WO2001051202A1 - Method of preparing compounds using cavitation and compounds formed therefrom - Google Patents
Method of preparing compounds using cavitation and compounds formed therefrom Download PDFInfo
- Publication number
- WO2001051202A1 WO2001051202A1 PCT/US2001/001523 US0101523W WO0151202A1 WO 2001051202 A1 WO2001051202 A1 WO 2001051202A1 US 0101523 W US0101523 W US 0101523W WO 0151202 A1 WO0151202 A1 WO 0151202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavitation
- catalyst
- synthesis
- metal
- silver
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 37
- 150000001875 compounds Chemical class 0.000 title description 5
- 239000003054 catalyst Substances 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000000243 solution Substances 0.000 claims description 52
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 31
- 229910052709 silver Inorganic materials 0.000 claims description 31
- 239000004332 silver Substances 0.000 claims description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 238000001354 calcination Methods 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- 239000010931 gold Substances 0.000 claims description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 239000012266 salt solution Substances 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011133 lead Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 239000011651 chromium Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 17
- 230000001376 precipitating effect Effects 0.000 abstract description 16
- 238000002360 preparation method Methods 0.000 abstract description 15
- 239000002086 nanomaterial Substances 0.000 abstract description 8
- 239000002887 superconductor Substances 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 75
- 238000003786 synthesis reaction Methods 0.000 description 71
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 23
- 239000002002 slurry Substances 0.000 description 23
- 229910001868 water Inorganic materials 0.000 description 23
- 239000007788 liquid Substances 0.000 description 22
- 238000002474 experimental method Methods 0.000 description 21
- 239000000047 product Substances 0.000 description 21
- 238000002441 X-ray diffraction Methods 0.000 description 18
- 229910044991 metal oxide Inorganic materials 0.000 description 16
- 150000004706 metal oxides Chemical class 0.000 description 16
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 15
- 229960004592 isopropanol Drugs 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 235000010215 titanium dioxide Nutrition 0.000 description 10
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 239000000908 ammonium hydroxide Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 5
- 229940071536 silver acetate Drugs 0.000 description 5
- 229910001923 silver oxide Inorganic materials 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- -1 gasps Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229960005235 piperonyl butoxide Drugs 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000003134 recirculating effect Effects 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 2
- 229910019626 (NH4)6Mo7O24 Inorganic materials 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- PPNKDDZCLDMRHS-UHFFFAOYSA-N dinitrooxybismuthanyl nitrate Chemical compound [Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PPNKDDZCLDMRHS-UHFFFAOYSA-N 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910002339 La(NO3)3 Inorganic materials 0.000 description 1
- 229910017974 NH40H Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- KHKWDWDCSNXIBH-UHFFFAOYSA-N [Sr].[Pb] Chemical compound [Sr].[Pb] KHKWDWDCSNXIBH-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- ZZCONUBOESKGOK-UHFFFAOYSA-N aluminum;trinitrate;hydrate Chemical compound O.[Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O ZZCONUBOESKGOK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- RDQSSKKUSGYZQB-UHFFFAOYSA-N bismuthanylidyneiron Chemical compound [Fe].[Bi] RDQSSKKUSGYZQB-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- UBQALOXXVZQHGR-UHFFFAOYSA-N palladium yttrium Chemical compound [Y].[Pd] UBQALOXXVZQHGR-UHFFFAOYSA-N 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Inorganic materials [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/008—Processes for carrying out reactions under cavitation conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/882—Molybdenum and cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- Cavitation is the formation of bubbles and cavities within a liquid stream resulting from a localized pressure drop in the liquid flow. If the pressure at some point decreases to a magnitude under which the liquid reaches the boiling point for this fluid, then vapor-filled cavities and bubbles are formed. As the pressure of the liquid increases, vapor condensation takes place in the cavities and bubbles, and they collapse, creating large pressure impulses and elevated temperatures. Cavitation involves the entire sequence of events beginning with bubble formation through the collapse of the bubble. Cavitation has been studied for its ability to mix materials and aid in chemical reactions.
- cavitation there are several different ways to produce cavitation in a fluid.
- a propeller blade moving at a critical speed through water may result in cavitation. If a sufficient pressure drop occurs at tile blade surface, cavitation will result.
- the movement of a fluid through a restriction such as an orifice plate can also generate cavitation if the pressure drop across the orifice is sufficient. Both of these methods are commonly referred to as hydrodynamic cavitation.
- Cavitation may also be generated in a fluid by the use of ultrasound.
- a sound wave consists of compression and decompression cycles. If the pressure during the decompression cycle is low enough, bubbles may be formed. These bubbles will grow during the decompression cycle and contract or even implode during, the compression cycle.
- the use of ultrasound to generate cavitation to enhance chemical reactions is known as sonochemistry.
- Metal-based materials have many industrial uses. Of relevance to the present invention are those solid state metal-based materials such as catalysts, piezoelectric materials, superconductors, electrolytes, ceramic-based products, and oxides for uses such as recording media. While these materials have been produced through normal co-precipitation means, U.S. Patents 5,466,646 and 5,417,956 to Moser disclose the use of high shear followed by cavitation to produce metal based materials of high purity and improved nanosize. While the results disclosed in these patents are improved over the past methods of preparation, the inability to control the cavitation effects limit the results obtained.
- One embodiment of the present invention is directed to a process for producing metal based solid state materials of nanostructured size and in high phase purities utilizing cavitation to both create high shear and to take advantage of the energy released during bubble collapse.
- the process generally comprises the steps of: mixing a metal containing solution with a precipitating agent to form a mixed solution that precipitates a product; passing the mixed solution at elevated pressure and at a velocity into a cavitation chamber, wherein said cavitation chamber has means for creating a cavitation zone and means for controlling said zone, and wherein cavitation of the mixed solution take place, forming a cavitated precipitated product; removing said cavitated precipitated product and the mixed solution from said cavitation chamber; and separating the cavitated precipitated product from the mixed solution.
- the present invention preferably employs an apparatus for cavitation like the apparatus described in U.S. Patent 5,937,906 to Kozyuk.
- the present invention is particularly suitable for producing nanophase solid state materials such as metal oxides and metals supported on metal oxides.
- the synthesis of nanostructured materials in high phase purities is important for obtaining pure metal oxides and metals supported on metal oxides for applications in catalytic processing and electronic and structural ceramics.
- the synthesis of such materials by cavitation results in nanostructured materials with a high phase purity. While not wishing to be bound theory, it appears that high shear causes the multi-metallics to be well mixed leading to the high phase purities and nanostructured particles, and the high in situ temperatures results in decomposition of metal salts to the finished metal oxides or metals supported on metal oxides.
- the present invention may decompose at least some of the metal salts, and preferably all of the metal salts.
- the ability to synthesize advanced materials by cavitation requires the equipment used to generate the cavitation to have the capability to vary the type of cavitation that is instantaneously being applied to the synthesis process stream.
- This "controlled cavitation" permits efficient modification of the cavitational conditions to meet the specifications of the desired material to be synthesized.
- the importance of the method is a capability to vary the bubble size and length of the cavitational zone, which results in a bubble collapse necessary to produce nanostructured pure phase materials.
- the desired type of bubble collapse provides a local shock wave and energy release to the local environment by the walls of the collapsing bubbles which provides the shear and local heating required for synthesizing pure nanostructured materials.
- the cavitation method enables the precise adjustment of the type of cavitation for synthesizing both pure metal oxide materials as well as metals supported on metal oxides, and slurries of pure reduced metals and metal alloys.
- a further capability of the method, which is important to the synthesis of materials for both catalysts and advanced materials for electronics and ceramics, is the ability to systematically vary the grain sizes by a simple alteration of the process conditions leading to cavitation.
- Another aspect of the present invention is the formation of single metal oxides in varying grain sizes of 1-20 nm, and multimetallic metal oxides in varying grain sizes and as single phase materials without the presence of any of the individual metal oxide components of the desired pure materials situated on the surface of the desired pure material. Furthermore, the synthesis of reduced metals supported on metal oxides in both grain sizes of 1-20 nm and the capability to vary the grain sizes between 1-20 nm is also possible. Due to these unique capabilities, as compared to conventional methods of synthesis, the methods and compostions formed thereby ca function as high quality catalysts, capacitors, piezoelectrics, novel titanias, electrical and oxygen conducting metal oxides, fine grains of slurries of finely divided reduced metals, and superconductors.
- Figure 1 illustrates the variation in the strain and grain size of a piezoelectric as a function of orifice size
- Figure 2 illustrates an XRD comparison of a piezoelectric prepared according to the present invention and by classical preparation
- Figure 3 illustrates the XRD of finely dispersed silver on aluminum oxide synthesized in accordance with the present invention
- Figure 4 illustrates the effect of High Pressure versus Low Pressure in the cavitation process of the present invention on the synthesis of Cuo. ⁇ Zno.esAlo.iO x
- Figure 5 illustrates the effect of High Pressure versus Low Pressure in the cavitation process of the present invention on the synthesis of Cu 0 . 22 Zno. 68 Alo. 1 O x with regard to Strain[%] versus Crystalline Size in nm;
- Figure 6 illustrates the effect of High Pressure versus Low Pressure in the cavitation process of the present invention on the lattice distortion of Cuo. 2 Zno.68Alo. 1 O x as it relates to the c-Axis versus orifice size;
- Figure 7 illustrates the Relative intensity of 2% Pd formed by the cavitation process of the present invention and calcined at 1095 degrees Celsius.
- the apparatus utilized in the present invention consists of a pump to elevate the pressure of the liquid being fed to the apparatus, and a cavitation zone within the apparatus.
- the cavitation zone generally comprises a flow-through channel having a flow area, internally containing at least one first element that produces a local constriction of the flow area, and having an outlet downstream of the local constriction; and preferably a second element that produces a second local constriction positioned at the outlet, wherein a cavitation zone is formed immediately after the first element, and an elevated pressure zone is created between the cavitation zone and the second local constriction.
- the element(s) producing the local constriction may take many different shapes. It may be of the form of a cone, or spherical or elliptical shape, and can be located in the center of the flow channel. It is possible to use a crosshead, post, propeller, nozzle or any other fixture that produces a minor loss in pressure. Preferred is one or more orifices or baffles. By varying the size of the orifice, the apparatus is able to better control the size of the cavitation bubbles being formed.
- the orifice may have one or more circular or slotted openings. The cavitation bubbles then are transported by the flow of liquid immediately into a cavitation zone, which comprises numerous cavitation bubbles.
- the cavitation bubbles flow with the liquid into an elevated pressure zone.
- a back pressure is created to form the elevated pressure zone.
- the second element can also take many shapes, but an element similar in operation to a control valve is preferred.
- the apparatus is able to determine the length of the cavitation zone and determine when bubble collapse will occur.
- the cavitation bubbles collapse, resulting in high pressure implosions with the formation of shock waves that emanate from the point of each collapsed bubble.
- the liquid on the boundary of the bubble, and the gas within the bubble itself undergo chemical reactions depending upon the materials in the feed. These reactions may be oxidation, disintegration or synthesis, to name a few.
- the second element can be the first element of a second cavitation zone.
- two or more cavitation zones may be placed in series to produce a multi-stage apparatus.
- Each cavitation zone is controllable depending on the first element selected for the next cavitation zone, the distance between each first and second element, and by the final second element at the end of the multi-stage apparatus.
- the second element can be as simple as a extended length of the channel, a turn or elbow in the channel, or another piece of processing equipment.
- the second element must provide some back pressure to create the cavitation and elevated pressure zones.
- the desired cavitated products are then removed from the liquid by suitable separation techniques, such as vacuum filtration, filtration and evaporation. Prior to or after removal of the cavitated products, the liquid may be recycled back to the cavitation chamber. Recycle of the unfiltered product may occur many times. Where multi-stage cavitation chambers are used, recycle may be to one or more of the chambers. As the length of the period of recirculation increases, the resulting final product generally has a higher degree of phase purity and smaller particle size.
- the nanostructured materials of the present invention are typically prepared by precipitation of the desired product from a metal containing solution.
- the metal containing solution normally is aqueous, but can be non-aqueous.
- At least one component of the metal containing solution must be in a liquid state and be capable of creating cavitation.
- Other components may be different liquids, solids, gasps, or mixtures thereof.
- the liquid component could be materials commonly thought of as liquid, or can be materials commonly thought of as solid or gas being processed in their liquid state. Examples of such materials are molten metals and molten minerals, as long as the vapor pressure is sufficiently low enough to generate bubbles, and liquid carbon dioxide.
- metals are in the form of salts.
- the metal may be added in the form of an acid such as chlorplatinic acid.
- suitable salts include nitrates, sulfates, acetates, chlorides, bromides, hydroxide, oxylates and acetylacetonates.
- the metal may be cobalt, molybdenum, bismuth, lanthanum, iron, strontium, titanium, silver, gold, lead, platinum, palladium, yttrium, zirconium, calcium, barium, potassium chronmium, magnesium, copper, zinc, and mixtures thereof, although any other metal may find use in the present invention.
- iron oxide may be made from ferric nitrate hydrate, barium titanate from a mixture of barium acetate in water and titanium tetraisopropoxide in isopropyl alcohol, and a ceramic such as lanthana from lanthanum nitrate.
- Complex metal catalysts such as iron bismuth molybate may be formed utilizing the appropriate metal salts.
- a class of metals typically suited for piezoelectric, materials are lanthanum, titanium, gold, lead, platinum, palladium yttrium, zirconium, zinc and mixtures thereof.
- a class of metal typically suited for superconductors are strontium lead, yttrium, copper, calcium, barium and mixtures thereof.
- the solution into which the salt is dissolved will depend upon the particular metal salt. Suitable liquids include water, aqueous nitric acid, alcohols, acetone, hydrocarbons and the like.
- the precipitating agent may be selected from any suitable basic material such as sodium carbonate, ammonium carbonate, potassium carbonate, ammonium hydroxide, alkali metal hydroxide or even water where the metal salt reacts with water. Any liquid which causes the desired metal salt to precipitate from solution due to insolubility of the metal salt in the liquid may be a precipitating agent.
- a support may be added directly to the metal containing solution, the precipitating agent or both. Suitable supports include alumina, silica, titania, zirconia and alumino-silicates. The support may also be added in the form of a salt, such as alumina being added as aluminum nitrate hydrate where the support itself is precipitated in the form of nanostructured grains imder cavitational conditions.
- Zeolites such as ZSM-5, X-Type, Y-Type, and L-Type may be prepared using the process of the present invention.
- Metal loaded zeolitic catalysts typically contain a metal component such as platinum, palladium, zinc, gallium, copper or iron.
- the metal salt solution, the precipitating agent and a silica source may be premixed to form a zeolite gel prior to passing to the cavitation chamber. Where the gel requires heat to form, the mixture may be recycled in the cavitation chamber until the gel forms and the synthesis results.
- the well dispersed gel may be placed in a conventional autoclave where a hydrothermal synthesis is carried out. This method will result in much finer grain zeolites after the conventional hydrothermal treatment.
- the process of the present invention has applicability to catalysts, electrolytes, piezoelectrics, super-conductors and zeolites as examples of nanostructured materials.
- the following examples show the benefit of the present process in the production of nanosize high purity products.
- Two apparatuses were used in these examples.
- the Model CaviProTM 300 is a two stage orifice system operating up to 26,000 psi with a nominal flow rate of 300 ml/min and up.
- the CaviMaxTM CFC-2h is a single orifice system operating up to 1000 psi with a nominal flow rate of several liters per minute. Both of these devices are obtainable from Five Star Technologies Ltd, Cleveland, Ohio. Modifications were made to the peripheral elements of these devices, such as heat exchangers, cooling jacket, gauges and wetted materials, depending on the application contained in the examples.
- Example 1 This example illustrates that controlled cavitation enables the synthesis of an important hydrodesulfurization catalyst for use in the environmental clean-up of gasoline in a substantially improved phase purity as compared to conventional preparations.
- the preparation of cobalt molybdate with a Mo/Co ratio of 2.42 was carried out in the CaviProTM processor. Different orifice sizes were used for the experiment at a hydrodynamic pressure of 8,500 psi. In each experiment 600ml of 0.08M of ammonium hydroxide in isopropanol was placed in the reservoir and recirculated.
- the XRD pattern of the material after calcining in air indicates, by the high intensity of the reflection at 26.6 degrees 20 in all of the syntheses using cavitational processing, the formation of a high fraction of cobalt molybdate. Furthermore, the XRD of the conventional method demonstrated a much lower intensity peak at 26.6 degrees 20 as well as strong reflections at 23.40 and 25.75 degrees 20 due to separate phase MoO 3 . Thus the present process produced a higher purity catalyst than found in the prior art.
- Example2 The catalyst of Example I was repeated but at a higher hydrodynamic pressure of 20,000 psi. XRD patterns showed even higher phase purity as compared to the cavitation preparation in Example 1 and much better purity as compared to the classical synthesis.
- Example 3 The catalyst of Example 1 was prepared using a CaviMax processor at a lower pressure.
- the orifice used was 0.073 inches diameter at 580 psi head pressure.
- the back pressure was varied between 0-250 psig.
- the phase purity of cobalt molybdate was nearly as high as that observed in Example 2 and much better than that observed in Example 1. It was much better than the conventional preparation that did not use hydrodynamic cavitation.
- the XRD data shows that the application of all back pressures resulted in higher purity phase of cobalt molybdate as compared to the conventional preparation.
- Example 4 Example 1 was repeated using a CaviMaxTM processor at a pressure of 200-660 psi. and using orifice sizes of 0.073, 0.075, 0.089, and 0.095 inches diameter. The phase purities of the catalysts were all improved. The use of an orifice diameter of 0.095 inches at 280 psi resulted in a superior quality hydrodesulfurization catalyst as compared to all of the other diameters as well as the conventional synthesis.
- Example 5 This example illustrates the capability of the present invention to synthesize high phase purities of cobalt molybdate supported on gamma-alumina.
- the preparation of cobalt molybdate deposited on gamma-alumina with a Mo/Co ratio of 2.42 was carried out in the CaviProTM processor.
- a cavitation generator having 0.009/0.010 inch diameter orifice sizes was used for the experiment at a hydrodynamic pressure range of 4,000, 7,000, and 8,000 psig.
- 600ml of a solution of 0.0102% ammonium hydroxide in isopropyl alcohol (IP A) was placed in the reservoir along with 5.0g of gamma-alumina, and the slurry was recirculated through the processor.
- IP A isopropyl alcohol
- Example 6 The catalyst of Example 5 was prepared using silica in place of alumina.
- 600ml of 0.0102% ammonium hydroxide in isopropyl alcohol (IP A) was placed in the reservoir along with 5.0g of Cabosil, and the slurry was recirculated through the processor.
- IP A isopropyl alcohol
- Example 7 The present invention was used to synthesize beta-bismuth molybdate (Bi 2 Mo 2 O 9 ), wliich is typical of the family of catalysts used for hydrocarbon partial oxidations such as the conversion of propylene to acrolein or ammoxidation of propylene to acrylonitrile.
- This synthesis used a CaviMaxTM processor with four different orifice sizes in a low pressure mode. The synthesis of this material was carried out as follows. 450ml of IP A was used as the precipitating agent, and was placed in the reservoir.
- the cavitational syntheses resulted in very pure phase beta-bismuth molybdate. Furthermore, the XRD patterns showed that the grain size of the particles could be varied . over a wide range of nanometer sizes by changing the orifice sizes. Since it is well known in the catalytic literature that nanometer grains of catalysts often result in greatly accelerated reaction rates, the capability of the cavitational syntheses to vary this grain size is of general importance to several catalytic reactions other than hydrocarbon partial oxidation.
- Example 8 This example shows that the present invention as applied to the synthesis of complex metal oxides such as perovskites and ABO 3 metal oxides results in unusually high phase purities.
- the synthesis of La. 7 Sr. 3 FeO 3 was performed using a CaviMaxTM processor and using orifice sizes of 0.073, 0.081 , 0.089, and 0.095 inch diameter. 600ml of a IM solution of Na 2 CO in distilled water was placed in the reservoir, and the slurry was recirculated through the processor.
- This example shows that strain can be systematically introduced into a solid state crystallite by use of the present invention.
- the example examined the synthesis of titanium dioxide using the CaviMaxTM processor and examined the effect of strain introduced into the TiO 2 crystal as the orifice size of the cavitation processor was systematically changed.
- lOOg 0.27664 mol
- 750ml of deionized water was placed for a typical run in the reservoir of the CaviMax and circulated.
- the strain content of the crystallites increased from 0.2% prepared with a small orifice (0.073 inches diameter) to 0.35% prepared with a large orifice (0.115 inches diameter), linear with its diameter.
- the ability to systematically alter the strain within a crystallite is important due since it changes the chemical potential of the surface atoms.
- Applications of this type of control include the application of these materials as photocatalysts and as optical absorbers.
- Example 10 The synthesis of 20% w/w Ag on titania of nanostructured metallic silver was examined as a function of orifice size, and the results were compared to the conventional synthesis of such metal supported materials.
- a precipitating agent consisting of 1000 ml of deionized water was recirculated in the CaviMaxTM processor equipped with a 0.075 inch diameter orifice.
- the first solution consisted of a 250ml silver solution of silver acetate (AgOOCCH 3 ) in deionized water (0.046 mol/L Ag), which was added at a rate of 10 ml/min.
- the second feed was a 250ml solution of hydrazine (N 2 H 4 ) in water (0.70 mol/L N2H ), such that the N 2 H 4 /Ag molar ratio was 15.0, which was added at a rate of 10 ml/minute.
- the total time of addition plus additional recirculation was 30 minutes.
- the product was filtered, washed with water to form a wet cake, and then dried in an oven at 110°C. A portion of the dried product was calcined in air for 4 hours at 400 °C. A portion of the dried product was submitted for x-ray analysis and identified as silver on an amorphous titanium support. X-ray line broadening analysis indicated that the mean silver crystallite size was 7.4 nm. A portion of the calcined product was submitted for x-ray analysis and identified as silver on titania. All of the titania was identified as anatase, while no ratile was observed. X_ray line broadening analysis indicated that the mean silver crystallite size was 12.0 nm. The conventional synthesis was performed as above except in a stirred 1500 ml beaker.
- the grain sizes of the silver particles after drying the samples at 110°C are shown in Table 3.
- This example shows that metallic particles deposited on reactive supports such as titania can be synthesized in smaller grain sizes as compared to parallel conventional synthesis.
- the catalysts were calcined to 400 °C in air, the silver particles deposited on the conventional catalyst grew to a much larger size than those deposited by cavitational techniques. These types of materials are important as photocatalysts for the destruction of toxins in waste chemical streams.
- 2% w/w silver was synthesized on alpha-alumina using both a cavitational synthesis and a conventional synthesis.
- the synthesis of this material was carried out as follows. A slurry consisting of 5.00g of aluminum oxide (alpha, Al 2 O 3 ) in 1000 ml deionized water was recirculated in the CaviMax processor equipped with a 0.073 inch diameter orifice. Two solutions were added to the recirculating aluminum oxide slurry. The first solution consisted of a ml solution of silver acetate (AgOOCCH 3 ) and ammonium hydroxide (NH 0H) in deionized water.
- AgOOCCH 3 silver acetate
- NH 0H ammonium hydroxide
- the concentration of the silver was 0.0095 mol/L, and the concentration of ammonium hydroxide was 0.095 mol/L, so that the NHiOH/Ag molar ratio was 10.0.
- the silver solution was added to the aluminum oxide slurry at a rate of 4 ml/minute.
- the second feed was a 100ml solution of hydrazine (N 2 EL in water (0. 14 mol/L N 2 H 4 ), such that the N 2 H ⁇ /Ag molar ratio was 15.0, which was added at a rate of 4 ml/minute.
- the total time of addition plus additional recirculation was 30 minutes.
- the product was filtered, washed with water to form a wet cake, and then dried in an oven at 110°C.
- the present invention was utilized for the synthesis of nanostructured particles of gold supported on titanium oxide (TiO 2 ).
- a precipitating agent consisting of 650ml of deionized water was recirculated in the CaviMaxTM processor equipped with a 0.075 inch diameter orifice.
- a 100ml solution of titanium (IV) butoxide (Ti[O(CH ) 3 CH 3 ] 4 ) in isopropyl alcohol (0.88 mol/L Ti) was added to the CaviMaxTM at 4 ml/minute to form a precipitate.
- the total time of precipitation plus additional recirculation was 37.75 minutes.
- two solutions were added simultaneously to the recirculating, precipitated titanium slurry.
- the first solution consisted of a 1000ml gold solution of chloroauric acid (HAuCl 3H 2 O) in deionized water (0.0073 mol/L Au), which was added at a rate of 4.7 ml/minute.
- the second feed was a 100ml solution of hydrazine (N ⁇ ) in water (0.12 mol/L N 2 EL;), such that the N 2 H /A11 molar ratio was 16.7, which was added at a rate of 0.4 ml minute.
- the total time of addition plus additional recirculation was 3.62 hours.
- the product was filtered, washed with water to form a wet cake, and then dried in an oven at 110°C.
- a portion of the dried product was calcined in air for 4 hours at 400°C.
- a portion of the calcined product was submitted for x-ray analysis and identified as gold on titania (anatase).
- X-ray line broadening analysis indicated that the mean gold crystallite size was 7.5 nm, and that the mean anatase crystallite size was 12.9 nm.
- Conventional synthesis was prepared in the manner above except in a stirred 1500ml beaker.
- Table 5 shows that cavitational processing during the synthesis of 2% w/w of gold on titania results in systematically decreasing, grain sizes into the very small manometer size range. This example shows that the combination of orifice size selection and process parameters afford a control of grain sizes not possible with conventional synthesis.
- Table 5 Grain size as a function gold solution volume
- Example 13 The present invention was used to synthesize commercially important piezoelectric solid state materials in very high phase purities at low thermal treating temperatures.
- Table 6 Preparation of PZT in different stoichiometries
- the detailed stoichioinetric information for this series is given in Table 6.
- the ammonium carbonate solution was placed in the reservoir and circulated.
- the Zr and Ti solutions were combined and fed at a rate of 2.5 ml/minute into the reservoir stream at a position just before the inlet to the high pressure, pump.
- the Pb-acetate solution was co-fed with a rate of 5 ml/minute. All of the metal containing components immediately precipitated and were drawn into the high pressure zone of the cavitation processor and then passed into the cavitation generation zone. All samples were dried over night and calcined in three steps for four hours at 400°C, 500°C and 600°C.
- XRD patterns illustrated that above a calcination temperature of 500°C only the pure perovskite phase is formed with no lead oxide or zirconium oxide impurities.
- the XRD patterns contains some finer crystallites of this material appearing as a broad band centered at 30 degrees 20. This material disappears from the composition after calcination to 600 °C.
- the data in Figure 1 illustrates that the hydrodynamic cavitation technique enables the synthesis of piezoelectrics in compositions having a very high degree of strain built into the individual crystallites. Furthermore, Figure 1 shows that the degree of strain can be systematically introduced into the crystals as a function of the type of orifice used in the synthesis. It was found that the degree of strain introduced by cavitation was much greater than that found in a classical method of piezoelectric synthesis of the same composition.
- the data in Figure 2 illustrates the advantage of cavitational processing in PZT synthesis by a direct comparison to a classical co-precipitation synthesis.
- the top XRD pattern in Figure 2 resulted from a cavitational preparation after 600 °C air calcination.
- the lower figure resulted from a classical co-precipitation carried out using the same synthesis procedure except that only high speed mechanical stirring was used in the coprecipitation step rather than cavitational processing.
- a comparison of the two XRD patterns shows that the classical pattern has a substantial fraction of separate phase lead oxide while the cavitational preparation has no secondary phase in its composition. This higher phase purity is exceptionally important to the functioning of the materials as a piezoelectric device.
- Example 14 The present invention was utilized for the synthesis of fine particles of pure metallic particles in a slurry where the grain size can be altered depending upon the orifice sizes being used.
- the data in Table 7 illustrates the capability to form nanostructured grains of finely divided metals typically used commercially to hydrogenate aromatics and functional groups on organic intermediates in fine chemical and pharmaceutical chemical processes.
- Hexachloroplatinic acid was dissolved 0.465g in 50ml isopropanol. This platinum solution was fed to a stirred Erlenmeyer flask, containing 0.536g hydrazine hydrate, 54.7% solution in 50ml isopropanol.
- the platinum solution feed rate was 5ml/minute. Directly following the platinum reduction, the solution was fed to the CaviPro processor, and processed for 20 minutes, after which time the XRD of the dried powders were measured.
- Table 7 Effect of pressure and orifice sizes on the synthesis of nanostructured platinum
- Example 15 The process of the present invention was used to fabricate the commercially important silver on ⁇ -alumina catalysts used in the production of ethylene oxide from the partial oxidation of ethylene.
- Table 8 illustrates the XRD determined grain sizes of the silver particles which had been deposited onto ⁇ -alumina during the cavitational synthesis in which the silver was reduced in a cavitation experiment and then deposited onto the ⁇ - alumina in water using classical techniques.
- the data shows that changing the orifice sizes used in each experiment can alter the grain size of the silver.
- the characteristics of the different orifice sizes are expressed as the throat cavitation numbers calculated for each experiment, which is a common reference for the occurrence of cavitation in flowing fluid streams. Using this method of characterization, the cavitation generated in the metal synthesis stream is higher as the throat cavitation numbers decreases.
- the degree of calcination was examined when using the present invention.
- Four separate samples of solid ammonium molybdate were calcined for four hours in air to 100°C, 175°C, 250°C and 325 °C respectively.
- XRD data was then taken for each sample.
- a sample of ammonium molybdate was dissolved in water and fed into an isopropyl alcohol solution (the precipitation agent) just before it passed into a CaviProTM processor using a 0.012/0.014 inch orifice set. This sample was then filtered and dried at 100°C. XRD data was then obtained for this sample.
- Example 17 In order to evaluate the effect of silver concentration on crystallite size, a series of silver on alumina catalysts were synthesized, with varying concentrations; 1%, 2%, 5%, 10%, and 15 wt% Ag on Al 2 O 3 . In this synthesis a 20.44 g.
- the Ag/Al 2 ⁇ 3 samples were calcinated for six hours at 400°C. After calcination, the samples were analyzed using XRD. These results are shown in Fig. 3.
- the XRD of the 400 °C calcined material show virtually no reflection for metallic silver indicating that the particles are exceptionally well dispersed.
- the broad envelope that arises near 35 degrees 2 theta could be due to the formation of silver oxide. It is know that silver oxide decomposes at 300°C; thus, if all of the silver has been converted to silver oxide, it consists of very small grain sizes and must be strongly interacting with the aluminum oxide support.
- Example 18 Synthesis of Novel Structures for copper modified zinc oxide useflu as a catalyst for the synthesis of methanol.
- a series of experiments were performed precipitating Cuo.225Zno. 6 5Al 0 . 1 , to study its influence of cavitation. Therefore, an aqueous solution was prepared solving 37.514 g (0.1 mol) Al(NO 3 ) 3 *9 H 2 0, 60.40 g (0.225 mol) Cu(NO 3 ) 3 *3 H20 and 124.353 g (0.675 mol) Zn(NO 3 ) 3 *X H 2 O in 1000 ml deionized water. As precipitation agents were used an aqueous 0.553 molar (NFL ⁇ COs and 1.0 molar Na 2 CO 3 solution.
- the amount on carbonates used was determined experimentally to obtain a pH value of 8.
- Two different series were performed in the CaviPro. The first series was done using (N ⁇ L ⁇ COs at a constant pressure of 10,000 psi with the orifices 6-14, 7-14, 8-14, 0-14 and 12-14 (Denoted as Low Pressure Experiments). The second series was done using Na 2 CO 3 at a constant pressure of 20,000 psi with the orifices 6-7, 6-10, 6-12 and 6-14 (Denoted as High Pressure Experiments). All samples were washed with water, filtered, dried at 100° C over night and then calcined at 350°C for four hours. XRD was taken and the standard investigations were performed.
- Epitaxy is the growth of a solid compound (here CuO), which tries to imitate the structure of the substrate (ZnO). Due to the different preferred geometric arrangements of CU 2+ (quadratic planar) and Zn 2+ (tetrahedral), it is not possible for one or the other species to grow in that way.
- the transition from ZnO to CuO can be considered as an interlayer, which has in the lower plane Zn atoms.
- the next plane would be a layer of O atoms, followed by the first layer of Cu atoms. In that case a kind of 2-dimensional super lattice can be found.
- a series of 2% palladium on alumina/zirconia (10%/90%) support were synthesise in order to produce a catalyst with high surface area, and small metal crystallite size that is stable up to high temperatures (1200°C). It has been suggested that the alumina acts as a barrier that prevents phase transformation of the zirconia support, and thereby regaining small grain crystallite support and prevention of sintering of the palladium.
- Four samples were synthesized in the CaviMax (0.073", 0.081:, 0.095", and 0.115"), as well as a classical precipitation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01906578A EP1253975A4 (en) | 2000-01-14 | 2001-01-16 | Method of preparing compounds using cavitation and compounds formed therefrom |
AU2001234472A AU2001234472A1 (en) | 2000-01-14 | 2001-01-16 | Method of preparing compounds using cavitation and compounds formed therefrom |
CA002397367A CA2397367A1 (en) | 2000-01-14 | 2001-01-16 | Method of preparing compounds using cavitation and compounds formed therefrom |
MXPA02006924A MXPA02006924A (en) | 2000-01-14 | 2001-01-16 | Method of preparing compounds using cavitation and compounds formed therefrom. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17611600P | 2000-01-14 | 2000-01-14 | |
US60/176,116 | 2000-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001051202A1 true WO2001051202A1 (en) | 2001-07-19 |
Family
ID=22643041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/001523 WO2001051202A1 (en) | 2000-01-14 | 2001-01-16 | Method of preparing compounds using cavitation and compounds formed therefrom |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1253975A4 (en) |
AU (1) | AU2001234472A1 (en) |
CA (1) | CA2397367A1 (en) |
MX (1) | MXPA02006924A (en) |
WO (1) | WO2001051202A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1522341A1 (en) * | 2003-09-22 | 2005-04-13 | Tanaka Kikinzoku Kogyo K.K. | Precious metal-metal oxide composite cluster |
WO2005123594A2 (en) | 2004-06-21 | 2005-12-29 | Johnson Matthey Public Limited Company | Sols comprising mixed transitional metal oxide nanoparticles |
US9126192B2 (en) | 2004-06-21 | 2015-09-08 | Johnson Matthey Public Limited Company | Platinum group metal oxide sols |
CN111495392A (en) * | 2019-12-31 | 2020-08-07 | 青岛科技大学 | Preparation method of iron-based piezoelectric catalytic material and application of iron-based piezoelectric catalytic material in water treatment |
CN112973670A (en) * | 2021-02-09 | 2021-06-18 | 华中农业大学 | Preparation method of bismuth molybdate material for removing NO through photocatalysis and product |
US20220077541A1 (en) * | 2018-12-26 | 2022-03-10 | Sumitomo Chemical Company, Limited | alpha-ALUMINA, SLURRY, POROUS MEMBRANE, LAMINATED SEPARATOR, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCING SAME |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369100A (en) * | 1977-09-27 | 1983-01-18 | Sawyer Harold T | Method for enhancing chemical reactions |
JPS6369543A (en) * | 1986-09-09 | 1988-03-29 | Riken Corp | Selective hydrogenation catalyst |
US5417956A (en) * | 1992-08-18 | 1995-05-23 | Worcester Polytechnic Institute | Preparation of nanophase solid state materials |
US5466646A (en) * | 1992-08-18 | 1995-11-14 | Worcester Polytechnic Institute | Process for the preparation of solid state materials and said materials |
US5519670A (en) * | 1992-08-25 | 1996-05-21 | Industrial Sound Technologies, Inc. | Water hammer driven cavitation chamber |
US5589432A (en) * | 1992-12-28 | 1996-12-31 | Kabushiki Kaisha Riken | Exhaust gas cleaner and method for cleaning same |
US5691268A (en) * | 1995-12-08 | 1997-11-25 | Exxon Research And Engineering Company | Isoalcohol synthesis catalyst |
US5705136A (en) * | 1995-11-13 | 1998-01-06 | University Of Florida Research Foundation, Inc. | Catalyzed decomposition of nitrogen oxides on metal oxide supports |
US5739075A (en) * | 1995-10-06 | 1998-04-14 | Shell Oil Company | Process for preparing ethylene oxide catalysts |
US5801114A (en) * | 1995-01-11 | 1998-09-01 | Institut Francais Du Petrole | Catalysts selective for the reduction of nitrogen oxides to nitrogen in an oxidizing medium, a process for their preparation and their use |
US5810052A (en) * | 1996-02-15 | 1998-09-22 | Five Star Technologies Ltd. | Method of obtaining a free disperse system in liquid and device for effecting the same |
US5849661A (en) * | 1995-03-10 | 1998-12-15 | Toyota Jidosha Kabushiki Kaisha | Automotive exhaust catalyst |
US5882607A (en) * | 1994-11-04 | 1999-03-16 | Agency Of Industrial Science And Technology | Exhaust gas cleaner and method for cleaning exhaust gas |
US5931771A (en) * | 1997-12-24 | 1999-08-03 | Kozyuk; Oleg V. | Method and apparatus for producing ultra-thin emulsions and dispersions |
US5937906A (en) * | 1997-05-06 | 1999-08-17 | Kozyuk; Oleg V. | Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6365555B1 (en) * | 1999-10-25 | 2002-04-02 | Worcester Polytechnic Institute | Method of preparing metal containing compounds using hydrodynamic cavitation |
-
2001
- 2001-01-16 CA CA002397367A patent/CA2397367A1/en not_active Abandoned
- 2001-01-16 EP EP01906578A patent/EP1253975A4/en not_active Withdrawn
- 2001-01-16 AU AU2001234472A patent/AU2001234472A1/en not_active Abandoned
- 2001-01-16 MX MXPA02006924A patent/MXPA02006924A/en not_active Application Discontinuation
- 2001-01-16 WO PCT/US2001/001523 patent/WO2001051202A1/en not_active Application Discontinuation
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369100A (en) * | 1977-09-27 | 1983-01-18 | Sawyer Harold T | Method for enhancing chemical reactions |
JPS6369543A (en) * | 1986-09-09 | 1988-03-29 | Riken Corp | Selective hydrogenation catalyst |
US5417956A (en) * | 1992-08-18 | 1995-05-23 | Worcester Polytechnic Institute | Preparation of nanophase solid state materials |
US5466646A (en) * | 1992-08-18 | 1995-11-14 | Worcester Polytechnic Institute | Process for the preparation of solid state materials and said materials |
US5519670A (en) * | 1992-08-25 | 1996-05-21 | Industrial Sound Technologies, Inc. | Water hammer driven cavitation chamber |
US5589432A (en) * | 1992-12-28 | 1996-12-31 | Kabushiki Kaisha Riken | Exhaust gas cleaner and method for cleaning same |
US5882607A (en) * | 1994-11-04 | 1999-03-16 | Agency Of Industrial Science And Technology | Exhaust gas cleaner and method for cleaning exhaust gas |
US5801114A (en) * | 1995-01-11 | 1998-09-01 | Institut Francais Du Petrole | Catalysts selective for the reduction of nitrogen oxides to nitrogen in an oxidizing medium, a process for their preparation and their use |
US5849661A (en) * | 1995-03-10 | 1998-12-15 | Toyota Jidosha Kabushiki Kaisha | Automotive exhaust catalyst |
US5739075A (en) * | 1995-10-06 | 1998-04-14 | Shell Oil Company | Process for preparing ethylene oxide catalysts |
US5705136A (en) * | 1995-11-13 | 1998-01-06 | University Of Florida Research Foundation, Inc. | Catalyzed decomposition of nitrogen oxides on metal oxide supports |
US5691268A (en) * | 1995-12-08 | 1997-11-25 | Exxon Research And Engineering Company | Isoalcohol synthesis catalyst |
US5810052A (en) * | 1996-02-15 | 1998-09-22 | Five Star Technologies Ltd. | Method of obtaining a free disperse system in liquid and device for effecting the same |
US5937906A (en) * | 1997-05-06 | 1999-08-17 | Kozyuk; Oleg V. | Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation |
US5931771A (en) * | 1997-12-24 | 1999-08-03 | Kozyuk; Oleg V. | Method and apparatus for producing ultra-thin emulsions and dispersions |
Non-Patent Citations (1)
Title |
---|
See also references of EP1253975A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1522341A1 (en) * | 2003-09-22 | 2005-04-13 | Tanaka Kikinzoku Kogyo K.K. | Precious metal-metal oxide composite cluster |
WO2005123594A2 (en) | 2004-06-21 | 2005-12-29 | Johnson Matthey Public Limited Company | Sols comprising mixed transitional metal oxide nanoparticles |
WO2005123594A3 (en) * | 2004-06-21 | 2006-03-16 | Johnson Matthey Plc | Sols comprising mixed transitional metal oxide nanoparticles |
US8173572B2 (en) | 2004-06-21 | 2012-05-08 | Johnson Matthey Plc | Metal oxide sols |
US9126192B2 (en) | 2004-06-21 | 2015-09-08 | Johnson Matthey Public Limited Company | Platinum group metal oxide sols |
US20220077541A1 (en) * | 2018-12-26 | 2022-03-10 | Sumitomo Chemical Company, Limited | alpha-ALUMINA, SLURRY, POROUS MEMBRANE, LAMINATED SEPARATOR, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCING SAME |
US11990640B2 (en) * | 2018-12-26 | 2024-05-21 | Sumitomo Chemical Company, Limited | α-alumina, slurry, porous membrane, laminated separator, and nonaqueous electrolyte secondary battery and method for producing same |
CN111495392A (en) * | 2019-12-31 | 2020-08-07 | 青岛科技大学 | Preparation method of iron-based piezoelectric catalytic material and application of iron-based piezoelectric catalytic material in water treatment |
CN112973670A (en) * | 2021-02-09 | 2021-06-18 | 华中农业大学 | Preparation method of bismuth molybdate material for removing NO through photocatalysis and product |
Also Published As
Publication number | Publication date |
---|---|
AU2001234472A1 (en) | 2001-07-24 |
EP1253975A4 (en) | 2005-04-20 |
EP1253975A1 (en) | 2002-11-06 |
MXPA02006924A (en) | 2004-11-12 |
CA2397367A1 (en) | 2001-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6365555B1 (en) | Method of preparing metal containing compounds using hydrodynamic cavitation | |
US20070066480A1 (en) | Method of preparing compounds using cavitation and compounds formed therefrom | |
EP0655948B1 (en) | Preparation of solid state materials | |
EP0655984B1 (en) | Preparation of nanophase solid state materials | |
EP0406896B1 (en) | Catalyst for reforming hydrocarbon with steam | |
US20020009414A1 (en) | Method of preparing compounds using cavitation and compounds formed therefrom | |
Saedy et al. | Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time | |
EP2059477B1 (en) | Process for preparing nanocrystalline mixed metal oxides | |
EA016985B1 (en) | Method for the production of nanocrystalline metal oxide particles | |
KR100691908B1 (en) | Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom | |
WO2001051202A1 (en) | Method of preparing compounds using cavitation and compounds formed therefrom | |
RU2501605C2 (en) | Method of producing fischer-tropsh synthesis oxide cobalt-zinc catalyst | |
Moser et al. | The synthesis and characterization of solid-state materials produced by high shear-hydrodynamic cavitation | |
Moon et al. | Hydrothermal synthesis and formation mechanisms of lanthanum tin pyrochlore oxide | |
KR100713298B1 (en) | Metal oxide with high thermal stability and preparing method thereof | |
JP3328684B2 (en) | Catalyst for methanol synthesis and method for producing the same | |
EP0642468A1 (en) | A method for preparing mixed metal oxides | |
Ye et al. | Processing Effects on The Morphology of Hydrothermally Derived Nanocrystalline Lead Titanate | |
Jean-Marc et al. | Synthesis of cerium oxide-based nanostructures in near-and supercritical fluids | |
Amirkhosrow et al. | EFFECT OF CRYSTALLIZATION TIME ON HYDROTHERMAL SYNTHESIS AND PHYSICOCHEMICAL CHARACTERIZATION OF CUO/ZNO/AL2O3 NANO POWDER | |
AU4052193A (en) | A method for preparing mixed metal oxides | |
KR20050019788A (en) | Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2397367 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/006924 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001906578 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001906578 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001906578 Country of ref document: EP |