[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2001071663A1 - Methode d'extraction de lignee cellulaire - Google Patents

Methode d'extraction de lignee cellulaire Download PDF

Info

Publication number
WO2001071663A1
WO2001071663A1 PCT/JP2000/008580 JP0008580W WO0171663A1 WO 2001071663 A1 WO2001071663 A1 WO 2001071663A1 JP 0008580 W JP0008580 W JP 0008580W WO 0171663 A1 WO0171663 A1 WO 0171663A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
region
nuclear
nucleus
image
Prior art date
Application number
PCT/JP2000/008580
Other languages
English (en)
French (fr)
Inventor
Shuichi Onami
Shugo Hamahashi
Satoru Miyano
Hiroaki Kitano
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000081526A external-priority patent/JP3679680B2/ja
Priority claimed from JP2000128457A external-priority patent/JP3431883B2/ja
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to DE60026732T priority Critical patent/DE60026732T2/de
Priority to US10/182,429 priority patent/US7110584B2/en
Priority to EP00979080A priority patent/EP1267305B1/en
Publication of WO2001071663A1 publication Critical patent/WO2001071663A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present invention relates to a cell lineage extraction method, and more particularly, to a method of creating a cell lineage from a four-dimensional microscope image of an observation target. Further, the present invention preferably provides a cell lineage from a four-dimensional image of a nematode (C. e1 egans) taken by a Nomarski transmission differential interference microscope (hereinafter referred to as a “Nomarski microscope”). It is about how to create. Background art
  • C. elegans are experimental organisms discovered by Sidney Brennner in 1965, and are one of the experimental organisms that have been analyzed in detail in modern molecular biology. Nematodes are regarded as the simplest multicellular organisms among these experimental organisms. The nematode takes about three days for the fertilized egg to become an adult.
  • one fertilized egg in multicellular organisms, one fertilized egg (single cell) basically repeats orderly formation to form an adult consisting of many cells.
  • a dendrogram describing the order of division from a fertilized egg is called a cell lineage.
  • C. elegans is the only multicellular organism with a cell lineage from fertilized eggs to adults. This cell lineage was determined by Su 1 ston et al.
  • Normal nematodes have a constant cell lineage from fertilized eggs to adults in all individuals. Mutations in a particular gene alter the function of that gene, altering the pattern of cell division, or cell lineage, compared to that of wildtype. We estimated the function of the mutated gene from this change in cell lineage, and used that estimation as the starting point. Research advances have led to the rapid identification of large numbers of genes, and the production of mutant animals has begun. Considering the effective use of these resources, automation of cell lineage analysis, which is the starting point for gene and mutant analysis, is an essential technology.
  • a so-called Nomarski microscope is used to create a conventional cell lineage.
  • the Nomarski microscope irradiates the object with two types of light beams (same waveform, same phase, and slightly deviated only in the optical path) created by the polarization plate and Nomarski prism set, and transmits the object. Due to the length of the optical path passing through the observation target and the difference in the refractive index, the phases of the two rays after transmission are shifted. When the two transmitted light beams are converged on the same optical path using a deflector and a set of Nomarski prisms, the phase shift between the two light beams causes interference. A Nomarski microscope observes the light and dark images produced by this interference.
  • the distribution and outer shape of the transparent contents of the observation target can be captured as a bright and dark image.
  • the contents of cells (cell nuclei) and the outer shape (cell membrane), which look transparent under normal light microscopy, can be captured in bright and dark images.
  • a microscope image observed at a specific focal point is considered to be a two-dimensional (X-y axis) cross-sectional image obtained by cutting the object horizontally at a specific position.
  • X-y axis two-dimensional
  • cross-sectional images of the observation target cut at various positions in the z-axis direction can be obtained.
  • the three-dimensional shape of the observation target can be captured (3D images).
  • such a three-dimensional image is taken over time By doing so, the time change of the observation target can be captured.
  • the image taken in this way is called a 4D (4D) microscope image.
  • the present invention was devised to facilitate the creation of such a conventional cell lineage, and aims to construct a cell lineage with a computer, thereby saving the cell lineage in a short time. It is assumed that.
  • Another object of the present invention is to improve the performance of the nuclear recognition process in constructing a cell lineage by computer. Disclosure of the invention
  • the present invention provides a method for capturing a plurality of two-dimensional images by changing a focal plane of a cell to be observed, and capturing a plurality of the two-dimensional images in a time series to obtain a plurality of two-dimensional images different at a different time point.
  • the process of integrating the cell nuclei regions derived from the same cell nucleus from the region the process of obtaining a 4D integrated nucleus region
  • the cell nucleus regions appear and disappear in the integrated cell nucleus region (4D integrated nucleus region) And constructing a cell lineage from the position information.
  • the image is taken with a Nomarski transmission differential interference microscope, but the image used is not limited to this.
  • Another technical means adopted by the present invention is to change the focal plane of a cell to be observed, to take a plurality of two-dimensional images, and to take a plurality of the two-dimensional images in a time series to obtain a focal plane, The process of obtaining multiple different 2D images at different times ( Obtaining a four-dimensional microscope image), extracting a cell nucleus region by performing surface image processing on each of the two-dimensional images, and extracting the same cell nucleus from the cell nucleus regions extracted from each of the two-dimensional images.
  • the step of extracting a cell nucleus region by performing image processing includes the step of extracting a cell nucleus candidate region, and the step of creating a cell lineage.
  • the method is characterized by comprising a step of designating a cell nucleus prediction region and a step of extracting the cell nucleus region by feeding back the prediction region to the cell nucleus candidate region.
  • the cell lineage creation trial operation includes at least one or more of integration of nuclear regions included in the same focal plane, a confocal plane, integration of four-dimensional nuclear regions, and generation of a cell lineage.
  • This is to feed-pack the specification of the nuclear prediction region by.
  • the validity of the nucleus recognition result can be verified by looking at the temporal and spatial neighbors. From the cell lineage generated, we can infer where nuclei should be and where they should not. The results of these guesses are fed back and parameters for recognizing nuclei are changed. That is, a nuclear score for extracting a nuclear region from a nuclear candidate region is changed by a feed pack.
  • a method is used to detect, as a nucleus, an area of the image where there is little change in brightness, or to extract, as a nucleus, a part with a large change in brightness over a wide range along the angle of light Including methods.
  • the former include Kirsch filters, Prewi U filters, and FFT filters.
  • the Kirsch filter is preferably a filter combining a Kirsch template-type edge detection operator and a moving average method.
  • the Prewitt filter is preferably a filter that binarizes the output of the Prewitt template-type edge detection operator and applies a distance transform.
  • a filter that takes the difference between the sum of the luminance values of predetermined upper and lower pixels along the apparent light angle is employed.
  • the method using the difference filter includes a step of extracting a cell boundary and an embryo region, and it is desirable to correct the result based on the result of the step.
  • one of the most preferable filters for extracting a nuclear region is an entropy filter.
  • An entropy filter determines a starting point in an original image, divides the original image by a window having a predetermined width and a predetermined height from the starting point, calculates the entropy of the window, and calculates the entropy of the resulting image. This is a filter that saves coordinates. By dividing an image by small windows and scanning the surface image while calculating the entropy of the window, a flat portion (a difference in pixel values constituting the portion is relatively small) is extracted from the image as a nuclear region. Can be. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a flowchart of the cell lineage extraction method according to the present invention
  • FIG. 2 is a diagram showing an example of a microscope image to be processed
  • FIG. 3 is a processing step of a nucleus recognition algorithm A
  • FIG. 4 is a diagram showing a process of the nucleus recognition algorithm B
  • FIG. 5 is a diagram showing a process of the nucleus recognition algorithm C
  • FIG. 6 is a diagram showing cell boundary detection
  • FIG. 7 is a diagram showing a processing step of an algorithm for detecting an embryo region
  • FIG. 8 is a diagram showing a processing step of an algorithm for detecting an embryo region
  • FIG. 9 is a diagram showing a tool for correcting the result of automatic nuclear recognition by a human hand
  • FIG. 9 is a diagram showing a tool for correcting the result of automatic nuclear recognition by a human hand.
  • Fig. 11 shows a ⁇ tool for correction;
  • Fig. 11 shows the same core of multiple images.
  • Fig. 12 is a diagram for explaining the process of assembling the same nucleus of a multi-plane image in the same manner as Fig. 11;
  • Fig. 13 is the nucleus information.
  • Fig. 3 is a diagram for explaining a process of constructing a cell lineage from a first;
  • FIG. 4 is a flowchart of a cell lineage extraction method according to another embodiment of the present invention;
  • FIG. 15 is an explanatory diagram of an entropy filter;
  • FIG. 16 is a microscope image of a cell;
  • Fig. 17 is the image after processing by the entropy filter;
  • Fig. 18 is the image obtained by thresholding the image after processing by the entropy filter and superimposed on the microscope surface image Things.
  • a cell lineage extraction method or system will be described based on creation of a cell lineage of a nematode early embryo.
  • this system consists of [I] the process of capturing a 4D image of a Nomarski-type microscope of an early embryo of C. elegans, and [ ⁇ ] the processing of individual 2D images by image processing using multiple algorithms.
  • the following describes the acquisition of 4D images of a nematode early embryo using a Nomarski microscope.
  • the 4D image is, as described in the section of the prior art, a plurality of two-dimensional images taken at different focal points and a plurality of two-dimensional images obtained by taking the plurality of two-dimensional images in time series. To tell. That is, an image obtained by combining a plurality of two-dimensional images with different focal planes and time points is called a 4D image.
  • the images of the early embryos of the nematodes to be processed are changed into one set of 30 to 90 pieces by changing the focal plane up and down, and photographed every 1 to 5 minutes.
  • Fig. 2 shows an example of a microscope image to be processed.
  • the horizontal axis is the time axis (time point), and the vertical axis is the focal axis (focal plane).
  • This algorithm detects areas of the microscope image where there is little change in light and darkness as nuclei.
  • the cytoplasm is a region rich in fine changes in light and dark because of the organelles in the cell, but the cell nucleus is characterized by a region in which fine changes in light and dark are small.
  • the image processing algorithm A makes use of this property. To capture this feature, when the original image is transformed by the Kirsch operator, an image is obtained in which the areas of the image with less brightness are represented as areas of lower luminance.
  • the moving average method is applied to this image as a smoothing process, and further a binarization process is applied to separate an area (cell nucleus) with little change in luminance from the cytoplasm.
  • a connected component having a shape considered to be a nucleus is extracted.
  • Fig. 3 shows an example.
  • This algorithm also detects areas of the microscope image where there are few small changes in light and darkness as nuclei.
  • the original image is converted using a template operator of Prewitt and binarized, and the area where the brightness of the image changes sharply is changed.
  • Fig. 4 shows an example.
  • This algorithm makes use of the fact that in a Nomarski-type microscopic image, the object to be observed is observed with a shadow as if obliquely illuminated from a specific position.
  • the nuclear envelope of a circular cell nucleus appears bright in one half of the image and dark in the other half.
  • the part where the change in brightness is large over a wide range along the apparent light angle is extracted as a nucleus. For example, take the difference between the sum of the luminance values of the 30 pixels above and below along the apparent light angle, and use this value as the converted value of that point.
  • the position of the nucleus appears white.
  • a filter expressed by the following equation is applied.
  • f, y) is the luminance value of the original image
  • g (x, y) is the luminance value of the converted plane image
  • 0 is the direction of light
  • m is the range in which the luminance values are summed.
  • Fig. 5 shows an example. As shown in Fig. 5, this filter tends to create falsepositives at the cell boundaries and outside the embryo. Therefore, as described below, the cell boundary is extracted and the embryo region is extracted, and the results are corrected. The algorithm of cell boundary detection will be described.
  • To correct the recognition algorithm C, search for a region that clearly borders cells. Binarize the results of Prewitt's template-type edge detection operator ( extract elongated areas using circularity, area, and perimeter. The results are shown in Figure 6.
  • the algorithm for detecting the embryo region is described. Search for embryo regions in images to correct for nuclear recognition algorithm 3. The result of the template detection operator of Kirsch is binarized. Extract the largest connected component. The results are shown in FIG.
  • the nuclear information recognized by the above three algorithms is combined. As described above, a region that recognizes any one of the three algorithms as a core is determined to be a nuclear region as a conclusion of the entire image processing system.
  • the misrecognized nuclear region is removed by human judgment.
  • the above-mentioned image processing algorithm is not perfect, it includes the false positive force S, especially as the number of cells increases. Since it is difficult to construct a cell lineage correctly from data with many false positives, this system uses human hands to detect false positives (nuclear recognition algorithms by the nuclear recognition algorithm) from the results of the above image processing.
  • a tool is included that removes the region (that is, the region that is not actually the cell nucleus but has been identified by the algorithm as the location of the nucleus). This GUI tool will be described with reference to FIGS. 8 to 10. First, as shown in Fig.
  • the results of each nuclear recognition algorithm are integrated, and the region recognized as the “nuclear region” (the region surrounded by a white line) is displayed over the original image ( Display of nuclear recognition results).
  • the misrecognized nucleus region is painted out using a mouse (tracing the mouse over the misrecognized nucleus region while pressing the mouse button).
  • Erase removal of false recognition area
  • the nuclear region information resulting from the removal of the misrecognized region is saved in a file format that can be used for the subsequent cell lineage creation work. It was easy to remove false positives using this tool, and in actual trials, false positives could be removed from 178 images in about an hour. Needless to say, this manual processing is not an essential component in the technical idea of the present invention, and this step can be omitted by improving the accuracy of automatic nuclear recognition.
  • the following describes the firing of nuclear regions derived from the same cell nucleus recognized in different two-dimensional images.
  • the same nuclei recognized in different 2D images are combined to know which nuclei appear and disappear on the image from the results of recognition in the 2D image.
  • An example is shown in FIG.
  • the horizontal axis is the time axis
  • the vertical axis is the focal axis (focal plane).
  • FIG. 12 illustrates the integration of nuclear regions.
  • the white circle is an image in which a predetermined cell nucleus is not detected, and the black circle is an image in which a predetermined cell nucleus is detected.
  • the vertical solid line is a set recognized as the same nucleus.
  • the dashed horizontal lines are the sets identified as the same nucleus.
  • the four-dimensional integrated nucleus area contains information on when and where the cell nuclei in the image appear and disappear.
  • the cell lineage is constructed based on this (Fig. 13).
  • the nucleus that appeared at the first time is called the root.
  • the time and position at which the nucleus of the mother cell disappeared in the image correspond to the four-dimensional integrated nucleus region. Request more Confuse.
  • Np From Np, select two nuclei whose distance in four dimensions is the shortest and whose distance is equal to or less than the threshold value (100), and enter them into the genealogy as daughter cells.
  • the two core regions are t 1, t 2, position (xl, y 1, z 1), (x
  • cz and ct are the weights of time and distance in the focal plane direction, and the specific values of cz and ct are 2 and 10, respectively.
  • d ((xl, yl, zl l (x2 7 y2, ⁇ 2 7 2))
  • FIG. 14 is a system configuration diagram showing [I] a process of capturing a 4D image of a Nomarski microscope of a nematode early embryo, [ ⁇ ] specification of a nuclear candidate region by an image processing algorithm for nuclear recognition, [IE] Nuclear region selection mechanism by feedback mechanism, [IV] Step of removing misidentified nuclear region by human judgment as necessary, [V] Multiple focal planes , Process of integrating nuclear information in images at multiple time points (time series) (integration algorithm of nuclear regions derived from the same nucleus), [VI] Appearance of 4D integrated nuclear region, time and position information of disappearance Constructing a cell lineage.
  • the description of the first embodiment can be cited as it is for capturing a 4D image of a nematode early embryo with a Nomarski microscope.
  • the image processing algorithms for nuclear region recognition are divided into two groups: image processing algorithms and image processing result integration algorithms.
  • image processing algorithm group the description of the first embodiment can be cited as it is. That is, nuclear recognition algorithm A, nuclear recognition algorithm B, and nuclear recognition algorithm C can be adopted.
  • the specified area is given a score (core score) depending on its area and circularity.
  • the result of the algorithm C may be obtained by giving a score corresponding to the area and circularity to the region created after the correction.
  • a gray value (usually used in black and white 256 gradations) is given to each pixel of the image so that the nucleus part appears blackish. (Each part is white Even in the case of ruta, this state is achieved by inverting black and white.)
  • the black polar region is extracted with a score.
  • the black direction polar region is defined as: (i) the value of each pixel in the region is higher in blackness than the value of each pixel adjacent to the outline of the region, and (() the region is a circle given in advance (in the image, It is best to use a value approximately equal to the size of the nucleus).
  • the score depends on the blackness and area of each pixel in the region.
  • This algorithm uses the nucleus candidate area with the nucleus score created by the above-mentioned image processing result integration algorithm as a material, and uses the feed pack of the subsequent cell lineage creation work as a source for the nucleus area (nucleus location and location). Region determined as a result). Specifically, (i) integration of nuclear regions included in the same focal plane at the same time, ( ⁇ ) integration of four-dimensional nuclear regions,
  • (ffi) Create a cell lineage and use the feed packs from each trial in this order in order to finally extract the nuclear region. Some feed packs can be omitted.
  • the feed pack data is used as information for changing the core score when comparing the “core score (score of the probability of being a core)” with the “specified value”.
  • the specified value means to give a specific value before running the program. Since the specified value affects the performance of the feed pack system, the optimal value is selected.
  • image algorithms are applied to a few 4D microscopic image samples and values that are not misrecognized (ie, all detected nuclei regions point to genuine nuclei) are used. ing.
  • Fee pack (i) from the integration of nuclear regions included in the simultaneous point and the focal plane is performed, and the nuclear score of the nuclear candidate region included in the region assumed to be the nuclear prediction region is calculated. Increase by the value specified for the pack. As a result, among these nuclear candidate regions, those whose core score exceeds the specified value of the nuclear score in “When the next algorithm after image processing result integration algorithm is activated” are the nuclear regions. If the value does not exceed the specified value, the kernel score for the increased value is discarded, and the core score is returned to the original value and returned as a nuclear candidate region.
  • the nuclear region including the newly added nuclear region is given to the next process, and the feed pack from “integration work of nuclear regions included in the confocal plane” is repeated. Repeat this feed pack several times. If a new nuclear region is no longer added by this feed pack, feedback from the “4D nuclear region integration work ()” is performed. In this feed pack, the nuclear score specific to this feed pack is added to the nuclear candidate region, and the same feedback is performed until no new nuclear region is added. Then, ⁇ Cell lineage creation work
  • This process includes ( a ) selection of nuclear areas, (b) integration of nuclear areas in the same focal plane, (C) Designation of nuclear prediction area.
  • a nuclear candidate region whose nuclear score exceeds the specified value is selected as a nuclear region. Save all nuclear candidate regions and nuclear regions along with their nuclear scores.
  • each nucleus is integrated sequentially from the earliest detected point. That is, with the same focus, the recognition results of the time-series nuclei are integrated into one set. Perform the following procedure.
  • a kernel whose closest two-dimensional distance d xy distance is short and whose distance is equal to or less than a predetermined threshold is derived from the same nucleus (successor ) Into the same nucleus.
  • the nuclear prediction region obtained as a result of (c) is given to (a), and the operations of (a) to (d) are repeated. After performing this feedback operation several times, the 3D nuclear region obtained in (b) is passed to the next step of integrating 4D nuclear regions.
  • This process includes (a) selection of three-dimensional nuclear regions, (b) four-dimensional integration of nuclear regions, (c) specification of nuclear prediction regions, and (d) feedpack.
  • FIG. 12 illustrates the integration of nuclear regions.
  • the white circle is an image in which a predetermined cell nucleus is not detected, and the black circle is an image in which a predetermined cell nucleus is detected.
  • the vertical solid line is a set recognized as the same nucleus.
  • the horizontal dotted line is a set recognized as the same nucleus.
  • the nuclear prediction area is specified using the information on the adjacent focal plane and adjacent time at the same time.
  • two images of the same focal plane adjacent to each other, and two images of the same focal plane adjacent to each other When there are regions with nuclear regions of, the union region of the circular region with radius R centered on the center of gravity of those nuclear regions is set as the nuclear prediction region.
  • the nuclear prediction region obtained as a result of (c) is given to (a), and the operations of (a) to (d) are repeated. After performing this feed pack operation several times, the integrated 4 o'clock nucleus region obtained in (b) is passed to the next cell lineage creation step.
  • This process includes (a) four-dimensional nuclear region selection, (b) cell lineage creation, (c) nuclear prediction region designation, and (d) feedback.
  • the feed pack work from the integration work of the four-dimensional nuclear region is performed until the respective effects disappear.
  • Ni, N 2 be a four-dimensional nuclear region.
  • Each four-dimensional nuclear region (Ni) contains the following information.
  • Outgoing point ei The earliest point in the 4D nuclear region.
  • Disappearance time Tdi The latest time included in the four-dimensional nuclear region.
  • the one with the earliest disappearance point is the mother four-dimensional nuclear region, and the other is the daughter four-dimensional nuclear region (N ⁇ , Nd2).
  • a score (three-party mother-daughter score) is calculated that indicates the possibility that the combination of these three 4-dimensional nuclear regions is a true mother-daughter nucleus pair.
  • the score is i) the time of disappearance of the mother 4D nuclear region and the present time of two daughter 4D nuclear regions, and ii) the disappearance position of the mother 4D nuclear region and the appearance position of the two daughter 4D nuclear regions.
  • Iii) The positional relationship between the disappearance position of the mother 4D nuclear region and the appearance positions of the two daughter 4D nuclear regions (especially the midpoint of the appearance position of the two 4D daughter cells Whether the disappearance position is near or not) is reflected.
  • the current score F 3 (N m , Ndi, Nds) is given as follows.
  • V (Ni, N 2 ) Vector from (Nl disappearance position) to ( ⁇ 2 appearance position)
  • Kat, K3s. Av, Cat, C 3a are appropriate constants.
  • the three-member mother-daughter score of all three existing four-dimensional core regions is calculated, and the three-member mother-daughter relationship is determined in order from the one with the highest score, and the threshold is determined. Until a combination that performs worse than the score Repeat in order. If contradictory mother-daughter relationships arise, priority is given to mother-daughter relationships with good scores.
  • (i) represents at least one of the mother nucleus or the daughter in the four-dimensional nuclear region in which at least one of the mother nucleus or the daughter has not been determined. Find a set of four 4D nuclear regions.
  • the score is i) the time of disappearance of the mother 4D nuclear region and the present time of two daughter 4D nuclear regions, and ii) the disappearance position of the mother 4D nuclear region and the appearance position of the two daughter 4D nuclear regions. It reflects the distance between.
  • the current score F 2 (N m , Nd) is given as follows.
  • K2t, K2a, C2t, C 28 Suitable constants.
  • the bipartite mother-daughter scores of all two four-dimensional nuclear regions are calculated, and a combination that performs better than the threshold score is determined as a bipartite mother-daughter relationship.
  • the nuclear prediction region is specified using the three-party mother-daughter relationship and the two-party mother-daughter relationship, respectively.
  • the nuclear prediction area is specified using the time of disappearance of the region and the time of appearance of the two daughter 4D nuclear regions.
  • the adjacent upper and lower focal planes at the same point and the adjacent focal plane It is considered that there is a high probability that a nuclear region originating from the same nucleus as the nuclear region exists before and after the nucleation.
  • the coordinates (Xc, Yc) of the center of gravity of the nuclear region are taken, and the simultaneous point, the images of the adjacent upper and lower focal planes, and the parfocal plane
  • the area of radius R centered on the coordinates (Xc, Yc) of the surface images before and after the adjacent point is the nuclear prediction area.
  • R is a standard nuclear radius.
  • the nuclear prediction region is specified using the disappearance time of the mother four-dimensional nuclear region and the appearance time of the daughter four-dimensional nuclear region.
  • the daughter at the time when the 4D nuclear region exits is the nuclear region included in each of the 4D nuclear regions. It is considered that there is a high probability that a nuclear region originating from the same nucleus as the nuclear region exists before and after adjacent on the surface.
  • the specific method is the same as (i).
  • the nuclear prediction region obtained as a result of (c) is given to (a), and the operations of (a) to (d) are repeated. After performing this buoy pack operation several times, The integrated 4 o'clock nuclear region is output to the next step as the output of the nuclear region selection mechanism by the feedpack mechanism.
  • FIG. 11 the horizontal axis is the time axis (time point) and the vertical axis is the focal axis (focal plane).
  • each nucleus is sequentially integrated from the point of earliest detection. That is, with the same focus, the recognition results of time-series nuclei are integrated into one set. Perform the following procedure.
  • nucleus with the earliest appearance time 1.
  • a nucleus with the closest two-dimensional distance dxy and whose distance is equal to or less than a predetermined appropriate threshold 25 pixels in the current system is derived from the same nucleus (successor). Integrate into the same nucleus.
  • FIG. 12 illustrates the integration of nuclear regions.
  • the white circle is an image in which a predetermined cell nucleus is not detected, and the black circle is an image in which a predetermined cell nucleus is detected.
  • the vertical solid line is a set recognized as the same nucleus.
  • the horizontal dotted line is a set recognized as the same nucleus. '
  • the four-dimensional integrated nucleus area contains information on when and where the cell nuclei in the image appear and disappear.
  • the cell lineage is constructed based on this (Fig. 13).
  • the method of the first embodiment can be used, but a different method is adopted in the second embodiment. In this process, (i) The two processes of building a three-dimensional mother-daughter relationship in a four-dimensional nuclear region and (ii) building a four-member mother-daughter relationship in a four-dimensional nuclear region are performed in this order.
  • Ni, N 2 , to N n be a four-dimensional nuclear region.
  • Each four-dimensional nuclear region (Ni) contains the following information.
  • Outgoing time T ei The earliest time included in the 4D nuclear region.
  • Disappearance time Tdi The latest time included in the four-dimensional nuclear region.
  • the one with the earliest disappearance point is the mother four-dimensional nuclear region (N m ), and the others are the daughter four-dimensional nuclear regions (Ndi, Nd2).
  • a score three-party mother-daughter score is calculated that indicates the possibility that the combination of these three 4-dimensional nuclear regions is a true mother-daughter nucleus pair.
  • the score is i) when the mother 4D nuclear region disappears and when two daughter 4D nuclear regions appear, and ii) where the mother 4D nuclear region disappears and two daughter 4D nuclear regions appear.
  • Iii) The positional relationship between the disappearance position of the mother 4D nuclear region and the appearance positions of the two daughter 4D nuclear regions (particularly, the midpoint of the appearance position of the two 4D daughter cells is the mother 4D nuclear region Whether or not the disappearance position is near) is reflected.
  • F3 (N m, Ndi, Nd2 ) is given as follows. Fa (N m7 Ndi, N d2 ) -K3t ((T (Nm, Ndi)-Cat) 2 + (T (Nm, N d2 )-Cat) 2 )
  • V (Ni, N 2 ) Vector from (Nl disappearance position) to (N2 appearance position)
  • (i) represents one of the mother nucleus or the two daughter nuclei after the fission from the four-dimensional nuclear region for which at least one of the mother or the daughter has not been determined in (i). Find a set of two 4D nuclear regions.
  • K2t, K23, C 2 t, C2s Suitable constants.
  • the bipartite mother-daughter scores of all two four-dimensional nuclear regions are calculated, and a combination having better performance than the threshold score is determined as a bipartite mother-daughter relationship.
  • nucleus recognition filters In the above two embodiments, three image processing algorithms are employed as the nucleus recognition filters, but the nucleus recognition filters used in the present invention are not limited to these.
  • the kernel recognition filter In the above two embodiments, three image processing algorithms are employed as the nucleus recognition filters, but the nucleus recognition filters used in the present invention are not limited to these.
  • another embodiment of the kernel recognition filter will be described.
  • Fig. 16 shows microscopic images of the early nematode embryo taken with a Nomarski transmission differential interference microscope, showing the cytoplasmic part with a large difference in density (the part where the image quality is rough) and the comparatively light and dark parts. A core part with a small difference (a part where the image quality is relatively flat) is observed.
  • An entropy filter is a filter that efficiently extracts flat parts from an image. This is based on the fact that the image quality of the cytoplasm is rough, while the image quality of the nuclear region is relatively flat.
  • the starting point (X, y) is determined in the original image. X: 0 to (image width—window width); y: 0 to (image height—window height).
  • the nuclear region and the cytoplasm region are distinguished based on the obtained entropy value.
  • the entropy window size depends on the type of microscope, magnification, etc., but is 6 [pixel] X 6 [pixel] to 20 [pixel] X 20 [pixel] (preferably 1 pixel). Good results were obtained by scanning an image area (indicator) of 0 [pixel] X 10 [pixel] or 1.2 [pixel] X 12 [pixel]. In this case, the pixels in the nucleus region have a width due to factors such as cell division, but are generally about 1000 pixels to 10000 pixels.
  • Fig. 17 shows a cell image (filtering image) after processing by the entropy filter.
  • FIG. 18 shows a result obtained by performing threshold processing on a surface image processed by an entropy filter and superimposing the image on a microscope image.
  • a flat portion By dividing an image by small windows and scanning the image while calculating the entropy of the window, a flat portion can be extracted from the image. By performing threshold processing on the filtered image by the event lobby filter, a flat portion can be satisfactorily extracted from the surface image.
  • “flat” means that the difference between pixel values is relatively small, It means that the degree value (luminance value) is relatively uniform.
  • “not flat” means that the difference between the pixel values is relatively large, that is, the density value of the pixel
  • Luminance value is non-uniform.
  • the density value is a value indicating the shade of black and white.
  • the density value is a value indicating the density (luminance) of each of R, G, and B.
  • "the difference between the pixel values is small and large” can be said to be smaller if the combination of R, G, and B is closer, and larger if the combination is different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Multimedia (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

明 細 書 細胞系譜抽出方法 技術分野
本発明は細胞系譜抽出方法に係り、 詳しくは、 観察対象の 4次元顕微 鏡画像から細胞系譜を作成する方法に関するものである。 また、 本発明 は、 好適には、 ノマルスキー型透過型微分干渉顕微鏡 (以下 「ノマルス キー顕微鏡」 という) で撮影した線虫 ( C . e 1 e g a n s ) の発生過 程の 4次元画像から、 細胞系譜を作成する方法に関するものである。 背景技術
線虫は 1 9 6 5年に S i d n e y B r e n n e r によって見出さ れた実験生物で、 現在の分子生物学で特に詳しく解析されている実験生 物の一つである。 線虫は、 これらの実験生物の中では多細胞生物の最も 単純な生物として位置付けられている。 線.虫は、 受精卵が成虫になるま で、 おおよそ三日間を要する。
多細胞生物は基本的に一つの受精卵 (単細胞) が秩序正しく分裂を繰 り返して多数の細胞からなる成虫を形成する。 受精卵からの分裂の秩序 を樹形図的に記述したものを細胞系譜と呼ぶ。 線虫は多細胞生物の中で 唯一受精卵から成虫までの細胞系譜が明らかにされている。 この細胞系 譜は 1 9 8 3年に S u 1 s t o n等によって決定された。
正常な線虫 (w i 1 d t y p e ) は全ての個体でその受精卵から成 虫になるまでの細胞系譜が一定である。 特定の遺伝子に突然変異が起き るとその遺伝子の機能に変化が生じ、 細胞分裂のパターン、 すなわち細 胞系譜が w i l d t y p eのものと比べて変化する。 この細胞系譜の 変化から突然変異した遺伝子の機能を推定し、 その推定を出発点にした 研究の進展により大量の遺伝子が急速に同定され、 また、 突然変異体動 物が大量生産され始めてきている。 これらの資源を有効活用することを 考えると、 遺伝子、 突然変異体解析の出発点である細胞系譜解析の自動 化は必要不可欠な技術である。
従来の細胞系譜の作成には、 いわゆるノマルスキー顕微鏡が用いられ る。 ノマルスキー顕微鏡は、 偏光版、 ノマルスキープリ ズムのセッ トに より作成した 2種類の光線 (同波形、 同位相、 光路のみ微妙にズレてい る) を観察対象に照射し、 観察対象を透過させる。 観察対象を透過する 光路の長さや、 屈折率の差に起因して透過後の 2本の光線の位相はズレ ている。 透過後の 2本の光線を偏向板、 ノマルスキープリ ズムのセッ ト を用いて同光路に収束させると、 この 2本の光線の位相のズレは干渉作 用を引き起こす。 この干渉作用による明暗像をもって、 観察するのがノ マルスキー顕微鏡である。 この方法によれば、 透明な観察対象の内容物 の分布や外形状を明暗像で捉えることができる。 生物学で言う と、 通常 の光学顕微鏡では透明に見える細胞の内容物 (細胞核) や、 外形 (細胞 膜) を明暗像で捕らえることができる。
線虫の細胞系譜を決定した S u 1 s t o n等はノマルスキー顕微鏡 を肉眼で見てスケッチして作成したと言われており、 相当の時間 (おそ らく 1年以上) を要したものと思われ、 また、 その労力は多大なもので ある。
最近では、 ノマルスキー顕微鏡を用いた 4 D顕微鏡画像を用いて作成 するのが一般的である。 特定の焦点で観察される顕微鏡画像は観察対象 を特定の位置で水平に切断して得られる 2次元 (X — y軸) 断面像と考 えられる。 すなわち、 焦点を上下に動かす ( z軸方向に動かす) ことで 観察対象を z軸方向の様々な位置で切断した断面像が得られる。 これら の画像を統合すると観察対象の 3次元の形を捉えることができる ( 3次 元画像)。 さらに、 このような 3次元画像の撮影を時間を追って撮影して いく ことで観察対象の時間変化を捉えることができる。 このようにして 撮影したものを 4 D ( 4次元) 顕微鏡画像と呼ぶ。
4 D顕微鏡画像を用いる作業は S u 1 s t o n当時と比較して楽に なったものと考えられるが、 撮影した画像から細胞核、 細胞膜を人間が 判断しているため、 やはりかなりの労力と時間を要する。 受精卵から 1 6細胞く らいまでの作成であっても、 1 日以上はかかる。
本発明は、 かかる従来の細胞系譜の作成を容易に行ぅぺく創案された ものであって、 細胞系譜を計算機で構築することにより、 細胞系譜を省 力でかつ短時間で構築することを目的とするものである。 本発明の他の 目的は、 細胞系譜を計算機で構築するにあたり、 核認識のプロセスの性 能を向上させることにある。 発明の開示
本発明は、 観察対象の細胞について焦点面を変化させて 2次元面像を 複数撮影し、 かつ、 該 2次元画像を時系列に複数撮影することで焦点面 、 時点で異なる複数の 2次元画像を得る工程 (4次元顕微鏡画像を得る 工程) と、 前記夫々の 2次元画像において、 画像処理を行うことで細胞 核領域を抽出する工程と、 前記夫々の 2次元画像において抽出された細 胞核領域から、 同一細胞核に由来する細胞核領域を統合する工程と (4 次元統合核領域を得る工程)、 統合された細胞核領域(4次元統合核領域 ) において、 面像中の細胞核領域が出現、 消滅する時点、 位置の情報か ら細胞系譜を構築する工程とを含むことを特徴とするものである。
好ましくは、 該画像は、 ノマルスキー型透過型微分干渉顕微鏡で撮影 したものであるが、 利用される画像はこれに限定されるものではない。 本発明が採用した他の技術手段は、 観察対象の細胞について焦点面を 変化させて 2次元面像を複数撮影し、 かつ、 該 2次元画像を時系列に複 数撮影することで焦点面、 時点で異なる複数の 2次元画像を得る工程 ( 4次元顕微鏡画像を得る工程) と、 前記夫々の 2次元画像において、 面 像処理を行うことで細胞核領域を抽出する工程と、 前記夫々の 2次元画 像において抽出された細胞核領域から、 同一細胞核に由来する細胞核領 域を統合する工程と ( 4次元統合核領域を得る工程)、統合された細胞核 領域 (4次元統合核領域) において、 画像中の細胞核領域が出現、 消 ½ する時点、 位置の情報から細胞系譜を構築する工程とを含み、 前記 「画 像処理を行うことで細胞核領域を抽出する工程」 は、 細胞核の候補とな る領域を抽出する工程と、 細胞系譜作成試行作業による細胞核予想領域 の指定と、 該予想領域を該細胞核候補領域にフィ一ドバックさせて細胞 核領域を抽出する工程とを備えていることを特徴とする。
好ましくは、 該細胞系譜作成試行作業は、 同時点、 同焦点面に含まれ る核領域の統合、 4次元的核領域の統合、 細胞系譜の作成の少なく とも 一つ以上を含み、 該試行作業による核予想領域の指定をフィードパック させるものである。 複数画像中の同一核を統合する処理では、 時間的、 空間的な近傍を見ることで、 核認識結果の妥当性を検証することができ る。 生成された細胞系譜から、 核のあるべき場所、 あってはいけない場 所が推測できる。 これらの推測の結果をフィードパックし、 核を認識す る際のパラメータを変更する。 すなわち、 核候補領域から、 核領域を抽' 出するための核スコアをフィードパックによつて変化させる。
細胞核を抽出する工程は、 画像の明暗の細かい変化が少ない領域を核 と して検出する手法、 あるいは、 光の角度に沿って広い範囲で明暗の変 化の大きい部分を核と して抽出する手法を含む。 前者の例と しては、 Kirschフィルタ、 Pre w i U フィルタ、 F F Tフィルタを用いるものが挙 げられる。 Kirs ch フィルタは好ましくは、 Ki rschテンプレート型エッジ 検出オペレータと移動平均法を組み合わせたフィルタである。 Pre w i tt フィルタは好ましく は、 Prewi tt テンプレート型エツジ検出オペレータ の出力を 2値化し、 さらに距離変換を適用するフィルタである。 後者の 例と しては、 見た目の光の角度に沿って上下所定ピクセル分の輝度値の 合計の差分を取るフィルタが採用される。 該差分フィルタによる手法は 、 細胞境界の抽出、 胚領域の抽出を行う工程を含み、 該工程の結果に基 づいて結果を補正することが望ましい。
さらに、 核領域を抽出する一つの最も好ましいフィルタと しては、 ェ ン トロピーフィルタが挙げられる。 エン トロ ピーフィルタ とは、 元画像 中に始点を決定し、 該始点から所定幅、 所定高さの大きさのウィンドウ で元画像を区切り、 該ウィンドウのエントロピーを計算し、 これを結果 の画像の座標に保存するフィルタである。 画像を小ウインドウで区切り 、 該ウィンドウのェントロピーを計算しながら面像を走査することで画 像から平坦な部分 (部分を構成する画素値の差が比較的小さい) を核領 域として抽出することができる。 図面の簡単な説明
第 1図は、 本発明に係る細胞系譜抽出方法のフロー図である ; 第 2図 は、 処理対象の顕微鏡画像の例を示す図である ; 第 3図は、 核認識アル ゴリズム Aの処理工程を示す図である ; 第 4図は、 核認識アルゴリズム Bの処理工程を示す図である ; 第 5図は、 核認識アルゴリズム Cの処理 工程を示す図である ; 第 6図は、 細胞境界検出のアルゴリズムの処理工 程を示す図である ; 第 7図は、 胚領域検出のアルゴリズムの処理工程を 示す図である ; 第 8図は、 自動核認識の結果を人の手で修正するための ツールを示す図である ; 第 9図は、 自動核認識の結果を人の手で修正す るためのツールを示す図である ; 第 1 0図は、 自動核認識の結果を人の 手で修正するため φツールを示す図である ; 第 1 1図は、 複数画像の同 一の核をまとめる工程を説明する図である ; 第 1 2図は、 第 1 1図と同 様に、 複数面像の同一の核をまとめる工程を説明する図である ; 第 1 3 図は、 核の情報から細胞系譜を構成する工程を説明する図である ; 第 1 4図は、 本発明の他の実施例に係る細胞系譜抽出方法のフロー図である ; 第 1 5図は、 エン トロ ピーフィルタの説明図である ; 第 1 6図は、 細 胞の顕微鏡画像である ; 第 1 7図は、 エン ト ロ ピーフィルタによる処理 後の画像である ; 第 1 8図は、 エントロピーフィルタによる処理後の画 像を閾値処理したものを、 顕微鏡面像に重ね合わせたものである。 発明を実施するための最良の形態
[ A ] 細胞系譜作成システム
本発明に係る細胞系譜抽出方法ないしシステムの一つの実施形態を、 線虫初期胚の細胞系譜の作成に基づいて説明する。 第 1図に示すように 、本システムは、 [ I ]線虫初期胚のノマルスキー型顕微鏡 4 D画像を撮 影する工程、 [ Π ]複数のアルゴリズムを用いた画像処理によって、個々 の 2次元画像において核の位置を抽出する工程、 およぴ各アルゴリズム による核認識結果を合わせる工程、 [ ΠΙ ]必要に応じて、誤認された核領 域を人間の判断で除去する工程、 [ W ] 複数の焦点面、 複数の時点 (時系 列) の画像における核情報を統合する工程、 [ V ] 4次元統合核領域の出 現、 消滅の時点 ·位置の情報から細胞系譜を構築する工程とを有する。
[ I ] 4 D画像の撮影
線虫初期胚のノマルスキー型顕微鏡による 4 D画像の撮影について 説明する。 4 D画像とは、 従来技術の欄に記載したように、 焦点を異な らしめて撮影した複数の 2次元画像と、 該複数の 2次元画像を時系列に 撮影してなる複数の 2次元画像を言う。 すなわち、 焦点面、 時点が異な る複数の 2次元画像を銃合した画像を 4 D画像と言う。 本実施の形態で 処理対象とする線虫の初期胚の画像は、 焦点面を上下に変えて 3 0〜 9 0枚の 1セッ トとし、 1〜' 5分毎に撮影する。 実験では、 8 9の焦点面' 、 2 0の時系列点について、 合計 1 7 8 0枚の二次元画像を撮影した。 細胞の長尺方向の半径は約 6 0 μ m、 短尺方向の半径は約 3 0 μ mであ る。 撮影は 9 0秒毎に行った。 処理対象の顕微鏡画像の例を第 2図に示 す。 横軸が時間軸 (時点)、 縦軸が焦点軸 (焦点面) である。
[ Π ] 核認識用画像処理アルゴリズムによる細胞核の位置の抽出 個々の 2次元画像における細胞核の位置の抽出について説明する。 個 々の 2次元顕微鏡画像を、 3種類の画像処理ァルゴリズムを用いて処理 する。 これら 3種類のアルゴリズムのどれか一つでも核であると認識し た領域は、 画像処理システム全体の結論として核領域と判断する。
[核認識 (画像処理) アルゴリズム A ]
このアルゴリズムは、 顕微鏡画像の明暗の細かい変化が少ない領域を 核と して検出する。 ノマルスキー型顕微鏡画像において、 細胞質は、 細 胞内小器官のため明暗の細かい変化に富んだ領域となるが、 細胞核は、 明暗の細かい変化が少ない領域になるという性質を備えている。 画像処 理アルゴリ ズム Aはこの性質を利用するものである。 この特徴を捉える ベく、 K i r s c hのオペレータで原画像を変換すると、 画像の明暗の 少ない部位が輝度の小さい領域として表される画像が得られる。 この画 像に、 平滑化処理と して移動平均法を採用し、 さらに 2値化処理を適用 し、 輝度の変化の少ない領域 (細胞核) を細胞質から分離する。
面像処理アルゴリズム Aについて詳述すると、 K i r s c hのエッジ 検出オペレータを使用し、 画像の輝度の変化が激しい領域を抽出するに 当り、 以下の係数行列のなかで、 出力が最大のものを利用する。
(5 5 5V 3 5 -3 -3 -3 -3 -3) f-3 -3 — 3V - 3 - 3 f-3 -3 5V-3 5 •3 0 - 3 5 0 -3 0 -3 0 -3 一 3 0 -3 -3 0 一 3 0 —3 0
33 _3ノ -3 -3 -3 -3 一 3 Λ 5
Figure imgf000009_0001
-3 一 3 -3 -3一 3 7 平滑化においては、 以下の式を用いる
Figure imgf000010_0001
2値化後、 核と思われる形状の連結成分を抽出する。 第 3図に例を示 す。
[核認識 (画像処理) アルゴリ ズム B]
このアルゴリズムも、 顕微鏡画像の明暗の細かい変化が少ない領域を 核と して検出するものである。 P r e w i t tのテンプレート型ォペレ ータで原画像を変換し、 2値化すると、 画像の明暗の変化の激しい領域
(細胞質) は、 白点がまばらに分布する領域として、 雨像の明暗の変化 の少ない領域 (細胞核) は白点のない黒い領域として表される画像が得 られる。 この画像から、 距離変換処理で白点のない領域を抽出する。 具体 には、 P r e w i t t のテンプレー ト型エッジ検出オペレータ を使用し、 画像の輝度の変化が激しい領域を抽出するに当り、 以下の係 数行列の中で、 出力が最大のものを利用する。
Figure imgf000010_0002
2値化の後、 以下のメディアンフィルタを用いる。 g(x,y) = {f (x + Δ·χ,ヌ +
Figure imgf000011_0001
/«/2≤ ≤«/2の中間値 さらに、 以下の距離変換を行う。 g(^y) = min { ( ヌ , O, )): f(xl7} )≠ 0} そして、 2値化、 連結成分処理を行う。 第 4図に例を示す。
[核認識 (画像処理) アルゴリ ズム C]
このアルゴリ ズムは、 ノマルスキー型顕微鏡像において、 観察対象は 特定の位置から斜めに光を当てたような影がついて観察されることを利 用する。 円形である細胞核の核膜は、 画像中で半周分が明るく、 残りの 半周分が暗く現れる。 この見た目の光の角度に沿って広い範囲で明暗の 変化の大きい部分を、 核として抽出する。 例えば、 見た目の光の角度に 沿って上下 3 0 ピクセル分の輝度値の合計の差分を取り、 この値をその 点の変換後の値とする。 変換後の画像を 2値化することで、 核の位置を 白く浮かび上がらせる。
具体的には、 核が光の方向に沿って、 明るい部分と暗い部分で囲まれ るように見える性質を捉えるため、 以下の式で表されるフィルタをかけ る。 ここに、 f , y) は原画像の輝度値、 g(x, y)は'変換後の面像の輝 度値、 0は光の方向、 mは輝度値を合計する範囲である。
1
g(x,ヌ)二—— > sgn(fc) X + k cos Θ, y -k mO)
2値化後、 連結成分処理を行う。 第 5図に例を示す。 第 5図に示すよ うに、 このフィルタは、 細胞の境界や、 胚の外に f a l s e p o s i t i v eを作りやすい。そこで、以下に述べるように、細胞境界の抽出、 胚領域の抽出を行い、 結果を補正する。 細胞境界検出のァルゴリ ズムについて説明する。 ^認識のァルゴリズ ム Cの補正のため、 明らかに細胞の境界になっている領域を探す。 P r e w i t t のテンプレート型エッジ検出オペレータの結果を 2値化する ( 円形率、 面積、 周の長さを利用して、 細長い領域を抽出する。 結果を第 6図に示す。
胚領域検出のアルゴリ ズムについて説明する。 核認識ァルゴリ ズム 3 の補正のため、 画像中の胚の領域を探す。 K i r s c hのテンプレート 型ヱッジ検出オペレータの結果を 2値化する。 最大の連結成分を抽出す る。 結果を第 7図に示す。
前記 3種類のアルゴリ ズムで認識された核情報を合わせる。 前述した ように、 3種類のァルゴリズムのどれか一つでも核であると認識した領 域は、 画像処理システム全体の結論として核領域と判断する。
[ ΙΠ ] 誤認された核領域の除去
次いで、 自動核認識の結果から、 誤認された核領域を人間の判断で除 去する。 前記の画像処理アルゴリ ズムは完全なものではなく、 特に細胞 の数が増加するに従い誤って核領域と認識された領域(false positive)力 S 含まれるが。 false positiveが多いデータからは正しく細胞系譜を構築す るのが困難であるため、 本システムでは、 人間の手で、 上記画像処理の 結果から、 false po sitive (核認識アルゴリ ズムによって、 誤認識された 領域、 すなわち実際では細胞核ではないのに、 アルゴリズムによって核 の存在する場所と して認識された領域) を除去するツールが含まれてい る。この G U I ツールについて第 8図乃至第 1 0図に基づいて説明する。 先ず、 第 8図に示すよ うに、 各核認識アルゴリ ズムの結果を統合し、 「核領域」 と して認識された領域 (白線で囲まれた領域) を元画像に重 ねて表示する (核認識結果の表示)。 次いで、 第 9図、 第 1 0図に示すよ うに、 誤認識された 「核領域」 をマウスを用いて塗りつぶす (誤認核領 域上をマウスのポタンを押しながらなぞる) ことにより、 誤認核領域を 消去する (誤認識領域の除去)。 そして、 誤認識領域の除去の結果の核領 域情報をこれに続く細胞系譜作成作業に使用できるファイル形式で保存 する。 このツールを用いた false positive の除去作業は容易であり、 実 際に試したところ、 略 1時間で 1 7 8 0枚の画像から、 false positive を除去することができた。 尚、 言うまでもないが、 このマニュアル処理 は本発明の技術思想における必須構成要素ではなく、 自動核認識の精度 を向上させることで、 この工程を省くことも可能である。
[ IV] 核領域の統合
異なる 2次元画像において認識された同一細胞核に由来する核領域 の銃合について説明する。 2次元画像での認識の結果から、 画像上にお いてどの核がいつどこで出現、 消滅するか知るため、 異なる 2次元画像 で認識された同一の核をまとめる。 例を第 1 1図に示す。 横軸が時間軸
(時点)、 縦軸が焦点軸 (焦点面) である。
[同焦点面の面像群に含まれる同一の細胞核由来の核領域の統合] 同じ焦点面で撮影された (すなわち、 z軸の座標の値が等しい) 時系 列の画像群に注目 し、 これらの画像それぞれの核領域で、 同じ核に由来 するもの (すなわち、 同じ核の時間'変化を追っていることになるもの) を統合する。 核領域 N, N 'が座標 ( X , y ) , ( X ' , y " ) で検出さ れたとき、 N , N ,の二次的な距離 d X yを以下のように定義すると共 に、 同一の核由来と判断される条件を定める。 ' dxy (N, Ν') - T:c― ' T + \y一 y' \2 この条件に従い、 それぞれの核を最も早く検出された時点から順次統 合して行く。 すなわち、 同一の焦点で、 時系列の核の認識結果を一つの 集合 (セッ ト) に統合する。 以下の手順で行う。
1 . 出現時間の最も早い核を選ぶ。
2 . 次の時点で、 最も距離が近く、 かつその距離がある閾値 ( 2 5ピ クセル) 以下の核を同じ核に由来するもの ( s u c c e s s o r ) とし て同じ核に統合する。
3 . 同じ核に由来するものがいなくなるまで 2を繰り返す。
4 . 残っている核がなくなるまで、 1一 3を繰り返す。
[同時点の面像群に含まれる同一の細胞核由来の核領域の統合] 前述した方法と同様にして、 同時点で焦点面 ( z座標) の異なる画像 群に含まれる同一の細胞核由来の核領域を統合する。 同一の時点で異な る焦点面の核の認識結果を一つのセッ トに統合する。 距離の閾値は 1 0 ピクセルである。
[全 4 D画像中に現れる同一の細胞核由来の核領域の統合]
時系列、 焦点方向にそれぞれに統合された核領域 (統合核領域) の間 で、 共有する核領域をもつ統合核領域の組み合わせが存在する場合、 そ れらは同一の核由来の統合核領域であるとみなし、 それらをさらに統合 する (4 D画像において統合された核領域を 4次元銃合核領域という)。 同焦点の雨像群、 同時点の画像群において統合された各セッ トのうち、 同一の核を含むセッ ト同士を一つのセッ トに統合する際に、 5つ以下の 画像でしか認識されなかったセッ トは、 フラグメン小とみなし、 系譜に は使用しない。 第 1 2図は核領域の統合を説明する図である。 白円は所 定の細胞核が検出されなかった画像であり、 黒円は所定の細胞核が検出 された面像である。縦方向実線は同一の核と認識された一セッ トである。 横方向点線は同一の核と認識されたーセッ トである。
[ V ] 細胞系譜の構築
4次元統合核領域には画像中の細胞核が出現、 消滅する時点、 位置の 情報が含まれている。 それを基に細胞系譜を構成する (第 1 3図)。 最初 の時点に現れた核をルー ト(root)とする。 ある細胞 (母細胞) に対し、 その細胞分裂後の二つの細胞 (娘細胞) を探索する際は、 画像中におけ る母細胞の核の消滅した時間 ·位置を対応する 4次元統合核領域より求 める。 それ以外の全ての 4次元統合核領域の出現時間、 位置との 4次元 距離を求める。 その距離が最も小さいもの二つが娘細胞に対応する 4次 元統合核領域であると判断し、 細胞系譜に加える。 但し、 4次元距離が 規定値より大きい場合には娘細胞であるとは見なさない。 ' 具体的には、 以下のステップを取る。
1. 出現時点が最も早い核 (複数あり う る) を選ぴ、 系譜に入れる。 これらは、 系 の 0 o t となる。
2. 既に系譜に入っている核から、 消滅時間が最も早いもの一つを選 ぶ。 これを N p とする。
3. N pから、 4次元での距離が最も近く、 かつその距離が閾値 ( 1 0 0) 以下である核 2つを選ぴ、 娘細胞として系譜に入れる。
4. 系譜が拡大できなくなるまで、 2— 3のステップを繰り返す。
ここで、 二つの核領域が t 1 , t 2 , 位置 (x l , y 1 , z 1 ), (x
2, y 2 , z 2 ) に現れるとすると、 この二つの各領域の 4次元距離 d は以下の式で定義される。 c z、 c t は、 時間、 焦点面方向の距離の重 みであり、 c z、 c tの具体的な値は、 それぞれ 2, 1 0である。 d((xl, yl, zl l (x27y2,∑272))
= ( ― ) 2 + ( i - 2)22 一 )2 -t2)2
[B] フィードパック機構を有する細胞系譜作成システム
本発明に係る細胞系譜抽出方法ないしシステムの他の実施形態を、 線 虫初期胚の細胞系譜の作成に基づいて説明する。 第 1 4図はシステムの 構成図であって、 [ I ]線虫初期胚のノマルスキー型顕微鏡 4 D画像を撮 影する工程、 [Π]核認識用画像処理アルゴリズムによる核候補領域の指 定、 [IE] フィードバック機構による核領域選定機構、 [IV] 必要に じ て、 誤認された核領域を人間の判断で除去する工程、 〔V]複数の焦点面 、 複数の時点 (時系列) の画像における核情報を統合する工程 (同一核 由来の核領域の統合アルゴリ ズム)、 [ VI ] 4次元統合核領域の出現、 消 滅の時点 ·位置の情報から細胞系譜を構築する工程とを備えている。
[ I ] 4 D画像の撮影
線虫初期胚のノマルスキー型顕微鏡による 4 D画像の撮影について は、 第一の実施形態の説明をそのまま引用することができる。
[ Π ] 核認識用画像処理アルゴリズムによる核候補領域の指定
核領域認識用画像処理アルゴリズムは、 画像処理アルゴリズム群、 画 像処理結果統合アルゴリ ズム、 の 2つに分けられる。 画像処理アルゴリ ズム群については、 第一の実施形態の説明をそのまま引用することがで きる。 すなわち、 核認識アルゴリ ズム A、 核認識アルゴリ ズム B、 核認 識アルゴリ ズム Cが採用され得る。
次に、 面像処理結果統合アルゴリ ズムについて説明する。 4次元顕微 鏡撮影画像を用いて、 核が存在すると認識された領域 (核候補領域) を 抽出し、 それらに核である確からしさのス コア (核スコア) を与える。 具体的な方法と しては現在、 (a )閾値法、 (b )極領域法、 の 2法が採用さ れる。
[閾値法]
各画像処理アルゴ リ ズムの結果をそれぞれ特定の閾値を用いて二値 化し、 核候補領域を指定する方法。 指定された領域にはその面積、 円形 度に依存したス コア (核スコア) が与えられる。 尚、 アルゴリ ズム Cの 結果は、 補正後作成された領域に面積、 円形度に応じたスコアを与えれ ばよい。
[極領域法]
各画像処理アルゴリ ズムの結果 (二値化する前) の画像では、 核の部 分が黒っぽく浮き出るように、 画像の各ピクセルごとに濃淡の値 (通常 白黒 2 5 6階調で使用) が与えられる (各部分が白く浮かび上がるフィ ルタでも、 白黒反転させればこの状態になる)。 この画像の中から、 黒色 方向極領域をスコア付で抽出する。黒色方向極領域とは、 ( i )領域内の 各ピクセルの値は領域の輪郭に隣接する各ピクセルの値より黒色度が高 い、 ( ϋ )領域はあらかじめ与えておいた円形(その画像における核の大 きさとほぼ同等の値を用いるのが最適) 内に納まる、 ような領域で、 そ のスコアは領域内の各ピクセルの黒色度、 面積に依存する。 各画像処理 アルゴリズムに対して独立にこの作業を行い、 その結果を適切な重み付 けを用いて統合する。 これら黒色方向極領域を核候補領域にそのスコア を候補領域の核スコアとする。 尚、 二値化する前の画像とは、 K i r s c hフィルタの場合は平滑化の後、 P r e w i t t フィルタの場合は、 距離変換の後を意味する。 アルゴリズム Cの場合には、 極領域法の場合 には 3通りの方法が考えられる。 ( i ) 「輝度値の差分を取る手法」 の みを用いて他のアルゴリ ズムと同様の核領域の検出、スコア付けを行う。 ( ii ) ( i ) で検出された領域から 「胚領域検出アルゴリ ズム」 で胚領域 と認められたもののみ核領域と して認める。 (i i i ) ( i )で検出された領 域から 「胚領域検出アルゴリズム」 で胚領域と認められ、 「細胞境界検 出アルゴリ ズム」 で細胞境界ではないと認められたものだけ核領域とし て認める。
[ Π ] フィードパック機構による核領域選定機構
核認識フィードバックについて説明する。 このアルゴリズムは前記画 像処理結果統合アルゴリ ズムで作成された核スコア付の核候補領域を材 料に、 その後の細胞系譜作成作業の結果のフィードパックを利用して核 領域(核の存在場所と して決定された領域)を抽出する。具体的には( i ) 同時点、同焦点面に含まれる核領域の統合、 ( ϋ ) 4次元的核領域の統合、
( ffi ) 細胞系譜の作成、 の各試行作業からのフィードパックをこの順に 利用し、 最終的に核領域を抽出する。 一部のフィー ドパックを省略する ことも可能である。 フィードパックデータは、 「核スコア (核である確からしさのスコ ァ)」 .と 「指定値」 とを比較する際に、 核スコアを変更させるための情報 として用いられる。 指定値とは、 プログラムを走らす前に、 特定の値を 与えるという意味である。 指定値は、 フィードパックシステムの性能を 左右するので、 最適な値が選択される。 現システムでは、 数例の 4次元 顕微鏡画像サンプルに対して画像アルゴリズムを適用し、 誤認識の無い 値 (つまり、 検出された核領域はすべて本物の核を指し示しているよう な値) を使用している。
フィー ドパック機構の流れについて説明する。 まず、 「同時点、 同焦 点面に含まれる核領域の統合作業からのフィードパック ( i )」を行い、 これにより核予想領域とされた領域に含まれる核候補領域の核スコアを このフィードパック用に指定した値分だけ上昇させる。 その結果、 これ らの核候補領域の中で、 その核スコアが 「画像処理結果統合アルゴリズ ムの次こ作動する場合」 にある核スコアの指定値を超えたものは核領域 とする。 また、 この指定値を超えなかったものについては、 上昇させた 分の核スコアを破棄し、 元の値の核スコアに戻して核候補領域として戻 しておく。 そしてこのよ うにして新しく追加された核領域を含む核領域 . を次のプロセスに与え、 「同時点、 同焦点面に含まれる核領域の統合作 業」 からのフィードパックを繰り返す。 このフィードパックを何度か繰 り返し、 もはや新しい核領域がこのフィードパックによって追加されな くなつた場合、 「4次元核領域の統合作業( )」 からのフィードバ ク を行う。 このフィードパックでは、 このフィードパック特有の核スコア が核候補領域に追加され、 ここでも同様に、 新しい核領域が追加されな くなるまでこのフィードバックを行う。 その後、 「細胞系譜作成作業
( iii ) J からのフィードパックを、 やはりこのフィードパックによって新 しい核領域が追加されなくなるまで行う。 各フィードバックが有効に働 くためには、 それぞれのフィ一ドパックにおいて核候補領域に追加され る核スコアの値が ( i ) く ( ii ) < ( ffi ) のようになっている必要が ある。 以下に、 それぞれのフィードパックについて個々に説明する。
[同時点、同焦点面に含まれる核領域の統合作業からのフィ一ドパック] 本プロセスには、 ( a ) 核領域の選出、 (b ) 同時点、 同焦点面での核 領域の統合、 ( c ) 核予想領域の指定、 の 3プロセスが含まれる。
( a ) 核領域の選出
( i ) 画像処理結果銃合アルゴリズムの次に作動する場合
核スコアの値が指定値を超える核候補領域を選択し、 核領域とする。 すべての核候補領域、 核領域をその核スコアと共に保存する。
( i i ) フィードパック後に作動する場合 ' あらかじめ保存されている核候補領域のなかで、 フィー ドパックによ り与えられる核予想領域にその重心が含まれるものの核スコアを指定値 分だけ上昇させる。 その後、 核スコアの値が指定値を超える核候補領域 を選択し、 あらかじめ保存されていた核領域と合わせて新たな核領域と する。 核領域の情報はその核スコアと共に更新する。
( b ) 同時点、 同焦点面での核領域の統合
異なる 2次元画像に.おいて認識された同一細胞核に由来する核領域 の統合について説明する。 2次元画像での認識の結果から、 画像上にお いてどの核がいつどこで出現、 消滅するか知るため、 異なる 2次元画像 で認識された同一の核をまとめる (第 1 1図参照)。
( i ) 同焦点面の画像群に含まれる同一の細胞核由来の核領域の統合 同じ焦点面で撮影された (すなわち、 z軸の座標の値が等しい) 時系 列の画像群に注目 し、 これらの面像それぞれの核領域で、 同じ核に由来 するもの (すなわち、 同じ核の時間変化を追っていることになるもの) を統合する。 核領域 N , が座標 ( x , y ) , ( X ' , y " ) で検出さ れたとき、 N, N の二次元的な距離 d X yを以下のように定義すると 共に、 同一の核由来と判断される条件を定める。 cl / |2
\ X一 X + \y - y この二次元的距離を用い、 それぞれの核を最も早く検出された時点か ら順次統合して行く。 すなわち、 同一の焦点で、 時系列の核の認識結果 を一^ 3の集合 (セッ ト) に統合する。 以下の手順で行う。
1 . 出現時間の最も早い核を選ぶ。
2 . 次の時点で、 最も二次元的距離 d X y距離が近く、 かつその距離 が予め指定した適切な閾値 (現在のシステムでは 2 5 ピクセル) 以下の 核を同じ核に由来するもの ( s u c c e s s o r ) として同じ核に統合 する。
3 . 同じ核に由来するものがいなくなるまで 2を繰り返す。
4 . 統合されずに残っている核がなくなるまで、 1 — 3を繰り返す。 ( i i ) 同時点の画像群に含まれる同一の細胞核由来の核領域の統合 前述した方法と同様にして、 同時点で焦点面 ( z座標) の異なる画像 群に含まれる同一の細胞核由来の核領域を統合する。 同一の時点で異な る焦点面の核の認識結果を一つのセッ トに統合する。 この場合の現在の システムの距離の閾値は 1 0ピクセルで.ある。
( c ) 核予想領域の指定
ある焦点面に核領域が存在した場合、 その同時点の隣接する上下の焦 点面にはその核領域と同じ核由来の核領域が存在する確率が高いものと 考える。 具体的にはある核領域を考えるとき、 その核領域の重心の座標
(Xc, Yc) をと り、 その同時点、隣接上下の画像の座標 (Xc, Yc) を中心 と して半径 Rの領域を核予想領域とする。 現在のシステムでは Rは標準 的な核の半径にしている。 同様の作業を同焦点面の隣接する時点の画像 にもおこなう。 すなわち上述の核領域に対して、 その同焦点面、 隣接時 点の画像の座標 (Xc, Yc) を中心として半径 Rの円領域を核予想領域と する。 ( d ) フィー ドバック
( c ) の結果得られた核予想領域を ( a ) に与えて ( a ) ~ ( d ) の 作業を繰り返す。 このフィードバック作業を数回行ったのち、 (b ) で得 られる 3次元核領域を次の 4次元的核領域の統合のステップに渡す。
[ 4次元核領域の統合作業からのフィードパック]
本プロセスには ( a ) 3次元核領域の選出、 ( b ) 核領域の 4次元的 統合、 ( c ) 核予想領域の指定、 ( d ) フィードパックの 4プロセスが含 まれる。
( a ) 3次元核領域の選出
前記同時点、 同焦点面に含まれる核領域の統合作業からのフィードパ ックを効果がなくなるまで行う。
( b ) 核領域の 4次元的統合
時系列、 焦点方向にそれぞれに統合された核領域 (統合核領域) の間 で、 共有する核領域をもつ統合核領域の組み合わせが存在する場合、 そ れらは同一の核由来の統合核領域であるとみなし、 それらをさらに統合 する (4 D画像において統合された核領域を 4次元統合核領域という)。 同焦点の画像群、 同時点の画像群において統合された各セッ トのうち、 同一の核を含むセッ ト同士を一つのセッ トに統合する際に、 5つ以下の 画像でしか認識されなかったセッ トは、 フラグメントとみなし、 系譜に は使用しない。 第 1 2図は核領域の統合を説明する図である。 白円は所 定の細胞核が検出されなかった画像であり、 黒円は所定の細胞核が検出 された画像である。縦方向実線は同一の核と認識された一セッ トである。 横方向点線は同一の核と認識された一セッ トである。
( c ) 核予想領域の指定
隣接焦点面、 隣接時間の情報を同時に用いて核予想領域を指定する。 現在のシステムでは具体的には、 同一時点隣接焦点面の二画像、 および 同一焦点面隣接時点の二面像、 計四画像のうち三画像以上に同一核由来 の核領域がある領域が存在した場合、 それらの核領减の重心を中心と し た半径 Rの円領域の和集合領域を核予想領域にする。
( d ) フィードパック
( c ) の結果得られた核予想領域を ( a ) に与えて ( a ) 〜 ( d ) の 作業を繰り替えす。 このフィードパック作業を数回行ったのち、 ( b ) で 得られる統合された 4時元核領域を次の細胞系譜作成作業のステップに 渡す。
[細胞系譜作成作業からのブイ一ドパック]
本プロセスは ( a ) 4次元核領域の選出、 (b ) 細胞系譜作成、 ( c ) 核予想領域の指定、 (d )フィードバック、 の 4プロセスが含まれる。
( a ) 4次元核領域の選出
前記 4次元核領域の統合作業からのフィードパック作業をそれぞれ の効果がなくなるまで掛ける。
( b ) 細胞系譜作成
本プロセスでは、 ( i ) 4次元核領域の 3者母娘関係の構築、 ( ϋ ) 4 次元核領域の 4者母娘関係の構築、 の 2つのプロセスをこの順に行う。
( i ) 4元核領域の 3者親子関係の構築
本プロセスでは母核、 およぴその分裂後の 2つの娘核を示す 3つの 4 次元核領域を探し出す。
Ni, N2, を 4次元核領域とする。 各 4次元核領域(Ni)には以下情 報が含まれる。 出現時点 ei 4次元核領域に含まれる最も早い時点。
消失時点 Tdi 4次元核領域に含まれる最も遅い時点。
出現位置
Figure imgf000022_0001
出現時点の 3次元核領域の重心の X, Y, Ζ)座標。
消失位置 Pdi-(Xdi, Υώ, Zdi)
消失時点の 3次元核領域の重心の (X, Y, Ζ)座標。 存在する全ての 4次元核領域のなかから可能な全ての組み合わせて 3つの 4次元核領域の組を作成する。 各組の 4次元核領域の中で、 消失 時点が最も早いものを母 4次元核領域 とし、 それ以外のものを娘 4次元核領域 (N« , Nd2) とする。 この 3つの 4次元核領域の組み合わ せが本当の母娘核の組である可能性をあらわすスコア( 3者母娘スコア) を計算する。
現在のシステムではそのスコアは i) 母 4次元核領域の消失時点と 2 つの娘 4次元核領域の出現時点、 ii)母 4次元核領域の消失位置と 2つの 娘 4次元核領域の出現位置間の距離、 iii)母 4次元核領域の消失位置と 2 つの娘 4次元核領域の出現位置との位置関係 (特に 2つの 4次元娘細胞 の出現位置の中点に母 4次元核領域の消失位置が近いか否か)、を反映し たものになっている。 具体的には現在のスコア F3(Nm, Ndi, Nds)は以下 のように与える。
F3(Nm, Ndl, Nd2) -¾t((T(Nm, Ndi) - Cat)2 + (T(Nm, Nd2) - Cat)2)
-K3s((S(Nm, Ndl) - C3s)2 + (S(Nm, Nd2)一 C38)2)
Figure imgf000023_0001
ここで
Τ(Νι, N2) (Nlの消失時間) - (N2の出現時間)
S(Ni, N2) (N1の消失位置)と (N2の出現位置)との距離 /i dl― Χβ2)2 + (Ydl - Ye2)2 + (Zdl― Ζβ2)2
V(Ni, N2) = (Nlの消失位置)から (Ν2の出現位置)へのべク トル
(Xe2一 Xdl, Ye2 "Yel, Ze2一 Zel)
Kat, K3s. av, Cat, C3aは適切な定数。 以上のよう にして全ての存在する 3つの 4次元核領域.の 3者母娘ス コアを計算し、 スコアの成績の良いものから順に、 3者母娘関係と して 決定していき、 閾値となるスコアよ り成績が悪い組み合わせになるまで それを順に繰り返す。 矛盾する母娘関係が生じた場合は、 スコアの成績 の良い母娘関係を優先させる。
( ϋ ) 4次元核領域の 2者親子関係の構築
( i ) で自分の母あるいは娘の少なく ともいずれかが決定されなかつ た 4次元核領域の中から、母核おょぴその分裂後の 2つの娘核のうちの どちらか 3をあらわす、 2つの 4次元核領域の組を求める。
( i ) で自分の母あるいは娘の少なく ともいづれかが決定されなかつ た 4次元核領域の中から、可能な全ての 2つ組を作成する。それらの各組 の 4次元核領域の中で、 消失時点の早いものを母 4次元核領域 (Nm) t し、 残りを娘 4次元核領域 (Nd, Nd) とする。 この 2つの 4次元核領域 の組み合わせが本当の母娘核の組である可能性をあらわすスコア ( 2者 母娘スコア) を計算する。
現在のシステムではそのスコアは i) 母 4次元核領域の消失時点と 2 つの娘 4次元核領域の出現時点、 ii)母 4次元核領域の消失位置と 2つの 娘 4次元核領域の出現位置間の距離、 を反映したものになっている。 具 体的には現在のスコァ F2(Nm, Nd)は以下のように与える。
F2(Nm, Nd) = - K2t ((T(Nm, Nd) - Cat)2) - K2s((S(Nm, Na) - C2s)2) ここで
K2t, K2a, C2t, C28は適切な定数。 以上のよう にして全ての 2つの 4次元核領域の 2者母娘スコアを計 算し、 閾値となるスコアよ り成績が良い組み合わせを 2者母娘関係と し て決定する。
( c ) 核予想領域の指定
3者母娘関係、 2者母娘関係をそれぞれ用いて核予想領域を指定する。
( i ) 3者母娘関係を用いた核予想領域の指定
3者母娘関係が決定された 4次元核領域の組について母 4次元核領 域の消失時点および 2つの娘 4次元核領域の出現時点をもちいて核予想 領域を指定する。 母 4次元核領域の消失時点および娘 4次元核領域の出 現時点におけるそれぞれの 4次元核領域に含まれる核領域においては、 その同時点の隣接する上下の焦点面、 およびその同焦点面における隣接 する前後の時点にはその核領域と同じ核由来の核領域が存在する確率が 高いものと考^る。 具体的にはある出現時点、 あるいは消失時点の核領 域を考えるとき、 その核領域の重心の座標 (Xc, Yc) をと り、 その同時 点、隣接上下焦点面の画像、 および同焦点面、 隣接前後時点の面像、 それ ぞれの座標 (Xc, Yc) を中心と して半径 Rの領域を核予想領域とする。 現在のシステムでは Rは標準的な核の半径にしている。
( n ) 2者母娘関係を用いた核予想領域の指定
2者母娘関係が決定された 4次元核領域の組について母 4次元核領 域の消失時点おょぴ娘 4次元核領域の出現時点を用いて核予想領域を指 定する。 母 4次元核領域の消失時点おょぴ娘 4次元核領域の出現時点に おけるそれぞれの 4次元核領域に含まれる核領域においては、 その同時 点の隣接する上下の焦点面、 およびその同焦点面における隣接する前後 の時点にはその核領域と同じ核由来の核領域が存在する確率が高いもの と考える。 具体的な方法は ( i ) と同一である。
また、 娘 4次元核領域の出現時点において、 母 4次元核領域の消失位 置を中心と して娘 4次元核領域の出現位置と点対称の位置周辺に、 もう —つの娘細胞が出現する確率が高いと考え、 核予想領域を指定する。 具 体的には娘細胞の出現時点、 およびその隣接前後の時点において、 上記 の娘細胞の出現位置と点対称の位置を中心に、 半径 Rの円領域を核予想 領域とする。 現在のシステムでは Rは標準的な核の半径にしている。
( d ) フィードパック
( c ) の結果得られた核予想領域を ( a ) に与えて ( a ) 〜 ( d ) の 作業を繰り返す。 このブイ一ドパック作業を数回行ったのち、 (b ) で得 られる統合された 4時元核領域をフィ一ドパック機構による核領域選定 機構の出力として次のステップに出力する。
[IV] 誤認された核領域の除去
次いで、 自動核認識の結果から、 誤認された核領域を人間の判断で除 去する。 詳細については、 第一の実施形態に関する説明、 およぴ第 8図 乃至第 1 0図を引用することができる。 尚、 この工程は、 本発明におい て必須の工程ではない。
[ V ] 核情報の統合
異なる 2次元画像において認識された同一細胞核に由来する核領域 の統合について説明する。 2次元画像での認識の結果から、 画像上にお いてどの核がいつどこで出現、 消滅するか知るため、 異なる 2次元画像 で認識された同一の核をまとめる。 核情報の統合については、 第一の実 施形態の記載が引用され、 第 1 1図を参酌することができる。 第 1 1図 において、 横軸が時間軸 (時点)、 縦軸が焦点軸 (焦点面) である。
[同焦点面の画像群に含まれる同一の細胞核由来の核領域の統合] 同じ焦点面で撮影された (すなわち、 z軸の座標の値が等しい) 時系 列の画像群に注目 し、 これらの画像それぞれの核領域で、 同じ核に由来 するもの (すなわち、 同じ核の時間変化を追っていることになるもの) を統合する。 核領域 N , が座標 (x, y ) , ( x ' , y ' ) で検出さ れたとき、 N , N ,の二次元的な距離 d X yを以下のように定義すると 共に、 同一の核由来と判断される条件を定める。
Figure imgf000026_0001
この二次元的距離を用い、 それぞれの核を最も早く検出された時点か ら順次統合して行く。 すなわち、 同一の焦点で、 時系列の核の認識結果 を一つの集合 (セッ ト) に統合する。 以下の手順で行う。
1 . 出現時間の最も早い核を選ぶ。 2 . 次の時点で、 最も二次元的距離 d x yが近く、 かつその距離が予 め指定した適切な閾値 (現在のシステムでは 2 5 ピクセル) 以下の核を 同じ核に由来するもの( s u c c e s s o r )として同じ核に統合する。
3 . 同じ核に由来するものがいなくなるまで 2を繰り返す。
4 . 統合されずに残っている核がなぐなるまで、 1 — 3を繰り返す。
[同時点の画像群に含まれる同一の細胞核由来の核領域の統合] 前述した方法と同様にして、 同時点で焦点面 ( z座標) の異なる画像 群に含まれる同一の細胞核由来の核領域を統合する。 同一の時点で異な る焦点面の核の認識結果を一つのセッ トに銃合する。 この場合の現在の システムでの距離の閾値は 1 0 ピクセルである。
[全 4 D画像中に現れる同一の細胞核由来の核領域の統合]
時系列、 焦点方向にそれぞれに統合された核領域 (統合核領域) の間 で、 共有する核領域をもつ統合核領域の組み合わせが存在する場合、 そ れらは同一の核由来の統合核領域であるとみなし、 それらをさらに統合 する (4 D画像において統合された核領域を 4次元統合核領域という)。 同焦点の画像群、 同時点の画像群において統合された各セッ トのうち、 同一の核を含むセッ ト同士を一つのセッ トに統合する際に、 5つ以下の 画像でしか認識されなかったセッ トは、 フラグメントとみなし、 系譜に は使用しない。 第 1 2図は核領域の統合を説明する図である。 白円は所 定の細胞核が検出されなかった画像であり、 黒円は所定の細胞核が検出 された画像である。縦方向実線は同一の核と認識された一セッ トである。 横方向点線は同一の核と認識された一セッ トである。 '
[VI ] 細胞系譜の構築
4次元統合核領域には画像中の細胞核が出現、 消滅する時点、 位置の 情報が含まれている。 それを基に細胞系譜を構成する (第 1 3図)。 細胞 系譜の構築については、第一の実施形態の手法を用いることもできるが、 第二の実施形態では異なる手法を採用している。 本プロセスでは、 ( i ) 4次元核領域の 3者母娘関係の構築、 ( ii ) 4次元核領域の 4者母娘闋係 の構築、 の 2つのプロセスをこの順に行う。
( i ) 4元核領域の 3者親子関係の構築
本プロセスでは母核、 おょぴその分裂後の 2つの娘核を示す 3つの 4 次元核領域を探し出す。
Ni, N2, 〜Nnを 4次元核領域とする。 各 4次元核領域(Ni)には以下情 報が含まれる。 出現時点 Tei 4次元核領域に含まれる最も早い時点。
消失時点 Tdi 4次元核領域に含まれる最も遅い時点。
出現位置
Figure imgf000028_0001
Yei, Zei)
出現時点の 3次元核領域の重心の (X, Y, Ζ)座標。
消失位置 Pdi-{Xdi,Ydi, Zdi)
消失時点の 3次元核領域の重心の (X, Y, Ζ)座標。 存在する全ての 4次元核領域のなかから可能な全ての組み合わせて 3つの 4次元核領域の組を作成する。 各組の 4次元核領域の中で、 消失 時点が最も早いものを母 4次元核領域 (Nm) とし、 それ以外のものを娘 4次元核領域 (Ndi, Nd2) とする。 この 3つの 4次元核領域の組み合わ せが本当の母娘核の組である可能性をあらわすスコア( 3者母娘スコア) を計算する。
現在のシステムではそのス コアは i) 母 4次元核領域の消失時点と 2 つの娘 4次元核領域の出現時点、 ii)母 4次元核領域の消失位置と 2つの 娘 4次元核領域の出現位置間の距離、 i i i )母 4次元核領域の消失位置と 2 つの娘 4次元核領域の出現位置との位置関係 (特に 2つの 4次元娘細胞 の出現位置の中点に母 4次元核領域の消失位置が近いか否か)、を反映し たものになっている。 具体的には現在のスコア F3(Nm, Ndi, Nd2)は以下 のように与える。 Fa(Nm7 Ndi, Nd2) -K3t((T(Nm, Ndi) - Cat)2 + (T(Nm, Nd2)― Cat)2)
-K3s((S(Nm, Ndi) - C3s)2 + (S(Nm, NS2)一 Css)2)
Figure imgf000029_0001
ここで
T(Ni, N2) (Nlの消失時間) - (N2の出現時間)
S(Ni, N2) (N1の消失位置)と (N2の出現位置)との距離 iXdl― e2)2 + (Ydl - Ye2)2 + (Zdl - Ze2)2
V(Ni, N2) = (Nlの消失位置)から (N2の出現位置)へのべク トル
(Xe2 - Xdl, Ye2— Yel, Ze2— Zel)
Kat, Kse, Ksv, Cat, C3aは適切な定数。 以上のよ う にして全ての存在する 3つの 4次元核領域の 3者母娘ス コアを計算し、 スコアの成績の良いものから順に、 3者母'娘関係と して 決定していき、 閾値となるスコアよ り成績が悪い組み合わせになるまで それを順に繰り返す。 矛盾する母娘関係が生じた場合は、 スコアの成績 の良い母娘関係を優先させる。
( ii ) 4.次元核領域の 2者親子関係の構築
( i ) で自分の母あるいは娘の少なく ともいずれかが決定されなかつ た 4次元核領域の中から、母核おょぴその分裂後の 2つの娘核のうちの どちらか一つをあらわす、 2つの 4次元核領域の組を求める。
( i ) で自分の母あるいは娘の少なく ともいづれかが決定されなかつ た 4次元核領域の中から、可能な全ての 2つ組を作成する。それらの各組 の 4次元核領域の中で、 消失時点の早いものを母 4次元核領域 (Nm) と し、 残りを娘 4次元核領域 (Nd, Nd) とする。 この 2つの 4次元核領域 の組み合わせが本当の母娘核の組である可能性をあらわすスコア ( 2者 母娘スコア) を計算する。 現在のシステムではそのスコアは i) 母 4次 元核領域の消失時点と 2つの娘 4次元核領域の出現時点、 ii)母 4次元核 領域の消失位置と 2つの娘 4次元核領域の出現位置間の距離、 を反映し たものになっている。 具体的には現在のスコア F2(Nm, Nd)は以下のよう に与える。
F2(Nm, Nd) = - ¾t ((T(Nm, Nd) - C2t)2) - K23((S(Nm, Nd) - C2s)2) ここで
K2t, K23, C2t, C2sは適切な定数。 以上のよ うにして全ての 2つの 4次元核領域の 2者母娘スコアを計 算し、 閾値となるスコアよ り成績が良い組み合わせを 2者母娘関係とし て決定する。
[ C ] 他の核領域抽出フィルタ
前記二つの実施形態においては、 核認識フィルタと して三つの画像処 理アルゴリ ズムを採用したが、 本発明に用いられる核認識フィルタはこ れらに限定されるものではない。 以下に核認識フィルタの他の実施形態 について説明する。
[エントロピーフイノレタ]
第 1 6図は、 ノマルスキー型透過型微分干渉顕微鏡で撮影した線虫初 期胚の顕微鏡画像であって、 濃淡差の大きい細胞質の部分 (画質がザラ ザラしている部分) と、 比較的濃淡差の小さい核の部分 (画質が比較的 平坦な部分) が観察される。 エン トロ ピーフィルタは、 画像から平坦な 部分を効率的に抽出するフィルタである。 これは、 細胞質の画質がザラ ザラしているのに対して、 核領域の画質が比較的平坦であることを利用 したものである。 第 1 5図に示すよ うに、 元画像の中に始点 (X、 y ) を決定する。 X : 0〜 (画像幅—ウィンドウ幅) ; y : 0〜 (画像の高さ —ウィンドウの高さ) である。 次いで、 始点から (幅、 高さ) == ( A , B ) の大きさのウィンドウで画像を区画する。 区画されたウィンドウの エントロピーを計算し、 これを、 結果の画像の座標 ( x、 y ) に保存す る。
ェントロピー計算は下記の式に基づいて行なわれる。
Figure imgf000031_0001
式において、 P ( 1 ) は、 特徴を計測したい画像領域に対して、 濃淡 ヒス トグラム H ( 1 ) (濃淡レベル数が Lであれば、 1 = 0 , 1 , 2 , · . . , L一 1である) を求め、 頻度の総数 (画像領域の画素数 N) で各 濃淡レベルの頻度を割って、 総画素数が 1 . 0になるように正規化した 濃淡ヒス トグラムである。 求められるエントロピーの値を基準にして核 領域、 細胞質領域の区別を行う。
小区画のェントロピー計算を行いながら元画像を走査することで、 効 率良く核の位置を抽出することができる。 エン ト ロ ピーウィンドウサイ ズについては、 顕微鏡の種類や倍率等に依存するものであるが、 6 [pixel] X 6 [pixel]~ 2 0 [pixel] X 2 0 [pixel] (好ましくは、 1 0 [pixel] X 1 0 [pixel], または、 1 .2 [pixel] X 1 2 [pixel]) の画像領域ゥイ ン ド ゥに対して走査することにより良好な結果を得た。 この場合、 核領域の ピクセルは、 細胞分裂等の要因によって幅があるが、 だいたい 1 0 0 0 ピクセルから 1 0 0 0 0ピクセルである。 第 1 7図は、 エントロピーフ ィルタによる処理後の細胞の画像 (フィルタリ ング画像) である。 第 1 8図は、 エントロピーフィルタによる処理後の面像を閾値処理したもの を、 顕微鏡画像に重'ね合わせたものである。
画像を小ウィンドウで区切り、 該ウィンドウのエン ト ロ ピーを計算し ながら画像を走査することで画像から平坦な部分を抽出することができ る。 ェントロビーフィルタによるフィルタリ ング画像を閾値処理するこ とで、 面像から平坦.な部分を良好に抽出することができる。 本明細書に おいて、 「平坦」 とは、 画素値の差が比較的小さい、 すなわち、 画素の濃 度値 (輝度値) が比較的均一であることを意味する。 これに対して、 「平 坦でない」 とは、 画素値の差が比較的大きい、 すなわち、 画素の濃度値
(輝度値) が不均一であることを意味する。 グレースケール画像では、 濃度値は、 白黒の濃淡を示す値である。 カラー画像では、 濃度値は、 R , G , Bそれぞれの濃度 (輝度) を示す値である。 カラー画像について 、 「画素値の差が小さい、 大きい」 とは、 R , G , Bの組み合わせがよ り近ければ小さい、 組み合わせが異なるほど大きい、 と言う ことができ る。
[ F F Tフィルタ]
特徴を計測したい画像領域に対して、 2次元 F F Tパワースぺク トル (高速フーリエ変換パワースペク トル) を計算し低周波、 高周波領域の 特徴を用いて核領域を検出する。 通常のフーリェ変換も使用することが できる。 フィルタの出力結果は 2値化して使用する。 産業上の利用可能性
製薬、 医療、 農業、 食品分野において、 ゲノム情報を有効利用した商 品開発等に利用が可能である。

Claims

請求の範囲
1 . ( a )観察対象の細胞について焦点面を変化させて 2次元画像を複数 撮影し、 かつ、 該 2次元画像を時系列に複数撮影することで焦点面、 時 点で異なる複数の 2次元画像を得る工程と、
( b ) 前記夫々の 2次元画像において、 面像処理を行うことで細胞核領 域を抽出する工程と、
( c ) 前記夫々の 2次元画像において抽出された細胞核領域から、 同一 細胞核に由来する細胞核領域を統合する工程と、
( d ) 統合された細胞核領域において、 画像中の細胞核領域が出現、 消 滅する時点、 位置の情報から細胞系譜を構築する工程とを含むことを特 徴とする細胞系譜抽出方法。
2 . 請求の範囲 1において、 前記画像は、 透過型微分干歩顕微鏡で撮影 したものであることを特徴とする細胞系譜抽出方法。
3 . 請求の範囲 1において、 細胞核領域を抽出する工程は、 細胞核とそ れ以外の細胞部分とにおける面像の明暗の差異を利用して画像処理を行 う ことを含むことを特徴とする細胞系譜抽出方法。 .
4 . 請求の範囲 3において、 前記細胞核領域を抽出する工程は、 細胞質 に比べて画像の明暗の細かい変化が少ない領域を核領域と して検出する 手法を含むことを特徴とする細胞系譜抽出方法。
5 . 請求の範囲 3において、 前記細胞核領域を抽出する工程は、 光の角 度に沿って広い範囲で明暗の変化の大きい部分を核と して抽出する手法 .を含むことを特徴とする細胞系譜抽出方法。
6 . 請求の範囲 1において、 前記細胞核領域を抽出する工程は、 複数の 異なる細胞核領域認識アルゴリズムを備えており、 該複数のアルゴリズ ムの少なく とも一つに基づいて細胞核を認識した領域は、 画像処理シス テムとして細胞核領域として扱うことを特徴とする細胞系譜抽出方法。
7 . 請求の範囲 4において、 画像の明暗の細かい変化が少ない領域を核 と して検出する手法は、 Kirsch フィルタ、 Pre w i tt フイノレタ、 F F Tフ イルクからなる群から選択された一つあるいは複数のフイルクを用いる ものであることを特徴とする細胞系譜抽出方法。
8 . 請求の範囲 5において、 光の角度に沿って広い範囲で明暗の変化の 大きい部分を核と して抽出する手法は、 見た目の光の角度に沿って上下 所定ピクセル分の輝度値の合計の差分を取る工程を含むものであること を特徴とする細胞系譜抽出方法。
9 . 請求の範囲 8において、 該手法は、 細胞境界の抽出、 胚領域の抽出 を行う工程を含み、 該工程の結果に基づいて請求の範囲 8の手法による 結果を補正することを特徴とする細胞系譜抽出方法。
1 0 . 請求の範囲 1において、 細胞核領域を抽出する工程は、 細胞画像 を小ウィンドウで区切り、 該ウィンドウのエン ト ロ ピーを計算しながら 該細胞画像を走査することで、 該細胞画像から核領域を抽出することを 特徴とする細胞系譜抽出方法。
1 1 . 請求の範囲 1において、 前記夫々の 2次元面像において抽出され た細胞核から、 同一細胞核に由来する細胞核領域を統合する工程は、 同 焦点面の画像群に含まれる同一の細胞核由来の核領域を統合する工程と 、 同時点の画像群に含まれる同一の細胞核由来の細胞核領域を統合する 工程と、 前記二つの工程で得られた細胞核領域をさらに統合する工程を 含むことを特徴とする細胞系譜抽出方法。
1 2 . 請求の範囲 1 1において、 前記二つの工程で得られた核領域を統 合する工程は、 各統合された統合核領域において、 共有する核領域をも つ結合核領域の組み合わせが存在する場合、 それらは同一の核由来の統 合核領域であるとみなし、 それらを統合する工程を含むことを特徴とす る細胞系譜抽出方法。
1 3 . 請求の範囲 1において、 統合された細胞核領域において、 面像中 の細胞核領域が出現、 消滅する時点、 位置の情報から細胞系譜を構築す る工程は、 複数の細胞核領域の 4次元距離を求めることにより、 母細胞 と、 その細胞の細胞分裂後の娘細胞とを特定する工程を含むことを特徴 とする細胞系譜抽出方法。
1 4 . ( a )観察対象の細胞について焦点面を変化させて 2次元画像を複 数撮影し、 かつ、 該 2次元画像を時系列に複数撮影することで焦点面、 時点で異なる複数の 2次元画像を得る工程と、
( ) 前記夫々の 2次元画像において、 画像処理を行うことで細胞核領 域を抽出する工程と、
( c ) 前記夫々の 2次元画像において抽出された細胞核領域から、 同一 細胞核に由来する細胞核領域を統合する工程と、
( d ) 統合された細胞核領域において、 画像中の細胞核領域が出現、 消 滅する時点、 位置の情報から細胞系譜を構築する工程とを含む方法であ つて、
( e ) 前記 (b ) 工程は、 細胞核の侯補となる領域を抽出する工程と、 細胞系譜作成試行作業による細胞核予想領域の指定と、 該予想領域を該 細胞核候補領域にフィ一ドバックさせて細胞核領域を抽出する工程とを 備えていることを特徴とする細胞系譜抽出方法。 .
1 5 . 請求の範囲 1 4において、 該細胞系譜作成試行作業は、 同時点、 同焦点面に含まれる核領域の統合、 4次元的核領域の統合、 細胞系譜の 作成の少なく とも一つ以上を含み、 該試行作業による核予想領域の指定 をフィードパックさせることを特徴とする細胞系譜抽出方法。
1 6 . 請求の範囲 1 4において、 該核候補領域には核スコアが付与され ており、 該核スコアと予め設定された指.定値とを比較することで核領域 を抽出するように構成されており、 核予想領域からのフィードバックに よって、 該核スコアを変更させることを特徴とする細胞系譜抽出方法。
1 7 . 請求の範囲 1 4において、 細胞核の候補領域を抽出する工程は、 細胞核とそれ以外の細胞部分とにおける画像の明暗の差異を利用して画 像処理を行い、 該核候補領域を指定すると共に、 該核候補領域に核スコ ァを付与するものであることを特徴とする細胞系譜抽出方法。
1 8 . 請求の範囲 1 7において、 細胞核の候補領域を抽出する工程は、 画像処理結果を所定の閾値を用いて二値化することで、 核候補領域を指 定し、 指定された領域に核スコアを付与するものであることを特徴とす る細胞系譜抽出方法。
1 9 . 請求の範囲 1 7において、 細胞核の候補領域を抽出する工程は、 画像処理結果の画像において、 黒色方向極領域をスコア付きで抽出する ことで核候補領域をする とを特徴とする細胞系譜抽出方法。
2 0 . 請求の範囲 1 5において、 同時点、 同焦点面に含まれる核領域の 統合作業からのフィードパックは、 核領域の選出、 同時点、 同焦点面で の核領域の統合、 核予想領域の指定を含み、 核予想領域の指定の結果を 核領域の選出工程にフィードパックさせるように構成されていることを 特徴とする細胞系譜抽出方法。
2 1 . 請求の範囲 1 5において、 4次元核領域の統合作業からのフィー ドパックは、 3次元核領域の選出、 同時点、 同焦点 ®での核領域の統合 、 核予想領域の指定を含み、 核予想領域の指定の結果を核領域の選出ェ 程にフィードパックさせるよ うに構成されていることを特徴とする細胞 系譜抽出方法。
2 2 . 請求の範囲 1 5において、 細胞系譜作業からのフィードパックは 、 4次元核領域の選出、 細胞系譜作成、 核予想領域の指定を含み、 核予 想領域の指定の結果を該核領域の選出工程にフィードパックさせるよう に構成されていることを特徴とする細胞系譜抽出方法。 ·
2 3 . 細胞画像を小ウィンドウで区切り、該ウィンドウのエン トロ ピー を計算しながら該細胞画像を走査することで、 該細胞画像から核領域を 抽出することを特徴とする核領域抽出法。
PCT/JP2000/008580 2000-03-23 2000-12-04 Methode d'extraction de lignee cellulaire WO2001071663A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60026732T DE60026732T2 (de) 2000-03-23 2000-12-04 Zellenreihen-extraktionsverfahren
US10/182,429 US7110584B2 (en) 2000-03-23 2000-12-04 Cell lineage extracting method
EP00979080A EP1267305B1 (en) 2000-03-23 2000-12-04 Cell lineage extracting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-81526 2000-03-23
JP2000081526A JP3679680B2 (ja) 2000-03-23 2000-03-23 細胞系譜抽出方法
JP2000128457A JP3431883B2 (ja) 2000-04-27 2000-04-27 細胞系譜抽出方法
JP2000-128457 2000-04-27

Publications (1)

Publication Number Publication Date
WO2001071663A1 true WO2001071663A1 (fr) 2001-09-27

Family

ID=26588139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008580 WO2001071663A1 (fr) 2000-03-23 2000-12-04 Methode d'extraction de lignee cellulaire

Country Status (4)

Country Link
US (1) US7110584B2 (ja)
EP (1) EP1267305B1 (ja)
DE (1) DE60026732T2 (ja)
WO (1) WO2001071663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1339017A1 (en) * 2000-12-01 2003-08-27 Japan Science and Technology Corporation Nuclear area recognizing method and nuclear genealogy creating method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860540B2 (ja) * 2000-12-01 2006-12-20 独立行政法人科学技術振興機構 エントロピーフィルタ及び該フィルタを用いた領域抽出法
WO2003055530A1 (en) * 2001-12-21 2003-07-10 Medvet Science Pty Ltd Chorioallantoic membrane (cam) assay for identifying agents with biological effects
US20050009032A1 (en) * 2003-07-07 2005-01-13 Cytokinetics, Inc. Methods and apparatus for characterising cells and treatments
GB2433986A (en) * 2006-01-09 2007-07-11 Cytokinetics Inc Granularity analysis in cellular phenotypes
JP5385752B2 (ja) * 2009-10-20 2014-01-08 キヤノン株式会社 画像認識装置、その処理方法及びプログラム
JP6000699B2 (ja) 2012-07-05 2016-10-05 オリンパス株式会社 細胞分裂過程追跡装置、及び細胞分裂過程追跡プログラム
CN104881857B (zh) * 2014-02-28 2017-06-06 中国长江三峡集团公司中华鲟研究所 一种鱼卵母细胞极核偏移值的图像分析计算方法
JP2018014991A (ja) 2016-07-13 2018-02-01 ソニー株式会社 情報処理装置、情報処理方法及び情報処理システム
JP2018022216A (ja) * 2016-08-01 2018-02-08 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP7024231B2 (ja) * 2017-07-10 2022-02-24 ソニーグループ株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
CN117575977B (zh) * 2024-01-17 2024-04-02 锦恒科技(大连)有限公司 一种用于卵巢组织分析的卵泡区域增强方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164236A (ja) * 1984-02-07 1985-08-27 Hamamatsu Photonics Kk 細胞計測方法
JPH0283785A (ja) * 1988-09-21 1990-03-23 Komatsu Ltd 物体の認識方法
JPH0696192A (ja) * 1992-09-10 1994-04-08 Sumitomo Metal Ind Ltd 核抽出方法
JPH10185911A (ja) * 1996-10-23 1998-07-14 K O Denshi Kogyo Kk 細胞解析装置及びその方法
US5917936A (en) * 1996-02-14 1999-06-29 Nec Corporation Object detecting system based on multiple-eye images

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569028A (en) * 1983-06-24 1986-02-04 Analogic Corporation Adaptive digitizer circuit for information processing system
JPH07121232B2 (ja) * 1987-02-27 1995-12-25 住友電気工業株式会社 細胞増殖状態のモニタ−方法及びそのモニタ−装置
JPH0216682A (ja) * 1988-07-04 1990-01-19 Sumitomo Electric Ind Ltd 細胞増殖状態のモニタ方法及びそのモニタ装置
US5766948A (en) * 1993-01-06 1998-06-16 The Regents Of The University Of California Method for production of neuroblasts
US5418714A (en) * 1993-04-08 1995-05-23 Eyesys Laboratories, Inc. Method and apparatus for variable block size interpolative coding of images
US5643761A (en) * 1993-10-27 1997-07-01 The Trustees Of Columbia University In The City Of New York Method for generating a subtracted cDNA library and uses of the generated library
US6051376A (en) * 1994-09-30 2000-04-18 The Trustees Of Columbia University In The City Of New York Uses of mda-6
JP3490490B2 (ja) * 1994-01-28 2004-01-26 株式会社東芝 パターン画像処理装置及び画像処理方法
US5667981A (en) * 1994-05-13 1997-09-16 Childrens Hospital Of Los Angeles Diagnostics and treatments for cancers expressing tyrosine phosphorylated CRKL protein
US6110666A (en) * 1994-06-09 2000-08-29 Medical Research Council Locus control subregions conferring integration-site independent transgene expression abstract of the disclosure
US6252979B1 (en) * 1995-06-07 2001-06-26 Tripath Imaging, Inc. Interactive method and apparatus for sorting biological specimens
EP0836090A1 (en) * 1996-10-12 1998-04-15 Evotec BioSystems GmbH Method of analysis of samples by determination of the distribution of specific brightnesses of particles
DE19801400C2 (de) 1998-01-16 2001-10-18 Petra Perner Verfahren zur automatischen Erkennung, Eigenschaftsbeschreibung und Interpretation von Hep-2-Zellmustern
JP4189060B2 (ja) * 1998-07-10 2008-12-03 株式会社Ihi コンクリート表面の遊離石灰抽出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164236A (ja) * 1984-02-07 1985-08-27 Hamamatsu Photonics Kk 細胞計測方法
JPH0283785A (ja) * 1988-09-21 1990-03-23 Komatsu Ltd 物体の認識方法
JPH0696192A (ja) * 1992-09-10 1994-04-08 Sumitomo Metal Ind Ltd 核抽出方法
US5917936A (en) * 1996-02-14 1999-06-29 Nec Corporation Object detecting system based on multiple-eye images
JPH10185911A (ja) * 1996-10-23 1998-07-14 K O Denshi Kogyo Kk 細胞解析装置及びその方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1267305A4 *
TOSHIHARU MATSUMURA: "Sequence of cell life phases in a finitely proliferative populations of cultured rat cells: A genealogical study", JOURNAL OF CELLULAR PHYSIOLOGY, vol. 119, no. 2, May 1984 (1984-05-01), pages 145 - 154, XP002936722 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1339017A1 (en) * 2000-12-01 2003-08-27 Japan Science and Technology Corporation Nuclear area recognizing method and nuclear genealogy creating method
EP1339017A4 (en) * 2000-12-01 2007-08-29 Japan Science & Tech Corp METHOD FOR DETERMINING NUCLEAR ZONES AND METHOD FOR ESTABLISHING NUCLEAR GENEALOGY

Also Published As

Publication number Publication date
DE60026732T2 (de) 2006-08-17
US7110584B2 (en) 2006-09-19
DE60026732D1 (de) 2006-05-11
EP1267305A4 (en) 2003-05-21
EP1267305A1 (en) 2002-12-18
US20030108230A1 (en) 2003-06-12
EP1267305B1 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US8073233B2 (en) Image processor, microscope system, and area specifying program
CN102426649B (zh) 一种简单的高准确率的钢印数字自动识别方法
RU2595495C2 (ru) Устройство обработки изображений, способ обработки изображений и система обработки изображений
JP2017521779A (ja) 画像解析を用いた核のエッジの検出
WO2009157530A1 (ja) 胚観察装置
CN104794502A (zh) 一种基于图像处理和模式识别技术的稻瘟病孢子显微图像识别方法
WO2010055629A1 (ja) 特徴量抽出装置、物体識別装置及び特徴量抽出方法
WO2001071663A1 (fr) Methode d&#39;extraction de lignee cellulaire
JP3889361B2 (ja) 核領域認識法および細胞系譜作成法
JP3431883B2 (ja) 細胞系譜抽出方法
JP2008146278A (ja) 細胞輪郭抽出装置、細胞輪郭抽出方法およびプログラム
JP2008535519A (ja) 細胞の構造及びその構成要素を分析する方法
JP3679680B2 (ja) 細胞系譜抽出方法
JP3921182B2 (ja) 核領域認識における結合核領域の切断方法
JP3860540B2 (ja) エントロピーフィルタ及び該フィルタを用いた領域抽出法
JP5530126B2 (ja) 三次元細胞画像解析システム及びそれに用いる三次元細胞画像解析装置
CN116596921B (zh) 一种焚烧炉渣分选方法及系统
JP2006047102A (ja) 検査対象物の所定の表面状態の原因を自動的に求める装置
Zheng et al. Improvement of grayscale image segmentation based on pso algorithm
Magnier et al. A quantitative error measure for the evaluation of roof edge detectors
Tran et al. Classifying protein crystallization trial images using subordinate color channel
CN108520498A (zh) 一种晶体结晶过程监测中的高效晶体阴影噪声去除方法
Rizvandi et al. Machine vision detection of isolated and overlapped nematode worms using skeleton analysis
Severins et al. Point set registration for combining fluorescence microscopy methods
CN102693541A (zh) 应用图像识别对Elispot斑点分析的精确定位方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000979080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10182429

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000979080

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000979080

Country of ref document: EP