[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001077023A1 - Lithium/manganese complex oxide and method for producing the same, and lithium cell using the same - Google Patents

Lithium/manganese complex oxide and method for producing the same, and lithium cell using the same Download PDF

Info

Publication number
WO2001077023A1
WO2001077023A1 PCT/JP2001/002952 JP0102952W WO0177023A1 WO 2001077023 A1 WO2001077023 A1 WO 2001077023A1 JP 0102952 W JP0102952 W JP 0102952W WO 0177023 A1 WO0177023 A1 WO 0177023A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
manganese composite
coating layer
manganese
Prior art date
Application number
PCT/JP2001/002952
Other languages
French (fr)
Japanese (ja)
Inventor
Tokuo Suita
Hiromitu Miyazaki
Kenji Kataoka
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to AU46840/01A priority Critical patent/AU4684001A/en
Publication of WO2001077023A1 publication Critical patent/WO2001077023A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium-manganese composite oxide, which is a compound useful as a positive electrode material of a lithium battery, a method for producing the same, and a lithium battery using the same.
  • Lithium secondary batteries have been rapidly spreading in recent years because of their high voltage, excellent charge / discharge cycle characteristics, light weight, and small size. In particular, batteries with a high electromotive force of 4 V class are required. As such a lithium secondary battery, one using a composite oxide of cobalt or nickel ⁇ / and lithium as a positive electrode active material is known. However, cobalt and nickel are expensive, and future resources Is a problem.
  • the lithium manganate represented by the above chemical formula has a stoichiometric composition, and a 4 V class lithium battery using this as a positive electrode active material has a theoretical capacity of 148 mAhZg.
  • lithium secondary batteries using such lithium manganate do not have sufficient cycle characteristics and storage characteristics especially at high temperatures. For example, at 50 ° C or higher, the battery capacity increases when charging and discharging are repeated. Therefore, lithium manganate having excellent characteristics at high temperatures has been demanded.
  • 2000-169,152 discloses that lithium and manganese composite oxide particles and a cobalt compound are oxidized in an alkaline aqueous solution at 20 to 100 ° C.
  • a cobalt-adhered lithium-manganese composite oxide in which a cobalt oxide is epitaxially grown on a cobalt-manganese composite oxide is disclosed, but there is a problem that the charge / discharge capacity is reduced.
  • the present invention overcomes the above-described problems of the prior art, and provides a deposited lithium-manganese composite oxide having excellent high-temperature characteristics and high charge / discharge capacity suitable for a lithium battery, and an industrial and economical method for producing the same. It is intended to provide a method for producing in an advantageous manner.
  • the present inventors have applied a crystalline coating layer having the same crystal structure to the surface of the lithium-manganese composite oxide, and this coating layer has at least a specific element. It has been found that if manganese is contained, not only at room temperature but also at high temperature, the properties are excellent in storage properties and storage stability, and the charge / discharge capacity does not decrease.
  • the present invention relates to a lithium-manganese composite oxide having a coating layer on the surface, wherein the coating layer comprises at least one metal element selected from the group consisting of Co, Fe and Ni and Mn.
  • Lithium-manganese composite oxide characterized by having the same crystal structure as the crystal contained in the lithium-manganese composite acid, a method for producing the same, and a lithium-manganese composite using the same
  • the present invention relates to a lithium battery using an oxide.
  • Figure 1 is an X-ray chart of Sample B and Sample H.
  • the lithium-manganese composite oxide of the present invention has a surface on which a coating layer containing at least one metal element selected from the group consisting of Co, Fe and Ni and at least Mn is adhered.
  • This coating layer is crystalline and has the same crystal form as the lithium-manganese composite acid. It not only has excellent high temperature properties, but also has Has almost no decrease and has good battery characteristics inherent to lithium-manganese composite oxide. The reason for this is not always clear, but generally the cycle and storage characteristics are degraded because manganese ions elute from the contact interface between the lithium-manganese composite oxide and the electrolyte. It is said that this phenomenon becomes significant especially at high temperatures.
  • the present invention there is almost no difference in the lattice constant between the coating layer and the lithium-manganese composite oxide, and since these are crystals having a continuous structure, the adhesion is excellent, and the surface of the lithium-manganese composite oxide is excellent. It is considered well protected. On the other hand, even if the surface is covered by the coating layer, the inclusion and desorption of lithium ions is hardly inhibited by the inclusion of the metal element and Mn in the coating layer, and the charge / discharge capacity is not reduced. It is guessed.
  • the composition of the coating layer does not need to be uniform.
  • Mn in the coating layer may have a concentration gradient or Mn may exist randomly.
  • the metal element may be contained in the coating layer as a compound such as an oxide, and Mn may be contained as a single compound such as an oxide or a compound compound such as a composite oxide with the metal element. Is good and there is no particular limitation.
  • the crystal form of the coating layer is not particularly limited as long as it is the same form as the lithium-manganese composite oxide, but as described later, the lithium-manganese composite oxide is preferably a spinel type, and thus has the same spinel type. Is preferred.
  • a portion having a different amorphous or crystalline form may be contained as a production impurity in a small amount, preferably 5% or less.
  • the Chakuryou metal element contained in the coating layer is a 0.05 to 20 atomic 0/0 relative to the total amount of the M n of the lithium-manganese composite oxide ⁇ Pi coating layer, the deposition amount of 0.05 atoms 0 / lower the desired effect can not be obtained from 0, more preferably in the range of 0.1 to 10 atomic% Deari, more preferably from 1 to 5 atomic% 0.1.
  • the amount of Mn contained in the coating layer is a C o, F e, 0.
  • Co 1 ⁇ 50 atomic with respect to the total amount of the N i 0/0.
  • at least one of Co, Fe, and Ni may be used, and two or three of them may be used in combination. Among them, Co is particularly effective.
  • Elements other than Co, Fe, Ni, and Mn can be appropriately included in the coating layer for various purposes. Examples of such elements include Mg, Ca, V, Cu, Zn, and Li. The amount of these elements contained in the coating layer is, for example, based on the total amount of Co, Fe, and Ni. 0. 0 to 50 atoms 0 / o.
  • Such a coating layer may be applied to the lithium-manganese composite oxide by reacting the compound containing the metal element and the compound containing Mn with a basic compound.
  • the coating layer is applied under a strong alkaline condition in which free monohydric ion is 0.001 mol Z liter or more.
  • the compound containing at least one metal element selected from the group consisting of Co, Fe and Ni in the slurry containing the lithium-manganese composite oxide, and a basic compound Is added so that the concentration of free monohydric acid becomes 0.001 mol Z liter or more, and contains at least one kind of the metal element, and preferably contains at least one kind of the metal element.
  • a coating layer containing Mn is applied.
  • the lithium-manganese composite oxide is uniformly dispersed in a medium such as an organic solvent, preferably in water, to prepare a slurry containing the same.
  • a medium such as an organic solvent, preferably in water
  • wet pulverization or sizing may be appropriately performed by a known method using a disperser such as a line mill, a sand mill, or a pole mill.
  • a solution of a compound containing one kind of metal element selected from the group consisting of Co, Fe and Ni and a basic compound are added to the slurry to form a mixture of free hydroxide in the slurry.
  • the metal element compound to be added include salts such as chlorides, sulfates, nitrates, acetates, and carbonates, and hydroxides, oxyhydroxides, and oxides. Oxides and carbonates can be used.
  • a method of adding these compounds a method of adding a basic compound first and then simultaneously adding a solution of a metal compound is preferable because both are uniformly coated.
  • the salt of Co, Fe, and Ni reacts with the basic compound to precipitate as a hydroxide, an oxyhydroxide or an oxide, and has a free hydroxyl ion concentration of 0.000. When it exceeds 0 mol / liter, complexation of these compounds proceeds.
  • a hydroxide, an oxyhydroxide, or an oxide of the metal element is added to the slurry, a complex is formed in the presence of 0.0001 mol / liter or more of free hydroxyl ions. .
  • this method (1) forming a crystalline coating layer on the surface while the complex reacts with a part of manganese in the lithium-manganese composite oxide; (2) After the complex forms a crystalline coating layer, part of the manganese in the lithium-manganese composite oxide diffuses into the coating layer. (3) Part of manganese from the lithium-manganese composite oxide under strong alkalinity Is eluted, and manganese and the complex react to form a further complex to form a crystalline coating layer. Therefore, a complexing agent such as ammonia or EDTA may be added during the deposition process.
  • the deposition treatment can be usually performed at a temperature of 25 to 200 ° C.
  • the atmosphere for the deposition treatment is not particularly limited. However, when the deposition is performed in a non-oxidizing atmosphere by blowing an inert gas such as nitrogen into the slurry, the compound of the added metal element reacts. This is preferable because the reaction is not easily performed before the reaction and the reaction easily proceeds.
  • the free hydroxyl ion referred to in the present invention refers to a hydroxyl ion present in a slurry after a predetermined amount of a metal compound and a basic compound have been added. If the free hydroxyl ion concentration is lower than 0.001 mol Z liter, the formation of a coating layer of a metal compound is not sufficient, and good high-temperature characteristics cannot be obtained. When the concentration of free hydroxyl ions is increased, the coating layer aimed at by the present invention can be formed in a short time, but the effect is saturated when the concentration is 5 mol Z liter or more, which is not industrially advantageous.
  • the range of the free hydroxyl ion concentration is 0.001 to 5 mol / L, preferably 0.001 to 3 mol / L, and more preferably 0.01 to 2 mol / L.
  • the deposition treatment is performed by this method, the lithium manganese composite acid may be partially reduced, which is not preferable in terms of battery characteristics. Therefore, after the deposition, the deposition is performed in a slurry or in the air. It is preferable to oxidize. Thereafter, filtration and washing are appropriately performed, and drying is performed at 50 to 200 ° C, preferably 90 to 150 ° C. Drying may be performed in an oxidizing atmosphere such as the air or a non-oxidizing atmosphere such as nitrogen.
  • the dried lithium manganese composite oxide that has been subjected to the deposition treatment after drying may be subjected to a powder frame depending on its aggregation state.
  • Lithium 'manganese Sani ⁇ used in the present invention has the general formula L i x M n y 0 4 or Chopsticks i 1 + x M y Mn 2 -x-y0 4 was (M is F e, C r, Co, Ni, A 1, Mg, Ca, B, Zn, V, Nb, Mo, T i, Z r, at least one metal element selected from the group consisting of Ga and In) wherein X and Y in the formula are (1 + X) / (2-XY) Expressed in the range of 0.3 to 1.5 is a preferred composition.
  • L iMn 2 0 4 preferably has a L i 4/3 Mn 5/3 0 4 spinel crystal structure which is Ru represented by like, a single phase of the lithium-manganese composite oxide Alternatively, a mixture of a lithium * manganese composite oxide and a manganese oxide may be used.
  • the method for producing such a lithium-manganese composite oxide there is no particular limitation on the method for producing such a lithium-manganese composite oxide, and even if manganese oxide and a lithium compound are mixed and then heated and baked, the manganese oxide reacted with a manganese oxide or acid can be used.
  • One of arsenic or manganic acid and a lithium compound may be reacted in a medium such as water, and the resulting precursor of the lithium-manganese composite oxide may be heated and fired.
  • the latter method is preferable because a lithium-manganese composite oxide having excellent crystallinity can be obtained.
  • Manganese oxide or manganic acid which has been previously reacted with an acid has good reactivity with a lithium compound. It is more preferable to use this.
  • lithium-manganese composite oxide that has been subjected to the deposition treatment has excellent filling properties as a positive electrode active material.
  • lithium-manganese composite acid may be sintered to grow the particles, but manganese oxide is used as a seed (a nucleus or a seed crystal is hereinafter referred to as a seed). It is preferred that the particles be grown in a medium and then reacted with a lithium compound, since a crystal having good crystallinity and a uniform particle size / size distribution can be obtained.
  • the present invention is a lithium battery using the above-described lithium-manganese composite oxide as a positive electrode active material.
  • a lithium battery as referred to in the present invention is a primary battery using lithium metal for the negative electrode, a rechargeable battery using lithium metal for the negative electrode, a charging using a carbon material, a tin compound, lithium titanate, or the like for the negative electrode.
  • the lithium-manganese composite acid powder of the present invention may be added to a carbon-based conductive agent such as acetylene black, carbon, or graphite powder, or a polycondensate. It can be obtained by adding, kneading, and molding a binder such as tetrafluoroethylene resin or polyvinylidene fluoride resin.
  • a binder such as tetrafluoroethylene resin or polyvinylidene fluoride resin.
  • an organic solvent such as N-methylpyrrolidone is added to the lithium and manganese composite oxide powder of the present invention in addition to these additives, and the mixture is kneaded. Into a paste, applied to a metal current collector such as an aluminum foil, and dried.
  • Lithium ion is dissolved in the electrolyte of a lithium battery in a polar organic solvent that is electrochemically stable, that is, is not oxidized or reduced in a wider range than the potential range that operates as a lithium ion battery. Things can be used.
  • a polar organic solvent propylene carbonate, ethylene carbonate, getylcaponate, dimethoxetane, tetrahydrofuran, ⁇ -butyltyl lactone, or a mixture thereof can be used.
  • As a solute serving as a lithium ion source lithium perchlorate / lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used.
  • a porous polypropylene film / polyethylene film is disposed as a separator between the electrodes.
  • Battery types include a separator between the positive and negative electrodes in the form of pellets, pressure bonding to a sealed can with a polypropylene gasket, injection of electrolyte, and a sealed coin-type battery.
  • the negative electrode material is coated on a metal current collector, the separator is sandwiched and wound, inserted into a battery can with a gasket, injected with an electrolyte, and sealed.
  • a secondary battery is constructed using metal lithium or the like as the negative electrode, and charged and discharged at an appropriate voltage range with constant current.
  • the capacity can be measured. Further, by repeating charge and discharge, it is possible to judge the quality of the cycle characteristics from the change in the capacity.
  • the precursor of the lithium-manganese composite oxide was dried at 110 ° C for 12 hours, and then calcined in air at 750 for 3 hours to obtain a lithium-manganese composite oxide.
  • the specific surface area of the lithium-manganese composite acid was 0.94 m 2 / g.
  • Lithium-manganese composite acid (200 g in terms of Mn) was dispersed in water with a mixer to form a slurry, and then charged into a reaction vessel. Next, 95.2 milliliters of a 4.5 molar Z liter aqueous lithium hydroxide solution was added to adjust the liquid volume to 1.00 liter. After nitrogen gas was blown into the slurry and the temperature was raised to 60 ° C., 128.5 milliliters of a 50 g / litre aqueous solution of sodium salt as a copart was added over 1 hour, reacted for 5 hours, and cooled.
  • lithium-manganese composite oxide precursor was heated and calcined in the same manner as in the sixth step of Example 1 to obtain a lithium-manganese composite oxide.
  • the specific surface area of this lithium-manganese composite oxide was 1.01 m 2 Zg.
  • Lithium manganese composite oxide obtained in the second step of Example 2 (converted to Mn)
  • Co and Co were prepared in the same manner as in the third step of Example 2 except that the lithium manganese composite oxide obtained in the second step of Example 2 was used, and the addition amount of the lithium hydroxide aqueous solution was 233.8 milliliters. A lithium manganese composite oxide treated with a coating layer compound containing Mn was obtained. (Trial D) The addition amount of lithium hydroxide was set so that the concentration of free monohydric ion after reaction with cobalt salt was 0.80 mol.
  • lithium 'manganese composite oxide obtained in the second step of Example 2 after reacting salt sodium hydroxide and lithium hydroxide, air was passed through the slurry at 1 liter / min for 3 hours.
  • a lithium-manganese composite oxide treated with a coating layer compound containing Co and Mn was obtained in the same manner as in the third step of Example 2 except that the oxidation was performed.
  • Example G Comparative Example 2
  • a lithium-manganese composite oxide was obtained in the same manner as in Example 2, except that the coating treatment including the Co and Mn in the third step was not performed. (Sample H) Comparative Example 3
  • the lithium-manganese composite oxide (200 g in terms of Mn) obtained in the second step of Example 2 was dispersed in water with a mixer to form a slurry, and then charged into a reaction vessel. Next, 4.51 milliliters of an aqueous lithium hydroxide solution (26.1 milliliters) was added to adjust the liquid volume to 1.0 liters. While blowing nitrogen gas into this slurry, 50 g Z liters of a salt solution of 93.3 milliliters of an aqueous solution of cobalt were added as a co-part, and then 90. The temperature was raised to C, and the nitrogen gas was stopped after the temperature was raised.
  • Figure 1 shows the powder X-ray diffraction patterns of Samples B and H, and Table 1 shows the results. None of the samples showed a diffraction peak of spinel alone and no power was recognized.
  • the coating layer of the present invention By applying the coating layer of the present invention to the surface, the diffraction angle shifts to the lower angle side, and the half width tends to increase.
  • the peak area some peaks, such as the main peak, show a decreasing trend, while others show an increasing trend.
  • the diffraction peak of the plane index (220) showed the largest increasing tendency.
  • the actual composition of the coating layer is not always a stoichiometric composition as in the above formula, and a spinelidized product having a wider composition containing manganese and cobalt / reto, and in some cases containing lithium may be formed. It is thought that it is.
  • EDX analysis was performed on Sample B inside a few nm from the outermost surface of the particles, that is, a portion corresponding to the coating layer. Table 2 shows the results. EDX analysis also shows that Co and Mn exist in the coating layer.
  • the positive electrode was vacuum-dried at 120 ° C for 4 hours, and then incorporated into a sealable coin-type evaluation cell in a glove box with a dew point of 70 ° C or less.
  • the evaluation cell used was made of stainless steel (SUS 316) and had an outer diameter of 20 mm and a height of 1.6 mm.
  • the negative electrode used was 0.5 mm thick metallic lithium molded into a 14 mm diameter circle.
  • the positive electrode was placed in the lower can of the evaluation cell, a porous propylene film was placed thereon as a separator, and seven drops of a non-aqueous electrolyte were dropped from above with a dropper.
  • the negative electrode was placed on top of it, and an upper can with a gasket made of polypropylene was covered, and the outer peripheral edge was crimped and sealed.
  • a hydrophilic non-woven polypropylene nonwoven fabric was placed above and below the separator as necessary.
  • the coin-type evaluation cell thus fabricated was set in a special battery holder, and the battery characteristics were measured with a load of 5 kg applied.
  • the charge / discharge capacity was measured at a constant current with the voltage range set from 4.3 V to 3.5 V and the charge / discharge current set at 0.84 mA (about 3 cycles / day).
  • the values measured in the second cycle at 25 ° C are used as initial charge / discharge characteristics. did.
  • the cycle characteristics were measured at 25 ° C. and 50 ° C., and represented by the respective capacity retention rates% ⁇ (30th discharge capacity Z 5th discharge capacity) ⁇ 100 ⁇ .
  • Table 3 shows the initial charge / discharge characteristics, cycle characteristics, and manganese elution amount of Samples A to I.
  • the lithium-manganese composite oxide having a coating layer containing Co or Fe and Mn obtained on the surface thereof obtained by the present invention is subjected to a deposition treatment especially at a high temperature cycle 4. It is superior to non-lithium-manganese composite oxide and has the same initial charge / discharge characteristics. In addition, both the cycle characteristics and the initial charge / discharge characteristics are better than those with the conventional Co coating applied to the surface. Furthermore, from any of the comparative examples
  • the present invention relates to a lithium-manganese composite oxide having a coating layer on its surface
  • the coating layer contains at least one metal element selected from the group consisting of Co, Fe, and Ni and Mn, and has a crystal structure identical to the crystal contained in the lithium-manganese composite oxide. Is a lithium-manganese composite oxide.
  • the lithium-manganese composite oxidized product of the present invention has high adhesion of the treated coating layer, excellent protection of the particle surface, and is difficult to dissolve manganese ions even when contacted with an electrolytic solution. .
  • the deterioration of the lithium 10 manganese manganese compound becomes difficult to progress, and the lithium battery using this as a positive electrode active material has a cycle characteristic and a storage characteristic, especially at 50 ° C. Good at high temperatures.
  • this coating layer does not easily inhibit the introduction and desorption of lithium ions contained in the lithium-manganese composite oxide, the charge / discharge capacity does not decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A lithium/manganese complex oxide having a coating layer on the surface thereof, characterized in that the coating layer comprises Mn and at least one metal element selected from the group consisting of Co, Fe and Ni, and has a crystal structure of the same crystal form as that of the crystal contained in the lithium/manganese complex oxide.

Description

明 細 書 リチウム ·マンガン複合酸化物及ぴその製造方法並びにそれを用いてなるリチウ ム電池 技術分野  Description Lithium-manganese composite oxide, method for producing the same, and lithium battery using the same
本発明は、 リチウム電池の正極材料などに有用な化合物であるリチウム ·マン ガン複合酸化物、 及びその製造方法、 並びにそれを用いてなるリチウム電池に関 する。  The present invention relates to a lithium-manganese composite oxide, which is a compound useful as a positive electrode material of a lithium battery, a method for producing the same, and a lithium battery using the same.
背景技術 Background art
リチウム二次電池は高電圧で、 充放電サイクル特性に優れ、 且つ軽量、 小型で あるため、 近年急速に普及してきており、 特に 4 V級の高起電力のものが求めら れている。 このようなリチウム二次電池としてコバルトまたはニッケ^/とリチウ ムとの複合酸化物を正極活物質として用いたものが知られているが、 コバルトや 二ッケルは高価であり、 また将来的な資源の枯渴が問題とされている。  Lithium secondary batteries have been rapidly spreading in recent years because of their high voltage, excellent charge / discharge cycle characteristics, light weight, and small size. In particular, batteries with a high electromotive force of 4 V class are required. As such a lithium secondary battery, one using a composite oxide of cobalt or nickel ^ / and lithium as a positive electrode active material is known. However, cobalt and nickel are expensive, and future resources Is a problem.
マンガンとリチウムとの複合酸化物である化学式 L i M n 2 04などで表され るスピネル型の結晶構造を有するマンガン酸リチウムは; 4 V級のリチウム二次 電池の正極活物質として有用であり、 また原料となるマンガンが安価で資源的に 豊富であるので、 コバルト酸リチウムやニッケル酸リチウムに替わるものとして 有望である。 Useful as a positive electrode active material of a 4 V-class lithium secondary batteries; a composite oxide formula L i M n 2 0 4 lithium manganate having a spinel type crystal structure which you express the like of manganese to lithium In addition, since manganese as a raw material is inexpensive and abundant in resources, it is a promising alternative to lithium cobaltate and lithium nickelate.
前記の化学式で表されるマンガン酸リチウムは化学量論組成であり、 これを正 極活物質として用いた 4 V級のリチウム電池は 1 4 8 m A h Z gの理論容量を有 する。 し力 し、 このようなマンガン酸リチウムを用いるリチウム二次電池は、 特 に高温下でのサイクル特性及ぴ保存特性が充分ではなく、 例えば 5 0 °C以上では、 充放電を繰り返すと電池容量が大幅に減少し、 保存中の経時的な電池容量の低下 も著しく、 高温での特性に優れたマンガン酸リチゥムが求められていた。  The lithium manganate represented by the above chemical formula has a stoichiometric composition, and a 4 V class lithium battery using this as a positive electrode active material has a theoretical capacity of 148 mAhZg. However, lithium secondary batteries using such lithium manganate do not have sufficient cycle characteristics and storage characteristics especially at high temperatures. For example, at 50 ° C or higher, the battery capacity increases when charging and discharging are repeated. Therefore, lithium manganate having excellent characteristics at high temperatures has been demanded.
従来より、 マンガン酸リチウム粒子の表面に異種の金属化合物を被着すること で、 サイクル特性や保存特性を改良する方法が知られており、 特開平 1 0—1 1 6 6 1 5号公報には、 p Hを 9に調整することで遷移金属化合物を水溶液中でリ チウムマンガン酸ィ匕物に沈析させた後、 真空中で 1 5 0 °C以下で乾燥、 脱水する 方法が開示されている。 し力 し、 この方法では遷移金属化合物がリチウムマンガ ン酸化物の表面への密着性が悪く、 高温特性の改良効果は不十分であった。 特開 2 0 0 0— 1 6 9 1 5 2号公報には、 アルカリ水溶液中でリチウム .マンガン複 合酸化物粒子粉末とコバルト化合物とを 2 0〜 1 0 0 °Cで酸化反応させ、 リチウ ム ·マンガン複合酸化物上にコバルト酸ィヒ物をェピタキシャル成長させたコバル ト被着型リチウム ·マンガン複合酸化物が開示されているが、 充放電容量が低下 するという問題があった。 Conventionally, there has been known a method of improving the cycle characteristics and the storage characteristics by applying a different kind of metal compound to the surface of lithium manganate particles, which is disclosed in Japanese Patent Application Laid-Open No. H10-116166. Adjusts the pH to 9 to reduce the transition metal compound in aqueous solution. A method is disclosed in which a precipitate is deposited on a titanium manganese oxide, dried at 150 ° C. or lower in a vacuum, and dehydrated. However, in this method, the adhesion of the transition metal compound to the surface of the lithium manganese oxide was poor, and the effect of improving the high-temperature characteristics was insufficient. Japanese Patent Application Laid-Open No. 2000-169,152 discloses that lithium and manganese composite oxide particles and a cobalt compound are oxidized in an alkaline aqueous solution at 20 to 100 ° C. A cobalt-adhered lithium-manganese composite oxide in which a cobalt oxide is epitaxially grown on a cobalt-manganese composite oxide is disclosed, but there is a problem that the charge / discharge capacity is reduced.
発明の開示 Disclosure of the invention
本発明は以上に述べた従来技術の問題点を克服し、 リチウム電池に好適な高温 特性が優れ、 且つ充放電容量の高い被着処理されたリチウム ·マンガン複合酸化 物及びそれを工業的、 経済的に有利に製造する方法を提供するものである。 本発明者らは鋭意研究を重ねた結果、 リチウム ·マンガン複合酸化物の表面に これと同形の結晶構造を有する結晶性の被覆層を被着し、 この被覆層が少なくと も特定の元素とマンガンとを含んでいれば、 常温下ばかりでなく、 高温下でもサ イタル特性及び保存性に優れ、 且つ充放電容量が低下しないことを見出した。 すなわち本発明は、 表面に被覆層を有するリチウム ·マンガン複合酸化物であ つて、 前記被覆層が C o、 F e及ぴ N iからなる群から選ばれる少なくとも一種 の金属元素と M nとを含み、 リチウム ·マンガン複合酸ィヒ物に含まれる結晶と同 形の結晶構造を有することを特徴とするリチウム ·マンガン複合酸化物、 及ぴそ の製造方法、 並びにそれを用いたリチウム ·マンガン複合酸化物を用いてなるリ チウム電池に関する。  The present invention overcomes the above-described problems of the prior art, and provides a deposited lithium-manganese composite oxide having excellent high-temperature characteristics and high charge / discharge capacity suitable for a lithium battery, and an industrial and economical method for producing the same. It is intended to provide a method for producing in an advantageous manner. As a result of intensive studies, the present inventors have applied a crystalline coating layer having the same crystal structure to the surface of the lithium-manganese composite oxide, and this coating layer has at least a specific element. It has been found that if manganese is contained, not only at room temperature but also at high temperature, the properties are excellent in storage properties and storage stability, and the charge / discharge capacity does not decrease. That is, the present invention relates to a lithium-manganese composite oxide having a coating layer on the surface, wherein the coating layer comprises at least one metal element selected from the group consisting of Co, Fe and Ni and Mn. Lithium-manganese composite oxide characterized by having the same crystal structure as the crystal contained in the lithium-manganese composite acid, a method for producing the same, and a lithium-manganese composite using the same The present invention relates to a lithium battery using an oxide.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は試料 Bおよび試料 Hの X線チャートである。  Figure 1 is an X-ray chart of Sample B and Sample H.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明のリチウム 'マンガン複合酸化物は、 C o、 F e及ぴ N iからなる群か ら選ばれる少なくとも一種の金属元素と M nとを少なくとも含む被覆層が表面に 被着されたもので、 この被覆層は結晶性でリチウム 'マンガン複合酸ィヒ物と同じ 結晶形を有している。 このものは、 高温特性が優れるばかりでなく、 充放電容量 がほとんど低下せずリチウム ·マンガン複合酸化物本来の良好な電池特性を有し ている。 その理由については必ずしも明確ではなレ、が、 一般的にサイクル特性や 保存特性が低下するのは、 マンガンイオンがリチウム 'マンガン複合酸化物と電 解液との接触界面から溶出するためであり、 特に高温度下ではこの現象が著しく なるからである言われている。 本発明では被覆層とリチウム ·マンガン複合酸ィ匕 物の格子定数にほとんど差が無く、 これらが連続的な構造の結晶となるので密着 性が優れ、 リチウム ·マンガン複合酸ィヒ物の表面が十分に保護されていると考え られる。 一方、 被覆層によって表面が覆われていても、 被覆層中に前記金属元素 と Mnとが含まれることにより、 リチウムイオンの挿入 ·脱離が阻害され難く、 充放電容量が低下しないのではないかと推測される。 The lithium-manganese composite oxide of the present invention has a surface on which a coating layer containing at least one metal element selected from the group consisting of Co, Fe and Ni and at least Mn is adhered. This coating layer is crystalline and has the same crystal form as the lithium-manganese composite acid. It not only has excellent high temperature properties, but also has Has almost no decrease and has good battery characteristics inherent to lithium-manganese composite oxide. The reason for this is not always clear, but generally the cycle and storage characteristics are degraded because manganese ions elute from the contact interface between the lithium-manganese composite oxide and the electrolyte. It is said that this phenomenon becomes significant especially at high temperatures. In the present invention, there is almost no difference in the lattice constant between the coating layer and the lithium-manganese composite oxide, and since these are crystals having a continuous structure, the adhesion is excellent, and the surface of the lithium-manganese composite oxide is excellent. It is considered well protected. On the other hand, even if the surface is covered by the coating layer, the inclusion and desorption of lithium ions is hardly inhibited by the inclusion of the metal element and Mn in the coating layer, and the charge / discharge capacity is not reduced. It is guessed.
本発明では被覆層の組成は均一である必要は無く、 例えば被覆層中の Mnに濃 度勾配があっても、 あるいは Mnがランダムに存在していても良い。 前記金属元 素は酸化物等の化合物として被覆層に含まれていても良く、 また Mnは酸化物等 の単独の化合物、 あるいは前記金属元素との複合酸化物等の複合化合物として含 まれていても良く、 特に制限は無い。 被覆層の結晶形はリチウム ·マンガン複合 酸化物と同形であれば特に制限は無いが、 後述のようにリチウム .マンガン複合 酸化物としてはスピネル型のものが好ましいので、 これと同じスピネル型である のが好ましい。 なお、 本発明の目的を害さない範囲で非晶質や結晶形の異なる部 分を製造上の不純物として少量、 好ましくは 5 %以下含んでレ、てもよい。 被覆層 に含まれる金属元素の被着量は、 リチウム ·マンガン複合酸化物及ぴ被覆層中の M nの総量に対し 0. 05〜 20原子0 /0で、 被着量が 0. 05原子0 /0より低いと 所望の効果が得られず、 より好ましい範囲は 0. 1〜10原子%でぁり、 さらに 好ましくは 0. 1〜5原子%である。 また、 被覆層中に含まれる Mnの量は、 C o、 F e、 N iの総量に対し 0. 1〜50原子0 /0である。 Co、 F e、 N iは 前記のように少なくとも 1種が用いられていれば良く、 2種または 3種を併用し て処理しても構わないが、 その中でも C oは特に効果が高い。 被覆層中には C o、 F e、 N i及ぴ Mn以外の元素を、 様々な目的に応じて適宜含ませることができ る。 そのような元素として Mg、 Ca、 V、 Cu、 Zn、 L i等が挙げられ、 こ れらの元素が被覆層中に含まれる量は、 例えば C o、 F e、 N iの総量に対し 0. 0 5〜5 0原子0 /oである。 In the present invention, the composition of the coating layer does not need to be uniform. For example, Mn in the coating layer may have a concentration gradient or Mn may exist randomly. The metal element may be contained in the coating layer as a compound such as an oxide, and Mn may be contained as a single compound such as an oxide or a compound compound such as a composite oxide with the metal element. Is good and there is no particular limitation. The crystal form of the coating layer is not particularly limited as long as it is the same form as the lithium-manganese composite oxide, but as described later, the lithium-manganese composite oxide is preferably a spinel type, and thus has the same spinel type. Is preferred. In addition, as long as the object of the present invention is not impaired, a portion having a different amorphous or crystalline form may be contained as a production impurity in a small amount, preferably 5% or less. The Chakuryou metal element contained in the coating layer is a 0.05 to 20 atomic 0/0 relative to the total amount of the M n of the lithium-manganese composite oxide及Pi coating layer, the deposition amount of 0.05 atoms 0 / lower the desired effect can not be obtained from 0, more preferably in the range of 0.1 to 10 atomic% Deari, more preferably from 1 to 5 atomic% 0.1. Further, the amount of Mn contained in the coating layer is a C o, F e, 0. 1~50 atomic with respect to the total amount of the N i 0/0. As described above, at least one of Co, Fe, and Ni may be used, and two or three of them may be used in combination. Among them, Co is particularly effective. Elements other than Co, Fe, Ni, and Mn can be appropriately included in the coating layer for various purposes. Examples of such elements include Mg, Ca, V, Cu, Zn, and Li.The amount of these elements contained in the coating layer is, for example, based on the total amount of Co, Fe, and Ni. 0. 0 to 50 atoms 0 / o.
このような被覆層は、 前記金属元素を含む化合物及び M nを含む化合物と塩基 性化合物とを反応させて、 リチウム ·マンガン複合酸化物に被着させても良い。 し力 し、 本発明の製造方法ではフリ一水酸イオンが 0 . 0 0 0 1モル Zリットル 以上の強アルカリ性下で、 前記被覆層を被着させる。 また、 本発明の製造方法で は、 リチウム 'マンガン複合酸化物を含むスラリー中に、 C o、 F e及びN iか らなる群から選ばれる少なくとも一種の金属元素を含む化合物と塩基性化合物と をフリ一水酸ィォン濃度が 0 . 0 0 0 1モル Zリットル以上になるように添カロし 反応させる工程により、 前記金属元素の少なくとも 1種を含む、 好ましくは前記 金属元素の少なくとも 1種と Mnを含む被覆層を被着させる。 いずれの方法も具 体的には先ずリチウム ·マンガン複合酸化物を有機溶媒などの媒液中に、 好まし くは水中に均一に分散させ、 これを含有するスラリーを調製する。 リチウム ·マ ンガン複合酸ィ匕物粒子の焼結や凝集の程度に応じ、 ラインミル、 サンドミル、 ポ ールミルなどの分散機を用いて公知の方法により適宜湿式粉砕や整粒を行つても よい。  Such a coating layer may be applied to the lithium-manganese composite oxide by reacting the compound containing the metal element and the compound containing Mn with a basic compound. However, in the production method of the present invention, the coating layer is applied under a strong alkaline condition in which free monohydric ion is 0.001 mol Z liter or more. Further, in the production method of the present invention, the compound containing at least one metal element selected from the group consisting of Co, Fe and Ni in the slurry containing the lithium-manganese composite oxide, and a basic compound Is added so that the concentration of free monohydric acid becomes 0.001 mol Z liter or more, and contains at least one kind of the metal element, and preferably contains at least one kind of the metal element. A coating layer containing Mn is applied. In any method, first, the lithium-manganese composite oxide is uniformly dispersed in a medium such as an organic solvent, preferably in water, to prepare a slurry containing the same. Depending on the degree of sintering or agglomeration of the lithium-manganese composite particles, wet pulverization or sizing may be appropriately performed by a known method using a disperser such as a line mill, a sand mill, or a pole mill.
次いで、 前記のスラリーに C o、 F e及ぴ N iからなる群から選ばれる 1種の 金属元素を含む化合物の溶液と塩基性化合物とを、 スラリ一中のフリ一水酸ィォ ンの濃度が 0 . 0 0 0 1モル Zリットル以上になるように添加し反応させると、 前記の被覆層がその表面に被着される。 添加する金属元素の化合物としては、 塩 化物、 硫酸塩、 硝酸塩、 酢酸塩、 炭酸塩などの塩類、 あるいは水酸化物、 ォキシ 水酸化物、 酸化物などが、 塩基性化合物にはアルカリ金属の水酸化物や炭酸塩な どを用いることができる。 これらの化合物の添加方法としては、 塩基性化合物を 先に添加した後金属化合物の溶液を添加する力 両者を同時に添加する方法がい ずれも、 均一に被着されるので好ましい。  Next, a solution of a compound containing one kind of metal element selected from the group consisting of Co, Fe and Ni and a basic compound are added to the slurry to form a mixture of free hydroxide in the slurry. When added and reacted so that the concentration becomes 0.0001 mol Z liter or more, the above-mentioned coating layer is adhered to the surface. Examples of the metal element compound to be added include salts such as chlorides, sulfates, nitrates, acetates, and carbonates, and hydroxides, oxyhydroxides, and oxides. Oxides and carbonates can be used. As a method of adding these compounds, a method of adding a basic compound first and then simultaneously adding a solution of a metal compound is preferable because both are uniformly coated.
C o、 F e、 N iの塩は塩基性ィヒ合物と反応して水酸ィ匕物、 ォキシ水酸化物あ るいは酸化物として析出し、 フリー水酸イオン濃度が 0 . 0 0 0 1モル /リット ル以上になるとこれらの錯体化が進む。 あるいは、 前記金属元素の水酸化物、 ォ キシ水酸化物、 酸化物をスラリー中に添加した場合も、 0 . 0 0 0 1モル /リッ トル以上のフリー水酸イオンの存在下では錯体化する。 以上のことから、 本方法 により前記被覆層が被着されるのは、 ( 1 ) 前記錯体がリチウム ·マンガン複合 酸化物中のマンガンの一部と反応しながら、 表面に結晶性の被覆層を生成させる、 ( 2 ) 前記錯体が結晶性の被覆層を生成させた後、 リチウム ·マンガン複合酸化 物中のマンガンの一部が被覆層へ拡散する、 (3 ) 強アルカリ性下でリチウム . マンガン複合酸化物からマンガンの一部が溶出し、 マンガンと前記錯体が反応し て更に錯体を形成し、 結晶性の被覆層を生成させる等ではな!/、かと推測される。 従って、 被着処理の際に、 アンモニア、 E D T Aなどの錯化剤を添加しても良い。 被着処理は、 通常 2 5〜 2 0 0 °Cの温度で 0 . 5〜 2 0時間で行うことができ、 フリー水酸イオン濃度などの反応条件によって適宜設定できる。 被着処理の雰囲 気には特に制限は無いが、 スラリ一中に窒素等の不活性気体を吹き込むなどして 非酸ィヒ性雰囲気で被着すると、 添加した前記金属元素の化合物が反応する前に酸 ィ匕されず、 反応が進みやすいので好ましい。 The salt of Co, Fe, and Ni reacts with the basic compound to precipitate as a hydroxide, an oxyhydroxide or an oxide, and has a free hydroxyl ion concentration of 0.000. When it exceeds 0 mol / liter, complexation of these compounds proceeds. Alternatively, when a hydroxide, an oxyhydroxide, or an oxide of the metal element is added to the slurry, a complex is formed in the presence of 0.0001 mol / liter or more of free hydroxyl ions. . From the above, this method (1) forming a crystalline coating layer on the surface while the complex reacts with a part of manganese in the lithium-manganese composite oxide; (2) After the complex forms a crystalline coating layer, part of the manganese in the lithium-manganese composite oxide diffuses into the coating layer. (3) Part of manganese from the lithium-manganese composite oxide under strong alkalinity Is eluted, and manganese and the complex react to form a further complex to form a crystalline coating layer. Therefore, a complexing agent such as ammonia or EDTA may be added during the deposition process. The deposition treatment can be usually performed at a temperature of 25 to 200 ° C. for 0.5 to 20 hours, and can be appropriately set depending on reaction conditions such as a free hydroxyl ion concentration. The atmosphere for the deposition treatment is not particularly limited. However, when the deposition is performed in a non-oxidizing atmosphere by blowing an inert gas such as nitrogen into the slurry, the compound of the added metal element reacts. This is preferable because the reaction is not easily performed before the reaction and the reaction easily proceeds.
尚、 本発明でいうフリー水酸イオンとは、 所定量の金属化合物及び塩基性化合 物の添加が終了した後、 スラリー中に存在する水酸イオンを言う。 フリー水酸ィ オン濃度が 0 · 0 0 0 1モル Zリットルより低いと、 金属化合物の被覆層の形成 が充分ではなく、 良好な高温特性を得られない。 フリー水酸イオン濃度を高くす ると、 短時間で本発明が目的とする被覆層を形成することができるが、 5モル Z リットル以上ではその効果は飽和するので、 工業的に有利ではなく、 フリー水酸 イオン濃度の範囲としては 0 . 0 0 0 1〜5モル Zリットルであり、 0 . 0 0 1 〜 3モル/リットルが好ましく、 0 . 0 1〜2モル/リットルがさらに好ましい。 本方法で被着処理を行うと、 リチウム 'マンガン複合酸ィヒ物が部分的に還元さ れる場合があり、 これは電池特性上好ましくないので、 被着後はスラリ一中また は大気中等で酸ィ匕するのが好ましい。 その後はろ過、 水洗を適宜行い、 5 0〜2 0 0 °C、 好ましくは 9 0〜 1 5 0 °Cで乾燥する。 乾燥は大気中などの酸ィ匕性雰囲 気、 あるいは窒素などの非酸化 '14雰囲気のいずれで行っても良い。 5 0 °C以下で あると乾燥速度が遅く工業的に有利でなく、 また 2 0 0 °C以上では被覆層が構造 変化し、 本発明の被覆層が得られない。 乾燥後の被着処理されたリチウム 'マン ガン複合酸化物は、 その凝集状態に応じて粉枠を行つても良い。  In addition, the free hydroxyl ion referred to in the present invention refers to a hydroxyl ion present in a slurry after a predetermined amount of a metal compound and a basic compound have been added. If the free hydroxyl ion concentration is lower than 0.001 mol Z liter, the formation of a coating layer of a metal compound is not sufficient, and good high-temperature characteristics cannot be obtained. When the concentration of free hydroxyl ions is increased, the coating layer aimed at by the present invention can be formed in a short time, but the effect is saturated when the concentration is 5 mol Z liter or more, which is not industrially advantageous. The range of the free hydroxyl ion concentration is 0.001 to 5 mol / L, preferably 0.001 to 3 mol / L, and more preferably 0.01 to 2 mol / L. When the deposition treatment is performed by this method, the lithium manganese composite acid may be partially reduced, which is not preferable in terms of battery characteristics. Therefore, after the deposition, the deposition is performed in a slurry or in the air. It is preferable to oxidize. Thereafter, filtration and washing are appropriately performed, and drying is performed at 50 to 200 ° C, preferably 90 to 150 ° C. Drying may be performed in an oxidizing atmosphere such as the air or a non-oxidizing atmosphere such as nitrogen. If the temperature is lower than 50 ° C., the drying rate is low, which is not industrially advantageous. If the temperature is higher than 200 ° C., the structure of the coating layer changes, and the coating layer of the present invention cannot be obtained. The dried lithium manganese composite oxide that has been subjected to the deposition treatment after drying may be subjected to a powder frame depending on its aggregation state.
本発明で用いるリチウム 'マンガン複合酸ィ匕物は、 一般式 L i x M n y 0 4ま たはし i 1 + xMyMn 2-x-y04 (Mは F e、 C r、 Co、 Ni、 A 1、 Mg、 Ca、 B、 Zn、 V、 Nb、 Mo、 T i、 Z r、 Ga及ぴ I nからなる群から選 ばれる少なくとも 1種の金属元素) で表される化合物であって、 式中の X、 Yの 値が (1+X) / (2-X-Y) で表して 0. 3〜1. 5の範囲が好ましい組成 物である。 特に一般式 L iMn 204や、 L i 4/ 3Mn 5/3 04などで表され るスピネル型の結晶構造を有するものが好ましく、 リチウム ·マンガン複合酸化 物の単一相であっても、 リチウム *マンガン複合酸化物とマンガン酸化物の混合 物であってもよい。 Lithium 'manganese Sani匕物used in the present invention has the general formula L i x M n y 0 4 or Chopsticks i 1 + x M y Mn 2 -x-y0 4 was (M is F e, C r, Co, Ni, A 1, Mg, Ca, B, Zn, V, Nb, Mo, T i, Z r, at least one metal element selected from the group consisting of Ga and In) wherein X and Y in the formula are (1 + X) / (2-XY) Expressed in the range of 0.3 to 1.5 is a preferred composition. In particular or general formula L iMn 2 0 4, preferably has a L i 4/3 Mn 5/3 0 4 spinel crystal structure which is Ru represented by like, a single phase of the lithium-manganese composite oxide Alternatively, a mixture of a lithium * manganese composite oxide and a manganese oxide may be used.
このようなリチウム 'マンガン複合酸ィ匕物の製造方法には特に制限は無く、 マ ンガン酸化物とリチウム化合物を混合した後加熱焼成しても、 マンガン酸化物、 酸と反応させたマンガン酸ィヒ物またはマンガン酸の 1種とリチウム化合物とを水 などの媒液中で反応させ、 得られたリチウム ·マンガン複合酸化物の前駆体を加 熱焼成してもよい。 し力 し、 後者の方法は結晶性の優れたリチウム 'マンガン複 合酸化物が得られるので好ましく、 予め酸と反応させたマンガン酸化物やマンガ ン酸はリチウム化合物との反応性が良いので、 これを用いるとさらに好ましい。 また、 平均粒子径が 0. 1〜50 /xmの大粒子径のものを用いれば、 最終的に 得られる被着処理されたリチウム ·マンガン複合酸化物は、 正極活物質として充 填性に優れているので好ましい。 このような大粒子径のものは、 例えばリチウム •マンガン複合酸ィヒ物を焼結させて粒子成長させても良いが、 マンガン酸化物を シード (核晶、 種結晶のこと以下シードという) として、 これを媒液中で粒子成 長させた後、 リチウム化合物と反応させると結晶性が良く、 粒子径ゃ粒度分布が 整つたものが得られるので好まし 、。  There is no particular limitation on the method for producing such a lithium-manganese composite oxide, and even if manganese oxide and a lithium compound are mixed and then heated and baked, the manganese oxide reacted with a manganese oxide or acid can be used. One of arsenic or manganic acid and a lithium compound may be reacted in a medium such as water, and the resulting precursor of the lithium-manganese composite oxide may be heated and fired. However, the latter method is preferable because a lithium-manganese composite oxide having excellent crystallinity can be obtained.Manganese oxide or manganic acid which has been previously reacted with an acid has good reactivity with a lithium compound. It is more preferable to use this. In addition, if a large particle diameter having an average particle diameter of 0.1 to 50 / xm is used, the finally obtained lithium-manganese composite oxide that has been subjected to the deposition treatment has excellent filling properties as a positive electrode active material. Is preferred. In the case of such a large particle diameter, for example, lithium-manganese composite acid may be sintered to grow the particles, but manganese oxide is used as a seed (a nucleus or a seed crystal is hereinafter referred to as a seed). It is preferred that the particles be grown in a medium and then reacted with a lithium compound, since a crystal having good crystallinity and a uniform particle size / size distribution can be obtained.
次に本発明は前記のリチウム ·マンガン複合酸化物を正極活物質として用いて なるリチウム電池である。 本発明でいうリチウム電池とは、 負極にリチウム金属 を用いた一次電池、 及び負極にリチウム金属を用いた充電可能な二次電池、 負極 に炭素材料、 スズ化合物、 チタン酸リチウムなどを用いた充電可能なリチウムィ オン二次電池のことをいう。 本発明のリチウム ·マンガン複合酸化物は表面に特 定の被覆層が被着されているので、 これをリチウム二次電池の正極活物質として 用ると、 特に 50°Cのような高温度下で、 充放電時にマンガンイオンの溶出が起 こり難く、 サイクル特性や保存特性にも優れるばかりでなく、 充放電容量の大き いものにもなる。 Next, the present invention is a lithium battery using the above-described lithium-manganese composite oxide as a positive electrode active material. A lithium battery as referred to in the present invention is a primary battery using lithium metal for the negative electrode, a rechargeable battery using lithium metal for the negative electrode, a charging using a carbon material, a tin compound, lithium titanate, or the like for the negative electrode. A possible lithium ion secondary battery. Since the lithium-manganese composite oxide of the present invention has a specific coating layer adhered to the surface, if it is used as a positive electrode active material of a lithium secondary battery, it can be used at high temperatures such as 50 ° C. Release of manganese ions during charging and discharging Not only is it hard to scrape, it has excellent cycle characteristics and storage characteristics, but also has a large charge / discharge capacity.
リチウム電池用正極は、 コイン型電池用とする場合には、 本発明のリチウム - マンガン複合酸ィヒ物粉体に、 アセチレンブラックや、 カーボン、 グラフアイト粉 末などの炭素系導電剤や、 ポリ四フッ化工チレン樹脂や、 ポリビニリデンフルォ ライド樹脂などの結着剤を添加、 混練し、 成型して得ることができる。 さらに、 円筒型、 あるいは角型電池用とする場合には、 本発明のリチウム,マンガン複合 酸化物粉体に、 これらの添加物以外に N—メチルピロリ ドンなどの有機溶剤も添 加し、 混練してペースト状とし、 アルミニウム箔のような金属集電体上に塗布し、 乾燥して得ることができる。  When the positive electrode for a lithium battery is to be used for a coin-type battery, the lithium-manganese composite acid powder of the present invention may be added to a carbon-based conductive agent such as acetylene black, carbon, or graphite powder, or a polycondensate. It can be obtained by adding, kneading, and molding a binder such as tetrafluoroethylene resin or polyvinylidene fluoride resin. Further, when the battery is used for a cylindrical or prismatic battery, an organic solvent such as N-methylpyrrolidone is added to the lithium and manganese composite oxide powder of the present invention in addition to these additives, and the mixture is kneaded. Into a paste, applied to a metal current collector such as an aluminum foil, and dried.
リチウム電池の電解液には、 電気化学的に安定な、 すなわちリチウムイオン電 池として作動する電位範囲より広い範囲で、 酸化、 還元されることのない極性有 機溶媒に、 リチウムイオンを溶解させたものを使用することができる。 極性有機 溶媒としては、 プロピレンカーボネートやエチレンカーボネート、 ジェチルカ一 ポネート、 ジメ トキシェタン、 テトラヒ ドロフラン、 γ—プチルラクトンなどや、 それらの混合液を用いることができる。 リチウムイオン源となる溶質には、 過塩 素酸リチウムゃ六フッ化リン酸リチウム、 四フッ化ホウ素酸リチウムなどを用い ることができる。 また電極間には多孔' [·生のポリプロピレンフィルムゃポリエチレ ンフィルムが、 セパレータとして配置される。  Lithium ion is dissolved in the electrolyte of a lithium battery in a polar organic solvent that is electrochemically stable, that is, is not oxidized or reduced in a wider range than the potential range that operates as a lithium ion battery. Things can be used. As the polar organic solvent, propylene carbonate, ethylene carbonate, getylcaponate, dimethoxetane, tetrahydrofuran, γ-butyltyl lactone, or a mixture thereof can be used. As a solute serving as a lithium ion source, lithium perchlorate / lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used. In addition, a porous polypropylene film / polyethylene film is disposed as a separator between the electrodes.
電池の種類としては、 ペレット状の正極と負極の間にセパレータを置き、 ポリ プロピレン製のガスケットのついた封口缶に圧着し、 電解液を注入し、 密閉した コィン型のものや、 正極材料や負極材料を金属集電体上に塗布し、 セパレータを はさんで卷き取り、 ガスケットのついた電池缶に挿入し、 電解液を注入し、 封入 した円筒型のものなどが挙げられる。 また特に電気化学特性を測定することを目 的とした三極式の電池もある。 この電池は正極と負極以外に参照極も配置し、 参 照極に対して他の電極の電位をコント口ールすることにより、 各電極の電気化学 的な特性を評価するものである。  Battery types include a separator between the positive and negative electrodes in the form of pellets, pressure bonding to a sealed can with a polypropylene gasket, injection of electrolyte, and a sealed coin-type battery. The negative electrode material is coated on a metal current collector, the separator is sandwiched and wound, inserted into a battery can with a gasket, injected with an electrolyte, and sealed. There are also three-electrode batteries specifically for measuring electrochemical properties. This battery evaluates the electrochemical characteristics of each electrode by arranging a reference electrode in addition to the positive electrode and the negative electrode, and controlling the potential of other electrodes with respect to the reference electrode.
リチウム ·マンガン複合酸化物の正極材料としての性能については、 負極に金 属リチウム等を用いて二次電池を構成し、 適当な電圧範囲を定電流で充放電する ことにより、 その容量を測定することができる。 また充放電を繰り返すことによ り、 容量の変化からそのサイクル特性の良否を判断することができる。 Regarding the performance of the lithium-manganese composite oxide as a positive electrode material, a secondary battery is constructed using metal lithium or the like as the negative electrode, and charged and discharged at an appropriate voltage range with constant current. Thus, the capacity can be measured. Further, by repeating charge and discharge, it is possible to judge the quality of the cycle characteristics from the change in the capacity.
実施例 Example
以下に本発明の実施例を示すが、 本発明はこれらの実施例に限定されるもので はない。  Examples of the present invention will be described below, but the present invention is not limited to these examples.
実施例 1 Example 1
1. マンガン水酸化物の合成  1. Synthesis of manganese hydroxide
8. 37モル/リットルの水酸化ナトリウム溶液 0. 653リットルと、 水 0. 41 9リツトルをステンレス製の反応容器に仕込んだ。 この中に窒素ガスを 2. 5リットル Z分で吹き込みながら、 硫酸マンガン (Mn S〇4として 88. 06 %含有) 0. 937 k gを 3. 75 k gの水に溶解した溶液を攪拌しながら急速 に添加し 70°Cで中和した。 その後、 70°Cで 3時間熟成してマンガンの水酸化 物を得た。 8. A 0.63 liter solution of 37 mol / liter sodium hydroxide and 0.419 liters of water were charged into a stainless steel reaction vessel. While blowing therein a nitrogen gas 2. 5 l Z min, rapidly stirring a solution of (88.06% content as Mn S_〇 4) 0. 937 kg manganese sulphate in water 3. 75 kg And neutralized at 70 ° C. Thereafter, the mixture was aged at 70 ° C. for 3 hours to obtain a manganese hydroxide.
2. マンガン酸化物シードの合成  2. Synthesis of manganese oxide seed
得られたマンガン水酸ィ匕物を含む溶液を攪拌しながら、 空気を 2. 5リットル /分で吹き込み 70 °Cの温度で酸ィ匕し、 ; p Hが 6. 4になった時点で酸化を終了 させ、 マンガン酸化物シードを得た。  While stirring the obtained solution containing the manganese hydroxide, air was blown in at a rate of 2.5 l / min, and the mixture was oxidized at a temperature of 70 ° C .; when the pH reached 6.4, The oxidation was terminated, and a manganese oxide seed was obtained.
3. マンガン酸化物シードの成長  3. Manganese oxide seed growth
上記のマンガン酸化物シードを含む溶液を 7 0°Cに保ち、 硫酸マンガン 304として88. 06%含有) 5. 618 k gを水 21. 28 k gに溶 解した水溶液を添加した後、 攪拌下で空気 Z窒素 = 1/1の混合ガスを 2. 5リ ットル/分で吹き込みながら、 8. 37モノレ/リットルの水酸化ナトリウム 4. 567リツトルを 64時間かけて添加し、 中和、 酸化させてマンガン酸ィ匕物シー ドを成長させた後、 濾過、 水洗してマンガン酸化物を得た。 The solution was maintained at 7 0 ° C containing manganese oxide seed described above, was added an aqueous solution prepared by dissolve the 88.06% containing) 5. 618 kg as manganese sulfate 30 4 in water 21. 28 kg, stirring 8.37 monoles / liter sodium hydroxide 4.567 liters were added over 64 hours while blowing a mixed gas of air Z nitrogen = 1/1 at 2.5 liters / minute, neutralizing and oxidizing. After growing the manganese oxide seed by filtration, filtration and washing were performed to obtain a manganese oxide.
4. マンガン酸化物と酸との反応 4. Reaction between manganese oxide and acid
マンガン酸化物 (Mn換算 1 200 g) を水に分散させたスラリーをステンレ ス製反応容器に仕込み 60°Cに昇温した。 このスラリー中に 1モル リットルの 硫酸 3. 50リットルを 1時間かけて攪拌しながら添加し、 その後 2時間反応さ せてから濾過水洗して、 酸と反応させたマンガン酸化物を得た。 5. リチウム 'マンガン複合酸ィ匕物の前駆体の合成 A slurry in which manganese oxide (1200 g in terms of Mn) was dispersed in water was charged into a stainless steel reaction vessel, and the temperature was raised to 60 ° C. To this slurry was added 3.55 liters of 1 mol of sulfuric acid over 1 hour while stirring, and after reacting for 2 hours, washed with filtered water to obtain a manganese oxide reacted with an acid. 5. Synthesis of precursor for lithium'manganese complex
酸と反応させたマンガン酸ィ匕物 (Mn換算 500 g) を水に分散させたスラリ 一に水酸ィヒリチウム一水塩 5. 234モルを添加して溶解させた後、 水を加えて 1. 1 1 1リツトルにしガラス製反応容器に仕込んだ。 空気を 1. 5リツトル 分でこのスラリーに吹き込み、 攪拌しながら 90°Cに昇温して 14時間反応させ た後、 温度を 60°Cまで冷却し、 ろ過した後、 0. 05モル Zリッ トルの水酸ィ匕 リチウム水溶液で洗浄し、 リチウム 'マンガン複合酸ィ匕物の前駆体を得た。  5.234 mol of hydrium lithium monohydrate was added to a slurry prepared by dispersing a manganese oxidant (500 g in terms of Mn) reacted with an acid and dissolved in water. The mixture was made into 1 1 liter and charged in a glass reaction vessel. Air was blown into the slurry at 1.5 liters, the temperature was raised to 90 ° C with stirring, and the reaction was allowed to proceed for 14 hours.The temperature was cooled to 60 ° C, filtered, and then 0.05 mole Z liter. The solution was washed with an aqueous solution of lithium hydroxide and a precursor of a lithium-manganese composite oxide was obtained.
6. リチウム 'マンガン複合酸ィ匕物の前駆体の焼成  6. Sintering of precursor of lithium'manganese complex
リチウム ·マンガン複合酸化物の前駆体を 1 10°Cで 12時間乾燥させた後、 空気中で 750 で 3時間加熱焼成してリチウム 'マンガン複合酸化物を得た。 リチウム 'マンガン複合酸ィヒ物の比表面積は 0. 94m /gであった。  The precursor of the lithium-manganese composite oxide was dried at 110 ° C for 12 hours, and then calcined in air at 750 for 3 hours to obtain a lithium-manganese composite oxide. The specific surface area of the lithium-manganese composite acid was 0.94 m 2 / g.
7. Co、 Mnを含む被覆層の被着処理  7. Coating of Co, Mn containing coating layer
リチウム 'マンガン複合酸ィヒ物 (Mn換算で 200 g) をミキサーで水中に分 散させスラリー化した後、 反応容器に仕込んだ。 次いで 4. 5モル Zリッ トルの 水酸化リチウム水溶液 95. 2ミリリツトルを添加し、 液量が 1. 00リットル になるように調製した。 このスラリーに窒素ガスを吹き込み、 60°Cに昇温した 後、 コパルトとして 50 g /リツトルの塩ィヒコパルト水溶液 128. 5ミリリツ トルを 1時間かけて添加し、 5時間反応させた後冷却した。 水酸化リチウムの添 加量は、 塩化コバルトとの反応後のフリー水酸イオン濃度が、 0. 20モル Zリ ットルになるように設定した。 冷却後、 ろ過、 洗浄を行い、 1 10°Cで 12時間 乾燥し、 C o、 Mnを含む本発明の被覆層を被着処理したリチウム ·マンガン複 合酸化物を得た。 (試料 A)  Lithium-manganese composite acid (200 g in terms of Mn) was dispersed in water with a mixer to form a slurry, and then charged into a reaction vessel. Next, 95.2 milliliters of a 4.5 molar Z liter aqueous lithium hydroxide solution was added to adjust the liquid volume to 1.00 liter. After nitrogen gas was blown into the slurry and the temperature was raised to 60 ° C., 128.5 milliliters of a 50 g / litre aqueous solution of sodium salt as a copart was added over 1 hour, reacted for 5 hours, and cooled. The amount of lithium hydroxide added was set such that the free hydroxyl ion concentration after the reaction with cobalt chloride was 0.20 mol Z liter. After cooling, the mixture was filtered and washed, and dried at 110 ° C. for 12 hours to obtain a lithium-manganese composite oxide coated with the coating layer of the present invention containing Co and Mn. (Sample A)
実施例 2 Example 2
1. リチウム 'マンガン複合酸化物の前駆体の合成  1. Synthesis of precursor of lithium'manganese composite oxide
実施例 1の第 4の工程で得られた酸と反応させたマンガン酸ィヒ物を用い、 水酸 ィ匕リチウム一水塩の添加量を 5. 190モル、 反応時間を 16時間とした以外は、 実施例 1の第 5の工程と同様にしてリチウム ·マンガン複合酸化物の前駆体を得 た。  Using the manganese acid product reacted with the acid obtained in the fourth step of Example 1, except that the addition amount of lithium hydroxide monohydrate was 5.190 mol and the reaction time was 16 hours In the same manner as in the fifth step of Example 1, a precursor of a lithium-manganese composite oxide was obtained.
2. リチウム 'マンガン複合酸化物の前駆体の焼成 リチウム 'マンガン複合酸化物の前駆体を実施例 1の第 6の工程と同様に加熱 焼成してリチウム ·マンガン複合酸化物を得た。 このリチウム ·マンガン複合酸 化物の比表面積は、 1. 01m2Zgであった。 2. Sintering of precursor of lithium-manganese composite oxide The lithium-manganese composite oxide precursor was heated and calcined in the same manner as in the sixth step of Example 1 to obtain a lithium-manganese composite oxide. The specific surface area of this lithium-manganese composite oxide was 1.01 m 2 Zg.
3. C o、 M nを含む被覆層の被着処理  3. Deposition of coating layer containing Co and Mn
塩ィ匕コバルトと水酸ィ匕リチウムとの反応時間を 12時間とした以外は、 実施例 1の第 7の工程と同様にして C o、 Mnを含む被覆層化合物を被着処理したリチ ゥム ·マンガン複合酸化物を得た。 (試料 B)  Lithium coated with a coating layer compound containing Co and Mn in the same manner as in the seventh step of Example 1, except that the reaction time between the salt and the lithium hydroxide was 12 hours. A manganese composite oxide was obtained. (Sample B)
実施例 3 Example 3
1. F e、 Mnを含む被覆層の被着処理  1. Deposition of coating layer containing Fe and Mn
実施例 2の第 2の工程で得られたリチウム 'マンガン複合酸化物 (Mn換算で Lithium manganese composite oxide obtained in the second step of Example 2 (converted to Mn)
200 g) をミキサーで水中に分散させスラリー化した後、 反応容器に仕込んだ。 次いで 4. 5モル リットルの水酸化リチウム水溶液 94. 8ミリリットルを添 加し、 液量が 1. 00リットルになるように調製した。 このスラリーに窒素ガス を吹き込み、 60°Cに昇温した後、 鉄として 50 g/リツトルの硫酸第一鉄水溶 液 122. 0ミリリットノレを 1時間かけて添加し、 12時間反応させた後冷却し た。 水酸化リチウムの添加量は、 硫酸第一鉄との反応後のフリー水酸イオン濃度 、 0. 20モルノリットルになるように設定した。 冷却後、 ろ過、 洗浄を行い、 空気中 110°Cで 12時間乾燥し、 F e、 Mnを含む被覆層化合物を被着処理し たリチウム ·マンガン複合酸化物を得た。 (試料 C) 200 g) was dispersed in water with a mixer to form a slurry, and then charged into a reaction vessel. Then, 94.8 ml of a 4.5 mol aqueous solution of lithium hydroxide was added to adjust the liquid volume to 1.00 liter. Nitrogen gas was blown into this slurry, and the temperature was raised to 60 ° C. Then, 50 g / liter of ferrous sulfate aqueous solution of 122.0 milliliters was added as iron over 1 hour, reacted for 12 hours, and then cooled. Was. The amount of lithium hydroxide added was set so that the free hydroxyl ion concentration after the reaction with ferrous sulfate was 0.20 mol mol. After cooling, the mixture was filtered and washed, and dried in air at 110 ° C. for 12 hours to obtain a lithium-manganese composite oxide coated with a coating layer compound containing Fe and Mn. (Sample C)
実施例 4 Example 4
1. Co、 Mnを含む被覆層の被着処理  1. Deposition of coating layer containing Co and Mn
実施例 2の第 2工程で得られたリチウム 'マンガン複合酸化物を用い、 水酸化 リチウム水溶液の添加量を 233. 8ミリリツトルとした以外は実施例 2の第 3 の工程と同様にして Co、 Mnを含む被覆層化合物を被着処理したリチウム 'マ ンガン複合酸化物を得た。 (試科 D) 水酸化リチウムの添加量は、 塩ィヒコバルト との反応後のフリ一水酸ィオン濃度が、 0. 80モル リットルになるように設 定した。  Co and Co were prepared in the same manner as in the third step of Example 2 except that the lithium manganese composite oxide obtained in the second step of Example 2 was used, and the addition amount of the lithium hydroxide aqueous solution was 233.8 milliliters. A lithium manganese composite oxide treated with a coating layer compound containing Mn was obtained. (Trial D) The addition amount of lithium hydroxide was set so that the concentration of free monohydric ion after reaction with cobalt salt was 0.80 mol.
実施例 5 Example 5
1. Co, Mnを含む被覆層の被着処理 実施例 2の第 2工程で得られたリチウム ·マンガン複合酸化物を用い、 塩化コ バルトと水酸化リチウムとの反応温度を 9 0 °Cとした外は、 実施例 2の第 3のェ 程と同様にして C o、 Mnを含む被覆層化合物を被着処理したリチウム 'マンガ ン複合酸化物を得た。 (試料 E ) 1. Coating of Co and Mn Third step of Example 2 except that the reaction temperature of cobalt chloride and lithium hydroxide was 90 ° C using the lithium-manganese composite oxide obtained in the second step of Example 2 In the same manner as in the above, a lithium-manganese composite oxide treated with a coating layer compound containing Co and Mn was obtained. (Sample E)
実施例 6 Example 6
1 . C o、 M nを含む被覆層の被着処理  1. Coating of Co and Mn
実施例 2の第 2工程で得られたリチウム 'マンガン複合酸化物を用い、 塩ィ匕コ バルトと水酸ィヒリチウムを反応させた後、 1リツトル/分でスラリー中に空気を 3時間流通して酸化させた以外は、 実施例 2の第 3の工程と同様にして C o、 M nを含む被覆層化合物を被着処理したリチウム ·マンガン複合酸化物を得た。  Using the lithium 'manganese composite oxide obtained in the second step of Example 2, after reacting salt sodium hydroxide and lithium hydroxide, air was passed through the slurry at 1 liter / min for 3 hours. A lithium-manganese composite oxide treated with a coating layer compound containing Co and Mn was obtained in the same manner as in the third step of Example 2 except that the oxidation was performed.
(試料 F)  (Sample F)
比較例 1 Comparative Example 1
第 7の工程の C o、 M nを含む被覆層の被着処理を行わなかったこと以外は実 施例 1と同様の方法でリチウム ·マンガン複合酸ィヒ物を得た。 (試料 G) 比較例 2  A lithium / manganese composite acid product was obtained in the same manner as in Example 1 except that the coating treatment of the coating layer containing Co and Mn in the seventh step was not performed. (Sample G) Comparative Example 2
第 3の工程の C o、 M nを含む被覆層の被着処理を行わなかったこと以外は実 施例 2と同様の方法でリチウム ·マンガン複合酸化物を得た。 (試料 H) 比較例 3  A lithium-manganese composite oxide was obtained in the same manner as in Example 2, except that the coating treatment including the Co and Mn in the third step was not performed. (Sample H) Comparative Example 3
1 . C oの被着処理  1. Co deposition process
実施例 2の第 2の工程で得られたリチウム 'マンガン複合酸化物 (M n換算で 2 0 0 g ) をミキサーで水中に分散させスラリー化した後、 反応容器に仕込んだ。 次いで 4 . 5モル Zリッ トルの水酸化リチウム水溶液 2 6 1 ミリリツトルを添加 し、 液量が 1 . 0 0リツトルになるように調製した。 このスラリ一に窒素ガスを 吹き込みながら、 コパルトとして 5 0 g Zリツトルの塩ィ匕コバルト水溶液 9 3 . 3ミリリツトルを添加した後、 9 0。Cに昇温し、 昇温後窒素ガスを停止した。 引 き続き、 3リットル Z分で空気を 3時間流通させ酸ィ匕した。 冷却後、 ろ過、 ?先浄 を行い、 空気中 1 1 0 °Cで 1 2時間乾燥し、 C 0化合物を被着処理したリチウム •マンガン複合酸ィ匕物を得た。 (試料 I )  The lithium-manganese composite oxide (200 g in terms of Mn) obtained in the second step of Example 2 was dispersed in water with a mixer to form a slurry, and then charged into a reaction vessel. Next, 4.51 milliliters of an aqueous lithium hydroxide solution (26.1 milliliters) was added to adjust the liquid volume to 1.0 liters. While blowing nitrogen gas into this slurry, 50 g Z liters of a salt solution of 93.3 milliliters of an aqueous solution of cobalt were added as a co-part, and then 90. The temperature was raised to C, and the nitrogen gas was stopped after the temperature was raised. Subsequently, air was circulated for 3 hours at a volume of 3 liters Z to oxidize. After cooling, filtration,? Pre-cleaning was performed and dried in air at 110 ° C. for 12 hours to obtain a lithium-manganese composite oxidized product to which a C 0 compound was applied. (Sample I)
評価 1 実施例 2で得られた試料 B、 及ぴ比較例 2で得られた試料 Hについて、 管電圧 5 0 KV、 管電流 2 0 0 111 の高出カ0 11 1^ (¾線を用ぃて粉末 線回折を測定し た。 Rating 1 Sample B obtained in Example 2, the sample H obtained in及Pi Comparative Example 2, Ite use high deca 0 11 1 ^ line of tube voltage 5 0 KV, tube current 2 0 0 111 Powder diffraction was measured.
試料 B、 Hの粉末 X線回折パターンを図 1、 その結果を表 1に示す。 何れの試 料もスピネル単独の回折ピークし力認められない。 本発明の被覆層を表面に被着 処理したことにより、 回折角が低角側にシフトし、 半値幅が増加傾向を示す。 ピ ーク面積に関しては、 主ピークなど減少傾向を示すピークがある一方、 増加傾向 を示すものがある。 特に面指数 (2 2 0 ) の回折ピークが最も増加傾向を示した。 これらの結果から、 リチウム ·マンガン複合酸化物の結晶形と同じ結晶形を有し、 やや格子定数が広く、 かつ (2 2 0 ) の回折強度の強い物質からなる表面被覆層 が生成していると考えられる。 この様な化合物と しては試料 Bの場合 M n C o 2 0 4が考えられ、 C o 3 0 4の様な格子定数の小さいコバルト単独の スピネル化合物は考えられなレ、。 ただ実際の被覆層の組成は前式の様な定比組成 になっているとは限らず、 マンガンとコバ /レトを含む、 場合によってはリチウム を含むより幅広い組成のスピネルィ匕合物が生成していると考えられる。 また、 試 料 Bについて粒子最表面から数 n mの内部、 すなわち被覆層に相当する部分の E D X分析を行った。 この結果を表 2に示す。 E D X分析でも被覆層中には C oと M nとが存在していることが分かる。 Figure 1 shows the powder X-ray diffraction patterns of Samples B and H, and Table 1 shows the results. None of the samples showed a diffraction peak of spinel alone and no power was recognized. By applying the coating layer of the present invention to the surface, the diffraction angle shifts to the lower angle side, and the half width tends to increase. Regarding the peak area, some peaks, such as the main peak, show a decreasing trend, while others show an increasing trend. In particular, the diffraction peak of the plane index (220) showed the largest increasing tendency. From these results, it was found that a surface coating layer composed of a substance having a (220) diffraction intensity was formed, which had the same crystal form as that of the lithium-manganese composite oxide, had a rather large lattice constant, and had a high diffraction intensity of (220). it is conceivable that. As a such compounds are considered if M n C o 2 0 4 samples B, C o 3 0 4 of such small cobalt alone spinels lattice constants such considered les. However, the actual composition of the coating layer is not always a stoichiometric composition as in the above formula, and a spinelidized product having a wider composition containing manganese and cobalt / reto, and in some cases containing lithium may be formed. It is thought that it is. In addition, EDX analysis was performed on Sample B inside a few nm from the outermost surface of the particles, that is, a portion corresponding to the coating layer. Table 2 shows the results. EDX analysis also shows that Co and Mn exist in the coating layer.
表 1 table 1
試料 B 試料 H  Sample B Sample H
面指数 回折角 ピーク面積 半値幅 回折角 ピーク面積 半値幅  Plane index Diffraction angle Peak area FWHM Diffraction angle Peak area FWHM
(度) (arb. unit) (度) (度) (arb. unit) (度) (Degree) (arb. Unit) (degree) (degree) (arb. Unit) (degree)
(111) 18. 584 74634 0. 149 18. 587 82400 0. 143(111) 18.584 74634 0.149 18.587 82400 0.143
(220) 30. 638 712 0. 177 30. 658 588 0. 133(220) 30.638 712 0.177 30.658 588 0.133
(311) 36. 079 37228 0. 144 36. 090 . 37811 0. 151(311) 36.079 37228 0.144 36.090.37811 0.151
(222) 37. 753 7088 0. 129 37. 766 7319 0. 134(222) 37.753 7088 0.129 37.766 7319 0.134
(400) 43. 881 38534 0. 170 43. 892 44176 0. 148(400) 43.881 38534 0.170 43.892 44176 0.148
(331) 48. 069 7299 0. 151 48. 078 7432 0. 140(331) 48.069 7299 0.151 48.078 7432 0.140
(511) 58. 107 15267 0. 185 58. 115 14786 0. 149(511) 58.107 15267 0.185 58.115 147860.149
(440) 63. 835 23696 0. 159 63. 851 23667 0. 151 表 2
Figure imgf000015_0001
評価 2
(440) 63.835 23696 0.159 63.851 23667 0.151 Table 2
Figure imgf000015_0001
Rating 2
実施例 1〜 6、 比較例 1〜 3で得られたリチウム 'マンガン複合酸ィ匕物 (試料 A〜I) を正極活物質とした場合のリチウム二次電池の充放電特性、 及びサイク ル特性を評価した。 電池の形態や測定条件について説明する。  Charge and discharge characteristics and cycle characteristics of lithium secondary batteries using lithium manganese composite oxides (Samples A to I) obtained in Examples 1 to 6 and Comparative Examples 1 to 3 as positive electrode active materials. Was evaluated. The form of the battery and the measurement conditions will be described.
上記各試料と、 導電剤としてのグラフアイト粉末、 及び結着剤としてのポリ四 フッ化工チレン樹脂を重量比で 70 : 24 : 6で混合し、 乳鉢で練り合わせ、 直 径 1 Ommの円形に成型してペレツト状とした。 ペレツ トの重量は 4 Omgであ つた。 このペレットに直径 1 Ommの円形に切り出した金属チタン製のメッシュ を重ね合わせ、 14. 7MP aでプレスして正極とした。  Each of the above samples, graphite powder as a conductive agent, and polytetrafluoroethylene resin as a binder were mixed at a weight ratio of 70: 24: 6, kneaded in a mortar, and molded into a circular shape with a diameter of 1 Omm. To make a pellet. The pellet weighed 4 Omg. A metal titanium mesh cut into a circle having a diameter of 1 Omm was superimposed on the pellet, and pressed at 14.7 MPa to obtain a positive electrode.
この正極を 120°Cで 4時間真空乾燥した後、 露点一 70°C以下のグロープボ ックス中で、 密閉化可能なコイン型評価用セルに組み込んだ。 評価用セルには、 材質がステンレス (SUS 316) 製で、 外径 20mm、 高さ 1. 6mmのもの を用いた。 負極には厚み 0. 5 mmの金属リチウムを直径 14 mmの円形に成形 したものを用いた。 非水電解液として、 1モル Zリットルとなる濃度で  The positive electrode was vacuum-dried at 120 ° C for 4 hours, and then incorporated into a sealable coin-type evaluation cell in a glove box with a dew point of 70 ° C or less. The evaluation cell used was made of stainless steel (SUS 316) and had an outer diameter of 20 mm and a height of 1.6 mm. The negative electrode used was 0.5 mm thick metallic lithium molded into a 14 mm diameter circle. As a non-aqueous electrolyte, at a concentration of 1 mol Z liter
L i P F 6を溶解したエチレンカーボネートとジメチルカーボネートの混合溶液 (体積比で 1 : 2に混合)を用いた。 (Volume ratio 1: 2 mixed) L i PF 6 dissolved ethylene carbonate and a mixed solution of dimethyl carbonate was used.
正極は評価用セルの下部缶に置き、 その上にセパレーターとして多孔性ポリプ ロピレンフィルムを置いて、 その上から非水電解液をスポイドで 7滴滴下した。 さらにその上に負極をのせ、 ポリプロピレン製のガスケットのついた上部缶を被 せて外周縁部をかしめて密封した。 尚、 厚みを調整するため、 必要に応じてセパ レーターの上下に親水化処理したポリプロピレン製不織布を置いた。  The positive electrode was placed in the lower can of the evaluation cell, a porous propylene film was placed thereon as a separator, and seven drops of a non-aqueous electrolyte were dropped from above with a dropper. The negative electrode was placed on top of it, and an upper can with a gasket made of polypropylene was covered, and the outer peripheral edge was crimped and sealed. In order to adjust the thickness, a hydrophilic non-woven polypropylene nonwoven fabric was placed above and below the separator as necessary.
作製したコィン型評価用セルを、 専用の電池ホルダーにセットし、 5 k gの荷 重をかけた状態で電池特性を測定した。 充放電容量の測定は、 電圧範囲を 4. 3 Vから 3. 5Vに、 充放電電流を 0. 84 mA (約 3サイクル/日) に設定して、 定電流で行った。 25°Cで 2回目のサイクルに測定した数値を初期充放電特性と した。 サイクル特性の測定は 25°Cと 50°Cで行い、 それぞれの容量維持率% { (30回目の放電容量 Z 5回目の放電容量) X 1 00} で表した。 The coin-type evaluation cell thus fabricated was set in a special battery holder, and the battery characteristics were measured with a load of 5 kg applied. The charge / discharge capacity was measured at a constant current with the voltage range set from 4.3 V to 3.5 V and the charge / discharge current set at 0.84 mA (about 3 cycles / day). The values measured in the second cycle at 25 ° C are used as initial charge / discharge characteristics. did. The cycle characteristics were measured at 25 ° C. and 50 ° C., and represented by the respective capacity retention rates% {(30th discharge capacity Z 5th discharge capacity) × 100}.
評価 3 Rating 3
試料 A〜 Iをそれぞれ 3 g計量し、 容量 50ミリリツトルの蓋付きの耐熱性テ フロン容器に入れた。 これらを内部がアルゴン置換され露点が一 70°C以下に保 持されたグローブボックス内に設置された真空検体乾燥機中に移し、 120°C4 時間加熱乾燥した。  3 g of each of Samples A to I was weighed and placed in a heat-resistant Teflon container with a lid having a capacity of 50 milliliters. These were transferred to a vacuum sample dryer installed in a glove box whose inside was replaced with argon and the dew point was kept below 170 ° C, and dried by heating at 120 ° C for 4 hours.
真空乾燥後、 常圧に戻して室温まで自然放冷し、 次いで 1モル Zリ ットルとな る濃度で L i PF6を溶解したェチレンカーボネートとジメチルカーボネートの 混合液 (体積比で 1 : 1に混合) 15ミリリツトルをそれぞれの容器に添加した。 それぞれの容器の蓋を閉め、 真空検体乾燥機中で常圧下 60°Cで 1 68時間保 持し、 冷却してから蓋を開け、 ジメチルカーボネート 7. 5ミリリツトルを添加 した後、 溶液を取り出し PTFEフィルター (孔径 0. 2^ 111) を用いて自然ろ 過した。 ろ液はグローブボックス外に持ち出し、 I CP分析でろ液中のマンガン イオンの濃度を測定した。 After vacuum drying at normal pressure was naturally cooled to room temperature and returned to, then 1 mole Z liters and a mixture of Na Ru concentration E Ji Ren carbonate and dimethyl carbonate was dissolved L i PF 6 (volume ratio 1: 1 15 milliliters were added to each container. Close the lid of each container, hold in a vacuum sample dryer at normal pressure at 60 ° C for 168 hours, cool, open the lid, add 7.5 ml of dimethyl carbonate, take out the solution and remove the PTFE Natural filtration was performed using a filter (pore size 0.2 ^ 111). The filtrate was taken out of the glove box, and the concentration of manganese ions in the filtrate was measured by ICP analysis.
試料 A〜 Iの初期充放電特性、 サイクル特性及びマンガンの溶出量を表 3に示 す。 本発明により得られた C oまたは F eと Mnとを含む被覆層を表面に被着さ れたリチウム 'マンガン複合酸化物は、 特に高温下でのサイクル特4が、 被着処 理されていないリチウム ·マンガン複合酸化物より優れており、 初期充放電特性 は同等である。 また、 従来の Co被覆を表面に被着したものよりサイクル特性、 初期充放電特性のいずれも優れている。 さらに、 いずれの比較例より  Table 3 shows the initial charge / discharge characteristics, cycle characteristics, and manganese elution amount of Samples A to I. The lithium-manganese composite oxide having a coating layer containing Co or Fe and Mn obtained on the surface thereof obtained by the present invention is subjected to a deposition treatment especially at a high temperature cycle 4. It is superior to non-lithium-manganese composite oxide and has the same initial charge / discharge characteristics. In addition, both the cycle characteristics and the initial charge / discharge characteristics are better than those with the conventional Co coating applied to the surface. Furthermore, from any of the comparative examples
溶出量が少ないことがわかる。 表 3 It can be seen that the elution amount is small. Table 3
Figure imgf000017_0001
産業上の利用分野
Figure imgf000017_0001
Industrial applications
本発明は、 表面に被覆層を有するリチウム ·マンガン複合酸化物であって、 前 The present invention relates to a lithium-manganese composite oxide having a coating layer on its surface,
5 記被覆層が C o、 F e及ぴ N iからなる群から選ばれる少なくとも一種の金属元 素と M nとを少なくとも含み、 リチウム ·マンガン複合酸化物に含まれる結晶と 同形の結晶構造を有するリチウム ·マンガン複合酸化物である。 本発明のリチウ ム ·マンガン複合酸ィ匕物は、 処理された被覆層の密着性が高く、 粒子表面の保護 性に優れ、 電解液と接触しても、'マンガンイオンが溶解し難レ、。 そのため、 リチ 10 ゥム ·マンガン複合酸ィヒ物の劣化が進行し難くなるので、 これを正極活物質とし て用いたリチウム電池は、 サイクル特性や保存特性が、 特に 5 0 °Cのような高温 度下において良好である。 また、 この被覆層はリチウム 'マンガン複合酸化物に 含まれるリチウムイオンの揷入 ·脱離を阻害し難いので、 充放電容量が低下しな 5 The coating layer contains at least one metal element selected from the group consisting of Co, Fe, and Ni and Mn, and has a crystal structure identical to the crystal contained in the lithium-manganese composite oxide. Is a lithium-manganese composite oxide. The lithium-manganese composite oxidized product of the present invention has high adhesion of the treated coating layer, excellent protection of the particle surface, and is difficult to dissolve manganese ions even when contacted with an electrolytic solution. . As a result, the deterioration of the lithium 10 manganese manganese compound becomes difficult to progress, and the lithium battery using this as a positive electrode active material has a cycle characteristic and a storage characteristic, especially at 50 ° C. Good at high temperatures. In addition, since this coating layer does not easily inhibit the introduction and desorption of lithium ions contained in the lithium-manganese composite oxide, the charge / discharge capacity does not decrease.

Claims

請求の範囲 The scope of the claims
1 . 表面に被覆層を有するリチウム ·マンガン複合酸化物であって、 前記被 覆層が C o、 F e及ぴ N iからなる群から選ばれる少なくとも一種の金属元素と M nとを含み、 リチウム ·マンガン複合酸ィ匕物に含まれる結晶と同形の結晶構造 を有することを特徴とするリチウム 'マンガン複合酸化物。 1. A lithium-manganese composite oxide having a coating layer on the surface, wherein the coating layer contains at least one metal element selected from the group consisting of Co, Fe and Ni, and Mn, A lithium-manganese composite oxide having the same crystal structure as the crystal contained in the lithium-manganese composite oxide.
2. 前記結晶がスピネル型であることを特徴とする請求項 1記載のリチウム •マンガン複合酸化物。  2. The lithium / manganese composite oxide according to claim 1, wherein the crystal is of a spinel type.
3 . 前記被覆層が少なくとも C oと M nを含むことを特徴とする請求項 1記 載のリチウム 'マンガン複合酸化物。  3. The lithium-manganese composite oxide according to claim 1, wherein the coating layer contains at least Co and Mn.
4 . C o、 F e及び N iからなる群から選ばれる少なくとも一種の金属元素 ίΚ リチウム 'マンガン複合酸化物及び被着層中の M nの総量に対し、 0 . 0 5 〜 2 0原子%被着されることを特徴とする請求項 1記載のリチウム ·マンガン複 合酸化物。  4. At least one metal element selected from the group consisting of Co, Fe and Ni ίΚ Lithium マ ン ガ ン 0.05 to 20 atomic% with respect to the total amount of Mn in the manganese composite oxide and the deposited layer. The lithium-manganese composite oxide according to claim 1, which is applied.
5 . 0 . 0 0 0 1モル/リットル以上のフリ一水酸ィオンの存在下で、 前記 被覆層を被着することを特徴とする請求項 1記載のリチウム 'マンガン複合酸ィ匕 物の製造方法。  The production of the lithium manganese composite oxide according to claim 1, wherein the coating layer is applied in the presence of 5.00.01 mol / liter or more of free monohydric ion. Method.
6 . リチウム 'マンガン複合酸化物を含むスラリー中に、 C o、 F e及び N iからなる群から選ばれる少なくとも一種の金属元素を含む化合物と塩基性化 合物とを、 フリ一水酸ィオン濃度が 0 . 0 0 0 1モル Zリットル以上になるよう に添加し反応させる工程を含むことを特徴とする前記金属元素を少なくとも含む 被覆層を表面に有するリチウム ·マンガン複合酸化物の製造方法。  6. In a slurry containing lithium-manganese composite oxide, a compound containing at least one metal element selected from the group consisting of Co, Fe, and Ni and a basic compound are mixed with a free monohydric ion. A method for producing a lithium-manganese composite oxide having a coating layer containing at least the metal element on the surface, comprising a step of adding and reacting so that the concentration becomes 0.0001 mol Z liter or more.
7 . フリー水酸イオンが 5モル リットル以下であることを特徴とする請求 項 5または 6記載のリチウム 'マンガン複合酸化物の製造方法。  7. The method for producing a lithium-manganese composite oxide according to claim 5, wherein the amount of free hydroxyl ions is 5 mol liter or less.
8 . 被着を非酸化性雰囲気で行うことを特徴とする請求項 5または 6記載の リチウム 'マンガン複合酸化物の製造方法。  8. The method for producing a lithium-manganese composite oxide according to claim 5, wherein the deposition is performed in a non-oxidizing atmosphere.
9 . 被着後に酸ィ匕することを特徴とする請求項 5または 6記載のリチウム · マンガン複合酸化物の製造方法。  9. The method for producing a lithium-manganese composite oxide according to claim 5, wherein the oxidizing is performed after the application.
1 0 . 請求項 1記載のリチウム 'マンガン複合酸化物を正極活物質として用 いることを特徴とするリチウム電池。 10. Use of the lithium-manganese composite oxide according to claim 1 as a positive electrode active material A lithium battery.
PCT/JP2001/002952 2000-04-07 2001-04-05 Lithium/manganese complex oxide and method for producing the same, and lithium cell using the same WO2001077023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU46840/01A AU4684001A (en) 2000-04-07 2001-04-05 Lithium/manganese complex oxide and method for producing the same, and lithium cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000105795 2000-04-07
JP2000-105795 2000-04-07

Publications (1)

Publication Number Publication Date
WO2001077023A1 true WO2001077023A1 (en) 2001-10-18

Family

ID=18619069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002952 WO2001077023A1 (en) 2000-04-07 2001-04-05 Lithium/manganese complex oxide and method for producing the same, and lithium cell using the same

Country Status (3)

Country Link
AU (1) AU4684001A (en)
TW (1) TW528733B (en)
WO (1) WO2001077023A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236826A (en) * 1997-02-25 1998-09-08 Sakai Chem Ind Co Ltd Two-layer structure particulate composition and lithium ion secondary cell
JP2000100433A (en) * 1998-09-25 2000-04-07 Toyota Central Res & Dev Lab Inc Nickel oxide covering lithium manganese composite oxide powder and manufacture therefor
JP2000340226A (en) * 1999-05-26 2000-12-08 Kawasaki Steel Corp Lithium manganese composite oxide particle and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236826A (en) * 1997-02-25 1998-09-08 Sakai Chem Ind Co Ltd Two-layer structure particulate composition and lithium ion secondary cell
JP2000100433A (en) * 1998-09-25 2000-04-07 Toyota Central Res & Dev Lab Inc Nickel oxide covering lithium manganese composite oxide powder and manufacture therefor
JP2000340226A (en) * 1999-05-26 2000-12-08 Kawasaki Steel Corp Lithium manganese composite oxide particle and manufacture thereof

Also Published As

Publication number Publication date
TW528733B (en) 2003-04-21
AU4684001A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
JP4064142B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4444121B2 (en) Material for positive electrode of lithium secondary battery and manufacturing method thereof
JP5440614B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN118099413A (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2011111364A1 (en) Method for producing composite oxide, positive electrode material for lithium ion secondary battery and lithium ion secondary battery
KR20180077081A (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
CN114804226A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20170100534A (en) Lithium Rich Nickel Manganese Cobalt Oxide (LR-NMC)
JP7135855B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
WO2002078105A1 (en) Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
KR20120108031A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20190035718A (en) Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2008243448A (en) Lithium transition metal composite oxide, cathode for lithium secondary battery using it, and lithium secondary battery using it
WO2012176471A1 (en) Lithium-containing complex oxide powder and method for producing same
EP4144703A1 (en) Cathode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including cathode including the same
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
KR101746188B1 (en) Electrode mixture additives for secondary battery, method for manufacturing the same, elelctrode including the same for secondary battery, and secondary battery
JPWO2018012384A1 (en) Lithium transition metal composite oxide, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing lithium transition metal composite oxide, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte Electrode for secondary battery, non-aqueous electrolyte secondary battery and storage device
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2016036091A1 (en) Electrode material mixture additive for secondary battery, method for preparing same, electrode for secondary battery comprising same, and secondary battery
JP7389347B2 (en) Positive electrode active material for lithium ion secondary batteries, method for producing positive electrode active materials for lithium ion secondary batteries, lithium ion secondary batteries
US11424449B2 (en) Stable cathode materials

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase