGCAAATCCAGGAACAGGTGGTTCAGTTT TTGTTTATAAAACAGAAAATAACTTTGGTTTAA (SEQ ID NO: 274)
AOLFR149 sequences:
MSNASLLTAFILMGLPHAPALDAPLFGVFLVVYVLTVLGNLLILLVIRVDSHLHTTMYYFLTNL SFIDMWFSTVTVPKLLMTLVFPSGRAISFHSCMAQLYFFHFLGGTECFLYRVMSCDRYLAISYP LRYTSMMTGRSCTLLATSTWLSGSLHSAVQAILTFHLPYCGPNWIQHYLCDAPPILKLACADTS AIETVIFVTVGIVASGCFVLIVLSYVSIVCSILRIRTSEGKHRAFQTCASHCIWLCFFGPGLFIYLR PGSR-KAVDGVVAVFYTVLTPLLNPVVYTLRNXEVKKALLKLKDKVAHSQSK (SEQ ID NO: 275)
ATGTCCAACGCCAGCCTACTGACAGCGTTCATCCTCATGGGCCTTCCCCATGCCCCAGCGC TGGACGCCCCCCTCTTTGGAGTCTTCCTGGTGGTTTACGTGCTCACTGTGCTGGGGAACCT CCTCATCCTGCTGGTGATCAGGGTGGATTCTCACCTCCACACCACCATGTACTACTTCCTCA CCAACCTGTCGTTCATTGACATGTGGTTCTCCACTGTCACGGTGCCCAAATTGCTGATGAC TTTGGTGTTCCCAAGTGGCAGGGCTATCTCCTTCCACAGCTGCATGGCTCAGCTCTATTTCT TTCACTTCCTAGGGGGCACCGAGTGTTTCCTCTACAGGGTCATGTCCTGTGATCGCTACCT GGCCATCAGTTACCCGCTCAGGTACACCAGCATGATGACTGGGCGCTCGTGTACTCTTCTG GCCACCAGCACTTGGCTCAGTGGCTCTCTGCACTCTGCTGTCCAGGCCATATTGACTTTCC ATTTGCCCTACTGTGGACCCAACTGGATCCAGCACTATTTGTGTGATGCACCGCCCATCCT GAAACTGGCCTGTGCAGACACCTCAGCCATAGAGACTGTCATTTTTGTGACTGTTGGAATA GTGGCCTCGGGCTGCTTTGTCCTGATAGTGCTGTCCTATGTGTCCATCGTCTGTTCCATCCT GCGGATCCGCACCTCAGAGGGGAAGCACAGAGCCTTTCAGACCTGTGCCTCCCACTGTATC GTGGTCCTTTGCTTCTTTGGCCCTGGTCTTTTCATTTACCTGAGGCCAGGCTCCAGGAAAGC TGTGGATGGAGTTGTGGCCGTTTTCTACACTGTGCTGACGCCCCTTCTCAACCCTGTTGTGT ACACCCTGAGGAACAAGGAGGTGAAGAAAGCTCTGTTGAAGCTGAAAGACAAAGTAGCAC ATTCTCAGAGCAAATAG (SEQ ID NO: 276)
AOLFR150 sequences: MELGNVTRVKEFIFLGLTQSQDQSLVLFLFLCLVYMTTLLGNLLIMVTVTCESRLHTPMYFLLR NLAILDICFSSTTAPKVLLDLLSKKKTISYTSCMTQIFLFHLLGGADIFSLSVMAFDCYMAISKPL HYVTIMSRGQCTALISASWMGGFVHSIVQISLLLPLPFCGPNVLDTFYCDVPQVLKLTCTDTFA LEFLMISNNGLVTTLWFIFLLVSYTVILMTLRSQAGGGRRKAISTCTSPHHCGDPAFCALHLCLC PALHCPPHRKGHLCHLHCHLPSAEPFDLHSEEPGNEVSHEKTEEKTRAF (SEQ ID NO: 277)
ATGGAGTTGGGAAATGTCACCAGAGTAAAAGAATTTATATTTCTGGGACTTACTCAATCCC AAGACCAGAGTTTGGTCTTGTTTCTTTTTTTATGTCTTGTGTACATGACGACTCTGCTGGGA AACCTCCTCATCATGGTCACCGTGACCTGTGAGTCTCGCCTTCACACCCCCATGTACTTCCT GCTCCGCAATCTAGCCATCCTTGACATCTGCTTCTCCTCCACAACTGCTCCTAAAGTCTTGC TGGACCTTCTGTCAAAGAAAAAGACCATATCCTATACAAGCTGCATGACACAGATATTTCT CTTCCACCTCCTTGGTGGGGCAGACATTTTTTCTCTCTCTGTGATGGCGTTTGACTGCTACA TGGCCATCTCCAAGCCCCTGCACTATGTGACCATCATGAGTAGAGGGCAATGCACTGCCCT CATCTCTGCCTCTTGGATGGGGGGCTTTGTCCACTCCATCGTGCAGATCTCCCTGTTGCTGC CTCTCCCTTTCTGTGGACCCAATGTTCTTGACACTTTCTACTGCGATGTCCCCCAGGTCCTC AAACTCACTTGCACTGACACTTTTGCTCTTGAGTTCTTGATGATTTCCAACAATGGCCTGGT CACTACCCTGTGGTTTATCTTCCTGCTTGTGTCCTACACAGTCATCCTAATGACGCTGAGGT CTCAGGCAGGAGGGGGCAGGAGGAAAGCCATCTCCACTTGCACCTCCCCACATCACTGTG GTGACCCTGCATTTTGTGCCCTGCATCTATGTCTATGCCCGGCCCTTCACTGCCCTCCCCAC AGAAAAGGCCATCTCTGTCACCTTCACTGTCATCTCCCCTCTGCTGAACCCTTTGATCTACA CTCTGAGGAACCAGGAAATGAAGTCAGCCATGAGAAGACTGAAGAGAAGACTCGTGCCTT CTGA (SEQ ID NO: 278)
AOLFR151 sequences:
MFSPNHTIVTEFILLGLTDDPVLEKILFGVFLAIYLITLAGNLCMILLIRTNSHLQTPMYFFLGHLS FVDICYSSNVTPNMLHNFLSEQKTISYAGCFTQCLLFIALVITEFYILASMALDRYVAICSPLHYS SRMSKNICVCLVTIPYMYGFLSGFSQSLLTFHLSFCGSLEINHFYCADPPLIMLACSDTRVKKMA MFWAGFNLSSSLFIILLSYLFIFAAIFRIRSAEGRHKAFSTCASHLTIVTLFYGTLFCMYVRPPSE KSVEESKITAVFYTFLSPMLNPLIYSLRNTDVILAMQQMIRGKSFHKIAV (SEQ ID NO: 279)
ATGTTCTCCCCAAACCACACCATAGTGACAGAATTCATTCTCTTGGGACTGACAGACGACC CAGTGCTAGAGAAGATCCTGTTTGGGGTATTCCTTGCGATCTACCTAATCACACTGGCAGG CAACCTGTGCATGATCCTGCTGATCAGGACCAATTCCCACCTGCAAACACCCATGTATTTC TTCCTTGGCCACCTCTCCTTTGTAGACATTTGCTATTCTTCCAATGTTACTCCAAATATGCT GCACAATTTCCTCTCAGAACAGAAGACCATCTCCTACGCTGGATGCTTCACACAGTGTCTT CTCTTCATCGCCCTGGTGATCACTGAGTTTTACATCCTTGCTTCAATGGCATTGGATCGCTA TGTAGCCATTTGCAGCCCTTTGCATTACAGTTCCAGGATGTCCAAGAACATCTGTGTCTGT CTGGTCACTATCCCTTACATGTATGGGTTTCTTAGTGGGTTCTCTCAGTCACTGCTAACCTT TCACTTATCCTTCTGTGGCTCCCTTGAAATCAATCATTTCTACTGCGCTGATCCTCCTCTTA TCATGCTGGCCTGCTCTGACACCCGTGTCAAAAAGATGGCAATGTTTGTAGTTGCAGGCTT TAATCTCTCAAGCTCTCTCTTCATCATTCTTCTGTCCTATCTTTTCATTTTTGCAGCGATCTT CAGGATCCGTTCTGCTGAAGGCAGGCACAAAGCCTTTTCTACGTGTGCTTCCCACCTGACA ATAGTCACTTTGTTTTATGGAACCCTCTTCTGCATGTACGTAAGGCCTCCATCAGAGAAGT CTGTAGAGGAGTCCAAAATAACTGCAGTCTTTTATACTTTTTTGAGCCCAATGCTGAACCC ATTGATCTATAGCCTACGGAACACAGATGTAATCCTTGCCATGCAACAAATGATTAGGGGA AAATCCTTTCATAAAATTGCAGTTTAG (SEQ ID NO: 280)
AOLFR152 sequences:
MDQINHTNV-I^FFFLELTRS-RELEFFLFV FAVYVATVLGNALIVVTITCESRLHTPMYFLLRN KSVLDIVFSSITWKFLVDLLSDRKTISYNOCMAQIFFFHFAGGADIFFLSVMAYDRYLAJA O'L HYVTMMRKEVWVALWASWVSGGLHSIIQVILMLPFPFCGPNTLDAFYCYVLQVVKLACTDT FALELFMISNNGLVTLLWFLLLLGSYTVILVMLRSHSGEGRNKALSTCTSHMLWTLHFVPCV YIYCRPFMTLPMDTTISINNTVITPMLNPIIYSLRNQEMKSAMQRLQRRLGPSESRKWG (SEQ ID NO: 281)
ATGGACCAGATCAACCACACTAATGTGAAGGAGTTTTTCTTCCTGGAACTTACACGTTCCC GAGAGCTGGAGTTTTTCTTGTTTGTGGTCTTCTTTGCTGTGTATGTAGCAACAGTCCTGGG AAATGCACTCATTGTGGTCACTATTACCTGTGAGTCCCGCCTACACACTCCTATGTACTTTC
GTGGATCTTTTATCAGACAGGAAAACCATCTCCTACAATGACTGCATGGCACAGATCTTTT TCTTCCACTTTGCTGGTGGGGCAGATATTTTTTTCCTCTCTGTGATGGCCTATGACAGATAC CTTGCAATCGCCAAGCCCCTGCACTATGTGACCATGATGAGGAAAGAGGTGTGGGTGGCC TTGGTGGTGGCTTCTTGGGTGAGTGGTGGTTTGCATTCAATCATCCAGGTAATTCTGATGC TTCCATTCCCCTTCTGTGGCCCCAACACACTGGATGCCTTCTACTGTTATGTGCTCCAGGTG GTAAAACTGGCCTGCACTGACACCTTTGCTTTGGAGCTTTTCATGATCTCTAACAACGGAC TGGTGACCCTGCTCTGGTTCCTCCTGCTCCTGGGCTCCTACACTGTCATTCTGGTGATGCTG AGATCCCACTCTGGGGAGGGGCGGAACAAGGCCCTCTCCACGTGCACGTCCCACATGCTG GTGGTGACTCTTCACTTCGTGCCTTGTGTTTACATCTACTGCCGGCCCTTCATGACGCTGCC CATGGACACAACCATATCCATTAATAACACGGTCATTACCCCCATGCTGAACCCCATCATC TATTCCCTGAGAAATCAAGAGATGAAGTCAGCCATGCAGAGGCTGCAGAGGAGACTTGGG CCTTCCGAGAGCAGAAAATGGGGGTGA (SEQ ID NO: 282)
AOLFR153 sequences:
MSKTSLVTAFILTGLPHAPGLDAPLFGIFLWYVLTVLGNLLILLVIRVDSHLHTPMYYFLTNLS FIDMWFSTVTVPKMLMTLVSPSGRAISFHSCVAQLYFFHFLGSTECFLYTVMSYDRYLAISYPL RYTSMMSGSRCALLATSTWLSGSLHSAVQTILTFHLPYCGPNQIQHYLCDAPPILKLACADTSA NEMVIFVDIGLVASGCFLLIVLSYVSIVCSILRIHTSEGRHRAFQTCASHCIVVLCFFVXCVFIYLR PGSRDVVDGVVAIFYTVLTPLLNPVVYTLRNKEVKKAVLKLRDKVAHSQGE (SEQ ID NO: 283)
ATGTCCAAGACCAGCCTCGTGACAGCGTTCATCCTCACGGGCCTTCCCCATGCCCCAGGGC TGGACGCCCCACTCTTTGGAATCTTCCTGGTGGTTTACGTGCTCACTGTGCTGGGGAACCT CCTCATCCTGCTGGTGATCAGGGTGGATTCTCACCTCCACACCCCCATGTACTACTTCCTCA CCAACCTGTCCTTCATTGACATGTGGTTCTCCACTGTCACGGTGCCCAAAATGCTGATGAC CTTGGTGTCCCCAAGCGGCAGGGCTATCTCCTTCCACAGCTGCGTGGCTCAGCTCTATTTTT TCCACTTCCTGGGGAGCACCGAGTGTTTCCTCTACACAGTCATGTCCTATGATCGCTACTTG GCCATCAGTTACCCGCTCAGGTACACCAGCATGATGAGTGGGAGCAGATGTGCCCTCCTGG CCACCAGCACTTGGCTCAGTGGCTCTCTGCACTCTGCTGTCCAGACCATATTGACTTTCCAT TTGCCCTACTGTGGACCCAACCAGATCCAGCACTATTTGTGTGATGCACCGCCCATCCTGA AACTGGCCTGTGCAGACACCTCAGCCAACGAGATGGTCATCTTTGTGGACATTGGGCTAGT GGCCTCGGGCTGCTTTCTCCTGATAGTGCTGTCTTATGTGTCCATCGTCTGTTCCATCCTGC GGATCCACACCTCAGAGGGGAGGCACAGAGCCTTTCAGACCTGTGCCTCCCACTGCATCGT GGTCCTTTGCTTTTTTGTNNCCTGTGTTTTCATTTACCTGAGACCAGGCTCCAGGGACGTCG TGGATGGAGTTGTGGCCATTTTCTACACTGTGCTGACACCCCTTCTCAACCCTGTTGTGTAC ACCCTGAGAAACAAGGAGGTGAAGAAAGCTGTGTTGAAACTGAGAGACAAAGTAGCACAT TCTCAGGGAGAATAA (SEQ ID NO: 284) AOLFR156 sequences:
MCWAMPSPFTGSSTRNMESRNQSTVTEFIFTGFPQLQDGSLLYFFPLLFIYTFIIIDNLLIFSAVRL DTHLGNPMYNFISIFSFLEIWYTTATIPKMLSNLISEKKAISMTGCILQMYFFHSLENSEGILLTT MAIDRYVAICNPLRYQMIMTPRLCAHLSAGSCLFGFLILLPEIVMISTLPFCGPNQIHQIFCDLVP VLSLACTDTSMILIEDVIHAVTIIITFLIIALSYVRIVTVILRIPSSEGRQKAXSTCAGHLMVFLIFFG SVSLMYLRFSNTYPPVLDTAIALMFTVLAPFFNPIIYSLRNKO-Vl-NNAI- a--,FCLQKVLNKPGG (SEQ ID NO: 285)
ATGTGCTGGGCTATGCCCTCTCCATTTACAGGTAGCTCTACTAGAAATATGGAGAGCAGAA ACCAATCAACAGTGACTGAATTTATCTTCACTGGATTCCCTCAGCTTCAGGATGGTAGTCT CCTGTACTTCTTTCCTTTACTTTTCATCTATACTTTTATTATCATTGATAACTTATTAATCTT CTCTGCTGTAAGGCTGGACACCCATCTGGGCAACCCCATGTATAATTTTATCAGTATATTTT CCTTTCTGGAGATCTGGTACACCACAGCCACCATTCCCAAGATGCTCTCCAACCTCATCAG TGAAAAGAAGGCCATCTCAATGACTGGCTGCATCTTGCAGATGTATTTCTTCCACTCACTT GAAAACTCAGAGGGGATCTTGCTGACCACCATGGCCATTGACAGATACGTTGCCATCTGCA ACCCTCTTCGCTATCAAATGATCATGACCCCCCGGCTCTGTGCTCACCTCTCTGCAGGTTCC TGCCTCTTCGGTTTCCTTATCCTGCTTCCCGAGATTGTGATGATTTCCACACTGCCTTTCTG TGGGCCCAACCAAATCCATCAGATCTTCTGTGACTTGGTCCCTGTGCTAAGCCTGGCCTGT ACAGACACGTCCATGATTCTGATTGAGGATGTGATTCATGCTGTGACCATCATCATTACCT TCCTAATCATTGCCCTGTCCTATGTAAGAATTGTCACTGTGATATTGAGGATTCCCTCTTCT GAAGGGAGGCAAAAGGCTNTTTCTACCTGTGCAGGCCACCTCATGGTCTTCCTGATATTCT TTGGCAGTGTATCACTCATGTACTTGCGTTTCAGCAACACTTATCCACCAGTTTTGGACAC AGCCATTGCACTGATGTTTACTGTACTTGCTCCATTCTTCAATCCCATCATTTATAGCCTGA GAAACAAGGACATGAACAATGCAATTAAAAAACTGTTCTGTCTTCAAAAAGTGTTGAACA AGCCTGGAGGTTAA (SEQ ID NO: 286)
AOLFR157 sequences:
MAMDNVTAVFQFLLIGISNYPQWRDTFFTLVLIIYLSTLLGNGFMIFLIHFDPNLHTPIYFFLSNL SFLDLCYGTASMPQALVHCFSTHPYLSYPRCLAQTSVSLALATAECLLLAAMAYDRVVAISNP LRYSVVMNGPVCVCLVATSWGTSLVLTAMLILSLRLHFCGANVINHFACEILSLIKLTCSDTSL NEFMILITSIFTLLLPFGFVLLSYIRIAMAIIRIRSLQGRLKAFTTCGSHLTVVTIFYGSAISMYMKT QSKSSPDQDKFISVFYGALTPMLNPLIYSL-RKKDVKRAIRKVMLKRT (SEQ ID NO: 287)
ATGGCCATGGACAATGTCACAGCAGTGTTTCAGTTTCTCCTTATTGGCATTTCTAACTATCC TCAATGGAGAGACACGTTTTTCACATTAGTGCTGATAATTTACCTCAGCACATTGTTGGGG AATGGATTTATGATCTTTCTTATTCACTTTGACCCCAACCTCCACACTCCAATCTACTTCTT CCTTAGTAACCTGTCTTTCTTAGACCTTTGTTATGGAACAGCTTCCATGCCCCAGGCTTTGG TGCATTGTTTCTCTACCCATCCCTACCTCTCTTATCCCCGATGTTTGGCTCAAACGAGTGTC TCCTTGGCTTTGGCCACAGCAGAGTGCCTCCTACTGGCTGCCATGGCCTATGACCGTGTGG TTGCTATCAGCAATCCCCTGCGTTATTCAGTGGTTATGAATGGCCCAGTGTGTGTCTGCTT GGTTGCTACCTCATGGGGGACATCACTTGTGCTCACTGCCATGCTCATCCTATCCCTGAGG CTTCACTTCTGTGGGGCTAATGTCATCAACCATTTTGCCTGTGAGATTCTCTCCCTCATTAA GCTGACCTGTTCTGATACCAGCCTCAATGAATTTATGATCCTCATCACCAGTATCTTCACCC TGCTGCTACCATTTGGGTTTGTTCTCCTCTCCTACATACGAATTGCTATGGCTATCATAAGG ATTCGCTCACTCCAGGGCAGGCTCAAGGCCTTTACCACATGTGGCTCTCACCTGACCGTGG TGACAATCTTCTATGGGTCAGCCATCTCCATGTATATGAAAACTCAGTCCAAGTCCTCCCC TGACCAGGACAAGTTTATCTCAGTGTTTTATGGAGCTTTGACACCCATGTTGAACCCCCTG ATATATAGCCTGAGAAAAAAAGATGTTAAACGGGCAATAAGGAAAGTTATGTTGAAAAGG ACATGA (SEQ ID NO: 288)
AOLFR158 sequences:
MKAGNFSDTPEFFLLGLSGDPELQPILFMLFLSMYLATMLGNLLIILAVNSDSHLHTPMYFLLSI LSLVDICFTSTTMP-O^LVMQAQAQSINYTGCLTQICFVLVFVGLENGILVMMAYDRFVAICHP LRYNVIMNPKLCGLLLLLSFIVSVLDALLHTLMVLQLTFCIDLEIPHFFCELAHILKLACSDVLIN NILVYLVTSLLGWPLSGIIFSYTRIVSSVMKIPSAGGKYKAFSICGSHLIVVSLFYGTGFGVYLSS GATHSS-RKGA1ASVMYTVVTPMLNPLIYSLRNKDMLKALRKLISRIPSFH (SEQ ID NO: 289) ATGAAAGCAGGAAACTTCTCAGACACTCCAGAATTCTTTCTCTTGGGATTGTCAGGGGATC CGGAGCTGCAGCCCATCCTCTTCATGCTGTTCCTGTCCATGTACCTGGCCACAATGCTGGG GAACCTGCTCATCATCCTGGCCGTCAACTCTGACTCCCACCTCCACACCCCCATGTACTTCC TCCTCTCTATCCTGTCCTTGGTCGACATCTGTTTCACCTCCACCACGATGCCCAAGATGCTG GTGAACATCCAGGCACAGGCTCAATCCATCAATTACACAGGCTGCCTCACCCAAATCTGCT TTGTCCTGGTTTTTGTTGGATTGGAAAATGGAATTCTGGTCATGATGGCCTATGATCGATT TGTGGCCATCTGTCACCCACTGAGGTACAATGTCATCATGAACCCCAAACTCTGTGGGCTG CTGCTTCTGCTGTCCTTCATCGTTAGTGTCCTGGATGCTCTGCTGCACACGTTGATGGTGCT ACAGCTGACCTTCTGCATAGACCTGGAAATTCCCCACTTTTTCTGTGAACTAGCTCATATTC TCAAGCTCGCCTGTTCTGATGTCCTCATCAATAACATCCTGGTGTATTTGGTGACCAGCCT GTTAGGTGTTGTTCCTCTCTCTGGGATCATTTTCTCTTACACACGAATTGTCTCCTCTGTCA TGAAAATTCCATCAGCTGGTGGAAAGTATAAAGCTTTTTCCATCTGCGGGTCACATTTAAT CGTTGTTTCCTTGTTTTATGGAACAGGGTTTGGGGTGTACCTTAGTTCTGGGGCTACCCACT CCTCCAGGAAGGGTGCAATAGCATCAGTGATGTATACCGTGGTCACCCCCATGCTGAACCC ACTCATTTACAGCCTGAGAAACAAGGACATGTTGAAGGCTTTGAGGAAACTAATATCTAG GATACCATCTTTCCATTGA (SEQ ID NO: 290)
AOLFR159 sequences: MGPRNQTAVSEFLLMKVTEDPELKLIPFSLFLSMYLVTILGNLLILLAVISDSHLHTPMYFLLFN LSFTDICLTTTTVPKILVNIQAQNQSITYTGCLTQICLVLVFAGLESCFLAVMAYDRYVAICHPL RYTVLMNVHFWGLLILLSMFMSTMDALVQSLMVLQLSFCKNVEIPLFFCEWQVIKLACSDTL INNILIYFASSVFGAIPLSGIIFSYSQIVTSVLRMPSARGKYKAFSTCGCHLSVFSLFYGTAFGVYIS SAVAESSRITAVASVMYTVVPQMMNPFIYSLRNKEMK1 LRKLIGRLFPF (SEQ ID NO: 291)
ATGGGACCCAGAAACCAAACAGCTGTTTCAGAATTTCTTCTCATGAAAGTGACAGAGGAC CCAGAACTGAAGTTAATCCCTTTCAGCCTGTTCCTGTCCATGTACCTGGTCACCATCCTGG GGAACCTGCTCATTCTCCTGGCTGTCATCTCTGACTCCCACCTCCACACCCCCATGTACTTC CTTCTCTTTAATCTCTCCTTTACTGACATCTGTTTAACCACAACCACAGTCCCAAAGATCCT AGTGAACATCCAAGCTCAGAATCAGAGTATCACTTACACAGGCTGCCTCACCCAGATCTGT CTTGTCTTGGTTTTTGCTGGCTTGGAAAGTTGCTTTCTTGCAGTCATGGCCTACGACCGCTA TGTGGCCATTTGCCACCCACTGAGGTACACAGTCCTCATGAATGTCCATTTCTGGGGCTTG CTGATTCTTCTCTCCATGTTCATGAGCACTATGGATGCCCTGGTTCAGAGTCTGATGGTATT GCAGCTGTCCTTCTGCAAAAACGTTGAAATCCCTTTGTTCTTCTGTGAAGTCGTTCAGGTC ATCAAGCTCGCCTGTTCTGACACCCTCATCAACAACATCCTCATATATTTTGCAAGTAGTGT ATTTGGTGCAATTCCTCTCTCTGGAATAATTTTCTCTTATTCTCAAATAGTCACCTCTGTTC TGAGAATGCCATCAGCAAGAGGAAAGTATAAAGCGTTTTCCACCTGTGGCTGTCACCTCTC TGTTTTTTCCTTGTTCTATGGGACAGCTTTTGGGGTGTACATTAGTTCTGCTGTTGCTGAGT CTTCCCGAATTACTGCTGTGGCTTCAGTGATGTACACTGTGGTCCCTCAAATGATGAACCC CTTCATCTACAGCCTGAGAAATAAGGAGATGAAGAAAGCTTTGAGGAAACTTATTGGTAG GCTGTTTCCTTTTTAG (SEQ ID NO: 292)
AOLFR160 sequences:
MPMQLLLTDFIIFSIRFIINSMEARNQTAISKFLLLGLIEDPELQPVLFSLFLSMYLVTILGNLLILL AVISDSHLHTPMYFFLSNLSFLDICLSTTTIPKMLVNIQAQNRSITYSGCLTQICFVLFFAGLENC LLAAMAYDRYVAICHPLRYTVIMNPRLCGLLILLSLLTSWNALLLSLMVLRLSFCTDLEIPLFF CELAQVIQLTCSDTL-πSINILIYFAACIFGGVPLSGIILSYTQITSCVLRMPSASGKHKAVSTCGSHL SIVLLFYGAGLGVYISSVVTDSPRKTAVASVMYSVFPQMVNPFIYSLRN-iπDMKGTLRKFIGRIP SLLWCAICFGFRFLE (SEQ ID NO: 293)
ATGCCGATGCAGCTGCTGCTTACAGATTTTATTATCTTTTCCATCAGATTCATCATCAACAG CATGGAAGCGAGAAACCAAACAGCTATTTCAAAATTCCTTCTCCTGGGACTGATAGAGGAT CCGGAACTGCAGCCCGTCCTTTTCAGCCTGTTCCTGTCCATGTACTTGGTCACCATCCTGGG GAACCTGCTCATCCTCTTGGCTGTCATCTCTGACTCTCACCTCCACACCCCCATGTACTTCT TCCTCTCCAATCTCTCCTTTTTGGACATTTGTTTAAGCACAACCACGATCCCAAAGATGCTG GTGAACATCCAAGCTCAGAATCGGAGCATCACGTACTCAGGCTGCCTCACCCAGATCTGCT TTGTCTTGTTTTTTGCTGGCTTGGAAAATTGTCTCCTTGCAGCAATGGCCTATGACCGCTAT GTGGCCATTTGTCACCCCCTTAGATACACAGTCATCATGAACCCCCGCCTCTGTGGCCTGC TGATTCTTCTCTCTCTGTTGACTAGTGTTGTGAATGCCCTTCTTCTCAGCCTGATGGTGTTG AGGCTGTCCTTCTGCACAGACCTGGAAATCCCGCTCTTCTTCTGTGAACTGGCTCAGGTCA TCCAACTCACCTGTTCAGACACCCTCATCAATAACATCCTGATATATTTTGCAGCTTGCATA TTTGGTGGTGTTCCTCTGTCTGGAATCATTTTGTCTTACACTCAGATCACCTCCTGTGTTTT GAGAATGCCATCAGCAAGTGGAAAGCACAAAGCAGTTTCCACCTGTGGGTCTCACCTCTCC ATTGTTCTCTTGTTCTATGGGGCAGGTTTGGGGGTGTACATTAGTTCTGTGGTTACTGACTC ACCTAGGAAGACTGCAGTGGCTTCAGTGATGTATTCTGTGTTCCCTCAAATGGTGAACCCC TTTATCTATAGTCTGAGGAATAAGGACATGAAAGGAACCTTGAGGAAGTTCATAGGGAGG ATACCTTCTCTTCTGTGGTGTGCCATTTGCTTTGGATTCAGGTTTCTAGAGTAA (SEQ ID NO: 294)
AOLFR161 sequences: MEPRNQTSASQFILLGLSEKPEQETLLFSLFFCMYLVMWGNLLIILAISIDSHLHTPMYFFLANL SLVDFCLATNTIPKMLVSLQTGSKAISYPCCLIQMYFFHFFGIVDSVIIAMMAYDRFVAICHPLH YAKIMSLRLCRLLVGALWAFSCFISLTHILLMARLVFCGSHEVPHYFCDLTPILRLSCTDTSVNR IFILIVAGMVIATPFVCILASYARILVAIMKVPSAGGRKKAFSTCSSHLSWALFYGTTIGVYLCP SSVLTTVKEKASAVMYTAVTPMLNPFIYSLRNRDLKGALRKLVNRKITSSS (SEQ ID NO: 295)
ATGGAACCAAGAAACCAAACCAGTGCATCTCAATTCATCCTCCTGGGACTCTCAGAAAAGC CAGAGCAGGAGACGCTTCTCTTTTCCCTGTTCTTCTGCATGTACCTGGTCATGGTCGTGGG GAACCTGCTCATCATCCTGGCCATCAGCATAGACTCCCACCTCCACACCCCCATGTACTTCT TCCTGGCCAACCTGTCCCTGGTTGATTTCTGTCTGGCCACCAACACCATCCCTAAGATGCT GGTGAGCCTTCAAACCGGGAGCAAGGCCATCTCTTATCCCTGCTGCCTGATCCAGATGTAC TTCTTCCATTTCTTTGGCATCGTGGACAGCGTCATAATCGCCATGATGGCTTATGACCGGTT CGTGGCCATCTGCCACCCATTGCACTACGCCAAGATCATGAGCCTACGCCTCTGTCGCCTG CTGGTCGGCGCCCTCTGGGCGTTTTCCTGCTTCATCTCACTCACTCACATCCTCCTGATGGC CCGTCTCGTTTTCTGCGGCAGCCATGAGGTGCCTCACTACTTCTGCGACCTCACTCCCATCC TCCGACTTTCGTGCACGGACACCTCTGTGAATAGGATCTTCATCCTCATTGTGGCAGGGAT GGTGATAGCCACGCCCTTTGTCTGCATCCTGGCCTCCTATGCTCGCATCCTTGTGGCCATCA TGAAGGTCCCCTCTGCAGGCGGCAGGAAGAAAGCCTTCTCCACCTGCAGCTCCCACCTGTC TGTGGTTGCTCTCTTCTATGGGACCACCATTGGCGTCTATCTGTGTCCCTCCTCGGTCCTCA CCACTGTGAAGGAGAAAGCTTCTGCGGTGATGTACACAGCAGTCACCCCCATGCTGAATCC CTTCATCTACAGCTTGAGGAACAGAGACCTGAAAGGGGCTCTCAGGAAGCTGGTCAACAG AAAGATCACCTCATCTTCCTGA (SEQ ID NO: 296)
AOLFR162 sequences:
MMRLMKEVRGRNQTEVTEFLLLGLSDNPDLQGVLFALFLLIYMANMVGNLGMIVLIKIDLCLH TPMYFFLSSLSFVDASYSSSVTPKMLVNLMAENKAISFHGCAAQFYFFGSFLGTECFLLAMMA YDRYAA-WNPLLYPVLVSGRICFLLIATSFLAGCGNAAIHTGMTFRLSFCGSNRINHFYCDTPPL LKLSCSDTHFNGIVIMAFSSFIVISCVMIVLISYLCIFIAVLKMPSLEGRHKAFSTCASYLMAVTIF FGTILFMYL-RPTSSYSMEQDKVVSWYTVIIPVLNPLIYSLKNKDVKKALKKILWKHIL (SEQ ID NO: 297)
ATGATGAGACTTATGAAAGAGGTTCGAGGCAGAAATCAAACAGAAGTAACAGAATTTCTC CTCTTAGGACTTTCCGACAATCCAGATCTACAAGGAGTCCTCTTTGCATTGTTTCTGTTGAT CTATATGGCAAACATGGTGGGCAATTTGGGGATGATTGTATTGATTAAGATTGATCTCTGT CTCCACACCCCCATGTATTTCTTTCTCAGTAGCCTCTCTTTTGTAGATGCCTCTTACTCTTCT TCCGTCACTCCCAAGATGCTGGTGAACCTCATGGCTGAGAATAAGGCCATTTCTTTTCATG GATGTGCTGCCCAGTTCTACTTCTTTGGCTCCTTCCTGGGGACTGAGTGCTTCCTGTTGGCC ATGATGGCATATGACCGCTATGCAGCCATTTGGAACCCCCTGCTCTACCCAGTTCTCGTGT CTGGGAGAATTTGCTTTTTGCTAATAGCTACCTCCTTCTTAGCAGGTTGTGGAAATGCAGC CATACATACAGGGATGACTTTTAGGTTGTCCTTTTGTGGTTCTAATAGGATCAACCATTTCT ACTGTGACACCCCGCCACTGCTCAAACTCTCTTGCTCTGATACCCACTTCAATGGCATTGTG ATCATGGCATTCTCAAGTTTTATTGTCATCAGCTGTGTTATGATTGTCCTCATTTCCTACCT GTGTATCTTCATTGCCGTCTTGAAGATGCCTTCGTTAGAGGGCAGGCACAAAGCCTTCTCC ACCTGTGCCTCTTACCTCATGGCTGTCACCATATTCTTTGGAACAATCCTCTTCATGTACTT GCGCCCTACATCTAGCTACTCAATGGAGCAAGACAAGGTTGTCTCTGTCTTTTATACAGTA ATAATCCCTGTGCTAAATCCCCTCATCTATAGTTTAAAAAATAAGGATGTAAAAAAGGCCC TAAAGAAGATCTTATGGAAACACATCTTGTAG (SEQ ID NO: 298)
AOLFR163 sequences:
MQRSNHTVTEFILLGFTTDPGMQLGLFWFLGVYSLTWGNSTLIVLICNDSCLHTPMYFFTGN LSFLDLWYSSVYTPKILVTCISEDKSISFAGCLCQFFFSAGLAYSECYLLAAVAYDRYVAISKPL LYAQAMSIKLCALLVAVSYCGGFINSSIITKKTFSFNFCRENIIDDFFCDLLPLVELACGEKGGYK IMMYFLLASNVICPAVLILASYLFIITSVLRISSSKGYLKAFSTCSSHLTSVTLYYGSILYIYALPRS SYSFDMDKIVSTFYTV PMLNLMIYSLRNKDVKEALKKLLP (SEQ ID NO: 299)
ATGCAGAGGAGCAATCATACAGTGACTGAGTTTATACTGCTGGGCTTCACCACAGACCCA GGAATGCAGCTGGGCCTCTTCGTGGTGTTCCTGGGCGTGTACTCTCTCACTGTGGTAGGAA ATAGCACCCTCATCGTGTTGATCTGTAATGACTCCTGCCTCCACACACCCATGTATTTTTTC ACTGGAAATCTGTCGTTTCTGGATCTCTGGTATTCTTCTGTCTACACCCCAAAGATCCTAGT GACCTGCATCTCTGAAGACAAAAGCATCTCCTTTGCTGGCTGCCTGTGTCAGTTCTTCTTCT CTGCAGGGCTGGCCTATAGTGAGTGCTACCTGCTGGCTGCCGTGGCTTATGACCGCTACGT GGCCATCTCCAAGCCCCTGCTTTATGCCCAGGCCATGTCCATAAAGCTGTGTGCATTGCTG GTAGCAGTCTCATATTGTGGTGGCTTTATTAACTCTTCAATCATCACCAAGAAAACGTTTTC CTTTAACTTCTGCCGTGAAAACATCATTGATGACTTTTTCTGTGATTTGCTTCCCTTGGTGG AGCTGGCCTGTGGCGAGAAGGGCGGCTATAAAATTATGATGTACTTCCTGCTGGCCTCCAA TGTCATCTGCCCCGCAGTGCTCATCCTGGCCTCCTACCTCTTTATCATCACCAGTGTCTTGA GGATCTCCTCCTCCAAGGGCTACCTCAAAGCCTTCTCCACATGCTCCTCCCACCTGACCTCT GTCACTTTATACTATGGCTCCATTCTCTACATCTACGCTCTCCCCAGATCTAGCTATTCTTT TGATATGGACAAAATAGTTTCTACATTTTACACTGTGGTATTCCCCATGTTGAATCTCATG ATCTACAGCCTAAGGAATAAGGATGTGAAAGAGGCTCTGAAAAAACTTCTCCCATAA (SEQ ID NO: 300)
AOLFR164 sequences:
MFLTERNTTSEATFTLLGFSDYLELQIPLFFVFLAVYGFSVVGNLGMIVIIKINPKLHTPMYFFLN HLSFVDFCYSSIIAPMMLVNLWEDRTISFSGCLVQFFFFCTFVVTELILFAVMAYDHFVAICNP LLYTVAISQKLCAMLVWLYAWGVACSLTLACSALKLSFHGFNTINHFFCELSSLISLSYPDSYL SQLLLFTVATFNEISTLLIILTSYAFIIVTTLKMPSASGHRKVFSTCASHLTAITIFHGTILFLYCVP NSKNSRHTVXVAS YTVVIPLLNPLIYSLRNKDVKDAIR-KIINTKYFHIKHRH YPFNFVIEQ (SEQ ID NO: 301)
ATGTTTCTGACAGAGAGAAATACGACATCTGAGGCCACATTCACTCTCTTGGGCTTCTCAG ATTACCTGGAACTGCAAATTCCCCTCTTCTTTGTATTTCTGGCAGTCTACGGCTTCAGTGTG GTAGGGAATCTTGGGATGATAGTGATCATCAAAATTAACCCAAAATTGCATACCCCCATGT ATTTTTTCCTCAACCACCTCTCCTTTGTGGATTTCTGCTATTCCTCCATCATTGCTCCCATGA TGCTGGTGAACCTGGTTGTAGAAGATAGAACCATTTCATTCTCAGGATGTTTGGTGCAATT CTTTTTCTTTTGCACCTTTGTAGTGACTGAATTAATTCTATTTGCGGTGATGGCCTATGACC ACTTTGTGGCCATTTGCAATCCTCTGCTCTACACAGTTGCCATCTCCCAGAAACTCTGTGCC ATGCTGGTGGTTGTATTGTATGCATGGGGAGTCGCATGTTCCCTGACACTCGCGTGCTCTG CTTTAAAGTTATCTTTTCATGGTTTCAACACAATCAATCATTTCTTCTGTGAGTTATCCTCC CTGATATCACTCTCTTACCCTGACTCTTATCTCAGCCAGTTGCTTCTTTTCACTGTTGCCAC TTTTAATGAGATAAGCACACTACTCATCATTCTGACATCTTATGCATTCATCATTGTCACCA CCTTGAAGATGCCTTCAGCCAGTGGGCACCGCAAAGTCTTCTCCACCTGTGCCTCCCACCT GACTGCCATCACCATCTTCCATGGCACCATCCTCTTCCTCTACTGTGTACCCAACTCCAAAA ACTCCAGGCACACAGTCAAAGTGGCCTCTGTGTTTTACACCGTGGTGATCCCCTTGTTGAA TCCCCTGATCTACAGTCTGAGAAATAAAGATGTTAAGGATGCAATCCGAAAAATAATCAAT ACAAAATATTTTCATATTAAACATAGGCATTGGTATCCATTTAATTTTGTTATTGAACAATA A (SEQ ID NO: 302) AOLFR165 sequences:
MAVGR--WTIVTKFILLGLSDHPQMKIFLFMLFLGLYLLTLAVWLSLIALπavIDSHLHMPMYFFL SNLSFLDICYVSSTAPKMLSDIITEQKTISFVGCATQYFVFCGMGLTECFLLAAMAYDRYAAICN PLLYTVLISHTLCLKMWGAYVGGFLSSFIETYSVYQHDFCGPYMINHFFCDLPPVLALSCSDTF TSEWTFIVSVWGIVSVLWLISYGYIVAAWKISSATGRTKAFSTCASHLTAVTLFYGSGFFM YMRPSSSYSLNRDKVVS-I-FYALVIPVVNPIIYSFR-NKEIKNAMRK-AMERD (SEQ ID NO: 303)
ATGGCTGTAGGAAGGAACAACACAATTGTGACAAAATTCATTCTCCTGGGACTTTCAGACC ATCCTCAAATGAAGATTTTCCTTTTCATGTTATTTCTGGGGCTCTACCTCCTGACGTTGGCC TGGAACTTAAGCCTCATTGCCCTCATTAAGATGGACTCTCACCTGCACATGCCCATGTACT TCTTCCTCAGTAACCTGTCCTTCCTGGACATCTGCTATGTGTCCTCCACCGCCCCTAAGATG CTGTCTGACATCATCACAGAGCAGAAAACCATTTCCTTTGTTGGCTGTGCCACTCAGTACT TTGTCTTCTGTGGGATGGGGCTGACTGAATGCTTTCTCCTGGCAGCTATGGCCTATGACCG GTATGCTGCAATCTGCAACCCCTTGCTTTACACAGTCCTCATATCCCATACACTTTGTTTAA AGATGGTGGTTGGCGCCTATGTGGGTGGATTCCTTAGTTCTTTCATTGAAACATACTCTGT CTATCAGCATGATTTCTGTGGGCCCTATATGATCAACCACTTTTTCTGTGACCTCCCTCCAG TCCTGGCTCTGTCCTGCTCTGATACCTTCACCAGCGAGGTGGTGACCTTCATAGTCAGTGTT GTCGTTGGAATAGTGTCTGTGCTAGTGGTCCTCATCTCTTATGGTTACATTGTTGCTGCTGT TGTGAAGATCAGCTCAGCTACAGGTAGGACAAAGGCCTTCAGCACTTGTGCCTCTCACCTG ACTGCTGTGACCCTCTTCTATGGTTCTGGATTCTTCATGTACATGCGACCCAGTTCCAGCTA CTCCCTAAACAGGGACAAGGTGGTGTCCATATTCTATGCCTTGGTGATCCCCGTGGTGAAT CCCATCATCTACAGTTTTAGGAATAAGGAGATTAAAAATGCCATGAGGAAAGCCATGGAA AGGGACCCCGGGATTTCTCACGGTGGACCATTCATTTTTATGACCTTGGGCTAA (SEQ ID NO: 304)
AOLFR166 sequences:
MEMENCTRVKEFIFLGLTQNREVSLVLFLFLLLVYVTTLLGNLLIMVTVTCESRLHTPMYFLLH NLSIADICFSSITVPKVLVDLLSERKTISFNHCFTQMFLFHLIGGVDVFSLSVMALDRYVAISKPL HYATIMSRDHCIGLTVAAWLGGFVHSIVQISLLLPLPFCGPNVLDTFYCDVHRVLKLAHTDIFIL ELLMISNNGLLTTLWFFLLLVSYIVILSLPKSQAGEGR-RKAISTCTSHITVVTLHFVPCIYVYARP FTALPMDKAISVTFTVISPLLNPLIYTLRNHEMKSAMRRLKRRLVPSDRK (SEQ ID NO: 305)
ATGGAGATGGAAAACTGCACCAGGGTAAAAGAATTTATTTTCCTTGGCCTGACCCAGAATC GGGAAGTGAGCTTAGTCTTATTTCTTTTCCTACTCTTGGTGTATGTGACAACTTTGCTGGGA AACCTCCTCATCATGGTCACTGTTACCTGTGAATCTCGCCTTCACACGCCCATGTATTTTTT GCTCCATAATTTATCTATTGCCGATATCTGCTTCTCTTCCATCACAGTGCCCAAGGTTCTGG TGGACCTTCTGTCTGAAAGAAAGACCATCTCCTTCAATCATTGCTTCACTCAGATGTTTCTA TTCCACCTTATTGGAGGGGTGGATGTATTTTCTCTTTCGGTGATGGCATTGGATCGATATG TGGCCATCTCCAAGCCCCTGCACTATGCGACTATCATGAGTAGAGACCATTGCATTGGGCT CACAGTGGCTGCCTGGTTGGGGGGCTTTGTCCACTCCATCGTGCAGATTTCCCTGTTGCTC CCACTCCCTTTCTGCGGACCCAATGTTCTTGACACTTTCTACTGTGATGTCCACCGGGTCCT CAAACTGGCCCATACAGACATTTTCATACTTGAACTACTAATGATTTCCAACAATGGACTG CTCACCACACTGTGGTTTTTCCTGCTCCTGGTGTCCTACATAGTCATATTATCATTACCCAA GTCTCAGGCAGGAGAGGGCAGGAGGAAAGCCATCTCCACCTGCACCTCCCACATCACTGT GGTGACCCTGCATTTCGTGCCCTGCATCTATGTCTATGCCCGGCCCTTCACTGCCCTCCCCA TGGATAAGGCCATCTCTGTCACCTTCACTGTCATCTCCCCTCTGCTCAACCCCTTGATCTAC ACTCTGAGGAACCATGAGATGAAGTCAGCCATGAGGAGACTGAAGAGAAGACTTGTGCCT TCTGATAGAAAATAG *SEQ ID NO: 306)
AOLFR167 sequences:
MSITKAV NSSSVTMFILLGFTDHPELQALLFVTFLGIYLTTLAWNLALIFLIRGDTHLHTPMYFF LSNLSFIDICYSSAVAPNMLTDFFWEQKTISFVGCAAQFFFFVGMGLSECLLLTAMAYDRYAAI SSPLLYPTIMTQGLCTRMWGAYVGGFLSSLIQASSIFRLHFCGPNIINHFFCDLPPVLALSCSDT FLSQVVNFLVVVTVGGTSFLQLLISYGYΓVSAVLKIPSAEGRWKACNTCASHLMVVTLLFGTAL FVYLRPSSSYLLGRDKVVSWYSLVIPMLNPLIYSLRNKEK-DALWKVLERKKVFS (SEQ ID NO: 307)
ATGTCCATAACCAAAGCCTGGAACAGCTCATCAGTGACCATGTTCATCCTCCTGGGATTCA CAGACCATCCAGAACTCCAGGCCCTCCTCTTTGTGACCTTCCTGGGCATCTATCTTACCACC CTGGCCTGGAACCTGGCCCTCATTTTTCTGATCAGAGGTGACACCCATCTGCACACACCCA TGTACTTCTTCCTAAGCAACTTATCTTTCATTGACATCTGCTACTCTTCTGCTGTGGCTCCC AATATGCTCACTGACTTCTTCTGGGAGCAGAAGACCATATCATTTGTGGGCTGTGCTGCTC AGTTTTTTTTCTTTGTCGGCATGGGTCTGTCTGAGTGCCTCCTCCTGACTGCTATGGCATAC GACCGATATGCAGCCATCTCCAGCCCCCTTCTCTACCCCACTATCATGACCCAGGGCCTCT GTACACGCATGGTGGTTGGGGCATATGTTGGTGGCTTCCTGAGCTCCCTGATCCAGGCCAG CTCCATATTTAGGCTTCACTTTTGCGGACCCAACATCATCAACCACTTCTTCTGCGACCTCC CACCAGTCCTGGCTCTGTCTTGCTCTGACACCTTCCTCAGTCAAGTGGTGAATTTCCTCGTG GTGGTCACTGTCGGAGGAACATCGTTCCTCCAACTCCTTATCTCCTATGGTTACATAGTGT CTGCGGTCCTGAAGATCCCTTCAGCAGAGGGCCGATGGAAAGCCTGCAACACGTGTGCCT CGCATCTGATGGTGGTGACTCTGCTGTTTGGGACAGCCCTTTTCGTGTACTTGCGACCCAG CTCCAGCTACTTGCTAGGCAGGGACAAGGTGGTGTCTGTTTTCTATTCATTGGTGATCCCC ATGCTGAACCCTCTCATTTACAGTTTGAGGAACAAAGAGATCAAGGATGCCCTGTGGAAG GTGTTGGAAAGGAAGAAAGTGTTTTCTTAG (SEQ ID NO: 308)
AOLFR168 sequences:
MEKINNVTEFIFWGLSQSPEIEKVCFWFSFFYIIILLGNLLIMLTVCLSNLFKSPMYFFLSFLSFV DICYSSVTAPKMIVDLLAKDKTISYVGCMLQLLGVHFFGCTEIFILTVMAYDRYVAICKPLHYM TIMNRETCNKMLLGTWVGGFLHSIIQVALWQLPFCGPNEIDHYFCDVHPVLKLACTETYIVG VVVTANSGTIALGSFVILLISYSIILVSLRKQSAEGRRKALSTCGSHIAMVVIFFGPCTFMYMRPD TTFSEDKMVAVFYTIITPMLNPLIYTL-RNAEVKNAMKKLWGRNVFLEAKGK (SEQ ID NO: 309)
ATGGAAAAAATAAACAACGTAACTGAATTCATTTTCTGGGGTCTTTCTCAGAGCCCAGAGA TTGAGAAAGTTTGTTTTGTGGTGTTTTCTTTCTTCTACATAATCATTCTTCTGGGAAATCTC CTCATCATGCTGACAGTTTGCCTGAGCAACCTGTTTAAGTCACCCATGTATTTCTTTCTCAG CTTCTTGTCTTTTGTGGACATTTGTTACTCTTCAGTCACAGCTCCCAAGATGATTGTTGACC TGTTAGCAAAGGACAAAACCATCTCCTIATGTGGGGTGCATGTTGCAACTGCTTGGAGTAC ATTTCTTTGGTTGCACTGAGATCTTCATCCTTACTGTAATGGCCTATGATCGTTATGTGGCT ATCTGTAAACCCCTACATTATATGACCATCATGAACCGGGAGACATGCAATAAAATGTTAT TAGGGACGTGGGTAGGTGGGTTCTTACACTCCATTATCCAAGTGGCTCTGGTAGTCCAACT ACCCTTTTGTGGACCCAATGAGATAGATCACTACTTTTGTGATGTTCACCCTGTGTTGAAA CTTGCCTGCACAGAAACATACATTGTTGGTGTTGTTGTGACAGCCAACAGTGGTACCATTG CTCTGGGGAGTTTTGTTATCTTGCTAATCTCCTACAGCATCATCCTAGTTTCCCTGAGAAAG CAGTCAGCAGAAGGCAGGCGCAAAGCCCTCTCCACCTGTGGCTCCCACATTGCCATGGTCG TTATCTTTTTCGGCCCCTGTACTTTTATGTACATGCGCCCTGATACGACCTTTTCAGAGGAT AAGATGGTGGCTGTATTTTACACCATTATCACTCCCATGTTAAATCCTCTGATTTATACACT GAGAAATGCAGAAGTAAAGAATGCAATGAAGAAACTGTGGGGCAGAAATGTTTTCTTGGA GGCTAAAGGGAAATAG (SEQ ID NO: 310)
AOLFR169 sequences:
MMDNHSSATEFHLLGFPGSQGLHHILFAIFFFFYLVTLMGNTVIIVIVCVDKRLQSPMYFFLSHL STLEILVTTIIVPMMLWGLLFLGCRQYLSLHVSLNFSCGTMEFALLGVMAVDRYVAVCNPLRY NIIλlNSSTCIWVVIVSWVFGFLSEI PIYATFQFTFRKSNSLDHFYCDRGQLLKLSCDNTLLTEFI LFLMAVEILIGSLIPTIVSYTYIISTILKIPSASGRRKAFSTFASHFTCVVIGYGSCLFLYVKPKQTQ GVEYNKIVSLLVSVLTPFLNPFIFTLRNDKVKEALRDGMKRCCQLLKD (SEQ ID NO: 311)
ATGATGGACAACCACTCTAGTGCCACTGAATTCCACCTTCTAGGCTTCCCTGGGTCCCAAG GACTACACCACATTCTTTTTGCTATATTCTTTTTCTTCTATTTAGTGACATTAATGGGAAAC ACGGTCATCATTGTGATTGTCTGTGTGGATAAACGTCTGCAGTCCCCCATGTATTTCTTCCT CAGCCACCTCTCTACCCTGGAGATCCTGGTCACAACCATAATTGTCCCCATGATGCTTTGG GGATTGCTCTTCCTGGGATGCAGACAGTATCTTTCTCTACATGTATCGCTCAACTTTTCCTG TGGGACCATGGAGTTTGCATTACTTGGAGTGATGGCTGTGGACCGTTATGTGGCTGTGTGT AACCCTTTGAGGTACAACATCATTATGAACAGCAGTACCTGTATTTGGGTGGTAATAGTGT CATGGGTGTTTGGATTTCTTTCTGAAATCTGGCCCATCTATGCCACATTTCAGTTTACCTTC CGCAAATCAAATTCATTAGACCATTTTTACTGTGACCGAGGGCAATTGCTCAAACTGTCCT GCGATAACACTCTTCTCACAGAGTTTATCCTTTTCTTAATGGCTGTTTTTATTCTCATTGGT TCTTTGATCCCTACGATTGTCTCCTACACCTACATTATCTCCACCATCCTCAAGATCCCGTC AGCCTCTGGCCGGAGGAAAGCCTTCTCCACTTTTGCCTCCCACTTCACCTGTGTTGTGATTG GCTATGGCAGCTGCTTGTTTCTCTACGTGAAACCCAAGCAAACACAGGGAGTTGAGTACAA TAAGATAGTTTCCCTGTTGGTTTCTGTGTTAACCCCCTTCCTGAATCCTTTCATCTTTACTCT TCGGAATGACAAAGTCAAAGAGGCCCTCCGAGATGGGATGAAACGCTGCTGTCAACTCCT GAAAGATTAG (SEQ ID NO: 312)
AOLFR170 sequences: MSFTSLIPSLCFSLTLPFLFCYLSLLPFLSAFLFITRWLLAFLSLFSVSVPVSSVSSSMVLCLYLSVS ASPSVFCFSCMQGPILWIMANLSQPSEFVLLGFSSFGELQALLYGPFLMLYLLAFMGNTIIIVMVI ADTHLHTPMYFFLGNFSLLEILVTMTAVPRMLSDLLVPHKVITFTGCMVQFYFHFSLGSTSFLIL TDMALD-RFVAICHPLRYGTLMSRAMCVQLAGAAWAAPFLAMVPTVLSRAHLDYCHGDVINH FFCDNEPLLQLSCSDTRLLEF DFLMALTFVLSSFLVTLISYGYIVTTVLRIPSASSCQKAFSTCG SHLTLVFIGYSSTIFLYVRPGKAHSVQVRKVVALVTSVLTPFLNPFILTFCNQTVKTVLQGQMQ RLKGLCKAQ (SEQ ID NO: 313)
ATGTCTTTCACTTCTCTCATACCCTCACTCTGTTTCTCCTTGACTCTCCCATTCCTGTTTTGT TATCTTTCTTTATTGCCGTTTCTTTCTGCTTTTCTGTTTATCACTCGCTGGCTACTTGCCTTT CTCTCTCTATTCTCTGTCTCTGTCCCTGTTTCTTCTGTTTCAAGTTCAATGGTTCTCTGTCTC TATCTCTCTGTTTCTGCCTCTCCGTCTGTCTTTTGTTTCTCTTGCATGCAGGGCCCCATACTG TGGATCATGGCAAATCTGAGCCAGCCCTCCGAATTTGTCCTCTTGGGCTTCTCCTCCTTTGG TGAGCTGCAGGCCCTTCTGTATGGCCCCTTCCTCATGCTTTATCTTCTCGCCTTCATGGGAA ACACCATCATCATAGTTATGGTCATAGCTGACACCCACCTACATACACCCATGTACTTCTTC CTGGGCAATTTTTCCCTGCTGGAGATCTTGGTAACCATGACTGCAGTGCCCAGGATGCTCT CAGACCTGTTGGTCCCCCACAAAGTCATTACCTTCACTGGCTGCATGGTCCAGTTCTACTTC CACTTTTCCCTGGGGTCCACCTCCTTCCTCATCCTGACAGACATGGCCCTTGATCGCTTTGT GGCCATCTGCCACCCACTGCGCTATGGCACTCTGATGAGCCGGGCTATGTGTGTCCAGCTG GCTGGGGCTGCCTGGGCAGCTCCTTTCCTAGCCATGGTACCCACTGTCCTCTCCCGAGCTC ATCTTGATTACTGCCATGGCGACGTCATCAACCACTTCTTCTGTGACAATGAACCTCTCCTG CAGTTGTCATGCTCTGACACTCGCCTGTTGGAATTCTGGGACTTTCTGATGGCCTTGACCTT TGTCCTCAGCTCCTTCCTGGTGACCCTCATCTCCTATGGCTACATAGTGACCACTGTGCTGC GGATCCCCTCTGCCAGCAGCTGCCAGAAGGCTTTCTCCACTTGCGGGTCTCACCTCACACT GGTCTTCATCGGCTACAGTAGTACCATCTTTCTGTATGTCAGGCCTGGCAAAGCTCACTCT GTGCAAGTCAGGAAGGTCGTGGCCTTGGTGACTTCAGTTCTCACCCCCTTTCTCAATCCCT TTATCCTTACCTTCTGCAATCAGACAGTTAAAACAGTGCTACAGGGGCAGATGCAGAGGCT GAAAGGCCTTTGCAAGGCACAATGA (SEQ ID NO: 314)
AOLFR171 sequences: MVGNLLIWVTTIGSPSLGSLMYFFLAYLSLMDAIYSTAMSPKLMIDLLCDKIAISLSACMGQLFI EHLLGGAEWLLVVMAYDRYVAISKPLHYLNIMNRLVCILLLVVAMIGGFVHSVVQIVFLYSLP ICGPNVIDHSVCDMYPLLELLCLDTYFIGLTWANGGIICMVIFTFLLISCGVILNFLKTYSQEER HKALPTCISHIIVVALWWCIFMYVRPVSNFPFDKLMTVFYSIITLMLNPLIYSLRQSEM-O^AM KNLWCEKLSIVRKRVSPTLNIFIPSSKATNRR (SEQ ID NO: 315)
ATGGTGGGAAACCTCCTCATTTGGGTGACTACTATTGGCAGCCCCTCCTTGGGCTCCCTAA TGTACTTCTTCCTTGCCTACTTGTCACTTATGGATGCCATATATTCCACTGCCATGTCACCC AAATTGATGATAGACTTACTCTGTGATAAAATCGCTATTTCCTTGTCAGCTTGCATGGGTC AGCTCTTCATAGAACACTTACTTGGTGGTGCAGAGGTCTTCCTTTTGGTGGTGATGGCCTA TGATCGCTATGTGGCTATCTCTAAGCCGCTGCACTATTTGAACATCATGAATCGACTGGTT TGCATCCTTCTGTTGGTGGTGGCCATGATTGGAGGTTTTGTGCACTCTGTGGTTCAAATTGT CTTTCTGTACAGTCTACCAATCTGTGGCCCCAATGTTATTGACCACTCTGTCTGTGACATGT ACCCATTGTTGGAACTGTTGTGCCTTGACACCTACTTTATAGGACTCACTGTGGTTGCCAA TGGTGGAATAATTTGTATGGTCATCTTTACCTTTCTGCTAATCTCCTGTGGAGTCATCCTAA ACTTCCTTAAAACTTACAGTCAGGAAGAGAGGCATAAAGCCCTGCCTACCTGCATCTCCCA CATCATTGTGGTTGCCCTCGTTTTTGTTCCCTGTATTTTTATGTATGTTAGACCCGTTTCCA ACTTTCCCTTTGATAAATTAATGACTGTGTTTTATTCAATTATCACACTCATGTTGAATCCT TTAATATACTCGTTGAGACAATCAGAGATGAAAAATGCTATGAAAAATCTCTGGTGTGAA AAGTTAAGTATAGTTAGAAAAAGAGTATCTCCCACACTGAACATATTTATTCCTAGTTCTA AGGCAACAAATAGGCGGTAA (SEQ ID NO: 316)
AOLFR172 sequences:
MAETLQLNSTFLHPNFFILTGFPGLGSAQTWLTLVFGPIYLLALLGNGALPAWWIDSTLHQPM FLLLAILAATDLGLATSIAPGLLAVLWLGPRSVPYAVCLVQMFFVHALTAMESGVLLAMACDR AAAIGRPLHYPVLVTKACVGYAALALALKAVAIVVPFPLLVAKFEHFQAKTIGHTYCAHMAV VELVVGNTQATNLYGLALSLAISGMDILGITGSYGLIAHAVLQLPTREAHAKAFGTCSSHICVIL AFYIPGLFSYLAHRFGHHTVPKPVHILLSNIYLLLPPALNPLIYGARTKQIRDRLLETFTFRKSPL (SEQ ID NO: 317)
ATGGCAGAAACTCTACAACTCAATTCCACCTTCCTACACCCAAACTTCTTCATACTGACTG GCTTTCCAGGGCTAGGAAGTGCCCAGACTTGGCTGACACTGGTCTTTGGGCCCATTTATCT GCTGGCCCTGCTGGGCAATGGAGCACTGCCGGCAGTGGTGTGGATAGACTCCACACTGCA CCAGCCCATGTTTCTACTGTTGGCCATCCTGGCAGCCACAGACCTGGGCTTAGCCACATCT ATAGCCCCAGGGTTGCTGGCTGTGCTGTGGCTTGGGCCCCGATCTGTGCCATATGCTGTGT GCCTGGTCCAGATGTTCTTTGTACATGCACTGACTGCCATGGAATCAGGTGTGCTTTTGGC CATGGCCTGTGATCGTGCTGCGGCAATAGGGCGTCCACTGCACTACCCTGTCCTGGTCACC AAAGCCTGTGTGGGTTATGCAGCCTTGGCCCTGGCACTGAAAGCTGTGGCTATTGTTGTAC CTTTCCCACTGCTGGTGGCAAAGTTTGAGCACTTCCAAGCCAAGACCATAGGCCATACCTA TTGTGCACACATGGCAGTGGTAGAACTGGTGGTGGGTAACACACAGGCCACCAACTTATA TGGTCTGGCACTTTCACTGGCCATCTCAGGTATGGATATTCTGGGTATCACTGGCTCCTAT GGACTCATTGCCCATGCTGTGCTGCAGCTACCTACCCGGGAGGCCCATGCCAAGGCCTTTG GTACATGTAGTTCTCACATCTGTGTCATTCTGGCCTTCTACATACCTGGTCTCTTCTCCTAC CTCGCACACCGCTTTGGTCATCACACTGTCCCAAAGCCTGTGCACATCCTTCTCTCCAACAT CTACTTGCTGCTGCCACCTGCCCTCAACCCCCTCATCTATGGGGCCCGCACCAAGCAGATC AGAGACCGACTCCTGGAAACCTTCACATTCAGAAAAAGCCCGTTGTAA (SEQ ID NO: 318)
AOLFR173 sequences:
MSHTNVTIFHPAVFVLPGIPGLEAYHIWLSIPLCLIYITAVLGNSILIWIVMERNLHVPMYFFLS MLAVMDILLSTTTVPKALAIFWLQAHNIAFDACVTQGFFVHMMFVGESAILLAMAFDRFVAIC APLRYTTVLTWPVVGRIALAVITRSFCIIFPVIFLLKRLPFCLTNIVPHSYCEHIGVARLACADITV NIWYGFSVPIVMVILDVILIAVSYSLILRAVFRLPSQDARHKALSTCGSHLCVILMFYVPSFFTLL THHFGRNIPQHVHILLANLYVAVPPMLNPIVYGVKTKQIREGVAHRFFDIKTWCCTSPLGS (SEQ ID NO: 319)
ATGAGTCACACCAATGTTACCATCTTCCATCCTGCAGTTTTTGTCCTTCCTGGCATCCCTGG GTTGGAGGCTTATCACATTTGGCTGTCAATACCTCTTTGCCTCATTTACATCACTGCAGTCC TGGGAAACAGCATCCTGATAGTGGTTATTGTCATGGAACGTAACCTTCATGTGCCCATGTA TTTCTTCCTCTCAATGCTGGCCGTCATGGACATCCTGCTGTCTACCACCACTGTGCCCAAGG CCCTAGCCATCTTTTGGCTTCAAGCACATAACATTGCTTTTGATGCCTGTGTCACCCAAGGC TTCTTTGTCCATATGATGTTTGTGGGGGAGTCAGCTATCCTGTTAGCCATGGCCTTTGATCG CTTTGTGGCCATTTGTGCCCCACTGAGATATACAACAGTGCTAACATGGCCTGTTGTGGGG AGGATTGCTCTGGCCGTCATCACCCGAAGCTTCTGCATCATCTTCCCAGTCATATTCTTGCT GAAGCGGCTGCCCTTCTGCCTAACCAACATTGTTCCTCACTCCTACTGTGAGCATATTGGA GTGGCTCGTTTAGCCTGTGCTGACATCACTGTTAACATTTGGTATGGCTTCTCAGTGCCCAT TGTCATGGTCATCTTGGATGTTATCCTCATCGCTGTGTCTTACTCACTGATCCTCCGAGCAG TGTTTCGTTTGCCCTCCCAGGATGCTCGGCACAAGGCCCTCAGCACTTGTGGCTCCCACCT CTGTGTCATCCTTATGTTTTATGTTCCATCCTTCTTTACCTTATTGACCCATCATTTTGGGCG TAATATTCCTCAACATGTCCATATCTTGCTGGCCAATCTTTATGTGGCAGTGCCACCAATGC TGAACCCCATTGTCTATGGTGTGAAGACTAAGCAGATACGTGAGGGTGTAGCCCACCGGTT CTTTGACATCAAGACTTGGTGCTGTACCTCCCCTCTGGGCTCATGA (SEQ ID NO: 320)
AOLFR175 sequences:
MHFLSQNDLNINLIPHLCLHRHSVIAGAFTIHRHMKIFNSPSNSSTFTGFILLGFPCPREGQILLFV LFTWYLLTLMGNGSIICAVHWDQRLHAPMYILLANFSFLEICYVTSTVPSMLANFLSDTKIISF SGCFLQFYFFFSLGSTECFFLAVMAFDRYLAICRPLRYPTIMTRRLCTNLWNCWVLGFIWFLIPI VNISQMSFCGSRIIDHFLCDPAPLLTLTCKKGPVIELVFSVLSPLPVFMLFLFIVGSYALWRAVL RWSAAGRR-KAFSTCGSHLAVVSLFYGSVLVMYGSPPSKNEAGKQKTVTLFYSVVTPLLNPVI YSLR-NKDMRKALKKFWGT (SEQ ID NO: 321)
ATGCATTTTCTTTCCCAAAATGATTTAAATATAAATCTGATTCCCCATCTATGTTTGCACCG TCATTCAGTAATTGCTGGTGCTTTTACAATTCACAGGCACATGAAAATCTTCAACAGCCCC AGCAACTCCAGCACCTTCACTGGCTTCATCCTCCTGGGCTTCCCTTGCCCCAGGGAGGGGC AGATCCTCCTCTTTGTGCTCTTCACTGTTGTTTACCTCCTGACCCTCATGGGCAATGGTTCC ATCATCTGTGCTGTGCACTGGGATCAGAGACTCCACGCCCCCATGTACATCCTGCTCGCCA ACTTCTCCTTCTTGGAGATATGTTATGTCACCTCCACAGTCCCCAGCATGCTGGCCAACTTC CTCTCTGACACCAAGATCATCTCGTTCTCTGGCTGCTTCCTCCAGTTCTACTTTTTCTTCTCC TTGGGCTCTACAGAATGCTTTTTCCTGGCAGTTATGGCATTTGATCGATACCTTGCCATCTG TCGGCCTCTACGCTATCCAACCATTATGACCAGACGTCTCTGTACCAATCTTGTGGTCAATT GCTGGGTACTTGGTTTCATCTGGTTCTTGATTCCTATCGTCAACATCTCCCAAATGTCCTTC TGTGGATCTAGGATTATTGACCACTTCCTATGTGACCCAGCTCCTCTTCTAACTCTCACTTG CAAAAAAGGCCCTGTGATAGAGCTTGTCTTTTCTGTCTTAAGTCCTCTGCCTGTCTTTATGC TCTTTCTCTTCATTGTGGGGTCCTATGCTCTGGTCGTGAGAGCTGTGTTGAGGGTCCCTTCA GCAGCTGGGAGAAGAAAGGCTTTCTCCACCTGTGGGTCTCACCTGGCTGTGGTTTCACTGT TCTACGGCTCAGTACTGGTCATGTATGGGAGCCCACCATCTAAGAATGAAGCTGGAAAGC AGAAGACTGTGACTCTGTTTTATTCTGTTGTTACCCCACTGCTTAACCCTGTGATATATAGT CTTAGGAACAAAGATATGAGAAAAGCTCTGAAGAAATTTTGGGGAACATAA (SEQ ID NO: 322)
AOLFR176 sequences:
MFFIIHSLVTSVFLTALGPQNRTMHFVTEFVLLGFHGQREMQSCFFSFILVLYLLTLLGNGAIVC AVKLDRRLHTPMYILLGNFAFLEIWYISSTVPNMLVNILSEIKTISFSGCFLQFYFFFSLGTTECFF LS VMAYDRYLAICRPLHYPSIMTGKFCIILVCVCWVGGFLCYP VPIVLISQLPFCGPNIIDHLVCD PGPLFALACISAPSTELICYTFNSMIIFGPFLSILGSYTLVIRAVLCIPSGAGRTKAFSTCGSHLMV VSLFYGTLMVMYVSPTSGNPAGMQKIITLVYTAMTPFLNPLIYSLRNKDMKDALKRVLGLTVS QN (SEQ ID NO: 323)
ATGTTCTTTATTATTCATTCTTTGGTTACTTCTGTTTTTCTAACAGCTTTGGGACCCCAGAA CAGAACAATGCATTTTGTGACTGAGTTTGTCCTCCTGGGTTTCCATGGTCAAAGGGAGATG CAGAGCTGCTTCTTCTCATTCATCCTGGTTCTCTATCTCCTGACACTGCTAGGGAATGGAGC TATTGTCTGTGCAGTGAAATTGGACAGGCGGCTCCACACACCCATGTACATCCTTCTGGGA AACTTTGCCTTTCTAGAGATCTGGTACATTTCCTCCACTGTCCCAAACATGCTAGTCAATAT CCTCTCTGAGATTAAAACCATCTCCTTCTCTGGTTGCTTCCTGCAATTCTATTTCTTTTTTTC ACTGGGTACAACAGAGTGTTTCTTTTTATCAGTTATGGCTTATGATCGGTACCTGGCCATC TGTCGTCCATTACACTACCCCTCCATCATGACTGGGAAGTTCTGTATAATTCTGGTCTGTGT ATGCTGGGTAGGCGGATTTCTCTGCTATCCAGTCCCTATTGTTCTTATCTCCCAACTTCCCT TCTGTGGGCCCAACATCATTGACCACTTGGTGTGTGACCCAGGCCCATTGTTTGCACTGGC CTGCATCTCTGCTCCTTCCACTGAGCTTATCTGTTACACCTTCAACTCGATGATTATCTTTG GGCCCTTCCTCTCCATCTTGGGATCTTACACTCTGGTCATCAGAGCTGTGCTTTGTATTCCC TCTGGTGCTGGTCGAACTAAAGCTTTCTCCACATGTGGGTCCCACCTAATGGTGGTGTCTC TATTCTATGGAACCCTTATGGTGATGTATGTGAGCCCAACATCAGGGAACCCAGCAGGAAT GCAGAAGATCATCACTCTGGTATACACAGCAATGACTCCATTCTTAAATCCCCTTATCTAT AGTCTTCGAAACAAAGACATGAAAGATGCTCTAAAGAGAGTCCTGGGGTTAACAGTTAGC CAAAACTGA (SEQ ID NO: 324) AOLFR177 sequences:
MSFFFVDLRPMNRSATHIVTEFILLGFPGCWKIQIFLFSLFLVIYVLTLLGNGAIIYAVRCNPLLH TPMYFLLGNFAFLEIWYVSSTIPNMLVNILSKTKAISFSGCFLQFYFFFSLGTTECLFLAVMAYD RYLAICHPLQYPAIMTVRFCGKLVSFCWLIGFLGYPIPIFYISQLPFCGPNIIDHFLCDMDPLMAL SCAPAPITECIFYTQSSLVLFFTSMYILRSYILLLTAVFQWSAAGRRKAFSTCGSHLVVVSLFYG TVMVMYVSPTYGIPTLLQKILTLVYSVTTPLFNPLIYTLRNKDMKLALRNVLFGMRIRQNS (SEQ ID NO: 325)
ATGTCTTTCTTCTTTGTAGACTTAAGACCCATGAACAGGTCAGCAACACACATCGTGACAG AGTTTATTCTCCTGGGATTCCCTGGTTGCTGGAAGATTCAGATTTTCCTCTTCTCATTGTTT TTGGTGATTTATGTCTTGACCTTGCTGGGAAATGGAGCCATCATCTATGCAGTGAGATGCA ACCCACTACTACACACCCCCATGTACTTTCTGCTGGGAAATTTTGCCTTCCTTGAGATCTGG TATGTGTCCTCCACTATTCCTAACATGCTAGTCAACATTCTCTCCAAGACCAAGGCCATCTC ATTTTCTGGGTGCTTCCTCCAGTTCTATTTCTTCTTTTCACTGGGAACAACTGAATGTCTCT TTCTGGCAGTAATGGCTTATGATCGATACCTGGCCATCTGCCACCCACTGCAGTACCCTGC CATCATGACTGTAAGGTTCTGTGGTAAGCTGGTGTCTTTCTGTTGGCTTATTGGATTCCTTG GATACCCAATTCCCATTTTCTACATCTCCCAACTCCCCTTCTGTGGTCCTAATATCATTGAT CACTTCCTGTGTGACATGGACCCATTGATGGCTCTATCCTGTGCCCCAGCTCCCATAACTG AATGTATTTTCTATACTCAGAGCTCCCTTGTCCTCTTTTTCACTAGTATGTACATTCTTCGA TCCTATATCCTGTTACTAACAGCTGTTTTTCAGGTCCCTTCTGCAGCTGGTCGGAGAAAAG CCTTCTCTACCTGTGGTTCTCATTTGGTTGTGGTATCTCTTTTCTATGGGACAGTCATGGTA ATGTATGTAAGTCCTACATATGGGATCCCAACTTTATTGCAGAAGATCCTCACACTGGTAT ATTCAGTAACGACTCCTCTTTTTAATCCTCTGATCTATACTCTTCGTAATAAGGACATGAAA CTCGCTCTGAGAAATGTCCTGTTTGGAATGAGAATTCGTCAAAATTCGTGA (SEQ ID NO: 326)
AOLFR178 sequences:
MVGANHSVVSEFVFLGLTNSWEIRLLLLVFSSMFYMASMMGNSLILLTVTSDPHLHSPMYFLL ANLSFIDLGVSSVTSPKMIYDLFRKHEVISFGGCIAQIFFIHVIGGVEMVLLIAMAFDRYVAICKP LQYLTIMSPRMCMFFLVAA VTGLIHSVVQLVFVVNLPFCGPNVSDSFYCDLPRFIKLACTDSY RLEFMVTANSGFISLGSFFILIISYWIILTVLKHSSAGLSKALSTLSAHVSVWLFFGPLIFVYTW PSPSTHLDKFLAIFDAVLTPVLNPIIYTFRN (SEQ ID NO: 327)
ATGGTTGGGGCAAATCACTCCGTGGTGTCAGAGTTTGTGTTCCTGGGACTCACCAATTCCT GGGAGATCCGACTTCTCCTCCTTGTGTTCTCCTCCATGTTTTACATGGCCAGTATGATGGGA AACTCTCTCATTTTGCTCACTGTGACTTCTGACCCTCACTTGCACTCCCCCATGTATTTTCT GTTAGCCAACCTCTCCTTCATTGACCTGGGTGTTTCCTCTGTCACTTCTCCCAAAATGATTT ATGACCTGTTCAGAAAGCACGAAGTCATCTCCTTTGGAGGCTGCATCGCTCAAATCTTCTT CATCCACGTCATTGGCGGTGTGGAGATGGTGCTGCTCATAGCCATGGCCTTTGACAGATAT GTGGCCATATGTAAGCCCCTCCAGTACCTGACCATTATGAGCCCAAGAATGTGCATGTTCT TCTTAGTGGCTGCCTGGGTGACCGGCCTTATCCACTCTGTAGTTCAATTGGTTTTTGTAGTA AACTTGCCCTTCTGTGGTCCTAATGTATCGGACAGCTTTTACTGTGACCTTCCTCGGTTCAT CAAACTTGCCTGCACAGACAGCTACCGACTGGAGTTCATGGTTACAGCCAACAGTGGATTC ATCTCTCTGGGCTCCTTCTTCATACTGATCATTTCCTATGTGGTCATCATTCTCACTGTTCT GAAACACTCTTCAGCTGGTTTATCCAAGGCTCTGTCCACCCTTTCAGCTCACGTCAGTGTG GTAGTTTTGTTCTTTGGTCCTTTGATTTTTGTCTATACGTGGCCATCTCCCTCCACACACCT GGATAAGTTTCTGGCCATCTTTGATGCAGTTCTCACTCCTGTTTTAAATCCTATCATCTACA CATTCAGGAATTGA (SEQ ID NO: 328)
AOLFR179 sequences:
MNGMNHSWSEFVFMGLTNSREIQLLLFVFSLLFYFASMMGNLVIVFTVTMDAHLHSPMYFLL AJSfLSiroMAFCSITA PKMICDIFKKHKAISFRGCITQIFFSHALGGTEMVLLIAMAFDRYMAICKP LHYLTIMSPRMCLYFLATSSIIGLIHSLVQLVFWDLPFCGPNIFDSFYCDLPRLLRLACTNTQEL EFMVTVNSGLISVGSFVLLVISYIFILFTVWKHSSGGLAKALSTLSAHVTWILFFGPLMFFYTW PSPTSHLDKYLAIFDAFITPFLNPV-tYTFR--SnODMKVA-MRRLCSRLAHFTKIL (SEQ ID NO: 329) ATGAATGGAATGAATCACTCTGTGGTATCAGAATTTGTATTCATGGGACTCACCAACTCAC GGGAGATTCAGCTTCTACTTTTTGTTTTCTCTTTGTTGTTCTACTTTGCGAGCATGATGGGA AACCTTGTCATTGTATTCACTGTAACCATGGATGCTCATCTGCACTCCCCCATGTATTTCCT CCTGGCTAACCTCTCAATCATTGATATGGCATTTTGCTCAATTACAGCCCCTAAGATGATTT GTGATATTTTCAAGAAGCACAAGGCCATCTCCTTTCGGGGATGTATTACTCAGATCTTCTT TAGCCATGCTCTTGGGGGCACTGAGATGGTGCTGCTCATAGCCATGGCCTTTGACAGATAC ATGGCCATATGTAAACCTCTCCACTACCTGACCATCATGAGCCCAAGAATGTGTCTATACT TTTTAGCCACTTCCTCTATCATTGGCCTTATCCACTCATTGGTCCAATTAGTTTTTGTGGTA GATTTACCTTTTTGTGGTCCTAATATCTTTGACAGTTTTTACTGTGATCTCCCTCGGCTCCT CAGACTTGCCTGTACCAACACCCAAGAACTGGAGTTCATGGTCACTGTCAATAGTGGACTC ATTTCTGTGGGCTCCTTTGTCTTGCTGGTAATTTCCTACATCTTCATTCTGTTCACTGTTTG GAAACATTCTTCTGGTGGTCTAGCCAAGGCCCTCTCTACCCTGTCAGCTCATGTCACTGTG GGATAAATATCTTGCTATTTTTGATGCATTTATTACTCCTTTTCTGAATCCAGTTATCTACA CATTCAGGAACAAAGACATGAAAGTGGCAATGAGGAGACTGTGCAGTCGTCTTGCGCATT TTACAAAGATTTTGTAA (SEQ ID NO: 330)
AOLFR180 sequences: MTNKMYAIYIKNLNYFSFLIVQCLQPTMAIFNNTTSSSSNFLLTAFPGLECAHVWISIPVCCLYTI ALLGNSMIFLVIITK-RRLH-KPMYYFLSMLAAVDLCLTITTLPTVLGVLWFHAREISFKACFIQMF FVHAFSLLESSVLVAMAFDRFVAICNPLNYATILTDRMVLVIGLVICIRPAVFLLPLLVAINTVSF HGGHELSHPFCYHPEVIKYTYSKPWISSFWGLFLQLYLNGTDVLFILFSYVLILRTVLGIVARKK QQKALSTCVCHICAVTIFYVPLISLSLAHRLFHSTPRVLCSTLANIYLLLPPVLNPIIYSLKTKTIR QAMFQLLQSKGSWGFNVRGLRGRWD (SEQ ID NO: 331)
ATGACTAATAAAATGTATGCTATATATATAAAGAATCTTAATTATTTTTCTTTCCTCATAGT TCAGTGTCTTCAACCAACCATGGCAATATTCAATAACACCACTTCGTCTTCCTCAAACTTCC TCCTCACTGCATTCCCTGGGCTGGAATGTGCTCATGTCTGGATCTCCATTCCAGTCTGCTGT CTCTACACCATTGCCCTCTTGGGAAACAGTATGATCTTTCTTGTCATCATTACTAAGCGGA GACTCCACAAACCCATGTATTATTTCCTCTCCATGCTGGCAGCTGTTGATCTATGTCTGACC ATTACGACCCTTCCCACTGTGCTTGGTGTTCTCTGGTTTCATGCCCGGGAGATCAGCTTTAA AGCTTGCTTCATTCAAATGTTCTTTGTGCATGCTTTCTCCTTGCTGGAGTCCTCGGTGCTGG TAGCCATGGCCTTTGACCGCTTCGTGGCTATCTGTAACCCACTGAACTATGCTACTATCCTC ACAGACAGGATGGTCCTGGTGATAGGGCTGGTCATCTGCATTAGACCAGCAGTTTTCTTAC TTCCCCTTCTTGTAGCCATAAACACTGTGTCTTTTCATGGGGGTCACGAGCTTTCCCATCCA TTTTGCTACCACCCAGAAGTGATCAAATACACATATTCCAAACCTTGGATCAGCAGTTTTT GGGGACTGTTTCTTCAGCTCTACCTGAATGGCACTGACGTATTGTTTATTCTTTTCTCCTAT GTCCTGATCCTCCGTACTGTTCTGGGCATTGTGGCCCGAAAGAAGCAACAAAAAGCTCTCA GCACTTGTGTCTGTCACATCTGTGCAGTCACTATTTTCTATGTGCCACTGATCAGCCTCTCT TTGGCACACCGCCTCTTCCACTCCACCCCAAGGGTGCTCTGTAGCACTTTGGCCAATATTTA TCTGCTCTTACCACCTGTGCTGAACCCTATCATTTACAGCTTGAAGACCAAGACAATCCGC CAGGCTATGTTCCAGCTGCTCCAATCCAAGGGTTCATGGGGTTTTAATGTGAGGGGTCTTA GGGGAAGATGGGATTGA (SEQ ID NO: 332)
AOLFR181 sequences:
MSVLNNSEVKLFLLIGIPGLEHAHIWFSIPICLMYLLAIMGNCTILFIIKTEPSLHEPMYYFLAML AVSDMGLSLSSLPTMLRVFLFNAMGISPNACFAQEFFIHGFTVMESSVLLIMSLDRFLAIHNPLR YSSILTSNRVAiC^GLILAmSILLVIPFPFTLRRLKYCQKNLLSHSYCLHQDTMKLACSDNKTNV IYGFFIALCTMLDLALIVLSYVLILKTILSIASLAERLKALNTCVSHICAVLTFYVPIITLAAMHHF AKHKSPLVVILIADMFLLVPPLMNPIVYCVKTRQIWEKILGKLLNVCGR (SEQ ID NO: 333)
ATGTCTGTTCTCAATAACTCCGAAGTCAAGCTTTTCCTTCTGATTGGGATCCCAGGACTGG AACATGCCCACATTTGGTTCTCCATCCCCATTTGCCTCATGTACCTGCTTGCCATCATGGGC AACTGCACCATTCTCTTTATTATAAAGACAGAGCCCTCGCTTCATGAGCCCATGTATTATTT CCTTGCCATGTTGGCTGTCTCTGACATGGGCCTGTCCCTCTCCTCCCTTCCTACCATGTTGA GGGTCTTCTTGTTCAATGCCATGGGAATTTCACCTAATGCCTGCTTTGCTCAAGAATTCTTC ATTCATGGATTCACTGTCATGGAATCCTCAGTACTTCTAATTATGTCTTTGGACCGCTTTCT TGCCATTCACAATCCCTTAAGATACAGTTCTATCCTCACTAGCAACAGGGTTGCTAAAATG GGACTTATTTTAGCCATTAGGAGCATTCTCTTAGTGATTCCATTTCCCTTCACCTTAAGGAG ATTAAAATATTGTCAAAAGAATCTTCTTTCTCACTCATACTGTCTTCATCAGGATACCATGA AGCTGGCCTGCTCTGACAACAAGACCAATGTCATCTATGGCTTCTTCATTGCTCTCTGTACT ATGCTGGACTTGGCACTGATTGTTTTGTCTTATGTGCTGATCTTGAAGACTATACTCAGCAT TGCATCTTTGGCAGAGAGGCTTAAGGCCCTAAATACCTGTGTCTCCCACATCTGTGCTGTG CTCACCTTCTATGTGCCCATCATCACCCTGGCTGCCATGCATCACTTTGCCAAGCACAAAA GCCCTCTTGTTGTGATCCTTATTGCAGATATGTTCTTGTTGGTGCCGCCCCTTATGAACCCC ATTGTGTACTGTGTAAAGACTCGACAAATCTGGGAGAAGATCTTGGGGAAGTTGCTTAAT GTATGTGGGAGATAA (SEQ ID NO: 334)
AOLFR182 sequences: MTLGSLGNSSSSVSATFLLSGIPGLERMHIWISIPLCFMYLVSIPGNCTILFIIKTERSLHEPMYLFL SMLALIDLGLSLCTLPTVLGIFWVGAREISHDACFAQLFFIHCFSFLESSVLLSMAFDRFVAICHP LHYVSILTNTVIGRIGLVSLGRSVALIFPLPFMLKRFPYCGSPVLSHSYCLHQEVMKLACADMK ANSIYGMFVIVSTVGIDSLLILFSYALILRTVLSIASRAERFKALNTCVSHICAVLLFYTPMIGLSV IHRFGKQAPHLVQVVMGFMYLLFPPVMNPIVYSVKTKQIRDRVTHAFCY (SEQ ID NO: 335)
ATGACCCTGGGATCCCTGGGAAACAGCAGCAGCAGCGTTTCTGCTACCTTCCTGCTGAGTG GCATCCCTGGGCTGGAGCGCATGCACATCTGGATCTCCATCCCACTGTGCTTCATGTATCT GGTTTCCATCCCGGGCAACTGCACAATTCTTTTTATCATTAAAACAGAGCGCTCACTTCAT GAACCTATGTATCTCTTCCTGTCCATGCTGGCTCTGATTGACCTGGGTCTCTCCCTTTGCAC TCTCCCTACAGTCCTGGGCATCTTTTGGGTTGGAGCACGAGAAATTAGCCATGATGCCTGC TTTGCTCAGCTCTTTTTCATTCACTGCTTCTCCTTCCTCGAGTCCTCTGTGCTACTGTCTATG GCCTTTGACCGCTTTGTGGCTATCTGCCACCCCTTGCACTATGTTTCCATTCTCACCAACAC AGTCATTGGCAGGATTGGCCTGGTCTCTCTGGGTCGTAGTGTAGCACTCATTTTTCCATTA CCTTTTATGCTCAAAAGATTCCCCTATTGTGGCTCCCCAGTTCTCTCACATTCTTATTGTCT CCACCAAGAAGTGATGAAATTGGCCTGTGCCGACATGAAGGCCAACAGCATCTACGGCAT GTTTGTCATCGTCTCTACAGTGGGTATAGACTCACTGCTCATCCTCTTCTCTTATGCTCTGA TCCTGCGCACCGTGCTGTCCATCGCCTCCAGGGCTGAGAGATTCAAGGCCCTTAACACCTG TGTTTCCCACATCTGTGCTGTGCTGCTCTTCTACACTCCCATGATTGGCCTCTCTGTCATCC ATCGCTTTGGAAAGCAGGCACCCCACCTGGTCCAGGTGGTCATGGGTTTCATGTATCTTCT CTTTCCTCCTGTGATGAATCCCATTGTCTACAGTGTGAAGACCAAACAGATCCGGGATCGA GTGACGCATGCCTTTTGTTACTAA (SEQ ID NO: 336)
AOLFR183 sequences:
MTNLNASQANHRNFILTGIPGTPDKNPWLAFPLGFLYTLTLLGNGTILAVIKVEPSLHEPTYYFL SILALTDVSLSMSTLPSMLSIYWFNAPQIVFDACIMQMFFIHVFGIVESGVLVSMAFDRFVAIRN PLHYVSILTHDVIRKTGISVLTRAVCWFPVPFLIKCLPFCHSNVLSHSYCLHQNMMRLACASTR INSLYGLIWIFTLGLDVLLTLLSYVLTLKTVLGIVSRGERLKTLSTCLSHMSTVLLFYVPFMGA ASMIHRFWEHLSPVVHMVMADIYLLLPPVLNPIVYSVKTKQI (SEQ ID NO: 337)
ATGACGAACTTGAATGCATCACAGGCCAACCACCGTAACTTCATTCTGACAGGTATCCCAG GAACGCCAGACAAGAACCCATGGTTGGCCTTTCCCCTGGGATTTCTCTACACACTCACACT CCTGGGAAATGGTACCATCCTAGCTGTCATCAAGGTGGAGCCAAGTCTCCATGAGCCCACG TATTACTTCCTTTCTATCTTGGCTCTCACTGACGTTAGTCTCTCCATGTCCACCTTGCCCTCC ATGCTCAGCATCTACTGGTTTAATGCCCCTCAGATTGTTTTTGATGCATGCATCATGCAGAT GTTCTTCATCCATGTATTTGGAATAGTAGAATCAGGAGTCCTAGTGTCCATGGCCTTTGAC AGATTTGTGGCCATCCGAAACCCATTACACTATGTTTCCATCCTCACTCACGATGTTATTCG AAAGACTGGAATATCTGTCCTCACCCGGGCAGTCTGTGTGGTATTCCCTGTGCCCTTCCTT ATAAAGTGCCTACCCTTCTGCCATTCCAATGTCTTGTCTCATTCATACTGTCTTCACCAAAA CATGATGCGGCTAGCTTGTGCCAGCACCCGCATCAACAGCCTCTACGGCCTCATCGTCGTC ATCTTCACACTGGGGCTCGATGTTCTCCTCACTCTACTGTCTTATGTACTCACCCTGAAGAC TGTGCTGGGCATTGTCTCCAGAGGTGAAAGGCTGAAAACCCTCAGCACATGCCTCTCTCAC ATGTCTACCGTGCTCCTCTTCTATGTTCCTTTTATGGGTGCTGCCTCCATGATCCACAGATT TTGGGAGCATTTATCACCAGTAGTGCACATGGTCATGGCTGATATATACCTACTGCTCCCG CCTGTGCTAAACCCCATTGTCTACAGTGTGAAGACCAAGCAAATTTGA (SEQ ID NO: 338)
AOLFR184 sequences:
MSTLPTQLA NSSTS-MAPTFLLVGMPGLSGAPSWWTLPLIAVYLLSALGNGTILWIIALQPALHR PMHFFLFLLSVSDIGLVTALMPTLLGIALAGAHTVPASACLLQMVFIHVFSVMESSVLLAMSID RALAICRPLHYPALLTNGVISKISLAISFRCLGLHLPLPFLLAYMPYCLPQVLTHSYCLHPDVARL ACPEAWGAAYSLFWLSAMGLDPLLIFFSYGLIGKVLQGVESREDRWKAGQTCAAHLSAVLLF YIPMILLALINHPELPITQHTHTLLSYVHFLLPPLINPILYSVKMKEIRKRILNRLQPRKVGGAQ (SEQ ID NO: 339)
ATGTCAACATTACCAACTCAGATAGCCCCCAATAGCAGCACTTCAATGGCCCCCACCTTCT TGCTGGTGGGCATGCCAGGCCTATCAGGTGCACCCTCCTGGTGGACATTGCCCCTCATTGC TGTCTACCTTCTCTCTGCACTGGGAAATGGCACCATCCTCTGGATCATTGCCCTGCAGCCC GCCCTGCACCGCCCAATGCACTTCTTCCTCTTCTTGCTTAGTGTGTCTGATATTGGATTGGT CACTGCCCTGATGCCCACACTGCTGGGCATCGCCCTTGCTGGTGCTCACACTGTCCCTGCC TCAGCCTGCCTTCTACAGATGGTTTTTATCCATGTCTTTTCTGTCATGGAGTCCTCTGTCTT GCTCGCCATGTCCATTGATCGGGCACTGGCCATCTGCCGACCTCTCCACTACCCAGCGCTC CTCACCAATGGTGTAATTAGCAAAATCAGCCTGGCCATTTCTTTTCGATGCCTGGGTCTCC ATCTGCCCCTGCCATTCCTGCTGGCCTACATGCCCTACTGCCTCCCACAGGTCCTAACCCAT TCTTATTGCTTGCATCCAGATGTGGCTCGTTTGGCCTGCCCAGAAGCTTGGGGTGCAGCCT ACAGCCTATTTGTGGTTCTTTCAGCCATGGGTTTGGACCCCCTGCTTATTTTCTTCTCCTAT GGCCTGATTGGCAAGGTGTTGCAAGGTGTGGAGTCCAGAGAGGATCGCTGGAAGGCTGGT CAAACCTGTGCTGCCCACCTCTCTGCAGTGCTCCTCTTCTATATCCCTATGATCCTCCTGGC ACTGATTAACCATCCTGAGCTGCCAATCACTCAGCATACCCATACTCTTCTATCCTATGTCC ATTTCCTTCTTCCTCCATTGATAAACCCTATTCTCTATAGTGTCAAGATGAAGGAGATTAGA AAGAGAATACTCAACAGGTTGCAGCCCAGGAAGGTGGGTGGTGCTCAGTGA (SEQ ID NO: 340)
AOLFR185 sequences:
MFYPILNDISTKNNSNIMSCCNILFIKTVEIILVYNQTQSPWYPIVPSKSLVYNNNTCFDCYHLQR VDCVPSRDHINQSMVLASGNSSSHPVSFILLGIPGLESFQLWIAFPFCATYAVAVVGNITLLHVIR IDHTLHEPMYLFLAMLAITDLVLSSSTQPKMLAIFWFHAHEIQYHACLIQVFFIHAFSSVESGVL MAMALDCYVATCFPLRHSSILTPSVVIKLGTIVMLRGLLWVSPFCFMVSRMPFCQHQAIPQSYC EHMAVLKLVCADTSISRGYGLFVAFSVAGFDMIVIGMSYVMILRAVLQLPSGEARLKAFSTRA SHICVILALYIPALFSFLTYRFGHDVPRVVHILFANLYLLIPPMLNPIIYGVRTKQIGDRVIQGCCG NIP (SEQ ID NO: 341)
