WO2001044534A1 - Method and apparatus for thin film deposition - Google Patents
Method and apparatus for thin film deposition Download PDFInfo
- Publication number
- WO2001044534A1 WO2001044534A1 PCT/JP1999/007088 JP9907088W WO0144534A1 WO 2001044534 A1 WO2001044534 A1 WO 2001044534A1 JP 9907088 W JP9907088 W JP 9907088W WO 0144534 A1 WO0144534 A1 WO 0144534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- substrate
- thin film
- distance
- film forming
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
Definitions
- the present invention relates to a film forming technique using a sputtering method, and in particular, to a thin film forming apparatus having a plurality of force sources having different materials or compositions and a thin film forming method using the same.
- a sputtering method, a CVD method, and the like are generally widely used.
- the following factors govern the film thickness uniformity: (1) power input to the target, (2) target erosion radius and width, (3) process gas pressure, (4) target
- the distance between the substrates, (5) the amount of deviation of the substrate central axis from the target central axis (hereinafter referred to as the offset amount), and the like, (5) is the ratio that affects the film thickness uniformity Is big.
- Japanese Patent Application Laid-Open Publication No. Hei 11-1991 discloses that by changing the position of the target, the center axis of the substrate can be adjusted.
- a device that adjusts the relative position of the target center axis is disclosed.
- simply adjusting the relative position between the substrate and the target is not enough.
- the range of inner thickness distribution control is limited, and it has been difficult to form a uniform film on targets of various materials. Also, sufficient consideration was not given to the deposition rate.
- An object of the present invention is to solve the inconveniences of the conventional apparatus described above, expand the range of in-plane film thickness distribution control by adjusting the distance between the substrate and the target, and form a uniform film on targets of various materials. It is to provide the technology to do.
- the present invention provides a vacuum vessel, a plurality of sputtering cathodes provided in the vacuum vessel having a force source electrode and a target, a substrate held in the vacuum vessel, and A substrate holder having a shielding plate for shielding the target, wherein a thin film forming apparatus for depositing particles flying from the target on the substrate to form a thin film, comprising: a distance d between a substrate central axis / a target central axis; It is characterized by having a control device for changing the distance h between the substrate and the evening get in the direction of the central axis for each evening get according to the film forming conditions.
- the substrate holder comprises a substrate holder driving mechanism for rotating the substrate about a central axis of the substrate holder to revolve the substrate to adjust the distance d; And a substrate holder elevating mechanism for adjusting the distance h by elevating in the direction.
- the present invention it is possible to provide a method and an apparatus for manufacturing a thin film having desired film characteristics by controlling the parameters affecting the film growth, thereby improving the product characteristics and the productivity of the thin film manufacturing equipment. I do.
- the direction in which the evaporating particles tend to fly out depends on the target material and the power applied to the target.
- the present invention by adjusting the distance d between the substrate center axis and the center of the evening target and the distance h between the substrate and the target in the direction of the center axis, the film formation rate and the film formation difficult with the conventional apparatus are achieved. Simultaneous control of film thickness uniformity becomes possible. Therefore, even when targets made of materials having different emission angle characteristics are used, a uniform in-plane film thickness distribution can be obtained efficiently.
- the distances h and d between the substrate and the target can be changed for each target, even when a single power supply is used to apply bias power to the target, such as when multiple targets are simultaneously formed.
- the film composition can be controlled.
- an alloy thin film having a desired composition by simultaneously controlling two or more targets and individually controlling the bias power applied to the targets and then simultaneously discharging. it can. Also, by alternately discharging two or more targets in the same vacuum vessel, a multilayer film having a clean interface can be produced.
- FIG. 1 is a diagram showing a longitudinal section of a thin film forming apparatus according to one embodiment of the present invention.
- FIG. 2 is an explanatory diagram of a shift amount between a target central axis and a substrate central axis in the apparatus shown in FIG.
- FIG. 3 is a diagram showing an arrangement example of a magnet for applying a magnetic field to a substrate in the apparatus shown in FIG.
- FIG. 4 is a view showing a vertical cross section of a target elevating mechanism in the apparatus shown in FIG.
- FIG. 5 is a block diagram showing functions of a control device in the device shown in FIG.
- FIG. 6 is a diagram illustrating the principle of magnetron sputtering and the configuration of the magnetron sputtering method.
- FIG. 7 is a diagram illustrating an example of a method of adjusting the amount of deviation between the target central axis and the substrate central axis according to the present invention.
- FIG. 8 is a diagram illustrating an example of the emission angle characteristics of the magnetic material during spattering.
- FIG. 9 is a diagram illustrating an example of emission angle characteristics of a nonmagnetic material in sputtering.
- FIG. 10 is a diagram showing the optimal ranges of d and h when the material has the emission angle characteristics shown in FIG.
- FIG. 11 is a diagram showing the optimum ranges of d and h when the material has the emission angle characteristics shown in FIG.
- FIG. 12 is a diagram showing the distribution characteristics of the film forming speed when a magnetic material having the characteristics shown in FIG. 8 is formed.
- FIG. 13 is a diagram showing a distribution characteristic of a film forming speed when a non-magnetic material having the characteristics shown in FIG. 9 is formed.
- FIG. 14 is a diagram showing a processing procedure for forming the thin film layer shown in FIG. 15 by the method of the present invention.
- FIG. 15 is a diagram showing an example of a thin film layer structure for explaining the procedure of the thin film forming process of the present invention.
- FIG. 16 is a diagram showing a schematic configuration example of a magnetic head to which the present invention is applied.
- FIG. 17 is a cross-sectional view of a vacuum vessel in another embodiment of the present invention for adjusting a positional relationship between a substrate and a target.
- FIG. 18 is a sectional view taken along line AA of FIG.
- FIG. 19 is a drawing showing the positional relationship between the substrate and the target based on the embodiment of FIG.
- FIG. 20 is a cross-sectional view of a vacuum vessel according to another embodiment of the present invention for adjusting the amount of deviation between the target central axis and the substrate central axis.
- FIG. 21 is a sectional view taken along line BB of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 shows an overall configuration of a thin film forming apparatus according to one embodiment of the present invention.
- This thin film forming apparatus has a vacuum vessel 1, which is connected to a vacuum pump and is configured to keep the inside in a vacuum state.
- a substrate holder assembly 9 on which an electric motor 8 for rotating (spinning) the substrate 6 about an axis 7 is mounted at an upper portion in the vacuum vessel 1.
- Substrate 6 is held downward by the substrate holding mechanism. Retained in temple 9.
- the substrate 6 can be moved (revolved) on the circular orbit 102 by rotating the substrate holder assembly 9 about the axis 10 by the electric motor 14.
- the substrate holder assembly 9 can be rotated around the axis 1 °, and can be controlled by the control device 50 so as to move the substrate 6 to an arbitrary position in the rotation direction. Further, the substrate holder assembly 9 includes a shielding plate 11 for the substrate 6, and the shielding plate 11 is configured to be able to rotate about the axis 10 by the electric motor 12.
- the substrate holder lifting mechanism 1 8 comprising gear 1 6 and the motor 1 7 for lifting, up and down the substrate holder assembly 9, as shown in FIG. 2, the substrate 6 and the motor one g e t DOO 2 2
- the vertical distance h (hl to h 4) between 2 and 4 can be varied.
- a heater for heating is provided in the substrate holder assembly 9 and above the substrate 6, and the substrate 6 can be cooled by cooling water. This makes it possible to control the substrate temperature during film formation and control the crystal growth.
- a magnet 13 is disposed on the outer periphery of the substrate 6 so that a film can be formed while applying a magnetic field in a direction parallel to the substrate.
- the magnet 13 is formed of a permanent magnet or an electromagnet, and is arranged outside the substrate 6 in the radial direction, for example, as shown in FIG. In the configuration example of FIG. 3, so as to surround the substrate 6, and place it it arrow 2 0 1 I ⁇ 2 ⁇ 1 4 permanent magnets which are magnetized about the direction 1 3 2 ⁇ - 1 3 2 4, A magnetic field is applied in the direction of the arrow 204 in parallel with the surface of the substrate 6.
- each target is configured so that a bias can be applied during film formation by the RF power supply 20 or the DC power supply 22.
- Reference numeral 29 denotes the target central axis.
- Target 2 i to 2 4 is formed of a different material, it is arranged in parallel therewith therewith substrate 6.
- Each target is a target lift mechanism 3 1 (3! ⁇ 3 4) is configured to be moved up and down as a whole.
- the distance h between the substrate 6 and the evening one Gedzuto 2 2 21 to 24 can be adjusted to the substrate holder temperature descending mechanism 1 8 of the substrate holder assembly 9, either the target lift mechanism 3 1.
- the distance h is controlled by combining both the substrate holder elevating mechanism 18 and the target elevating mechanism 31.
- the distance h can be adjusted in advance by the target elevating mechanism 31, so that the distance control by the substrate holder elevating mechanism 18 can be suppressed to h0 or less during the film forming process.
- the time for adjusting the distance can be shortened, and the film forming speed can be improved.
- each target gate there are provided cylindrical walls 19 1 to 19 4 and shielding plates 4 to 4 4 , and shielding plates 4 to 4 4 have axes 3 2 i to 3 2.
- the shield plate driving device comprises an electric motor about a 3 4 I ⁇ 3 4 4 makes it possible to rotate moved horizontally.
- the number of targets is four in the thin film forming apparatus of the embodiment shown in FIG. 1, it is needless to say that the number is set according to the conditions for forming the thin film.
- FIG. 4 shows the main configuration of the target elevating mechanism 31 i to 31 4 .
- Reference numeral 23 denotes a copper plate serving as an electrode, on which the target 2 is placed.
- Copper plate 2 3 bias evening gate 2 RF power supply or DC power supply is connected.
- a yoke 25 is located on the lower surface of the target 2 via a gap, and a ring-shaped magnetron magnet 5 is installed on the yoke, and a high-density plasma is generated on the surface of each target. Things come out.
- an outer frame 28 and a shield ring 26 fixed to the outer frame 28 are arranged so as to surround the target 2 via a gap. Outer frame 28 is grounded.
- the magnetron magnet 5 is configured to be able to move up and down relative to the target 2 by a magnet lifting mechanism (not shown), and by moving the magnet 5 up and down, the magnetic field strength on the surface of the evening target 2 is increased. Can be changed.
- the RF power supply 20 or the DC power supply 22 has a power supply control device for each power supply, and is configured such that the bias power applied to each target 2 can be individually controlled by the control device 50.
- two or more targets can be discharged simultaneously by the power supply control device to form a film.
- a multilayer film having two or more materials can be manufactured by alternately discharging two or more targets.
- the control device 50 includes a microcomputer, a control program stored in a memory of the microcomputer, and a computer.
- Figure 5 shows these functionally.
- the control device 50 includes a main control unit 51 having a CPU and a memory and controlling the entire film forming process according to a control program stored in the memory, an input unit 52, a display unit 53, and a main control unit 5.
- a board controller 54 that controls the board according to the processing procedure given from 1, a main controller 51
- a target controller 55 that controls the target according to the processing procedure given from 51, and an external storage device that holds various data Composed of 5 7
- the control device 50 further includes a vacuum vessel controller that controls the supply of a discharge gas such as Ar gas into the vacuum vessel 1, the vacuum exhaustion and cleaning of the vacuum vessel 1, and the loading and unloading of substrates into and out of the vacuum vessel. It also has 5 6.
- the board controller 54 controls the board via the board holder motors 8, 12, 14, 17.
- the target controller 55 includes a motor 33, 34 of the target elevating mechanism, a power control device 35, a power source 20 or Controls the target via 22.
- the vacuum vessel controller 56 is the same as that generally used in general, and a description of a portion irrelevant to the features of the present invention will be omitted.
- the substrate controller 54 and the target controller 55 according to the present invention may be arranged such that the substrate center axis and the target are controlled in accordance with the film formed on the substrate, that is, the material of the target and the film forming conditions such as the film forming speed.
- main control unit 51, the board controller 54, the target controller 55, and the vacuum vessel controller 56 in FIG. 5 are functionally functional, and these controllers are integrated in the actual processing. Then, the thin film forming process is performed.
- the present invention provides a method for controlling the distance d (offset amount) between the substrate central axis 10 and the target central axis 29 and the distance h between the substrate and the target in the central axis direction by using the thin film forming apparatus.
- the substrate is formed by a sputtering method.
- the processing procedure of the control device 50 in the thin film formation processing will be described later.
- the magnetron pump will be briefly described with reference to FIG. As shown in Fig. 6 (A), when particles (such as Ar + ions) collide with an object, the momentum exchange causes the atoms that constitute the solid to be released into space, which is called sputter evaporation. That is).
- Figure 6 (B) shows the configuration diagram of the magnetron sputtering method.
- a magnetron magnetic field like the magnetic field lines shown in the figure is formed on the front surface of the target by the ring-shaped magnet arranged on the back surface of the target.
- a voltage is applied between the target 2 and the substrate 6 by the RF power supply or the DC power supply, and the excited and ionized Ar + ions are accelerated by the potential difference between the substrate and the target and collide with the target.
- a magnetron magnetic field is formed using a magnet.
- the Ar + ions are confined in the magnetron magnetic field and have a high density, so that sputtering can be performed efficiently in the magnetron magnetic field.
- the present invention is characterized by a mechanism for changing the offset amount (d) and the height (h) according to the material of the evening getter.
- An example of control of the offset amount (relative position) between the substrate 6 and the target 2 in the thin film forming apparatus of the present invention will be described with reference to FIGS.
- the substrate 6 can move on the circular orbit 102 by the rotation of the substrate holder assembly 9 about the axis 10.
- the distance d between the central axis 29 i of the evening get 2 and the central axis 10 of the substrate 6 is determined by the rotation of the substrate holder assembly 9.
- Figure 2 shows Target 2! A case the offset amount is 0, the height h of the target 2-2 4 has been changed according to the material of the target.
- FIG. 7A shows a case where the substrate 6 is moved along the circular orbit 102 and the offset amount (d) with respect to the target 2 is d l.
- FIG. 7B shows a case where the substrate 6 is moved along the circular orbit 102 and the offset amount (d) with respect to the target 2 is d 2.
- Distance d is also continuously changed in a range of the upper as well as 0 to 2 r between evening and one target 2 2 21 to 24 the central axis 2 9 2-2 9 4 between the center axis 1 0 of the substrate 6 Can be done.
- the present invention is characterized by having a mechanism for changing the distance d (offset amount) between the substrate central axis and the target central axis and the distance h between the substrate and the target in the central axis direction according to the material of the target. I do.
- Fig. 8 and Fig. 9 show examples of emission angle characteristics in spatter.
- This figure shows the scattering distribution characteristics of sputtered particles, that is, when a certain object is sputtered, the sputtered particles fly in which direction and in what proportion.
- the ratio of the ratio of flight in the ⁇ ⁇ direction and the ratio of flight in the 0 ⁇ direction is expressed as the ratio of the absolute values of the vector OA and the vector OB.
- This emission angle characteristic differs for each material, and when deciding the arrangement of the substrate and the target of the thin film forming apparatus using sputtering, it is necessary to determine the optimum position for each target material. Conversely, by incorporating a mechanism for adjusting the relative position between the substrate and the target into the thin film forming apparatus, it is possible to easily control the uniformity of the film thickness distribution in the substrate surface.
- Figure 10 shows whether a uniform distribution can be obtained within the range.
- Figure 11 shows whether a uniform distribution can be obtained within the range.
- Max.—Min. Can be kept within ⁇ 3%.
- Max.—Min. Is an index indicating the film thickness uniformity. If the maximum film thickness in the substrate surface is t max and the minimum film thickness is t min ,
- Max.- Min. One x 100.
- the film thickness distribution can be controlled by adjusting the distances h and d. Therefore, even when a target made of a material having a different emission angle characteristic is used, a uniform in-plane film thickness distribution can be obtained by adjusting the distances h and d between the target and the substrate.
- the control of the deposition rate in the sputtering method can be realized by controlling the power applied to the target at one time, but as described above, the direction in which the sputtered evaporating particles easily fly out depends on the power applied to the target. Therefore, the present invention enables simultaneous control of the film forming speed and the film thickness uniformity, which is difficult with the conventional apparatus.
- the direction in which the sputtered evaporating particles are likely to fly is determined by the target material and the Since the distance varies depending on the power applied to the wafer, the film thickness uniformity equal to or higher than that of the conventional multi-cathode-type revolving-type apparatus can be obtained by adjusting the distances h and d between the substrate and the target.
- the thickness distribution can be adjusted by adjusting the distances h and d.
- the distance h between the substrate and the getter in the axial direction of the central axis is increased to a certain value or more, a uniform film thickness distribution can be obtained regardless of the distance d between the substrate central axis and the target central axis.
- the film formation rate is reduced.
- FIG. 12 shows the distribution characteristics of the film forming speed when the magnetic material having the characteristics shown in FIG. 8 is formed (the other process conditions are the same).
- the numbers in the figure indicate the relative values of the deposition rate V.
- FIG. 13 shows the distribution characteristics of the deposition rate when the nonmagnetic material having the characteristics shown in FIG. 9 is deposited (the other process conditions are the same).
- the deposition rate V decreases. For example, in Fig.
- the distance d between the central axis of the substrate and the central axis of the evening it is preferable that the distance h between the substrate and the evening gate in the direction of the central axis be as small as possible.
- the distance h between the substrate and the gate is preferably, for example, 300 (mm) or less. Desirable ranges of such distances h and d are hatched portions in FIGS. 10 and 11. Such data of the desirable range of the distance d between the substrate center axis and the target center axis and the distance h between the substrate and the evening target in the direction of the center axis is obtained in advance by experiments for each target and mapped. And store it in the storage device.
- target 1 non-magnetic material 8
- target 4 magnetic material D
- the fourth layer is formed by discharging the non-magnetic material B and the magnetic material C at the same time.
- Figure 14 shows the procedure of the thin film formation process when such a thin film is formed on a substrate.
- the operator inputs the data of the film forming conditions to the control device 50 by the input means 52 or the like (step 1401). For example, when a thin film layer having a five-layer structure as shown in FIG. 15 is formed on the substrate 6, a film material such as a non-magnetic material A or a non-magnetic material B, and one to five layers are formed. Enter data such as film order, thickness of each layer, film formation rate, etc.
- control data of the substrate and each target based on the film forming conditions is read out from the storage device 57 (step 1402).
- the controller 50 determines a discharge start time and a discharge end time based on the film forming conditions (step 1403), and further determines a film forming time for each target (step 140). Four ).
- the substrate 6 carried into the vacuum vessel 1 is held in the substrate holder 9 by the transfer robot (Step 1405).
- the inside of the vacuum vessel 1 is evacuated, and a discharge gas is introduced.
- the shutter of the substrate and all targets Close the shutter (Step 1406), adjust the height of each target (Step 14 7), start discharging all targets (Step 1408), and stabilize the discharge.
- the substrate is revolved and moved up and down by the substrate holder 9, and the substrate 6 is moved to the film formation position of the target T4 (Step 1409). Further, the shutter of the gate T4 and the shutter of the substrate are opened (step 1410), and the first layer is formed on the substrate by the target T4. During and before and after the film formation, the motor 6 rotates the substrate 6 around the central axis of the substrate. In the evening, when the deposition time of the target T4 is completed (step 141 1), the shutter of the target T4 and the shutter of the substrate are closed (step 141 2).
- the substrate is revolved and moved up and down by the substrate holder, and the substrate 6 is moved to the film formation position of the get T3 in the evening, and a second layer is formed on the substrate (step 1413).
- the substrate is revolved and raised and lowered by the substrate holder, and the substrate is moved to the film formation position of the target T2 in the evening, and a third layer is formed on the substrate (step 1414).
- the substrate is revolved and moved up and down by the substrate holder, and the substrate is moved to the intermediate film formation position between the evening gates T2 and T3 (step 1415). Then, the non-magnetic material ⁇ and the magnetic material C are simultaneously discharged to form a film (step 1416).
- an alloy thin film having a desired composition can be produced by simultaneously controlling the bias pulse applied to the evening target and simultaneously discharging the two targets.
- h can be controlled to control the film composition.
- the deposition time of the fourth layer is completed (step 1417)
- the shutter of the substrate T2, No. 3 and the substrate is closed, and the deposition of the fourth layer is completed (step 1418).
- the fifth layer is formed (Step 1419).
- the discharge of all targets is stopped (Step 1419).
- the board revolves and moves up and down using the board holder to move the board to the initial position (step 1442 2). Further, the discharge gas is exhausted, the substrate is shuffled (Step 1442 3), and the substrate is carried out of the vacuum vessel 1 by the transfer robot (Step 1442 4). Close and end the series of processing (steps 144, 25).
- an alloy thin film having a desired composition can be produced by simultaneously controlling two or more targets and individually controlling the bias power applied to the targets and then simultaneously discharging. Further, by alternately discharging two or more targets in the same vacuum vessel, a multilayer film having a clean interface can be produced.
- FIG. 16 is a schematic diagram of a magnetic head to which the present invention is applied.
- the magnetic recording head of the magnetic head assembly 150 is divided into a write head 1502 and a read head 1503.
- the write head 1502 mainly includes a thin-film coil 1504, an upper magnetic pole 1505, and a lower magnetic pole 1506.
- 1507 is a leakage magnetic field.
- the read head 1503 is mainly composed of an MR (magnetoresistive) film or a GMR (giant magnetoresistance) film, and changes in the electric resistance of the film due to the magnetic field from the track 1508. Is detected as data.
- the read head 1503 and the upper magnetic pole 1505 and the lower magnetic pole 1506 of the write head 1502 are formed into a film. Forming a uniform film in a short time. Can be achieved.
- the amount of deviation d between the center axis of the substrate 6 and the center axis of the target is adjusted by rotating the substrate holder assembly 9. It is not limited to the configuration shown in FIG.
- the mounting method of the substrate 6 and the target 2 as shown in FIGS. 17 and 18 may be used.
- FIG. 17 is a cross-sectional view of the vacuum vessel showing the positional relationship between the substrate 6 and the target 2
- FIG. 18 is a cross-sectional view taken along line AA of FIG.
- the backing plate 4 0 1 i ⁇ 4 0 1 4 and the target 2 ⁇ 21 to 24, the bar Uz King plate holding plate 4 0 3 i ⁇ 4 0 3 4 are fixed to each evening - Getting
- the center axis of the backing plate is not aligned with the center axis of the backing plate.
- Backing Bed rate holding plate 4 0 3 i ⁇ 4 0 3 4 has a plurality of holes for bolting to the vacuum chamber 1, taken by a plurality as shown in FIG. 1 9 (a) ⁇ (c ) It can be attached.
- Ba Uz King plate holding plate 4 0 3 ⁇ by changing to 4 0 3 Attaching of 4, the central axis 4 of the substrate 6 0 6 and the target 2! It is possible to change the distance d of the central axis 2 9 to 2 4.
- the present invention is not limited to such a configuration.
- a structure may be adopted in which the hole through which the fixing bolt of the backing plate holding plate passes is made into an elongated hole, and the amount of deviation d between the center axis of the substrate and the center axis of the target is adjusted.
- the present invention is not limited to the structure for moving the target side, and as shown in FIGS. 20 and 21, the flange 503 fixing the center axis of the substrate 6 and the substrate holder 502 is fixed. May be shifted from each other.
- FIG. 20 and 21 the flange 503 fixing the center axis of the substrate 6 and the substrate holder 502 is fixed. May be shifted from each other.
- FIG. 20 is a cross-sectional view of the vacuum vessel showing the positional relationship between the substrate 6 and the substrate holder 502
- FIG. 21 is a cross-sectional view taken along line BB of FIG.
- the amount of displacement d and the height h between the substrate central axis and the target central axis can be adjusted depending on the mounting direction of the flange 503.
- a structure may be employed in which the position of the substrate can be adjusted by using a long hole as the hole for the flange fixing bolt on the substrate side.
- the number of targets may be one, in which case one target 2 A plurality of substrates may be arranged.
- the distance d and the height h between the center axis of the target and the center axis of each substrate so as to be the same, the same film quality can be obtained for all the substrates.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
An apparatus for thin film deposition comprises a vacuum chamber, a plurality of sputtering cathodes provided in the vacuum chamber, each including a cathode and a target, and a wafer holder adapted to support wafers in the vacuum chamber and including a shield for separating the target from the wafers. Particles sputtered from the target are deposited on the wafer to form thin film. For each target, a controller varies the distance (d) between the axes of the wafer and target and the distance (h) along the axes between the wafer and the target in accordance with the conditions of film deposition. The adjustment of the distance between the wafer and the target expands the range of film thickness distribution control and allows uniform film to be formed of various target materials.
Description
明細書 Specification
薄膜形成装置及びそれを用レ、た薄膜形成方法 技術分野 Thin film forming apparatus and thin film forming method using the same
本発明は、 スパッタリング法を用いた成膜技術に関し、 特に、 材質あるいは組 成の異なる複数の力ソードを有する薄膜形成装置及びそれを用いた薄膜形成方 法に関するものである。 The present invention relates to a film forming technique using a sputtering method, and in particular, to a thin film forming apparatus having a plurality of force sources having different materials or compositions and a thin film forming method using the same.
背景技術 Background art
薄膜形成法にはスパッ夕リング法、 C V D法等が一般に広く用いられている。 薄膜形成装置において、 膜厚均一性を支配する要素として( 1 )ターゲットに入力 するパワー、 ( 2 )ターゲットのエロ一ジョン半径及び幅、 (3 )プロセスガスの圧 力、 (4 )ターゲッ トと基板の間の距離、 ( 5 )ターゲット中心軸に対する基板中心 軸のずれの量(以下これをオフセット量と呼ぶ)等が挙げられるが、 この中でも( 5 )は膜厚均一性に影響を及ぼす割合が大きい。 As a thin film forming method, a sputtering method, a CVD method, and the like are generally widely used. In the thin film forming apparatus, the following factors govern the film thickness uniformity: (1) power input to the target, (2) target erosion radius and width, (3) process gas pressure, (4) target The distance between the substrates, (5) the amount of deviation of the substrate central axis from the target central axis (hereinafter referred to as the offset amount), and the like, (5) is the ratio that affects the film thickness uniformity Is big.
マルチ力ソード式の薄膜形成装置の場合、 従来は基板を自公転させて成膜を行 う方法が主流である。 この方法は基板と夕ーゲッ 卜のオフセッ ト量の制御を考慮 したものではなく、 ランダムに夕一ゲット粒子を堆積させて膜厚の均一性を狙つ たものである。 Conventionally, in the case of a multi-sword type thin film forming apparatus, a method of forming a film by revolving the substrate on its own axis is the mainstream. This method does not take into account the control of the offset amount between the substrate and the gate, but aims at uniformity of the film thickness by depositing the particles randomly at night.
ところで、 近年では不純物を排除して膜品質を向上させるために 1 X 1 0 "7Pa 以下の真空到達度が求められている。 このような真空度を達成するには、 各種機 構部分の部品点数を減らして、 部品表面からの放出ガス量を低減する必要が有る 。 この点において、 従来のマルチカゾード式の基板自公転方式は構造が複雑であ るため真空到達度を上げるのが困難であった。 By the way, in recent years, in order to improve the film quality by eliminating impurities, a vacuum reaching degree of 1 X 10 " 7 Pa or less is required. To achieve such a vacuum degree, various mechanical parts must be used. It is necessary to reduce the number of components to reduce the amount of gas emitted from the surface of the components.In this regard, the conventional multi-cascade-type substrate self-revolving method has a complicated structure, and it is difficult to increase the degree of vacuum attainment. there were.
また、 従来の薄膜形成装置において、 基板とターゲットのオフセット量を調整 するものとして、 例えば日本の特開平 1一 3 1 9 6 7 1号公報には、 ターゲット の位置を変えることで基板中心軸とターゲツ ト中心軸の相対位置を調整するも のが開示されている。 しかし、 基板とターゲッ ト間の相対位置調整だけでは、 面
内膜厚分布制御の範囲が限られており、 種々の材質のターゲットに対して均一な 膜を形成することは困難であった。 また、 成膜速度についても十分な配慮がなさ れていなかった。 In a conventional thin film forming apparatus, as an example of adjusting the offset amount between a substrate and a target, for example, Japanese Patent Application Laid-Open Publication No. Hei 11-1991 discloses that by changing the position of the target, the center axis of the substrate can be adjusted. A device that adjusts the relative position of the target center axis is disclosed. However, simply adjusting the relative position between the substrate and the target is not enough. The range of inner thickness distribution control is limited, and it has been difficult to form a uniform film on targets of various materials. Also, sufficient consideration was not given to the deposition rate.
発明の開示 Disclosure of the invention
本発明の目的は、 上記従来装置の不都合を解決し、 基板とターゲッ ト間の距離 調整により面内膜厚分布制御の範囲を拡大し、 種々の材質のターゲッ 卜に対して 均一な膜を形成する技術を提供することにある。 An object of the present invention is to solve the inconveniences of the conventional apparatus described above, expand the range of in-plane film thickness distribution control by adjusting the distance between the substrate and the target, and form a uniform film on targets of various materials. It is to provide the technology to do.
上記目的を達成するため、 本発明は、 真空容器と、 力ソード電極とターゲット とを有する該真空容器内に設けられた複数のスパッタリングカソードと、 該真空 容器内において基板を保持すると共に該基板と前記ターゲットを遮蔽する遮蔽 板を有する基板ホルダとを備え、 前記ターゲットから飛来した粒子を前記基板上 に堆積させて薄膜を形成する薄膜形成装置において、 基板中心軸/ターゲット中 心軸間距離 dと該中心軸方向における基板/夕一ゲッ ト間の距離 hを、成膜条件 に応じて前記各夕一ゲット毎に変える制御装置を有することを特徴とする。 本発明の他の特徴として、 前記基板ホルダは、 該基板ホルダの中心軸に対して 回転させることにより前記基板を公転させて前記距離 dを調整する基板ホルダ 駆動機構と、 該基板を前記中心軸方向に昇降させて前記距離 hを調整する基板ホ ルダ昇降機構とを有する。 In order to achieve the above object, the present invention provides a vacuum vessel, a plurality of sputtering cathodes provided in the vacuum vessel having a force source electrode and a target, a substrate held in the vacuum vessel, and A substrate holder having a shielding plate for shielding the target, wherein a thin film forming apparatus for depositing particles flying from the target on the substrate to form a thin film, comprising: a distance d between a substrate central axis / a target central axis; It is characterized by having a control device for changing the distance h between the substrate and the evening get in the direction of the central axis for each evening get according to the film forming conditions. As another feature of the present invention, the substrate holder comprises a substrate holder driving mechanism for rotating the substrate about a central axis of the substrate holder to revolve the substrate to adjust the distance d; And a substrate holder elevating mechanism for adjusting the distance h by elevating in the direction.
本発明によれば、 膜成長に及ぼすパラメ一夕を制御することで所望の膜特性を 持つ薄膜の製造方法及び装置の提供が可能となり、 製品の特性及び薄膜の製造装 置の生産性が向上する。 According to the present invention, it is possible to provide a method and an apparatus for manufacturing a thin film having desired film characteristics by controlling the parameters affecting the film growth, thereby improving the product characteristics and the productivity of the thin film manufacturing equipment. I do.
スパッタリング法では、 スパッ夕蒸発粒子の飛び出し易い方向が夕一ゲッ ト材 質とターゲッ トに印加するパワーによって変わる。 本発明によれば、 基板中心軸 /夕一ゲット中心軸間距離 dとこの中心軸方向における基板/ターゲッ ト間の距 離 hを調整することで、 従来装置では困難であった成膜速度と膜厚均一性の同時 制御が可能となる。 従って、 放出角度特性の異なる材質のターゲットを用いた場 合でも、 均一な面内膜厚分布を、 しかも効率よく得ることができる。
また、 基板とタ一ゲットの距離 h、 d をターゲッ ト毎に変えることができるの で、 複数のターゲットを同時成膜する場合など、 ターゲッ トにバイアスパワーを 加える電源が一つであっても、 h、 dを制御することで膜組成を制御することがで きる。 In the sputtering method, the direction in which the evaporating particles tend to fly out depends on the target material and the power applied to the target. According to the present invention, by adjusting the distance d between the substrate center axis and the center of the evening target and the distance h between the substrate and the target in the direction of the center axis, the film formation rate and the film formation difficult with the conventional apparatus are achieved. Simultaneous control of film thickness uniformity becomes possible. Therefore, even when targets made of materials having different emission angle characteristics are used, a uniform in-plane film thickness distribution can be obtained efficiently. In addition, since the distances h and d between the substrate and the target can be changed for each target, even when a single power supply is used to apply bias power to the target, such as when multiple targets are simultaneously formed. By controlling h, d, the film composition can be controlled.
また、 本発明の他の特徴によれば、 2つ以上のターゲッ トをターゲッ トに加え るバイアスパワーを個別に制御した上で同時放電することにより、 所望の組成の 合金薄膜を作製することができる。 また、 2つ以上のターゲットを同一真空容器 内で交互に放電することにより、 界面が清浄な多層膜を作製することができる。 図面の簡単な説明 Further, according to another feature of the present invention, it is possible to produce an alloy thin film having a desired composition by simultaneously controlling two or more targets and individually controlling the bias power applied to the targets and then simultaneously discharging. it can. Also, by alternately discharging two or more targets in the same vacuum vessel, a multilayer film having a clean interface can be produced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施例になる薄膜形成装置の縦断面を示す図である。 図 2は、 図 1に示す装置における、 ターゲット中心軸と基板中心軸のずれの量 の説明図である。 FIG. 1 is a diagram showing a longitudinal section of a thin film forming apparatus according to one embodiment of the present invention. FIG. 2 is an explanatory diagram of a shift amount between a target central axis and a substrate central axis in the apparatus shown in FIG.
図 3は、 図 1に示す装置における、 基板への磁場印加用磁石の配置例を示す図 である。 FIG. 3 is a diagram showing an arrangement example of a magnet for applying a magnetic field to a substrate in the apparatus shown in FIG.
図 4は、 図 1に示す装置における、 ターゲット昇降機構の縦断面を示す図であ る。 FIG. 4 is a view showing a vertical cross section of a target elevating mechanism in the apparatus shown in FIG.
図 5は、 図 1に示す装置における、 制御装置の機能を示すブロック図である。 図 6は、マグネトロンスパッ夕の原理説明及びマグネトロンスパヅ夕法の構成 図である。 FIG. 5 is a block diagram showing functions of a control device in the device shown in FIG. FIG. 6 is a diagram illustrating the principle of magnetron sputtering and the configuration of the magnetron sputtering method.
図 7は、本発明によるターゲット中心軸と基板中心軸のずれの量の調整法の一 例を示す図である。 FIG. 7 is a diagram illustrating an example of a method of adjusting the amount of deviation between the target central axis and the substrate central axis according to the present invention.
図 8は、 スパッ夕における磁性体材料の放出角度特性の一例を示す図である。 図 9は、スパッタにおける非磁性体材料の放出角度特性の一例を示す図である 。 FIG. 8 is a diagram illustrating an example of the emission angle characteristics of the magnetic material during spattering. FIG. 9 is a diagram illustrating an example of emission angle characteristics of a nonmagnetic material in sputtering.
図 1 0は、 材料が図 8の放出角度特性を有する場合の d、 hの最適範囲を示す 図である。
図 1 1は、材料が図 9の放出角度特性を有する場合の d、 hの最適範囲を示す 図である。 FIG. 10 is a diagram showing the optimal ranges of d and h when the material has the emission angle characteristics shown in FIG. FIG. 11 is a diagram showing the optimum ranges of d and h when the material has the emission angle characteristics shown in FIG.
図 1 2は、図 8に示した特性を持つ磁性体を成膜した場合の成膜速度の分布特 性を示す図である。 FIG. 12 is a diagram showing the distribution characteristics of the film forming speed when a magnetic material having the characteristics shown in FIG. 8 is formed.
図 1 3は、図 9に示した特性を持つ非磁性体を成膜した場合の成膜速度の分布 特性を示す図である。 FIG. 13 is a diagram showing a distribution characteristic of a film forming speed when a non-magnetic material having the characteristics shown in FIG. 9 is formed.
図 1 4は、 本発明の方法により、 図 1 5に示す薄膜層を形成する処理手順を示 す図である。 FIG. 14 is a diagram showing a processing procedure for forming the thin film layer shown in FIG. 15 by the method of the present invention.
図 1 5は、 本発明の薄膜形成処理の手順を説明するための、 薄膜層構造の例を 示す図である。 FIG. 15 is a diagram showing an example of a thin film layer structure for explaining the procedure of the thin film forming process of the present invention.
図 1 6は、 本発明が適用される磁気ヘッドの概略構成例を示す図である。 図 1 7は、基板とターゲットの位置関係を調整するための、本発明の他の実施 例における真空容器の横断面である。 FIG. 16 is a diagram showing a schematic configuration example of a magnetic head to which the present invention is applied. FIG. 17 is a cross-sectional view of a vacuum vessel in another embodiment of the present invention for adjusting a positional relationship between a substrate and a target.
図 1 8は、 図 1 7の A— A断面図である。 FIG. 18 is a sectional view taken along line AA of FIG.
図 1 9は、図 1 7の実施例に基づく基板とタ一ゲットの位置関係を示す図面で ある。 FIG. 19 is a drawing showing the positional relationship between the substrate and the target based on the embodiment of FIG.
図 2 0は、 ターゲット中心軸と基板中心軸のずれの量を調整するための、 本発 明の他の実施例における真空容器の横断面である。 FIG. 20 is a cross-sectional view of a vacuum vessel according to another embodiment of the present invention for adjusting the amount of deviation between the target central axis and the substrate central axis.
図 2 1は、 図 2 0の B— B断面図である。 発明を実施するための最良の形態 FIG. 21 is a sectional view taken along line BB of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図に従って、 本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
まず、 図 1は本発明の一実施例になる薄膜形成装置の全体構成を示している。 この薄膜形成装置は真空容器 1を有し、 この真空容器は真空ポンプに接続され 、 内部を真空状態に保つように構成されている。 この真空容器 1内の上部には、 軸 7を中心にして基板 6を回転 (自転) させるための電動機 8を載置した基板ホ ルダアセンブリ 9を有する。 基板 6は基板保持機構により下向きに基板ホルダァ
センプリ 9に保持される。 図 2に示すように、 基板ホルダアセンブリ 9が電動機 1 4により軸 1 0を中心に回転することにより、 基板 6は円形軌道 1 0 2上を移 動 (公転) 可能になっている。 すなわち、 基板ホルダアセンブリ 9は軸 1 ◦を中 心に回転でき、 基板 6を回転方向の任意の位置まで移動させるように、 制御装置 5 0で制御することができる。 また、 基板ホルダアセンブリ 9は、 基板 6に対す る遮蔽板 1 1を備えており、 遮蔽板 1 1は電動機 1 2により軸 1 0を中心に回転 することができるように構成されている。 First, FIG. 1 shows an overall configuration of a thin film forming apparatus according to one embodiment of the present invention. This thin film forming apparatus has a vacuum vessel 1, which is connected to a vacuum pump and is configured to keep the inside in a vacuum state. A substrate holder assembly 9 on which an electric motor 8 for rotating (spinning) the substrate 6 about an axis 7 is mounted at an upper portion in the vacuum vessel 1. Substrate 6 is held downward by the substrate holding mechanism. Retained in temple 9. As shown in FIG. 2, the substrate 6 can be moved (revolved) on the circular orbit 102 by rotating the substrate holder assembly 9 about the axis 10 by the electric motor 14. That is, the substrate holder assembly 9 can be rotated around the axis 1 °, and can be controlled by the control device 50 so as to move the substrate 6 to an arbitrary position in the rotation direction. Further, the substrate holder assembly 9 includes a shielding plate 11 for the substrate 6, and the shielding plate 11 is configured to be able to rotate about the axis 10 by the electric motor 12.
さらに、 昇降用のギア 1 6及び電動機 1 7を含む基板ホルダ昇降機構 1 8によ り、 基板ホルダアセンブリ 9を上下させて、 図 2に示すように、 基板 6とタ一ゲ ット 2 2〜 2 4との間の垂直方向の距離 h ( h l〜h 4 ) を変化させることができ る。 Further, Ri by the substrate holder lifting mechanism 1 8 comprising gear 1 6 and the motor 1 7 for lifting, up and down the substrate holder assembly 9, as shown in FIG. 2, the substrate 6 and the motor one g e t DOO 2 2 The vertical distance h (hl to h 4) between 2 and 4 can be varied.
基板ホルダアセンブリ 9内でかつ基板 6の上方には、 加熱用ヒータが設置され 、 また、 冷却水により基板 6を冷却できるよう構成されている。 これにより、 成 膜時の基板温度を制御し、 結晶成長の制御を行うことができる。 A heater for heating is provided in the substrate holder assembly 9 and above the substrate 6, and the substrate 6 can be cooled by cooling water. This makes it possible to control the substrate temperature during film formation and control the crystal growth.
また、 基板 6の外周には磁石 1 3が配置され、 基板に平行な方向に磁場を印加 しながら成膜できるように構成されている。 磁石 1 3は永久磁石または電磁石で 構成され、 例えば図 3のように、 基板 6の半径方向の外側に配置されている。 図 3の構成例では、 基板 6を取り囲むように、 それそれ矢印 2 0 1 i〜2◦ 1 4の向 きに磁化された永久磁石 1 3 2〗〜 1 3 2 4を配置しており、基板 6の面に平行に 、 矢印 2 0 4の向きに磁場を印加する。 Further, a magnet 13 is disposed on the outer periphery of the substrate 6 so that a film can be formed while applying a magnetic field in a direction parallel to the substrate. The magnet 13 is formed of a permanent magnet or an electromagnet, and is arranged outside the substrate 6 in the radial direction, for example, as shown in FIG. In the configuration example of FIG. 3, so as to surround the substrate 6, and place it it arrow 2 0 1 I~2◦ 1 4 permanent magnets which are magnetized about the direction 1 3 2〗 - 1 3 2 4, A magnetic field is applied in the direction of the arrow 204 in parallel with the surface of the substrate 6.
図 1に戻って、 真空容器 1内の下部には、 力ソ一ド電極 3とターゲッ ト 2 i〜 2 4 ( 2 3、 2 4は図示せず。 以下、 同様)とがそれそれ設けられた 4つのスパヅ夕 リング力ソードが設置され、 各ターゲットには、 R F電源 2 0または D C電源 2 2により成膜中にバイアスを印加できるように構成されている。 2 9はターゲッ ト中心軸を示す。 なお図にはバイアス電源として 2種類の電源を採用した例を示 したが、 夕ーゲットの材質や成膜条件に応じて R F電源と D C電源の双方を組み 合わせ、 あるいはいずれか一種類で構成するのが望ましい。
ターゲット 2 i〜2 4は、 異なる材料で構成されており、 それそれ基板 6と平行 になるように配置されている。 各ターゲッ トは、 ターゲッ ト昇降機構 3 1 ( 3! ~ 3 4 )で、 全体として上下に移動できるよう構成されている。 つまり、 基板 6と 夕一ゲヅト 2 2〜2 4との間の距離 hは、基板ホルダアセンブリ 9の基板ホルダ昇 降機構 1 8と、 ターゲッ ト昇降機構 3 1のいずれでも調整することができる。 本実施例では、基板ホルダ昇降機構 1 8とタ一ゲット昇降機構 3 1の両者を組 み合わせて距離 hを制御する。 例えば、 距離 h xが大きく所定の範囲 h 0の外に あるターゲットについては、 タ一ゲヅト昇降機構 3 1の調整距離 hひと基板ホル ダ昇降機構の調整距離 h 0に分担して h x ( = h 0 + hひ) を調整する。 このよ うな構成により、 予めターゲッ ト昇降機構 3 1により距離 hひを調整しておくこ とができるため、 成膜処理時には基板ホルダ昇降機構 1 8による距離の制御を h 0以下に押さえることが出来、 距離調整のための時間を短縮して成膜速度を向上 させることが出来る。 Returning to FIG. 1, the bottom of the vacuum vessel 1, Chikarasoichido electrode 3 and the target 2 i~ 2 4 (2 3, 2 4 are not shown. Hereinafter, the same) and is it it provided In addition, four sputtering force sources are installed, and each target is configured so that a bias can be applied during film formation by the RF power supply 20 or the DC power supply 22. Reference numeral 29 denotes the target central axis. Although the figure shows an example in which two types of power supplies are used as the bias power supply, both the RF power supply and the DC power supply are combined, or one of them is used, depending on the material of the target and the film forming conditions. It is desirable. Target 2 i to 2 4 is formed of a different material, it is arranged in parallel therewith therewith substrate 6. Each target is a target lift mechanism 3 1 (3! ~ 3 4) is configured to be moved up and down as a whole. In other words, the distance h between the substrate 6 and the evening one Gedzuto 2 2 21 to 24 can be adjusted to the substrate holder temperature descending mechanism 1 8 of the substrate holder assembly 9, either the target lift mechanism 3 1. In this embodiment, the distance h is controlled by combining both the substrate holder elevating mechanism 18 and the target elevating mechanism 31. For example, for a target whose distance hx is large and is outside the predetermined range h0, the adjustment distance h of the target lift mechanism 31 and the adjustment distance h0 of the substrate holder lift mechanism are shared by hx (= h0 + h)). With such a configuration, the distance h can be adjusted in advance by the target elevating mechanism 31, so that the distance control by the substrate holder elevating mechanism 18 can be suppressed to h0 or less during the film forming process. As a result, the time for adjusting the distance can be shortened, and the film forming speed can be improved.
各タ一ゲヅトの周囲には、 円筒形状の壁 1 9 1〜 1 9 4と、 遮蔽板 4 !〜 4 4が 設置されており、遮蔽板 4 ,〜4 4は軸 3 2 i〜3 2 4を中心に電動機を含む遮蔽板 駆動装置 3 4 i〜3 4 4により水平方向に回転移動させることが出来る。 Around each target gate, there are provided cylindrical walls 19 1 to 19 4 and shielding plates 4 to 4 4 , and shielding plates 4 to 4 4 have axes 3 2 i to 3 2. 4 the shield plate driving device comprises an electric motor about a 3 4 I~3 4 4 makes it possible to rotate moved horizontally.
なお、 図 1の実施例の薄膜形成装置では、 ターゲッ トの数は 4つであるが、 薄 fl莫形成の条件に応じた数にすることは言うまでもない。 Although the number of targets is four in the thin film forming apparatus of the embodiment shown in FIG. 1, it is needless to say that the number is set according to the conditions for forming the thin film.
また、 タ一ゲッ ト昇降機構 3 1 !〜3 1 4は、 マイクロコンピュータを用いた制 御装置 5 0によりターゲット毎に制御され、 各ターゲットの上下方向の高さを調 節するできるように構成されている。 なお、 装置構成を簡単にする必要のある場 合には、 夕一ゲット昇降機構を手動操作により昇降できるようにしても良い。 先に述べたように、 ターゲット 2は、 昇降用ギア 3 0と電動機 3 3を含む夕一 ゲヅ ト昇降機構 3 1 i〜3 1 4で、 上下に移動して、 夕一ゲットと基板の距離 hを 調整することができるよう構成されている。 このターゲッ ト昇降機構 3 1 i〜3 1 4の要部構成を、 図 4に示す。 2 3は電極となる銅プレートであり、 この上に ターゲヅト 2が載置される。 銅プレート 2 3には夕一ゲヅト 2にバイアスをかけ
るための R F電源または D C電源が接続されている。 タ一ゲヅ ト 2の下面には、 空隙を介してヨーク 2 5が位置し、 このヨークにリング状のマグネトロン磁石 5 が設置されており、 各タ一ゲットの表面に高密度プラズマを発生させることが出 来る。 また、 外枠 2 8及びそれに固定されたシールドリング 2 6が、 空隙を介し てターゲット 2を囲むように配置されている。 外枠 2 8はアースされている。 マグネトロン磁石 5は、 図示しない磁石昇降機構によりターゲッ ト 2に対して 相対的に上下方向の移動ができるように構成されており、 磁石 5を上下させるこ とで夕—ゲット 2の表面の磁場強度を変えることが出来るようになつている。 Further, data one rodents preparative lifting mechanism 3 1! To 3 1 4 is controlled for each target by the control device 5 0 using a microcomputer, configured to allow for height adjustment section in the vertical direction of each target Have been. If it is necessary to simplify the device configuration, the evening get-up / down mechanism may be made up and down by manual operation. As mentioned earlier, the target 2 is the evening one gate Uz preparative lift mechanism 3 1 i~3 1 4 comprising lifting gear 3 0 and the motor 3 3, by moving up and down, evening one target and substrate It is configured so that the distance h can be adjusted. FIG. 4 shows the main configuration of the target elevating mechanism 31 i to 31 4 . Reference numeral 23 denotes a copper plate serving as an electrode, on which the target 2 is placed. Copper plate 2 3 bias evening gate 2 RF power supply or DC power supply is connected. A yoke 25 is located on the lower surface of the target 2 via a gap, and a ring-shaped magnetron magnet 5 is installed on the yoke, and a high-density plasma is generated on the surface of each target. Things come out. Further, an outer frame 28 and a shield ring 26 fixed to the outer frame 28 are arranged so as to surround the target 2 via a gap. Outer frame 28 is grounded. The magnetron magnet 5 is configured to be able to move up and down relative to the target 2 by a magnet lifting mechanism (not shown), and by moving the magnet 5 up and down, the magnetic field strength on the surface of the evening target 2 is increased. Can be changed.
R F電源 2 0または D C電源 2 2は、 各電源ごとに電源制御装置を有しており 、 各ターゲッ ト 2に加えるバイアスパワーを制御装置 5 0により個別に制御でき るように構成されている。 本実施例の薄膜形成装置は、 前記電源制御装置により 、 2つ以上のターゲットを同時に放電させて成膜を行うことができる。 また、 2 つ以上のターゲッ トを交互に放電させ、 2つ以上の材料を有する多層膜を作製す ることもできる。 The RF power supply 20 or the DC power supply 22 has a power supply control device for each power supply, and is configured such that the bias power applied to each target 2 can be individually controlled by the control device 50. In the thin film forming apparatus of the present embodiment, two or more targets can be discharged simultaneously by the power supply control device to form a film. Alternatively, a multilayer film having two or more materials can be manufactured by alternately discharging two or more targets.
次に、 制御装置 5 0の構成例を示す。 制御装置 5 0は、 マイクロコンピュー夕 とそのメモリに記憶された制御プログラム及びデ一夕等により構成される。 これ らを機能的に示したものが図 5である。 制御装置 5 0は、 C P U及びメモリを有 しメモリに記憶された制御プログラムに従って成膜処理の全体を制御する主制 御部 5 1と、 入力手段 5 2、 表示手段 5 3、 主制御部 5 1から与えられる処理手 順に従って基板を制御する基板コントローラ 5 4、 主制御部 5 1から与えられる 処理手順に従って夕一ゲッ トを制御するターゲッ トコントロ一ラ 5 5及び各種 データを保持する外部記憶装置 5 7によって構成される。 制御装置 5 0はさらに 、 真空容器 1内への放電用ガスたとえば Ar ガスの供給、 真空容器 1内の真空排 気ゃクリ一ニング、 真空容器に対する基板の搬出入等を制御する真空容器コント ローラ 5 6も備えている。 基板コントローラ 5 4は、 基板ホルダの電動機 8、 1 2、 1 4、 1 7を介して基板を制御する。 また、 ターゲットコントローラ 5 5は 、 ターゲット昇降機構の電動機 3 3、 3 4及び電源制御装置 3 5、 電源 2 0また
は 2 2を介してターゲッ トを制御する。 なお、 真空容器コントローラ 5 6は通常 一般に用いられているものと同じであり本発明の特徴に関係の無い部分の説明 は省略する。 Next, a configuration example of the control device 50 will be described. The control device 50 includes a microcomputer, a control program stored in a memory of the microcomputer, and a computer. Figure 5 shows these functionally. The control device 50 includes a main control unit 51 having a CPU and a memory and controlling the entire film forming process according to a control program stored in the memory, an input unit 52, a display unit 53, and a main control unit 5. A board controller 54 that controls the board according to the processing procedure given from 1, a main controller 51 A target controller 55 that controls the target according to the processing procedure given from 51, and an external storage device that holds various data Composed of 5 7 The control device 50 further includes a vacuum vessel controller that controls the supply of a discharge gas such as Ar gas into the vacuum vessel 1, the vacuum exhaustion and cleaning of the vacuum vessel 1, and the loading and unloading of substrates into and out of the vacuum vessel. It also has 5 6. The board controller 54 controls the board via the board holder motors 8, 12, 14, 17. Further, the target controller 55 includes a motor 33, 34 of the target elevating mechanism, a power control device 35, a power source 20 or Controls the target via 22. The vacuum vessel controller 56 is the same as that generally used in general, and a description of a portion irrelevant to the features of the present invention will be omitted.
本発明の基板コントロ一ラ 5 4及びターゲットコントロ一ラ 5 5は、基板に形 成される膜すなわちターゲッ トの材質や成膜速度等の成膜条件に応じて、 基板中 心軸とターゲッ ト中心軸のオフセッ ト量 (d )、 及び基板に対するターゲットの 高さ (軸方向の距離 = h ) を変えることができる。 The substrate controller 54 and the target controller 55 according to the present invention may be arranged such that the substrate center axis and the target are controlled in accordance with the film formed on the substrate, that is, the material of the target and the film forming conditions such as the film forming speed. The offset of the central axis (d) and the height of the target relative to the substrate (axial distance = h) can be varied.
なお、 図 5における主制御部 5 1、 基板コントローラ 5 4、 ターゲッ トコント ローラ 5 5、 及び真空容器コントロ一ラ 5 6の区分はあくまでも機能的なもので あり、 実際の処理ではこれらのコントローラが一体となって薄膜形成処理が実行 される。 Note that the main control unit 51, the board controller 54, the target controller 55, and the vacuum vessel controller 56 in FIG. 5 are functionally functional, and these controllers are integrated in the actual processing. Then, the thin film forming process is performed.
本発明は、 上記薄膜形成装置を用いて、 基板中心軸 1 0とターゲッ ト中心軸 2 9間の距離 d (オフセヅ ト量) とこの中心軸方向における基板/ターゲヅト間の 距離 hを制御しながら、 スパッタリング法により基板の成膜処理を行う。 薄膜形 成処理における制御装置 5 0の処理手順については、 後で説明するものとして、 まず、 マグネトロンスパッ夕について図 6で簡単に説明する。 スパッ夕は、 図 6 (A ) に示すように、 粒子 (Ar+イオンなど)が物体に衝突した時に、 運動量の交 換により固体を構成する原子が空間に放出される蒸発現象 (これをスパッタ蒸発 という)のことである。スパッタ蒸発を応用し、放出された構成原子を基板上に堆 積させることにより、 薄 J3莫を作製することができる。 図 6 ( B ) にマグネトロン スパッタ法の構成図を示す。 ターゲットの裏面に配置されたリング状の磁石によ り、 夕一ゲッ 卜の表面には図に示した磁力線のようなマグネトロン磁場が形成さ れる。 一方、 ターゲット 2と基板 6の間には、 R F電源あるいは D C電源により 電圧が印加されており、 励起されてイオン化した Ar+イオンは、 基板/ターゲッ ト間の電位差により加速されてターゲットに衝突する。 この衝突により、 Ar+ィ オンと夕一ゲット構成原子は運動量交換を行い、 夕一ゲッ ト構成原子は空間に放 出される。 図 6 ( B ) に示したように、 磁石を用いてマグネトロン磁場を形成し
ている場合、 Ar+イオンはマグネトロン磁場中に閉じ込められて高密度になるた め、 マグネトロン磁場中では効率よくスパッタを行わせることができる。 The present invention provides a method for controlling the distance d (offset amount) between the substrate central axis 10 and the target central axis 29 and the distance h between the substrate and the target in the central axis direction by using the thin film forming apparatus. The substrate is formed by a sputtering method. The processing procedure of the control device 50 in the thin film formation processing will be described later. First, the magnetron pump will be briefly described with reference to FIG. As shown in Fig. 6 (A), when particles (such as Ar + ions) collide with an object, the momentum exchange causes the atoms that constitute the solid to be released into space, which is called sputter evaporation. That is). By applying sputter evaporation and depositing the emitted constituent atoms on a substrate, a thin J3 layer can be produced. Figure 6 (B) shows the configuration diagram of the magnetron sputtering method. A magnetron magnetic field like the magnetic field lines shown in the figure is formed on the front surface of the target by the ring-shaped magnet arranged on the back surface of the target. On the other hand, a voltage is applied between the target 2 and the substrate 6 by the RF power supply or the DC power supply, and the excited and ionized Ar + ions are accelerated by the potential difference between the substrate and the target and collide with the target. Due to this collision, the Ar + ions and the constituent atoms in the evening exchange momentum, and the constituent atoms in the evening get released into space. As shown in Fig. 6 (B), a magnetron magnetic field is formed using a magnet. In this case, the Ar + ions are confined in the magnetron magnetic field and have a high density, so that sputtering can be performed efficiently in the magnetron magnetic field.
すでに述べたように、 本発明は、 オフセット量 (d ) 、 高さ (h ) を夕一ゲッ 卜の材質等に応じて変える機構に特徴がある。 図 2及び図 7を用いて、 本発明の 薄膜形成装置における基板 6とターゲット 2のオフセット量 (相対位置) の制御 の一例を説明する。 基板 6は軸 1 0を中心とした基板ホルダアセンブリ 9の回転 動作により、 円形軌道 1 0 2上を移動することが出来る。 この薄膜形成装置は、 円形軌道 1 0 2の半径を rとすると、 夕一ゲット 2 の中心軸 2 9 iと基板 6の中 心軸 1 0の間の距離 dを、 基板ホルダアセンブリ 9の回転動作により 0〜2 rの 範囲で連続的に変化させることができる。 図 2は、 ターゲット 2!オフセット量 が 0の場合であり、 ターゲッ ト 2 〜2 4の高さ hが、 ターゲッ トの材質に応じて 変えられている。 As described above, the present invention is characterized by a mechanism for changing the offset amount (d) and the height (h) according to the material of the evening getter. An example of control of the offset amount (relative position) between the substrate 6 and the target 2 in the thin film forming apparatus of the present invention will be described with reference to FIGS. The substrate 6 can move on the circular orbit 102 by the rotation of the substrate holder assembly 9 about the axis 10. In this thin film forming apparatus, assuming that the radius of the circular orbit 102 is r, the distance d between the central axis 29 i of the evening get 2 and the central axis 10 of the substrate 6 is determined by the rotation of the substrate holder assembly 9. By operation, it can be changed continuously in the range of 0 to 2r. Figure 2 shows Target 2! A case the offset amount is 0, the height h of the target 2-2 4 has been changed according to the material of the target.
次に、 図 7 ( a ) は、 基板 6を円形軌道 1 0 2に沿って移動させ、 ターゲッ ト 2 ,に対するオフセット量 (d ) を、 d lとした場合である。 また、 図 7 ( b ) は、 基板 6を円形軌道 1 0 2に沿って移動させ、 ターゲット 2 に対するオフセ ヅト量 (d ) を、 d 2とした場合である。 Next, FIG. 7A shows a case where the substrate 6 is moved along the circular orbit 102 and the offset amount (d) with respect to the target 2 is d l. FIG. 7B shows a case where the substrate 6 is moved along the circular orbit 102 and the offset amount (d) with respect to the target 2 is d 2.
夕一ゲット 2 2〜2 4の中心軸 2 9 2〜2 9 4と基板 6の中心軸 1 0との間の距 離 dも、 上と同様に 0〜 2 rの範囲で連続的に変化させることができる。 Distance d is also continuously changed in a range of the upper as well as 0 to 2 r between evening and one target 2 2 21 to 24 the central axis 2 9 2-2 9 4 between the center axis 1 0 of the substrate 6 Can be done.
このように、 本発明は、 基板中心軸/ターゲット中心軸間距離 d (オフセット 量) とこの中心軸方向における基板/ターゲット間の距離 hをターゲットの材質 に応じて変える機構を有することを特徴とする。 As described above, the present invention is characterized by having a mechanism for changing the distance d (offset amount) between the substrate central axis and the target central axis and the distance h between the substrate and the target in the central axis direction according to the material of the target. I do.
ここで、 オフセット成膜を行う理由について述べる。 図 8、 図 9にスパッ夕に おける放出角度特性の一例を示す。 この図は、 スパッタ粒子の飛散分布特性、 す なわちある物体がスパッ夕されたとき、 スパッタされた粒子がどの方向にどれだ けの割合で飛んで行くかを示している。 例えば、 図中に示した Θ Α方向と 0 B方向 を比較した場合、 ΘΑ方向に飛ぶ割合と 0Β方向に飛ぶ割合の比はべクトル OAと べクトル OBの絶対値の比で表される。
この放出角度特性は材質毎に異なっており、 スパッタを利用した薄膜形成装置 の基板とターゲットの配置を決める場合、 タ一ゲッ 卜の材質毎に最適な位置を決 める必要がある。 逆に、 基板とターゲッ 卜の相対位置を調整する機構を薄膜形成 装置に組み込むことで、 基板面内の膜厚分布の均一性の制御を簡便に行うことが 可能になる。 Here, the reason for performing the offset film formation will be described. Fig. 8 and Fig. 9 show examples of emission angle characteristics in spatter. This figure shows the scattering distribution characteristics of sputtered particles, that is, when a certain object is sputtered, the sputtered particles fly in which direction and in what proportion. For example, when comparing the Θ Α direction and the 0 B direction shown in the figure, the ratio of the ratio of flight in the Θ Α direction and the ratio of flight in the 0 Β direction is expressed as the ratio of the absolute values of the vector OA and the vector OB. You. This emission angle characteristic differs for each material, and when deciding the arrangement of the substrate and the target of the thin film forming apparatus using sputtering, it is necessary to determine the optimum position for each target material. Conversely, by incorporating a mechanism for adjusting the relative position between the substrate and the target into the thin film forming apparatus, it is possible to easily control the uniformity of the film thickness distribution in the substrate surface.
一例として、 図 8のような放出角度特性を持つ磁性体の場合に、 基板中心軸/ タ一ゲッ ト中心軸間距離 dとこの中心軸方向における基板/ターゲット間の距離 h との組み合わせがどの範囲にあれば均一な分布を得ることができるかを示した ものが、 図 1 0である。 また、 図 9のような放出角度特性を持つ非磁性体の場合 に、 基板中心軸/夕一ゲット中心軸間距離 dとこの中心軸方向における基板/夕 ーゲッ ト間の距離 hの組み合わせがどの範囲にあれば均一な分布を得ることがで きるかを示したものが、 図 1 1である。 距離 d、 hの組合せが図中に示した斜線 部内にあると、 膜厚分布 Max.— Min.の値を ± 3 %以内に収めることができる。 なお、 Max.— Min.とは膜厚均一性を表す指標であり、 基板面内の膜厚最大値を t max、 膜厚最小値を t minとすると、 As an example, in the case of a magnetic material having emission angle characteristics as shown in Fig. 8, what is the combination of the distance d between the substrate center axis and the target center axis and the distance h between the substrate and target in this center axis direction? Figure 10 shows whether a uniform distribution can be obtained within the range. Also, in the case of a non-magnetic material having emission angle characteristics as shown in Fig. 9, the combination of the distance d between the substrate center axis and the evening center axis and the distance h between the substrate and evening target in this central axis direction is Figure 11 shows whether a uniform distribution can be obtained within the range. If the combination of the distances d and h is within the shaded area shown in the figure, the value of the film thickness distribution Max.—Min. Can be kept within ± 3%. Note that Max.—Min. Is an index indicating the film thickness uniformity. If the maximum film thickness in the substrate surface is t max and the minimum film thickness is t min ,
Max.- Min. = 一 x 100 である。 Max.- Min. = One x 100.
また、 図 8、 図 9で述べたことから明らかなように、 本発明によれば、 距離 h、 dの調整による膜厚分布制御ができる。 従って、 放出角度特性の異なる材質の夕 —ゲットを用いた場合でも、 ターゲットと基板の距離 h、 dの調整により均一な 面内膜厚分布を得ることができる。 Further, as is clear from the description of FIGS. 8 and 9, according to the present invention, the film thickness distribution can be controlled by adjusting the distances h and d. Therefore, even when a target made of a material having a different emission angle characteristic is used, a uniform in-plane film thickness distribution can be obtained by adjusting the distances h and d between the target and the substrate.
スパッタリング法での成膜速度の制御は、 夕一ゲットに印加するパワーを制御す ることで実現できるが、 前述のようにスパッタ蒸発粒子の飛び出し易い方向はタ —ゲッ 卜に印加するパワーで変わるため、 従来装置では困難であった成膜速度と 膜厚均一性の同時制御が本発明では可能となる。 すなわち、 本発明のスパッ夕リ ング法では、 スパッタ蒸発粒子の飛び出し易い方向がターゲッ ト材質と夕一ゲッ
卜に印加するパワーによって変わるため、 基板とターゲットの距離 h、 d を調整 することで従来のマルチカソ一ド式の自公転方式装置と同等以上の膜厚均一性 を得ることができる。 The control of the deposition rate in the sputtering method can be realized by controlling the power applied to the target at one time, but as described above, the direction in which the sputtered evaporating particles easily fly out depends on the power applied to the target. Therefore, the present invention enables simultaneous control of the film forming speed and the film thickness uniformity, which is difficult with the conventional apparatus. That is, in the sputtering method of the present invention, the direction in which the sputtered evaporating particles are likely to fly is determined by the target material and the Since the distance varies depending on the power applied to the wafer, the film thickness uniformity equal to or higher than that of the conventional multi-cathode-type revolving-type apparatus can be obtained by adjusting the distances h and d between the substrate and the target.
また、 距離 h、 dの調整により小型ターゲットでも大型基板に均一な膜を形成 することができるのでコストを低減できる。 さらに、 ターゲッ トの侵食が進行し 膜厚分布がターゲット使用開始時に比べて悪くなつた場合にも、 距離 h、 dの調 整により膜厚分布を調整できるので夕一ゲットを有効に利用できる。 Further, by adjusting the distances h and d, a uniform film can be formed on a large substrate even with a small target, so that the cost can be reduced. Furthermore, even if the target erosion progresses and the film thickness distribution becomes worse than when the target is used, the thickness distribution can be adjusted by adjusting the distances h and d.
ところで、中心軸の軸方向における基板/夕一ゲット間距離 hをある程度の値 以上に大きくすると、 基板中心軸/ターゲット中心軸間距離 dに関係なく、 均一 な膜厚分布が得られる。 しかし、 基板/ターゲット間距離 hが大きくなると、 逆 に成膜速度は遅くなる。 By the way, if the distance h between the substrate and the getter in the axial direction of the central axis is increased to a certain value or more, a uniform film thickness distribution can be obtained regardless of the distance d between the substrate central axis and the target central axis. However, when the distance h between the substrate and the target is increased, the film formation rate is reduced.
図 12は、 図 8に示した特性を持つ磁性体を成膜した場合の、 (他のプロセス 条件は同一) 成膜速度の分布特性を示している。 図中の数字は、 成膜速度 Vの相 対値を示している。 同様に、 図 13は、 図 9に示した特性を持つ非磁性体を成膜 した場合の、 (他のプロセス条件は同一) 成膜速度の分布特性を示している。 図 12、 図 13から明らかなように、 基板/夕一ゲット間距離 hが大きくなる 程、 また、 基板中心軸/ターゲット中心軸間距離 dが大きくなる程、 成膜速度 V は遅くなる。 例えば、 図 12で、 基板中心軸/夕一ゲッ ト中心軸間距離 d= 10 0 (mm) とした場合、 h= 1 00 (mm) で V二 1 55となり、 h= 300で V =38. 5、 h=450で V= 18. 4となる。 すなわち、 hを 100から 300 に変えた場合、 上記磁性体の成膜速度比が 1 55/38. 5 = 4. 0となり、 h を 450に変えた場合、 磁性体の成膜速度比は 1 55/18. 4 = 8. 4にも達 する。 同様に、 図 13で、 d= 100 (mm) とした場合、 h= 100 (mm) で V= 102となり、 h= 300で V=38、 h=450で V=20となる。 すなわ ち、 hを 100から 300に変えた場合、 上記非磁性体の成膜速度比が 2. 7と なり、 450に変えた場合、 非磁性体の成膜速度比は 5. 1にも達する。 FIG. 12 shows the distribution characteristics of the film forming speed when the magnetic material having the characteristics shown in FIG. 8 is formed (the other process conditions are the same). The numbers in the figure indicate the relative values of the deposition rate V. Similarly, FIG. 13 shows the distribution characteristics of the deposition rate when the nonmagnetic material having the characteristics shown in FIG. 9 is deposited (the other process conditions are the same). As is clear from FIGS. 12 and 13, as the distance h between the substrate and the getter and the distance d between the center axis of the substrate and the center axis of the target increase, the deposition rate V decreases. For example, in Fig. 12, if the distance between the center axis of the substrate and the center axis of the evening gate is d = 100 (mm), V = 155 at h = 100 (mm) and V = 38 at h = 300 5, V = 18.4 at h = 450. That is, when h is changed from 100 to 300, the film forming speed ratio of the magnetic material becomes 1 55 / 38.5 = 4.0, and when h is changed to 450, the film forming speed ratio of the magnetic material becomes 1 55/18. 4 = 8.4. Similarly, when d = 100 (mm) in FIG. 13, V = 102 at h = 100 (mm), V = 38 at h = 300, and V = 20 at h = 450. In other words, when h is changed from 100 to 300, the film forming speed ratio of the non-magnetic material is 2.7, and when h is changed to 450, the film forming speed ratio of the non-magnetic material is 5.1. Reach.
従って、成膜速度の観点からは、基板中心軸/夕一ゲッ ト中心軸間距離 dとこ
の中心軸方向における基板/夕一ゲヅト間の距離 hを、 できるだけ小さくするの が好ましい。 他の成膜条件にもよるが、 基板/夕一ゲヅ ト間距離 hは、 例えば 3 0 0 (mm) 以下とするのが望ましい。 このような距離 h、 dの望ましい範囲が 、 図 1 0、 図 1 1の斜線部である。 このような、 基板中心軸/ターゲッ ト中心軸 間距離 dとこの中心軸方向における基板/夕一ゲット間の距離 hの望ましい範囲 のデータは、 予め各ターゲッ ト毎に実験などにより求め、 マップ化して記憶装置 に保持しておく。 Therefore, from the viewpoint of the deposition rate, the distance d between the central axis of the substrate and the central axis of the evening It is preferable that the distance h between the substrate and the evening gate in the direction of the central axis be as small as possible. Although depending on other film formation conditions, the distance h between the substrate and the gate is preferably, for example, 300 (mm) or less. Desirable ranges of such distances h and d are hatched portions in FIGS. 10 and 11. Such data of the desirable range of the distance d between the substrate center axis and the target center axis and the distance h between the substrate and the evening target in the direction of the center axis is obtained in advance by experiments for each target and mapped. And store it in the storage device.
次に、 本発明の方法による薄膜形成処理の手順について図 1 4、 図 1 5で説明 する。 ここでは、 図 1 5に示すような、 ターゲット 1 (丁 1 =非磁性体八) 〜夕 —ゲッ ト 4 ( T 4 =磁性体 D ) からなる 5層構造の薄膜層をスパッタリング法で 基板上に形成する場合を例にして説明する。 なお、 4層目は、 非磁性体 Bと磁性 体 Cを同時に放電して成膜するものとする。 Next, the procedure of the thin film forming process according to the method of the present invention will be described with reference to FIGS. Here, as shown in Fig. 15, a five-layer thin film layer consisting of target 1 (c 1 = non-magnetic material 8) to target 4 (T 4 = magnetic material D) is deposited on the substrate by sputtering. An example in which the substrate is formed will be described. The fourth layer is formed by discharging the non-magnetic material B and the magnetic material C at the same time.
基板上にこのような薄膜を形成する場合の、 薄膜形成処理の手順を、 図 1 4に 示す。 最初に、 オペレータが入力手段 5 2等により成膜条件のデータを制御装置 5 0に入力する (ステップ 1 4 0 1 )。 例えば、 基板 6上に図 1 5に示すような 5層構造の薄膜層を形成する場合、 非磁性体 A、 非磁性体 B—一のような成膜材 料、 1層〜 5層の成膜順序、 各層の厚み、 成膜速度等のデ一夕を入力する。 次に 、 上記成膜条件に基づく基板や各ターゲッ 卜の制御データが記憶装置 5 7から読 み出される (ステップ 1 4 0 2 )。 例えば、 各ターゲッ ト材料について基板中心 軸/夕一ゲット中心軸間距離 dとこの中心軸方向における基板/ターゲット間の 距離 hの望ましい範囲のデータや、 各夕一ゲットに対する電源パワー等制御に必 要なデータである。 そして、 上記成膜条件に基き制御装置 5 0で、 放電開始時間 、 放電終了時間を決定し (ステップ 1 4 0 3 )、 さらに、 各ターゲッ ト毎の成膜 時間を決定する (ステップ 1 4 0 4 )。 Figure 14 shows the procedure of the thin film formation process when such a thin film is formed on a substrate. First, the operator inputs the data of the film forming conditions to the control device 50 by the input means 52 or the like (step 1401). For example, when a thin film layer having a five-layer structure as shown in FIG. 15 is formed on the substrate 6, a film material such as a non-magnetic material A or a non-magnetic material B, and one to five layers are formed. Enter data such as film order, thickness of each layer, film formation rate, etc. Next, control data of the substrate and each target based on the film forming conditions is read out from the storage device 57 (step 1402). For example, for each target material, it is necessary to control the data on the desirable range of the distance d between the substrate center axis and the center axis of the evening target and the distance h between the substrate and the target in the direction of the center axis, and to control the power supply for each evening target. It is important data. Then, the controller 50 determines a discharge start time and a discharge end time based on the film forming conditions (step 1403), and further determines a film forming time for each target (step 140). Four ).
次に、搬送ロボッ卜で真空容器 1内に搬入された基板 6を基板ホルダ 9に保持 する (ステップ 1 4 0 5 )。 この段階で、 真空容器 1内は真空排気され、 さらに 放電用のガスが導入されている。 さらに、 基板のシャッター及び全ターゲッ トの
シャッターを閉じ (ステップ 1406)、 各タ一ゲッ トの高さを調節し (ステツ プ 14◦ 7)、 全ターゲッ トの放電を開始し (ステップ 1408)、 放電を安定さ せる。 Next, the substrate 6 carried into the vacuum vessel 1 is held in the substrate holder 9 by the transfer robot (Step 1405). At this stage, the inside of the vacuum vessel 1 is evacuated, and a discharge gas is introduced. In addition, the shutter of the substrate and all targets Close the shutter (Step 1406), adjust the height of each target (Step 14 7), start discharging all targets (Step 1408), and stabilize the discharge.
そして、 基板ホルダ 9により基板を公転、 昇降させて、 基板 6をターゲット T 4の成膜位置まで移動させる (ステップ 1409)。 さらに、 夕一ゲヅト T4のシ ャッター及び基板のシャッターを開き (ステップ 1410)、 ターゲット T4によ り基板に 1層目の成膜を行う。 なお、 成膜中及びその前後には、 電動機 8により 基板 6を基板中心軸周りに自転させる。 夕一ゲッ ト T4による成膜時間が終了し たら (ステップ 14 1 1)、 ターゲッ ト T4のシャッター及び基板のシャッターを 閉じる (ステップ 141 2)。 次に、 基板ホルダにより基板を公転、 昇降させて 、 基板 6を夕一ゲッ ト T3の成膜位置までに移動させ、 基板に対して 2層目の成 膜を行う (ステップ 1413)。 同様に基板ホルダにより基板を公転、 昇降させ て、 基板を夕一ゲッ ト T2の成膜位置までに移動させ、 基板に対して 3層目の成 膜を行う (ステップ 1414)。 Then, the substrate is revolved and moved up and down by the substrate holder 9, and the substrate 6 is moved to the film formation position of the target T4 (Step 1409). Further, the shutter of the gate T4 and the shutter of the substrate are opened (step 1410), and the first layer is formed on the substrate by the target T4. During and before and after the film formation, the motor 6 rotates the substrate 6 around the central axis of the substrate. In the evening, when the deposition time of the target T4 is completed (step 141 1), the shutter of the target T4 and the shutter of the substrate are closed (step 141 2). Next, the substrate is revolved and moved up and down by the substrate holder, and the substrate 6 is moved to the film formation position of the get T3 in the evening, and a second layer is formed on the substrate (step 1413). Similarly, the substrate is revolved and raised and lowered by the substrate holder, and the substrate is moved to the film formation position of the target T2 in the evening, and a third layer is formed on the substrate (step 1414).
次に、 基板ホルダにより基板を公転、 昇降させ、 基板を夕一ゲヅト T2、 Τ3 の 中間の成膜位置に移動させ (ステップ 14 1 5)、 夕一ゲッ ト Τ2、 Τ3及び基板の シャッターを開き、 非磁性体 Βと磁性体 Cを同時に放電して成膜する (ステップ 141 6)。 Next, the substrate is revolved and moved up and down by the substrate holder, and the substrate is moved to the intermediate film formation position between the evening gates T2 and T3 (step 1415). Then, the non-magnetic material Β and the magnetic material C are simultaneously discharged to form a film (step 1416).
この場合、 夕一ゲッ トに加えるバイアスパヮ一を個別に制御した上で 2つの夕 —ゲットを同時放電することにより、 所望の組成の合金薄膜を作製することがで きる。 また、 基板とターゲットの距離 hをターゲッ ト毎に変えることができるの で、 複数の夕一ゲッ トを同時成膜する場合、 ターゲットにバイアスパワーを加え る電源が一つであっても、 hを制御することで膜組成を制御することができる。 このようにして、 4層目の成膜時間が終了したら (ステップ 1417)、 夕一 ゲッ ト T2、 Τ3及び基板のシャッターを閉じ、 4層目の成膜を終了する (ステツ ブ 1418)。 同様にして、 5層目の成膜を行い (ステップ 1419)、 5層目の 成膜時間が終了したら (ステップ 1420 )、 全ターゲッ トの放電停止し (ステ
ップ 1 4 2 1 )、 基板ホルダにより基板を公転、 昇降させて、 基板を初期位置に 移動させる (ステップ 1 4 2 2 )。 さらに、 放電ガスを排気し、 基板のシャヅ夕 —を閧き (ステップ 1 4 2 3 )、 搬送ロボッ トで基板を真空容器 1の外へ搬出し (ステップ 1 4 2 4 )、 基板のシャツタ一閉じて一連の処理を終了する (ステツ プ 1 4 2 5 )。 In this case, an alloy thin film having a desired composition can be produced by simultaneously controlling the bias pulse applied to the evening target and simultaneously discharging the two targets. In addition, since the distance h between the substrate and the target can be changed for each target, even when multiple targets are simultaneously formed, even if only one power source is used to apply bias power to the target, h Can be controlled to control the film composition. In this way, when the deposition time of the fourth layer is completed (step 1417), the shutter of the substrate T2, No. 3 and the substrate is closed, and the deposition of the fourth layer is completed (step 1418). Similarly, the fifth layer is formed (Step 1419). When the fifth layer has been formed (Step 1420), the discharge of all targets is stopped (Step 1419). The board revolves and moves up and down using the board holder to move the board to the initial position (step 1442 2). Further, the discharge gas is exhausted, the substrate is shuffled (Step 1442 3), and the substrate is carried out of the vacuum vessel 1 by the transfer robot (Step 1442 4). Close and end the series of processing (steps 144, 25).
また、 本発明の薄膜形成装置では、 2つ以上のターゲットをターゲットに加え るバイアスパワーを個別に制御した上で同時放電することにより、 所望の組成の 合金薄膜を作製することができる。 また、 2つ以上のターゲッ トを同一真空容器 内で交互に放電することにより、 界面が清浄な多層膜を作製することができる。 以上述べたように本発明によれば、膜成長に及ぼすパラメータを制御すること で所望の膜特性を持つ薄膜の製造方法及び装置の提供が可能となり、 製品の特性 及び薄膜の製造装置の生産性が向上する。 特に、 ターゲットの組み合わせが多く しかも 1 0層以上に及ぶ多層構造の薄膜層をスパッタリング法で基板上に形成 するような場合でも、 各層について所望の組成及び厚さの合金薄膜を速やかに形 成することができる。 Further, in the thin film forming apparatus of the present invention, an alloy thin film having a desired composition can be produced by simultaneously controlling two or more targets and individually controlling the bias power applied to the targets and then simultaneously discharging. Further, by alternately discharging two or more targets in the same vacuum vessel, a multilayer film having a clean interface can be produced. As described above, according to the present invention, it is possible to provide a method and an apparatus for manufacturing a thin film having desired film characteristics by controlling parameters affecting the film growth. Is improved. In particular, even when a multi-layered thin film layer having a large number of combinations of targets and including at least 10 layers is formed on a substrate by a sputtering method, an alloy thin film having a desired composition and thickness is quickly formed for each layer. be able to.
このような特徴を有する本発明の薄膜形成装置は、 例えば磁気記録へッドを成 膜形成するのに適している。 図 1 6に本発明が適用される磁気ヘッドの概略図を 示す。 磁気へッドアセンブリ一 1 5 0 0の磁気記録へッドは、 書込み用へッド 1 5 0 2、 読取り用へッド 1 5 0 3に別れている。 書込み用へッ ド 1 5 0 2は主に 、 薄膜コイル 1 5 0 4、 上部磁極 1 5 0 5、 下部磁極 1 5 0 6で構成されている 。 1 5 0 7は漏れ磁場である。 また、 読取り用へヅド 1 5 0 3は、 主に MR (磁気 抵抗)膜や G M R (巨大磁気抵抗)膜で構成されており、 トラック 1 5 0 8からの磁 場による膜の電気抵抗変化をデータとして検出する。 薄膜コイルに電流を流すこ とにより、 上部磁極と下部磁極の間に漏れ磁場が発生し、 この磁場を利用して記 録トラックを磁化することによりデータを書き込む。 本発明の薄膜形成装置によ り、 読取り用へッ ド 1 5 0 3と、 書込み用へヅド 1 5 0 2の上部磁極 1 5 0 5及 び下部磁極 1 5 0 6を、 成膜形成することにより、 均一な膜を短い成膜時間で形
成することができる。 The thin film forming apparatus of the present invention having such features is suitable for forming a magnetic recording head, for example. FIG. 16 is a schematic diagram of a magnetic head to which the present invention is applied. The magnetic recording head of the magnetic head assembly 150 is divided into a write head 1502 and a read head 1503. The write head 1502 mainly includes a thin-film coil 1504, an upper magnetic pole 1505, and a lower magnetic pole 1506. 1507 is a leakage magnetic field. The read head 1503 is mainly composed of an MR (magnetoresistive) film or a GMR (giant magnetoresistance) film, and changes in the electric resistance of the film due to the magnetic field from the track 1508. Is detected as data. When a current is applied to the thin-film coil, a leakage magnetic field is generated between the upper magnetic pole and the lower magnetic pole, and data is written by magnetizing the recording track using this magnetic field. By the thin film forming apparatus of the present invention, the read head 1503 and the upper magnetic pole 1505 and the lower magnetic pole 1506 of the write head 1502 are formed into a film. Forming a uniform film in a short time. Can be achieved.
なお、 図 1の薄膜形成装置では、 基板ホルダアセンブリ 9を回転させることで 、 基板 6の中心軸とタ一ゲッ 卜の中心軸のずれの量 dを調整する構成になってい る力 本発明は図 1に示した構成に限ったものではない。 例えば、 図 1 7、 図 1 8に示したような基板 6とターゲッ ト 2の取付方法でもよい。 図 1 7は基板 6と ターゲット 2の位置関係を示す真空容器の横断面、 図 1 8は図 1 7の A— A断面 図である。 この例では、 バッキングプレート 4 0 1 i〜4 0 1 4とターゲッ ト 2丄 〜2 4は、 バヅキングプレート保持板 4 0 3 i〜4 0 3 4に固定されており、 各夕 —ゲッ トの中心軸と各バッキングプレート保持板の中心軸は一致しないように 配置されている。 In the thin film forming apparatus shown in FIG. 1, the amount of deviation d between the center axis of the substrate 6 and the center axis of the target is adjusted by rotating the substrate holder assembly 9. It is not limited to the configuration shown in FIG. For example, the mounting method of the substrate 6 and the target 2 as shown in FIGS. 17 and 18 may be used. FIG. 17 is a cross-sectional view of the vacuum vessel showing the positional relationship between the substrate 6 and the target 2, and FIG. 18 is a cross-sectional view taken along line AA of FIG. In this example, the backing plate 4 0 1 i~4 0 1 4 and the target 2丄21 to 24, the bar Uz King plate holding plate 4 0 3 i~4 0 3 4 are fixed to each evening - Getting The center axis of the backing plate is not aligned with the center axis of the backing plate.
バッキングブレート保持板 4 0 3 i〜4 0 3 4は、真空容器 1にボルト固定する ための複数の穴を有しており、 図 1 9 ( a )〜(c ) に示すように複数の取り付 け方ができる。 このような構成の場合、 バヅキングプレート保持板 4 0 3〗〜4 0 3 4の取り付け方を変えることにより、基板 6の中心軸 4 0 6とターゲッ ト 2! 〜 2 4の中心軸 2 9の距離 dを変えることが出来る。 Backing Bed rate holding plate 4 0 3 i~4 0 3 4 has a plurality of holes for bolting to the vacuum chamber 1, taken by a plurality as shown in FIG. 1 9 (a) ~ (c ) It can be attached. In such a configuration, Ba Uz King plate holding plate 4 0 3〗 by changing to 4 0 3 Attaching of 4, the central axis 4 of the substrate 6 0 6 and the target 2! It is possible to change the distance d of the central axis 2 9 to 2 4.
図 1 7、 図 1 8の例では、 夕一ゲッ 卜とバッキングプレート保持板の中心軸を ずらした構造を用いているが、 本発明はこのような構成に限定されるものではな く、 例えばバッキングプレート保持板の固定用ボルトを通す穴を長穴にして、 基 板の中心軸とタ一ゲッ卜の中心軸のずれの量 dを調整する構造にしてもよい。 また、 本発明はターゲット側を移動させる構造に限定されるものではなく、 図 2 0、 図 2 1のように基板 6の中心軸と基板ホルダ 5 0 2を固定しているフラン ジ 5 0 3の中心軸がずれている構造でもよい。 図 2 0は基板 6と基板ホルダ 5 0 2の位置関係を示す真空容器の横断面、 図 2 1は図 2 0の B— B断面図である。 この場合、 フランジ 5 0 3の取付方向により、 基板中心軸とターゲット中心軸の ずれの量 d及び高さ hを調整することができる。 また、 基板側のフランジ固定ボ ルト用穴に長穴を用いて、 基板の位置を調整できる構造としてもよい。 In the examples of FIGS. 17 and 18, the structure in which the central axis of the evening gate and the backing plate holding plate are shifted is used, but the present invention is not limited to such a configuration. A structure may be adopted in which the hole through which the fixing bolt of the backing plate holding plate passes is made into an elongated hole, and the amount of deviation d between the center axis of the substrate and the center axis of the target is adjusted. Further, the present invention is not limited to the structure for moving the target side, and as shown in FIGS. 20 and 21, the flange 503 fixing the center axis of the substrate 6 and the substrate holder 502 is fixed. May be shifted from each other. FIG. 20 is a cross-sectional view of the vacuum vessel showing the positional relationship between the substrate 6 and the substrate holder 502, and FIG. 21 is a cross-sectional view taken along line BB of FIG. In this case, the amount of displacement d and the height h between the substrate central axis and the target central axis can be adjusted depending on the mounting direction of the flange 503. Further, a structure may be employed in which the position of the substrate can be adjusted by using a long hole as the hole for the flange fixing bolt on the substrate side.
また、 ターゲッ トの数は一つでもよく、 その場合は一つのターゲット 2に対し
て複数の基板を配置すればよい。 ターゲッ 卜の中心軸と各基板の中心軸との距離 d及び高さ hを全て同じになるように配置することで、 全ての基板で同じ膜質を 得ることが出来る。
Also, the number of targets may be one, in which case one target 2 A plurality of substrates may be arranged. By arranging the distance d and the height h between the center axis of the target and the center axis of each substrate so as to be the same, the same film quality can be obtained for all the substrates.
Claims
1 . 真空容器と、 力ソード電極とターゲットとを有する該真空容器内に設けら れた複数のスパッタリング力ソードと、 該真空容器内において基板を保持すると 共に該基板と前記ターゲットを遮蔽する遮蔽板を有する基板ホルダとを備え、 前 記ターゲッ トから飛来した粒子を前記基板上に堆積させて薄膜を形成する薄膜 形成装置において、 1. A vacuum vessel, a plurality of sputtering force sources provided in the vacuum vessel having a force source electrode and a target, and a shielding plate for holding the substrate in the vacuum vessel and shielding the substrate and the target A thin film forming apparatus for forming a thin film by depositing particles flying from the target on the substrate.
基板中心軸/ターゲット中心軸間距離 d と該中心軸方向における基板/夕一 ゲッ ト間の距離 hを、 成膜条件に応じて前記各夕一ゲッ ト毎に変える制御装置を 有することを特徴とする薄膜形成装置。 A control device is provided for changing a distance d between the substrate center axis / target center axis and a distance h between the substrate / gap in the direction of the center axis for each gutter according to the film forming conditions. Thin film forming apparatus.
2 . 前記基板ホルダは、 該基板ホルダの中心軸に対して回転させることにより 前記基板を公転させて前記距離 dを調整する基板ホルダ駆動機構と、 該基板を前 記中心軸方向に昇降させて前記距離 hを調整する基板ホルダ昇降機構とを有する ことを特徴とする請求項 1記載の薄膜形成装置。 2. The substrate holder comprises a substrate holder driving mechanism that revolves the substrate by rotating about the central axis of the substrate holder to adjust the distance d, and raises and lowers the substrate in the central axis direction. 2. The thin film forming apparatus according to claim 1, further comprising a substrate holder elevating mechanism for adjusting the distance h.
3 . 前記制御装置は、 予め各ターゲット毎に求められた前記基板中心軸/夕一 ゲット中心軸間距離 dとこの中心軸方向における基板/ターゲット間の距離 hの 望ましい範囲のデータをマップ化して記憶装置に保持することを特徴とする請 求項 1または 2記載の薄膜形成装置。 3. The control device maps data of a desired range of the distance d between the substrate center axis / the evening center axis previously obtained for each target and the distance h between the substrate / target in the direction of the center axis, which is obtained in advance for each target. 3. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is held in a storage device.
4 . 前記スパッタリング力ソードは、 前記ターゲッ トを昇降させて前記距離 h を変えるタ一ゲッ ト昇降機構を備えていることを特徴とする請求項 1ないし 3 のいずれかに記載の薄膜形成装置。 4. The thin film forming apparatus according to claim 1, wherein the sputtering force source includes a target raising / lowering mechanism that raises / lowers the target and changes the distance h.
5 . 前記夕ーゲット昇降機構と前記基板ホルダ昇降機構により分担して前記距 離 hを調整することを特徴とする請求項 4記載の薄膜形成装置。 5. The thin film forming apparatus according to claim 4, wherein the distance h is adjusted by sharing the evening get elevating mechanism and the substrate holder elevating mechanism.
6 . 前記制御装置は、 複数のターゲットを同時に放電させることを特徴とする 請求項 1ないし 5のいずれかに記載の薄膜形成装置。 6. The thin film forming apparatus according to claim 1, wherein the control device discharges a plurality of targets simultaneously.
7 . 前記制御装置は、 2つ以上のターゲッ トを交互に放電させることを特徴と する請求項 1ないし 5のいずれかに記載の薄膜形成装置。
7. The thin film forming apparatus according to claim 1, wherein the control device discharges two or more targets alternately.
8 . 前記距離 hを 3 0 0 mm以下としたことを特徴とする請求項 1ないし 5の いずれかに記載の薄膜形成装置。 8. The thin film forming apparatus according to any one of claims 1 to 5, wherein the distance h is equal to or less than 300 mm.
9 . 真空容器と、 力ソード電極とターゲットとを有する該真空容器内に設けら れた複数のスパッタリング力ソードと、 該真空容器内において基板を保持すると 共に該基板と前記ターゲッ トを遮蔽する遮蔽板を有する基板ホルダとを備え、 前 記ターゲッ トから飛来した粒子を前記基板上に堆積させて薄膜を形成する薄膜 形成装置を用いた薄膜形成方法において、 9. A vacuum vessel, a plurality of sputtering force sources provided in the vacuum vessel having a force source electrode and a target, and a shield for holding the substrate in the vacuum vessel and shielding the substrate and the target. A substrate holder having a plate, wherein the thin film forming method using a thin film forming apparatus for forming a thin film by depositing particles flying from the target on the substrate,
基板中心軸/ターゲット中心軸間距離 d と該中心軸方向における基板/ター ゲット間の距離 hを、 成膜条件に応じて前記各タ一ゲット毎に変えて薄膜を形成 することを特徴とする薄膜形成方法。
A thin film is formed by changing the distance d between the substrate central axis / target central axis and the distance h between the substrate / target in the central axis direction for each of the targets in accordance with the film forming conditions. Thin film formation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/007088 WO2001044534A1 (en) | 1999-12-16 | 1999-12-16 | Method and apparatus for thin film deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1999/007088 WO2001044534A1 (en) | 1999-12-16 | 1999-12-16 | Method and apparatus for thin film deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001044534A1 true WO2001044534A1 (en) | 2001-06-21 |
Family
ID=14237597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/007088 WO2001044534A1 (en) | 1999-12-16 | 1999-12-16 | Method and apparatus for thin film deposition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001044534A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8303786B2 (en) | 2004-03-18 | 2012-11-06 | Lg Display Co., Ltd. | Sputtering apparatus |
JP2017025381A (en) * | 2015-07-23 | 2017-02-02 | トヨタ自動車株式会社 | Transport device used in film deposition apparatus |
CN112639158A (en) * | 2018-12-28 | 2021-04-09 | 株式会社爱发科 | Film forming apparatus and film forming method |
CN116162911A (en) * | 2023-02-24 | 2023-05-26 | 安徽光智科技有限公司 | Method for debugging uniformity of thin film prepared by magnetron sputtering method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330304A (en) * | 1993-05-25 | 1994-11-29 | Tdk Corp | Method for forming ferroelectric thin film and device therefor |
JPH07252655A (en) * | 1994-03-14 | 1995-10-03 | Sony Corp | Thin film forming device |
US5612133A (en) * | 1993-04-22 | 1997-03-18 | Mitsubishi Materials Corporation | Magneto-optical recording medium having a refelecting layer of a silver-magnesium alloy having a magnesium oxide coating |
JPH10204630A (en) * | 1997-01-22 | 1998-08-04 | Sony Corp | Sputtering device, sputtering method and target |
JPH10320852A (en) * | 1997-05-21 | 1998-12-04 | Nikon Corp | Formation of thin film and manufacture of optical disk used it |
JPH11229135A (en) * | 1998-02-18 | 1999-08-24 | Canon Inc | Sputtering device and formation of film |
JPH11260724A (en) * | 1998-03-16 | 1999-09-24 | Matsushita Electric Ind Co Ltd | Method and device for manufacturing compound semiconductor thin film |
-
1999
- 1999-12-16 WO PCT/JP1999/007088 patent/WO2001044534A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5612133A (en) * | 1993-04-22 | 1997-03-18 | Mitsubishi Materials Corporation | Magneto-optical recording medium having a refelecting layer of a silver-magnesium alloy having a magnesium oxide coating |
JPH06330304A (en) * | 1993-05-25 | 1994-11-29 | Tdk Corp | Method for forming ferroelectric thin film and device therefor |
JPH07252655A (en) * | 1994-03-14 | 1995-10-03 | Sony Corp | Thin film forming device |
JPH10204630A (en) * | 1997-01-22 | 1998-08-04 | Sony Corp | Sputtering device, sputtering method and target |
JPH10320852A (en) * | 1997-05-21 | 1998-12-04 | Nikon Corp | Formation of thin film and manufacture of optical disk used it |
JPH11229135A (en) * | 1998-02-18 | 1999-08-24 | Canon Inc | Sputtering device and formation of film |
JPH11260724A (en) * | 1998-03-16 | 1999-09-24 | Matsushita Electric Ind Co Ltd | Method and device for manufacturing compound semiconductor thin film |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8303786B2 (en) | 2004-03-18 | 2012-11-06 | Lg Display Co., Ltd. | Sputtering apparatus |
JP2017025381A (en) * | 2015-07-23 | 2017-02-02 | トヨタ自動車株式会社 | Transport device used in film deposition apparatus |
CN112639158A (en) * | 2018-12-28 | 2021-04-09 | 株式会社爱发科 | Film forming apparatus and film forming method |
CN116162911A (en) * | 2023-02-24 | 2023-05-26 | 安徽光智科技有限公司 | Method for debugging uniformity of thin film prepared by magnetron sputtering method |
CN116162911B (en) * | 2023-02-24 | 2024-06-11 | 安徽光智科技有限公司 | Method for debugging uniformity of thin film prepared by magnetron sputtering method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6113752A (en) | Method and device for coating substrate | |
US20100000855A1 (en) | Film Forming Apparatus and Method of Forming Film | |
US7156961B2 (en) | Sputtering apparatus and film forming method | |
US6051113A (en) | Apparatus and method for multi-target physical-vapor deposition of a multi-layer material structure using target indexing | |
JP2009529608A (en) | Sputter deposition system and method of use | |
WO2010073711A1 (en) | Sputtering equipment, sputtering method and method for manufacturing an electronic device | |
JP2000144399A (en) | Sputtering device | |
US5328583A (en) | Sputtering apparatus and process for forming lamination film employing the apparatus | |
US8652310B2 (en) | Trim magnets to adjust erosion rate of cylindrical sputter targets | |
KR20100063781A (en) | High-frequency sputtering device | |
JP2002356772A (en) | Magnetron sputter source with multipart target | |
US20060054494A1 (en) | Physical vapor deposition apparatus for depositing thin multilayer films and methods of depositing such films | |
US20090260975A1 (en) | Apparatus | |
US7935232B2 (en) | Sputtering apparatus and method, and sputtering control program | |
WO2001044534A1 (en) | Method and apparatus for thin film deposition | |
JPH11302841A (en) | Sputtering system | |
CN114015997A (en) | Ion-assisted multi-target magnetron sputtering equipment | |
US7041202B2 (en) | Timing apparatus and method to selectively bias during sputtering | |
US7537676B2 (en) | Cathode apparatus to selectively bias pallet during sputtering | |
JP2005048222A (en) | Magnetron sputtering apparatus | |
JP2000319780A (en) | Sputtering cathode and magnetron type sputtering device equipped with the same | |
JP4005687B2 (en) | Magnetron apparatus and sputtering apparatus | |
JPH11189874A (en) | Formation of thin film and device therefor | |
JP2002363742A (en) | Film deposition method, and sputtering device for film deposition | |
JP7325278B2 (en) | Sputtering method and sputtering apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 545611 Kind code of ref document: A Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |