[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001097254A2 - Method for producing dielectric capacitor ceramics - Google Patents

Method for producing dielectric capacitor ceramics Download PDF

Info

Publication number
WO2001097254A2
WO2001097254A2 PCT/DE2001/002194 DE0102194W WO0197254A2 WO 2001097254 A2 WO2001097254 A2 WO 2001097254A2 DE 0102194 W DE0102194 W DE 0102194W WO 0197254 A2 WO0197254 A2 WO 0197254A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
dopants
grain size
less
barium titanate
Prior art date
Application number
PCT/DE2001/002194
Other languages
German (de)
French (fr)
Original Assignee
Vishay Electronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Electronic Gmbh filed Critical Vishay Electronic Gmbh
Priority to AU72334/01A priority Critical patent/AU7233401A/en
Publication of WO2001097254A2 publication Critical patent/WO2001097254A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Definitions

  • the invention is based on a method for producing dielectric capacitor ceramics according to the preamble of the main claim.
  • Such dielectric ceramics are used in particular in capacitors with a high dielectric constant. Because of the small external dimensions and the still existing demand for large capacitance values, these capacitors are built up in layers, the capacitor electrodes mostly coming to lie within the dielectric ceramic material. As a result, the electrode material is also exposed to the high sintering temperatures required to manufacture the ceramic. An electrode material is therefore required which will not be damaged at the given sintering temperatures. Without measures to reduce the high firing temperatures required, especially in the case of barium titanate, an electrode material must be used that has a melting point that exceeds Sintering temperature. Such materials are platinum and palladium.
  • DE patent 26 59 016 describes how the addition of 1 mol% CuO and 1 mol% GeO 2 to barium titanate can reduce its sintering temperature to 1000 ° C.
  • a reduction in the sintering temperature from BaTi ⁇ 3 to 1050 ° C is possible if 0.5 mol% Cu and 0.5 mol% Ti are added to the barium titanate.
  • a mixture of (Bao, 9Cao, ⁇ ) TiO 3 and 0.5 mol% TiO 2 can be sintered to form a dielectric capacitor ceramic.
  • the temperature dependence of the DK increases above 100 ° C.
  • DE-PS 35 29 933 also achieves low sintering temperatures, however in the case of piezoelectric materials, by using mixtures of lead oxides with non-lead oxides, barium being mentioned as a non-lead metal. Sintering temperatures of 800 ° C to 1300 ° C are achieved.
  • DE-PS 35 41 517 describes how a reduction in the palladium content of a silver-palladium alloy can be achieved by reducing the firing temperature of the capacitor ceramic (DK> 800 Y5V characteristic) to values from 900 ° C. to 1100 ° C. by adding a mixture of lead alloys to the barium alloy.
  • palladium can also be dispensed with by reducing the firing temperature to 950 ° C to 1050 ° C with the aid of a mixture of lead alloys.
  • Barium titanate is used as the starting material. This also affects electrical materials with a high DK (> 4000), but also very strong temperature dependence.
  • DE-PS 41 41 648 describes a lead-barium-zirconium-titanate compound with which low sintering temperatures ( ⁇ 1150 ° C.) can be achieved, so that palladium is used as the electrode material reduced amount can be used.
  • DE 44 44 812 describes a ceramic dielectric based on BaTiO 3 with X7R properties, which can be sintered at 900 ° C. This is achieved by applying a lead perovskite layer around the BaTi ⁇ 3 core and embedding the core treated in this way in lead borosilicate glass. A flat temperature curve of the DK is achieved, however with DK values of 320 to 400.
  • European patent document EP 257 653 also refers to the use of environmentally harmful lead in bismuth-free barium titanate ceramics based on barium titanate and lead-zinc-magnesium-niobate, which reduces the sintering temperature to 1070 ° C to 1100 ° C and thus a Palladium content can be reduced to 25%.
  • capacitor ceramic has the disadvantage that it has a high temperature dependency and no X7R characteristics, which means that at temperatures between -55 ° C and + 125 ° C the capacitance deviation of capacitors manufactured with it is significantly greater than ⁇ 15%.
  • the capacitor ceramic has a dielectric constant of little more than 200.
  • the method according to the invention for the production of dielectric capacitor ceramics with the characterizing features of the main claim has the advantages, in contrast, of having an X7R characteristic, ie that at temperatures between -55 ° C and + 125 ° C the dielectric constant of the ceramic and thus the capacitance of the ceramic manufactured capacitors vary by less than ⁇ 15%.
  • component A of the starting materials used to manufacture the ceramic leads to a very high dielectric constant due to its coarser grain size.
  • component B due to its finer grain size, is responsible for a low sintering temperature of the ceramic of below 1000 ° C., which makes it possible to use it to produce capacitors whose electrodes only have a very low proportion of palladium.
  • component A is provided with dopants and bismuth and / or niobium are used as dopants.
  • the ferroelectric properties of component A and thus their contribution to increasing the dielectric constant are further improved.
  • component B is provided with dopants and bismuth, niobium, zinc and / or neodyne are used as dopants, as a result of which the paraelectric properties of component B are improved.
  • the powder mixture to be further processed into a pourable slip consists of 42.5% of component A with a grain size of 1.2 ⁇ m, 42.5% of component B with a grain size of 0.6 ⁇ m, 4% from component C and 11% from dopants.
  • the powder mixture to be further processed into a pourable slip consists of 44% of component A with a grain size of 0.8 ⁇ m, 42% of component B with a grain size of 0.07 ⁇ m, 6% of component C and 8% from dopants.
  • the starting material used in the method according to the invention consists of two components, namely component A, which is responsible for the ferroelectric properties of the ceramic, ie, for spontaneous polarization without an external field, and component B, which serves to create the paraelectric phases of the ceramic, ie , which causes the ceramic to be easily polarized under the action of an external electrical field.
  • component B is responsible for a low sintering temperature in that the particle size of powder component B extends into the nanometer range and that it has suitable additions of low-melting and recrystallizing compounds or fluxes.
  • powder component A fulfills its task of ensuring a high dielectric constant by virtue of the fact that its grain size is between 0.5 ⁇ m and 1.2 ⁇ m.
  • component A of the barium titanate can also be provided with dopants, such as, for example, bismuth (Bi) or niobium (Nb). Otherwise, it may contain additional dopants for possible applications in the high temperature range, which are suitable for shifting the Curie point to higher temperatures, such as, for example, lead (Pb).
  • component B can contain dopant components, such as, for example, bismuth (Bi), niobium (Nb), zinc (Zn) or neodyn (Nd).
  • dopant components such as, for example, bismuth (Bi), niobium (Nb), zinc (Zn) or neodyn (Nd).
  • the grain size of component B should be 0.6 ⁇ m or less in order to achieve a low sintering temperature.
  • component A slightly less than 50% of component A is used, which is provided with or without dopants, such as bismuth (Bi), niobium (Ni) or lead (Pb), and a grain size between 0.5 ⁇ m and 1.2 ⁇ m.
  • component B also becomes a little less used as 50% of barium titanate doped with neodyn (Nd), zinc (Zn), niobium (Nb) or also with lead (Pb), which has a grain size of much less than 1 ⁇ m.
  • a little less than 8% of a flux with a grain diameter of less than 1 ⁇ m is used as the third component C.
  • the barium titanate components A and B are mixed together with the dopants and the flux C in an aqueous or organic medium and further processed into a pourable slip.
  • the barium titanate components, the dopants and the flux can be homogenized using a chemically adjustable coating process and dispersed to form a pourable slip.
  • the slip is then used to manufacture the multilayer capacitors. After completion, their capacity, loss factor, insulation resistance and the temperature dependence of the electrical values are measured at temperatures between -55 ° C and +125 ° C.
  • Components A, B and C are mixed, ground in a 201 porcelain mill in an organic binder system for 90 hours. The aim of this is to achieve good enamel quality.
  • the slurry is further processed to multilayer capacitors at a sintering temperature of 960 ° C., using an electrode paste made of 90% silver and 10% palladium.
  • the chemically homogenized material components with the finest particle sizes are dispersed over a period of 6 hours.
  • the slip is then further processed to multilayer capacitors at a sintering temperature of 900 ° C., using an electrode paste made of 90% silver and 10% palladium.
  • an X7R temperature characteristic after sintering a layer thickness of 6 ⁇ m and a breakdown voltage of 700V.
  • this material variant it is possible to use palladium-free electrodes.
  • the capacitor ceramic produced in this way has the advantages of being able to be sintered at temperatures far below 1000 ° C, and a X7R-C hak teris tik with dielectric constants between 1800 and 3000, a high To achieve material reliability through better mastery of grain and grain boundary chemistry and simple Possibility to adapt the material properties to the required temperature application areas, such as high-temperature applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)

Abstract

The invention relates to a method for producing dielectric capacitor ceramics from powdery barium titanate. According to the inventive method, constituent B which is used as a starting material has a grain diameter of less than 1um, constituent A has a grain diameter which is greater than the grain diameter of constituent B and constituent C is a fluxing agent with a grain diameter of less than 1 um.

Description

Verfahren zur Herstellung von dielektrischer KondensatorkeramikProcess for the production of dielectric capacitor ceramics
Stand der Technik:State of the art:
Die Erfindung geht aus von einem Verfahren zur Herstellung von dielektrischer Kondensatorkeramik nach der Gattung des Hauptanspruches.The invention is based on a method for producing dielectric capacitor ceramics according to the preamble of the main claim.
Derartige dielektrische Keramiken finden insb. Anwendung in Kondensatoren mit einer hohen Dielektrizitätskonstanten. Wegen kleiner äußerer Abmessungen und der dennoch bestehenden Forderung nach großen Kapazitätswerten werden diese Kondensatoren schichtförmig aufgebaut, wobei die Kondensatorelektroden größtenteils innerhalb des dielektrischen Keramikmaterials zu liegen kommen. Folglich wird auch das Elektrodenmaterial den hohen Sintertemperaturen ausgesetzt, die zur Herstellung der Keramik erforderlich sind. Es ist also ein Elektrodenmaterial erforderlich, das bei den gegebenen Sintertemperaturen keinen Schaden nimmt. Ohne Maßnahmen zur Reduktion der insb. bei Bariumtitanat erforderlichen hohen Brenntemperaturen muss hierzu ein Elektrodenmaterial verwendet werden, das einen Schmelzpunkt hat, der über den Sintertemperaturen liegt. Solche Materialien sind Platin und Palladium.Such dielectric ceramics are used in particular in capacitors with a high dielectric constant. Because of the small external dimensions and the still existing demand for large capacitance values, these capacitors are built up in layers, the capacitor electrodes mostly coming to lie within the dielectric ceramic material. As a result, the electrode material is also exposed to the high sintering temperatures required to manufacture the ceramic. An electrode material is therefore required which will not be damaged at the given sintering temperatures. Without measures to reduce the high firing temperatures required, especially in the case of barium titanate, an electrode material must be used that has a melting point that exceeds Sintering temperature. Such materials are platinum and palladium.
Da diese Materialien aber einen erheblichen Kostenfaktor bei der Herstellung der Kondensatoren darstellen, bestehen Bemühungen, Maßnahmen zu ergreifen, um die Sintertemperatur von dielektrischer Kondensatorkeramik zu reduzieren, damit billigere Materialien zur Herstellung der Kondensatorelektroden mit niedrigeren Schmelzpunkten verwendet werden können. Im vorliegenden Fall bestehen insb. Bemühungen, den Palladiumantedl einer Silber- Palladium-Mischung zur Verwendung als Elektrodenpaste zu senken.However, since these materials represent a significant cost factor in the manufacture of the capacitors, efforts are being made to take measures to reduce the sintering temperature of dielectric capacitor ceramics so that cheaper materials can be used to produce the capacitor electrodes with lower melting points. In the present case, efforts are being made in particular to lower the palladium content of a silver-palladium mixture for use as an electrode paste.
Ein 1965 angemeldetes Verfahren zur Herstellung eines keramischen Dielektrikums mit Barium-Titanat-Anteilen, bei dem eine Verringerung der Sintertemperatur der Keramik auf Werte von 780 °C bis 960°C erreichbar ist, ist in dem DE-Patent 16 46 941 beschrieben. Erreicht wird dieses Ziel durch eine Mischung aus Bariumtitanat, Strontiumtitanat, Bleititanat, Strontiumstannat und aus Boraten. Dieser NDK-Werkstoff hat einen linearen Temperaturkoeffizienten und eine DK von ca. 100. Die Verwendung von höheren Anteilen an Blei führt hierbei zu einer sehr großen Umweltbelastung.A process registered in 1965 for the production of a ceramic dielectric with barium titanate components, in which a reduction in the sintering temperature of the ceramic to values of 780 ° C. to 960 ° C. can be achieved, is described in DE patent 16 46 941. This goal is achieved by a mixture of barium titanate, strontium titanate, lead titanate, strontium stannate and borates. This NDK material has a linear temperature coefficient and a DK of approx. 100. The use of higher proportions of lead leads to a very high environmental impact.
Im DE-Patent 26 59 016 ist beschrieben, wie durch eine Zugabe von 1 Mol-% CuO und 1 Mol-% Geθ2 zu Bariumtitanat dessen Sintertemperatur auf 1000°C herabgesenkt werden kann. Eine Verringerung der Sintertemperatur von BaTiθ3 auf 1050 °C ist möglich, wenn dem Bariumtitanat 0,5 Mol-% Cu und 0,5 Mol-% Ti beigemengt werden. Und bei 1030 °C ist eine Mischung aus (Bao,9Cao,ι)Tiθ3 und 0,5 Mol-% Tiθ2 zu einer dielektrischen Kondensatorkeramik sinterbar. Gleichzeitig erhöht sich die Temperaturabhängigkeit der DK vor allem oberhalb 100°C. Hierdurch ist jedoch lediglich eine Absenkung des Palladiumgehaltes der Silber-Palladium-Mischung auf ca. 25% möglich, weshalb die hiermit hergestellten Elektroden immer noch sehr teuer werden. Vielfach wurde versucht, durch eine Erhöhung des Gehaltes an umweltschädlichem Blei in der Bariumtitanatkeramik die Sintertemperatur herabzusenken, um durch Verzicht auf Palladium als Elektrodenmaterial Herstellungskosten zu sparen. Bspw. wird in der DE- Patentschrift 35 20 839 beschrieben, wie durch Mischungen diverser Bleilegierungen die Sintertemperatur auf 900°C bis 1100°C gesenkt werden kann. Diese Werkstoffe haben zwar DK-Werte von 3500 bis 19000, jedoch sind deren Temperaturabhängigkeiten sehr stark (Y5V).DE patent 26 59 016 describes how the addition of 1 mol% CuO and 1 mol% GeO 2 to barium titanate can reduce its sintering temperature to 1000 ° C. A reduction in the sintering temperature from BaTiθ3 to 1050 ° C is possible if 0.5 mol% Cu and 0.5 mol% Ti are added to the barium titanate. And at 1030 ° C a mixture of (Bao, 9Cao, ι) TiO 3 and 0.5 mol% TiO 2 can be sintered to form a dielectric capacitor ceramic. At the same time, the temperature dependence of the DK increases above 100 ° C. In this way, however, it is only possible to reduce the palladium content of the silver-palladium mixture to approximately 25%, which is why the electrodes produced in this way are still very expensive. Many attempts have been made to lower the sintering temperature by increasing the content of environmentally harmful lead in the barium titanate ceramic in order to save manufacturing costs by dispensing with palladium as the electrode material. For example. is described in DE patent specification 35 20 839, how the sintering temperature can be reduced to 900 ° C to 1100 ° C by mixing various lead alloys. Although these materials have DK values from 3500 to 19000, their temperature dependencies are very strong (Y5V).
Auch in der DE-PS 35 29 933 werden niedrige Sintertemperaturen, allerdings bei piezoelektrischen Materialien, dadurch erreicht, dass Mischungen von Blei-Oxyden mit Nicht-Blei-Oxyden verwendet werden, wobei als ein Nicht-Blei-Metall Barium erwähnt ist. Erreicht werden dadurch Sintertemperaturen von 800°C bis 1300°C.DE-PS 35 29 933 also achieves low sintering temperatures, however in the case of piezoelectric materials, by using mixtures of lead oxides with non-lead oxides, barium being mentioned as a non-lead metal. Sintering temperatures of 800 ° C to 1300 ° C are achieved.
In der DE-PS 35 41 517 ist beschrieben, wie eine Verringerung des Palladiumgehaltes einer Silber-Palladium-Legierung durch eine Verringerung der Brenntemperatur der Kondensatorkeramik (DK > 800 Y5V-Charakteristik) auf Werte von 900°C bis 1100°C erreicht werden kann, indem eine Mischung aus Bleilegierungen der Bariumlegierung beigemischt wird.DE-PS 35 41 517 describes how a reduction in the palladium content of a silver-palladium alloy can be achieved by reducing the firing temperature of the capacitor ceramic (DK> 800 Y5V characteristic) to values from 900 ° C. to 1100 ° C. by adding a mixture of lead alloys to the barium alloy.
Auch gemäß DE-PS 38 34 778 soll ein Verzicht auf Palladium durch eine Reduktion der Brenntemperatur auf 950°C bis 1050°C mit Hilfe einer Mischung aus Bleilegierungen erreicht werden, wobei u.a. Bariumtitanat als Ausgangsmaterial verwendet wird. Auch dies betrifft elektrische Werkstoffe mit einer hohen DK (> 4000), aber auch sehr starker Temperaturabhängigkeit.According to DE-PS 38 34 778, palladium can also be dispensed with by reducing the firing temperature to 950 ° C to 1050 ° C with the aid of a mixture of lead alloys. Barium titanate is used as the starting material. This also affects electrical materials with a high DK (> 4000), but also very strong temperature dependence.
Ebenso ist in der DE-PS 41 41 648 eine Blei-Barium-Zirkon-Titanat- Verbindung beschrieben, mit der nied rige Sintertemperaturen (~ 1150°C) erreichbar sind, sodass Palladium als Elektrodenmaterial in reduzierter Menge eingesetzt werden kann.Similarly, DE-PS 41 41 648 describes a lead-barium-zirconium-titanate compound with which low sintering temperatures (~ 1150 ° C.) can be achieved, so that palladium is used as the electrode material reduced amount can be used.
In der DE-Patentschrift 44 06 812 ist ein keramisches Dielektrikum auf BaTiθ3-Basis mit X7R-Eigenschaften beschrieben, das bei 900°C gesintert werden kann. Erreicht wird das, indem um den BaTiθ3-Kern eine Bleiperowskit-Schicht aufgebracht wird und der so behandelte Kern in Bleiborosilikatglas eingebettet wird. Erreicht wird ein flacher Temperaturverlauf der DK, allerdings mit DK-Werten von 320 bis 400.DE 44 44 812 describes a ceramic dielectric based on BaTiO 3 with X7R properties, which can be sintered at 900 ° C. This is achieved by applying a lead perovskite layer around the BaTiθ3 core and embedding the core treated in this way in lead borosilicate glass. A flat temperature curve of the DK is achieved, however with DK values of 320 to 400.
Letztlich ist auch im Europäischen Patentdokument EP 257 653 auf die Verwendung von umweltschädlichem Blei in wismutfreien Bariumtitanatkeramiken auf der Basis Barium-Titanat und Blei-Zink- Magnesium-Niobat hingewiesen, wodurch eine Absenkung der Sintertemperatur auf 1070°C bis 1100°C und damit eine Reduktion des Palladiumgehaltes auf 25% erreichbar ist.Finally, the European patent document EP 257 653 also refers to the use of environmentally harmful lead in bismuth-free barium titanate ceramics based on barium titanate and lead-zinc-magnesium-niobate, which reduces the sintering temperature to 1070 ° C to 1100 ° C and thus a Palladium content can be reduced to 25%.
Weiterhin ist es aus der US-PS 3 619 744, aus der DE-OS 3 237 571, aus der DD-PS 258 915, aus der EP-Schrift 169 636 und aus der US-PS 4 499 521 bekannt, niedrigsinternde X7R-Werkstoffe auf der Basis von Bariumtitanat mit einem Zusatz von Wismuttitanat oder auch von wismutreichen Gemischen glasbildender Oxide herzustellen. Es werden damit Dielektrizitätskonstanten von 1800 bis 2600 erreicht. Hierdurch kann die Sintertemperatur auf 1120°C herabgesenkt werden, sodass eine Elektrodenpaste aus 70% Silber und 30% Palladium verwendbar ist. Eine weitere Absenkung der Sintertemperatur und damit eine weitere Reduzierung des Palladiumgehaltes der Elektrodenpaste ist auf diese Weise nicht möglich.Furthermore, it is known from US Pat. No. 3,619,744, from DE-OS 3,237,571, from DD PS 258,915, from EP publication 169,636 and from US Pat. No. 4,499,521, low-sintering X7R- To produce materials based on barium titanate with the addition of bismuth titanate or also of bismuth-rich mixtures of glass-forming oxides. Dielectric constants from 1800 to 2600 are thus achieved. This allows the sintering temperature to be reduced to 1120 ° C, so that an electrode paste made of 70% silver and 30% palladium can be used. A further reduction in the sintering temperature and thus a further reduction in the palladium content of the electrode paste is not possible in this way.
Dies wurde gemäß DE-OS 196 38 195 mit einer bleifreien, dielektrischen Paste für LTCC-Mehrlagenschaltungen erreicht, die aus einem Bariumtitanat-Nanopulver mit einer Korngröße zwischen 0,05μm und 0,5μm besteht, das bei Temperaturen zwischen 800°C und 1000°C gesintert werden kann. Eine mit diesem Nanopulver hergestellte Kondensatorkeramik hat aber den Nachteil, dass sie eine hohe Temperaturabhängigkeit und keine X7R-Charakteristik aufweist, d.h., dass bei Temperaturen zwischen -55°C und +125°C die Kapazitätsabweichung damit hergestellter Kondensatoren wesentlich größer als ±15% ist. Außerdem weist die Kondensatorkeramik eine Dielektrizitätskonstante von wenig mehr als 200 auf.This was achieved according to DE-OS 196 38 195 with a lead-free, dielectric paste for LTCC multilayer circuits, which consists of a barium titanate nanopowder with a grain size between 0.05 μm and 0.5 μm, which is at temperatures between 800 ° C. and 1000 ° C can be sintered. One made with this nanopowder However, capacitor ceramic has the disadvantage that it has a high temperature dependency and no X7R characteristics, which means that at temperatures between -55 ° C and + 125 ° C the capacitance deviation of capacitors manufactured with it is significantly greater than ± 15%. In addition, the capacitor ceramic has a dielectric constant of little more than 200.
Die Erfindung und ihre Vorteile:The invention and its advantages:
Das erfindungsgemäße Verfahren zur Herstellung von dielektrischer Kondensatorkeramik mit den kennzeichnenden Merkmalen des Hauptanspruches hat demgegenüber die Vorteile, eine X7R- Charakteristik aufzuweisen, d.h., dass bei Temperaturen zwischen -55°C und +125°C die Dielektrizitätskonstante der Keramik und damit die Kapazität der damit hergestellten Kondensatoren um weniger als ±15 % variieren. Zudem führt die Komponente A der zur Herstellung der Keramik verwendeten Ausgangsmaterialien wegen ihrer gröberen Körnung zu einer sehr hohen Dielektrizitätskonstanten. Demgegenüber ist die Komponente B wegen ihrer feineren Körnung für eine niedrige Sintertemperatur der Keramik von unter 1000°C verantwortlich, was es ermöglicht, damit Kondensatoren herzustellen, deren Elektroden nur einen sehr geringen Palladiumanteil aufweisen.The method according to the invention for the production of dielectric capacitor ceramics with the characterizing features of the main claim has the advantages, in contrast, of having an X7R characteristic, ie that at temperatures between -55 ° C and + 125 ° C the dielectric constant of the ceramic and thus the capacitance of the ceramic manufactured capacitors vary by less than ± 15%. In addition, component A of the starting materials used to manufacture the ceramic leads to a very high dielectric constant due to its coarser grain size. In contrast, component B, due to its finer grain size, is responsible for a low sintering temperature of the ceramic of below 1000 ° C., which makes it possible to use it to produce capacitors whose electrodes only have a very low proportion of palladium.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist die Komponente A mit Dotanten versehen, und werden als Dotanten Wismut und/oder Niob verwendet. Hierdurch werden die ferroelektrischen Eigenschaften der Komponente A und damit ihr Beitrag zur Erhöhung der Dielektrizitätskonstanten weiter verbessert.According to an advantageous embodiment of the invention, component A is provided with dopants and bismuth and / or niobium are used as dopants. As a result, the ferroelectric properties of component A and thus their contribution to increasing the dielectric constant are further improved.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Komponente B mit Dotanten versehen und werden als Dotanten Wismut, Niob, Zink und/oder Neodyn verwendet, wodurch die paraelektrischen Eigenschaften der Komponente B verbessert werden. Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung besteht die zu einem gießfähigen Schlicker weiterzuverarbeitende Pulvermischung zu 42,5 % aus Komponente A mit einer Korngröße von l,2μm, zu 42,5 % aus Komponente B mit einer Korngröße von 0,6μm, zu 4 % aus Komponente C und zu 11 % aus Dotanten. Hierdurch wird neben der X7R-Temperaturcharakteristik eine Dielektrizitätskonstante von 1800 und eine Absenkung der Sintertemperatur auf 960°C erreicht, wodurch es möglich wird, bei der Herstellung von Vielschichtkondensatoren Elektroden zu verwenden, die nur zu 10 % aus Palladium und zu 90 % aus Silber bestehen.According to a further advantageous embodiment of the invention, component B is provided with dopants and bismuth, niobium, zinc and / or neodyne are used as dopants, as a result of which the paraelectric properties of component B are improved. According to a further advantageous embodiment of the invention, the powder mixture to be further processed into a pourable slip consists of 42.5% of component A with a grain size of 1.2 μm, 42.5% of component B with a grain size of 0.6 μm, 4% from component C and 11% from dopants. As a result, in addition to the X7R temperature characteristic, a dielectric constant of 1800 and a reduction in the sintering temperature to 960 ° C are achieved, which makes it possible to use electrodes in the production of multilayer capacitors which consist only of 10% palladium and 90% silver ,
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung besteht die zu einem gießfähigen Schlicker weiterzuverarbeitende Pulvermischung zu 44 % aus Komponente A mit einer Korngröße von 0,8μm, zu 42 % aus Komponente B mit einer Korngröße von 0,07μm, zu 6 % aus Komponente C und zu 8 % aus Dotanten. Hierdurch wird bei Erhalt der X7R-Temperaturcharakteristik eine weitere Erhöhung der Dielektrizitätskonstanten auf 2500 und eine weitere Absenkung der Sintertemperatur auf 900°C erreicht, sodass es bei dieser Werkstoffvariante möglich ist, bei der Herstellung von Kondensatoren Elektroden zu verwenden, die keinerlei Palladium mehr enthalten.According to a further advantageous embodiment of the invention, the powder mixture to be further processed into a pourable slip consists of 44% of component A with a grain size of 0.8 μm, 42% of component B with a grain size of 0.07 μm, 6% of component C and 8% from dopants. As a result, when the X7R temperature characteristic is retained, the dielectric constant is increased further to 2500 and the sintering temperature is further lowered to 900 ° C, so that it is possible with this material variant to use electrodes in the production of capacitors that no longer contain any palladium.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beispielsbeschreibung und den Ansprüchen entnehmbar.Further advantageous embodiments of the invention can be found in the following example description and the claims.
Beschreibung derAusführungsbeispiele:Description of the design examples:
Einige Ausführungsbeispiele des erfindungsgemäßen Verfahrens werden im Folgenden näher erläutert.Some exemplary embodiments of the method according to the invention are explained in more detail below.
Das beim erfindungsgemäßen Verfahren verwendete Ausgangsmaterial besteht aus zwei Komponenten, und zwar aus einer Komponente A, die für die ferroelektrischen Eigenschaften der Keramik, d.h., für eine spontane Polarisation ohne ein äußeres Feld verantwortlich ist, und aus einer Komponente B, die der Entstehung der paraelektrischen Phasen der Keramik dient, d.h., die bewirkt, dass die Keramik unter der Wirkung eines äußeren elektrischen Feldes gut polarisierbar ist. Zudem ist die Komponente B dadurch für eine niedrige Sintertemperatur verantwortlich, dass die Partikelgröße der Pulverkomponente B bis hinein in den Nanometerbereich reicht, und dass sie -geeignete Zusätze an niedrig schmelzenden und rekristallisierenden Verbindungen oder Flussmitteln aufweist.The starting material used in the method according to the invention consists of two components, namely component A, which is responsible for the ferroelectric properties of the ceramic, ie, for spontaneous polarization without an external field, and component B, which serves to create the paraelectric phases of the ceramic, ie , which causes the ceramic to be easily polarized under the action of an external electrical field. In addition, component B is responsible for a low sintering temperature in that the particle size of powder component B extends into the nanometer range and that it has suitable additions of low-melting and recrystallizing compounds or fluxes.
Hierbei wird die Pulverkomponente A ihrer Aufgabe, für eine hohe Dielektrizitätskonstante zu sorgen, dadurch gerecht, dass deren Korngröße zwischen 0,5 μm und l,2μm liegt. Außerdem kann die Komponente A des Bariumtitanats zu diesem Zweck mit Dotanten versehen sein, wie bspw. mit Wismut (Bi) oder mit Niob (Nb). Ansonsten kann sie für mögliche Anwendungen im Hochtemperaturbereich zusätzliche Dotierungen enthalten, die dazu geeignet sind, den Curiepunkt zu höheren Temperaturen zu verschieben, wie bspw. Blei (Pb).Here, powder component A fulfills its task of ensuring a high dielectric constant by virtue of the fact that its grain size is between 0.5 μm and 1.2 μm. For this purpose, component A of the barium titanate can also be provided with dopants, such as, for example, bismuth (Bi) or niobium (Nb). Otherwise, it may contain additional dopants for possible applications in the high temperature range, which are suitable for shifting the Curie point to higher temperatures, such as, for example, lead (Pb).
Zur Verbesserung der paraelektrischen Eigenschaften der Komponente B können darin Dotantenanteile enthalten sein, wie bspw. Wismut (Bi), Niob (Nb), Zink (Zn) oder Neodyn (Nd). Zudem sollte zur Erzielung einer niedrigen Sintertemperatur die Korngröße der Komponente B 0,6 μm oder weniger betragen.To improve the paraelectric properties of component B, it can contain dopant components, such as, for example, bismuth (Bi), niobium (Nb), zinc (Zn) or neodyn (Nd). In addition, the grain size of component B should be 0.6 μm or less in order to achieve a low sintering temperature.
Zur Erzielung der vorteilhaften Eigenschaften der erfindungsgemäßen Bariumtitanatkeramik wird etwas weniger als 50% der Komponente A verwendet, die mit oder ohne Dotanten, wie Wismut (Bi), Niob (Ni) oder Blei (Pb) versehen ist und eine Korngröße zwischen 0,5 μm und l,2μm aufweist. Von der Komponente B wird ebenfalls etwas weniger als 50% von mit Neodyn (Nd), Zink (Zn), Niob (Nb) oder auch mit Blei (Pb) dotiertem Bariumtitanat verwendet, das eine Korngröße von sehr viel weniger als lμm aufweist. Schließlich wird als dritte Komponente C etwas weniger als 8% eines Flussmittels mit einem Korndurchmesser von weniger als lμm verwendet.To achieve the advantageous properties of the barium titanate ceramic according to the invention, slightly less than 50% of component A is used, which is provided with or without dopants, such as bismuth (Bi), niobium (Ni) or lead (Pb), and a grain size between 0.5 μm and 1.2 μm. Component B also becomes a little less used as 50% of barium titanate doped with neodyn (Nd), zinc (Zn), niobium (Nb) or also with lead (Pb), which has a grain size of much less than 1 μm. Finally, a little less than 8% of a flux with a grain diameter of less than 1 μm is used as the third component C.
Zur Aufbereitung der dielektrischen Keramik werden die Bariumtitanat-Komponenten A und B zusammen mit den Dotanten und dem Flussmittel C in einem wässrigen oder organischen Medium gemischt und zu einem gießfähigen Schlicker weiterverabeitet. Alternativ hierzu können die Bariumtitanat-Komponenten, die Dotanten und das Flussmittel über einen chemisch regulierbaren Coatingprozess homogenisiert und zu einem gießfähigen Schlicker dispergiert werden. Der Schlicker wird dann zur Herstellung der Vielschichtkondensatoren verwendet. Nach deren Fertigstellung werden deren Kapazität, Verlustfaktor, Isolationswiderstand und die Temperaturabhängigkeit der elektrischen Werte bei Temperaturen zwischen -55°C und +125 °C gemessen.To prepare the dielectric ceramic, the barium titanate components A and B are mixed together with the dopants and the flux C in an aqueous or organic medium and further processed into a pourable slip. Alternatively, the barium titanate components, the dopants and the flux can be homogenized using a chemically adjustable coating process and dispersed to form a pourable slip. The slip is then used to manufacture the multilayer capacitors. After completion, their capacity, loss factor, insulation resistance and the temperature dependence of the electrical values are measured at temperatures between -55 ° C and +125 ° C.
Anhand der folgenden beiden Ausführungsbeispiele wird das erfindungsgemäße Verfahren näher erläutert.The method according to the invention is explained in more detail using the following two exemplary embodiments.
Beim Beispiel 1 werden als Komponente A 42,5 Gew.% BaTiθ3 mit einer Korngröße von d=l,2μm, als Komponente B 42,5 Gew.% BaTiθ3 mit einer Korngröße von d=0,6μm, 11% Dotierungsmittel und als Komponente C 4% eines Flussmittels verwendet. Die Komponenten A, B und C werden gemischt, in einer 201-Porzellanmühle in einem organischen Bindersystem 90 Stunden lang gemahlen. Ziel hiervon ist das Erreichen einer guten Enamelqualität. Schließlich wird der Schlicker bei einer Sintertemperatur von 960°C zu Vielschichtkondensatoren weiterverarbeitet, wobei eine Elektrodenpaste aus 90% Silber und 10% Palladium verwendet wird. Erreicht werden hierdurch Kondensatoren mit einer Dielektrizitätskonstante von DK=1800, einem DF-Wert von 2%, einem RC-Wert von mehr als 104 sec. bei 25°C, einer X7R- Temperaturcharakteristik, nach dem Sintern eine Schichtdicke von 13μm und eine Durchbruchspannung von 900 V.In example 1, as component A, 42.5% by weight of BaTiO 3 with a grain size of d = 1.2 μm, as component B, 42.5% by weight of BaTiO 3 with a grain size of d = 0.6 μm, 11% of dopant and as a component C 4% of a flux used. Components A, B and C are mixed, ground in a 201 porcelain mill in an organic binder system for 90 hours. The aim of this is to achieve good enamel quality. Finally, the slurry is further processed to multilayer capacitors at a sintering temperature of 960 ° C., using an electrode paste made of 90% silver and 10% palladium. This achieves capacitors with a dielectric constant of DK = 1800, a DF value of 2%, an RC value of more than 104 seconds at 25 ° C, an X7R temperature characteristic, after sintering a layer thickness of 13μm and a breakdown voltage of 900 V.
Beim Beispiel 2 werden als Komponente A 44 Gew.% BaTiθ3 mit einer Korngröße von d= 0,8μm, als Komponente B 42 Gew.% BaTiθ3 mit einer Korngröße von d= 0,07μm, 8% Dotierungsmittel und als Komponente C 6% einer niedrig schmelzenden Verbindung verwendet. Die chemisch homogenisierten Werkstoffkomponenten mit feinsten Partikelgrößen werden über einen Zeitraum von 6h dispergiert. Anschließend wird der Schlicker bei einer Sintertemperatur von 900°C zu Vielschichtkondensatoren weiterverarbeitet, wobei eine Elektrodenpaste aus 90% Silber und 10% Palladium verwendet wird. Erreichbar sind hierdurch Kondensatoren mit einer Dielektrizitätskonstanten DK=2500, einem DF-Wert von 2,2%, einem RC-Wert von 104 Sec. bei 25°C, einer X7R-Temperaturcharakteristik, nach dem Sintern eine Schichtdicke von 6μm und einer Durchbruchspannung von 700V. Bei dieser Werkstoffvariante ist es möglich, palladiumfreie Elektroden zu verwenden.In Example 2, as component A 44 wt.% BaTiθ3 with a grain size of d = 0.8 μm, as component B 42 wt.% BaTiθ3 with a grain size of d = 0.07 μm, 8% dopant and as component C 6% low melting compound used. The chemically homogenized material components with the finest particle sizes are dispersed over a period of 6 hours. The slip is then further processed to multilayer capacitors at a sintering temperature of 900 ° C., using an electrode paste made of 90% silver and 10% palladium. Capacitors with a dielectric constant DK = 2500, a DF value of 2.2% and an RC value of 104 S ec can be reached in this way. at 25 ° C, an X7R temperature characteristic, after sintering a layer thickness of 6μm and a breakdown voltage of 700V. With this material variant it is possible to use palladium-free electrodes.
Wie die Ausführungsbeispiele zeigen, gibt es zwei prinzipielle Möglichkeiten, die Bariumtitanat-Keramik herzustellen, und zwar zum einen auf dem traditionellen Weg durch Mischung der Einzelkomponenten als wässrigen oder organischen Schlicker, der in einer Mühle gemahlen werden muss, und zum anderen über einen chemischen Herstellungsprozess, insb. mittels eines chemisch regulierten Coatingprozesses. Die auf diesen Wegen hergestellte Kondensatorkeramik weist gegenüber dem Stand der Technik die Vorteile auf, bei Temperaturen weit unter 1000°C gesintert werden zu kö nnen, eine X7R-C ha r a k teris tik au fzuwe isen mi t Dielektrizitätskonstanten zwischen 1800 und 3000, eine hohe Werkstoffzuverlässigkeit durch eine bessere Beherrschung der Korn- und der Korngrenzenchemie zu erzielen und einfache Anpassungsmöglichkeiten der Werkstoffeigenschaften an erfoderliche Temperatureinsatzbereiche, wie bspw. Hochtemperaturanwendungen zu bieten.As the exemplary embodiments show, there are two basic options for producing the barium titanate ceramic, on the one hand in the traditional way by mixing the individual components as aqueous or organic slip, which has to be ground in a mill, and on the other hand via a chemical production process , especially by means of a chemically regulated coating process. Compared to the prior art, the capacitor ceramic produced in this way has the advantages of being able to be sintered at temperatures far below 1000 ° C, and a X7R-C hak teris tik with dielectric constants between 1800 and 3000, a high To achieve material reliability through better mastery of grain and grain boundary chemistry and simple Possibility to adapt the material properties to the required temperature application areas, such as high-temperature applications.
Alle in der Beschreibung und in den nachfolgenden Ansprüchen dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein. All features shown in the description and in the following claims can be essential to the invention both individually and in any combination with one another.

Claims

Ansprüche: Expectations:
1. Verfahren zur Herstellung von dielektrischer Kondensatorkeramik, bei dem eine Komponente B aus pulverförmigem Bariumtitanat verwendet wird, deren Körner einen Durchmesser von weniger als lμm aufweisen, dadurch gekennzeichnet,1. A process for the production of dielectric capacitor ceramic, in which a component B made of powdered barium titanate is used, the grains of which have a diameter of less than 1 μm, characterized in that
-dass eine weitere Komponente A aus pulverförmigem Bariumtitanat verwendet wird, deren Körner einen größeren Durchmesser als die Körner der Komponente B aufweisen,that a further component A made of powdered barium titanate is used, the grains of which have a larger diameter than the grains of component B,
-dass als weitere Komponente C ein pulverförmiges Flussmittel verwendet wird, dessen Körner einen Durchmesser von weniger als 1 μm aufweisen,that a powdered flux is used as further component C, the grains of which have a diameter of less than 1 μm,
-dass aus den Komponenten A, B und C ein gießfähiger Schlicker hergestellt wird, der zu weniger als 50 % aus der Komponente A, zu weniger als 50 % aus der Komponente B und zu weniger als 8 % aus der Komponente C besteht, undthat a pourable slip is produced from components A, B and C, which consists of less than 50% of component A, less than 50% of component B and less than 8% of component C, and
-dass der Schlicker bei einer Temperatur von weniger als 1000°C gesintert wird.-that the slip is sintered at a temperature of less than 1000 ° C.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Komponente A mit Dotanten versehen ist, und dass als Dotanten Wismut und /oder Niob verwendet werden.2. The method according to claim 1, characterized in that component A is provided with dopants, and that bismuth and / or niobium are used as dopants.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Komponente B mit Dotanten versehen ist, und dass als Dotanten Wismut, Niob, Zink und /oder Neodyn verwendet werden.3. The method according to claim 1 or 2, characterized in that component B is provided with dopants, and that bismuth, niobium, zinc and / or neodyne are used as dopants.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die zu einem gießfähigen Schlicker weiterzuverarbeitende Pulvermischung zu 42,5 % aus Komponente A mit einer Korngröße von l,2μm, zu 42,5 % aus Komponente B mit einer Korngröße von 0,6μm, zu 4 % aus Komponente C und zu 11 % aus Dotanten besteht.4. The method according to claim 3, characterized in that the powder mixture to be further processed to form a pourable slip comprises 42.5% of component A with a grain size of 1.2 μm, 42.5% of component B with a grain size of 0.6 μm, 4% of component C and 11% of dopants.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die zu einem gießfähigen Schlicker weiterzuverarbeitende Pulvermischung zu 44 % aus Komponente A mit einer Korngröße von 0,8μm, zu 42 % aus Komponente B mit einer Korngröße von 0,07μm, zu 6 % aus Komponente C und zu 8 % aus Dotanten besteht. 5. The method according to claim 3, characterized in that the powder mixture to be further processed into a pourable slip consists of 44% of component A with a grain size of 0.8 μm, 42% of component B with a grain size of 0.07 μm, 6% Component C and consists of 8% dopants.
PCT/DE2001/002194 2000-06-15 2001-06-15 Method for producing dielectric capacitor ceramics WO2001097254A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU72334/01A AU7233401A (en) 2000-06-15 2001-06-15 Method for producing dielectric capacitor ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10028806 2000-06-15
DE10028806.5 2000-06-15

Publications (1)

Publication Number Publication Date
WO2001097254A2 true WO2001097254A2 (en) 2001-12-20

Family

ID=7645379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002194 WO2001097254A2 (en) 2000-06-15 2001-06-15 Method for producing dielectric capacitor ceramics

Country Status (3)

Country Link
AU (1) AU7233401A (en)
DE (1) DE10145728A1 (en)
WO (1) WO2001097254A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065185A1 (en) * 2003-01-17 2004-08-05 Eaton Corporation Vehicle security system
EP2000445A2 (en) * 2006-03-30 2008-12-10 Ngk Insulators, Ltd. Dielectric porcelain composition and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065185A1 (en) * 2003-01-17 2004-08-05 Eaton Corporation Vehicle security system
EP2000445A2 (en) * 2006-03-30 2008-12-10 Ngk Insulators, Ltd. Dielectric porcelain composition and electronic component
EP2000445A4 (en) * 2006-03-30 2010-04-28 Ngk Insulators Ltd Method of manufacturing a dielectric porcelain

Also Published As

Publication number Publication date
AU7233401A (en) 2001-12-24
DE10145728A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
DE69728721T2 (en) Dielectric ceramic composition and monolithic ceramic capacitor using the same
DE112006001440B4 (en) Dielectric ceramic and multilayer ceramic capacitor
DE69704580T2 (en) Dielectric ceramic composition and its use in a monolithic ceramic capacitor
DE69632659T2 (en) multilayer varistor
DE2701411C3 (en) Dielectric ceramic compound
EP3238218B1 (en) Ceramic multilayer component and method for producing a ceramic multilayer component
DE10043882B4 (en) Dielectric ceramic composition and monolithic ceramic component
DE4036997A1 (en) MONOLITHIC VARISTOR
DE69024340T2 (en) SEMICONDUCTOR CERAMIC CAPACITOR OF LAMINATED AND INTERMEDIATE GRAIN INSULATION TYPE AND METHOD FOR THE PRODUCTION THEREOF
DE102004001241B4 (en) Dielectric ceramics and their use in a monolithic Kramikkondensator
DE2915409C2 (en)
DE69024280T2 (en) SEMICONDUCTOR CERAMIC CAPACITOR OF THE LAMINATED TYPE WITH INTERMEDIATE GRAIN INSULATION AND METHOD FOR THE PRODUCTION THEREOF
DE10041307B4 (en) Piezoelectric ceramic composition and its use
DE4005505A1 (en) MONOLITHIC CERAMIC CONDENSER
EP1704602B1 (en) Ceramic material
DE10040414B4 (en) Dielectric ceramic material and electrical component
EP0106401B1 (en) Ceramic dielectric based on bismuth-containing barium titanate
DE10007261B4 (en) Piezoelectric ceramic composition and use thereof
DE69023316T2 (en) CERAMIC CAPACITOR OF A SEMICONDUCTOR TYPE WITH LAMINATED AND CORN-INSULATED BORDER LAYERS.
DE69707247T2 (en) CERAMIC MULTILAYER CAPACITOR
DE3011977A1 (en) SINKABLE DIELECTRIC COMPOSITION AT LOWER TEMPERATURE AND THICK FILM CAPACITOR USING THIS
WO2001097254A2 (en) Method for producing dielectric capacitor ceramics
DE69725260T2 (en) Dielectric ceramic composition
DE69412717T2 (en) Dielectric ceramic composition
DE19945014C1 (en) Reduction-stable X7R ceramic composition used for multi-layered capacitors with nickel inner electrodes is based on a core component made of barium titanate and different shell components

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application