ATGTTCTACCCCATTTTGAATGACATAAGTACGAAAAACAACAGTAACATCATGTCATGTT GTAACATATTATTTATTAAAACAGTTGAAATTATTCTAGTTTATAATCAAACCCAATCACC CTGGTATCCAATAGTCCCATCCAAAAGCCTTGTATATAATAATAACACTTGTTTTGATTGTT ATCATCTGCAGAGAGTAGATTGCGTTCCCAGCAGAGACCATATTAACCAGTCCATGGTGCT GGCTTCAGGGAACAGCTCTTCTCATCCTGTGTCCTTCATCCTGCTTGGAATCCCAGGCCTG GAGAGTTTCCAGTTGTGGATTGCCTTTCCGTTCTGTGCCACGTATGCTGTGGCTGTTGTTGG AAATATCACTCTCCTCCATGTAATCAGAATTGACCACACCCTGCATGAGCCCATGTACCTC TTTCTGGCCATGCTGGCCATCACTGACCTGGTCCTCTCCTCCTCCACTCAACCTAAGATGTT GGCCATATTCTGGTTTCATGCTCATGAGATTCAGTACCATGCCTGCCTCATCCAGGTGTTCT TCATCCATGCCTTTTCTTCTGTGGAGTCTGGGGTGCTCATGGCTATGGCCCTGGACTGCTAC GTGGCTACCTGCTTCCCACTCCGACACTCTAGCATCCTGACCCCATCGGTCGTGATCAAAC TGGGGACCATCGTGATGCTGAGAGGGCTGCTGTGGGTGAGCCCCTTCTGCTTCATGGTGTC TAGGATGCCCTTCTGCCAACACCAAGCCATTCCCCAGTCATACTGTGAGCACATGGCTGTG CTGAAGTTGGTGTGTGCTGATACAAGCATAAGTCGTGGGTATGGGCTCTTTGTGGCCTTCT CTGTGGCTGGCTTTGATATGATTGTCATTGGTATGTCATACGTGATGATTTTGAGAGCTGT GCTTCAGTTGCCCTCAGGTGAAGCCCGCCTCAAAGCTTTTAGCACACGTGCCTCCCATATC TGTGTCATCTTGGCTCTTTATATCCCAGCCCTTTTTTCTTTCCTCACCTACCGCTTTGGCCAT GATGTGCCCCGAGTTGTACACATCCTGTTTGCTAATCTCTATCTACTGATACCTCCCATGCT CAACCCCATCATTTATGGAGTTAGAACCAAACAGATCGGGGACAGGGTTATCCAAGGATG TTGTGGAAACATCCCCTGA (SEQ ID NO: 342)
AOLFR186 sequences:
MSNASLVTAFILTGLPHAPGLDALLFGIFLVVYVLTVLGNLLILLVIRVDSHLHTPMYYFLTNLS FIDMWFSTVTVPKMLMTLVSPSGRAISFHSCVAQLYFFHFLGSTECFLYTVMSYDRYLAISYPL RYTSMMSGSRCALLATGTWLSGSLHSAVQTILTFHLPYCGPNQIQHYFCDAPPILKLACADTSA NVMVIFVDIGIVASGCFVLIVLSYVSIVCSILRIRTSDGRRRAFQTCASHCIVVLCFFVPCVVIYLR PGSMDAMDGVVAIFYTVLTPLLNPVVYTLRNKΕVKXAVLKLRDKVAHPQRK (SEQ ID NO: 343)
ATGTCCAACGCCAGCCTCGTGACAGCATTCATCCTCACAGGCCTTCCCCATGCCCCAGGGC TGGACGCCCTCCTCTTTGGAATCTTCCTGGTGGTTTACGTGCTCACTGTGCTGGGGAACCT CCTCATCCTGCTGGTGATCAGGGTGGATTCTCACCTCCACACCCCCATGTACTACTTCCTCA CCAACCTGTCCTTCATTGACATGTGGTTCTCCACTGTCACGGTGCCCAAAATGCTGATGAC CTTGGTGTCCCCAAGCGGCAGGGCTATCTCCTTCCACAGCTGCGTGGCTCAGCTCTATTTTT TCCACTTCCTGGGGAGCACCGAGTGTTTCCTCTACACAGTCATGTCCTATGATCGCTACTTG GCCATCAGTTACCCGCTCAGGTACACCAGCATGATGAGTGGGAGCAGGTGTGCCCTCCTGG CCACCGGCACTTGGCTCAGTGGCTCTCTGCACTCTGCTGTCCAGACCATATTGACTTTCCAT TTGCCCTACTGTGGACCCAACCAGATCCAGCACTACTTCTGTGACGCACCGCCCATCCTGA AACTGGCCTGTGCAGACACCTCAGCCAACGTGATGGTCATCTTTGTGGACATTGGGATAGT GGCCTCAGGCTGCTTTGTCCTGATAGTGCTGTCCTATGTGTCCATCGTCTGTTCCATCCTGC GGATCCGCACCTCAGATGGGAGGCGCAGAGCCTTTCAGACCTGTGCCTCCCACTGTATTGT GGTCCTTTGCTTCTTTGTTCCCTGTGTTGTCATTTATCTGAGGCCAGGCTCCATGGATGCCA TGGATGGAGTTGTGGCCATTTTCTACACTGTGCTGACGCCCCTTCTCAACCCTGTTGTGTAC ACCCTGAGAAACAAGGAGGTGAAGAAAGCTGTGTTGAAACTTAGAGACAAAGTAGCACAT CCTCAGAGGAAATAA (SEQ ID NO: 344)
AOLFR187 sequences:
MAQVRALHKIMALFSANSIGAMNNSDTRIAGCFLTGIPGLEQLHIWLSIPFCIMYIAALEGNGILI CVILSQAILHEPMYIFLSMLASADVLLSTTTMPKALANLWLGYSHISFDGCLTQKFFIHFLFIHSA VLLAMAFDRYVAICSPLRYVTILTSKVIGKIVTATLSRSFIIMFPSIFLLEHLHYCQINIIAHTFCEH MGIAHLSCSDISINVWYGLAAALLSTGLDIMLITVSYIHILQAVFRLLSQDARSKALSTCGSHICV ILLF YVP ALFS VFAYRFGGRSIPC YVHILLASLY VVTPPMLNP VI YGVRTKPILEGAKQMFSNLAK GSK (SEQ ID NO: 345)
ATGGCACAGGTGAGGGCGCTGCATAAAATCATGGCCCTTTTTTCTGCTAACAGCATAGGTG CTATGAACAACTCTGACACTCGCATAGCAGGCTGCTTCCTCACTGGCATCCCTGGGCTGGA GCAACTACATATCTGGCTGTCCATCCCCTTCTGCATCATGTACATCGCTGCCCTGGAAGGC AATGGCATCCTAATTTGTGTCATCCTCTCCCAGGCAATCCTGCATGAGCCCATGTACATAT TCTTATCTATGCTGGCCAGTGCTGATGTCTTGCTCTCTACCACCACCATGCCTAAGGCCCTG GCCAATTTGTGGCTAGGTTATAGCCACATTTCCTTTGATGGCTGCCTCACTCAAAAGTTCTT CATTCACTTCCTCTTCATTCACTCTGCTGTCCTGCTGGCCATGGCCTTTGACCGCTATGTGG CCATCTGCTCCCCCCTGCGATATGTCACAATCCTCACAAGCAAGGTCATTGGGAAGATCGT CACTGCCACCCTGAGCCGCAGCTTCATCATTATGTTTCCATCCATCTTTCTCCTTGAGCACC TGCACTATTGCCAGATCAACATCATTGCACACACATTTTGTGAGCACATGGGCATTGCCCA TCTGTCCTGTTCTGATATCTCCATCAATGTCTGGTATGGGTTGGCAGCTGCTCTTCTCTCCA CAGGCCTGGACATCATGCTTATTACTGTTTCCTACATCCACATCCTCCAAGCAGTCTTCCGC CTCCTTTCTCAAGATGCCCGCTCCAAGGCCCTGAGTACCTGTGGATCCCATATCTGTGTCAT CCTACTCTTCTATGTCCCTGCCCTTTTTTCTGTCTTTGCCTACAGGTTTGGTGGGAGAAGCA TCCCATGCTATGTCCATATTCTCCTGGCCAGCCTCTACGTTGTCATTCCTCCTATGCTCAAT CCCGTTATTTATGGAGTGAGGACTAAGCCAATACTGGAAGGGGCTAAGCAGATGTTTTCA AATCTTGCCAAAGGATCTAAATAA (SEQ ID NO: 346) AOLFR188 sequences:
MFPSLCPCVLLVQLPLMNENMQCFVFCSCDSLLRMMVSRFIHWFVKMKRIIVGGYSKHFFSN ELLCVRPWSGKTWSπ-HfflFDMELLTNNLKFITDPFVCRLRHLSPTPSEEHMK-N-IΩ^ GLTQNPEGQKVLFVTFLLIYMVTIMGNLLIIVTIMASQSLGSPMYFFLASLSFIDTVYSTAFAPK MIVDLLSEKKTISFQGCMAQLFMDHLFAGAEVILLWMAYDRYMAICKPLHELITMNRRVCVL MLLAAWIGGFLHSLVQFLFIYQLPFCGPNVIDNFLCDLYPLLKLACTNTYVTGLSMIANGGAIC AVTFFTILLSYGVILHSLKTQSLEGK-RKAFYTCASHVTWILFFVPCIFLYARPNSTFPIDKSMTV VLTFITPMLNPLIYTLKNAEMKSAMRKLWSKKVSLAGKWLYHS (SEQ ID NO: 347)
ATGTTCCCCTCCCTGTGTCCATGTGTTCTCCTTGTTCAACTCCCACTTATGAATGAGAACAT GCAGTGTTTTGTTTTCTGTTCTTGTGATAGTTTGCTGAGAATGATGGTTTCCCGCTTCATCC ATGTCCCATTTGTAAAAATGAAAAGGATAATTGTGGGAGGATATTCTAAACACTTCTTTTC TAATGAGCTGCTCTGTGTGAGGCCCTGGTCAGGGAAAACGTGGTCGATAAGGCATCACAT TTTTGACATGGAGCTTCTGACAAATAATCTCAAATTTATCACTGACCCTTTTGTTTGTAGGC TCCGACACCTGAGTCCAACACCTTCAGAAGAACACATGAAAAATAAGAACAATGTGACTG AATTTATCCTCTTAGGGCTCACACAGAACCCTGAGGGGCAAAAGGTTTTATTTGTCACATT CTTACTAATCTACATGGTGACGATAATGGGCAACCTGCTTATCATAGTGACCATCATGGCC AGCCAGTCCCTGGGTTCCCCCATGTACTTTTTTCTGGCTTCTTTATCATTCATAGATACCGT CTATTCTACTGCATTTGCTCCCAAAATGATTGTTGACTTGCTCTCTGAGAAAAAGACCATTT CCTTTCAGGGTTGTATGGCTCAACTTTTTATGGATCATTTATTTGCTGGTGCTGAAGTCATT CTTCTGGTGGTAATGGCCTATGATCGATACATGGCCATCTGTAAGCCTCTTCATGAATTGA TCACCATGAATCGTCGAGTCTGTGTTCTTATGCTGTTGGCGGCCTGGATTGGAGGCTTTCT TCACTCATTGGTTCAATTTCTCTTTATTTATCAGCTCCCTTTCTGTGGACCCAATGTCATTG ACAACTTCCTGTGTGATTTGTATCCCTTATTGAAACTTGCTTGCACCAATACCTATGTCACT GGGCTTTCTATGATAGCTAATGGAGGAGCGATTTGTGCTGTCACCTTCTTCACTATCCTGC TTTCCTATGGGGTCATATTACACTCTCTTAAGACTCAGAGTTTGGAAGGGAAACGAAAAGC TTTCTACACCTGTGCATCCCACGTCACTGTGGTCATTTTATTCTTTGTCCCCTGTATCTTCTT GTATGCAAGGCCCAATTCTACTTTTCCCATTGATAAATCCATGACTGTAGTTCTAACTTTTA TAACTCCCATGCTGAACCCACTAATCTATACCCTGAAGAATGCAGAAATGAAAAGTGCCAT GAGGAAACTTTGGAGTAAAAAAGTAAGCTTAGCTGGGAAATGGCTGTATCACTCATGA (SEQ ID NO: 348)
AOLFR189 sequences:
MQQNNSVPEFILLGLTQDPLRQKIVFVIFLIFYMGTWGNMLIIVTIKSSRTLGSPMYFFLFYLSF ADSCFSTSTAPRLIVDALSEKKIITYNECMTQVFALHLFGCMEIFVLILMAVDRYVAICKPLRYP TIMSQQVCIILIVLAWIGSLIHSTAQIILALRLPFCGPYLIDHYCCDLQPLLKLACMDTYMINLLL VSNSGAICSSSFMILIISYIVILHSLR-NHSAKGKKKALSACTSHIIVVILFFGPCIFIYTRPPTTFPMD KMVAVFYTIGTPFLNPLIYTSEECRSEKCHEK (SEQ ID NO: 349)
ATGCAGCAAAATAACAGTGTGCCTGAATTCATACTGTTAGGATTAACACAGGATCCCTTGA GGCAGAAAATAGTGTTTGTAATCTTCTTAATTTTCTATATGGGAACTGTGGTGGGGAATAT GCTCATTATTGTGACCATCAAGTCCAGCCGGACACTAGGAAGCCCCATGTACTTCTTTCTA TTTTATTTGTCCTTTGCAGATTCTTGCTTTTCAACTTCCACAGCCCCTAGATTAATTGTGGA TGCTCTCTCTGAAAAGAAAATTATAACCTACAATGAGTGCATGACACAAGTCTTTGCACTA CATTTATTTGGCTGCATGGAGATCTTTGTCCTCATTCTCATGGCTGTTGATCGCTATGTGGC CATCTGTAAGCCCTTGCGTTACCCAACCATCATGAGCCAGCAGGTCTGCATCATCCTGATT GTTCTTGCCTGGATAGGGTCTTTAATACACTCTACAGCTCAGATTATCCTGGCCTTAAGATT GCCTTTCTGTGGACCCTATTTGATTGATCATTATTGCTGTGATTTGCAGCCCTTGTTGAAAC TTGCCTGCATGGACACTTACATGATCAACCTGCTGTTGGTGTCTAACAGTGGGGCAATTTG CTCAAGTAGTTTCATGATTTTGATAATTTCATATATTGTCATCTTGCATTCACTGAGAAACC ACAGTGCCAAAGGGAAGAAAAAGGCTCTCTCCGCTTGCACGTCTCACATAATTGTAGTCAT CTTATTCTTTGGCCCATGTATATTCATATATACACGCCCCCCGACCACTTTCCCCATGGACA AGATGGTGGCAGTATTTTATACTATTGGAACACCCTTTCTCAATCCACTCATCTACACATCT GAGGAATGCAGAAGTGAAAAATGCCATGAGAAAG (SEQ ID NO: 350) AOLFR190 sequences:
MQRSNHTVTEFILLGFTTDPGMQLGLFWFLGVYCLTWGSSTLIVLICNDSRLHTPMYFVIGN LSFLDL YSSVHTPKILVTCISEDKSISFAGCLCQFFSARLAYSECYLLAAMAYDHYVAISKPLL YAQTMPRRLCICLVLYSYTGGFVNAIILTSNTFTLDFCGDNVIDDFFCDVPPLVKLACSVRESYQ AVLHFLLASNVISPTVLILASYLSIITTILRIHSTQGRIKVFSTCSSHLISVTLYYGSILYNYSRPSSS YSLKi KMVSTFYTMLFPMLNPMIYSLRSKDMKDALKKFFKSA (SEQ ID NO: 351)
ATGCAGAGGAGCAATCACACAGTGACTGAGTTCATCCTGCTGGGCTTCACCACAGATCCAG GGATGCAACTGGGCCTCTTTGTGGTGTTCCTGGGTGTGTACTGTCTGACTGTGGTAGGAAG TAGCACCCTCATCGTGTTGATCTGTAATGACTCCCGCCTACACACACCCATGTATTTTGTCA TTGGAAATCTGTCATTTCTGGATCTCTGGTATTCTTCTGTCCACACCCCAAAGATCCTAGTG ACCTGCATCTCTGAAGACAAAAGCATCTCCTTTGCTGGCTGCCTGTGTCAGTTCTTCTCTGC CAGGCTGGCCTATAGTGAGTGCTACCTACTGGCTGCCATGGCTTATGACCACTACGTGGCC ATCTCCAAGCCCCTGCTTTATGCTCAGACCATGCCAAGGAGATTGTGCATCTGTTTGGTTTT ATATTCCTATACTGGGGGTTTTGTCAATGCAATAATATTAACCAGCAACACATTCACATTG GATTTTTGTGGTGACAATGTCATTGATGACTTTTTCTGTGATGTTCCACCCCTCGTGAAGCT GGCATGCAGTGTGAGAGAGAGCTACCAGGCTGTGCTGCACTTCCTTCTGGCCTCCAATGTC ATCTCCCCTACTGTGCTCATCCTTGCCTCTTACCTCTCCATCATCACCACCATCCTGAGGAT CCACTCTACCCAGGGCCGCATCAAAGTCTTCTCCACATGCTCCTCCCACCTGATCTCCGTTA CCTTATACTATGGCTCCATTCTCTACAACTACTCCCGGCCAAGTTCCAGCTACTCCCTCAAG AGGGACAAAATGGTTTCTACCTTTTATACTATGCTGTTCCCCATGTTGAATCCCATGATCTA CAGTCTGAGGAGTAAAGACATGAAAGACGCTCTGAAAAAATTCTTCAAGTCAGCATAA (SEQ ID NO: 352)
AOLFR191 sequences:
MTGGGNITEITYFILLGFSDFPRIIKVLFTIFLVIYITSLAWNLSLIVLIRMDSHLHTPMYFFLSNLS FIDVCYISSTVPKMLSNLLQEQQTITFVGCIIQYFIFSTMGLSESCLMTAMAYDRYAAICNPLLYS SIMSPTLCV MVLGAYMTGLTASLFQIGALLQLHFCGSNVIRHFFCDMPQLLILSCTDTFFVQV MTAILTMFFGIASALVIMISYGYIGISIMKITSAKGSPKAFNTCASHLTAVSLFYTSGIFVYLRSSS GGSSSFDRFASVFYTWIPMLNPLIYSLR EIKDALKRLQKRKCC (SEQ ID NO: 353)
ATGACTGGGGGAGGAAATATTACAGAAATCACCTATTTCATCCTGCTGGGATTCTCAGATT TTCCCAGGATCATAAAAGTGCTCTTCACTATATTCCTGGTGATCTACATTACATCTCTGGCC TGGAACCTCTCCCTCATTGTTTTAATAAGGATGGATTCCCACCTCCATACACCCATGTATTT CTTCCTCAGTAACCTGTCCTTCATAGATGTCTGCTATATCAGCTCCACAGTCCCCAAGATGC TCTCCAACCTCTTACAGGAACAGCAAACTATCACTTTTGTTGGTTGTATTATTCAGTACTTT ATCTTTTCAACGATGGGACTGAGTGAGTCTTGTCTCATGACAGCCATGGCTTATGATCGTT ATGCTGCCATTTGTAACCCCCTGCTCTATTCATCCATCATGTCACCCACCCTCTGTGTTTGG ATGGTACTGGGAGCCTACATGACTGGCCTCACTGCTTCTTTATTCCAAATTGGTGCTTTGCT TCAACTCCACTTCTGTGGGTCTAATGTCATCAGACATTTCTTCTGTGACATGCCCCAACTGT TAATCTTGTCCTGTACTGACACTTTCTTTGTACAGGTCATGACTGCTATATTAACCATGTTC TTTGGGATAGCAAGTGCCCTAGTTATCATGATATCCTATGGCTATATTGGCATCTCCATCA TGAAGATCACTTCAGCTAAAGGCAGTCCAAAGGCATTCAACACCTGTGCTTCTCATCTAAC AGCTGTTTCCCTCTTCTATACATCAGGAATCTTTGTCTATTTGAGGTCCAGCTCTGGAGGTT CTTCAAGCTTTGACAGATTTGCATCTGTTTTCTACACTGTGGTCATTCCCATGTTAAATCCC TTGATTTACAGTTTGAGGAACAAAGAAATTAAAGATGCCTTAAAGAGGTTGCAAAAGAGA AAGTGCTGCTGA (SEQ ID NO: 354)
AOLFR192 sequences:
MENNTEVTEFILVGLTDDPELQIPLFIVFLFIYLITLVGNLGMIELILLDSCLHTPMYFFLSNLSLV DFGYSSAVTPKVMVGFLTGDKFILYNACATQFFFFVAFITAESFLLASMAYDRYAALCKPLHY TTTMTTNVCACLAIGSYICGFLNASIHTGNTFRLSFCRSNWEHFFCDAPPLLTLSCSDNYISEM VIFFWGFNDLFSILVILISYLFIFITIMKMRSPEGRQKAFSTCASHLTAVSIFYGTGIFMYLRPNSS HFMGTDK ASVFYAIVIPMLNPLVYSLRNKEVKSAFKKTVGKAKASIGFIF (SEQ ID NO: 355)
ATGGAGAACAACACAGAGGTGACTGAATTCATCCTTGTGGGGTTAACTGATGACCCAGAA CTGCAGATCCCACTCTTCATAGTCTTCCTTTTCATCTACCTCATCACTCTGGTTGGGAACCT GGGGATGATTGAATTGATTCTACTGGACTCCTGTCTCCACACCCCCATGTACTTCTTCCTCA GTAACCTCTCCCTGGTGGACTTTGGTTATTCCTCAGCTGTCACTCCCAAGGTGATGGTGGG GTTTCTCACAGGAGACAAATTCATATTATATAATGCTTGTGCCACACAATTCTTCTTCTTTG TAGCCTTTATCACTGCAGAAAGTTTCCTCCTGGCATCAATGGCCTATGACCGCTATGCAGC ATTGTGTAAACCCCTGCATTACACCACCACCATGACAACAAATGTATGTGCTTGCCTGGCC ATAGGCTCCTACATCTGTGGTTTCCTGAATGCATCCATTCATACTGGGAACACTTTCAGGC TCTCCTTCTGTAGATCCAATGTAGTTGAACACTTTTTCTGTGATGCTCCTCCTCTCTTGACT CTCTCATGTTCAGACAACTACATCAGTGAGATGGTTATTTTTTTTGTGGTGGGATTCAATG ACCTCTTTTCTATCCTGGTAATCTTGATCTCCTACTTATTTATATTTATCACCATCATGAAG ATGCGCTCACCTGAAGGACGCCAGAAGGCCTTTTCTACTTGTGCTTCCCACCTTACTGCAG TTTCCATCTTTTATGGGACAGGAATCTTTATGTACTTACGACCTAACTCCAGCCATTTCATG GGCACAGACAAAATGGCATCTGTGTTCTATGCCATAGTCATTCCCATGTTGAATCCACTGG TCTACAGCCTGAGGAACAAAGAGGTTAAGAGTGCCTTTAAAAAGACTGTAGGGAAGGCAA AGGCCTCTATAGGATTCATATTTTAA (SEQ ID NO: 356)
AOLFR193 sequences: MENKTEVTQFILLGLTNDSELQVPLFITFPFIYIITLVGNLGIIVLIFWDSCLHNPMYFFLSNLSLV DFCYSSAVTPIVMAGFLIEDKVISYNACAAQMYIFVAFATVENYLLASMAYDRYAAVCKPLHY TTTMTTTVCARLAIGSYLCGFLNASIHTGDTFSLSFCKSNEVHHFFCDIPAVMVLSCSDRHISEL VLIYVVSFNIFIALLVILISYTFIFITILKMHSASVYQKPLSTCASHFIAVGIFYGTIIFMYLQPSSSH SMDTDKMAPVFYTMVIPMLNPLVYSLRNKEVKSAFKKVVEKAKLSVGWSV (SEQ ID NO: 357) ATGGAAAATAAGACAGAAGTAACACAATTCATTCTTCTAGGACTAACCAATGACTCAGAA CTGCAGGTTCCCCTCTTTATAACGTTCCCCTTCATCTATATTATCACTCTGGTTGGAAACCT GGGAATTATTGTATTGATATTCTGGGATTCCTGTCTCCACAATCCCATGTACTTTTTTCTCA GTAACTTGTCTCTAGTGGACTTTTGCTACTCTTCAGCTGTCACTCCCATCGTCATGGCTGGA TTCCTTATAGAAGACAAGGTCATCTCTTACAATGCATGTGCTGCTCAAATGTATATCTTTGT AGCTTTTGCCACTGTGGAAAATTACCTCTTGGCCTCAATGGCCTATGACCGCTATGCAGCA GTGTGCAAACCCCTACATTACACCACAACCATGACAACAACTGTGTGTGCTCGTCTGGCCA TAGGCTCCTACCTCTGTGGTTTCCTGAATGCCTCCATCCACACTGGGGACACATTTAGTCTC TCTTTCTGTAAGTCCAATGAAGTCCATCACTTTTTCTGTGATATTCCAGCAGTCATGGTTCT CTCTTGCTCTGATAGACATATTAGCGAGCTTGTTCTTATTTATGTTGTGAGCTTCAATATCT TTATAGCTCTCCTGGTTATCTTGATATCCTACACATTCATTTTTATCACCATCCTAAAGATG CACTCAGCTTCAGTATACCAGAAGCCTTTGTCCACCTGTGCCTCTCATTTCATTGCAGTCGG CATCTTCTATGGGACTATTATCTTCATGTACTTACAACCCAGCTCCAGTCACTCCATGGACA CAGACAAAATGGCACCTGTGTTCTATACAATGGTCATCCCCATGCTGAACCCTCTGGTCTA TAGTCTGAGGAACAAGGAAGTGAAGAGTGCATTCAAGAAAGTTGTTGAGAAGGCAAAATT GTCTGTAGGATGGTCAGTTTAA (SEQ ID NO: 358)
AOLFR194 sequences:
MERQNQSCVVEFILLGFSNYPELQGQLFVAFLVIYLVTLIGNAIIIVIVSLDQSLHVPMYLFLLNL SWDLSFSAVIMPEMLWLSTEKTTISFGGCFAQMYFILLFGGAECFLLGAMAYDRFAAICHPL NYQMIMNKGVFMKLIIFSWALGFMLGTVQTSWVSSFPFCGLNEINHISCETPAVLELACADTFL FEΓYAFTGTFLΠLVPFLLILLSYIRVLFAILKMPSTTGRQKAFSTCAAHLTSVTLFYGTASMTYLQ PKSGYSPETKKVMSLSYSLLTPLLNLLIYSLRNSEMKRALMKLWRRRWLHTI (SEQ ID NO:
359)
ATGGAAAGACAAAATCAAAGCTGTGTGGTTGAATTCATCCTCTTGGGCTTTTCTAACTATC CTGAGCTCCAGGGGCAGCTCTTTGTGGCTTTCCTGGTTATTTATCTGGTGACCCTGATAGG AAATGCCATTATTATAGTCATCGTCTCCCTAGACCAGAGCCTCCACGTTCCCATGTACCTGT TTCTCCTGAACTTATCTGTGGTGGACCTGAGTTTCAGTGCAGTTATTATGCCTGAAATGCT GGTGGTCCTCTCTACTGAAAAAACTACAATTTCTTTTGGGGGCTGTTTTGCACAGATGTAT TTCATCCTTCTTTTTGGTGGGGCTGAATGTTTTCTTCTGGGAGCAATGGCTTATGACCGATT TGCTGCAATTTGCCATCCTCTCAACTACCAAATGATTATGAATAAAGGAGTTTTTATGAAA TTAATTATATTTTCATGGGCCTTAGGTTTTATGTTAGGTACTGTTCAAACATCATGGGTATC TAGTTTTCCCTTTTGTGGCCTTAATGAAATTAACCATATATCTTGTGAAACCCCAGCAGTGT TAGAACTTGCATGTGCAGACACGTTTTTGTTTGAAATCTATGCATTCACAGGCACCTTTTTG ATTATTTTGGTTCCTTTCTTGTTGATACTCTTGTCTTACATTCGAGTTCTGTTTGCCATCCTG AAGATGCCATCAACCACTGGGAGACAAAAGGCCTTTTCCACCTGTGCCGCTCACCTCACAT CTGTGACCCTATTCTATGGCACAGCCAGTATGACTTATTTACAACCCAAATCTGGCTACTC ACCGGAAACCAAGAAAGTGATGTCATTGTCTTACTCACTTCTGACACCACTGCTGAATCTG CTTATCTACAGTTTGCGAAATAGTGAGATGAAGAGGGCTTTGATGAAATTATGGCGAAGG CGAGTGGTTTTACACACAATCTGA (SEQ ID NO: 360)
AOLFR195 sequences:
MIVQLICTVCFLAVNTFHVRSSFDFLKADDMGEINQTLVSEFLLLGLSGYPKIEIVYFALILVMY LVILIGNGVLIIASIFDSHFHTPMYFFLGNLSFLDICYTSSSVPSTLVSLISKKRNISFSGCAVQMFF GFAMGSTECLLLGMMAFDRYVAICNPLRYPIILSKVAYVLMASVSWLSGGINSAVQTLLAMRL PFCGNNIINHFACEILAVLKLACADISLNIITMVISNMAFLVLPLMVIFFSYMFILYTILQMNSATG RRKAFSTCSAHLTVVIIFYGTIFFMYAKPKSQDLIGEEKLQALDKLISLFYGVVTPMLNPILYSLR NKDVKAAVKYLLNKKPIH (SEQ ID NO: 361)
ATGATTGTTCAGTTAATTTGTACTGTTTGTTTCTTGGCAGTAAATACATTTCATGTTAGATC TTCTTTTGATTTCCTGAAAGCAGATGACATGGGTGAGATTAACCAGACACTTGTGTCAGAA TTTCTTCTTCTGGGTCTTTCTGGATACCCAAAGATTGAGATTGTTTACTTTGCTCTCATTCT AGTTATGTACCTAGTGATTCTAATTGGCAATGGTGTTCTAATCATAGCCAGCATCTTTGATT CTCATTTTCACACACCAATGTACTTCTTCCTGGGCAACCTCTCTTTCCTGGATATCTGCTAT ACATCCTCCTCTGTTCCCTCAACATTGGTGAGCTTAATCTCAAAGAAAAGAAACATTTCCT TCTCTGGATGTGCAGTGCAGATGTTCTTTGGGTTTGCAATGGGGTCAACAGAATGTCTGCT TCTTGGCATGATGGCATTTGATCGTTATGTGGCCATCTGCAACCCACTGAGATACCCCATC ATCCTGAGCAAGGTGGCGTATGTATTGATGGCTTCTGTGTCCTGGCTGTCCGGTGGAATAA ATTCAGCTGTGCAAACATTACTTGCCATGAGACTGCCTTTCTGTGGGAATAATATTATCAA TCATTTCGCATGTGAAATATTAGCTGTCCTCAAGCTGGCCTGTGCTGATATATCCCTCAATA TTATCACCATGGTGATATCAAATATGGCCTTCCTGGTTCTTCCACTGATGGTCATTTTTTTC TCCTATATGTTCATCCTCTACACCATCTTGCAAATGAATTCAGCCACAGGAAGACGCAAGG CATTTTCCACGTGCTCAGCTCACCTGACTGTGGTGATCATATTTTACGGTACCATCTTCTTT ATGTATGCGAAACCGAAGTCTCAAGACCTGATTGGGGAAGAAAAATTGCAAGCATTAGAC AAGCTCATTTCTCTGTTTTATGGGGTAGTGACACCCATGCTGAATCCTATACTCTATAGCTT GAGAAATAAGGATGTAAAAGCTGCTGTAAAATATTTGCTGAACAAAAAACCAATTCACTA A (SEQ ID NO: 362)
AOLFR196 sequences: MLESNYTMPTEFLFVGFTDYLPLRVTLFLVFLLVYTLTMVGNILLIILVNINSSLQIPMYYFLSNL SFLDISCSTAITPKMLANFLASRKSISPYGCALQMFFFASFADAECLILAAMAYDRYAAICNPLL YTTLMSRRVCVCFIVLAYFSGSTTSLVHVCLTFRLSFCGSNIVNHFFCDIPPLLALSCTDTQINQL LLFALCSFIQTSTFWIFISYFCILITVLSIKSSGGRSKTFSTCASHLIAVTLFYGALLFMYLQPTTS YSLDTDKVVA YTVWPMFNPIIYSFRNΈ VKN^ ID NO: 363)
ATGTTGGAGAGTAATTACACCATGCCAACTGAGTTCCTATTTGTTGGATTCACAGATTATC
TACCTCTCAGAGTCACACTGTTCTTGGTATTCCTTCTGGTATATACATTAACTATGGTCGGA
AATATACTCTTAATAATTCTAGTTAATATTAATTCAAGCCTTCAAATTCCCATGTATTATTT TCTTAGCAACTTATCTTTCTTAGACATCAGCTGTTCTACAGCAATCACTCCTAAAATGCTGG CAAACTTCTTGGCATCCAGGAAAAGCATCTCTCCTTATGGGTGTGCACTACAAATGTTTTT CTTCGCTTCTTTTGCTGATGCTGAGTGCCTTATCCTGGCAGCAATGGCTTATGACCGCTATG CAGCCATCTGCAACCCACTGCTCTATACTACACTGATGTCTAGGAGAGTCTGTGTCTGCTT CATTGTGTTGGCATATTTCAGTGGAAGTACAACATCACTGGTCCATGTGTGCCTCACATTC AGGCTGTCATTTTGTGGCTCCAATATCGTCAATCATTTTTTCTGTGATATCCCACCTCTTCT GGCTTTATCATGTACAGACACTCAGATCAACCAGCTTCTGCTCTTTGCTTTGTGCAGCTTCA TCCAGACCAGCACTTTTGTGGTAATATTTATTTCTTACTTCTGCATCCTCATCACTGTGTTG AGCATCAAGTCCTCAGGTGGCAGAAGCAAAACATTCTCCACTTGTGCTTCCCACCTCATAG CAGTCACCTTATTCTATGGAGCGCTCCTGTTTATGTACTTACAGCCCACCACTAGCTATTCC CTAGACACTGATAAGGTGGTGGCAGTGTTTTATACTGTTGTATTTCCCATGTTTAATCCAA TAATTTATAGTTTCAGAAACAAGGATGTGAAAAATGCTCTCAAAAAGCTATTAGAAAGAA TTGGATATTCAAATGAATGGTATTTAAATCGTTTAAGAATAGTCAATATCTAA (SEQ ID NO: 364)
AOLFR197 sequences:
MCYLSQLCLSLGEHTLHMGMVRHTNESNLAGFILLGFSDYPQLQKVLFVLILILYLLTILGNTTI ILVSRLEPKLHMPMYFFLSHLSFLYRCFTSSVIPQLLVNLWEPMKTIAYGGCLVΉLYNSHALGS TECVLLALMSCDRYVAVCRPLHYTVLMHIHLCMALASMAWLSGIATTLVQSTLTLQLPFCGH
RQVDHFICEVPVLIKLACVGTTFNEAELFVASILFLIVPVSFILVSSGYIAHAVLRIKSATRRQKAF GTCFSHLTWTIFYGTIIFMYLQPAKSRSRDQGKFVSLFYTWTRMLNPLIYTLRIKEVKGALKK VLAKALGVNIL (SEQ ID NO: 365)
ATGTGTTATCTTTCTCAGCTATGCCTCAGCCTTGGGGAACACACTTTACATATGGGGATGG TGAGACATACCAATGAGAGCAACCTAGCAGGTTTCATCCTTTTAGGGTTTTCTGATTATCC TCAGTTACAGAAGGTTCTATTTGTGCTCATATTGATTCTGTATTTACTAACTATTTTGGGGA ATACCACCATCATTCTGGTTTCTCGTCTGGAACCCAAGCTTCATATGCCGATGTATTTCTTC CTTTCTCATCTCTCCTTCCTGTACCGCTGCTTCACCAGCAGTGTTATTCCCCAGCTCCTGGT AAACCTGTGGGAACCCATGAAAACTATCGCCTATGGTGGCTGTTTGGTTCACCTTTACAAC TCCCATGCCCTGGGATCCACTGAGTGCGTCCTCTTGGCTCTGATGTCCTGTGACCGCTATGT GGCTGTCTGCCGTCCTCTCCATTACACTGTCTTAATGCATATCCATCTCTGCATGGCCTTGG CATCTATGGCATGGCTCAGTGGAATAGCCACCACCCTGGTACAGTCCACCCTCACCCTGCA GCTGCCCTTCTGTGGGCATCGCCAAGTGGATCATTTCATCTGCGAGGTCCCTGTGCTCATC AAGCTGGCTTGTGTGGGCACCACGTTTAACGAGGCTGAGCTTTTTGTGGCTAGTATCCTTT TCCTTATAGTGCCTGTCTCATTCATCCTGGTCTCCTCTGGCTACATTGCCCACGCAGTGTTG AGGATTAAGTCAGCTACCAGGAGACAGAAAGCATTCGGGACCTGCTTCTCCCACCTGACA GTGGTCACCATCTTTTATGGAACCATCATCTTCATGTATCTGCAGCCAGCCAAGAGTAGAT CCAGGGACCAGGGCAAGTTTGTTTCTCTCTTCTACACTGTGGTAACCCGCATGCTTAACCC TCTTATTTATACCTTGAGGATCAAGGAGGTGAAAGGGGCATTAAAGAAAGTTCTAGCAAA GGCTCTGGGAGTAAATATTTTATGA (SEQ ID NO: 366)
AOLFR198 sequences:
MENCTEVTKFILLGLTSVPELQIPLFILFTFIYLLTLCGNLGMMLLILMDSCLHTPMYFFLSNLSL VDFGYSSAVTPKVMAGFLRGDKVISYNACAVQMFFFVALATVENYLLASMAYDRYAAVCKP LHYTTTMTASVGACLALGSYVCGFLNASFHIGGIFSLSFCKSNLVHHFFCDVPAVMALSCSDKH TSEVILVFMSSFNIFFVLLVIFISYLFIFITILKMHSAKGHQKALSTCASHFTAVSVFYGTVIFIYLQ PSSSHSMDTDKMASVFYAMΠPMLNPVVYSLRNREVQNAFKKVLRRQKFL (SEQ ID NO: 367)
ATGGAGAATTGTACGGAAGTGACAAAGTTCATTCTTCTAGGACTAACCAGTGTCCCAGAAC
TACAGATCCCCCTCTTTATCTTGTTCACCTTCATCTACCTCCTCACTCTGTGTGGGAACCTG
GGGATGATGTTGCTGATCCTGATGGACTCTTGTCTCCACACCCCCATGTACTTTTTCCTCAG TAACCTGTCTCTGGTGGACTTTGGATACTCCTCAGCTGTCACTCCCAAGGTCATGGCTGGG TTCCTTAGAGGAGACAAGGTCATCTCCTACAATGCATGTGCTGTTCAGATGTTCTTCTTTGT AGCCTTGGCCACGGTGGAAAATTACTTGTTGGCCTCAATGGCCTATGACCGCTATGCAGCA GTGTGCAAACCCCTACACTACACCACCACCATGACGGCCAGTGTAGGTGCCTGTCTGGCCC TAGGCTCATATGTCTGTGGCTTCCTAAATGCCTCATTCCACATTGGGGGCATATTCAGTCTC TCTTTCTGTAAATCCAATCTGGTACATCACTTTTTCTGTGATGTTCCAGCAGTCATGGCTCT GTCTTGCTCTGATAAACACACTAGTGAGGTGATTCTGGTTTTTATGTCAAGCTTTAATATCT TTTTTGTTCTTCTAGTTATCTTTATCTCCTACTTGTTCATATTCATCACCATCTTGAAGATGC ATTCAGCTAAGGGACACCAAAAAGCATTGTCCACCTGTGCCTCTCACTTCACTGCAGTCTC CGTCTTCTATGGGACAGTAATCTTCATCTACTTGCAGCCCAGCTCCAGCCACTCCATGGAC ACAGACAAAATGGCATCTGTGTTCTATGCTATGATCATCCCCATGCTGAACCCTGTGGTCT ACAGCCTGAGGAACAGAGAAGTCCAGAATGCATTCAAGAAAGTGTTGAGAAGGCAAAAAT TTCTATAA (SEQ ID NO: 368)
AOLFR199 sequences: MDTGNKTLPQDFLLLGFPGSQTLQLSLFMLFLVMYILTVSGNVAILMLVSTSHQLHTPMYFFLS NLSFLEIWYTTAAVPKALAILLGRSQTISFTSCLLQMYFVFSLGCTEYFLLAAMAYDRCLAICYP LHYGAIMSSLLSAQLALGSWVCGFVAIAVPTALISGLSFCGPRAINHFFCDIAP IALACTNTQA VELVAFVIAVWILSSCLITFVSYVYIISTILRIPSASGRSKAFSTCSSHLTWLIWYGSTVFLHVR TSIKDALDLIKAVHVLNTVVTPVLNPFIYTLRNKEVRETLLKKWKGK (SEQ ID NO: 369)
ATGGACACAGGCAACAAAACTCTGCCCCAGGACTTTCTCTTACTGGGCTTTCCTGGTTCTC AAACTCTTCAGCTCTCTCTCTTTATGCTTTTTCTGGTGATGTACATCCTCACAGTTAGTGGT AATGTGGCTATCTTGATGTTGGTGAGCACCTCCCATCAGTTGCATACCCCCATGTACTTCTT TCTGAGCAACCTCTCCTTCCTGGAGATTTGGTATACCACAGCAGCAGTGCCCAAAGCACTG GCCATCCTACTGGGGAGAAGTCAGACCATATCATTTACAAGCTGTCTTTTGCAGATGTACT TTGTTTTCTCATTAGGCTGCACAGAGTACTTCCTCCTGGCAGCCATGGCTTATGACCGCTGT CTTGCCATCTGCTATCCTTTACACTACGGAGCCATCATGAGTAGCCTGCTCTCAGCGCAGC TGGCCCTGGGCTCCTGGGTGTGTGGTTTCGTGGCCATTGCAGTGCCCACAGCCCTCATCAG TGGCCTGTCCTTCTGTGGCCCCCGTGCCATCAACCACTTCTTCTGTGACATTGCACCCTGGA TTGCCCTGGCCTGCACCAACACACAGGCAGTAGAGCTTGTGGCCTTTGTGATTGCTGTTGT GGTTATCCTGAGTTCATGCCTCATCACCTTTGTCTCCTATGTGTACATCATCAGCACCATCC TCAGGATCCCCTCTGCCAGTGGCCGGAGCAAAGCCTTCTCCACGTGCTCCTCGCATCTCAC CGTGGTGCTCATTTGGTATGGGTCCACAGTTTTCCTTCACGTCCGCACCTCTATCAAAGAT GCCTTGGATCTGATCAAAGCTGTCCACGTCCTGAACACTGTGGTGACTCCAGTTTTAAACC CCTTCATCTATACGCTTCGTAATAAGGAAGTAAGAGAGACTCTGCTGAAGAAATGGAAGG GAAAATAA (SEQ ID NO: 370) AOLFR200 sequences:
MTRKNYTSLTEFVLLGLADTLELQIILFLFFLVIYTLTVLGNLGMILLIRIDSQLHTPMYFFLANL SFVDVCNSTTITPKMLADLLSEKKTISFAGCFLQMYFFISLATTECILFGLMAYDRYAAICRPLL YSLIMSRTVYLKMAAGAFAAGLLNFMVNTSHVSSLSFCDSNVIHHFFCDSPPLFKLSCSDTILKE SISSILAGVNIVGTLLVILSSYSYVLFSIFSMHSGEGRHRAFSTCASHLTAIILFYATCIYTYLRPSS SYSLNQDKVASVFYTWIPMLNPLΓYSLRSKEVKKALANVISRKRTSSFL (SEQ ID NO: 371)
ATGACCAGAAAAAATTATACCTCACTGACTGAGTTCGTCCTATTGGGATTAGCAGACACGC TGGAGCTACAGATTATCCTCTTTTTGTTTTTTCTTGTGATTTATACACTTACAGTACTGGGA AATCTCGGGATGATCCTCTTAATCAGGATCGATTCCCAGCTTCACACACCCATGTATTTCTT CCTGGCTAACCTGTCCTTTGTGGACGTTTGTAACTCAACTACCATCACCCCAAAGATGCTG GCAGATTTATTATCAGAGAAGAAAACCATCTCTTTTGCTGGCTGCTTCCTACAGATGTACT TCTTTATCTCCCTGGCGACAACCGAATGCATCCTCTTTGGGTTAATGGCCTATGACAGGTA TGCGGCCATATGTCGCCCGCTGCTTTACTCCTTGATCATGTCCAGGACCGTCTACCTAAAA ATGGCAGCCGGGGCTTTTGCTGCAGGGTTGCTGAACTTCATGGTCAACACAAGCCATGTCA GCAGCTTGTCATTCTGTGACTCCAATGTCATCCATCACTTCTTCTGTGACAGTCCCCCACTT TTCAAGCTCTCTTGTTCTGACACAATCCTGAAAGAAAGCATAAGTTCTATTTTGGCTGGTG TGAATATTGTGGGGACTCTGCTTGTCATCCTCTCCTCCTACTCCTACGTTCTCTTCTCCATT TTTTCTATGCATTCGGGGGAGGGGAGGCACAGAGCTTTCTCCACGTGTGCCTCTCACCTGA CAGCCATAATTCTGTTCTATGCCACCTGCATCTATACTTACCTGAGACCTAGTTCCAGCTAC TCCCTGAATCAGGACAAAGTGGCTTCTGTGTTCTACACAGTGGTGATTCCCATGTTGAATC CTCTGATCTACAGCCTCAGGAGTAAGGAAGTAAAGAAGGCTTTAGCGAATGTAATTAGCA GGAAAAGGACCTCTTCCTTTCTGTGA (SEQ ID NO: 372)
AOLFR201 sequences:
MEWENHTILVEFFLKGLSGHPRLELLFFVLIFIMYWILLGNGTLILISILDPHLHTPMYFFLGNL SFLDICYTTTSIPSTLVSFLSERKTISLSGCAVQMFLGLAMGTTECVLLGMMAFDRYVAICNPLR YPIIMS-ODAYVPMAAGSWπGAVNSAVQSVFVVQLPFCRNNIINHFTCEILAVMKLACADISDN EFIMLVATTLFILTPLLLIIVSYTLIIVSIFKISSSEGRSKASSTCSAHLTWIIFYGTILFMYMKPKS KΕTLNSDDLDATDKIISMFYGVMTPMMNPLIYSLRNiπDVKEAVKHLLNRRFFSK (SEQ ID NO: 373)
ATGGAATGGGAAAACCACACCATTCTGGTGGAATTTTTTCTGAAGGGACTTTCTGGTCACC CAAGACTTGAGTTACTCTTTTTTGTGCTCATCTTCATAATGTATGTGGTCATCCTTCTGGGG AATGGTACTCTCATTTTAATCAGCATCTTGGACCCTCACCTTCACACCCCTATGTACTTCTT TCTGGGGAACCTCTCCTTCTTGGACATCTGCTACACCACCACCTCTATTCCCTCCACGCTAG TGAGCTTCCTTTCAGAAAGAAAGACCATTTCCCTTTCTGGCTGTGCAGTGCAGATGTTCCT CGGCTTGGCCATGGGGACAACAGAGTGTGTGCTTCTGGGCATGATGGCCTTTGACCGCTAT GTGGCTATCTGCAACCCTCTGAGATATCCCATCATCATGAGTAAGGATGCCTATGTACCCA TGGCAGCTGGGTCCTGGATCATAGGAGCTGTCAATTCTGCAGTACAATCAGTGTTTGTGGT ACAATTGCCTTTCTGCAGGAATAACATCATCAATCATTTCACCTGTGAAATTCTGGCTGTC ATGAAACTGGCCTGTGCTGACATCTCAGACAATGAGTTCATCATGCTTGTGGCCACAACAT TGTTCATATTGACACCTTTGTTATTAATCATTGTCTCTTACACGTTAATCATTGTGAGCATC TTCAAAATTAGCTCTTCCGAGGGGAGAAGCAAAGCTTCCTCTACCTGTTCAGCCCATCTGA CTGTGGTCATAATATTCTATGGGACCATCCTCTTCATGTACATGAAGCCCAAGTCTAAAGA GACACTTAATTCGGATGACTTGGATGCTACCGACAAAATTATATCCATGTTCTATGGGGTG ATGACTCCCATGATGAATCCTTTAATCTACAGTCTTAGAAACAAGGATGTGAAAGAGGCA GTAAAACACCTACTGAACAGAAGGTTCTTTAGCAAGTGA (SEQ ID NO: 374)
AOLFR202 sequences:
ME ENHTILVEFFLKGLSGHPRLELLFFVLIFIMYVVILLGNGTLILISILDPHLHTPMYFFLGNL SFLDICYTTTSIPSTLVSFLSERKTISLSGCAVQMFLSLAMGTTECVLLGVMAFDRYVAICNPLR YPIMSrøAYWMAAGSWΗGAVNSAVQTWWQLPFCRN^ EFILLVTTTLFLLTPLLLIIVSYTLIILSIFKISSSEGRSKPSSTCSARLTWITFCGTIFLMYMKPKSQ ETLNSDDLDATDKLIFIFYRVMTPMMNPLIYSLRNKOVKEAVKHLLRRKNFNK (SEQ ID NO: 375)
ATGGAATGGGAAAACCACACCATTCTGGTGGAATTTTTTCTGAAGGGACTTTCTGGTCACC CAAGACTTGAGTTACTCTTTTTTGTGCTCATCTTCATAATGTATGTGGTCATCCTTCTGGGG AATGGTACTCTCATTTTAATCAGCATCTTGGACCCTCACCTTCACACCCCTATGTACTTCTT TCTGGGGAACCTCTCCTTCTTGGACATCTGCTACACCACCACCTCTATTCCCTCCACGCTAG TGAGCTTCCTTTCAGAAAGAAAGACCATTTCCCTTTCTGGCTGTGCAGTGCAGATGTTCCT CAGCTTGGCCATGGGGACAACAGAGTGTGTGCTTCTGGGCGTGATGGCCTTTGACCGCTAT GTGGCTATCTGCAACCCTCTGAGATATCCCATCATCATGAGTAAGGATGCCTATGTACCCA TGGCAGCTGGGTCCTGGATCATAGGAGCTGTCAATTCTGCAGTACAAACAGTGTTTGTGGT ACAATTGCCTTTCTGCAGGAATAACATCATCAATCATTTCACCTGTGAAATTCTAGCTGTC ATGAAACTGGCCTGTGCTGACATCTCAGGCAATGAGTTCATCCTGCTTGTGACCACAACAT TGTTCCTATTGACACCTTTGTTATTAATTATTGTCTCTTACACGTTAATCATTTTGAGCATC TTCAAAATTAGCTCTTCGGAGGGGAGAAGCAAACCTTCCTCTACCTGCTCAGCTCGTCTGA CTGTGGTGATAACATTCTGTGGGACCATCTTCCTCATGTACATGAAGCCCAAGTCTCAAGA GACACTTAATTCAGATGACTTGGATGCCACTGACAAACTTATATTCATATTCTACAGGGTG ATGACTCCCATGATGAATCCTTTAATCTACAGTCTTAGAAACAAGGATGTGAAGGAGGCA GTAAAACACCTACTGAGAAGAAAAAATTTTAACAAGTAA (SEQ ID NO: 376)
AOLFR203 sequences:
MKRQNQSCWEFILLGFSNFPELQVQLFGVFLVΓYVVTLMGNAIITVIISLNQSLHVPMYLFLLN LSWEVSFSAVITPEMLWLSTEKTMISFVGCFAQMYFILLFGGTECFLLGAMAYDRFAAICHPL NYPVIMNRGVFMKLVIFSWISGIMVATVQTTWVFSFPFCGPNEINHLFCETPPVLELVCADTFLF EIYAFTGTILIVMVPFLLILLSYIRVLFAILKMPSTTGRQKAFSTCASHLTSVTLFYGTANMTYLQ PKSGYSPETKKLISLAYTLLTPLLNPLIYSLRNSEMKRTLIKLWRRKVILHTF (SEQ ID NO: 377)
ATGAAAAGACAAAATCAAAGCTGTGTGGTTGAATTCATCCTCCTGGGCTTTTCTAACTTTC CTGAGCTCCAGGTGCAGCTCTTTGGGGTTTTCCTAGTTATTTATGTGGTGACCCTGATGGG AAATGCCATCATTACAGTCATCATCTCCTTAAACCAGAGCCTCCACGTTCCCATGTACCTGT TCCTCCTGAACCTATCTGTGGTGGAGGTGAGTTTCAGTGCAGTCATTACGCCTGAAATGCT GGTGGTGCTCTCTACTGAGAAAACTATGATTTCTTTTGTGGGCTGTTTTGCACAGATGTAT TTCATCCTTCTTTTTGGTGGGACTGAATGTTTTCTCCTGGGAGCGATGGCTTATGACCGATT TGCTGCAATTTGCCATCCTCTGAACTACCCAGTGATTATGAACAGAGGGGTTTTTATGAAA TTAGTAATATTCTCATGGATCTCAGGGATCATGGTGGCTACTGTGCAGACCACTTGGGTAT TTAGTTTTCCATTTTGTGGCCCCAATGAAATTAATCATCTCTTCTGTGAGACTCCCCCGGTA CTAGAGCTTGTGTGTGCAGACACCTTCTTATTTGAAATCTATGCCTTCACAGGCACCATTTT GATTGTTATGGTTCCTTTCTTGTTGATCCTCTTGTCTTACATTCGAGTTCTGTTTGCCATCCT GAAGATGCCATCAACTACTGGGAGACAAAAGGCCTTTTCCACCTGTGCCTCTCACCTCACA TCTGTGACCCTGTTCTATGGCACAGCCAATATGACTTATTTACAACCCAAATCTGGCTACTC ACCCGAAACCAAGAAACTGATCTCATTGGCTTACACGTTGCTTACCCCTCTGCTCAATCCG CTCATCTATAGCTTACGAAACAGTGAGATGAAGAGGACTTTGATAAAACTATGGCGAAGA AAAGTGATTTTACACACATTCTGA (SEQ ID NO: 378)
AOLFR204 sequences:
MEKK-O^VTEFILIGLTQNPIMEKVTFVVFLVLYMITLSGNLLIVVTITTSQALSSPMYFFLTHLSL IDTVYSSSSAPKLIVDSFQEKKIISFNGCMAQAYAEHIFGATEIILLTVMACDCYVAICKPLNYTT IMSHSLCILLVAVAWVGGFLHATIQILFTVWLPFCGPNVIGHFMCDLYPLLKLVCIDTHTLGLFV AVNSGFICLLNFLILVVSYVIILRSLK sINSLEGRCKALSTCISHIIVVVLFFVPCIFVYLRSVTTLPI DKAVAV YTMVVPMLNPVVΥTLR AEVKSAIRKLWR KVTSDND (SEQ ID NO: 379)
ATGGAGAAGAAAAAGAATGTGACTGAATTCATTTTAATAGGTCTTACACAGAACCCCATA ATGGAGAAAGTCACGTTTGTAGTATTTTTGGTTCTTTACATGATAACACTTTCAGGCAACC TGCTCATTGTGGTTACCATTACCACCAGCCAGGCTCTGAGCTCCCCCATGTACTTCTTCCTG ACCCACCTTTCTTTGATAGACACAGTTTATTCTTCTTCTTCAGCTCCTAAGTTGATTGTGGA TTCCTTTCAAGAGAAGAAAATCATCTCCTTTAATGGGTGTATGGCTCAAGCCTATGCAGAA CACATTTTTGGTGCTACTGAGATCATCCTGCTGACAGTGATGGCCTGTGACTGCTATGTGG CCATCTGCAAACCTCTGAACTACACAACCATTATGAGCCACAGCCTGTGCATTCTCCTGGT GGCAGTGGCCTGGGTGGGAGGATTTCTTCATGCAACTATTCAGATTCTCTTTACAGTATGG CTGCCCTTCTGTGGCCCCAATGTCATAGGCCACTTCATGTGTGACTTGTACCCATTGTTAAA ACTTGTTTGCATAGACACTCATACCCTTGGTCTCTTTGTTGCTGTGAACAGTGGGTTTATCT GCTTATTAAACTTCCTTATCTTGGTGGTATCCTATGTGATCATCTTGAGATCTTTAAAGAAC AATAGCTTGGAGGGGAGGTGTAAAGCCCTCTCCACCTGTATTTCTCACATCATAGTAGTTG TCTTATTCTTTGTGCCCTGTATATTTGTGTATCTGCGCTCAGTGACCACTCTGCCCATTGAT AAAGCTGTTGCTGTATTTTATACTATGGTGGTCCCAATGTTAAATCCCGTGGTCTACACAC TCAGAAATGCTGAGGTAAAAAGTGCAATAAGGAAGCTTTGGAGAAAAAAAGTGACTTCAG ATAATGATTAA (SEQ ID NO: 380)
AOLFR205 sequences:
MESENRTVIREFILLGLTQSQDIQLLVFVLVLIFYFIILPGNFLIIFTIKSDPGLTAPLYFFLGNLAFL DASYSFTVAPRMLVOFLSAKϋ ISYRGCITQLFFLHFLGGGEGLLLVVMAFDRYIAICRPLHYPT VMNPRTCYAMMLALWLGGFVHSIIQWLILRLPFCGPNQLDNFFCDVPQVIKLACTDTFWEL LMVENSGLMTLLCFLGLLASYAVILCRIRGSSSEAKNKAMSTCITHIIVIFFMFGPGIFIYTRPFRA FPADKWSLFHTVIFPLLNPVIYTLRNQEVKASMKKVFNKHIA (SEQ ID NO: 381)
ATGGAAAGCGAGAACAGAACAGTGATAAGAGAATTCATCCTCCTTGGTCTGACCCAGTCT CAAGATATTCAGCTCCTGGTCTTTGTGCTAGTTTTAATATTCTACTTCATCATCCTCCCTGG AAATTTTCTCATTATTTTCACCATAAAGTCAGACCCTGGGCTCACAGCCCCCCTCTATTTCT TTCTGGGCAACTTGGCCTTCCTGGATGCATCCTACTCCTTCACTGTGGCTCCCCGGATGTTG GTGGACTTCCTCTCTGCGAAGAAGATAATCTCCTACAGAGGCTGCATCACTCAGCTCTTTT TCTTGCACTTCCTTGGAGGAGGGGAGGGATTACTCCTTGTTGTGATGGCCTTTGACCGCTA CATCGCCATCTGCCGGCCTCTGCACTATCCTACTGTCATGAACCCTAGAACCTGCTATGCA ATGATGTTGGCTCTGTGGCTTGGGGGTTTTGTCCACTCCATTATCCAGGTGGTCCTCATCCT CCGCTTGCCTTTTTGTGGCCCAAACCAGCTGGACAACTTCTTCTGTGATGTCCCACAGGTC ATCAAGCTGGCCTGCACCGACACATTTGTGGTGGAGCTTCTGATGGTCTTCAACAGTGGCC TGATGACACTCCTGTGCTTTCTGGGGCTTCTGGCCTCCTATGCAGTCATTCTTTGTCGCATA CGAGGGTCTTCTTCTGAGGCAAAAAACAAGGCCATGTCCACGTGCATCACCCATATCATTG TTATATTCTTCATGTTTGGACCTGGCATCTTCATCTACACGCGCCCCTTCAGGGCTTTCCCA GCTGACAAGGTGGTTTCTCTCTTCCACACAGTGATTTTTCCTTTGTTGAATCCTGTCATTTA TACCCTTCGCAACCAGGAAGTGAAAGCTTCCATGAAAAAGGTGTTTAATAAGCACATAGC CTGA (SEQ ID NO: 382)
AOLFR206 sequences:
MANRNNVTEFILLGLTENPKMQKIIFVVFSVIYlNAMIGNVLIVVTITASPSLRSPMYFFLAYLSFI DACYSSVNTPKLITDSLYENKTILFNGCMTQVFGEHFFRGVEVILLTVMAYDHYVAICKPLHYT TIMKQHVCSLLVGVSWVGGFLHATIQILFICQLPFCGPNVIDHFMCDLYTLINLACTNTHTLGLF IAANSGFICLLNCLLLLVSCVVILYSLKTHSLEARHEALSTCVSHITVVILSFIPCIFVYMRPPATL PIDKAVAVFYTMITSMLNPLIYTLRNAQMKNAIRKLCSRKAISSVK (SEQ ID NO: 383)
ATGGCGAATAGAAACAATGTGACAGAGTTTATTCTATTGGGGCTTACAGAGAATCCAAAA ATGCAGAAAATCATATTTGTTGTGTTTTCTGTCATCTACATCAACGCCATGATAGGAAATG TGCTCATTGTGGTCACCATCACTGCCAGCCCATCACTGAGATCCCCCATGTACTTTTTCCTG GCCTATCTCTCCTTTATTGATGCCTGCTATTCCTCTGTCAATACCCCTAAGCTGATCACAGA TTCACTCTATGAAAACAAGACTATCTTATTCAATGGATGTATGACTCAAGTCTTTGGAGAA CATTTTTTCAGAGGTGTTGAGGTCATCCTACTTACTGTAATGGCCTATGACCACTATGTGG CCATCTGCAAGCCCTTGCACTATACCACCATCATGAAGCAGCATGTTTGTAGCCTGCTAGT GGGAGTGTCATGGGTAGGAGGCTTTCTTCATGCAACCATACAGATCCTCTTCATCTGTCAA TTACCTTTCTGTGGTCCTAATGTCATAGATCACTTTATGTGTGATCTCTACACTTTGATCAA TCTTGCCTGCACTAATACCCACACTCTAGGACTCTTCATTGCTGCCAACAGTGGGTTCATAT GCCTGTTAAACTGTCTCTTGCTCCTGGTCTCCTGCGTGGTCATACTGTACTCCTTAAAGACC CACAGCTTAGAGGCAAGGCATGAAGCCCTCTCTACCTGTGTCTCCCACATCACAGTTGTCA TCTTATCCTTTATACCCTGCATATTTGTGTACATGAGACCTCCAGCTACTTTACCCATTGAT AAAGCAGTTGCTGTATTCTACACTATGATAACTTCTATGTTAAACCCCTTAATCTACACCTT GAGGAATGCTCAAATGAAAAATGCCATTAGGAAATTGTGTAGTAGGAAAGCTATTTCAAG TGTCAAATAA (SEQ ID NO: 384)
AOLFR207 sequences:
MERTNDSTSTEFFLVGLSAHPKLQTVFFVLILWMYLMILLGNGVLISVIIFDSHLHTPMYFFLCN LSFLDVCYTSSSVPLILASFLAVKKKVSFSGCMVQMFISFAMGATECMILGTMALDRYVAICYP LRYPVIMSKGAYVAJVIAAGSWVTGLVDSVVQTAFAMQLPFCANNVIKHFVCEILAILKLACADI SINVISMTGSNLIVLVIPLLVISISYIFIVATILRIPSTEGKHKAFSTCSAHLTWIIFYGTIFFMYAKP ESKASVDSGNEDIIEALISLFYGVMTPMLNPLIYSLR KDVK^ (SEQ ID
NO: 385)
ATGGAAAGGACCAACGATTCCACGTCGACAGAATTTTTCCTGGTAGGGCTTTCTGCCCACC CAAAGCTCCAGACAGTTTTCTTCGTTCTAATTTTGTGGATGTACCTGATGATCCTGCTTGGA AATGGAGTCCTTATCTCAGTTATCATCTTTGATTCTCACCTGCACACCCCCATGTATTTCTT CCTCTGTAATCTTTCCTTCCTCGACGTTTGCTACACAAGTTCCTCTGTCCCACTAATTCTTG CCAGCTTTCTGGCAGTAAAGAAAAAGGTTTCCTTCTCTGGGTGTATGGTGCAAATGTTTAT TTCTTTTGCCATGGGGGCCACGGAGTGCATGATCTTAGGCACGATGGCACTGGACCGCTAT GTGGCCATCTGCTACCCACTGAGATACCCTGTCATCATGAGCAAGGGTGCCTATGTGGCCA TGGCAGCTGGGTCCTGGGTCACTGGGCTTGTGGACTCAGTAGTGCAGACAGCTTTTGCAAT GCAGTTACCATTCTGTGCTAATAATGTCATTAAACATTTTGTCTGTGAAATTCTGGCTATCT TGAAACTGGCCTGTGCTGATATTTCAATCAATGTGATTAGTATGACAGGGTCGAATCTGAT TGTTCTGGTTATTCCATTGTTAGTAATTTCCATCTCTTACATATTTATTGTTGCCACTATTCT GAGGATTCCTTCCACTGAAGGAAAACATAAGGCCTTCTCCACCTGCTCAGCCCACCTGACA GTGGTGATTATATTCTATGGAACCATCTTCTTCATGTACGCAAAGCCTGAGTCTAAAGCCT CTGTTGATTCAGGTAATGAAGACATCATTGAGGCCCTCATCTCCCTTTTCTATGGAGTGAT GACTCCCATGCTTAATCCTCTCATCTATAGTCTGCGAAACAAGGATGTAAAGGCTGCTGTC AAAAACATACTGTGTAGGAAAAACTTTTCTGATGGAAAATGA (SEQ ID NO: 386)
AOLFR208 sequences:
MFPANWTSVKVFFFLGFFHYPKVQVIIFAVCLLMYLITLLGNIFLISITILDSHLHTPMYLFLSNL SFLDIWYSSSALSPMLANFVSGRNTISFSGCATQMYLSLAMGSTECVLLPMMAYDRYVAICNP LRYPVIMNRRTCVQIAAGSWMTGCLTAMVEMMSVLPLSLCGNSIINHFTCEILAILKLVCVDTS LVQLIMLVISVLLLPMPMLLICISYAFILASILRISSVEGRSKAFSTCTAHLMVWLFYGTALSMH LKPSAVDSQEIDKFMALVYAGQTPMLNPIIYSLP ^KEVT VALKKLLIRNHFNTAFISILK (SEQ ID NO: 387)
ATGTTCCCGGCAAATTGGACATCTGTAAAAGTATTTTTCTTCCTGGGATTTTTTCACTACCC CAAAGTTCAGGTCATCATATTTGCGGTGTGCTTGCTGATGTACCTGATCACCTTGCTGGGC AACATTTTTCTGATCTCCATCACCATTCTAGATTCCCACCTGCACACCCCTATGTACCTCTT CCTCAGCAATCTCTCCTTTCTGGACATCTGGTACTCCTCTTCTGCCCTCTCTCCAATGCTGG CAAACTTTGTTTCAGGGAGAAACACTATTTCATTCTCAGGGTGCGCCACTCAGATGTACCT CTCCCTTGCCATGGGCTCCACTGAGTGTGTGCTCCTGCCCATGATGGCATATGACCGGTAT GTGGCCATCTGCAACCCCCTGAGATACCCTGTCATCATGAATAGGAGAACCTGTGTGCAGA TTGCAGCTGGCTCCTGGATGACAGGCTGTCTCACTGCCATGGTGGAAATGATGTCTGTGCT GCCACTGTCTCTCTGTGGTAATAGCATCATCAATCATTTCACTTGTGAAATTCTGGCCATCT TGAAATTGGTTTGTGTGGACACCTCCCTGGTGCAGTTAATCATGCTGGTGATCAGTGTACT TCTTCTCCCCATGCCAATGCTACTCATTTGTATCTCTTATGCATTTATCCTCGCCAGTATCC TGAGAATCAGCTCAGTGGAAGGTCGAAGTAAAGCCTTTTCAACGTGCACAGCCCACCTGA TGGTGGTAGTTTTGTTCTATGGGACGGCTCTCTCCATGCACCTGAAGCCCTCCGCTGTAGA TTCACAGGAAATAGACAAATTTATGGCTTTGGTGTATGCCGGACAAACCCCCATGTTGAAT CCTATCATCTATAGTCTACGGAACAAAGAGGTGAAAGTGGCCTTGAAAAAATTGCTGATTA GAAATCATTTTAATACTGCCTTCATTTCCATCCTCAAATAA (SEQ ID NO: 388) AOLFR209 sequences:
MDKINQTFVREFILLGLSGYPKLEIIFFALILVMYVVILIGNGVLIIASILDSRLHMPMYFFLGNLS FLDICYTTSSIPSTLVSLISKKRNISFSGCAVQMFFGFAMGSTECFLLGMMAFDRYVAICNPLRY PIIMNKVVYVLLTSVSWLSGGINSTVQTSLAMRWPFCGNNIINHFLCEILAVLKLACSDISVNIV TLAVSN-IAFLVLPLLVIFFSYMFILYTILRTNSATGRHKAFSTCSAHLTVVIIFYGTIFFMYAKPKS QDLLGKDNLQATEGLVSMFYGVVTPMLNPIIYSLRNKDVKAAIKYLLSRKAINQ (SEQ ID NO: 389)
ATGGACAAGATAAACCAGACATTTGTGAGAGAATTCATTCTTCTGGGACTCTCTGGTTACC CCAAACTTGAGATCATTTTCTTTGCTCTGATTCTAGTTATGTACGTAGTGATTCTAATTGGC AATGGTGTTCTGATCATAGCAAGCATCTTGGATTCTCGTCTTCACATGCCCATGTACTTCTT CCTGGGCAACCTCTCTTTCCTGGATATCTGCTATACAACCTCCTCCATTCCCTCAACACTGG TGAGCTTAATCTCAAAGAAAAGAAACATTTCCTTCTCTGGATGTGCAGTGCAGATGTTCTT TGGGTTTGCAATGGGGTCAACAGAATGTTTCCTCCTTGGCATGATGGCATTTGATCGTTAT GTGGCCATCTGTAACCCTCTGAGATACCCCATCATCATGAACAAGGTGGTGTATGTACTGC TGACTTCTGTATCATGGCTTTCTGGTGGAATCAATTCAACTGTGCAAACATCACTTGCCAT GCGATGGCCTTTCTGTGGGAACAATATTATTAATCATTTCTTATGCGAGATCTTAGCTGTCC TAAAATTAGCTTGTTCTGATATATCTGTCAATATTGTTACCCTAGCAGTGTCAAATATTGCT TTCCTAGTTCTTCCTCTGCTCGTGATTTTTTTCTCCTATATGTTCATCCTCTACACCATCTTG CGAACGAACTCGGCCACAGGAAGACACAAGGCATTTTCTACATGCTCAGCTCACCTGACTG TGGTGATCATATTTTATGGTACCATCTTCTTTATGTATGCAAAACCTAAGTCCCAGGACCTC CTTGGGAAAGACAACTTGCAAGCTACAGAGGGGCTTGTTTCCATGTTTTATGGGGTTGTGA CCCCCATGTTAAACCCCATAATCTATAGCTTGAGAAATAAAGATGTAAAAGCTGCTATAAA ATATTTGCTGAGCAGGAAAGCTATTAACCAGTAA (SEQ ID NO: 390)
AOLFR210 sequences:
MMGR-RNDTNVADFILTGLSDSEEVQMALFMLFLLIYLITMLGNVGMLLIIRLDLQLHTPMYFFL THLSFIDLSYSTWTPKTLANLLTSNYISFTGCFAQMFCFVFLGTAECYLLSSMAYDRYAAICSP LHYTVIMPKRLCLALITGPYVIGFMDSFVNVVSMSRLHFCDSNIIHHFFCDTSPILALSCTDTDN TEMLIFIIAGSTLMVSLITISASYVSILSTILKINSTSGKQKAFSTCVSHLLGVTIFYGTMIFTYLKP RKSYSLGRDQVAPVFYTIVIPMLNPLIYSLRNREVKNALIRVMQRRQDSR (SEQ ID NO: 391)
ATGATGGGTAGAAGGAATGACACAAATGTGGCTGACTTCATCCTTACGGGACTGTCAGAC TCTGAAGAGGTCCAGATGGCTCTGTTTATGCTATTTCTCCTCATATACCTAATTACTATGCT GGGGAATGTGGGGATGCTATTGATAATCCGCCTGGACCTCCAGCTTCACACTCCCATGTAT TTTTTCCTTACTCACCTGTCATTTATTGACCTCAGTTACTCAACTGTCGTCACACCTAAAAC CTTAGCGAACTTACTGACTTCCAACTATATTTCCTTCACGGGCTGCTTTGCCCAGATGTTCT GTTTTGTCTTCTTGGGTACTGCTGAATGTTATCTTCTCTCCTCAATGGCCTATGATCGCTAT GCAGCGATCTGCAGTCCTCTACACTACACAGTTATTATGCCCAAAAGGCTCTGCCTCGCTC TCATCACTGGGCCTTATGTGATTGGCTTTATGGACTCCTTTGTCAATGTGGTTTCCATGAGC AGATTGCATTTCTGTGACTCAAACATAATTCATCACTTTTTCTGTGACACTTCCCCAATTTT AGCTCTGTCCTGCACTGACACAGACAACACTGAAATGCTGATATTCATTATCGCTGGTTCC ACCCTGATGGTGTCCCTTATCACAATATCTGCATCCTATGTGTCCATTCTCTCTACCATCCT GAAAATTAATTCCACTTCAGGAAAGCAGAAAGCTTTCTCTACTTGCGTCTCTCATCTCTTG GGAGTCACCATCTTCTATGGAACTATGATTTTTACTTACTTAAAGCCAAGAAAGTCTTATT CCTTGGGAAGAGATCAAGTGGCTCCTGTGTTTTATACTATTGTGATTCCCATGCTGAATCC ACTCATTTATAGTCTTAGAAACAGAGAAGTGAAAAATGCTCTCATTAGAGTCATGCAGAG AAGACAGGACTCCAGGTAG (SEQ ID NO: 392)
AOLFR211 sequences:
MMGRRNNTNVADFILMGLTLSEEIQMALFMLFLLIYLITMLGNVGMILIIRLDLQLHTPMYFFL THLSFIDLSYSTWTPKTLANLLTSNYISFTGCFAQMFFFAFLGTAECYLLSSMAHDRYAAICSP LHYTVIMSK-RLCLALITGPYVIGFIDSFVNVVSMSRLHFYDSNVIHHFFCDTSPILALSCTDTYNT EILIFIIVGSTLMVSLFTISASYVFILFTILKINSTSGKQKAFSTCVSHLLGVTIFYSTLIFTYLKPRK SYSLGRDQVASVFYTIVIPVLNPL-fYSLRNtKEVKNAVIRVMQRRQDSR (SEQ ID NO: 393) ATGATGGGTAGAAGGAATAACACAAATGTGGCTGACTTCATCCTTATGGGACTGACACTTT CTGAAGAGATCCAGATGGCTCTGTTTATGCTATTTCTCCTGATATACCTAATTACTATGCTG GGGAATGTGGGGATGATATTGATAATCCGCCTGGACCTCCAGCTTCACACTCCCATGTATT TTTTCCTTACTCACCTGTCATTTATTGACCTCAGTTACTCAACTGTCGTCACACCTAAAACC TTAGCGAACTTACTGACTTCCAACTATATTTCCTTTACGGGCTGCTTTGCCCAGATGTTCTT TTTTGCCTTCTTGGGTACTGCTGAATGTTACCTTCTCTCCTCAATGGCCCATGATCGCTATG CAGCGATCTGCAGTCCTCTACACTACACAGTTATTATGTCCAAAAGGCTCTGCCTCGCTCT CATCACTGGGCCTTATGTGATTGGCTTTATAGACTCCTTTGTCAACGTGGTTTCCATGAGCA GATTGCATTTCTACGACTCAAACGTAATTCATCACTTTTTCTGTGACACTTCCCCAATTTTA GCTCTGTCCTGCACTGATACATACAACACCGAAATCCTGATATTCATTATTGTTGGTTCCAC CCTGATGGTGTCCCTTTTCACAATATCTGCATCCTATGTGTTCATTCTCTTTACCATCCTGA AAATTAATTCCACTTCAGGAAAGCAGAAAGCTTTCTCTACTTGCGTCTCTCATCTCTTGGG AGTCACCATCTTTTATAGCACTCTGATTTTTACTTATTTAAAACCAAGAAAGTCTTATTCCT TGGGAAGAGATCAAGTGGCTTCTGTTTTTTATACTATTGTGATTCCCGTGCTGAATCCACT CATTTATAGTCTTAGAAACAAAGAGGTGAAAAATGCTGTCATCAGAGTCATGCAGAGAAG ACAGGACTCCAGGTAA (SEQ ID NO: 394)
AOLFR212 sequences: MAGNNFTEVTVFILSGFANHPELQVSLFLMFLFIYLFTVLGNLGLITLIRMDSQLHTPMYFFLSN LAFIDIFYSSTVTPKALVNFQSNRRSISFVGCFVQMYFFVGLVCCECFLLGSMAYNRYIAICNPL LYSVVMSQKVSNWLGVMPYVIGFTSSLISVWVISSLAFCDSSINHFFCDTTALLALSCVDTFGT EMVSFVLAGFTLLSSLLIITVTYIIIISAILRIQSAAGRQKAFSTCASHLMAVTIFYGSLIFTYLQPD NTSSLTQAQVASWYTIVIPMLNPLIYSLR--SIKDVKNALLRVIHRKLFP (SEQ ID NO: 395)
ATGGCTGGCAACAATTTCACTGAGGTTACCGTCTTCATCCTCTCTGGATTTGCAAATCACC CTGAATTACAAGTCAGTCTTTTCTTGATGTTTCTCTTCATTTATCTATTCACTGTTTTGGGA AACCTGGGACTGATCACGTTAATCAGAATGGATTCTCAGCTTCACACCCCTATGTACTTTT TCCTGAGCAATTTAGCATTTATTGACATATTTTACTCCTCTACTGTAACACCTAAGGCATTG GTGAATTTCCAATCCAATCGGAGATCCATCTCCTTTGTTGGCTGCTTTGTTCAAATGTACTT TTTTGTTGGATTGGTGTGTTGTGAGTGTTTCCTTCTGGGATCAATGGCCTACAATCGCTACA TAGCAATCTGCAATCCCTTACTGTATTCAGTAGTCATGTCCCAAAAAGTGTCCAACTGGCT GGGAGTAATGCCATATGTGATAGGCTTCACAAGCTCGCTGATATCTGTCTGGGTGATAAGC AGTTTGGCGTTCTGTGATTCCAGCATCAATCATTTTTTTTGTGACACCACAGCTCTTTTAGC ACTCTCCTGTGTAGATACATTCGGCACAGAAATGGTGAGCTTTGTCTTAGCTGGATTCACT CTTCTTAGCTCTCTCCTTATCATCACAGTCACTTATATCATCATCATCTCAGCCATCCTGAG GATCCAGTCAGCAGCAGGCAGGCAGAAGGCCTTCTCCACCTGCGCATCCCACCTCATGGCT GTAACTATCTTTTATGGGTCTCTGATTTTCACCTATTTGCAACCTGATAACACATCATCGCT GACCCAGGCGCAGGTGGCATCTGTATTCTATACGATTGTCATTCCCATGCTGAATCCACTC ATCTACAGTCTGAGGAACAAAGATGTGAAAAATGCTCTTCTGAGAGTCATACATAGAAAA CTTTTTCCATGA (SEQ ID NO: 396)
AOLFR213 sequences:
MNSLGKLVSMILSAHVFCYSKFNCFGCTHSIPALGADPPGGMGLGNESSLMDFILLGFSDHPRL EAVLFVFVLFFYLLTLVGNFTIIIISYLDPPLHTPMYFFLSNLSLLDICFTTSLAPQTLVNLQRPKK TITYGGCVAQLYISLALGSTECILLADMALDRYIAVCKPLHYWIMNPRLCQQLASISWLSGLA SSLIHATFTLQLPLCGNHRLDHFICEVPALLKLACVDTTVNELVLFWSVLFWIPPALISISYGFI TQAVLRIKSVEARHKAFSTCSSHLTVVIIFYGTIIYVYLQPSDSYAQDQGKFISLFYTMVTPTLNP IIYTLRNKDMKEALRKLLSGKL (SEQ ID NO: 397)
ATGAATAGTTTGGGAAAGTTGGTCTCCATGATCCTCTCAGCTCATGTGTTCTGTTATTCTAA ATTTAATTGTTTTGGATGTACCCATTCCATTCCTGCCTTAGGTGCGGATCCCCCTGGAGGG ATGGGATTGGGCAATGAGAGTTCCCTAATGGATTTCATCCTTCTAGGCTTCTCAGACCACC CTCGTCTGGAGGCTGTTCTCTTTGTATTTGTCCTTTTCTTCTACCTCCTGACCCTTGTGGGA AACTTCACCATAATCATCATCTCATATCTGGATCCCCCTCTTCATACCCCAATGTACTTTTT TCTCAGCAACCTCTCTTTACTGGACATCTGCTTCACTACTAGCCTTGCTCCTCAGACCTTAG TTAACTTGCAAAGACCAAAGAAGACGATCACTTACGGTGGTTGTGTGGCGCAACTCTATAT TTCTCTGGCACTGGGCTCCACTGAATGTATCCTCTTGGCTGACATGGCCTTGGATCGGTAC ATTGCTGTCTGCAAACCCCTCCACTATGTAGTCATCATGAACCCACGGCTTTGCCAACAGC TGGCATCTATCTCCTGGCTCAGTGGTTTGGCTAGTTCCCTAATCCATGCAACTTTTACCTTG CAATTGCCTCTCTGTGGCAACCATAGGCTGGACCATTTTATTTGCGAAGTACCAGCTCTTCT CAAGTTGGCTTGTGTGGACACCACTGTCAATGAATTGGTGCTTTTTGTTGTTAGTGTTCTGT TTGTTGTCATTCCACCAGCACTCATCTCCATCTCCTATGGCTTCATAACTCAAGCTGTGCTG AGGATCAAATCAGTAGAGGCAAGGCATAAAGCCTTCAGCACCTGCTCCTCCCACCTTACAG TGGTGATTATATTCTATGGCACCATAATCTACGTGTACCTGCAACCTAGTGACAGCTATGC CCAGGACCAAGGGAAGTTTATCTCCCTCTTCTACACCATGGTGACCCCCACTTTAAATCCT ATCATCTATACTTTAAGGAACAAGGATATGAAAGAGGCTCTGAGGAAACTTCTCTCGGGA AAATTGTGA (SEQ ID NO: 398)
AOLFR214 sequences: MDKSNSSWSEFVLLGLCSSQKLQLFYFCFFSVLYTVIVLGNLLIILTVTSDTSLHSPMYFLLGN LSFVDICQASFATPKMIADFLSAHETISFSGCIAQIFFIHLFTGGEMVLLVSMAYDRYVAICKPLY YVVIMSRRTCTVLVMISWAVSLVHTLSQLSFTVNLPFCGPNVVDSFFCDLPRVTKLACLDSYIIE ILIVVNSGILSLSTFSLLVSSYπiLVTVWLKSSAAMAKAFSTLASHIAVVILFFGPCIFIYVWPFTIS PLD-mAIFYTVFTPVLNPIIYTLRMΦMKAAV^ (SEQ ID NO: 399)
ATGGATAAGTCCAATTCTTCAGTGGTGTCTGAATTTGTACTGTTGGGACTCTGTAGTTCTC
AAAAACTCCAGCTTTTCTATTTTTGTTTCTTCTCTGTGTTGTATACAGTCATTGTGCTGGGA
AATCTTCTCATTATCCTCACAGTGACTTCTGATACCAGCCTGCACTCCCCTATGTACTTTCT CTTGGGAAACCTTTCCTTTGTTGACATTTGTCAGGCTTCTTTTGCTACCCCTAAAATGATTG CAGATTTTCTGAGTGCACACGAGACCATATCTTTCAGTGGCTGCATAGCCCAAATTTTCTTT ATTCACCTTTTTACTGGAGGGGAGATGGTGCTACTTGTTTCGATGGCCTATGACAGGTATG TAGCCATATGCAAACCCTTATACTATGTGGTCATCATGAGCCGAAGGACATGCACTGTCTT GGTAATGATCTCCTGGGCTGTGAGCTTGGTGCACACATTAAGCCAGTTATCATTTACTGTG AACCTGCCTTTTTGTGGACCTAATGTAGTAGACAGCTTTTTTTGTGATCTTCCTCGAGTCAC CAAACTTGCCTGCCTGGACTCTTACATCATTGAAATACTAATTGTGGTCAATAGTGGAATT CTTTCCCTAAGCACTTTCTCTCTCTTGGTCAGCTCCTACATCATTATTCTTGTTACAGTTTG GCTCAAGTCTTCAGCTGCAATGGCAAAGGCATTTTCTACGCTGGCTTCCCATATTGCAGTA GTAATATTATTCTTTGGACCTTGCATCTTCATCTATGTGTGGCCCTTTACCATCTCTCCTTT GGATAAATTTCTTGCCATATTTTACACTGTTTTCACCCCCGTCCTAAACCCCATTATTTATA CACTAAGGAATAGGGATATGAAGGCTGCCGTAAGGAAAATTGTGAACCATTACCTGAGGC CAAGGAGAATTTCTGAAATGTCACTAGTAGTGAGAACTTCCTTTCATTAA (SEQ ID NO: 400)
AOLFR215 sequences:
MAHTNESMVSEFVLLGLSNSWGLQLFFFAIFSIVYVTSVLGNVLΠVIISFDSHLNSPMYFLLSNL SFIDICQSNFATPKMLVDFFIERKTISFEGCMAQIFVLHSFVGSEMMLLVAMAYDRFIAICKPLH
YSTIMNRRLCVIFVSISWAVGVLHSVSHLAFTVDLPFCGPNEVDSFFCDLPLVIELACMDTYEM EIMTLTNSGLISLSCFLALIISYTIILIGVRCRSSSGSSKALSTLTAHITWILFFGPCIYFYIWPFSRL PVDKFLSVFYTVCTPLLNPΠYSLRNEDVKAAMWKLRNHHVNSWKN (SEQ ID NO: 401)
ATGGCTCACACAAATGAATCGATGGTGTCTGAGTTTGTACTTTTGGGACTCTCTAATTCCT
GGGGACTTCAACTTTTCTTTTTCGCCATCTTCTCTATAGTCTATGTGACATCAGTGCTAGGC
AATGTCTTAATTATTGTCATTATTTCTTTTGACTCCCATTTGAACTCTCCTATGTACTTCTTG CTCAGTAATCTTTCTTTCATTGATATCTGTCAGTCTAACTTTGCCACCCCCAAGATGCTTGT AGACTTTTTTATTGAGCGCAAGACTATCTCCTTTGAGGGTTGCATGGCCCAGATATTCGTT CTTCACAGTTTTGTTGGGAGTGAGATGATGTTGCTTGTAGCTATGGCATATGACAGATTTA TAGCCATATGTAAGCCTCTGCACTACAGTACAATTATGAACCGGAGGCTCTGTGTAATTTT TGTGTCTATTTCCTGGGCGGTGGGCGTTCTTCATTCTGTGAGCCACTTGGCTTTTACAGTGG ACCTGCCATTCTGTGGTCCCAATGAGGTGGATAGCTTCTTTTGTGACCTTCCCTTGGTGATA GAGCTGGCTTGCATGGATACATATGAAATGGAAATTATGACCCTAACGAACAGTGGCCTG ATATCATTGAGCTGTTTCCTGGCTTTAATTATTTCCTACACCATCATTTTGATCGGTGTCCG ATGCAGGTCCTCCAGTGGGTCATCTAAGGCTCTTTCTACATTAACTGCCCACATCACAGTG GTCATTCTTTTCTTCGGGCCTTGCATTTATTTCTATATATGGCCTTTTAGCAGACTTCCTGT GGACAAATTTCTTTCTGTGTTCTACACTGTTTGTACTCCCTTGTTGAACCCCATCATCTACT CTTTGAGGAATGAAGATGTTAAAGCAGCCATGTGGAAGCTGAGAAACCATCATGTGAACT CCTGGAAAAACTAG (SEQ ID NO: 402)
AOLFR216 sequences:
MDVGNKSTMSEFVLLGLSNSWELQMFFFMVFSLLYVATMVGNSLIVITVIVDPHLHSPMYFLL TNLSIIDMSLASFATPKMITDYLTGHKTISFDGCLTQIFFLHLFTGTEIILLMAMSFDRYIAICKPL HYASVISPQVCVALWASWIMGVMHSMSQVIFALTLPFCGPYEVDSFFCDLPWFQLACVDTY VLGLFMISTSGIIALSCFIVLFNSYVIVLVTVKHHSSRGSSKALSTCTAHFIVVFLFFGPCIFIYMW PLSSFLTD LSVFYTIFTPTLNPIIYTLRNQEVKIAMRjπ.-O^RFLNFNKAMPS (SEQ ID NO: 403)
ATGGATGTGGGCAATAAGTCTACCATGTCTGAATTTGTTTTGCTGGGGCTCTCTAATTCCT GGGAACTACAGATGTTTTTCTTTATGGTGTTTTCATTGCTTTATGTGGCAACAATGGTGGG TAACAGCCTCATAGTCATCACAGTTATAGTGGACCCTCACCTACACTCTCCTATGTATTTCC TGCTTACCAATCTTTCAATCATTGATATGTCTCTTGCTTCTTTCGCCACCCCAAAGATGATT ACAGATTACCTAACAGGTCACAAAACCATCTCTTTTGATGGCTGCCTTACCCAGATATTCT TTCTCCACCTTTTCACTGGAACTGAGATCATCTTACTCATGGCCATGTCCTTTGATAGGTAT ATTGCAATATGCAAGCCCCTGCACTATGCTTCTGTCATTAGTCCCCAGGTGTGTGTTGCTCT CGTGGTGGCTTCCTGGATTATGGGAGTTATGCATTCAATGAGTCAGGTCATATTTGCCCTC ACGTTACCATTCTGTGGTCCCTATGAGGTAGACAGCTTTTTCTGTGACCTTCCTGTGGTGTT CCAGTTGGCTTGTGTGGATACTTATGTTCTGGGCCTCTTTATGATCTCAACAAGTGGCATA ATTGCGTTGTCCTGTTTTATTGTTTTATTTAATTCATATGTTATTGTCCTGGTTACTGTGAA GCATCATTCTTCCAGAGGATCATCTAAGGCCCTTTCTACTTGTACAGCTCATTTCATTGTTG TCTTCTTGTTCTTTGGGCCATGCATCTTCATCTACATGTGGCCACTAAGCAGCTTTCTCACA GACAAGATTCTGTCTGTGTTTTATACCATCTTTACTCCCACTCTGAACCCAATAATCTATAC TTTGAGGAATCAAGAAGTAAAGATAGCCATGAGGAAACTGAAAAATAGGTTTCTAAATTT TAATAAGGCAATGCCTTCATAG (SEQ ID NO: 404)
AOLFR217 sequences:
MLESFQKSEQMAWSNQSAVTEFILRGLSSSLELQIFYFLFFSIVYAATVLGNLLIVVTIASEPHLH SPTYFLLGNLSFIDMSLASFATPKMLADFLREHKAISFEGCMTQMFFLHLLGGAEIVLLISMSFD RYVAICKPLHYLTIMSRRMCVGLVILSWIVGIFHALSQLAFTVNLPFCGPNEVDSFFCDLPLVIK LACVDTYILGVFMISTSGMIALVCFILLVISYTIILVTVRQRSSGGSSKALSTCSAHFTVVTLFFGP CTFIYV PFT-OTP KVLSVFYTIYTPLLNPVIYTV-RNKDVKYSMRKLSSHIFKSRKTDHTP (SEQ ID NO: 405)
ATGCTAGAGTCCTTCCAGAAATCAGAGCAAATGGCCTGGAGCAATCAGTCTGCGGTAACC GAATTCATACTACGGGGTCTGTCCAGTTCTTTAGAACTCCAGATTTTCTACTTCCTGTTTTT CTCCATAGTCTATGCAGCCACTGTGCTGGGGAACCTTCTTATTGTGGTCACCATTGCATCA GAGCCACACCTTCATTCCCCTACGTACTTTCTGCTGGGCAATCTCTCCTTCATTGACATGTC CCTGGCCTCATTTGCCACCCCCAAAATGATTGCAGACTTCCTTAGAGAACACAAAGCCATC TCTTTTGAAGGCTGCATGACCCAGATGTTCTTCCTACATCTCTTAGGGGGTGCTGAGATTG TACTGCTGATCTCCATGTCCTTTGATAGGTACGTGGCTATCTGTAAGCCTCTACATTACCTA ACAATCATGAGCCGAAGAATGTGTGTTGGGCTTGTGATACTTTCCTGGATTGTCGGCATCT TCCATGCTCTGAGTCAGTTAGCATTTACAGTGAATCTGCCCTTCTGTGGACCCAATGAAGT AGACAGTTTCTTTTGTGACCTCCCTTTGGTGATTAAACTTGCTTGTGTCGACACATATATTC TGGGGGTGTTCATGATCTCAACCAGTGGCATGATTGCCCTGGTGTGCTTCATCCTCTTGGT GATCTCTTACACTATCATCCTGGTCACCGTTCGGCAGCGTTCCTCTGGTGGATCCTCCAAA GCCCTCTCCACGTGCAGTGCCCACTTTACTGTTGTGACCCTTTTCTTTGGCCCATGCACTTT CATTTATGTGTGGCCTTTCACAAATTTCCCAATAGACAAAGTACTCTCAGTATTTTATACCA TATACACTCCCCTCTTGAATCCAGTGATCTATACCGTTAGGAATAAAGATGTCAAGTATTC CATGAGGAAACTAAGCAGCCATATCTTTAAATCTAGGAAGACTGATCATACTCCTTAA (SEQ ID NO: 406) AOLFR218 sequences:
METANYTKVTEFVLTGLSQTREVQLVLFVIFLSFYLFILPGNILIICTIRLDPHLTSPMYFLLANLA LLDIWYSSITAPKMLIDFFVERKIISFGGCIAQLFFLHFVGASEMFLLIVMAYDRYAAICRPLHYA TIMNRRLCCILVALSWMGGFIHSIIQVALIVRLPFCGPNELDSYFCDITQWRIACANTFPEELVM ICSSGLISVVCFIALLMSYAFLLALLKKHSGSDENTNRAMSTCYSHITIVVLMFGPSIYIYA-RPFD SFSLDKVVSVFHTVIFPLLNPIIYTLRNKEVKAAMRKVVTKYILCEEK (SEQ ID NO: 407)
ATGGAAACTGCAAATTACACCAAGGTGACAGAATTTGTTCTCACTGGCCTATCCCAGACTC GGGAGGTCCAACTAGTCCTATTTGTTATATTTCTATCCTTCTATTTGTTCATCCTACCAGGA AATATCCTTATCATTTGCACCATCAGGCTAGACCCTCATCTGACTTCTCCTATGTATTTCCT GTTGGCTAATCTGGCCCTCCTTGATATTTGGTACTCTTCCATTACAGCCCCTAAAATGCTCA TAGACTTCTTTGTGGAGAGGAAGATAATTTCCTTTGGTGGATGCATTGCACAGCTCTTCTT CTTACACTTTGTTGGGGCTTCGGAGATGTTCTTGCTCATAGTGATGGCCTATGACCGCTAT GCTGCTATCTGCCGACCCCTCCACTATGCTACCATCATGAATCGACGTCTCTGCTGTATCCT GGTGGCTCTCTCCTGGATGGGGGGCTTCATTCATTCTATAATACAGGTGGCTCTCATTGTT CGACTTCCTTTCTGTGGGCCCAATGAGTTAGACAGTTACTTCTGTGACATCACACAGGTTG TCCGGATTGCCTGTGCCAACACCTTCCCAGAGGAGTTAGTGATGATCTGTAGTAGTGGTCT GATCTCTGTGGTGTGTTTCATTGCTCTGTTAATGTCCTATGCCTTCCTTCTGGCCTTGCTCA AGAAACATTCAGGCTCAGATGAGAATACCAACAGGGCCATGTCCACCTGCTATTCCCACAT TACCATTGTGGTGCTAATGTTTGGGCCATCCATCTACATTTATGCTCGCCCATTTGACTCAT TTTCCCTAGATAAAGTGGTGTCTGTGTTTCATACTGTAATATTCCCTTTACTTAATCCCATT ATTTACACATTGAGAAACAAGGAAGTAAAGGCAGCCATGAGGAAGGTGGTCACCAAATAT ATTTTGTGTGAAGAGAAGTGA (SEQ ID NO: 408).
AOLFR219 sequences:
MLTSLTDLCFSPIQVAEIKSLPKSMNETNHSRVTEFVLLGLSSSRELQPFLFLTFSLLYLAILLGNF LIILTVTSDSRLHTPMYFLLANLSFIDVCVASFATPKMIADFLVERKTISFDACLAQIFFVHLFTGS EMVLLVSMAYDRYVAICKPLHYMTVMSRRVCVVLVLISWFVGFIHTTSQLAFTVNLPFCGPN KVDSFFCDLPLVTKLACIDTYVVSLLIVADSGFLSLSSFLLLVVSYTVILVTVRNRSSASMAKAR STLTAΉITVVTLFFGPCIFIYVWPFSSYSVΌKVLAVFYTIFTLILNPVIYTLRNKEVKAAMSKLKS RYLKPSQVSVVIRNVLFLETK (SEQ ID NO: 409).
ATGCTCACTTCATTAACTGATCTCTGTTTCTCTCCTATTCAGGTAGCTGAAATTAAGTCCCT TCCAAAATCGATGAATGAGACAAATCATTCTCGGGTGACAGAATTTGTGTTGCTGGGACTG TCTAGTTCAAGGGAGCTCCAACCTTTCTTGTTTCTTACATTTTCACTACTTTATCTAGCAAT TCTGTTGGGCAACTTTCTCATCATCCTCACTGTGACCTCAGATTCCCGCCTTCACACCCCCA TGTACTTTCTGCTTGCAAACCTGTCATTTATAGACGTATGTGTTGCCTCTTTTGCTACCCCT AAAATGATTGCAGACTTTCTGGTTGAGCGCAAGACTATTTCTTTTGATGCCTGCCTGGCCC AGATTTTCTTTGTTCATCTCTTCACTGGCAGTGAAATGGTGCTCCTAGTTTCCATGGCCTAT GACCGTTATGTTGCTATATGCAAACCTCTCCACTACATGACAGTCATGAGCCGTCGTGTAT GTGTTGTGCTCGTCCTCATTTCATGGTTTGTGGGCTTCATCCATACTACCAGCCAGTTGGCA TTCACTGTTAATCTGCCATTTTGTGGTCCTAATAAGGTAGACAGTTTTTTCTGTGACCTTCC TCTAGTGACCAAGTTAGCCTGCATAGACACTTATGTTGTCAGCTTACTAATAGTTGCAGAT AGTGGCTTTCTTTCTCTGAGTTCCTTTCTCCTCTTGGTTGTCTCCTACACTGTAATACTTGTT ACAGTTAGGAATCGCTCCTCTGCAAGCATGGCGAAGGCCCGCTCCACATTGACTGCTCACA TCACTGTGGTCACTTTATTCTTTGGACCATGCATTTTCATCTATGTGTGGCCCTTCAGCAGT TACTCAGTTGACAAAGTCCTTGCTGTATTCTACACCATCTTCACGCTTATTTTAAACCCTGT AATCTACACGCTAAGAAACAAAGAAGTGAAGGCAGCTATGTCAAAACTGAAGAGTCGGTA TCTGAAGCCTAGTCAGGTTTCTGTAGTCATAAGAAATGTTCTTTTCCTAGAAACAAAGTAA
(SEQ ID NO: 410).
AOLFR220 sequences:
MKQYSVGNQHSNYRSLLFPFLCSQMTQLTASGNQTMVTEFLFSMFPHAHRGGLLFFIPLLLIYG FILTGNLIMFIVIQVGMALHTPLYFFISVLSFLEICYTTTTIPKMLSCLISEQKSISVAGCLLQMYFF HSLGITESCVLTAMA-ωRYIAJCNPLRYPTIMIPKLCIQLTVGSCFCGFLLVLPELAWISTLPFCGS NQIHQIFCDFTPVLSLACTDTFLWIVDAIHAAEΓVASFLVIALSYIRIIIVILGMHSAEGHHKAFST CAAHLAVFLLFFGSVAVMYLRFSATYSVFWDTAIAVTFVILAPFFNPIIYSLKNKDMKEAIGRLF HYQKRAGWAGK (SEQ ID NO: 411).
ATGAAGCAATATTCAGTGGGTAATCAACATTCCAATTATAGGAGTCTCTTGTTTCCTTTTCT GTGTTCACAGATGACACAGTTGACGGCCAGTGGGAATCAGACAATGGTGACTGAGTTCCT CTTCTCTATGTTCCCGCATGCGCACAGAGGTGGCCTCTTATTCTTTATTCCCTTGCTTCTCA TCTACGGATTTATCCTAACTGGAAACCTAATAATGTTCATTGTCATCCAGGTGGGCATGGC CCTGCACACCCCTTTGTATTTCTTTATCAGTGTCCTCTCCTTCCTGGAGATCTGCTATACCA CAACCACCATCCCCAAGATGCTGTCCTGCCTAATCAGTGAGCAGAAGAGCATTTCCGTGGC TGGCTGCCTCCTGCAGATGTACTTTTTCCACTCACTTGGTATCACAGAAAGCTGTGTCCTG ACAGCAATGGCCATTGACAGGTACATAGCTATCTGCAATCCACTCCGTTACCCAACCATCA TGATTCCCAAACTTTGTATCCAGCTGACAGTTGGATCCTGCTTTTGTGGCTTCCTCCTTGTG CTTCCTGAGATTGCATGGATTTCCACCTTGCCTTTCTGTGGCTCCAACCAGATCCACCAGAT ATTCTGTGATTTCACACCTGTGCTGAGCTTGGCCTGCACAGATACATTCCTAGTGGTCATT GTGGATGCCATCCATGCAGCGGAAATTGTAGCCTCCTTCCTGGTCATTGCTCTATCCTACA TCCGGATTATTATAGTGATTCTGGGAATGCACTCAGCTGAAGGTCATCACAAGGCCTTTTC CACCTGTGCTGCTCACCTTGCTGTGTTCTTGCTATTTTTTGGCAGTGTGGCTGTCATGTATT TGAGATTCTCAGCCACCTACTCAGTGTTTTGGGACACAGCAATTGCTGTCACTTTTGTTATC CTTGCTCCCTTTTTCAACCCCATCATCTATAGCCTGAAAAACAAGGACATGAAAGAGGCTA TTGGAAGGCTTTTCCACTATCAGAAGAGGGCTGGTTGGGCTGGGAAATAG (SEQ ID NO:
412).
AOLFR221 sequences: MRNLSGGHVEEFVLVGFPTTPPLQLLLFVLFFAIYLLTLLENALIVFTIWLAPSLHRPMYFFLGH LSFLELWYINVTIPRLLAAFLTQDGRVSYVGCMTQLYFFIALACTECVLLAVMAYDRYLAICGP LLYPSLMPSSLATRLAAASWGSGFFSSMMKLLFISQLSYCGPNIINHFFCDISPLLNLTCSDKEQA ELVDFLLALVMILLPLLAWSSYTAIIAAILRIPTSRGRHKAFSTCAAHLAWVIYYSSTLFTYAR PRAMYTFNIM ISVLYTIIWFFNPAIYCLRNKEVKEAFRKTVMGRCHYPRDVQD (SEQ ID NO: 413).
ATGAGAAATTTGAGTGGAGGCCATGTCGAGGAGTTTGTCTTGGTGGGTTTCCCTACCACGC CTCCCCTCCAGCTGCTCCTCTTTGTCCTTTTTTTTGCAATTTACCTTCTGACATTGTTGGAGA ATGCACTTATTGTCTTCACAATATGGCTTGCTCCAAGCCTTCATCGTCCCATGTACTTTTTC CTTGGCCATCTCTCTTTCCTGGAGCTATGGTACATCAATGTCACCATTCCTCGGCTCTTGGC AGCCTTTCTTACCCAGGATGGTAGAGTCTCCTACGTAGGTTGCATGACCCAACTGTACTTC TTTATTGCCTTAGCCTGTACTGAATGTGTGCTGTTGGCAGTTATGGCCTATGATCGCTACCT GGCCATCTGTGGACCCCTCCTTTACCCTAGTCTCATGCCTTCCAGTCTGGCCACTCGCCTTG CTGCTGCCTCTTGGGGCAGTGGCTTCTTCAGCTCCATGATGAAGCTTCTTTTTATTTCCCAA
CCTCACCTGCTCTGACAAGGAGCAAGCAGAGCTAGTAGACTTCCTTCTGGCCCTGGTGATG ATTCTACTCCCTCTATTGGCTGTGGTTTCATCATACACTGCCATCATTGCAGCCATCCTGAG GATCCCTACGTCCAGGGGACGCCACAAAGCCTTTTCCACTTGTGCCGCTCATCTGGCAGTG GTTGTTATCTACTACTCCTCCACTCTCTTCACCTATGCACGGCCCCGGGCCATGTACACCTT CAACCACAACAAGATTATCTCTGTGCTCTACACTATCATTGTACCATTCTTCAACCCAGCCA TCTACTGCCTGAGGAACAAGGAGGTGAAGGAGGCCTTCAGGAAGACAGTGATGGGCAGAT GTCACTATCCTAGGGATGTTCAGGACTGA (SEQ ID NO: 414).
AOLFR222 sequences: MGQTNVTSWRDFVFLGFSSSGELQLLLFALFLSLYLVTLTSNVFIIIAIRLDSHLHTPMYLFLSFL SFSETCYTLGIIPRMLSGLAGGDQAISYVGCAAQMFFSASWACTNCFLLAAMGFDRYVAICAPL HYASHMNPTLCAQLVITSFLTGYLFGLGMTLVIFHLSFCSSHEIQHFFCDTPPVLSLACGDTGPS ELRIFILSLLVLLVSFFFITISYAYILAAILRIPSAEGQKKAFSTCASHLTWIIHYGCASFVYLRPK ASYSLERDQLIAMTYTWTPLLNPIVYSLRTRAIQTALRNAFRGRLLGKG (SEQ ID NO: 415). ATGGGGCAGACCAACGTAACCTCCTGGAGGGATTTTGTCTTCCTGGGCTTCTCCAGTTCTG GGGAGTTGCAGCTCCTTCTCTTTGCCTTGTTCCTCTCTCTGTATCTAGTCACTCTGACCAGC AATGTCTTCATTATCATAGCCATCAGGCTGGATAGCCATCTGCACACCCCCATGTACCTCTT CCTTTCCTTCCTATCCTTCTCTGAGACCTGCTACACTTTGGGCATCATCCCTAGAATGCTCT CTGGCCTGGCTGGGGGGGACCAGGCTATCTCCTATGTGGGCTGTGCTGCCCAGATGTTCTT TTCTGCCTCATGGGCCTGTACTAACTGCTTCCTTCTGGCTGCCATGGGCTTTGACAGATATG TGGCCATCTGTGCTCCACTCCACTATGCCAGCCACATGAATCCTACCCTCTGTGCCCAGCT GGTCATTACTTCCTTCCTGACTGGATACCTCTTTGGACTGGGAATGACACTAGTTATTTTCC ACCTCTCATTCTGCAGCTCCCATGAAATCCAGCACTTTTTTTGTGACACGCCACCTGTGCTG AGCCTAGCCTGTGGAGATACAGGCCCGAGTGAGCTGAGGATCTTTATCCTCAGTCTTTTGG TCCTCTTGGTCTCCTTCTTCTTCATCACCATCTCCTACGCCTACATCTTGGCAGCAATACTG AGGATCCCCTCTGCTGAGGGGCAGAAGAAGGCCTTCTCCACTTGTGCCTCGCACCTTACAG TGGTCATTATTCATTATGGCTGTGCTTCCTTCGTGTACCTGAGGCCCAAAGCCAGCTACTCT CTTGAGAGAGATCAGCTTATTGCCATGACCTATACTGTAGTGACCCCCCTCCTTAATCCCA TTGTTTATAGTCTAAGGACTAGGGCTATACAGACAGCTCTGAGGAATGCTTTCAGAGGGAG ATTGCTGGGTAAAGGATGA (SEQ ID NO: 416).
AOLFR223 sequences:
MEAANESSEGISFVLLGLTTSPGQQRPLFVLFLLLYVASLLGNGLIVAAIQASPALHAPMYFLLA HLSFADLCFASVTVPKMLANLLAHDHSISLAGCLTQMYFFFALGVTDSCLLAAMAYDCYVAIR HPLPYATRMSRAMCAALVGMAWLVSHVHSLLYILLMARLSFCASHQVPHFFCDHQPLLRLSC SDTHHIQLLIFTEGAAVWTPFLLILASYGAIAAAVLQLPSASGRLRAVSTCGSHLAWSLFYGT VIAVYFQATSR-I^AEWGRVATVMYTVVTPMLNPIIYSLWNRDVQGALRALLIGRRISASDS (SEQ ID NO: 417).
ATGGAGGCTGCCAATGAGTCTTCAGAGGGAATCTCATTCGTTTTATTGGGACTGACAACAA GTCCTGGACAGCAGCGGCCTCTCTTTGTGCTGTTCTTGCTCTTGTATGTGGCCAGCCTCCTG GGTAATGGACTCATTGTGGCTGCCATCCAGGCCAGTCCAGCCCTTCATGCACCCATGTACT TCCTGCTGGCCCACCTGTCCTTTGCTGACCTCTGTTTCGCCTCCGTCACTGTGCCCAAGATG TTGGCCAACTTGTTGGCCCATGACCACTCCATCTCGCTGGCTGGCTGCCTGACCCAAATGT ACTTCTTCTTTGCCCTGGGGGTAACTGATAGCTGTCTTCTGGCGGCCATGGCCTATGACTG CTACGTGGCCATCCGGCACCCCCTCCCCTATGCCACGAGGATGTCCCGGGCCATGTGCGCA GCCCTGGTGGGAATGGCATGGCTGGTGTCCCACGTCCACTCCCTCCTGTATATCCTGCTCA TGGCTCGCTTGTCCTTCTGTGCTTCCCACCAAGTGCCCCACTTCTTCTGTGACCACCAGCCT CTCTTAAGGCTCTCGTGCTCTGACACCCACCACATCCAGCTGCTCATCTTCACCGAGGGCG CCGCAGTGGTGGTCACTCCCTTCCTGCTCATCCTCGCCTCCTATGGGGCCATCGCAGCTGC CGTGCTCCAGCTGCCCTCAGCCTCTGGGAGGCTCCGGGCTGTGTCCACCTGTGGCTCCCAC CTGGCTGTGGTGAGCCTCTTCTATGGGACAGTCATTGCAGTCTACTTCCAGGCCACATCCC GACGCGAGGCAGAGTGGGGCCGTGTGGCCACTGTCATGTACACTGTAGTCACCCCCATGC TGAACCCCATCATCTACAGCCTCTGGAATCGCGATGTACAGGGGGCACTCCGAGCCCTTCT CATTGGGCGAAGGATCTCAGCTAGTGACTCCTGA (SEQ ID NO: 418).
AOLFR224 sequences:
MGSFNTSFEDGFILVGFSDWPQLEPILFVFIFIFYSLTLFGNTIIIALSWLDLRLHTPMYFFLSHLSL LDLCFTTSTVPQLLINLCGVDRTITRGGCVAQLFIYLALGSTECVLLWMAFDRYAAVCRPLHY MAIMHPHLCQTLAIASWGAGFVNSLIQTGLAMAMPLCGHRLNHFFCEMPVFLKLACADTEGT EA-KMFVARVIVVAVPAALILGSYVHIAHAVLRVKSTAGRRKAFGTCGSHLLVVFLFYGSAIYT YLQSIHNYSEREGKFVALFYTIITPILNPLIYTLR-NKDVKGALWKVLWRGRDSG (SEQ ID NO: 419).
ATGGGAAGTTTCAACACCAGTTTTGAAGATGGCTTCATTTTGGTGGGATTCTCAGATTGGC CGCAACTGGAGCCCATCCTGTTTGTCTTTATTTTTATTTTCTACTCCCTAACTCTCTTTGGC AACACCATCATCATCGCTCTCTCCTGGCTAGACCTTCGGCTGCACACACCTATGTACTTCTT TCTCTCTCATCTGTCCCTCCTGGACCTCTGCTTCACCACCAGCACCGTGCCCCAGCTCCTGA TCAACCTTTGCGGGGTGGACCGCACCATCACCCGTGGAGGGTGTGTGGCTCAGCTCTTCAT CTACCTAGCCCTGGGCTCCACAGAGTGTGTGCTCCTGGTGGTGATGGCCTTTGACCGCTAT GCTGCTGTCTGTCGTCCACTCCACTACATGGCCATCATGCACCCCCATCTCTGCCAGACCCT GGCTATCGCCTCCTGGGGTGCGGGTTTCGTGAACTCTCTGATCCAGACAGGTCTCGCAATG GCCATGCCTCTCTGTGGCCATCGACTGAATCACTTCTTCTGTGAGATGCCTGTATTTCTGAA GTTGGCTTGTGCGGACACAGAAGGAACAGAGGCCAAGATGTTTGTGGCCCGAGTCATAGT CGTGGCTGTTCCTGCAGCACTTATTCTAGGCTCCTATGTGCACATTGCTCATGCAGTGCTG AGGGTGAAGTCAACGGCTGGGCGCAGAAAGGCTTTTGGGACTTGTGGGTCCCACCTCCTA GTAGTTTTCCTTTTTTATGGCTCAGCCATCTACACATATCTCCAATCCATCCACAATTATTC TGAGCGTGAGGGAAAATTTGTTGCCCTTTTTTATACTATAATTACCCCCATTCTCAATCCTC TCATTTATACACTAAGAAACAAGGACGTGAAGGGGGCTCTGTGGAAAGTACTATGGAGGG GCAGGGACTCAGGGTAG (SEQ ID NO: 420).
AOLFR225 sequences:
MENYNQTSTDFILLGLFPPSIIDLFFFILIVFIFLMALIGNLSMILLIFLDTHLHTPMYFLLSQLSLID LNYISTIVPKMASDFLHGNKSISFTGCGIQSFFFLALGGAEALLLASMAYDRYIAICFPLHYLIRM SKRVCVLMITGSWIIGSINACAHTVYVLHIPYCRSRAINHFFCDVPAMVTLACMDTWVYEGTV FLSATIFLVTPFIGISCSYGQVLFAVYHMKSAEGRKKAYLTCSTHLTVVTFYYAPFVYTYLRPRS LRSPTEDKVLAVFYTILTPMLNPIIYSLRNKEVMGALTRVSQRICSVKM (SEQ ID NO: 421).
ATGGAAAATTACAATCAAACATCAACTGATTTCATCTTATTGGGGCTGTTTCCACCATCAA TAATTGACCTTTTCTTCTTCATTCTCATTGTTTTCATTTTCCTGATGGCTCTAATTGGAAACC TGTCCATGATTCTTCTCATCTTCTTGGACACCCATCTCCACACACCCATGTATTTCCTACTG AGTCAGCTCTCCCTCATTGACCTAAATTACATCTCCACCATTGTTCCTAAGATGGCATCTGA TTTTCTGCATGGAAACAAGTCTATCTCCTTCACTGGGTGTGGGATTCAGAGTTTCTTCTTCT TGGCATTAGGAGGTGCAGAAGCACTACTTTTGGCATCTATGGCCTATGATCGTTACATTGC TATTTGCTTTCCTCTCCACTATCTCATCCGCATGAGCAAAAGAGTGTGTGTGCTGATGATA ACAGGGTCTTGGATCATAGGCTCGATCAATGCTTGTGCTCACACTGTATATGTACTCCATA TTCCTTATTGCCGATCCAGGGCCATCAATCATTTCTTCTGTGATGTCCCAGCAATGGTGACT CTGGCCTGCATGGACACCTGGGTCTATGAGGGCACAGTGTTTTTGAGTGCCACCATCTTTC TCGTGTTTCCCTTCATTGGTATTTCATGTTCCTATGGCCAGGTTCTCTTTGCTGTCTACCAC ATGAAATCTGCAGAAGGGAGGAAGAAAGCCTATTTGACCTGCAGCACCCACCTCACTGTA GTAACTTTCTACTATGCACCTTTTGTCTACACTTATCTACGTCCAAGATCCCTGCGATCTCC AACAGAGGACAAGGTTCTGGCTGTCTTCTACACCATCCTCACCCCAATGCTCAACCCCATC ATCTATAGCCTGAGGAACAAGGAGGTGATGGGGGCCCTGACACGAGTGAGTCAGAGAATC TGCTCTGTGAAAATGTAG (SEQ ID NO: 422).
AOLFR226 sequences:
MEWRNHSGRVSEFVLLGFPAPAPLQVLLFALLLLAYVLVLTENTLIIMAIRNHSTLHKPMYFFL ANMSFLEIWYVTVTIPKMLAGFVGSKQDHGQLISFEGCMTQLYFFLGLGCTECVLLAVMAYD RYMAICYPLHYPVIVSGRLCVQMAAGSWAGGFGISMVKVFLISGLSYCGPNIINHFFCDVSPLL NLSCTDMSTAELTDFILAIFILLGPLSVTGASYVAITGAVMHISSAAGRYKAFSTCASHLTWIIF YAASIFIYARPKALSAFDTNKLVSVLYAVIVPLLNPIIYCLRNQEVKRALCCTLHLYQHQDPDP KKASRNV (SEQ ID NO: 423).
ATGGAGTGGCGGAACCATAGTGGGAGAGTGAGTGAGTTTGTGTTGCTGGGCTTCCCTGCT CCTGCGCCACTACAGGTACTATTGTTTGCCCTTTTGCTGCTGGCCTATGTGTTGGTGCTGAC TGAGAACACACTCATCATTATGGCAATTAGGAACCATTCTACCCTCCACAAACCCATGTAC TTTTTTCTAGCTAATATGTCCTTTCTGGAGATCTGGTATGTCACTGTCACTATTCCCAAGAT GCTTGCTGGCTTTGTTGGATCCAAACAGGATCATGGACAGCTAATCTCCTTTGAGGGATGC ATGACACAGCTCTACTTTTTCCTTGGCTTGGGCTGCACTGAGTGTGTCCTTCTCGCTGTTAT GGCCTATGATCGCTATATGGCCATCTGCTATCCTCTCCACTACCCAGTCATTGTCAGTGGCC GGCTGTGTGTGCAGATGGCTGCTGGCTCTTGGGCTGGAGGTTTTGGCATCTCCATGGTCAA AGTTTTTCTTATTTCTGGCCTCTCTTACTGTGGCCCCAACATCATCAACCACTTTTTCTGTG ATGTCTCTCCATTGCTCAACCTCTCATGCACTGATATGTCCACAGCAGAGCTTACAGATTTC ATCCTGGCCATTTTTATTCTTCTAGGGCCACTCTCTGTCACTGGGGCCTCCTATGTGGCCAT TACTGGTGCTGTGATGCACATATCTTCGGCTGCTGGACGCTATAAGGCCTTTTCCACCTGT GCCTCTCATCTCACTGTTGTGATAATCTTCTATGCAGCCAGTATCTTCATCTATGCTCGGCC AAAGGCACTCTCAGCTTTTGACACCAACAAGTTGGTCTCTGTACTGTATGCTGTCATTGTA CCATTGCTCAATCCCATCATTTACTGCCTGCGCAATCAAGAGGTCAAGAGAGCCCTATGCT GTACTCTGCACCTGTACCAGCACCAGGATCCTGACCCCAAGAAAGCTAGCAGAAATGTATA G (SEQ ID NO: 424).
AOLFR227 sequences:
MEPQNTSTVTNFQLLGFQNLLEWQALLFVIFLLIYCLTIIGNWIITVVSQGLRLHSPMYMFLQH LSFLEVWYTSTTVPLLLANLLSWGQAISFSACMAQLYFFVFLGATECFLLAFMAYDRYLAICSP LRYPFLMHRGLCARLVWSWCTGVSTGFLHSMMISRLDFCGRNQINHFFCDLPPLMQLSCSRV YITEVTIFILSIAVLCICFFLTLGPYVFIVSSILRIPSTSGRRKTFSTCGSHLAVVTLYYGTMISMYV CPSPHLLPEINKIISWYTVVTPLLNPVIYSLRNKDFKEAVRKVMiαiKCGILWSTSKRKF
LY (SEQ ID NO: 425).
ATGGAGCCCCAAAATACCTCCACTGTGACTAACTTTCAGCTGTTAGGATTCCAGAACCTTC TTGAATGGCAGGCCCTGCTCTTTGTCATTTTCCTGCTCATCTACTGCCTGACCATTATAGGG AATGTTGTCATCATCACCGTGGTGAGCCAGGGCCTGCGACTGCACTCCCCTATGTACATGT TCCTCCAGCATCTCTCCTTTCTGGAGGTCTGGTACACGTCCACCACTGTGCCCCTTCTCCTA GCCAACCTGCTGTCCTGGGGCCAAGCCATCTCCTTCTCTGCCTGCATGGCACAGCTCTACT TCTTCGTATTCCTCGGCGCCACCGAGTGCTTTCTCCTGGCCTTCATGGCCTATGACCGTTAC CTGGCCATCTGCAGCCCACTCCGCTACCCCTTTCTCATGCATCGTGGGCTATGTGCCAGGTT GGTGGTGGTCTCATGGTGCACAGGGGTCAGCACAGGCTTTCTGCATTCCATGATGATTTCC AGGTTGGACTTCTGTGGGCGCAATCAGATTAACCATTTCTTCTGCGACCTCCCGCCACTCA TGCAGCTCTCCTGTTCCAGAGTTTATATCACCGAGGTGACCATCTTCATCCTGTCAATTGCC GTGCTGTGCATTTGTTTTTTTCTGACACTGGGGCCCTATGTTTTCATTGTGTCCTCCATATT GAGAATCCCTTCCACCTCTGGCCGGAGAAAGACCTTTTCCACATGTGGCTCCCACCTGGCT GTTGTCACTCTCTACTACGGGACCATGATCTCCATGTATGTGTGTCCCAGTCCCCACCTGTT GCCTGAAATCAACAAGATCATTTCTGTCTTCTACACTGTGGTCACACCACTGCTGAACCCA GTTATCTACAGCTTGAGGAACAAAGACTTCAAAGAAGCTGTTAGAAAGGTCATGAGAAGG AAATGTGGTATTCTATGGAGTACAAGTAAAAGGAAGTTCCTTTATTAG (SEQ ID NO: 426).
AOLFR229 sequences:
MFYVNQIPFQLYHISFVYPTELWSRAIIPCMPTLSFWVCSATPVSPGFFALILLVFVTSIASNWK IILIHIDSRLHTPMYFLLSQLSLRDILYISTIVPKMLVDQVMSQRAISFAGCTAQHFLYLTLAGAE FFLLGLMSCDRYVAICNPLHYPDLMSPvKICWLIVAAAWLGGSIDGFLLTPVTMQFPFCASREIN HFFCEVP ALLKLSCTDTS AYETAMYVCCIMMLLIPFS VISGS YTRILITVYRMSEAEGRRKAVAT CSSHMVVVSLFYGAAMYTYVLPHSYHTPEQDKAVSAFYTILTPMLNPLIYSLR-NKDVTGALQK WGRCVSSGKVTTF (SEQ ID NO: 427).
ATGTTTTATGTAAATCAGATACCTTTCCAACTTTATCATATCTCTTTCGTGTACCCTACAGA GCTATGGAGCAGAGCAATTATTCCGTGTATGCCGACTTTATCCTTCTGGGTTTGTTCAGCA ACGCCCGTTTCCCCTGGCTTCTTTGCCCTCATTCTCCTGGTCTTTGTGACCTCCATAGCCAG CAACGTGGTCAAGATCATTCTCATCCACATAGACTCCCGCCTCCACACCCCCATGTACTTC CTGCTCAGCCAGCTCTCCCTCAGGGACATCCTGTATATTTCCACCATTGTGCCCAAAATGCT GGTCGACCAGGTGATGAGCCAGAGAGCCATTTCCTTTGCTGGATGCACTGCCCAACACTTC CTCTACTTGACCTTAGCAGGGGCTGAGTTCTTCCTCCTAGGACTCATGTCCTGTGATCGCTA CGTAGCCATCTGCAACCCTCTGCACTATCCTGACCTCATGAGCCGCAAGATCTGCTGGTTG ATTGTGGCGGCAGCCTGGCTGGGAGGGTCTATCGATGGTTTCTTGCTCACCCCCGTCACCA TGCAGTTCCCCTTCTGTGCCTCTCGGGAGATCAACCACTTCTTCTGCGAGGTGCCTGCCCTT CTGAAGCTCTCCTGCACGGACACATCAGCCTACGAGACAGCCATGTATGTCTGCTGTATTA TGATGCTCCTCATCCCTTTCTCTGTGATCTCGGGCTCTTACACAAGAATTCTCATTACTGTT TATAGGATGAGCGAGGCAGAGGGGAGGCGAAAGGCTGTGGCCACCTGCTCCTCACACATG GTGGTTGTCAGCCTCTTCTATGGGGCTGCCATGTACACATACGTGCTGCCTCATTCTTACCA CACCCCTGAGCAGGACAAAGCTGTATCTGCCTTCTACACCATCCTCACTCCCATGCTCAAT CCACTCATTTACAGCCTTAGGAACAAGGATGTCACGGGGGCCCTACAGAAGGTTGTTGGG AGGTGTGTGTCCTCAGGAAAGGTAACCACTTTCTAA (SEQ ID NO: 428). AOLFR230 sequences:
MGMEGLLQNSTNFVLTGLITHPAFPGLLFAIVFSIFWAITANLVMILLIHMDSRLHTPMYFLLS QLSIMDTIYICITVPKMLQDLLSKDKTISFLGCAVQIFLYLTLIGGEFFLLGLMAYDRYVAVCNP LRYPLLMNRRVCLFMWGSWVGGSLDGFMLTPVTMSFPFCRSREΠSΓHFFCEIPAVLKLSCTDTS LYETLMYACCVLMLLIPLSVISVSYTHILLTVHRMNSAEGRRKAFATCSSHIMVVSVFYGAAFY TNVLPHSYHTPEKTJKVVSAFYTILTPMLNPLIYSLRNKDVAAALRKVLGRCGSSQSIRVATVIR KG (SEQ ID NO: 429).
ATGGGCATGGAGGGTCTTCTCCAGAACTCCACTAACTTCGTCCTCACAGGCCTCATCACCC ATCCTGCCTTCCCCGGGCTTCTCTTTGCAATAGTCTTCTCCATCTTTGTGGTGGCTATAACA GCCAACTTGGTCATGATTCTGCTCATCCACATGGACTCCCGCCTCCACACACCCATGTACTT CTTGCTCAGCCAGCTCTCCATCATGGATACCATCTACATCTGTATCACTGTCCCCAAGATGC TCCAGGACCTCCTGTCCAAGGACAAGACCATTTCCTTCCTGGGCTGTGCAGTTCAGATCTT CCTCTACCTGACCCTGATTGGAGGGGAATTCTTCCTGCTGGGTCTCATGGCCTATGACCGC TATGTGGCTGTGTGCAACCCTCTACGGTACCCTCTCCTCATGAACCGCAGGGTTTGCTTATT CATGGTGGTCGGCTCCTGGGTTGGTGGTTCCTTGGATGGGTTCATGCTGACTCCTGTCACT ATGAGTTTCCCCTTCTGTAGATCCCGAGAGATCAATCACTTTTTCTGTGAGATCCCAGCCGT GCTGAAGTTGTCTTGCACAGACACGTCACTCTATGAGACCCTGATGTATGCCTGCTGCGTG CTGATGCTGCTTATCCCTCTATCTGTCATCTCTGTCTCCTACACGCACATCCTCCTGACTGT CCACAGGATGAACTCTGCTGAGGGCCGGCGCAAAGCCTTTGCTACGTGTTCCTCCCACATT ATGGTGGTGAGCGTTTTCTACGGGGCAGCCTTCTACACCAACGTGCTGCCCCACTCCTACC ACACTCCAGAGAAAGATAAAGTGGTGTCTGCCTTCTACACCATCCTCACCCCCATGCTCAA CCCACTCATCTACAGCTTGAGGAATAAAGATGTGGCTGCAGCTCTGAGGAAAGTACTAGG GAGATGTGGTTCCTCCCAGAGCATCAGGGTGGCGACTGTGATCAGGAAGGGCTAG (SEQ ID NO: 430).
AOLFR231 sequences:
MERANHSVVSEFILLGLSKSQNLQILFFLGFSVVFVGIVLGNLLILVTVTFDSLLHTPMYFLLSNL SCIDMILASFATPKMIVDFLRERKTISWWGCYSQMFFMHLLGGSEMMLLVAMAIDRYVAICKP LHYMTIMSPRVLTGLLLSSYAVGFVHSSSQMAFMLTLPFCGPNVIDSFFCDLPLVIKLACKDTYI LQLLVIADSGLLSLVCFLLLLVSYGVIIFSVRYRAASRSSKAFSTLSAHITVVTLFFAPCVFIYVW
PFSRYSVDKILSVFYTIFTPLLNPΠYTLRNQEVKAAIKKRLCI (SEQ ID NO: 431).
ATGGAAAGAGCAAACCATTCAGTGGTATCGGAATTTATTTTGTTGGGACTTTCCAAATCTC AAAATCTTCAGATTTTATTCTTCTTGGGATTCTCTGTGGTCTTCGTGGGGATTGTGTTAGGA AACCTGCTCATCTTGGTGACTGTGACCTTTGATTCGCTCCTTCACACACCAATGTATTTTCT GCTTAGCAACCTCTCCTGCATTGATATGATCCTGGCTTCTTTTGCTACCCCTAAGATGATTG TAGATTTCCTCCGAGAACGTAAGACCATCTCATGGTGGGGATGTTATTCCCAGATGTTCTT TATGCACCTCCTGGGTGGGAGTGAGATGATGTTGCTTGTAGCCATGGCAATAGACAGGTAT GTTGCCATATGCAAACCCCTCCATTACATGACCATCATGAGCCCACGGGTGCTCACTGGGC TACTGTTATCCTCCTATGCAGTTGGATTTGTGCACTCATCTAGTCAAATGGCTTTCATGTTG ACTTTGCCCTTCTGTGGTCCCAATGTTATAGACAGCTTTTTCTGTGACCTTCCCCTTGTGAT TAAACTTGCCTGCAAGGACACCTACATCCTACAGCTCCTGGTCATTGCTGACAGTGGGCTC CTGTCACTGGTCTGCTTCCTCCTCTTGCTTGTCTCCTATGGAGTCATAATATTCTCAGTTAG GTACCGTGCTGCTAGTCGATCCTCTAAGGCTTTCTCCACTCTCTCAGCTCACATCACAGTTG TGACTCTGTTCTTTGCTCCGTGTGTCTTTATCTACGTCTGGCCCTTCAGCAGATACTCGGTA GATAAAATTCTTTCTGTGTTTTACACAATTTTCACACCTCTCTTAAATCCTATTATTTATAC ATTAAGAAATCAAGAGGTAAAAGCAGCCATTAAAAAAAGACTCTGCATATAA (SEQ ID NO: 432).
AOLFR232 sequences:
MDNITWMASHTGWSDFILMGLFRQSKHPMANITWMANHTGWSDFILLGLFRQSKHPALLCV VIFV LMALSGNAVLILLIHCDAHLHTPMYFFISQLSLMDMAYISVTWKMLLDQVMGVNKIS APECGMQMFFYVTLAGSEFFLLATMAYDRYVAICHPLRYPVLMNHRVCLFLSSGCWFLGSVD GFTFTPITMTFPFRGSREIHHFFCEVPAVLNLSCSDTSLYEIFMYLCCVLMLLIPWIISSSYLLILL TIHGMNSAEGRKKAFATCSSHLTVVILFYGAAIYTYMLPSSYHTPEKI)MMVSWYTILTPVVNP LIYSLRNKDVMGALK-KMLTVEPAFQKAME (SEQ ID NO: 433).
ATGGACAACATCACCTGGATGGCCAGCCACACTGGATGGTCGGATTTCATCCTGATGGGAC TCTTCAGACAATCCAAACATCCAATGGCCAATATCACCTGGATGGCCAACCACACTGGATG GTCGGATTTCATCCTGTTGGGACTCTTCAGACAATCCAAACATCCAGCACTACTTTGTGTG GTCATTTTTGTGGTTTTCCTGATGGCGTTGTCTGGAAATGCTGTCCTGATCCTTCTGATACA CTGTGACGCCCACCTCCACACCCCCATGTACTTTTTCATCAGTCAATTGTCTCTCATGGACA TGGCGTACATTTCTGTCACTGTGCCCAAGATGCTCCTGGACCAGGTCATGGGTGTGAATAA GATCTCAGCCCCTGAGTGTGGGATGCAGATGTTCTTCTACGTGACACTAGCAGGTTCAGAA TTTTTCCTTCTAGCCACCATGGCCTATGACCGCTACGTGGCCATCTGCCATCCTCTCCGTTA CCCTGTCCTCATGAACCATAGGGTGTGTCTCTTCCTGTCATCAGGCTGCTGGTTCCTGGGCT CAGTGGATGGCTTCACATTCACTCCCATCACCATGACCTTCCCCTTCCGTGGATCCCGGGA GATTCATCATTTCTTCTGTGAAGTTCCTGCTGTATTGAATCTCTCCTGCTCAGACACCTCAC TCTATGAGATTTTCATGTACTTGTGCTGTGTCCTCATGCTCCTCATCCCTGTGGTGATCATT TCAAGCTCCTATTTACTCATCCTCCTCACCATCCACGGGATGAACTCAGCAGAGGGCCGGA AAAAGGCCTTTGCCACCTGCTCCTCCCACCTGACTGTGGTCATCCTCTTCTATGGGGCTGCC ATCTACACCTACATGCTCCCCAGCTCCTACCACACCCCTGAGAAGGACATGATGGTATCTG TCTTCTATACCATCCTCACTCCAGTGGTGAACCCTTTAATCTATAGTCTTAGGAATAAGGAT GTCATGGGGGCTCTGAAGAAAATGTTAACAGTGGAACCTGCCTTTCAAAAAGCTATGGAG TAG (SEQ ID NO: 434).
AOLFR233 sequences:
MANITRMANHTGKLDFILMGLFRRSKHPALLSWIFVVFLKALSGNAVLILLIHCDAHLHSPMY FFISQLSLMDMAYISVTVPKMLLDQVMGVNKVSAPECGMQMFLYLTLAGSEFFLLATMAYDR YVAICHPLRYPVLMNHRVCLFLASGCWFLGSVDGFMLTPITMSFPFCRSWEIHHFFCEVPAVTI LSCSDTSLYETLMYLCCVLMLLIPVTIISSSYLLILLTVHRMNSAEGRKKAFATCSSHLTVVILFY GAAVYTYMLPSSYHTPEKDMMVSVFYTILTPVLNPLIYSLRNKDVMGALKKMLTVRFVL (SEQ ID NO: 435).
ATGGCCAACATCACCAGGATGGCCAACCACACTGGAAAGTTGGATTTCATCCTCATGGGAC TCTTCAGACGATCCAAACATCCAGCTCTACTTAGTGTGGTCATCTTTGTGGTTTTCCTGAAG GCGTTGTCTGGAAATGCTGTCCTGATCCTTCTGATACACTGTGACGCCCACCTCCACAGCC CCATGTACTTTTTCATCAGTCAATTGTCTCTCATGGACATGGCGTACATTTCTGTCACTGTG CCCAAGATGCTCCTGGACCAGGTCATGGGTGTGAATAAGGTCTCAGCCCCTGAGTGTGGG ATGCAGATGTTCCTCTATCTGACACTAGCAGGTTCGGAATTTTTCCTTCTAGCCACCATGGC CTATGACCGCTACGTGGCCATCTGCCATCCTCTCCGTTACCCTGTCCTCATGAACCATAGG GTCTGTCTTTTCCTGGCATCGGGCTGCTGGTTCCTGGGCTCAGTGGATGGCTTCATGCTCAC TCCCATCACCATGAGCTTCCCCTTCTGCAGATCCTGGGAGATTCATCATTTCTTCTGTGAAG TCCCTGCTGTAACGATCCTGTCCTGCTCAGACACCTCACTCTATGAGACCCTCATGTACCTA TGCTGTGTCCTCATGCTCCTCATCCCTGTGACGATCATTTCAAGCTCCTATTTACTCATCCT CCTCACCGTCCACAGGATGAACTCAGCAGAGGGCCGGAAAAAGGCCTTTGCCACCTGCTC CTCCCACCTGACTGTGGTCATCCTCTTCTATGGGGCTGCCGTCTACACCTACATGCTCCCCA GCTCCTACCACACCCCTGAGAAGGACATGATGGTATCTGTCTTCTATACCATCCTCACTCC GGTGCTGAACCCTTTAATCTATAGTCTTAGGAATAAGGATGTCATGGGGGCTCTGAAGAAA ATGTTAACTGTGAGATTCGTCCTTTAG (SEQ ID NO: 436).
AOLFR234 sequences:
MPNSTTVMEFLLMRFSDVWTLQILHSASFFMLYLVTLMGNILIVTVTTCDSSLHMPMYFFLRN LSILD ACYISVTVPTSCVNSLLDSTTISKAGCVAQ VFLVVFFVYVELLFLTIMAHDRYVAVCQPL HYPVIVNSRICIQMTLASLLSGLVYAGMHTGSTFQLPFCRSNVIHQFFCDIPSLLKLSCSDTFSNE VMIWSALGVGGGCFIFIIRSYIHIFSTVLGFPRGADRTKAFSTCIPHILWSVFLSSCSSVYLRPP AIPAATQDLILSGFYSMPPLFNPIIYSLRNKQIKVAIKKIMKRIFYSENV (SEQ ID NO: 437).
ATGCCCAATTCAACCACCGTGATGGAATTTCTCCTCATGAGGTTTTCTGATGTGTGGACAC TACAGATTTTACATTCTGCATCCTTCTTTATGTTGTATTTGGTAACTCTAATGGGAAACATC CTCATTGTGACCGTCACCACCTGTGACAGCAGCCTTCACATGCCCATGTACTTCTTCCTCAG GAATCTGTCTATCTTGGATGCCTGCTACATTTCTGTTACAGTCCCTACCTCATGTGTCAATT CCCTACTGGACAGCACCACCATTTCTAAGGCGGGATGTGTAGCTCAGGTCTTCCTCGTGGT TTTTTTTGTATATGTGGAGCTTCTGTTTCTCACCATTATGGCTCATGACCGCTATGTGGCTG TCTGCCAGCCACTTCACTACCCTGTGATCGTGAACTCTCGAATCTGCATCCAGATGACACT GGCCTCCCTACTCAGTGGTCTTGTCTATGCAGGCATGCACACTGGCAGCACATTCCAGCTG CCCTTCTGTCGGTCCAACGTTATTCATCAATTCTTCTGTGACATCCCCTCTCTGCTGAAGCT CTCTTGCTCTGACACCTTCAGCAATGAGGTCATGATTGTTGTCTCTGCTCTGGGGGTAGGT GGCGGCTGTTTCATCTTTATCATCAGGTCTTACATTCACATCTTTTCGACCGTGCTCGGGTT TCCAAGAGGAGCAGACAGAACAAAGGCCTTTTCCACCTGCATCCCTCACATCCTGGTGGTG TCAGTCTTCCTCAGTTCATGCTCTTCTGTGTACCTCAGGCCACCTGCGATACCTGCAGCCAC CCAGGATCTGATCCTTTCTGGTTTTTATTCCATAATGCCTCCCCTCTTTAACCCTATTATTTA CAGTCTTAGAAATAAGCAAATAAAGGTGGCCATCAAGAAAATCATGAAGAGAATTTTTTA TTCAGAAAATGTGTAA (SEQ ID NO: 438).
AOLFR235 sequences:
MDGVNDSSLQGFVLMGISDHPQLEMIFFIAILFSYLLTLLGNSTIILLSRLEARLHTPMYFFLSNL SSLDLAFATSSVPQMLINLWGPGKTISYGGCITQLYVFLWLGATECILLWMAFDRYVAVCRPL RYTAIMNPQLCWLLAVIACLGGLGNSVIQSTFTLQLPLCGHRRVEGFLCEVPAMIKLACGDTSL NQAVLNGVCTFFTAVPLSIIVISYCLIAQAVLKIRSAEGRRKAFNTCLSHLLVVFLFYGSASYGY LLPAKNSKQDQGKFISLFYSLVTPMVNPLIYTLRNMEVKGALR-RLLGKGREVG (SEQ ID NO: 439).
ATGGACGGGGTGAATGATAGCTCCTTGCAGGGCTTTGTTCTGATGGGCATATCAGACCATC CCCAGCTGGAGATGATCTTTTTTATAGCCATCCTCTTCTCCTATTTGCTGACCCTACTTGGG AACTCAACCATCATCTTGCTTTCCCGCCTGGAGGCCCGGCTCCATACACCCATGTACTTCTT CCTCAGCAACCTCTCCTCCTTGGACCTTGCTTTCGCTACTAGTTCAGTCCCCCAAATGCTGA TCAATTTATGGGGACCAGGCAAGACCATCAGCTATGGTGGCTGCATAACCCAGCTCTATGT CTTCCTTTGGCTGGGGGCCACCGAGTGCATCCTGCTGGTGGTGATGGCATTTGACCGCTAC GTGGCAGTGTGCCGGCCCCTCCGCTACACCGCCATCATGAACCCCCAGCTCTGCTGGCTGC TGGCTGTGATTGCCTGCCTGGGTGGCTTGGGCAACTCTGTGATCCAGTCAACATTCACTCT GCAGCTCCCATTGTGTGGGCACCGGAGGGTGGAGGGATTCCTCTGCGAGGTGCCTGCCAT GATCAAACTGGCCTGTGGCGACACAAGTCTCAACCAGGCTGTGCTCAATGGTGTCTGCACC TTCTTCACTGCAGTCCCACTAAGCATCATCGTGATCTCCTACTGCCTCATTGCTCAGGCAGT GCTGAAAATCCGCTCTGCAGAGGGGAGGCGAAAGGCGTTCAATACGTGCCTCTCCCATCT GCTGGTGGTGTTCCTCTTCTATGGCTCAGCCAGCTATGGGTATCTGCTTCCGGCCAAGAAC AGCAAACAGGACCAGGGCAAGTTCATTTCCCTGTTCTACTCGTTGGTCACACCCATGGTGA ATCCCCTCATCTACACGCTGCGGAACATGGAAGTGAAGGGCGCACTGAGGAGGTTGCTGG GGAAAGGAAGAGAAGTTGGCTGA (SEQ ID NO: 440).
AOLFR236 sequences:
MTSQERDTAIYSINVSFVAKGMTSRSVCEKMTMTTENPNQTVVSHFFLEGLRYTAKHSSLFFL LFLLIYSITVAGNLLILLTVGSDSHLSLPMYHFLGHLSFLDACLSTVTVPKVMAGLLTLDGKVIS FEGCAVQLYCFHFLASTECFLYTVMAYDRYLAICQPLHYPVAMNRRMCAEMAGITWAIGATH AAIHTSLTFRLLYCGPCHIAYFFCDIPPVLKLACTDTTINELVMLASIGIVAAGCLILIVISYIFIVA AVLRIRTAQGRQRAFSPCTAQLTGVLLYYVPPVCIYLQPRSSEAGAGAPAVFYTIVTPMLNPFIY TLR-NKEVKHALQRLLCSSFRESTAGSPPP (SEQ ID NO: 441).
ATGACATCTCAGGAAAGGGATACAGCTATTTATTCCATTAATGTCAGTTTTGTTGCAAAGG GGATGACTAGCCGCTCTGTGTGTGAGAAGATGACCATGACAACGGAGAACCCCAACCAGA CTGTGGTGAGCCACTTCTTCCTGGAGGGTTTGAGGTACACCGCTAAACATTCTAGCCTCTT CTTCCTCCTCTTCCTCCTCATCTACAGCATCACTGTGGCTGGGAATCTCCTCATCCTCCTAA CTGTGGGCTCTGACTCTCACCTCAGCTTACCCATGTACCACTTCCTGGGGCACCTCTCCTTC CTGGATGCCTGTTTGTCTACAGTGACAGTGCCCAAGGTCATGGCAGGCCTGCTGACTCTGG ATGGGAAGGTGATCTCCTTTGAGGGCTGTGCCGTACAGCTTTATTGCTTCCACTTTCTGGC CAGCACTGAGTGCTTCCTGTACACAGTCATGGCCTATGACCGCTATCTGGCTATCTGTCAA CCCCTGCACTACCCAGTGGCCATGAACAGAAGGATGTGTGCAGAAATGGCTGGAATCACC TGGGCCATAGGTGCCACGCACGCTGCAATCCACACCTCCCTCACCTTCCGCCTGCTCTACT GTGGGCCTTGCCACATTGCCTACTTCTTCTGCGACATACCCCCTGTCCTAAAGCTCGCCTGT ACAGACACCACCATTAATGAGCTAGTCATGCTTGCCAGCATTGGCATCGTGGCTGCAGGCT GCCTCATCCTCATCGTTATTTCCTACATCTTCATCGTGGCAGCTGTGTTGCGCATCCGCACA GCCCAGGGCCGGCAGCGGGCCTTCTCCCCCTGCACTGCCCAGCTCACTGGGGTGCTCCTGT ACTACGTGCCACCTGTCTGTATCTACCTGCAGCCTCGCTCCAGTGAGGCAGGAGCTGGGGC CCCTGCTGTCTTCTACACAATCGTAACTCCAATGCTCAACCCATTCATTTACACTTTGCGGA ACAAGGAGGTGAAGCATGCTCTGCAAAGGCTTTTGTGCAGCAGCTTCCGAGAGTCTACAG CAGGCAGCCCACCCCCATAG (SEQ ID NO: 442).
AOLFR237 sequences:
MDQRl^π^TRVKEFTFLGITQSRELSQVLFTFLFLVYMTTLMGNFLIMVTVTCESHLHTPMYFLL RNLSILDICFSSITAPKVLIDLLSETKTISFSGCVTQMFFFHLLGGADVFSLSVMAFDRYIAISKPL HYMTIMSRGRCTGLIVGFLGGGLVHSIAQISLLLPLPVCGPNVLDTFYCDVPQVLKLACTDTFT LELLMISNNGLVSWFVFFFLLISYTVILMMLRSHTGEGRRKAISTCTSHITVVTLHFVPCIYVYA RPFTALPTDTAISVTFTVISPLLNPIIYTLRNQEMKLAMRKLKR-RLGQSERILIQ (SEQ ID NO: 443).
ATGGATCAGAGAAATTACACCAGAGTGAAAGAATTTACCTTCCTGGGAATTACTCAGTCCC GAGAACTGAGCCAGGTCTTATTTACCTTCCTGTTTTTGGTGTACATGACAACTCTAATGGG AAACTTCCTCATCATGGTTACAGTTACCTGTGAATCTCACCTTCATACGCCCATGTACTTCC TGCTCCGCAACCTGTCTATTCTTGACATCTGCTTTTCCTCCATCACAGCTCCTAAGGTCCTG ATAGATCTTCTATCAGAGACAAAAACCATCTCCTTCAGTGGCTGTGTCACTCAAATGTTCT TCTTCCACCTTCTGGGGGGAGCAGACGTTTTTTCTCTCTCTGTGATGGCGTTTGACCGCTAT ATAGCCATCTCCAAGCCCCTGCACTATATGACCATCATGAGTAGGGGGCGATGCACAGGCC TCATCGTGGGCTTCCTGGGTGGGGGGCTTGTCCACTCCATAGCGCAGATTTCTCTATTGCT CCCACTCCCTGTCTGTGGACCCAATGTTCTTGACACTTTCTACTGCGATGTCCCCCAGGTCC TCAAACTTGCCTGCACTGACACCTTCACTCTGGAGCTCCTGATGATTTCAAATAATGGGTT AGTCAGTTGGTTTGTATTCTTCTTTCTCCTCATATCTTACACGGTCATCTTGATGATGCTGA GGTCTCACACTGGGGAAGGCAGGAGGAAAGCCATCTCCACCTGCACCTCCCACATCACCG TGGTGACCCTGCATTTCGTGCCCTGCATCTATGTCTATGCCCGGCCCTTCACTGCCCTCCCC ACAGACACTGCCATCTCTGTCACCTTCACTGTCATCTCCCCTTTGCTCAATCCTATAATTTA CACGCTGAGGAATCAGGAAATGAAGTTGGCCATGAGGAAACTGAAGAGACGGCTAGGAC AATCAGAAAGGATTTTAATTCAATAA (SEQ ID NO: 444).
AOLFR238 sequences:
MAPENFTRVTEFILTGVSSCPELQIPLFLVFLVLYVLTMAGNLGIITLTSVDSRLQTPMYFFLRHL AimLGNSTVIAPKMLMNFLVKKKTTSFYECATQLGGFLFFIVSEVMMLAVMAYDRYVAICNP LLYMVWSRRLCLLLVSLTYLYGFSTAIWSPCIFSVSYCSSNIINHFYCDIAPLLALSCSDTYIPE TIVFISAATNLFFSMITVLVSYFMVLSIL-RIRSPEGRKKAFSTCASHMIAVTVFYGTMLFMYLQP QTNHSLDTDKMASVFYTLVIPMLNPLIYSL-RNTSTDVNVALKKFMENPCYSFKSM (SEQ ID NO: 445).
ATGGCTCCTGAAAATTTCACCAGGGTCACTGAGTTTATTCTCACAGGTGTCTCTAGCTGTC CAGAGCTCCAGATTCCCCTCTTCCTGGTCTTCCTAGTGCTCTATGTGCTGACCATGGCAGG GAACCTGGGCATCATCACCCTCACCAGTGTTGACTCTCGACTTCAAACCCCCATGTACTTTT TCCTGAGACATCTAGCTATCATCAATCTTGGCAACTCTACTGTCATTGCCCCTAAAATGCTG ATGAACTTTTTAGTAAAGAAGAAAACTACCTCATTCTATGAATGTGCCACCCAACTGGGAG GGTTCTTGTTCTTTATTGTATCGGAGGTAATGATGCTGGCTGTGATGGCCTATGACCGCTA TGTGGCCATTTGTAACCCTCTGCTCTACATGGTGGTGGTGTCTCGGCGGCTCTGCCTCCTGC TGGTGTCCCTCACGTACCTCTATGGCTTTTCTACAGCTATTGTGGTTTCACCTTGTATATTC TCTGTGTCTTATTGCTCTTCTAATATAATCAATCATTTTTACTGTGATATTGCACCTCTGTT AGCATTATCTTGCTCTGATACTTACATACCAGAAACAATAGTCTTTATATCTGCAGCAACA AATTTGTTTTTTTCCATGATTACAGTTCTAGTATCTTATTTCAATATTGTTTTGTCCATTCTA AGGATACGTTCACCAGAAGGAAGGAAAAAAGCCTTTTCCACCTGCGCTTCGCATATGATA GCAGTCACGGTTTTCTATGGGACAATGCTATTTATGTATTTGCAGCCCCAAACCAACCACT CACTGGATACTGATAAGATGGCTTCTGTGTTTTACACATTGGTGATTCCTATGCTGAATCC CTTGATCTACAGCCTGAGGAATAATGATGTAAATGTTGCCTTAAAGAAATTCATGGAAAAT CCATGTTACTCCTTTAAATCAATGTAA (SEQ ID NO: 446).
AOLFR239 sequences:
MDPQNYSLVSEFVLHGLCTSRHLQNFFFIFFFGVYVAIMLGNLLILVTVISDPCLHSSPMYFLLG NLAFLDMWLASFATPIG-vlIRDFLSDQKLISFGGCMAQIFFLHFTGGAEMVLLVSMAYDRYVAIC KPLHYMTLMSWQTCIRLVLASWVVGFVHSISQVAFTVNLPYCGPNEVDSFFCDLPLVIKLACM DTYVLGIIMISDSGLLSLSCFLLLLISYTVILLAIRQRAAGSTSKALSTCSAHIMWTLFFGPCIFV YVRPFSRFSVDKLLSVFYTIFTPLLNPIIYTLRNEEMKAAMKKLQNRRVTFQ (SEQ ID NO: 447).
ATGGACCCACAGAACTATTCCTTGGTGTCAGAATTTGTGTTGCATGGACTCTGCACTTCAC GACATCTTCAAAATTTTTTCTTTATATTTTTCTTTGGGGTCTATGTGGCCATTATGCTGGGT AACCTTCTCATTTTGGTCACTGTAATTTCTGATCCCTGCCTGCACTCCTCCCCTATGTACTT CCTGCTGGGGAACCTAGCTTTCCTGGACATGTGGCTGGCCTCATTTGCCACTCCCAAGATG ATCAGGGATTTCCTTAGTGATCAAAAACTCATCTCCTTTGGAGGATGTATGGCTCAAATCT TCTTCTTGCACTTTACTGGTGGGGCTGAGATGGTGCTCCTGGTTTCCATGGCCTATGACAG ATATGTGGCCATATGCAAACCCTTGCATTACATGACTTTGATGAGTTGGCAGACTTGCATC AGGCTGGTGCTGGCTTCATGGGTCGTTGGATTTGTGCACTCCATCAGTCAAGTGGCTTTCA CTGTAAATTTGCCTTACTGTGGCCCCAATGAGGTAGACAGCTTCTTCTGTGACCTCCCTCTG GTGATCAAACTTGCCTGCATGGACACCTATGTCTTGGGTATAATTATGATCTCAGACAGTG GGTTGCTTTCCTTGAGCTGTTTTCTGCTCCTCCTGATCTCCTACACCGTGATCCTCCTCGCT ATCAGACAGCGTGCTGCCGGTAGCACATCCAAAGCACTCTCCACTTGCTCTGCACATATCA TGGTAGTGACGCTGTTCTTTGGCCCTTGCATTTTTGTTTATGTGCGGCCTTTCAGTAGGTTC TCTGTGGACAAGCTGCTGTCTGTGTTTTATACCATTTTTACTCCACTCCTGAACCCCATTAT CTACACATTGAGAAATGAGGAGATGAAAGCAGCTATGAAGAAACTGCAAAACCGACGGGT GACTTTTCAATGA (SEQ ID NO: 448).
AOLFR240 sequences:
MAGENHTTLPEFLLLGFSDLKALQGPLFWWLLVYLVTLLGNSLIILLTQVSPALHSPMYFFLR QLSWELFYTTDIVPRTLANLGSPHPQAISFQGCAAQMYVFIVLGISECCLLTAMAYDRYVAIC QPLRYSTLLSPRACLAMVGSSWLTGIITATTHASLIFSLPFRSHPIIPHFLCDILPVLRLASAGKHR SEISVMTATIVFIMIPFSLIVTSYIRILGAILAMASTQSRRKVFSTCSSHLLVVSLFFGTASITYIRPQ AGSSVTTDRVLSLFYTVITPMLNPIIYTLRNKDVRRALRHLVKRQRPSP (SEQ ID NO: 449).
ATGGCTGGGGAAAACCATACTACACTGCCTGAATTCCTCCTTCTGGGATTCTCTGACCTCA AGGCCCTGCAGGGCCCCCTGTTCTGGGTGGTGCTTCTGGTCTACCTGGTCACCTTGCTGGG TAACTCCCTGATCATCCTCCTCACACAGGTCAGCCCTGCCCTGCACTCCCCCATGTACTTCT TCCTGCGCCAACTCTCAGTGGTGGAGCTCTTCTACACCACTGACATCGTGCCCAGGACCCT GGCCAATCTGGGCTCCCCGCATCCCCAGGCCATCTCTTTCCAGGGCTGTGCAGCCCAGATG TACGTCTTCATTGTCCTGGGCATCTCGGAGTGCTGCCTGCTCACGGCCATGGCCTATGACC GATATGTTGCCATCTGCCAGCCCCTACGCTATTCCACCCTCTTGAGCCCACGGGCCTGCTT GGCCATGGTGGGGTCCTCCTGGCTCACAGGCATCATCACGGCCACCACCCATGCCTCCCTC ATCTTCTCTCTACCTTTTCGCAGCCACCCGATCATCCCGCACTTTCTCTGTGACATCCTGCC AGTACTGAGGCTGGCAAGTGCTGGGAAGCACAGGAGCGAGATCTCCGTGATGACAGCCAC CATAGTCTTCATTATGATCCCCTTCTCTCTGATTGTCACCTCTTACATCCGCATCCTGGGTG CCATCCTAGCAATGGCCTCCACCCAGAGCCGCCGCAAGGTCTTCTCCACCTGCTCCTCCCA TCTGCTCGTGGTCTCTCTCTTCTTTGGAACAGCCAGCATCACCTACATCCGGCCGCAGGCA GGCTCCTCTGTTACCACAGACCGCGTCCTCAGTCTCTTCTACACAGTCATCACACCCATGCT CAACCCCATCATCTACACCCTTCGGAACAAGGACGTGAGGAGGGCCCTGCGACACTTGGT GAAGAGGCAGCGCCCCTCACCCTGA (SEQ ID NO: 450).
AOLFR241 sequences: MPQILIFTYLNMFYFFPPLQILAENLTMVTEFLLLGFSSLGEIQLALFWFLFLYLVILSGNVTIIS VIHLDKSLHTPMYFFLGILSTSETFYTFVILPKMLINLLSVARTISFNCCALQMFFFLGFAITNCLL LGVMGYDRYAAICHPLHYPTLMSWQVCGKLAAACAIGGFLASLTWNLVFSLPFCSANKVNH YFCDISAVILLACTNTDVNEFVIFICGVLVLVVPFLFICVSYLCILRTILKIPSAEGRRKAFSTCAS HLSVVIVHYGCASFIYLRPTANYVSNKDRLVTVTYTIVTPLLNPMVYSLR KDVQLAIRKVLG KKGSLKLYN (SEQ ID NO: 451).
ATGCCCCAAATTCTTATATTCACATACCTGAATATGTTTTACTTCTTTCCCCCTTTGCAGAT CTTGGCAGAAAACCTCACCATGGTCACCGAATTCCTGTTGCTGGGTTTTTCCAGCCTTGGT GAAATTCAGCTGGCCCTCTTTGTAGTTTTTCTTTTTCTGTATCTAGTCATTCTTAGTGGCAA TGTCACCATTATCAGTGTCATCCACCTGGATAAAAGCCTCCACACACCAATGTACTTCTTCC TTGGCATTCTCTCAACATCTGAGACCTTCTACACCTTTGTCATTCTACCCAAGATGCTCATC AATCTACTTTCTGTGGCCAGGACAATCTCCTTCAACTGTTGTGCTCTTCAAATGTTCTTCTT CCTTGGTTTTGCCATTACCAACTGCCTGCTATTGGGTGTGATGGGTTATGATCGCTATGCTG CCATTTGTCACCCTCTGCATTACCCCACTCTTATGAGCTGGCAGGTGTGTGGAAAACTGGC AGCTGCCTGTGCAATTGGTGGCTTCTTGGCCTCTCTTACAGTAGTAAATTTAGTTTTCAGCC TCCCTTTTTGTAGCGCCAACAAAGTCAATCATTACTTCTGTGACATCTCAGCAGTCATTCTT CTGGCTTGTACCAACACAGATGTTAACGAATTTGTGATATTCATTTGTGGAGTTCTTGTAC TTGTGGTTCCCTTTCTGTTTATCTGTGTTTCTTATCTCTGCATTCTGAGGACTATCCTGAAG ATTCCCTCAGCTGAGGGCAGACGGAAAGCGTTTTCCACCTGCGCCTCTCACCTCAGTGTTG TTATTGTTCATTATGGCTGTGCTTCCTTCATCTACCTGAGGCCTACAGCAAACTATGTGTCC AACAAAGACAGGCTGGTGACGGTGACATACACGATTGTCACTCCATTACTAAACCCCATG GTTTATAGCCTCAGAAACAAGGATGTCCAACTTGCTATCAGAAAAGTGTTGGGCAAGAAA GGTTCTCTAAAACTATATAATTGA (SEQ ID NO: 452).
AOLFR242 sequences: MNTTLFHPYSFLLLGIPGLESMHLWVGFPFFAVFLTAVLGNITILFVIQTDSSLHHPMFYFLAILS SIDPGLSTSTIPKMLGTFWFTLREISFEGCLTQMFFIHLCTGMESAVLVAMAYDCYVAICDPLCY TLVLTNKWSVMALAIFLRPLVFVIPFVLFILRLPFCGHQIIPHTYGEHMGIARLSCASIRVNIIYG LCAISILVFDIIAIVISYVQILCAVFLLSSHDARLKAFSTCGSHVCVMLTFYMPAFFSFMTHRFGR NIPHFIHILLANFYWIPPALNSVIYGVRTKQIRAQVLKMFFNK (SEQ ID NO: 453).
ATGAATACCACTCTATTTCATCCTTACTCTTTCCTTCTTCTGGGAATTCCTGGGCTGGAAAG TATGCATCTCTGGGTTGGTTTTCCTTTCTTTGCTGTGTTCCTGACAGCTGTCCTTGGGAATA TCACCATCCTTTTTGTGATTCAGACTGACAGTAGTCTCCATCATCCCATGTTCTACTTCCTG GCCATTCTGTCATCTATTGACCCGGGCCTGTCTACATCCACCATCCCTAAAATGCTTGGCAC CTTCTGGTTTACCCTGAGAGAAATCTCCTTTGAAGGATGCCTTACCCAGATGTTCTTCATCC ACCTGTGCACTGGCATGGAATCAGCTGTGCTTGTGGCCATGGCCTATGATTGCTATGTGGC CATCTGTGACCCTCTTTGCTACACGTTGGTGCTGACAAACAAGGTGGTGTCAGTTATGGCA CTGGCCATCTTTCTGAGACCCTTAGTCTTTGTCATACCCTTTGTTCTATTTATCCTAAGGCT TCCATTTTGTGGACACCAAATTATTCCTCATACTTATGGTGAGCACATGGGCATTGCCCGC CTGTCTTGTGCCAGCATCAGGGTTAACATCATCTATGGCTTATGTGCCATCTCTATCCTGGT CTTTGACATCATAGCAATTGTCATTTCCTATGTACAGATCCTTTGTGCTGTATTTCTACTCT CTTCACATGATGCACGACTCAAGGCATTCAGCACCTGTGGCTCTCATGTGTGTGTCATGTT GACTTTCTATATGCCTGCATTTTTCTCATTCATGACCCATAGGTTTGGTCGGAATATACCTC ACTTTATCCACATTCTTCTGGCTAATTTCTATGTAGTCATTCCACCTGCTCTCAACTCTGTA ATTTATGGTGTCAGAACCAAACAGATTAGAGCACAAGTGCTGAAAATGTTTTTCAATAAAT AA (SEQ ID NO: 454).
AOLFR243 sequences:
MEQVNKTWREFVVLGFSSLARLQQLLFVIFLLLYLFTLGTNAIIISTIVLDRALHTPMYFFLAIL SCSEICYTFVIVPKMLVDLLSQKKTISFLGCAIQMFSFLFFGSSHSFLLAAMGYDRYMAICNPLR YSVLMGHGVCMGLMAAACACGFTVSLVTTSLVFHLPFHSSNQLHHFFCDISPVLKLASQHSGF SQLVIFMLGVFALVIPLLLILVSYIRIISAILKIPSSVGRYKTFSTCASHLIWTVHYSCASFIYLRPK TNYTSSQDTLISVSYTILTPLFNPMIYSLRNKEFKSALRRTIGQTFYPLS (SEQ ID NO: 455).
ATGGAGCAAGTCAATAAGACTGTGGTGAGAGAGTTCGTCGTCCTCGGCTTCTCATCCCTGG CCAGGCTGCAGCAGCTGCTCTTTGTTATCTTCCTGCTCCTCTACCTGTTCACTCTGGGCACC AATGCAATCATCATTTCCACCATTGTGCTGGACAGAGCCCTTCATACTCCCATGTACTTCTT CCTTGCCATCCTTTCTTGCTCTGAGATTTGCTATACCTTTGTCATTGTACCCAAGATGCTGG TTGACCTGCTGTCCCAGAAGAAGACCATTTCTTTCCTGGGCTGTGCCATCCAAATGTTTTCC TTCCTCTTCTTTGGCTCCTCTCACTCCTTCCTGCTGGCAGCCATGGGCTATGATCGCTATAT GGCCATCTGTAACCCACTGCGCTACTCAGTGCTCATGGGACATGGGGTGTGTATGGGACTA ATGGCTGCTGCCTGTGCCTGTGGCTTCACTGTCTCCCTGGTCACCACCTCCCTAGTATTTCA TCTGCCCTTCCACTCCTCCAACCAGCTCCATCACTTCTTCTGTGACATCTCCCCTGTCCTTA AACTGGCATCTCAGCACTCCGGCTTCAGTCAGCTGGTCATATTCATGCTTGGTGTATTTGC CTTGGTCATTCCTCTGCTACTTATCCTAGTCTCCTACATCCGCATCATCTCTGCCATTCTAA AAATCCCTTCCTCCGTTGGAAGATACAAGACCTTCTCCACCTGTGCCTCCCATCTCATTGTG GTAACTGTTCACTACAGTTGTGCCTCTTTCATCTACTTAAGGCCCAAGACTAATTACACTTC AAGCCAAGACACCCTAATATCTGTGTCATACACCATCCTTACCCCATTGTTCAATCCAATG ATTTATAGTCTGAGAAATAAGGAATTCAAATCAGCCCTACGAAGAACAATCGGCCAAACT TTCTATCCTCTTAGTTAA (SEQ ID NO: 456).
AOLFR244 sequences:
MWQEYYFLNVFFPLLKVCCLTINSHWILLPWECYHLIWKILPYIGTTVGSMEEYNTSSTDFTF MGLFNRKETSGLIFAIISIIFFTALMANGVMIFLIQTDLRLHTPMYFLLSHLSLIDMMYISTIVPKM LVNYLLDQRTISFVGCTAQHFLYLTLVGAEFFLLGLMAYDRYVAICNPLRYPVLMSRRVCWMI IAGSWFGGSLDGFLLTPITMSFPFCNSREINHFFCEAPAVLKLACADTALYETVMYVCCVLMLL IPFSVVLASYARILTTVQCMSSVEGRKKAFATCSSHMTVVSLFYGAAMYTYMLPHSYHKPAQ DKVLSVFYTILTPMLNPLIYSLRMKDVTGALKRALGRFKGPQRVSGGVF (SEQ ID NO: 457).
ATGTGGCAAGAATACTATTTTTTAAATGTTTTCTTCCCACTTTTAAAAGTTTGCTGCCTAAC AATTAATTCACATGTTGTTATTTTACTGCCCTGGGAATGCTATCATCTTATTTGGAAGATAT TACCTTATATCGGCACAACTGTAGGATCAATGGAAGAGTACAACACATCCTCTACAGACTT CACTTTCATGGGGCTGTTCAACAGAAAGGAAACCTCAGGTCTTATTTTTGCCATCATCTCT ATCATCTTCTTCACCGCACTGATGGCCAATGGGGTTATGATCTTCCTGATCCAAACAGATT TGCGCCTTCATACACCCATGTACTTCCTCCTCAGCCACCTTTCCTTAATTGACATGATGTAT ATTTCCACTATTGTGCCTAAGATGCTGGTTAATTACCTGCTGGATCAAAGGACCATTTCCTT TGTGGGGTGCACAGCTCAACACTTCCTCTACCTTACCCTTGTGGGAGCTGAATTCTTCCTG CTGGGCCTCATGGCCTATGACCGCTATGTGGCCATTTGCAACCCTCTGAGATACCCTGTCC TCATGAGCCGCCGGGTCTGTTGGATGATTATAGCAGGTTCCTGGTTTGGGGGCTCTTTGGA TGGCTTCCTCCTAACCCCCATCACCATGAGCTTTCCCTTCTGCAATTCCCGGGAGATTAACC ACTTCTTCTGTGAGGCACCAGCAGTCCTGAAGTTGGCATGTGCAGACACAGCCCTCTACGA GACAGTGATGTATGTGTGCTGTGTTTTGATGCTGCTGATTCCTTTCTCTGTAGTCCTTGCTT CCTATGCCCGAATCCTGACTACAGTTCAGTGCATGAGCTCAGTGGAGGGCAGGAAGAAGG CATTTGCCACTTGCTCATCCCACATGACTGTGGTGTCCTTGTTCTACGGGGCTGCCATGTAC ACCTACATGCTGCCACATTCTTACCACAAGCCAGCCCAGGACAAAGTCCTCTCTGTGTTTT ACACCATTCTCACACCCATGCTGAACCCCCTCATCTACAGCCTTAGAAACAAGGATGTGAC TGGAGCTCTGAAGAGGGCCTTGGGGAGGTTCAAGGGTCCTCAAAGGGTGTCAGGAGGTGT CTTTTGA (SEQ ID NO: 458).
AOLFR245 sequences: MDLKNGSLVTEFILLGFFGRWELQIFFFVTFSLIYGATVMGNILIMVTVTCRSTLHSPLYFLLGN LSFLDMCLSTATTPKMIIDLLTDHKTISVWGCVTQMFFMHFFGGAEMTLLIIMAFDRYVAICKP LHYRTIMSHKLLKGFAILSWIIGFLHSISQIVLTMNLPFCGHNVINNIFCDLPLVIKLACIETYTLE LFVIADSGLLSFTCFILLLVSYIVILVSVPKKSSHGLSKALSTLSAHIIWTLFFGPCIFIYVWPFSSL ASNKTLAVFYTVITPLLNPSIYTLRNKKMQEAIRKLRFQYVSSAQNF (SEQ ID NO: 459).
ATGGATCTTAAAAATGGATCTCTAGTGACCGAGTTTATTTTACTAGGATTTTTTGGACGAT GGGAACTTCAAATTTTCTTCTTTGTGACATTTTCCCTGATCTACGGTGCTACTGTGATGGGA AACATTCTCATTATGGTCACAGTGACATGTAGGTCAACCCTTCATTCTCCCTTGTACTTTCT CCTTGGAAATCTCTCTTTTTTGGACATGTGTCTCTCCACTGCCACAACACCCAAGATGATCA TAGATTTGCTCACTGACCACAAGACCATCTCTGTGTGGGGCTGCGTGACCCAGATGTTCTT CATGCACTTCTTTGGGGGTGCTGAGATGACTCTTCTGATAATCATGGCCTTTGACAGGTAT GTAGCCATATGTAAACCCCTGCACTATAGGACAATCATGAGCCACAAGCTGCTAAAGGGG TTTGCGATACTTTCATGGATAATTGGTTTTTTACACTCCATAAGCCAGATAGTTTTAACAAT GAACTTGCCTTTCTGTGGCCACAATGTCATAAACAACATATTTTGTGATCTTCCCCTTGTGA TCAAGCTTGCTTGCATTGAAACATACACCCTGGAATTATTTGTCATTGCTGACAGCGGGCT GCTCTCTTTCACCTGTTTCATCCTCTTGCTTGTTTCTTACATTGTCATCCTGGTCAGTGTACC AAAAAAATCATCACATGGGCTCTCCAAGGCGCTGTCCACATTGTCTGCCCACATCATTGTG GTCACTCTGTTCTTTGGACCTTGTATTTTTATCTATGTTTGGCCATTCAGTAGTTTGGCAAG CAATAAAACTCTTGCCGTATTTTATACAGTTATCACACCCTTACTGAATCCGAGTATTTATA CCCTGAGAAATAAGAAAATGCAAGAGGCCATAAGAAAATTACGGTTCCAATATGTTAGTT CTGCACAGAATTTCTAG (SEQ ID NO: 460).
AOLFR246 sequences:
MSPENQSSVSEFLLLGLPIRPEQQAVFFTLFLGMYLTTVLGNLLIMLLIQLDSHLHTPMYFFLSH LALTDISFSSVTVPKMLMDMRTKYKSILYEECISQMYFFIFFTDLDSFLITSMAYDRYVAICHPL HYTVIMREELCVFLVAVSWILSCASSLSHTLLLTRLSFCAANTIPHVFCDLAALLKLSCSDIFLNE LVMFTVGVWITLPFMCILVSYGYIGATILRVPSTKGIHKALSTCGSHLSWSLYYGSIFGQYLF PTVSSSIDKDVIVALMYTVVTPMLNPFIYSLRNRDMKEALGKLFSRATFFSW (SEQ ID NO: 461).
ATGAGCCCTGAGAACCAGAGCAGCGTGTCCGAGTTCCTCCTTCTGGGCCTCCCCATCCGGC CAGAGCAGCAGGCTGTGTTCTTCACCCTGTTCCTGGGCATGTACCTGACCACGGTGCTGGG GAACCTGCTCATCATGCTGCTCATCCAGCTGGACTCTCACCTTCACACCCCCATGTACTTCT TCCTCAGCCACTTGGCTCTCACTGACATCTCCTTTTCATCTGTCACTGTCCCTAAGATGCTG ATGGACATGCGGACTAAGTACAAATCGATCCTCTATGAGGAATGCATTTCTCAGATGTATT TTTTTATAtTTTTTACTGACCTGGACAGCTTCCTTATTACATCAATGGCATATGACCGATAT GTTGCCATATGTCACCCTCTCCACTACACTGTCATCATGAGGGAAGAGCTCTGTGTCTTCTT AGTGGCTGTATCTTGGATTCTGTCTTGTGCCAGCTCCCTCTCTCACACCCTTCTCCTGACCC GGCTGTCTTTCTGTGCTGCGAACACCATCCCCCATGTCTTCTGTGACCTTGCTGCCCTGCTC AAGCTGTCCTGCTCAGATATCTTCCTCAATGAGCTGGTCATGTTCACAGTAGGGGTGGTGG TCATTACCCTGCCATTCATGTGTATCCTGGTATCATATGGCTACATTGGGGCCACCATCCTG AGGGTCCCTTCAACCAAAGGGATCCACAAAGCATTGTCCACATGTGGCTCCCATCTCTCTG TGGTGTCTCTCTATTATGGGTCAATATTTGGCCAGTACCTTTTCCCGACTGTAAGCAGTTCT ATTGACAAGGATGTCATTGTGGCTCTCATGTACACGGTGGTCACACCCATGTTGAACCCCT TTATCTACAGCCTTAGGAACAGGGACATGAAAGARGCCCTTGGGAAACTCTTCAGTAGAG CAACATTTTTCTCCTTGGTGACATCTGACTTTTTAAAAAATTAG (SEQ ID NO: 462).
AOLFR247 sequences:
MGQHNLTVLTEFILMELTRRPELQIPLFGVFLVIYLITVVGNLTMIILTKLDSHLHTPMYFSIRHL ASVDLGNSTVICPKVLANFWDRNTISYYACAAQLAFFLMFIISEFFILSAMAYDRYVAICNPLL YYVIMSQRLCHVLVGIQYLYSTFQALMFTIKIFTLTFCGSNVISHFYCDDVPLLPMLCSNAQEIE LLSILFSVFNLISSFLIVLVSYMLILLAICQMHSAEGRKKAFSTCGSHLTVVVVFYGSLLFMYMQ PNSTHFFDTDKMASVFYTLVIPMLNPLIYSLRNEEVKNAFYKLFEN (SEQ ID NO: 463).
ATGGGCCAACACAATCTAACAGTGCTAACTGAATTCATTCTGATGGAACTCACAAGGCGGC CTGAGCTGCAGATTCCCCTTTTTGGAGTCTTCCTCGTCATCTACCTAATCACAGTGGTGGGC AACCTAACTATGATCATTTTGACCAAACTGGACTCCCACTTACATACACCTATGTACTTTTC TATCAGACATTTGGCTTCTGTTGATCTTGGTAATTCTACTGTCATTTGTCCCAAGGTGCTGG CAAATTTTGTTGTGGATCGAAATACTATTTCCTATTATGCATGTGCTGCACAGCTGGCATTC TTCCTTATGTTCATTATCAGTGAATTTTTCATCCTGTCAGCCATGGCCTATGACCGCTATGT GGCCATTTGTAACCCTCTGCTCTATTATGTTATTATGTCTCAGCGACTGTGTCATGTACTGG TGGGCATTCAATATCTCTACAGCACATTTCAGGCTCTGATGTTCACTATTAAGATTTTTACA TTGACCTTCTGTGGCTCTAATGTCATCAGTCATTTTTACTGTGATGATGTTCCTTTGCTACC TATGCTTTGCTCAAATGCACAGGAAATAGAATTGTTGAGCATACTATTTTCTGTATTTAATT TGATCTCCTCCTTTCTGATAGTCTTAGTGTCCTACATGTTGATTTTGTTAGCTATATGTCAA ATGCATTCTGCAGAGGGCAGGAAAAAGGCTTTCTCCACATGTGGTTCCCATTTGACAGTGG TGGTTGTGTTCTATGGGTCTCTACTCTTCATGTACATGCAGCCCAATTCCACTCACTTCTTT GATACTGATAAAATGGCTTCTGTGTTTTACACTTTAGTAATCCCCATGCTTAACCCTTTGAT TTACAGCTTAAGAAACGAAGAGGTGAAAAATGCCTTCTATAAGCTCTTTGAGAATTGA (SEQ ID NO: 464).
AOLFR248 sequences:
MPCMPCALPTGGLLPHPQHTMMEIANVSSPEVFVLLGFSTRPSLETVLFIWLSFYMVSILGNGI IILVSHTDVHLHTPMYFFLANLPFLDMSFTTSIVPQLLANLWGPQKTISYGGCWQFYISHWLG ATECVLLATMSYDRYAAICRPLHYTVIMHPQLCLGLALASWLGGLTTSMVGSTLTMLLPLCG NNCIDHFFCEMPLIMQLACVDTSLNEMEMYLASFVFWLPLGLILVSYGHIARAVLKIRSAEGR R-KAFNTCSSHVAVVSLFYGSIIFMYLQPAXSTSHEQGKFIALFYTVVTPALNPLIYTLRNTEVKS ALRHMVLENCCGSAGKLAQI (SEQ ID NO: 465).
ATGCCCTGTATGCCCTGTGCTCTTCCCACAGGTGGCCTTTTGCCCCACCCCCAGCATACAAT GATGGAAATAGCCAATGTGAGTTCTCCAGAAGTCTTTGTCCTCCTGGGCTTCTCCACACGA CCCTCACTAGAAACTGTCCTCTTCATAGTTGTCTTGAGTTTTTACATGGTATCGATCTTGGG CAATGGCATCATCATTCTGGTCTCCCATACAGATGTGCACCTCCACACACCTATGTACTTCT TTCTTGCCAACCTCCCCTTCCTGGACATGAGCTTCACCACGAGCATTGTCCCACAGCTCCTG GCTAACCTCTGGGGACCACAGAAAACCATAAGCTATGGAGGGTGTGTGGTCCAGTTCTAT ATCTCCCATTGGCTGGGGGCAACCGAGTGTGTCCTGCTGGCCACCATGTCCTATGACCGCT ACGCTGCCATCTGCAGGCCACTCCATTACACTGTCATTATGCATCCACAGCTTTGCCTTGG GCTAGCTTTGGCCTCCTGGCTGGGGGGTCTGACCACCAGCATGGTGGGCTCCACGCTCACC ATGCTCCTACCGCTGTGTGGGAACAATTGCATCGACCACTTCTTTTGCGAGATGCCCCTCA TTATGCAACTGGCTTGTGTGGATACCAGCCTCAATGAGATGGAGATGTACCTGGCCAGCTT TGTCTTTGTTGTCCTGCCTCTGGGGCTCATCCTGGTCTCTTACGGCCACATTGCCCGGGCCG TGTTGAAGATCAGGTCAGCAGAAGGGCGGAGAAAGGCATTCAACACCTGTTCTTCCCACG TGGCTGTGGTGTCTCTGTTTTACGGGAGCATCATCTTCATGTATCTCCAGCCAGCCAAGAG CACCTCCCATGAGCAGGGCAAGTTCATAGCTCTGTTCTACACCGTAGTCACTCCTGCGCTG AACCCACTTATTTACACCCTGAGGAACACGGAGGTGAAGAGCGCCCTCCGGCACATGGTA TTAGAGAACTGCTGTGGCTCTGCAGGCAAGCTGGCGCAAATTTAG (SEQ ID NO: 466).
AOLFR249 sequences:
MKSQIEKSDLKYRAILLQKVTRMFLLFWVLLLVLSRLLVVMGRGNSTEVTEFHLLGFGVQHEF QHVLFIVLLLIYVTSLIGNIGMILLIKTDSRLQTPMYFFPQHLAFVDICYTSAITPKMLQSFTEEN NLITFRGCVIQFLVYATFATSDCYLLAIMAMDCYVAICKPLRYPMIMSQTVYIQLVAGSYIIGSI NASVHTGFTFSLSFCKSNIONHFFCDGLPILALSCSNIDINΠLDVVFVGFDLMFTELVΠFSYIYIM VTILKMSSTAGRKKSFSTCASHLTAVTIFYGTLSYMYLQPQSNNSQENMKVASIFYGTVIPMLN PLIYSLRNKEGK (SEQ ID NO: 467).
ATGAAAAGTCAAATTGAAAAAAGTGACTTAAAATATAGAGCCATTTTATTGCAAAAAGTC ACAAGGATGTTCCTGCTTTTCTGGGTCCTTCTCTTGGTCCTTTCTAGACTTTTGGTAGTCAT GGGTCGAGGAAACAGCACTGAAGTGACTGAATTCCATCTTCTGGGATTTGGTGTCCAACAC GAATTTCAGCATGTCCTTTTCATTGTACTTCTTCTTATCTATGTGACCTCCCTGATAGGAAA TATTGGAATGATCTTACTCATCAAGACCGATTCCAGACTTCAAACACCCATGTACTTTTTTC CACAACATTTGGCTTTTGTTGATATCTGTTATACTTCTGCTATCACTCCCAAGATGCTCCAA AGCTTCACAGAAGAAAATAATTTGATAACATTTCGGGGCTGTGTGATACAATTCTTAGTTT ATGCAACATTTGCAACCAGTGACTGTTACCTCCTAGCTATTATGGCAATGGATTGTTATGT TGCCATCTGTAAGCCCCTTCGCTATCCCATGATCATGTCCCAAACAGTCTACATCCAACTCG TAGCTGGCTCATATATTATAGGCTCAATAAATGCCTCTGTACATACAGGTTTTACATTTTCA CTGTCCTTCTGCAAGTCTAATAAAATCAATCACTTTTTCTGTGATGGTCTCCCAATTCTTGC CCTTTCATGCTCCAACATTGACATCAACATCATTCTAGATGTTGTCTTTGTGGGATTTGACT TGATGTTCACTGAGTTGGTCATCATCTTTTCCTACATCTACATTATGGTCACCATCCTGAAG ATGTCTTCTACTGCTGGGAGGAAAAAATCCTTCTCCACATGTGCCTCCCACCTGACAGCAG TAACCATTTTCTATGGGACACTCTCTTACATGTACTTACAGCCTCAGTCTAATAATTCTCAG GAGAATATGAAAGTAGCCTCTATATTTTATGGCACTGTTATTCCCATGTTGAATCCTTTAAT CTATAGCTTGAGAAATAAGGAAGGAAAATAA (SEQ ID NO: 468). AOLFR250 sequences:
MENQSSISEFFLRGISAPPEQQQSLFGIFLCMYLVTLTGNLLIILAIGSDLHLHTPMYFFLANLSFV DMGLTSSTVTKMLVNIQTRHHTISYTGCLTQMYFFLMFGDLDSFFLAAMAYDRYVAICHPLCY STVMRPQVCALMLALCWVLTNIVALTHTFLMARLSFCVTGEIAHFFCDITPVLKLSCSDTHINE MMVFVLGGTVLIVPFLCIVTSYIHIVPAILRVRTRGGVGKAFSTCSSHLCWCVFYGTLFSAYLC PPSIASEEKDIAAAAMYTIVTPMLNPFIYSLR-NKDMKGALKRLFSHRSIVSS (SEQ ID NO: 469).
ATGGAAAACCAATCCAGCATTTCTGAATTTTTCCTCCGAGGAATATCAGCGCCTCCAGAGC AACAGCAGTCCCTCTTCGGAATTTTCCTGTGTATGTATCTTGTCACCTTGACTGGGAACCTG CTCATCATCCTGGCCATTGGCTCTGACCTGCACCTCCACACCCCCATGTACTTTTTCTTGGC CAACCTGTCTTTTGTTGACATGGGTTTAACGTCCTCCACAGTTACCAAGATGCTGGTGAAT ATACAGACTCGGCATCACACCATCTCCTATACGGGTTGCCTCACGCAAATGTATTTCTTTCT GATGTTTGGTGATCTAGACAGCTTCTTCCTGGCTGCCATGGCGTATGACCGCTATGTGGCC ATTTGCCACCCCCTCTGCTACTCCACAGTCATGAGGCCCCAAGTCTGTGCCCTAATGCTTGC ATTGTGCTGGGTCCTCACCAATATCGTTGCCCTGACTCACACGTTCCTCATGGCTCGGTTGT CCTTCTGTGTGACTGGGGAAATTGCTCACTTTTTCTGTGACATCACTCCTGTCCTGAAGCTG TCATGTTCTGACACCCACATCAACGAGATGATGGTTTTTGTCTTGGGAGGCACCGTACTCA TCGTCCCCTTTTTATGCATTGTCACCTCCTACATCCACATTGTGCCAGCTATCCTGAGGGTC CGAACCCGTGGTGGGGTGGGCAAGGCCTTTTCCACCTGCAGTTCCCACCTCTGCGTTGTTT GTGTGTTCTATGGGACCCTCTTCAGTGCCTACCTGTGTCCTCCCTCCATTGCCTCTGAAGAG AAGGACATTGCAGCAGCTGCAATGTACACCATAGTGACTCCCATGTTGAACCCCTTTATCT ATAGCCTAAGGAACAAGGACATGAAGGGGGCCCTAAAGAGGCTCTTCAGTCACAGGAGTA TTGTTTCCTCTTAG (SEQ ID NO: 470).
AOLFR251 sequences:
MEGNKTWITDITLPRFQVGPALEILLCGLFSAFYTLTLLGNGVIFGIICLDCKLHTPMYFFLSHLA IVDISYASNYVPKMLTNLMNQESTISFFPCIMQTFLYLAFAHVECLILVVMSYDRYADICHPLRY NILMSWRVCTVLAVASWVFSFLLALVPLVLILRLPFCGPHEINHFCEILSVLKLACADTWLNQV VIFAACVFILVGPLCLVLVSYLRILAAILRIQSGEGRRKAFSTCSSHLCVVGLFFGSAIVTYMAPK SRHPEEQQKVLSLFYSLFNPMLNPLIYSLRNAEVKGALRRALRKERLT (SEQ ID NO: 471).
ATGGAAGGCAACAAGACATGGATCACAGACATCACCTTGCCGCGATTCCAGGTTGGTCCA
GCACTGGAGATTCTCCTCTGTGGACTTTTCTCTGCCTTCTATACACTCACCCTGCTGGGGAA
TGGGGTCATCTTTGGGATTATCTGCCTGGACTGTAAGCTTCACACACCCATGTACTTCTTCC TCTCACACCTGGCCATTGTTGACATATCCTATGCTTCCAACTATGTCCCCAAGATGCTGACG AATCTTATGAACCAGGAAAGCACCATCTCCTTTTTTCCATGCATAATGCAGACATTCTTGT ATTTGGCTTTTGCTCACGTAGAGTGTCTGATTTTGGTGGTGATGTCCTATGATCGCTATGCG GACATCTGCCACCCCTTACGTTACAATATCCTCATGAGCTGGAGAGTGTGCACTGTCCTGG CTGTGGCTTCCTGGGTGTTCAGCTTCCTCCTGGCTCTGGTCCCTTTAGTTCTCATCCTGAGG CTGCCCTTCTGCGGGCCTCATGAAATCAACCACTTCTGTGAAATCCTGTCTGTCCTCAAGTT GGCCTGTGCTGACACCTGGCTCAACCAGGTGGTCATCTTTGCAGCCTGCGTGTTCATCCTG GTGGGGCCACTCTGCCTGGTGCTGGTCTCCTACTTGCGCATCCTGGCCGCCATCTTGAGGA TCCAGTCTGGGGAGGGCCGCAGAAAGGCCTTCTCCACCTGCTCCTCCCACCTTTGCGTGGT GGGACTCTTCTTTGGCAGCGCCATTGTCACGTACATGGCCCCCAAGTCCCGCCATCCTGAG GAGCAGCAGAAAGTTCTTTCCCTGTTTTACAGCCTTTTCAATCCAATGCTGAACCCCCTGA TATATAGCCTAAGGAATGCAGAGGTCAAGGGCGCCCTGAGGAGGGCACTGAGGAAGGAG AGGCTGACGTGA (SEQ ID NO: 472).
AOLFR252 sequences: MRLANQTLGGDFFLLGIFSQISHPGRLCLLIFSIFLMAVS NITLILLIHIDSSLHTPMYFFINQLSL IDLTYISVTVPKMLVNQLAKDKTISVLGCGTQMYFYLQLGGAECCLLAAMAYDRYVAICHPLR YSVLMSHRVCLLLASGCWFVGSVDGFMLTPLAMSFPFCRSHEIQHFFCEVPAVLKLSCSDTSLY OFMYLCCVIMLLIPVTVISVSYYYIILTmK-MNSVEGR-KKAFTTCSSHITVVSLFYGAAIYNYML PSSYQTPEKDMMSSFFYTILTPVLNPIIYSF-RNKDVTRALKKMLSVQKPPY (SEQ ID NO: 473). ATGCGGCTGGCCAACCAGACCCTGGGTGGTGACTTTTTCCTGTTGGGAATCTTCAGCCAGA TCTCACACCCTGGCCGCCTCTGCTTGCTTATCTTCAGTATATTTTTGATGGCTGTGTCTTGG AATATTACATTGATACTTCTGATCCACATTGACTCCTCTCTGCATACTCCCATGTACTTCTT TATAAACCAGCTCTCACTCATAGACTTGACATATATTTCTGTCACTGTCCCCAAAATGCTG GTGAACCAGCTGGCCAAAGACAAGACCATCTCGGTCCTTGGGTGTGGCACCCAGATGTAC TTCTACCTGCAGTTGGGAGGTGCAGAGTGCTGCCTTCTAGCCGCCATGGCCTATGACCGCT ATGTGGCTATCTGCCATCCTCTCCGTTACTCTGTGCTCATGAGCCATAGGGTATGTCTCCTC CTGGCATCAGGCTGCTGGTTTGTGGGCTCAGTGGATGGCTTCATGCTCACTCCCATCGCCA TGAGCTTCCCCTTCTGCAGATCCCATGAGATTCAGCACTTCTTCTGTGAGGTCCCTGCTGTT TTGAAGCTCTCTTGCTCAGACACCTCACTTTACAAGATTTTCATGTACTTGTGCTGTGTCAT CATGCTCCTGATACCTGTGACGGTCATTTCAGTGTCTTACTACTATATCATCCTCACCATCC ATAAGATGAACTCAGTTGAGGGTCGGAAAAAGGCCTTCACCACCTGCTCCTCCCACATTAC AGTGGTCAGCCTCTTCTATGGAGCTGCTATTTACAACTACATGCTCCCCAGCTCCTACCAA ACTCCTGAGAAAGATATGATGTCATCCTTTTTCTACACTATCCTTACACCTGTCTTGAATCC TATCATTTACAGTTTCAGGAATAAGGATGTCACAAGGGCTTTGAAAAAAATGCTGAGCGT GCAGAAACCTCCATATTAA (SEQ ID NO: 474).
AOLFR253 sequences:
MTFFSSGGNCEPVMCSGNQTSQNQTASTDFTLTGLFAESKHAALLYTVTFLLFLMALTGNALL ILLIHSEPRLHTPMYFFISQLALMDLMYLCVTVPKMLVGQVTGDDTISPSGCGIQMFFHLTLAG AEVFLLAAMAYDRYAAVCRPLHYPLLMNQRVCQLLVSACWVLGMVDGLLLTPITMSFPFCQS ROLSFFCETPALLK-LSCSDVSLYKMLTYLCCILMLLTP VISSSYTLILHLIHRMNSAAGRRKA LATCSSHMIIVLLLFGASFYTYMLRSSYHTAEQDMMVSAFYTIFTPVLNPLIYSLRNKDVTRAL RSMMQSRMNQEK (SEQ ID NO: 475).
ATGACTTTTTTTTCCTCAGGGGGAAACTGTGAGCCAGTCATGTGCTCAGGGAATCAGACTT CTCAGAATCAAACAGCAAGCACTGATTTCACCCTCACGGGACTCTTTGCTGAGAGCAAGCA TGCTGCCCTCCTCTACACCGTGACCTTCCTTCTTTTCTTGATGGCCCTCACTGGGAATGCCC TCCTCATCCTCCTCATCCACTCAGAGCCCCGCCTCCACACCCCCATGTACTTCTTCATCAGC CAGCTCGCGCTCATGGATCTCATGTACCTATGCGTGACTGTGCCCAAGATGCTTGTGGGCC AGGTCACTGGAGATGATACCATTTCCCCGTCAGGCTGTGGGATCCAGATGTTCTTCCACCT GACCCTGGCTGGAGCTGAGGTTTTCCTCCTGGCTGCCATGGCCTATGACCGATATGCTGCT GTTTGCAGACCTCTCCATTACCCACTGCTGATGAACCAGAGGGTGTGCCAGCTCCTGGTGT CAGCCTGCTGGGTTTTGGGAATGGTTGATGGTTTGTTGCTCACCCCCATTACCATGAGCTT CCCCTTTTGCCAGTCTAGGAAAATCCTGAGTTTTTTCTGTGAGACTCCTGCCCTGCTGAAGC TCTCCTGCTCTGACGTCTCCCTCTATAAGATGCTCACGTACCTGTGCTGCATCCTCATGCTT CTCACCCCCATCATGGTCATCTCCAGCTCATACACCCTCATCCTGCATCTCATCCACAGGAT GAATTCTGCCGCCGGCCGCAGGAAGGCCTTGGCCACCTGCTCCTCCCACATGATCATAGTG CTGCTGCTCTTCGGTGCTTCCTTCTACACCTACATGCTCCGGAGTTCCTACCACACAGCTGA GCAGGACATGATGGTGTCTGCCTTTTACACCATCTTCACTCCTGTGCTGAACCCCCTCATTT ACAGTCTCCGCAACAAAGATGTCACCAGGGCTCTGAGGAGCATGATGCAGTCAAGAATGA ACCAAGAAAAGTAG (SEQ ID NO: 476).
AOLFR254 sequences: MTNTSSSDFTLLGLLVNSEAAGIVFTVILAVFLGAVTANLVMIFLIQVDSRLHTPMYFLLSQLSI MDTLFICTTVPKLLADMVSKEKIISFVACGIQIFLYLTMIGSEFFLLGLMAYDCYVAVCNPLRYP VLMNRKKCLLLAAGAWFGGSLDGFLLTPITMNVPYCGSRSINHFFCEIPAVLKLACADTSLYET LMYICCVLMLLIPISIISTSYSLILLTIHRMPSAEGRKKAFTTCSSHLTVVSIFYGAAFYTYVLPQS FHTPEQDKVVSAFYTIVTPMLNPLIYSLRNKDVIGAFKKVFACCSSAQKVATSDA (SEQ ID NO: 477).
ATGACGAACACATCATCCTCTGACTTCACCCTCCTGGGGCTTCTGGTGAACAGTGAGGCTG CCGGGATTGTATTTACAGTGATCCTTGCTGTTTTCTTGGGGGCCGTGACTGCAAATTTGGT CATGATATTCTTGATTCAGGTGGACTCTCGCCTCCACACCCCCATGTACTTTCTGCTCAGTC AGCTGTCCATCATGGACACCCTTTTCATCTGTACCACTGTCCCAAAACTCCTGGCAGACAT GGTTTCTAAAGAGAAGATCATTTCCTTTGTGGCCTGTGGCATCCAGATCTTCCTCTACCTG ACCATGATTGGTTCTGAGTTCTTCCTCCTGGGCCTCATGGCCTATGACTGCTACGTGGCTGT CTGTAACCCTCTGAGATACCCAGTCCTGATGAACCGCAAGAAGTGTCTTTTGCTGGCTGCT GGTGCCTGGTTTGGGGGCTCCCTCGATGGCTTTCTGCTCACTCCCATCACCATGAATGTCC CTTACTGTGGCTCCCGAAGTATCAACCATTTTTTCTGTGAGATCCCAGCAGTTCTGAAACT GGCCTGTGCAGACACGTCCTTGTATGAAACTCTGATGTACATCTGCTGTGTCCTCATGTTG CTCATCCCCATCTCTATCATCTCCACTTCCTACTCCCTCATCTTGTTAACCATCCACCGCAT GCCCTCTGCTGAAGGTCGCAAAAAGGCCTTCACCACTTGTTCCTCCCACTTGACTGTAGTT AGCATCTTCTATGGGGCTGCCTTCTACACATACGTGCTGCCCCAGTCCTTCCACACCCCCG AGCAGGACAAAGTAGTGTCAGCCTTCTATACCATTGTCACGCCCATGCTTAATCCTCTCAT CTACAGCCTCAGAAACAAGGACGTCATAGGGGCATTTAAAAAGGTATTTGCATGTTGCTCA TCTGCTCAGAAAGTAGCAACAAGTGATGCTTAG (SEQ ID NO: 478).
AOLFR255 sequences:
MEQSNYSVYADFILLGLFSNARFPWLLFALILLVFLTSIASNVVKIILIHIDSRLHTPMYFLLSQLS LRDILYISTIVPKMLVDQVMSQRAISFAGCTAQHFLYLTLAGAEFFLLGLMSYDRYVAICNPLH YPVLMSRKICWLIVAAAWLGGSIDGFLLTPVTMQFPFCASREINHFFCEVPALLKLSCTDTSAY ETAMYVCCIMMLLIPFSVISGSYTRILITVYRMSEAEGRGKAVATCSSHMVWSLFYGAAMYT YVLPHSYHTPEQDKAVSAFYTILTPMLNPLIYSLRNKDVTGALQKVVGRCVSSGKVTTF (SEQ ID NO: 479).
ATGGAGCAGAGCAATTATTCCGTGTATGCCGACTTTATCCTTCTGGGTTTGTTCAGCAACG CCCGTTTCCCCTGGCTTCTCTTTGCCCTCATTCTCCTGGTCTTTTTGACCTCCATAGCCAGC AACGTGGTCAAGATCATTCTCATCCACATAGACTCCCGCCTCCACACCCCCATGTACTTCCT GCTCAGCCAGCTCTCCCTCAGGGACATCCTGTATATTTCCACCATTGTGCCCAAAATGCTG GTCGACCAGGTGATGAGCCAGAGAGCCATTTCCTTTGCTGGATGCACTGCCCAACACTTCC TCTACTTGACCTTAGCAGGGGCTGAGTTCTTCCTCCTAGGACTCATGTCCTATGATCGCTAC GTAGCCATCTGCAACCCTCTGCACTATCCTGTCCTCATGAGCCGCAAGATCTGCTGGTTGA TTGTGGCGGCAGCCTGGCTGGGAGGGTCTATCGATGGTTTCTTGCTCACCCCCGTCACCAT GCAGTTCCCCTTCTGTGCCTCTCGGGAGATCAACCACTTCTTCTGCGAGGTGCCTGCCCTTC TGAAGCTCTCCTGCACGGACACATCAGCCTACGAGACAGCCATGTATGTCTGCTGTATTAT GATGCTCCTCATCCCTTTCTCTGTCATCTCGGGCTCTTACACAAGAATTCTCATTACTGTTT ATAGGATGAGCGAGGCAGAGGGGAGGGGAAAGGCTGTGGCCACCTGCTCCTCACACATGG TGGTTGTCAGCCTCTTCTATGGGGCTGCCATGTACACATACGTGCTGCCTCATTCTTACCAC ACCCCTGAGCAGGACAAAGCTGTATCTGCCTTCTACACCATCCTTACTCCCATGCTCAATC CACTCATTTACAGCCTTAGGAACAAGGATGTCACAGGGGCCCTACAGAAGGTTGTGGGGA GGTGTGTGTCCTCAGGAAAGGTAACCACTTTCTAA (SEQ ID NO: 480).
AOLFR256 sequences:
MGGKQPWVTEFILVGFQVGPALAILLCGLFSVFYTLTLLGNGVIFGIICLDSKLHTPMYFFLSHL AIIDMSYASNNVPKMLANLMNQKSTISFVPCIMQTFLYLAFAVTECLILWMSYDRYVAICHPF QYTVrMSWRVCTILASTCWIISFLMALVHITHILRPPFCGPQKINHFICQIMSVFKLACAGPRLNQ WLYAGSAFIVEGPLCLELVSNLHILSRHLEDPVMGRAADRLTLPAPSHLCMVGLLFGSTMVM YMAPKSRHPEEQQKVLSLFYSLFNPMLNPLIYSLRNAEVKGALKRVL KQRSK (SEQ ID NO: 481).
ATGGGAGGCAAGCAGCCCTGGGTCACAGAATTCATCCTGGTGGGATTCCAGGTTGGTCCA GCACTGGCGATTCTCCTCTGTGGACTCTTCTCTGTCTTCTATACACTCACCCTGCTGGGGAA TGGGGTCATCTTTGGGATTATCTGCCTGGACTCTAAGCTTCACACACCCATGTACTTCTTCC TCTCACACCTGGCCATCATTGACATGTCCTATGCTTCCAACAATGTTCCCAAGATGTTGGC AAACCTAATGAACCAGAAAAGCACCATCTCCTTTGTTCCATGCATAATGCAGACTTTTTTG TATTTGGCTTTTGCTGTTACAGAGTGCCTGATTTTGGTGGTGATGTCCTATGATAGGTATGT GGCCATCTGCCACCCTTTCCAGTACACTGTCATCATGAGCTGGAGAGTGTGCACGATCCTG GCCTCAACATGCTGGATAATTAGCTTTCTCATGGCTCTGGTCCATATAACTCATATTCTGAG GCCGCCTTTTTGTGGCCCACAAAAGATCAACCACTTTATCTGTCAAATCATGTCCGTATTCA AATTGGCCTGTGCTGGCCCTAGGCTCAACCAGGTGGTCCTATATGCGGGTTCTGCGTTCAT CGTAGAGGGGCCGCTCTGCCTGGAGCTGGTCTCCAACTTGCACATCCTGTCGCGCCATCTT GAGGATCCAGTAATGGGGAGGGCCGCAGACCGACTTACTCTTCCTGCTCCTTCCCACCTTT GCATGGTGGGACTCCTTTTTGGCAGCACCATGGTCATGTACATGGCCCCCAAGTCCCGCCA CCCTGAGGAGCAGCAGAAGGTCCTTTCCCTGTTTTACAGCCTTTTCAACCCGATGCTGAAC CCCTTGATCTACAGCCTGAGGAACGCAGAGGTCAAGGGTGCCCTGAAAAGAGTGTTGTGG AAACAGAGATCAAAGTGA (SEQ ID NO: 482).
AOLFR257 sequences:
MESNQTWITEVILLGFQVDPALELFLFGFFLLFYSLTLMGNGIILGLIYLDSRLHTPMYVFLSHL AIVΌMSYASSTVPKMLANLVMHKKVISFAPCILQTFLYLAFAITECLILVMMCYDRYVAICHPL QYTLIMNWRVCTVLASTCWIFSFLLALVHITLILRLPFCGPQKINHFFCQIMSVFKLACADTRLN QVVLFAGSAFILVGPLCLVLVSYLFFLLVAILRIQSGEGRRKAFSTCSSHLCVVGLFFGSAIVMYM APKSSHSQERRKILSLFYSLFNPILNPLIYSLRNAEVKGALKRVLWKQRSM (SEQ ID NO: 483).
ATGGAAAGCAATCAGACCTGGATCACAGAAGTCATCCTGTTGGGATTCCAGGTGGACCCA GCTCTGGAGTTGTTCCTCTTTGGGTTTTTCTTGCTATTCTACAGCTTAACCCTGATGGGAAA TGGGATTATCCTGGGGCTCATCTACTTGGACTCTAGACTGCACACACCCATGTATGTCTTC CTGTCACACCTGGCCATTGTGGACATGTCCTATGCCTCGAGTACTGTCCCTAAGATGCTAG CAAATCTTGTGATGCACAAAAAAGTCATCTCCTTTGCTCCTTGCATACTTCAGACTTTTTTG TATTTGGCGTTTGCTATTACAGAGTGTCTGATTTTGGTGATGATGTGCTATGATCGGTATG TGGCAATCTGTCACCCCTTGCAATACACCCTCATTATGAACTGGAGAGTGTGCACTGTCCT GGCCTCAACTTGCTGGATATTTAGCTTTCTCTTGGCTCTGGTCCATATTACTCTTATTCTGA GGCTGCCTTTTTGTGGCCCACAAAAGATCAACCACTTTTTCTGTCAAATCATGTCCGTATTC AAATTGGCCTGTGCTGACACTAGGCTCAACCAGGTGGTCCTATTTGCGGGTTCTGCGTTCA TCTTAGTGGGGCCGCTCTGCCTGGTGCTGGTCTCCTACTTGCACATCCTGGTGGCCATCTTG AGGATCCAGTCTGGGGAGGGCCGCAGAAAGGCCTTCTCTACCTGCTCCTCCCACCTCTGCG TGGTGGGGCTTTTCTTTGGCAGCGCCATTGTCATGTACATGGCCCCCAAGTCAAGCCATTC TCAAGAACGGAGGAAGATCCTTTCCCTGTTTTACAGCCTTTTCAACCCGATCCTGAACCCC CTCATCTACAGCCTTAGGAATGCAGAGGTGAAAGGGGCTCTAAAGAGAGTCCTTTGGAAA CAGAGATCAATGTGA (SEQ ID NO: 484).
AOLFR259 sequences:
MGDNQSRVTEFILVGFQLSVEMEVLLFWIFSLLYLFSLLANGMILGLICLDPRLRTPMYFFLSHL AVIDIYYASSNLLNMLENLVKHKKTISFISCIMQMALYLTFAAAVCMILVVMSYDRFVAICHPL HYTVIMNWRVCTVLAITSWACGFSLALINLILLLRLPFCGPQEVNHFFGEILSVLKLACADTWIN EIF VFAGGVF VLVGPLSLMLIS YMRILLAILKIQSKEGRKKAFSTCSSHLC VVGLYFGMAMVVY LVPDNSQRQKQQKILTLFYSLFNPLLNPLIYSLRNAQVKGALYRALQKKRTM (SEQ ID NO: 485).
ATGGGGGACAACCAATCACGGGTCACAGAATTCATCCTGGTTGGATTCCAGCTCAGTGTG GAGATGGAAGTGCTCCTCTTCTGGATCTTCTCCCTGTTATATCTCTTCAGCCTGCTGGCAAA TGGCATGATCTTGGGGCTCATCTGTCTGGATCCCAGACTGCGCACCCCCATGTACTTCTTCC TGTCACACTTGGCCGTCATTGACATATACTATGCTTCCAGCAATTTGCTCAACATGCTGGA AAACCTAGTGAAACACAAAAAAACTATCTCGTTCATCTCTTGCATTATGCAGATGGCTTTG TATTTGACTTTTGCTGCTGCAGTGTGCATGATTTTGGTGGTGATGTCCTATGACAGATTTGT GGCGATCTGCCATCCCCTGCATTACACTGTCATCATGAACTGGAGAGTGTGCACAGTACTG GCTATTACTTCCTGGGCATGTGGATTTTCCCTGGCCCTCATAAATCTAATTCTCCTTCTAAG GCTGCCCTTCTGTGGGCCCCAGGAGGTGAACCACTTCTTCGGTGAAATTCTGTCTGTCCTC AAACTGGCCTGTGCAGACACCTGGATTAATGAAATTTTTGTCTTTGCTGGTGGTGTGTTTG TCTTAGTCGGGCCCCTTTCCTTGATGCTGATCTCCTACATGCGCATCCTCTTGGCCATCCTG AAGATCCAGTCAAAGGAGGGCCGCAAAAAAGCCTTTTCCACCTGCTCCTCCCACCTCTGTG TGGTTGGGCTTTACTTTGGCATGGCCATGGTGGTTTACCTGGTCCCAGACAACAGTCAACG ACAGAAGCAGCAGAAAATTCTCACCCTGTTTTACAGCCTTTTCAACCCATTGCTGAACCCC CTCATCTACAGCCTGCGGAATGCTCAAGTGAAGGGTGCCTTATACAGAGCACTGCAGAAA AAGAGGACCATGTGA (SEQ ID NO: 486). AOLFR24B sequences:
MPSINDTHFYPPFFLLLGIPGLDTLHIWISFPFCIVYLLAIVGNMTILFVIKTEHSLHQPMFYFLAM LSMIDLGLSTSTIPKMLGIFWFNLQEISFGGCLLQMFFIHMFTGMETVLLWMAYDREVAICNP LQYTMILTNKTISILASVVVGRNLVLVTPFVFLILRLPFCGHNIVPHTYCEHRGLAGLACAPIKIN πYGLMVISYIIVOVIL-IASSYVLIL-RAVFRLPSQDVRLKAFNTCGSHVCVMLCFYTPAFFSFMTH RFGQNIPHYmiLLANLYVVVPPALNPVIYGVRTKQIREQIVKIFVQKE (SEQ ID NO: 487)
ATGCCTTCTATCAATGACACCCACTTCTATCCCCCCTTCTTCCTCCTGCTAGGAATACCAGG ACTGGACACTTTACATATCTGGATTTCTTTCCCATTCTGTATTGTGTACCTGATTGCCATTG TGGGGAATATGACCATTCTCTTTGTGATCAAAACTGAACATAGTCTACACCAGCCCATGTT CTACTTCCTGGCCATGTTGTCTATGATTGATCTGGGTCTGTCCACATCCACTATCCCCAAAA TGCTAGGAATCTTCTGGTTCAACCTCCAAGAGATCAGCTTTGGGGGATGCCTTCTTCAGAT GTTCTTTATTCACATGTTTACAGGCATGGAGACTGTTCTGTTGGTGGTCATGGCTTATGACC GCTTTGTTGCCATCTGCAACCCTCTCCAGTACACCATGATCCTCACCAATAAAACCATCAG TATCCTAGCTTCTGTGGTTGTTGGAAGAAATTTAGTTCTTGTAACCCCATTTGTGTTTCTCA TTCTGCGTCTGCCATTCTGTGGGCATAACATCGTACCTCACACATACTGTGAGCACAGGGG TCTGGCCGGGTTGGCCTGTGCACCCATTAAGATCAACATAATCTATGGGCTCATGGTGATT TCTTATATTATTGTGGATGTGATCTTAATTGCCTCTTCCTATGTGCTTATCCTTAGAGCTGT TTTTCGCCTTCCCTCTCAAGATGTCCGACTAAAGGCCTTCAATACCTGTGGTTCTCATGTCT GTGTTATGCTGTGCTTTTACACACCAGCATTTTTTTCTTTTATGACACATCGTTTTGGCCAA AACATTCCCCACTATATCCATATTCTTTTGGCTAACCTGTATGTGGTTGTCCCACCTGCCCT TAACCCTGTCATTTATGGAGTCAGGACCAAGCAGATCCGAGAGCAAATTGTGAAAATATTT GTACAGAAAGAATAA (SEQ ID NO: 488)
AOLFR33B sequences:
MLHTNNTQFHPSTFLWGVPGLEDVHVWIGFPFFAVYLTALLGNIIILFVIQTEQSLHQPMFYFL AMLAGTDLGLSTATIPKMLGIFWFNLGEIAFGACITQMYTIHICTGLESVVLTVTGIDRYIAICNP LRYSMILTNKVIAILGIVIIVRTLVFVTPFTFLTLRLPFCGVRIIPHTYCEHMGLAKLACASINVIY GLIAFSVGYIDISVIGFSYVQILRAVFHLPAWDARLKALSTCGSHVCVMLAFYLPALFSFMTHRF GHNIPHYIHILLANLYWFPPALNS VIYGVKTKQIREQVLRILNPKSFWHFDPKRIFHNNS VRQ (SEQ ID NO: 489)
ATGCTTCATACCAACAATACACAGTTTCACCCTTCCACCTTCCTCGTAGTGGGGGTCCCAG GGCTGGAAGATGTGCATGTATGGATTGGCTTCCCCTTCTTTGCGGTGTATCTAACAGCCCT TCTAGGGAACATCATTATCCTGTTTGTGATACAGACTGAACAGAGCCTCCACCAACCCATG TTTTACTTCCTAGCCATGTTGGCCGGCACTGATCTGGGCTTGTCTACAGCAACCATCCCCA AGATGCTGGGAATTTTCTGGTTTAATCTTGGAGAGATTGCATTTGGTGCCTGCATCACACA GATGTATACCATTCATATATGCACTGGCCTGGAGTCTGTGGTACTGACAGTCACGGGCATA GATCGCTATATTGCCATCTGCAACCCCCTGAGATATAGCATGATCCTTACCAACAAGGTAA TAGCCATTCTGGGCATAGTCATCATTGTCAGGACTTTGGTATTTGTGACTCCATTCACATTT CTCACCCTGAGATTGCCTTTCTGTGGTGTCCGGATTATCCCTCATACCTATTGTGAACACAT GGGCTTGGCAAAGTTAGCTTGTGCCAGTATTAATGTTATATATGGATTGATTGCCTTCTCA GTGGGATACATTGACATTTCTGTGATTGGATTTTCCTATGTCCAGATCCTCCGAGCTGTCTT CCATCTCCCAGCCTGGGATGCCCGGCTTAAGGCACTCAGCACATGTGGCTCTCACGTCTGT GTTATGTTGGCTTTCTACCTGCCAGCCCTCTTTTCCTTCATGACACACCGCTTTGGCCACAA CATCCCTCATTACATCCACATTCTTCTGGCCAATCTGTATGTGGTTTTTCCCCCTGCTCTTA ACTCTGTTATCTATGGGGTCAAAACAAAACAGATACGAGAGCAGGTACTTAGGATACTCA ACCCTAAAAGCTTTTGGCATTTTGACCCCAAGAGGATCTTCCACAACAATTCAGTTAGACA ATAA (SEQ ID NO: 490)
AOLFR112B sequences:
M-l-a KTVLTEFILLGLTDWELQVAWTFLFLAYLLSILGNLTILILTLLDSHLQTPMYFFLR-NFSF LEISFTNIFIPRVLISITTGNKSISFAGCFTQYFFAMFLGATEFYLLAAMSYDRYVAICKPLHYTTI MSSRICIQLIFCSWLGGLMAIIPTITLMSQQDFCASNRLNHYFCDYEPLLELSCSDTSLIEKWFL VASVTLVVTLVLVILSYAEIIKTILKLPSAQQRTKAFSTCSSHMIVISLSYGSCMFMYINPSAKEG DTFTS-KGVALLITSVAPLLNPFIYTLRNQQVKQPFKDMVKKLLNL (SEQ ID NO: 491) ATGAAAAATAAAACCGTGTTAACTGAGTTTATCCTTCTGGGTCTAACAGATGTCCCTGAAC TCCAGGTGGCAGTTTTCACCTTTCTTTTCCTTGCGTATTTACTCAGCATCCTTGGAAATCTG ACTATCCTCATCCTCACCTTGCTGGACTCCCACCTTCAGACTCCCATGTATTTCTTTCTCCG GAACTTCTCCTTCTTGGAAATTTCCTTCACAAACATCTTCATTCCAAGGGTCCTGATTAGCA TCACAACAGGGAACAAGAGTATCAGCTTTGCTGGCTGCTTCACTCAGTATTTCTTTGCCAT GTTCCTTGGGGCTACAGAGTTTTACCTTCTGGCTGCCATGTCCTATGACCGCTATGTGGCC ATCTGCAAACCTCTGCATTACACCACCATCATGAGCAGCAGAATCTGCATCCAGCTGATTT TCTGCTCTTGGCTGGGTGGGCTAATGGCTATTATACCAACAATCACCCTGATGAGTCAGCA GGACTTTTGTGCATCCAACAGACTGAATCATTACTTCTGTGACTATGAGCCTCTTCTGGAA CTCTCATGTTCAGACACAAGCCTCATAGAGAAGGTTGTCTTTCTTGTGGCATCTGTGACCC TGGTGGTCACTCTGGTGCTAGTGATTCTCTCCTATGCATTCATTATCAAGACTATTCTGAAG CTCCCCTCTGCCCAACAAAGGACAAAAGCCTTTTCCACATGTTCTTCCCACATGATTGTCAT CTCCCTCTCTTACGGAAGCTGCATGTTTATGTACATTAATCCCTCTGCAAAAGAAGGGGAT ACATTCAACAAGGGAGTAGCTCTACTCATTACTTCAGTTGCTCCTTTGTTGAACCCCTTTAT TTACACCCTAAGGAACCAACAGGTAAAACAACCCTTCAAGGATATGGTCAAAAAGCTTCT GAATCTTTAA (SEQ ID NO: 492)
AOLFR130B sequences: MEGKNQTAPSEFIILGFDHLNELQYLLFTIFFLTYICTLGGNVFIIWTIADSHLHTPMYYFLGNL ALIDICYTTTNVPQMMVHLLSEKKIISYGGCVTQLFAFIFFVGSECLLLAAMAYDRYIAICKPLR YSFIMNKALCSWLAASCWTCGFLNSVLHTVLTFHLPFCGNNQINYFFCDIPPLLILSCGDTSLNE LALLSIGILISWTPFLCIILSYLYIISTILRIRSSEGRHKAFSTCASHLLIVILYYGSAIFTYVRPISSYS LEKD-RLISVLYSVVTPMLNPVIYTLRNKDIKEAVKAIGRKWQPPVFSSDI (SEQ ID NO: 493)
ATGGAAGGAAAGAATCAAACAGCTCCATCTGAATTCATCATCTTGGGGTTCGACCACCTGA ATGAATTGCAGTATTTACTCTTCACCATCTTCTTTCTGACCTACATATGCACTTTAGGAGGC AATGTTTTTATCATTGTGGTGACCATAGCTGATTCCCACCTACACACACCCATGTATTATTT CCTAGGAAATCTTGCCCTTATTGACATCTGCTACACTACTACTAATGTCCCCCAGATGATG GTGCATCTTCTGTCAGAGAAGAAAATCATTTCCTATGGAGGCTGTGTGACCCAGCTCTTTG CATTCATTTTCTTTGTTGGCTCAGAGTGTCTCCTCCTGGCAGCAATGGCATATGATCGATAT ATTGCTATCTGTAAGCCGTTAAGGTACTCATTTATTATGAACAAGGCCCTGTGCAGCTGGT TAGCAGCCTCATGCTGGACATGTGGGTTTCTCAACTCAGTGTTGCACACCGTTCTGACCTT CCACCTGCCCTTCTGTGGTAACAATCAGATCAATTATTTCTTCTGTGACATACCTCCCTTGC TCATCTTGTCTTGTGGTGATACTTCCCTCAATGAACTGGCTTTGCTGTCCATTGGGATCCTC ATAAGCTGGACTCCTTTCCTGTGCATCATCCTTTCCTACCTTTACATCATCTCCACCATCCT GAGGATCCGTTCCTCTGAGGGGAGGCACAAAGCCTTTTCCACCTGTGCCTCCCACCTGCTC ATTGTTATTCTCTATTATGGCAGTGCTATCTTCACGTATGTGAGGCCCATCTCATCTTACTC TCTAGAGAAAGATAGATTGATCTCAGTGCTGTATAGTGTTGTCACACCCATGCTGAATCCT GTAATTTATACGCTAAGGAATAAGGACATCAAAGAGGCTGTGAAGGCCATAGGGAGAAAG TGGCAGCCACCAGTTTTCTCTTCTGATATATAA (SEQ ID NO: 494)
AOLFR142B sequences:
MARKDMAHINCTQATEFILVGLTDHQELKMPLFVLFLSIYLFTVVGNLGLILLIRADTSLNTPM YFFLSNLAFVDFCYSSVITPKMLGNFLYKQNVISFDACATQLGCFLTFMISESLLLASMAYDRY VAICNPLLYMWMTPGICIQLVAVPYSYSFLMALFHTILTFRLSYCHSNIVNHFYCDDMPLLRL TCSDTRFKQLWIFACAGIMFISSLLIVFVSYMFIISAILRMHSAEGRQKAFSTCGSHMLAVTIFYG TLIFMYLQPSSSHALDTDK-MASVEYTVπPMLNPLIYSLQNIOEVKEALKKIIINKN (SEQ ID NO: 495)
ATGGCCAGAAAAGATATGGCTCACATCAATTGCACCCAGGCGACAGAGTTTATTCTTGTGG GCCTCACAGACCATCAGGAGTTGAAGATGCCCCTCTTTGTGCTATTCTTATCCATCTACCTC TTCACAGTGGTAGGCAACTTGGGTTTGATCCTACTCATTAGAGCGGATACAAGTCTCAACA CACCAATGTACTTCTTTCTTAGCAACCTAGCTTTTGTGGATTTCTGTTACTCTTCTGTCATT ACACCCAAAATGCTTGGGAATTTCTTGTACAAACAAAATGTTATATCCTTTGATGCATGTG CTACTCAACTGGGCTGCTTTCTCACCTTCATGATATCAGAATCCTTGCTACTGGCTTCCATG GCCTATGACCGATATGTGGCCATTTGTAACCCTCTATTGTATATGGTTGTAATGACTCCAG GAATCTGCATTCAACTTGTAGCAGTTCCTTATAGCTATAGCTTCCTAATGGCACTATTTCAC ACCATCCTCACCTTCCGCCTCTCCTATTGCCACTCCAACATTGTCAACCATTTCTATTGTGA TGACATGCCTCTCCTCAGGCTAACTTGCTCAGACACTCGCTTCAAACAGCTCTGGATCTTT GCCTGTGCTGGTATCATGTTCATTTCCTCCCTTCTGATTGTCTTTGTCTCCTACATGTTCATC ATTTCTGCCATCCTGAGGATGCATTCAGCTGAGGGAAGACAGAAGGCTTTCTCGACGTGTG GCTCTCACATGCTGGCAGTCACCATATTCTATGGGACCCTCATTTTTATGTACTTACAGCCT AGCTCTAGCCATGCCCTGGACACAGACAAGATGGCCTCTGTCTTCTACACAGTGATCATTC CCATGTTGAATCCCTTAATCTATAGCCTCCAGAATAAGGAGGTGAAAGAAGCTCTGAAGA AAATCATTATCAATAAAAACTAG (SEQ ID NO: 496)
AOLFR171C sequences:
MAEVNIIYVTVFILKGITNRPELQAPCFGVFLVIYLVTVLGNLGLITLIKIDTRLHTPMYYFLSHL AFVDLCYSSAITPKMMVNFWERNTIPFHACATQLGCFLTFMITECFLLASMAYDCYVAICSPL HYSTLMSRRVCIQLVAVPYIYSFLVALFHTVITFRLTYCGPNLINHFYCDDLPFLALSCSDTHMK EILIFAFAGFDMISSSSIVLTSYIFIIAAILRIRSTQGQHKAISTCGSHMVTVTIFYGTLIFMYLQPKS NHSLDTDKMAS YTVVIPMLNPLIYSLRNKEVKDAS- ALDKGCENLQILTFLO ID NO: 497)
ATGGCTGAAGTTAATATCATTTATGTCACTGTATTCATTCTGAAAGGAATTACCAACCGGC CAGAGCTTCAGGCCCCGTGCTTTGGGGTGTTTTTAGTTATCTATCTGGTCACAGTGCTGGG CAATCTTGGGTTGATTACTTTAATCAAGATTGATACTCGACTCCACACACCTATGTACTATT TCCTCAGCCACCTGGCCTTTGTTGACCTTTGTTACTCCTCTGCTATTACACCGAAGATGATG GTGAATTTTGTTGTGGAACGCAACACCATTCCTTTCCATGCTTGTGCAACCCAACTGGGTT GTTTTCTCACCTTCATGATCACTGAGTGTTTCCTTCTAGCCTCCATGGCCTACGATTGCTAT GTCGCCATCTGTAGTCCCCTGCATTATTCAACACTGATGTCAAGAAGAGTCTGCATTCAAC TGGTGGCAGTTCCATATATATACAGCTTCCTGGTTGCCCTCTTCCACACCGTTATCACTTTC CGTCTGACTTACTGTGGCCCAAACTTAATTAACCATTTCTATTGTGATGACCTCCCCTTCTT AGCTCTGTCCTGCTCAGACACACACATGAAGGAAATTCTGATATTTGCCTTTGCTGGCTTT GATATGATCTCTTCCTCTTCCATTGTCCTCACCTCCTACATCTTTATTATTGCCGCTATCCTA AGGATCCGCTCTACTCAGGGGCAACACAAAGCCATTTCCACCTGTGGCTCCCATATGGTGA CTGTCACTATTTTCTATGGCACACTGATCTTTATGTACCTACAGCCCAAATCAAATCACTCC TTGGACACAGACAAGATGGCTTCTGTATTTTACACAGTGGTGATCCCCATGTTAAACCCCC TAATCTATAGTCTAAGGAACAAAGAAGTGAAAGATGCCTCAAAGAAAGCCTTGGATAAAG GTTGTGAAAACTTACAGATATTAACATTTTTAAAAATAAGAAAACTTTATTAA (SEQ ID NO: 498)
AOLFR225B sequences:
MKNRTMFGEFILLGLTNQPELQVMIFIFLFLTYMLSILGNLTIITLTLLDPHLQTPMYFFLRNFSF LEISFTSIFIPRFLTSMTTGNKVISFAGCLTQYFFAIFLGATEFYLLASMSYDRYVAICKPLHYLTI MSSRVCIQLVFCSWLGGFLAILPPIILMTQVDFCVSNILNHYYCDYGPLVELACSDTSLLELMVI LLAWTLMVTLVLVTLSYTYIIRTILRIPSAQQRTKAFSTCSSHMIVISLSYGSCMFMYINPSAKE GGAFNKGIAVLITSVTPLLNPFIYTLRNQQVKQA KI)SVKKIVKL (SEQ ID NO: 499)
ATGAAAAACAGAACCATGTTTGGTGAGTTTATTCTACTGGGCCTTACAAATCAACCTGAAC TCCAAGTGATGATATTCATCTTTCTGTTCCTCACCTACATGCTAAGTATCCTAGGAAATCTG ACTATTATCACCCTCACCTTACTAGACCCCCACCTCCAGACCCCCATGTATTTCTTCCTCCG GAATTTCTCCTTCTTAGAAATTTCCTTCACATCCATTTTTATTCCCAGATTTCTGACCAGCA TGACAACAGGAAATAAAGTTATCAGCTTTGCTGGCTGCTTGACTCAGTATTTTTTTGCTAT ATTTCTTGGAGCTACCGAGTTTTACCTCCTGGCCTCCATGTCTTATGATCGTTATGTGGCCA TCTGCAAACCCTTGCATTACCTGACTATTATGAGCAGCAGAGTCTGCATACAACTAGTGTT CTGCTCCTGGTTGGGGGGATTCCTAGCAATCTTACCACCAATCATCCTGATGACCCAGGTA GATTTCTGTGTCTCCAACATTCTGAATCACTATTACTGTGACTATGGGCCTCTCGTGGAGCT TGCCTGCTCAGACACAAGCCTCTTAGAACTGATGGTCATCCTCTTGGCCGTTGTGACTCTC ATGGTTACTCTGGTGCTGGTGACACTTTCTTACACATACATTATCAGGACTATTCTGAGGA TCCCTTCTGCCCAGCAAAGGACAAAGGCCTTTTCCACTTGTTCCTCCCACATGATTGTCATC TCCCTCTCTTATGGCAGCTGCATGTTTATGTACATTAATCCTTCTGCAAAAGAAGGAGGTG CTTTCAACAAAGGAATAGCTGTACTCATTACTTCGGTTACTCCCTTACTGAATCCCTTCATA TATACTTTAAGAAATCAGCAAGTGAAACAAGCTTTCAAGGACTCAGTCAAAAAGATTGTG AAACTTTAA (SEQ ID NO: 500)
AOLFR274B sequences:
MEFVFLAYPSCPELHILSFLGVSLVYGLIITGNILIWSIHTETCLCTSMYYFLGSLSGIEICYTAV WPHILANTLQSEKTITLLGCATQMAFFIALGSADCFLLAAMAYDRYVAICHPLQYPLLMTLTL CVHLWASVISGLFLSLQLVAFIFSLPFCQAQGIEHFFCDVPPVMHWCAQSHIHEQSVLVAAIL AIAVPFFLITTSYTFIVAALLKIHSAAGRHRAFSTCSSHLTWLLQYGCCAFMYLCPSSSYNPKQ DRFISLVYTLGTPLLNPLIYALRNSEMKGAVGRVLTRNCLSQNS (SEQ ID NO: 501)
ATGGAATTTGTGTTCCTGGCCTATCCCTCCTGCCCAGAACTGCATATTCTGTCCTTCCTTGG GGTCAGCCTGGTTTATGGTTTGATCATCACTGGGAACATTCTCATTGTGGTGTCCATTCAC ACAGAAACCTGTCTATGCACATCCATGTACTATTTCCTGGGCAGCCTTTCTGGGATTGAAA TATGCTACACTGCAGTGGTGGTGCCCCATATCCTGGCCAACACCCTACAGTCAGAGAAGAC CATCACTCTCCTGGGCTGTGCCACCCAGATGGCTTTCTTCATTGCACTGGGCAGTGCTGAT TGCTTCCTCTTGGCTGCCATGGCCTATGACCGCTATGTGGCCATTTGCCACCCGTTGCAGTA CCCTCTCCTCATGACATTGACTCTTTGTGTCCACTTGGTTGTGGCATCAGTCATCAGTGGTC TGTTCCTGTCCTTACAACTGGTGGCCTTCATCTTCTCTCTGCCATTCTGCCAGGCTCAGGGC ATTGAGCACTTCTTTTGTGATGTGCCACCAGTCATGCATGTTGTTTGTGCTCAGAGTCACAT TCATGAGCAGTCAGTGCTGGTGGCAGCCATACTAGCCATTGCTGTGCCTTTCTTCCTCATC ACCACCTCCTACACCTTCATAGTGGCTGCTCTGCTCAAGATCCACTCGGCTGCTGGCCGCC ACCGGGCCTTCTCCACCTGCTCTTCCCACCTCACTGTGGTGCTGCTGCAGTATGGCTGCTGT GCCTTCATGTACCTGTGCCCCAGCTCCAGCTACAACCCCAAGCAAGATCGGTTCATCTCAC TGGTGTACACATTGGGAACCCCACTGCTCAACCCACTTATCTATGCCCTGAGGAACAGTGA GATGAAAGGGGCCGTAGGGAGAGTTCTTACCAGGAACTGCCTTTCCCAGAACAGCTAG (SEQ ID NO: 502)
AOLFR276B sequences:
MGGFGTNISSTTSFTLTGFPEMKGLEHWLAALLLLLYAISFLGNILILFIIKEEQSLHQPMYYFLS LFSVNDLGVSFSTLPTVLAAVCFHAPETTFDACLAQMFFIHFSSWTEFGILLAMSFDHYVAICNP LRYATVLTDVRVAHNGISIVIRSFCMVFPLPFLLKRLPFCKASVVLAHSYCLHADLIRLPWGDT TINSMYGLFIVISAFGVDSLLILLSYVLILHSVLAIASRGERLKTLNTCVSHIYAVLIFYVPMVSVS MVHRFGRHAPEYVHKFMSLCTSNALPNYLFHQD (SEQ ID NO: 503)
ATGGGGGGCTTTGGGACTAACATCTCAAGTACTACCAGCTTCACTCTAACAGGCTTCCCTG
AGATGAAGGGTCTGGAGCACTGGCTGGCTGCCCTTCTGCTGCTGCTTTATGCTATTTCCTT
CCTGGGCAACATCCTCATCCTCTTTATCATAAAGGAAGAGCAGAGCTTGCACCAGCCAATG TACTACTTCCTGTCTCTTTTTTCTGTTAATGACCTGGGTGTGTCCTTTTCTACATTGCCCACT GTACTGGCTGCTGTGTGTTTTCATGCCCCAGAGACAACTTTTGATGCCTGCCTGGCCCAGA TGTTCTTCATCCACTTTTCCTCCTGGACAGAGTTTGGCATCCTACTGGCCATGAGTTTTGAC CACTATGTGGCCATCTGTAACCCGCTGCGCTATGCCACAGTGCTCACTGATGTCCGTGTGG CCCACAATGGCATATCCATTGTCATCCGCAGCTTCTGCATGGTATTCCCACTTCCCTTCCTC CTGAAGAGACTGCCTTTCTGTAAGGCCAGTGTGGTACTGGCCCATTCCTACTGTCTGCATG CAGACCTGATTCGGCTGCCCTGGGGAGACACTACCATCAACAGCATGTATGGCCTGTTCAT TGTCATCTCTGCCTTTGGTGTAGATTCACTGCTCATCCTCCTCTCCTATGTGCTCATTCTAC ATTCTGTGCTGGCCATTGCCTCCAGGGGTGAGAGGCTTAAGACACTCAACACATGTGTGTC ACATATCTATGCAGTGCTGATCTTCTATGTGCCTATGGTTAGTGTGTCCATGGTTCATCGAT TTGGGAGGCATGCTCCTGAATATGTGCACAAGTTCATGTCTCTTTGTACCTCCAATGCTCT ACCCAATTATCTATTCCATCAAGACTAA (SEQ ID NO: 504)
AOLFR311B sequences:
MDWENCSSLTDFFLLGITNNPEMKVTLFAVFLAVYIINFSANLGMIVLIRMDYQLHTPMYFFLS HLSFCDLCYSTATGPKMLVDLLAJ NKSIPFYGCALQFLVFCIFADSECLLLSVMAFDRYKAIDsfP LLYTVNMSSRVCYLLLTGVYLVGLADALIHMTLAFRLCFCGSNEDSfHFFCDIPPLLLLSRSDT NELVLFTVFGFIELSTISGVFISYCYIILSVLEIHSAEGRFKALSTCTSHLSAVAIFQGTLLFMYFRP SSSYSLDQDKMTSLFYTLVVPMLNPLIYSLRN-KDVKEALKKLKNKILF (SEQ ID NO: 505)
ATGGACTGGGAAAATTGCTCCTCATTAACTGATTTTTTTCTCTTGGGAATTACCAATAACCC AGAGATGAAAGTGACCCTATTTGCTGTATTCTTGGCTGTTTATATCATTAATTTCTCAGCAA ATCTTGGAATGATAGTTTTAATCAGAATGGATTACCAACTTCACACACCAATGTATTTCTT CCTCAGTCATCTGTCTTTCTGTGATCTCTGCTATTCTACTGCAACTGGGCCCAAGATGCTGG TAGATCTACTTGCCAAGAACAAGTCAATACCCTTCTATGGCTGTGCTCTGCAATTCTTGGT CTTCTGTATCTTTGCAGATTCTGAGTGTCTACTGCTGTCAGTGATGGCCTTTGATCGGTACA AGGCCATCATCAACCCCCTGCTCTATACAGTCAACATGTCTAGCAGAGTGTGCTATCTACT CTTGACTGGGGTTTATCTGGTGGGAATAGCAGATGCTTTGATACATATGACACTGGCCTTC CGCCTATGCTTCTGTGGGTCTAATGAGATTAATCATTTCTTCTGTGATATCCCTCCTCTCTT ATTACTCTCTCGCTCAGATACACAGGTCAATGAGTTAGTGTTATTCACCGTCTTTGGTTTTA TTGAACTGAGTACCATTTCAGGAGTTTTCATTTCTTATTGTTATATCATCCTATCAGTCTTG GAGATACACTCTGCTGAGGGGAGGTTCAAAGCTCTCTCTACATGCACTTCCCACTTATCTG CGGTTGCAATTTTCCAGGGAACTCTGCTCTTTATGTATTTCCGGCCAAGTTCTTCCTATTCT CTAGATCAAGATAAAATGACCTCATTGTTTTACACCCTTGTGGTTCCCATGTTGAACCCCCT GATTTATAGCCTGAGGAACAAGGATGTGAAAGAGGCCCTGAAAAAACTGAAAAATAAAAT TTTATTTTAA (SEQ ID NO: 506)
AOLFR314 sequences:
MEVKNCCMVTEFILLGIPHTEGLEMTLFVLFLPFYACTLLGNVSILVAVMSSARLHTPMYFFLG NLSVFDMGFSSVTCPKMLLYLMGLSRLISYKDCVCQLFFFHFLGSIECFLFTVMAYDRFTAICY PLRYTVIMNPRICVALAVGT LLGCIHSSILTSLTFTLPYCGPNEVDHFFCDIPALLPLACADTSL AQRVSFTNVGLISLVCFLLILLSYTRITISILSIRTTEGRRRAFSTCSAHLIAILCAYGPIITVYLQPT PNPMLGTWQILMNLVGPMLNPLIYTLRNKEVKTALKTILHRTGHVPES (SEQ ID NO: 507)
ATGGAGGTGAAGAACTGCTGCATGGTGACAGAGTTCATCCTTTTGGGAATCCCACACACA GAGGGGCTGGAGATGACACTTTTTGTCTTATTCTTGCCCTTCTATGCCTGCACTCTACTGGG AAATGTGTCTATCCTTGTTGCTGTTATGTCTTCTGCTCGCCTTCACACACCTATGTATTTCT TCCTGGGAAACTTGTCTGTGTTTGACATGGGTTTCTCCTCAGTGACTTGTCCCAAAATGCT GCTCTACCTTATGGGGCTGAGCCGACTCATCTCCTACAAAGACTGTGTCTGCCAGCTTTTCT TCTTCCATTTCCTCGGGAGCATTGAGTGCTTCTTGTTTACGGTGATGGCCTATGACCGCTTC ACTGCCATCTGTTATCCTCTGCGATACACAGTCATCATGAACCCAAGGATCTGTGTGGCCC TGGCTGTGGGCACATGGCTGTTAGGGTGCATTCATTCCAGTATCTTGACCTCCCTCACCTTC ACCTTGCCATACTGTGGTCCCAATGAAGTGGATCACTTCTTCTGTGACATTCCAGCACTGTT GCCCTTGGCCTGTGCTGACACATCCTTAGCCCAGAGGGTGAGCTTCACCAACGTTGGCCTC ATATCTCTTGTCTGCTTTCTGCTAATTCTTTTATCCTACACTAGAATCACAATATCTATCTT AAGCATTCGTACAACTGAGGGCCGTCGCCGTGCCTTCTCCACCTGCAGTGCTCACCTCATT GCCATCCTCTGTGCCTATGGGCCCATCATCACTGTCTACCTGCAGCCCACACCCAACCCCA TGCTGGGAACCGTGGTACAAATTCTCATGAATCTGGTAGGACCAATGCTGAACCCTTTGAT CTATACCTTGAGGAATAAGGAAGTAAAAACAGCCCTGAAAACAATATTGCACAGGACAGG CCATGTTCCTGAGAGTTAG (SEQ ID NO: 508)
AOLFR324B sequences:
MPIANDTQFHTSSFLLLGIPGLEDVHIWIGFPFFSVYLIALLGNAAIFFVIQTEQSLHEPMYYCLA MLDSIDLSLSTATIPKMLGIFWFNIKEISFGGYLSQMFFIHFFTVMESIVLVAMAFDRYIAICKPL WYTMILTSIQISLIAGL^VLRSLYMVIPL LLLi .PFCGHRIIPHTYCEHMGIARLACASIKVNIM FGLGSISLLLLDVLLIILSHIRILYAVFCLPSWEARLKALNTCGSHIGVILAFSTPAFFSFFTHCFGH DIPQYIHIFLANLYVWPPTLNPVIYGVRTKHIRETVLRIFFKTDH (SEQ ID NO: 509)
ATGCCTATAGCTAACGACACCCAGTTCCATACTTCTTCATTCCTACTGCTGGGTATCCCAGG GCTAGAAGATGTGCACATCTGGATTGGATTCCCTTTTTTCTCTGTGTATCTTATTGCACTCC TGGGAAATGCTGCTATCTTCTTTGTGATCCAAACTGAGCAGAGTCTCCATGAGCCCATGTA CTACTGCCTGGCCATGTTGGATTCCATTGACCTGAGCTTGTCTACGGCCACCATTCCCAAA ATGCTGGGCATCTTCTGGTTCAATATCAAGGAAATATCTTTTGGAGGCTACCTTTCTCAGA TGTTCTTCATCCATTTCTTCACTGTCATGGAGAGCATCGTATTGGTGGCCATGGCCTTTGAC CGCTACATTGCCATTTGCAAACCTCTTTGGTACACCATGATCCTCACCAGCAAAATCATCA GCCTCATTGCAGGCATTGCTGTCCTGAGGAGCTTGTACATGGTCATTCCACTGGTGTTTCT CCTCTTAAGGTTGCCCTTCTGTGGACATCGTATCATCCCTCATACTTACTGTGAGCACATGG GCATTGCCCGTCTGGCCTGTGCCAGCATCAAAGTCAACATTATGTTTGGTCTTGGCAGTAT TTCTCTCTTGTTATTGGATGTGCTCCTTATTATTCTCTCCCATATCAGGATCCTCTATGCTGT CTTCTGCCTGCCCTCCTGGGAAGCTCGACTCAAAGCTCTCAACACCTGTGGCTCTCACATT GGTGTTATCTTAGCCTTTTCTACACCAGCATTTTTCTCTTTCTTTACACACTGCTTTGGCCAT GATATTCCCCAATATATCCACATTTTCTTGGCTAATCTATATGTGGTTGTTCCTCCCACCCT CAATCCTGTAATCTATGGGGTCAGAACCAAACATATTAGGGAGACAGTGCTGAGGATTTTC TTCAAGACAGATCACTAA (SEQ ID NO: 510)
AOLFR328 sequences:
MALGNHSTITEFLLLGLSADPNIRALLFVLFLGIYLLTIMENLMLLLVIRADSCLHKPMYFFLSH LSFVDLCFSSVIVPKMLENLLSQRKTISVEGCLAQVFFVFVTAGTEACLLSGMAYDRHAAIREP LLYGQIMGKQLYMHLVWGSWGLGFLDALINVLLAVNMVFCEAKIIHHYSYEMPSLLPLSCSDI SRSLIVLLCSTLLHGLGNFLLVFLSYTRIISTILSISSTSGRSKAFSTCSAHLTAVTLYYGSGLLRHL MPNSGSPIELIFSVQYTVVTPMLNSLIYSLKNKEVKVALKRTLEKYLQYTRR (SEQ ID NO: 511)
ATGGCCTTGGGGAATCACAGCACCATCACCGAGTTCCTCCTCCTTGGGCTGTCTGCCGACC CCAACATCCGGGCTCTGCTCTTTGTGCTGTTCCTGGGGATTTACCTCCTGACCATAATGGA AAACCTGATGCTGCTGCTCGTGATCAGGGCTGATTCTTGTCTCCATAAGCCCATGTATTTCT TCCTGAGTCACCTCTCTTTTGTTGATCTCTGCTTCTCTTCAGTCATTGTGCCCAAGATGCTG GAGAACCTCCTGTCACAGAGGAAAACCATTTCAGTAGAGGGCTGCCTGGCTCAGGTCTTCT TTGTGTTTGTCACTGCAGGGACTGAAGCCTGCCTTCTCTCAGGGATGGCCTATGACCGCCA TGCTGCCATCCGCCGCCCACTACTTTATGGACAGATCATGGGTAAACAGCTGTATATGCAC CTTGTGTGGGGCTCATGGGGACTGGGCTTTCTGGACGCACTCATCAATGTCCTCCTAGCTG TAAACATGGTCTTTTGTGAAGCCAAAATCATTCACCACTACAGCTATGAGATGCCATCCCT CCTCCCTCTGTCCTGCTCTGATATCTCCAGAAGCCTCATCGTTTTGCTCTGCTCCACTCTCC TACATGGGCTGGGAAACTTCCTTTTGGTCTTCTTATCCTACACCCGTATAATCTCTACCATC CTAAGCATCAGCTCTACCTCGGGCAGAAGCAAGGCCTTCTCCACCTGCTCTGCCCACCTCA CTGCAGTGACACTTTACTATGGCTCAGGTTTGCTCCGCCATCTCATGCCAAACTCAGGTTC CCCCATAGAGTTGATCTTCTCTGTGCAGTATACTGTAGTCACTCCCATGCTGAATTCCCTCA TCTATAGCCTGAAAAATAAGGAAGTGAAGGTAGCTCTGAAAAGAACTTTGGAAAAATATT TGCAATATACCAGACGTTGA (SEQ ID NO: 512)

Claims

Claims:
1. A method for representing sensory perception of one or more odorants comprising: (a) providing a representative class of n olfactory receptors or ligand- binding domains thereof;
(b) measuring values Xj to Xn representative of at least one activity of the one or more odorants selected from the group consisting of binding of the one or more odorants to the ligand-binding domain of at least one of the n olfactory receptors, activating at least one of the n olfactory receptors with the one or more odorants, and blocking at least one of the n olfactory receptors with the one or more odorants; and
(c) generating a representation of sensory perception from the values X] to
Figure imgf000174_0001
wherein at least one of the n olfactory receptors has an amino acid sequence selected from the group consisting of SEQ DD NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ TD NO: 7, SEQ ID NO: 9, SEQ ED NO: 11, SEQ ID NO: 13, SEQ TD NO: 15, SEQ ID NO: 17, SEQ DD NO: 19, SEQ ID NO: 21, SEQ DD NO: 23, SEQ DD NO: 25, SEQ ED NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ TD NO: 33, SEQ ID NO: 35, SEQ ED NO: 37, SEQ ED NO: 39, SEQ ED NO: 41, SEQ DD NO:'43, SEQ DD NO: 45, SEQ ED NO: 47, SEQ ED NO: 49, SEQ ED NO: 51, SEQ ED NO: 53, SEQ ED NO: 55, SEQ ED NO: 57, SEQ DD NO: 59, SEQ ED NO: 61, SEQ ED NO: 63, SEQ DD NO: 65, SEQ DD NO: 67, SEQ DD NO: 69, SEQ DD NO: 71, SEQ DD NO: 73, SEQ ID NO: 75, SEQ ED NO: 77, SEQ DD NO: 79, SEQ ED NO: 81, SEQ ED NO: 83, SEQ ED NO: 85, SEQ DD NO: 87, SEQ DD NO: 89, SEQ DD NO: 91, SEQ ED NO: 93, SEQ DD NO: 95, SEQ DD NO: 97, SEQ DD NO: 99, SEQ DD NO: 101, SEQ DD NO: 103, SEQ DD NO: 105, SEQ ED NO: 107, SEQ ED NO: 109, SEQ ED NO: 111, SEQ DD NO: 113, SEQ D NO: 115, SEQ DD NO: 117, SEQ DD NO: 119, SEQ DD NO: 121, SEQ DD NO: 123, SEQ DD NO: 125, SEQ DD NO: 127, SEQ ED NO: 129, SEQ DD NO: 131, SEQ DD NO: 133, SEQ DD NO: 135, SEQ ED NO: 137, SEQ DD NO: 139, SEQ D NO: 141, SEQ DD NO: 143, SEQ ED NO: 145, SEQ DD NO: 147, SEQ ED NO: 149, SEQ DD NO: 151, SEQ DD NO: 153, SEQ DD NO: 155, SEQ DD NO: 157, SEQ DD NO: 159, SEQ DD NO: 161, SEQ ED NO: 163, SEQ DD NO: 165, SEQ DD NO: 167, SEQ DD NO: 169, SEQ ED NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ TD NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ED NO: 185, SEQ ED NO: 187, SEQ DD NO: 189, SEQ DD NO: 191, SEQ DD NO: 193, SEQ DD NO: 195, SEQ DD NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ED NO: 203, SEQ DD NO: 205, SEQ DD NO: 207, SEQ DD NO: 209, SEQ ED NO: 211, SEQ DD NO: 213, SEQ DD NO: 215, SEQ DD NO: 217, SEQ DD NO: 219, SEQ DD NO: 221, SEQ DD NO: 223, SEQ TD NO: 225, SEQ ED NO: 227, SEQ ED NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ DD NO: 237, SEQ DD NO: 239, SEQ DD NO: 241, SEQ DD NO: 243, SEQ DD NO: 245, SEQ ED NO: 247, SEQ ED NO: 249, SEQ DD NO: 251, SEQ DD NO: 253, SEQ DD NO: 255, SEQ ED NO: 257, SEQ ID NO: 259, SEQ ED NO: 261, SEQ DD NO:, 263, SEQ ED NO:, 265, SEQ ID NO: 267, SEQ ED NO: 269, SEQ DD NO: 271, SEQ DD NO: 273, SEQ ED NO: 275, SEQ ED NO: 277, SEQ DD NO: 279, SEQ ED NO: 281, SEQ TD NO: 283, SEQ DD NO: 285, SEQ DD NO: 287, SEQ DD NO: 289, SEQ ID NO: 291, SEQ ED NO: 293, SEQ ID NO: 295, SEQ DD NO: 297, SEQ TD NO: 299, SEQ ED NO: 301, SEQ DD NO: 303, SEQ DD NO: 305, SEQ ED NO: 307, SEQ ED NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ED NO: 315, SEQ DD NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ DD NO: 323, SEQ ED NO: 325, SEQ DD NO: 327, SEQ DD NO: 329, SEQ DD NO: 331, SEQ TD NO: 333, SEQ ID NO: 335, SEQ DD NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ED NO: 347, SEQ DD NO: 349, SEQ DD NO: 351, SEQ DD NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ED NO: 359, SEQ ED NO: 361, SEQ DD NO: 363, SEQ ED NO: 365, SEQ DD NO: 367, SEQ DD NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ DD NO: 375, SEQ ID NO: 377, SEQ ED NO: 379, SEQ ED NO: 381, SEQ DD NO: 383, SEQ DD NO: 385, SEQ ED NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ DD NO: 393, SEQ DD NO: 395, SEQ DD NO: 397, SEQ ED NO: 399, SEQ DD NO: 401, SEQ DD NO: 403, SEQ ED NO: 405, SEQ TD NO: 407, SEQ DD NO: 409, SEQ DD NO: 411, SEQ ED NO: 413, SEQ DD NO: 415, SEQ ED NO: 417, SEQ DD NO: 419, SEQ DD NO: 421, SEQ DD NO: 423, SEQ DD NO: 425, SEQ ED NO: 427, SEQ DD NO: 429, SEQ DD NO: 431, SEQ DD NO: 433, SEQ DD NO: 435, SEQ ID NO: 437, SEQ ED NO: 439, SEQ DD NO: 441, SEQ DD NO: 443, SEQ ED NO: 445, SEQ DD NO: 447, SEQ ED NO: 449, SEQ DD NO: 451, SEQ DD NO: 453, SEQ ED NO: 455, SEQ ID NO: 457, SEQ DD NO: 459, SEQ DD NO: 461, SEQ DD NO: 463, SEQ ID NO: 465, SEQ DD NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ED NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ED NO: 479, SEQ ED NO: 481, SEQ DD NO: 483, SEQ TD NO: 485, SEQ ID NO: 487, SEQ ED NO: 489, SEQ DD NO: 491, SEQ ED NO: 493, SEQ DD NO: 495, SEQ ED NO: 497, SEQ DD NO: 499, SEQ DD NO: 501, SEQ DD NO: 503, SEQ DD NO: 505, SEQ DD NO: 507, SEQ DD NO: 509 and SEQ ID NO: 511.
2. The method of Claim 1 , wherein at least one of the olfactory receptors specifically recognizes the odorant, and there are between 5 and 350 of the n olfactory receptors selected from the listed amino acid sequences.
3. The method of Claim 1, wherein at least two different activities are measured to provide the values Xi to Xn.
4. The method of Claim 1, wherein each odorant receptor is expressed in cells, and the cells expressing each odorant receptor are located at an identifiable position.
5. The method of Claim 1, wherein at least one olfactory receptor is soluble, and binding of odorant to a ligand-binding domain of the soluble olfactory receptor is measured in solution.
6. The method of Claim 1, wherein at least one olfactory receptor is in solid state, and binding of odorant to a ligand-binding domain of the solid-state olfactory receptor is measured on a substrate.
7. The method of Claim 1 , wherein the value measured for binding is above a preset limit for specific binding to olfactory receptors.
8. The method of Claim 1, wherein the value measured for activating an olfactory receptor is derived from a signal selected from the group consisting of intracellular
Ca2 +, cAMP, cGMP and EP3.
9. The method of Claim 1, wherein the value measured for activating an olfactory receptor is above a preset limit for specific activation.
10. The method of Claim 1 , wherein the value measured for blocking an olfactory receptor is at least a reduction in binding of the odorant or activation by the odorant.
11. The method of Claim 1 , wherein the representation of sensory perception is generated with a neural network.
12. A biosensor comprised of the n ligand-binding domains or olfactory receptors of Claim 1.
13. A method for producing a database of odorant representations comprising: (a) providing one or more known odorants and (b) generating a representation of the one or more known odorants in accordance with the method of Claim 1 to produce the database.
14. A database produced by Claim 13.
15. A method of identifying an unknown odorant comprising:
(a) measuring values Xi to Xn representative of at least one activity selected from the group consisting of binding the unknown odorant to a ligand-binding domain of at least one of n olfactory receptors, activating at least one of n olfactory receptors with the unknown odorant, and blocking at least one of n olfactory receptors with the unknown odorant;
(b) generating a representation of the unknown odorant from the values Xi to Xn; and
(c) comparing the unknown odorant' s representation to the database of Claim 14 to identify the known odorant which is most similar in representation.
16. A method of producing an artificial odorant comprising: (a) measuring values Xj to Xn representative of at least one activity selected from the group consisting of binding a desirable odorant to a ligand- binding domain of at least one of n olfactory receptors, activating at least one of n olfactory receptors with a desirable odorant, and blocking at least one of n olfactory receptors with a desirable odorant;
(b) generating a representation of the desirable odorant from the values Xi to Xn;
(c) decomposing the desirable odorant's representation into representations of known odorants from the database of Claim 14 or superposing known odorants' representations from the database to reproduce the desirable odorant; and
(d) formulating the known odorants to reproduce sensory perception of the desirable odorant and thereby produce the artificial odorant.
17. An artificial odorant produced by Claim 16.
18. A method of identifying a primary odorant related to sensory perception comprising:
(a) providing a representative class of n olfactory receptors or ligand- binding domains thereof,
(b) measuring at least one activity of a odorant selected from the group consisting of binding of the candidate odorant to the ligand-binding domain of at least one of the n olfactory receptors and activating with the candidate odorant at least one of the n olfactory receptors, and (c) identifying the candidate odorant as a primary odorant if only one or less than 10% of the representative class of n olfactory receptors is bound or activated; wherein at least one of the n olfactory receptors has an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ DD NO: 3, SEQ ID NO: 5, SEQ ED NO: 7, SEQ ED NO: 9, SEQ DD NO: 11, SEQ ED NO: 13, SEQ DD NO: 15, SEQ DD NO: 17, SEQ DD NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ TD NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ DD NO: 33, SEQ DD NO: 35, SEQ DD NO: 37, SEQ DD NO: 39, SEQ ED NO: 41, SEQ DD NO: 43, SEQ ED NO: 45, SEQ DD NO: 47, SEQ ID NO: 49, SEQ DD NO : 51, SEQ HD NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ DD NO: 59, SEQ ID NO : 61, SEQ DD NO: 63, SEQ ED NO: 65, SEQ ED NO: 67, SEQ TD NO: 69, SEQ ID NO : 71, SEQ DD NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO : 81, SEQ ID NO: 83, SEQ ED NO: 85, SEQ DD NO: 87, SEQ ED NO: 89, SEQ ED NO : 91, SEQ ED NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO : 101, SEQ DD NO: 103, SEQ ID NO: 105, SEQ HD NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ED NO: 113, SEQ DD NO: 115, SEQ ED NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ED NO: 127, SEQ DD NO: 129, SEQ ID NO: 131, SEQ DD NO: 133, SEQ DD NO: 135, SEQ DD NO: 137, SEQ DD NO: 139, SEQ DD NO: 141, SEQ ED NO: 143, SEQ DD NO: 145, SEQ DD NO: 147, SEQ ED NO: 149, SEQ DD NO: 151, SEQ DD NO: 153, SEQ ID NO: 155, SEQ ED NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ DD NO: 167, SEQ ED NO: 169, SEQ DD NO: 171, SEQ DD NO: 173, SEQ DD NO: 175, SEQ DD NO: 177, SEQ ED NO: 179, SEQ ED NO: 181, SEQ ED NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ JD NO: 191, SEQ TD NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ DD NO: 203, SEQ DD NO: 205, SEQ DD NO: 207, SEQ DD NO: 209, SEQ DD NO: 211, SEQ DD NO: 213, SEQ DD NO: 215, SEQ TD NO: 217, SEQ DD NO: 219, SEQ DD NO: 221, SEQ DD NO: 223, SEQ DD NO: 225, SEQ DD NO: 227, SEQ ED NO: 229, SEQ DD NO: 231, SEQ ED NO: 233, SEQ DD NO: 235, SEQ ED NO: 237, SEQ ID NO: 239, SEQ TD NO: 241, SEQ ID NO: 243, SEQ ED NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ED NO: 251, SEQ TD NO: 253, SEQ ID NO: 255, SEQ DD NO: 257, SEQ ED NO: 259, SEQ ED NO: 261, SEQ DD NO:, 263, SEQ ED NO:, 265, SEQ DD NO: 267, SEQ DD NO: 269, SEQ DD NO: 271, SEQ DD NO: 273, SEQ DD NO: 275, SEQ ED NO: 277, SEQ ED NO: 279, SEQ DD NO: 281, SEQ TD NO: 283, SEQ ID NO: 285, SEQ TD NO: 287, SEQ TD NO: 289, SEQ ID NO: 291, SEQ TD NO: 293, SEQ DD NO: 295, SEQ DD NO: 297, SEQ DD NO: 299, SEQ DD NO: 301, SEQ DD NO: 303, SEQ DD NO: 305, SEQ DD NO: 307, SEQ ED NO: 309, SEQ DD NO: 311, SEQ TD NO: 313, SEQ HD NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ TD NO: 323, SEQ ED NO: 325, SEQ DD NO: 327, SEQ DD NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ DD NO: 337, SEQ ED NO: 339, SEQ DD NO: 341, SEQ DD NO: 343, SEQ DD NO: 345, SEQ ID NO: 347, SEQ DD NO: 349, SEQ HD NO: 351, SEQ DD NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ JD NO: 367, SEQ ID NO: 369, SEQ ED NO: 371, SEQ DD NO: 373, SEQ DD NO: 375, SEQ DD NO: 377, SEQ DD NO: 379, SEQ DD NO: 381, SEQ DD NO: 383, SEQ DD NO: 385, SEQ DD NO: 387, SEQ DD NO: 389, SEQ DD NO: 391, SEQ ID NO: 393, SEQ DD NO: 395, SEQ DD NO: 397, SEQ DD NO: 399, SEQ DD NO: 401, SEQ ED NO: 403, SEQ ED NO: 405, SEQ ED NO: 407, SEQ DD NO: 409, SEQ DD NO: 411, SEQ DD NO: 413, SEQ DD NO: 415, SEQ TD NO: 417, SEQ TD NO: 419, SEQ TD NO: 421, SEQ ID NO: 423, SEQ ED NO: 425, SEQ ID NO: 427, SEQ TD NO: 429, SEQ ED NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ DD NO: 439, SEQ DD NO: 441, SEQ TD NO: 443, SEQ DD NO: 445, SEQ DD NO: 447, SEQ DD NO: 449, SEQ TD NO: 451, SEQ ED NO: 453, SEQ DD NO: 455, SEQ ED NO: 457, SEQ HD NO: 459, SEQ ED NO: 461, SEQ DD NO: 463, SEQ DD NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ TD NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ H) NO: 477, SEQ TD NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ TD NO: 489, SEQ DD NO: 491, SEQ DD NO: 493, SEQ H NO: 495, SEQ TD NO: 497, SEQ ID NO: 499, SEQ DD NO: 501, SEQ ID NO: 503, SEQ ED NO: 505, SEQ DD NO: 507, SEQ DD NO: 509 and SEQ JD NO: 511.
19. A primary odorant identified by Claim 18.
20. A method of identifying a compound which blocks activation by a odorant of at least one olfactory receptor comprising: (a) producing a structurally-related candidate compound from a ligand of the at least one olfactory receptor,
(b) measuring activation by the odorant of the at least one olfactory receptor with the candidate compound, and
(c) identifying the candidate compound as a compound which blocks activation if activation of the at least one olfactory receptor is reduced or inhibited; wherein at least one of the olfactory receptors has an amino acid sequence selected from the group consisting of SEQ DD NO: 1, SEQ TD NO: 3, SEQ ED NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ DD NO: 15, SEQ DD NO: 17, SEQ ED NO: 19, SEQ DD NO: 21, SEQ DD NO: 23, SEQ DD NO: 25, SEQ DD NO: 27, SEQ DD NO: 29, SEQ ED NO: 31, SEQ DD NO: 33, SEQ ED NO: 35, SEQ DD NO: 37, SEQ DD NO: 39, SEQ DD NO: 41, SEQ ID NO: 43, SEQ TD NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ DD NO: 51, SEQ ED NO: 53, SEQ ID NO: 55, SEQ ED NO: 57, SEQ DD NO: 59, SEQ DD NO: 61, SEQ ED NO: 63, SEQ DD NO: 65, SEQ DD NO: 67, SEQ DD NO: 69, SEQ ED NO: 71, SEQ DD NO: 73, SEQ DD NO: 75, SEQ ID NO: 77, SEQ DD NO: 79, SEQ DD NO: 81, SEQ DD NO: 83, SEQ DD NO: 85, SEQ ED NO: 87, SEQ DD NO: 89, SEQ DD NO: 91, SEQ DD NO: 93, SEQ DD NO: 95, SEQ DD NO: 97, SEQ ID NO: 99, SEQ DD NO: 101, SEQ ED NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ DD NO: 115, SEQ DD NO: 117, SEQ ID NO: 119, SEQ ED NO: 121, SEQ ID NO: 123, SEQ ED NO: 125, SEQ DD NO: 127, SEQ ID NO: 129, SEQ ED NO: 131, SEQ ED NO: 133, SEQ DD NO: 135, SEQ DD NO: 137, SEQ DD NO: 139, SEQ DD NO: 141, SEQ DD NO: 143, SEQ ID NO: 145, SEQ JD NO: 147, SEQ DD NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ DD NO: 155, SEQ DD NO: 157, SEQ DD NO: 159, SEQ ED NO: 161, SEQ TD NO: 163, SEQ TD NO: 165, SEQ ID NO: 167, SEQ ED NO: 169, SEQ ED NO: 171, SEQ DD NO: 173, SEQ DD NO: 175, SEQ DD NO: 177, SEQ DD NO: 179, SEQ DD NO: 181, SEQ ED NO: 183, SEQ DD NO: 185, SEQ ID NO: 187, SEQ DD NO: 189, SEQ JD NO: 191, SEQ JD NO: 193, SEQ DD NO: 195, SEQ DD NO: 197, SEQ DD NO: 199, SEQ DD NO: 201, SEQ DD NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ED NO: 209, SEQ DD NO: 211, SEQ DD NO: 213, SEQ ED NO: 215, SEQ DD NO: 217, SEQ DD NO: 219, SEQ DD NO: 221, SEQ DD NO: 223, SEQ DD NO: 225, SEQ DD NO: 227, SEQ DD NO: 229, SEQ DD NO: 231, SEQ DD NO: 233, SEQ ID NO: 235, SEQ DD NO: 237, SEQ ED NO: 239, SEQ ED NO: 241, SEQ ED NO: 243, SEQ DD NO: 245, SEQ DD NO: 247, SEQ ED NO: 249, SEQ DD NO: 251, SEQ ED NO: 253, SEQ ED NO: 255, SEQ DD NO: 257, SEQ DD NO: 259, SEQ DD NO: 261, SEQ ED NO:, 263, SEQ ID NO:, 265, SEQ JD NO: 267, SEQ ED NO: 269, SEQ ED NO: 271, SEQ ID NO: 273, SEQ DD NO: 275, SEQ TD NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ED NO: 285, SEQ ED NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ TD NO: 295, SEQ ED NO: 297, SEQ DD NO: 299, SEQ DD NO: 301, SEQ ID NO: 303, SEQ ED NO: 305, SEQ ID NO: 307, SEQ ED NO: 309, SEQ ED NO: 311, SEQ JD NO: 313, SEQ HD NO: 315, SEQ DD NO: 317, SEQ ED NO: 319, SEQ DD NO: 321, SEQ ED NO: 323, SEQ DD NO: 325, SEQ ED NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ JD NO: 335, SEQ DD NO: 337, SEQ DD NO: 339, SEQ ED NO: 341, SEQ DD NO: 343, SEQ ID NO: 345, SEQ DD NO: 347, SEQ ED NO: 349, SEQ DD NO: 351, SEQ DD NO: 353, SEQ DD NO: 355, SEQ DD NO: 357, SEQ ED NO: 359, SEQ DD NO: 361, SEQ DD NO: 363, SEQ ED NO: 365, SEQ ED NO: 367, SEQ ID NO: 369, SEQ JD NO: 371, SEQ ID NO: 373, SEQ TD NO: 375, SEQ DD NO: 377, SEQ ID NO: 379, SEQ TD NO: 381, SEQ DD NO: 383, SEQ DD NO: 385, SEQ DD NO: 387, SEQ DD NO: 389, SEQ DD NO: 391, SEQ DD NO: 393, SEQ ED NO: 395, SEQ DD NO: 397, SEQ DD NO: 399, SEQ DD NO: 401, SEQ DD NO: 403, SEQ DD NO: 405, SEQ DD NO: 407, SEQ DD NO: 409, SEQ DD NO: 411, SEQ ID NO: 413, SEQ TD NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ DD NO: 423, SEQ ED NO: 425, SEQ DD NO: 427, SEQ DD NO: 429, SEQ ID NO: 431, SEQ ED NO: 433, SEQ ED NO: 435, SEQ DD NO: 437, SEQ DD NO: 439, SEQ DD NO: 441, SEQ DD NO: 443, SEQ DD NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ DD NO: 451, SEQ DD NO: 453, SEQ DD NO: 455, SEQ DD NO: 457, SEQ DD NO: 459, SEQ ED NO: 461, SEQ DD NO: 463, SEQ DD NO: 465, SEQ ID NO: 467, SEQ ED NO: 469, SEQ ED NO: 471, SEQ DD NO: 473, SEQ DD NO: 475, SEQ DD NO: 477, SEQ DD NO: 479, SEQ DD NO: 481, SEQ DD NO: 483, SEQ DD NO: 485, SEQ DD NO: 487, SEQ DD NO: 489, SEQ ID NO: 491, SEQ ED NO: 493, SEQ DD NO: 495, SEQ DD NO: 497, SEQ DD NO: 499, SEQ DD NO: 501, SEQ DD NO: 503, SEQ DD NO: 505, SEQ DD NO: 507, SEQ DD NO: 509 and SEQ DD NO: 511.
21. The method of Claim 20, wherein the ligand is a primary odorant.
22. A compound which blocks activation of an olfactory receptor identified by Claim 20.
PCT/US2001/020122 2000-06-22 2001-06-22 Receptor fingerprinting, sensory perception, and biosensors of chemical sensants WO2001098526A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001270121A AU2001270121A1 (en) 2000-06-22 2001-06-22 Receptor fingerprinting, sensory perception, and biosensors of chemical sensants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21381200P 2000-06-22 2000-06-22
US60/213,812 2000-06-22
US09/804,291 2001-03-13
US09/804,291 US20030088059A1 (en) 2000-03-13 2001-03-13 Human olfactory receptors and genes encoding same

Publications (2)

Publication Number Publication Date
WO2001098526A2 true WO2001098526A2 (en) 2001-12-27
WO2001098526A9 WO2001098526A9 (en) 2009-10-08

Family

ID=26908419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020122 WO2001098526A2 (en) 2000-06-22 2001-06-22 Receptor fingerprinting, sensory perception, and biosensors of chemical sensants

Country Status (2)

Country Link
AU (1) AU2001270121A1 (en)
WO (1) WO2001098526A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008289A2 (en) * 2000-07-26 2002-01-31 Curagen Corporation Novel proteins and nucleic acids encoding same
WO2002029061A2 (en) * 2000-10-06 2002-04-11 Inctye Genomics, Inc. G-protein coupled receptors
WO2002046229A2 (en) * 2000-12-05 2002-06-13 Curagen Corporation Novel proteins and nucleic acids encoding same
WO2002050276A2 (en) * 2000-12-18 2002-06-27 Curagen Corporation Proteins and nucleic acids encoding same
EP1270724A2 (en) * 2001-06-18 2003-01-02 National Institute of Advanced Industrial Science and Technology Guanosine triphosphate-binding protein coupled receptors
EP1551972A2 (en) * 2001-08-09 2005-07-13 Curagen Corporation Nucleic acids, polypeptides, single nucleotide polymorphisms and methods of use thereof
US7341842B2 (en) 2000-04-17 2008-03-11 The Mount Sinai School Of Medicine TRP8, a transient receptor potential channel expressed in taste receptor cells
US7351583B2 (en) 1999-10-05 2008-04-01 Agensys, Inc. Antibodies to G protein-coupled receptor
US7361338B2 (en) 1999-10-05 2008-04-22 Agensys, Inc. Methods to inhibit growth of prostate cancer cells
EP2087358A2 (en) * 2006-11-15 2009-08-12 Redpoint Bio Corporation Spicematrix technology for taste compound identification
US7803982B2 (en) 2001-04-20 2010-09-28 The Mount Sinai School Of Medicine Of New York University T1R3 transgenic animals, cells and related methods
EP2806031A3 (en) * 2010-09-03 2015-07-29 Kao Corporation Method for searching for malodor control agent, malodor control agent, and malodor control method
WO2024126820A1 (en) * 2022-12-15 2024-06-20 Givaudan Sa Modified olfactory receptors

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351583B2 (en) 1999-10-05 2008-04-01 Agensys, Inc. Antibodies to G protein-coupled receptor
US8236510B2 (en) 1999-10-05 2012-08-07 Agensys, Inc. Protein showing enhanced expression in cancer cells
US7795391B2 (en) 1999-10-05 2010-09-14 Agensys, Inc. Protein showing enhanced expression in cancer cells
US7361338B2 (en) 1999-10-05 2008-04-22 Agensys, Inc. Methods to inhibit growth of prostate cancer cells
US7960128B2 (en) 2000-04-17 2011-06-14 The Mount Sinai School Of Medicine TRP8, a transient receptor potential channel expressed in taste receptor cells
US7341842B2 (en) 2000-04-17 2008-03-11 The Mount Sinai School Of Medicine TRP8, a transient receptor potential channel expressed in taste receptor cells
US7960127B2 (en) 2000-04-17 2011-06-14 The Mount Sinai School Of Medicine TRP8, a transient receptor potential channel expressed in taste receptor cells
US7364867B2 (en) 2000-04-17 2008-04-29 The Mount Sinai School Of Medicine Method of identifying bitter compounds by employing TRP8, a transient receptor potential channel expressed in taste receptor cells
WO2002008289A3 (en) * 2000-07-26 2003-07-03 Curagen Corp Novel proteins and nucleic acids encoding same
WO2002008289A2 (en) * 2000-07-26 2002-01-31 Curagen Corporation Novel proteins and nucleic acids encoding same
WO2002029061A2 (en) * 2000-10-06 2002-04-11 Inctye Genomics, Inc. G-protein coupled receptors
WO2002029061A3 (en) * 2000-10-06 2002-10-17 Inctye Genomics Inc G-protein coupled receptors
WO2002046229A3 (en) * 2000-12-05 2003-07-10 Curagen Corp Novel proteins and nucleic acids encoding same
WO2002046229A2 (en) * 2000-12-05 2002-06-13 Curagen Corporation Novel proteins and nucleic acids encoding same
WO2002050275A2 (en) * 2000-12-18 2002-06-27 Curagen Corporation Proteins and nucleic acids encoding same
WO2002050276A2 (en) * 2000-12-18 2002-06-27 Curagen Corporation Proteins and nucleic acids encoding same
WO2002050275A3 (en) * 2000-12-18 2003-07-24 Curagen Corp Proteins and nucleic acids encoding same
WO2002050276A3 (en) * 2000-12-18 2003-07-24 Curagen Corp Proteins and nucleic acids encoding same
US7803982B2 (en) 2001-04-20 2010-09-28 The Mount Sinai School Of Medicine Of New York University T1R3 transgenic animals, cells and related methods
EP1270724A2 (en) * 2001-06-18 2003-01-02 National Institute of Advanced Industrial Science and Technology Guanosine triphosphate-binding protein coupled receptors
EP1270724A3 (en) * 2001-06-18 2003-05-21 National Institute of Advanced Industrial Science and Technology Guanosine triphosphate-binding protein coupled receptors
EP1551972A2 (en) * 2001-08-09 2005-07-13 Curagen Corporation Nucleic acids, polypeptides, single nucleotide polymorphisms and methods of use thereof
EP1551972A4 (en) * 2001-08-09 2005-08-31 Curagen Corp Nucleic acids, polypeptides, single nucleotide polymorphisms and methods of use thereof
EP2087358A2 (en) * 2006-11-15 2009-08-12 Redpoint Bio Corporation Spicematrix technology for taste compound identification
EP2806031A3 (en) * 2010-09-03 2015-07-29 Kao Corporation Method for searching for malodor control agent, malodor control agent, and malodor control method
US9233082B2 (en) 2010-09-03 2016-01-12 Kao Corporation Method for searching for malodor control agent, malodor control agent, and malodor control method
US9526680B2 (en) 2010-09-03 2016-12-27 Kao Corporation Method for searching for malodor control agent, malodor control agent, and malodor control method
WO2024126820A1 (en) * 2022-12-15 2024-06-20 Givaudan Sa Modified olfactory receptors

Also Published As

Publication number Publication date
WO2001098526A9 (en) 2009-10-08
AU2001270121A1 (en) 2002-01-02
AU2001270121A8 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
US7374878B2 (en) Receptor fingerprinting, sensory perception, and biosensors of chemical sensants
US7105650B2 (en) T2R taste receptors and genes encoding same
US10093718B2 (en) T1R taste receptors and genes encoding same
US7241880B2 (en) T1R taste receptors and genes encoding same
US7344845B2 (en) Olfactory receptor for isovaleric acid and related malodorants and use thereof in assays for identification of blockers of malodor
US8357499B2 (en) Expression of functional human olfactory cyclic nucleotide gated (CNG) channel in recombinant host cells and use thereof in cell based assays to identify smell modulators
US20050233383A1 (en) Human olfactory receptors and genes encoding same
AU2002329196A1 (en) Human olfactory nucleotide-gated ion channels
WO2001098526A2 (en) Receptor fingerprinting, sensory perception, and biosensors of chemical sensants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase in:

Ref country code: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP