[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000033820A2 - Nanopartikuläre kern-schale systeme sowie deren verwendung in pharmazeutischen und kosmetischen zubereitungen - Google Patents

Nanopartikuläre kern-schale systeme sowie deren verwendung in pharmazeutischen und kosmetischen zubereitungen Download PDF

Info

Publication number
WO2000033820A2
WO2000033820A2 PCT/EP1999/009545 EP9909545W WO0033820A2 WO 2000033820 A2 WO2000033820 A2 WO 2000033820A2 EP 9909545 W EP9909545 W EP 9909545W WO 0033820 A2 WO0033820 A2 WO 0033820A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
active ingredient
shell
preparations
solution
Prior art date
Application number
PCT/EP1999/009545
Other languages
English (en)
French (fr)
Other versions
WO2000033820A3 (de
Inventor
Robert Heger
Helmut Auweter
Jörg Breitenbach
Heribert Bohn
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2000586313A priority Critical patent/JP2002531492A/ja
Priority to US09/857,480 priority patent/US7687071B1/en
Priority to CA002353809A priority patent/CA2353809A1/en
Priority to EP99963399A priority patent/EP1137404A2/de
Publication of WO2000033820A2 publication Critical patent/WO2000033820A2/de
Publication of WO2000033820A3 publication Critical patent/WO2000033820A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0007Effervescent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q7/00Preparations for affecting hair growth

Definitions

  • Nanoparticulate core-shell systems and their use in pharmaceutical and cosmetic preparations
  • the present invention relates to nanoparticulate preparations of active pharmaceutical ingredients with a core-shell structure, the active ingredient being present in the core in X-ray amorphous form together with at least one polymer and the shell consisting of a polymeric shell matrix.
  • EP-A 425 892 discloses a process for improving the bioavailability of active pharmaceutical ingredients with peptide bonds, a solution of the active ingredient in a water-miscible organic solvent being rapidly mixed with an aqueous colloid, so that the active ingredient precipitates in a colloidally dispersed form .
  • EP-A 276 735 describes protective colloid-coated active ingredient particles in which the active ingredient is dispersed in an oil phase. However, compatibility problems often occur in oil phases.
  • Particulate pharmaceutical preparations of poorly water-soluble substances are known from EP-A-0169, the preparations being obtained by precipitation from a solution of the active ingredient after addition of a precipitation solution.
  • WO 93/10767 describes oral administration forms for peptide medicaments in which the medicament is incorporated into a gelatin matrix in such a way that the colloidal particles which form are present in a charge-neutral manner.
  • a disadvantage of such forms, however, is their tendency to flocculate.
  • EP-A 0605 497 describes nanoparticles in which the active substance is stabilized in a lipid matrix.
  • lipid matrices are unstable against shear forces, which can cause problems during further processing.
  • DE-A 4440337 describes the production of nanosuspensions stabilized with surfactants. However, high surfactant concentrations can be physiologically questionable.
  • crystalline nanoparticles by special grinding processes is described in US Pat. No. 5,145,684 and US Pat. No. 5,399,363.
  • crystalline nanoparticles generally have one poorer bioavailability and can also cause problems due to the polymorphism of some active ingredients.
  • No. 4,826,689 describes a precipitation process in which amorphous spherical particles are obtained which are stabilized by no further addition or only slight additions of surfactants. The shear stability of such systems and the possibility of sterilization is low.
  • EP-A 275,796 describes the production of colloidal dispersible systems with spherical particles smaller than 500 nm, which is not a core-shell structure but a matrix structure.
  • WO 97/14407 describes the production of nanoparticles by expansion from a solvent into a compressed gas, liquid or a supercritical fluid in the presence of an amphiphile.
  • hydrosols of solid particles of a cyclosporin and a stabilizer which maintains the degree of division of the particles The particle size of these hydrosols is in the colloidal range.
  • the hydrosol particles described consist of active substance.
  • a disadvantage of these hydrosols is that the particle size of the hydrosol particles increases significantly over time. This applies in particular when the dispersing phase of the hydrosol contains active ingredient solvents. This active ingredient solvent is used in the manufacture of the hydrosol particles and must then be removed as quickly as possible.
  • the growth of the hydrosol particles can be attributed to the so-called Ostwald maturation, in which active substance molecules are transported from small hydrosol particles to large hydrosol particles via the dispersing phase. That smaller particles slowly dissolve and larger particles grow slowly. Since the active ingredient cyclosporin has a low residual solubility even in solvent-free water, an increase in the hydrosol particles cannot be prevented there either.
  • the nanoparticulate preparations of active pharmaceutical ingredients according to the invention have been found which have a core-shell structure, the core of the active ingredient being in X-ray amorphous form in a polymer matrix and the shell consisting of a stabilizing shell matrix of a polymer with protective colloid properties.
  • At least two separate phases are preferably present in the core, one phase consisting of discrete, X-ray amorphous particles of the active substance in, while the other phase represents a molecularly disperse distribution of the active substance in one or more polymers.
  • the core is single-phase or two-phase depends essentially on the quantity ratio of core polymer to active ingredient.
  • the release pressure of the substance increases with decreasing particle size of the active substance. This results in an increased saturation solubility. According to Noyes-Whitney, the increased saturation solubility leads to an increase in the dissolution rate.
  • the biologically active substance is present in an energetically unstable, metastable state in the formulations according to the invention. If the nanoparticle is not sufficiently stabilized, this can lead to spontaneous crystallization in some cases, the active substance precipitates out of the stabilized form.
  • the colloidal active substance preparations according to the invention in contrast to known active substance preparations, which essentially consist exclusively of active substance mass in the core of the colloidal particles, show a significantly lower growth of the hydrosol particles.
  • the particle growth is reduced by a factor of 1.5 - 5.
  • the colloidal particles present in the active substance preparation according to the invention have a polymer shell which envelop the core of the particles.
  • the purpose of this polymer shell is to stabilize the colloidal state against heterogeneous particle growth (aggregation, flocculation etc.).
  • colloidal particles present in the active substance preparation according to the invention have a core
  • the active substance inside this core is in X-ray amorphous form. It is essential that no crystalline active ingredient components are detectable in the active ingredient preparation (X-ray diffraction).
  • the polymers inside the particles help to maintain the active substance in its non-crystalline state and to stabilize the colloidal structures with regard to homogeneous particle growth (Ostwald ripening).
  • Suitable polymeric stabilizers for the shell matrix of the shell are, according to the invention, swellable protective colloids such as, for example, beef, pork or fish gelatin, starch, dextrin, pectin, gum rabicum, lignin sulfonates, chitosan, polystyrene sulfonate, alginates, casein, caseinate, methyl cellulose, carboxymethyl cellulose, and hydroxyl methyl cellulose , Milk powder, dextran, whole milk or skimmed milk or mixtures of these protective colloids.
  • swellable protective colloids such as, for example, beef, pork or fish gelatin, starch, dextrin, pectin, gum rabicum, lignin sulfonates, chitosan, polystyrene sulfonate, alginates, casein, caseinate, methyl cellulose, carboxymethyl cellulose, and hydroxyl methyl cellulose , Milk powder, dextran
  • Homo- and copolymers based on the following monomers are also suitable: ethylene oxide, propylene oxide, acrylic acid, maleic anhydride, lactic acid, N-vinylpyrrolidone, vinyl acetate, ⁇ - and ⁇ -aspartic acid.
  • gelatin types mentioned is particularly preferably used, in particular acidic or basic degraded gelatin with Bloom numbers in the range from 0 to 250, very particularly preferably gelatin A 100, A 200, B 100 and B 200 as well as low molecular weight, enzymatically degraded gelatin types the Bloom number 0 and molecular weights of 15,000 to 25,000 D such as Collagel A and Gelitasol P (from Stoess, Eberbach) and mixtures of these types of gelatin.
  • the preparations also contain low molecular weight surface-active compounds.
  • amphiphilic compounds or mixtures of such compounds are particularly suitable. Basically, all surfactants with an HLB value of 5 to 20 can be used.
  • surface-active substances are, for example: esters of long chain fatty acids with ascorbic acid, mono- and diglycerides of fatty acids and their ethoxylation products, esters of monofatty acid glycerides with acetic acid, citric acid, lactic acid or diacetyltartaric acid, polyglycerol fatty acid esters such as the monostearate of Triglyce- rins, sorbitan fatty acid esters, Propylenglykolfettklasteder , 2- (2'-stearoyllactyl) lactic acid salts and lecithin.
  • Ascorbyl palmitate is preferably used.
  • all polymers which are in the core of the particles of the active substance preparation according to the invention are suitable as polymer constituents which are in a temperature range between 0 and 240 ° C, a pressure range between 1 and 100 bar, a pH range from 0 to 14 or ionic strengths up to 10 mol / 1 are not or only partially soluble in water or aqueous solutions or water-solvent mixtures.
  • insoluble or only partially soluble means that the second virial coefficient for the polymer or polymers in water or a mixture of water and an organic solvent can assume values of less than zero.
  • the 2nd virial coefficient which provides information about the behavior of a polymer in a solvent (mixture), can be determined experimentally, for example by measuring light scattering or determining the osmotic pressure. The dimension of this coefficient is (mol-l) / g 2 .
  • One or more polymers can be used.
  • the molar masses of the polymers used are in the range from 1000 to 10000000 g / mol, preferably in the range from 1000 to 1000000 g / mol. Basically, all polymers suitable for the pharmaceutical and cosmetics application field can be considered.
  • polymers which are soluble in organic, water-miscible solvents and which are not or only partially soluble in water or aqueous solutions or water-solvent mixtures at temperatures between 0 and 240 ° C.
  • the following polymers are mentioned by way of example, but are not restrictive:
  • Poly (vinyl ethers) such as poly (benzyloxyethylene), poly (vinyl acetals), poly (vinyl ketones), poly (allyl alcohol), poly (vinyl esters such as poly (vinyl acetate), poly (oxytetramethylene), poly (glutaraldehyde), Poly (carbonate), poly (ester), poly (siloxane), D, L-poly (lactide), poly (lactide), poly (glycolide), poly (D, L-lactide-co-glycolide), poly (amide ), Poly (piperazines), poly (anhydrides) such as poly (metharylanhydride), Gutta Percha, cellulose ethers such as methyl cellulose (3% to 10% substitution), ethyl cellulose, butyl cellulose, cellulose esters such as cellulose acetate or starches
  • copolymers and block copolymers of the monomers of the abovementioned polymers furthermore copolymers and block copoly
  • polymers which have an upper and / or lower mixture gap at temperatures between 0 and 240 ° C. in water or aqueous solutions or water-solvent mixtures, ie by increasing or lowering the temperature, these polymers can be precipitated from corresponding solutions .
  • the following polymers are mentioned as examples, but are not restrictive:
  • AB or ABA block copolymers based on ethylene oxyiod and propylene oxide, e.g. Poloxamers such as Poloxamer 188 and Poloxamer 407.
  • polymers which can be precipitated from corresponding solutions at temperatures between 0 and 240 ° C. in water or aqueous solutions or water-solvent mixtures by varying the pH or the ionic strength.
  • the following polymers are mentioned as examples, but are not restrictive:
  • the amounts of the various components are chosen according to the invention so that the preparations 0.1 to 70% by weight, preferably 1 to 40% by weight, of active ingredient, 1 to 80% by weight, preferably 10 to 60% by weight. % of one or more polymeric stabilizers (shell polymer), 0.01 to 50% by weight, preferably 0.1 to 30% by weight of one or more polymers for the core, and 0 to 50% by weight, preferably 0.5 to 10 wt .-% of one or more low molecular weight Contains stabilizers. The percentages by weight relate to a dry powder.
  • the preparations may also contain antioxidants and / or preservatives to protect the active ingredient.
  • Suitable antioxidants or preservatives are, for example, ⁇ -tocopherol, t-butylhydroxytoluene, t-butylhydroxyanisole, lecithin, ethoxyquin, methylparaben, propylparaben, sorbic acid, sodium benzoate or ascorbyl palmitate.
  • the antioxidants or preservatives can be present in amounts of 0 to 10% by weight, based on the total amount of the preparation.
  • the preparations may also contain plasticizers to increase the stability of the end product.
  • plasticizers are, for example, sugars and sugar alcohols such as sucrose,
  • Lactose is preferably used as the plasticizer.
  • the plasticizers can be contained in amounts of 0 to 50% by weight.
  • auxiliaries such as binders, disintegrants, flavors, vitamins, colorants, wetting agents, additives influencing the pH value (cf. H. Sucker et al., Pharmaceutical Technology, Thieme-Verlag, Stuttgart 1978) can also be used via the organic solvent or aqueous phase are introduced.
  • a solution of the active ingredient is first prepared in a suitable solvent, solution in this context meaning a true molecularly disperse solution or a melt emulsion.
  • a suitable solvent solution in this context meaning a true molecularly disperse solution or a melt emulsion.
  • Suitable solvents are organic, water-miscible solvents which are volatile and thermally stable and contain only carbon, hydrogen, oxygen, nitrogen and sulfur. Expediently, they are at least 10% by weight miscible with water and have a boiling point below 200 ° C. and / or have less than 10 carbon atoms.
  • Corresponding alcohols, esters, ketones, ethers and acetals are preferred.
  • ethanol, n-propanol, isopropanol, butyl acetate, ethyl acetate, tetrahydrofuran, acetone, 1, 2-propanediol-1-n-propyl ether or 1, 2-butanediol-methyl ether are used.
  • Ethanol, isopropanol and acetone are very particularly preferred.
  • a molecularly disperse solution of the active ingredient in the selected solvent together with the polymer that in the active ingredient preparation in Core of the particles should be made.
  • This polymer has the property of being insoluble or only partially soluble in water in a certain temperature, pH or salt range.
  • the concentration of the active ingredient-polymer solution prepared in this way is generally 10 to 500 g of active ingredient per 1 kg of solvent and 0.01 to 400 g of polymer, the polymer-active ingredient weight ratio being between 0.01 to 1 and 5 to 1.
  • the low molecular weight stabilizer is added directly to the active substance-polymer solution.
  • the active substance-polymer solution is mixed with an aqueous solution of the polymeric shell material.
  • concentration of the polymeric shell material is 0.1 to 200 g / 1, preferably 1 to 100 g / 1.
  • a molecularly disperse solution of the active ingredient in the selected solvent is prepared without the polymer that should be in the core of the particles in the active ingredient preparation.
  • the concentration of the active ingredient solution thus prepared is generally 10 to 500 g of active ingredient per 1 kg of solvent.
  • this solution is mixed with an aqueous molecular solution of the polymer that should lie in the core of the particles in the active substance preparation.
  • concentration of the polymer solution thus prepared is generally from 0.01 to 400 g of polymer.
  • the temperatures, pH values and salt concentrations of the two solutions to be combined are selected so that the active ingredient and the polymer are insoluble after the solutions have been combined.
  • the low molecular weight stabilizer is added directly to the active ingredient solution.
  • the active substance-polymer precipitate is mixed with an aqueous solution of the polymeric shell material.
  • concentration of the polymeric shell material is 0.1 to 200 g / 1, preferably 1 to 100 g / 1.
  • a high mechanical energy input is recommended when mixing the cyclosporin solution with the solution of the coating material.
  • Such energy input can take place, for example, by vigorous stirring or shaking in a suitable device, or by injecting the two components with a hard jet injects a mixing chamber so that it mixes violently.
  • the mixing process can be carried out batchwise or, preferably, continuously. As a result of the mixing process, precipitation occurs.
  • the suspension or colloid obtained in this way can then be converted into a dry powder in a manner known per se, for example by spray drying, freeze drying or drying in a fluidized bed.
  • the person skilled in the art can determine which conditions are to be selected in the specific case when carrying out the method according to the invention with regard to varying the water / organic solvent system, the pH values, the temperatures or the ionic strengths by carrying out a few simple preliminary tests for the corresponding Determine polymer.
  • the primary dispersion can be subjected to drying processes known to the person skilled in the art.
  • the nanoparticulate systems according to the invention can also be dried after production, e.g. by spray drying or lyophilization and then redispersing again with almost the same particle size distribution.
  • This is of great advantage for all applications in which the preparation may have to be stored for a long time, is exposed to extreme loads such as heat or cold, or is to be converted from an aqueous carrier into other carriers as solvents.
  • the preparations according to the invention are therefore no longer bound to the solvent with which they were produced.
  • cryoprotective substances such as e.g. Trehalose or Polyvinypyrrolidone can be added.
  • dry powders can thus be obtained which no longer lose their properties obtained in the primary dispersion. That means the amorphous character of the active ingredient and the core-shell structure are retained. It is also a property according to the invention that, when redissolved, these dispersions, with a deviation of 20%, preferably ⁇ 15%, have the same particle size distribution that they had as the primary dispersion.
  • the interfacial tension of the nanoparticulate dispersions according to the invention is between 20-40 mN / m, preferably 10-30 nM / m.
  • the particle sizes of the core-shell structures are in the range from 0.1 to 2 ⁇ m, preferably 0.05 to 0.9 ⁇ m.
  • Suitable active ingredients are, for example:
  • Analgesics / anti-rheumatic drugs such as codeine, diclofenac, fentanyl, hydromorphone, ibuprofen, indomethacin, levomethadone, morphine, naproxen, pritramide, piroxicam, tramadol
  • Antiallergic agents such as astemizole, dimetinden, doxylamine, loratidine, meclozin, pheniramine, terfenadine
  • Antibiotics / chemotherapeutics such as erythromycin, framycetin, fusidic acid, rifampicin, tetracycline, thiazetazone, tyrothricin
  • Antiepileptics such as carbamazepim, clonazepam, mesuximide, phenytoin, valproic acid
  • Antifungals such as clotrimazole, fluconazole, itraconazole
  • Calcium antagonists such as darodipine, isradipine
  • Corticoids such as aldosterone, betametasone, budesonide, dexametasone, fluocortolone, fludrocortisone, hydroxycortisone, methyl prednisolone, prednisolone
  • Hypernicum Urtica folia, Artichoke, Agnus Castus, Cimicifuga, Devil's Claw, Broom, Broom, Peppermint Oil, Eucalyptus, Celandine, Ivy, Kava-Kava, Echinacea, Valerian, Sabalex tract, Hypericum, Milk Thistle, Ginkgoaden- soba, Aloe Allium sativum, Panax Ginseng, Serenoa Repens, Hydrastis canadensis, Vaccinium macrocarpon or mixtures thereof
  • Protease inhibitors e.g. B. saquinavir, indinavir, ritonavir, nelfinavir, palinavir or combinations of these protease inhibitors
  • Anabolic steroids, androgens, antiandrogens, estradiols, progestogens, progesterone, estrogens, antioestrogens such as tamoxifen
  • Vitamins / antioxidants such as carotenoids or carotenoid analogs, e.g. ß-carotene, canthaxanthin, astaxanthin, lycopene or lipoic acid
  • Busulfan carmustine, chlorambucil, cyclophosphamide, dacarbacin, dactinomycin, estramustine, etoposide, flurouracil, ifosfamid, methotrexate, paclitaxel, vinblastine, vincristine, vindisol
  • nanoparticulate preparations according to the invention are suitable in principle for the production of all pharmaceutical dosage forms: oral dosage forms, topical dosage forms such as dermatica, ophthalmica, pulmonary or nasal forms, buccal forms, anal or intravaginal forms, enteral and parenteral forms.
  • the preparations according to the invention can thus be processed into tablets, pellets, sachets, drinking formulations, suppositories, injection solutions or as capsule fillings.
  • Such formulations then represent examples of multiparticulate systems in which the nanoparticles, one phase, the preparation of the soft gelatin matrix, is another phase, which can also contain another or the same active ingredient.
  • the systems according to the invention can also be introduced into other matrices and thereby represent a separate phase from the rest of the matrix.
  • Such matrices can also be introduced into other matrices and thereby represent a separate phase from the rest of the matrix.
  • Tablets, suppositories or systems for pulmonary administration or transdermal application are particularly preferred.
  • amorphous active substance embedding a special special property of active substances, the polymorphism, should also be mentioned.
  • Many active ingredients exist in more than one crystalline form. In general, it can be assumed that more than 50% of all active substances exist in several crystalline forms. All these polymorphic modifications of an active substance are chemically identical, but have different physical properties such as melting point, density and solubility. The different modifications also have an impact on processability and, in the most critical case, on bioavailability.
  • the preparations according to the invention make it possible in a simple manner to convert active substances into the amorphous state and can also use products of the most varied particle size distribution and amorphous bulk materials as starting materials and thus the problem of different polymorphic forms and the associated possible disadvantages with regard to solubility, storage stability and Bypass bioavailability.
  • the nanoparticles according to the invention enable aseptic production and sterile filtration. Since solid tumors have the ability to filter particles from the blood stream, the preparations according to the invention are suitable for achieving tumor targeting. In this way, locally highly concentrated accumulations of cytotoxic substances can be achieved. Therapy of cancer diseases by the nanoparticulate systems according to the invention is therefore particularly preferred.
  • Cytostatics which are preferably suitable for the technology according to the invention are taxols such as paclitaxel, cis-platinum but also non-intercalating famesyl transferase inhibitors.
  • nanoparticulate systems can cross the blood-brain barrier and can therefore be used in particular in the field of therapy for CNS diseases.
  • nanoparticles according to the invention which are therefore particularly suitable for use in the treatment of diseases in the CNS area.
  • the polymer weight is significantly lower than in the forms described in EP-A 425 892, it is possible to obtain stable products adapted to the requirements.
  • the small number of auxiliaries is advantageous compared to other processes.
  • the preparations according to the invention of the amorphous core-shell nanoparticles often consist only of the polymeric carrier and the biologically active substance.
  • the amorphous core-shell nanoparticles according to the invention have a further advantage due to the method.
  • the intensive mixing of the biologically active substance from a solvent into a non-solvent enables small amounts of the polymer, which later aggregates by adsorption on the surface, to be introduced into the matrix during the formation of the spherical structure. This contributes to the stabilization of the amorphous and thus metastable state.
  • it is a multi-phase system with an outer shell composed of the polymeric additive responsible for the dispersion and an amorphous structure which, when dissolved, also contains the same polymeric or another additive as a crystallization inhibitor.
  • a special situation is the appearance of liquid crystalline systems in the amorphous phase of the preparations according to the invention.
  • Preparations of low molecular weight peptides such as the LMWH, can be administered orally and advantageously with the same formulation as an injection, the standard route of application currently used for deep vein thrombosis.
  • the preparations according to the invention are also suitable for colon targeting.
  • the preparations according to the invention can also be used in parenteral nutrition.
  • the preparation according to the invention can be used in particular for the formulation of vitamins and amino acids.
  • the preparations according to the invention can e.g. the necessary plasma peaks can be achieved with nicotine tartrate or nicotine base, which are of particular importance in the weaning process.
  • Topical application for hair growth agents such as minoxidil is also advantageous with the preparation according to the invention. Due to the structure, the hair follicles can be reached more easily.
  • the pulmonary application of the preparations according to the invention is particularly intended for the administration of protein and peptide therapeutic agents.
  • examples are vasopressin analog, LHRH antagonists, glucagon, parathyroid hormone, calcitonin, insulin, LHRH analog leuprolipids, granuloctye-colony stimulating factor and somatropin.
  • the application can also be carried out as an atomized aqueous suspension. It can be applied via the nose, bronchi or lungs. In the case of nasal application, it is particularly advantageous to choose an aqueous suspension, since this prevents irritation of the nasal mucous membranes and the sensation of burning by organic solvents.
  • the active substance class of leukotriene antagonists is particularly suitable as an area of application for the technology.
  • the preparations according to the invention can also be used to bring antisense active substances, ie oligonucleotides with a complementary base sequence to messenger RNA, into formulations that can be applied. Phosphorothioate oligonucleotides are preferred.
  • subcutaneous or intravenous administration as an infusion or injection can also be used for oral administration. However, dermal application and inhalation are also conceivable.
  • the forms according to the invention can be used in oral forms which can be used both from preparations in conventional tablets and in capsules.
  • the possibility of being able to produce suppositories which is ensured by the stability of the nanoparticles according to the invention when stirred into the carrier matrices, opens up this field of application. It is advantageous here that only a limited volume of liquid is available for rectal administration and that the preparations according to the invention can be dispersed and absorbed extremely well in the small volume of liquid.
  • mucoadhesive preparations with a nanoparticulate size can also be produced.
  • nanoparticulate preparations can ultimately lead to an increase in bioavailability. This can be of particular interest for nasal application.
  • the adherence of the nanoparticulate particles to the mucosa of the nasal mucosa has a positive effect on the otherwise too short dwell time and can thus contribute to increasing bioavailability.
  • the preparations according to the invention can also be used on the eye.
  • the nanoparticulate systems according to the invention form a separate phase which can guide the active ingredient in nanoparticulate amorphous form to the eye and is distributed homogeneously during the gel formation in the matrix.
  • Contrast agents for medical imaging diagnostics such as X-ray methods, scintigraphy, ultrasound, magnetic resonance imaging, fluorescence giography and ophthalmology can also be produced with the preparations according to the invention.
  • the nanoparticulate core-shell nanoparticles according to the invention can be used in cosmetics and dermatics to protect active substances sensitive to hydrolysis. Such preparations are also able to facilitate penetration between the stratum corneum cells due to the small particle size.
  • the preparations according to the invention can be used in the formulation of perfumes and decorative cosmetics, such as the introduction of dyes or pigments into lipsticks, eyeliner, eye shadows or nail polishes.
  • the preparations can also be used in creams, gels and ointments.
  • this coarsely disperse solution was mixed with 120 g of water at a mixing temperature of 200 ° C. for 0.3 s.
  • the average particle size was determined to be 260 nm with a variance of 42% by quasi-elastic light scattering. The average particle size only increased by one hour
  • Spray drying of the product la gave a nanoparticulate dry powder.
  • the active substance content in the powder was determined by chromatography to be 19.84% by weight.
  • the dry powder dissolves in drinking water to form a gelblieh-cloudy dispersion (hydrosol) with an average particle size of 306 nm with a variance of 48%.
  • the mean particle size increased by only approx. 30 nm to 349 nm within one hour.
  • An analogously produced colloidal ritonavir dispersion without collicoat shows an increase in the particle size by approx. 350 nm within one hour. This is summarized in Table 2.
  • Table 2 Table 2
  • this coarsely disperse solution was mixed with 120 g of water at a mixing temperature of 200 ° C. for 0.3 s.
  • Spray drying of the product 2a gave a nanoparticulate dry powder.
  • the active substance content in the powder was determined by chromatography to be 20.03% by weight.
  • the dry powder dissolves in drinking water to form a white, cloudy dispersion
  • Example 5 Analogously to Example 1, a micronizate which contained propafenone as active ingredient was produced. 5
  • Example 2 Analogously to Example 2, a micronized, which instead of the polymer Kolliciat ® MAE polymer as a poly (D, L-lactide-co-glycolide 10) (49 mole% D, L-lactide, 51 mol% glycolide) was manufactured.
  • this coarsely disperse solution was used with a mass flow of 1.8 kg / h
  • the mean particle size was found to be 796 nm with a variance of 81% by quasi-elastic light scattering.
  • the mean particle size was determined to be 256 nm with a variance of 56% by quasi-elastic light scattering.
  • the mean particle size was found to be 178 nm with a variance of 22% by quasi-elastic light scattering.
  • the following dosage forms can be produced:
  • nanoparticulate preparation (supported on lactose) are mixed with 10% by weight sucrose, 28% by weight microcrystalline cellulose, 3% by weight Kollidon VA 64 and 0.2% by weight Aerosil and then pressed directly.
  • the tablet weight is 250 mg.
  • the diameter is 8 mm.
  • a patch with a reservoir made of 17.5% by weight of polystyrene and 17.5% by weight of polyvinyl acetate and 30% by weight of the nanoparticles according to the invention was produced.
  • Cremophor is dissolved in the fat phase and water is added to this mixture with vigorous stirring. The mixture is stirred until it cools down and then the nanoparticle preparation is added and homogenized.
  • a preparation for topical use with the nanoparticulate core-shell preparations was obtained as follows: (in g / lOOg)
  • Aerosol 10 g of micronisate according to Example 1, 14 g of Kollidon K 25, preservative q.s., water ad 100 g. 7. Aerosol
  • 0.25% by weight of a nano-part budesonide preparation is mixed with a mixture of 4% by weight of ethanol and water (50:50) and 5.95.75% by weight of 1.1.1.2 tetrafluoroethane in an aluminum vessel under pressure bottled.
  • nanoparticle powder according to the invention is stirred into the mixture and the mass is applied on a non-woven plaster basis.
  • nanoparticles according to the invention 10% by weight. of the nanoparticles according to the invention, 30% by weight of a lactic acid-glycol copolymer, 10% by weight of ethanol, 50% by weight of isotonic saline solution 25

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Nutrition Science (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Nanopartikuläre Zubereitungen von pharmazeutischen und kosmetischen Wirkstoffen mit einer Kern-Schale Struktur, in denen der Wirkstoff im Kern röntgenamorph zusammen mit einer Polymermatrix vorliegt und die Schale aus einer stabilisierenden Hüllmatrix besteht.

Description

Nanopartikuläre Kern-Schale Systeme sowie deren Verwendung in pharmazeu ischen und kosmetischen Zubereitungen
Beschreibung
Die vorliegende Erfindung betrifft nanopartikuläre Zubereitungen von pharmazeutischen Wirkstoffen mit einer Kern-Schale-Struktur, wobei der Wirkstoff im Kern in röntgenamorpher Form zusammen mit mindestens einem Polymer vorliegt und die Schale aus einer poly- meren Hüllmatrix besteht.
Aus der EP-A 425 892 ist ein Verfahren zur Verbesserung der Bioverfügbarkeit von pharmazeutischen Wirkstoffen mit Peptid- bindungen bekannt, wobei eine Lösung des Wirkstoffs in einem mit Wasser mischbaren organischen Lösungsmittel mit einem wässrigen Kolloid schnell vermischt wird, sodaß der Wirkstoff in kolloiddisperser Form ausfällt.
In der EP-A 276 735 sind schutzkolloidumhüllte Wirkstoff-Partikel beschrieben, in denen der Wirkstoff in einer Ölphase dispergiert vorliegt. In Ölphasen treten jedoch häufig Probleme bezüglich der Kompatabilität auf.
Aus der EP-A-0169 sind partikuläre pharmazeutische Zubereitungen schwer wasserlöslicher Substanzen bekannt, wobei die Zubereitungen durch Ausfällen aus einer Lösung des Wirkstoffs nach Zugabe einer Fällungslösung erhalten werden.
In der WO 93/10767 sind perorale Applikationsformen für Peptid- arzneimittel beschrieben, in denen das Arzneimittel in der Weise in eine Gelatinematrix eingebaut wird, daß die sich bildenden kolloidalen Teilchen ladungsneutral vorliegen. Nachteilig an solchen Formen ist jedoch deren Neigung zum Ausflocken.
In der EP-A 0605 497 sind Nanopartikel beschrieben, in denen der Wirkstoff in einer Lipidmatrix stabilisiert ist. Allerdings sind Lipidmatrizes labil gegen Scherkräfte, was bei der Weiterverarbeitung Probleme bereiten kann.
In der DE-A 4440337 ist die Herstellung von mit Tensiden stabilisierten Nanosuspensionen beschrieben. Hohe Tensidkonzentratio- nen sind jedoch unter Umständen physiologisch bedenklich.
In der US 5,145,684 und der US 5,399,363 ist die Herstellung kristalliner Nanopartikel durch spezielle Mahlverfahren beschrieben. Kristalline Nanopartikel weisen jedoch im allgemeinen eine schlechtere Bioverfügbarkeit auf und können zudem aufgrund des Polymorphismus einiger Wirkstoffe Probleme bereiten.
US 4,826,689 beschreibt ein Präzipitationsverfahren, bei dem amorphe sphärische Partikel erhalten werden, die durch keine weiteren Zusatz oder nur geringe Zusätze an Tensiden stabilisiert werden. Die Scherstabiliät solcher Systeme und die Möglichkeit zur Sterilisation ist gering.
Die EP-A 275,796 beschreibt die Herstellung kolloidaler disper- gierbarer Systeme mit sphärischen Partikel kleiner als 500 nm, wobei es sich nicht um eine Kern-Schale-Struktur, sondern um eine Matrix-Struktur handelt.
Die WO 97/14407 beschreibt die Herstellung von Nanopartikeln durch Expansion aus einem Lösungsmittel in ein komprimiertes Gas, Flüssigkeit oder ein superkritisches Fluidum in Gegenwart eines Amphiphilen.
Die DE 3742 473 C2 beschreibt Hydrosole von festen Teilchen eines Cyclosporins und einem Stabilisator, der den Zerteilungsgrad der Teilchen aufrecht erhält. Die Teilchengröße dieser Hydrosole liegt im kolloidalen Bereich. Insbesondere wird darauf hingewiesen, daß die beschriebenen Hydrosolteilchen aus Wirkstoffmasse bestehen.
Nachteilig an diesen Hydrosolen ist jedoch, daß die Teilchengröße der Hydrosolpartikel im Laufe der Zeit stark zunimmt. Dies gilt insbesondere dann, wenn die dispergierende Phase des Hydrosols Wirkstofflösungsmittel enthält. Dieses Wirkstofflösungsmittel wird bei der Herstellung der Hydrosolteilchen zwingend eingesetzt und muß danach möglichst schnell entfernt werden.
Das Anwachsen der Hydrosolteilchen ist auf die sog. Ostwaldrei- fung zurückzuführen, bei der über die dispergierende Phase Wirk- stoffmoleküle von kleinen Hydrosolteilchen zu großen Hydrosolteilchen transportiert werden. D.h. kleinere Teilchen lösen sich langsam auf und größere Teilchen wachsen langsam an. Da der Wirkstoff Cyclosporin eine geringe Restlöslichkeit auch in lösungs- mittelfreiem Wasser aufweist, kann ein Anwachsen der Hydrosolteilchen auch dort nicht verhindert werden.
Hinsichtlich der Stabilität der nanopartikulären Systeme, des Vorliegens des Wirkstoffs in stabiler amorpher Form und der brei- ten Anwendbarkeit in einer Vielzahl von pharmazeutischen Darreichungsformen bestand jedoch noch Raum für Verbesserungen. Aufgabe der vorliegenden Erfindung war es daher, verbesserte wirkstoffhaltige nanopartikuläre Zubereitungen zu finden.
Demgemäß wurden die erfindungsgemäßen nanopartikulären Zu- bereitungen pharmazeutischer Wirkstoffe gefunden, welche eine Kern-Schale-Struktur aufweisen, wobei im Kern der Wirkstoff in röntgenamorpher Form in einer Polymermatrix vorliegt, und die Schale aus einer stabilisierenden Hüllmatrix eines Polymers mit Schutzkolloid-Eigenschaften besteht .
Bevorzugt liegen im Kern mindestens zwei getrennte Phasen vor, wobei die eine Phase aus diskreten, röntgenamorphen Partikeln des Wirkstoffs in besteht, während die andere Phase eine molekulardisperse Verteilung des Wirkstoffs in einem oder mehreren Polyme- ren darstellt. Ob der Kern ein- oder zweiphasig ist, hängt im wesentlichen vom Mengenverhältnis Kernpolymere zu Wirkstoff ab.
Entscheidend ist, das mit abnehmender Partikelgröße des Wirkstoffs der Lösedruck der Substanz zunimmt. Daraus resultiert eine erhöhte Sättigungslöslichkeit . Die erhöhte Sättigungslöslichkeit führt nach Noyes-Whitney zur Erhöhung der Lösungsgeschwindigkeit. Hinzu kommt, das in den erfindungsgemäßen Formulierungen die biologisch aktive Substanz in einem energetisch instabilen, metastabilen Zustand vorliegt. Wird nun das Nanopartikel nicht ausreichend stabilisiert kann dies in einigen Fällen zu spontaner Kristallisation führen, der Wirkstoff präzipitiert aus der stabilisierten Form heraus.
Deshalb wurde auch nach Lösungen gesucht, neben einer stabilen Schalestruktur, die auch Vorgängen wie dem Einmischen in Cremes oder Salben, dem homogenisieren in kosmetischen Präparationen und den Druck- und Scherbelastungen bei der Sterilisation standhält.
Überraschenderweise zeigen die erfindungsgemäßen kolloidalen Wirkstoff-Zubereitungen im Gegensatz zu bekannten Wirkstoff-Zubereitungen, welche im Kern der kolloidalen Teilchen im wesentlichen ausschließlich aus Wirkstoffmasse bestehen, ein deutlich niedrigeres Wachstum der Hydrosol-Teilchen. Eine Stunde nach Herstellung der wässrigen Hydrosole in Gegenwart eines den Wirkstoff lösenden Lösungsmittels, ist das Teilchenwachsturn um einen Faktor von 4 bis 10 geringer. Bei wässrigen Hydrosolen, die kein den Wirkstoff lösendes Lösungsmittel enthalten, ist das Teilchenwachstum um einen Faktor von 1,5 - 5 reduziert.
Die in der erfindungsgemäßen Wirkstoff-Zubereitung vorliegenden kolloidalen Partikel besitzen eine Polymerhülle, die den Kern der Partikel umhüllen. Aufgabe dieser Polymerhülle ist es, die Parti- kel in ihrem kolloidalen Zustand gegen heterogenes Teilchenwachstum (Aggregation, Flockung etc.) zu stabilisieren.
Darüberhinaus besitzen die in der erfindungsgemäßen Wirkstoff- Zubereitung vorliegenden kolloidalen Partikel einen Kern aus
Wirkstoff und Polymer. Der Wirkstoff im Innern dieses Kerns liegt in röntgenamorpher Form vor. Wesentlich ist, daß keine kristallinen Wirkstoff-Anteile in der Wirkstoff-Zubereitung nachweisbar (Röntgenbeugung) sind. Insbesondere tragen die Polymere im Inne- ren der Teilchen dazu bei, den Wirkstoff in seinem nicht kristallinen Zustand zu erhalten, sowie die kolloidalen Strukturen in Bezug auf homogenes Teilchenwachstum (Ostwald-Reifung) zu stabilisieren.
Als polymere Stabilisatoren für die Hüllmatrix der Schale eignen sich erfindungsgemäß σuellbare Schutzkolloide wie beispielsweise Rinder-, Schweine- oder Fischgelatine, Stärke, Dextrin, Pektin, Gummi rabicum, Ligninsulfonate, Chitosan, Polystyrolsulfonat, Alginate, Kasein, Kaseinat Methylcellulose, Carboxymethyl- cellulose, Hydroxypropylcellulose, Milchpulver, Dextran, Vollmilch oder Magermilch oder Mischungen dieser Schutzkolloide. Weiterhin eignen sich Homo- und Copolymere auf Basis folgender Monomeren: Ethylenoxid, Propylenoxid, Acrylsäure, Maleinsäureanhydrid, Milchsäure, N-Vinylpyrrolidon, Vinylacetat, α- und ß- Asparaginsäure . Besonders bevorzugt wird eine der genannten Gelatine-Typen eingesetzt, insbesondere sauer oder basisch abgebaute Gelatine mit Bloom-Zahlen im Bereich von 0 bis 250, ganz besonders bevorzugt Gelatine A 100, A 200, B 100 und B 200 sowie niedermolekulare, enzymatisch abgebaute Gelatinetypen mit der Bloom-Zahl 0 und Molekulargewichten von 15.000 bis 25.000 D wie zum Beispiel Collagel A und Gelitasol P (Firma Stoess, Eberbach) sowie Mischungen dieser Gelatine-Sorten.
Weiterhin enthalten die Zubereitungen niedermolekulare ober- flächenaktive Verbindungen. Als solche eignen sich vor allem amphiphile Verbindungen oder Gemische solcher Verbindungen. Grundsätzlich kommen alle Tenside mit einem HLB-Wert von 5 bis 20 in Betracht. Als entsprechende oberflächenaktive Substanzen kommen beispielsweise in Betracht: Ester langkettiger Fettsäuren mit Ascorbinsäure, Mono- und Diglyceride von Fettsäuren und deren Oxyethylierungsprodukte, Ester von Monofettsäureglyceriden mit Essigsäure, Zitronensäure, Milchsäure oder Diacetylweinsäure, Polyglycerinfettsäureester wie z.B. das Monostearat des Triglyce- rins, Sorbitanfettsäureester, Propylenglykolfettsäureester, 2- (2'- stearoyllactyl) -milchsaure Salze und Lecithin. Bevorzugt bevorzugt wird Ascorbylpalmitat eingesetzt. Als polymere Bestandteile, die sich im Kern der Partikel der erfindungsgemäßen WirkstoffZubereitung befinden eignen sich prinzipiell alle Polymere, die in einem Temperaturbereich zwischen 0 und 240°C, einem Druckbereich zwischen 1 und 100 bar, einem pH-Bereich von 0 bis 14 oder Ionenstärken bis 10 mol/1 nicht oder nur teilweise in Wasser oder wässrigen Lösungen oder Wasser-Lösungsmittelgemischen löslich sind.
Nicht oder nur teilweise löslich bedeutet in diesem Zusammenhang, daß der 2. Virialkoeffizient für das oder die Polymere in Wasser oder einem Gemisch aus Wasser und einem organischen Lösungsmittel Werte kleiner Null annehmen kann. (vgl. M. D. Lechner, "Makromolekulare Chemie", Birkhäuser Verlag, Basel, S. 170 - 175). Der 2. Virialkoeffizient, der eine Aussage über das Verhalten eines Polymers in einem Lösungsmittel (gemisch) macht, kann experimentell bestimmt werden, beispielsweise durch Lichtstreuungsmessung oder Bestimmung des osmotischen Drucks. Die Dimension dieses Koeffizienten ist (mol-l)/g2.
Es können ein oder mehrere Polymere eingesetzt werden. Die Mol- massen der verwendeten Polymere liegen im Bereich von 1000 - 10000000 g/mol, bevorzugt im Bereich 1000 - 1000000 g/mol . Grundsätzlich kommen alle für den Anwendungsbereich Pharma und Kosmetik geeigneten Polymere in Betracht.
Von besonderem Interesse sind Polymere, die in organischen, mit Wasser mischbaren Lösungsmitteln löslich sind, und bei Temperaturen zwischen 0 und 240 °C nicht oder nur teilweise in Wasser oder wäßrigen Lösungen oder Wasser-Lösungsmittelgemischen löslich sind. Folgende Polymere sind beispielhalf genannt, ohne jedoch einschränkend zu sein:
Poly (vinylether) wie z.B. Poly (benzyloxyethylen) , Poly(vinyl- acetale) , Poly (vinylketone) , Poly (allylalkohol) , Poly (vinylester wie z.B. Poly (vinylacetat) , Poly (oxytetramethylen) , Poly(glutar- dialdehyd) , Poly (carbonate) , Poly(ester), Poly (siloxane) , D,L-Poly (lactid) , Poly (lactid) , Poly (glycolid) , Poly (D,L-lactid- co-glycolid) , Poly (amide) , Poly (piperazine) , Poly (anhydride) wie z.B. Poly (metharylanhydrid) , Gutta Percha, Celluloseether wie z.B. Methylzellulose (Substitutionsgrat 3 - 10 %) , Ethyl- cellulose, Butylcelluslose, Cellulose-Ester, wie z.B. Cellulose- acetat oder Stärken. Insbesondere Copolymere und Blockcopolymere der Monomere der oben genannten Polymere. Weiterhin Copolymere und Blockcopolymere von Polyestern und Hydroxycarbonsäuren und linear- und Star-Polyethylenglycol, z.B. AB- und ABA-Block- copolymere aus D,L-Poly (lactid) und Polyethylenglycol bzw. Poly (glycolid) . Von besonderem Interesse sind weiterhin Polymere, die bei Temperaturen zwischen 0 und 240 °C in Wasser oder wäßrigen Lösungen oder Wasser-Lösungsmittelgemischen eine obere und/oder untere Mischungslücke besitzen, d.h. durch Erhöhung bzw. Erniedrigung der Temperatur können diese Polymere aus entsprechenden Lösungen ausgefällt werden. Folgende Polymere sind beispielhaft genannt, ohne jedoch einschränkend zu sein:
Poly (acrylamide) , Poly (methacrylamide) wie z.B. Poly(N-isopropylacrylamid) , Poly(N,N-dimethylacrylamid) ,
Poly(N-(l, l-dimethyl-3-oxobutyl)acrylamid) , Poly(methoxyethylen) , Poly (vinylalkohole) , acetylierte Poly(vinylalkohole) , Poly(oxyethylen) , Cellulose-Ether wie z.B. Methylcellulose (20 - 40 % Substitutionsgrad), Isopropylcellulose, Cellulose-Ester, Stärken, modifizierte Stärken wie z.B Methylether-Stärke, Gum Arabic, sowie Copolymere bzw. Blockcopolymere aus monomeren der oben genannten Verbindungen. Insbesondere AB- oder ABA-Blockcopolymere auf der Basis Ethylenoxiod und Propylenoxid, z.B. Poloxamere wie Poloxamer 188 und Poloxamer 407.
Von besonderem Interesse sind weiterhin Polymere, die bei Temperaturen zwischen 0 und 240 °C in Wasser oder wäßrigen Lösungen oder Wasser-Lösungsmittelgemischen durch Variation des pH-Wertes oder der Ionenstärke aus entsprechenden Lösungen ausgefällt werden können. Folgende Polymere sind beispielhaft genannt, ohne jedoch einschränkend zu sein:
Alginate, Chitosan, Chitin, Schellak, Polyelektrolyte, Poly(acrylsäure) , Poly (metacrylsäure) , Poly(methacrylester) mit mit sekundären tertiären oder quaternären Aminogruppen, insbesondere Copolymere oder Blockcopolymere auf der Basis verschiedener Acrylate, Methcrylate, Methacrylsäure, Acrylsäure, z.B. ein Copolymer aus Methacrylsäure/Methacrylsäureester (Gewichts- Verhältnis MAS/MAE 1:1 oder 1:2) oder ein Copolymer aus Dimethyl- aminoethylmethacrylat und Methacrylsäureester im Gewichtsvehrält- nis 1:1 (Eudragit®-Typen) .
Die Mengen der verschiedenen Komponenten werden erfindungsgemäß so gewählt, daß die Zubereitungen 0,1 bis 70 Gew.-%, vorzugsweise 1 bis 40 Gew.-%, an Wirkstoff, 1 bis 80 Gew.-%, bevorzugt 10 bis 60 Gew.-% eines oder mehrerer polymerer Stabilisatoren (Hüllpolymer), 0.01 bis 50 Gew.-%, vorzugsweise 0.1 bis 30 Gew.-% eines oder mehrerer Polymere für den Kern, und 0 bis 50 Gew.-%, bevor- zugt 0,5 bis 10 Gew.-% eines oder mehrerer niedermolekularer Stabilisatoren enthält. Die Gewichtsprozentangaben beziehen sich auf ein Trockenpulver.
Zusätzlich können die Zubereitungen noch Antioxidantien und/oder Konservierungsmittel zum Schutz des Wirkstoffs enthalten. Geeignete Antioxidantien oder Konservierungsstoffe sind beispielsweise α-Tocopherol , t-Butyl-hydroxytoluol, t-Butylhydroxyanisol, Lecithin, Ethoxyquin, Methylparaben, Propylparaben, Sorbinsäure, Natriumbenzoat oder Ascorbylpalmitat. Die Antioxidantien bzw. Konservierungsstoffe können in Mengen von 0 bis 10 Gew.-%, bezogen auf die Gesamtmenge der Zubereitung, enthalten sein.
Weiterhin können die Zubereitungen noch Weichmacher zur Erhöhung der Stabilität des Endprodukts enthalten. Geeignete Weichmacher sind beispielsweise Zucker und Zuckeralkohole wie Saccharose,
Glukose, Laktose, Invertzucker, Sorbit, Mannit, Xylit oder Glyce- rin. Bevorzugt wird als Weichmacher Laktose eingesetzt. Die Weichmacher können in Mengen von 0 bis 50 Gew.% enthalten sein.
Weitere galenische Hilfsmittel wie Bindemittel, Sprengmittel, Geschmacksstoffe, Vitamine, Farbstoffe, Netzmittel, den PH-Wert beeinflussende Zusätze (vgl. H. Sucker et al., Pharmazeutische Technologie, Thieme-Verlag, Stuttgart 1978) können ebenfalls über das organische Lösungsmittel oder die wäßrige Phase eingebracht werden.
Zur Durchführung des erfindungsgemäßen Verfahrens wird zunächst eine Lösung des Wirkstoffes in einem geeigneten Lösungsmittel hergestellt, wobei Lösung in diesem Zusammenhang eine echte mole- kulardisperse Lösung oder eine Schmelzemulsion bedeutet. Dabei können je nach Wirkstoff Temperaturen von 0 -250 °C und Drücke bis 100 bar eingesetzt werden. Als Lösungsmittel geeignet sind organische, mit Wasser mischbare Lösungsmittel, welche flüchtig und thermisch stabil sind und nur Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff und Schwefel enthalten. Zweckmäßigerweise sind sie zu mindestens 10 Gew.-% mit Wasser mischbar und weisen einen Siedepunkt unter 200 °C auf und/oder haben weniger als 10 Kohlenstoffatome. Bevorzugt sind entsprechende Alkohole, Ester, Ketone, Ether und Acetale. Insbesondere verwendet man man Ethanol, n-Propanol, Isopropanol, Buthylacetat, Ethylacetat, Tetrahydrofuran, Aceton, 1, 2-Propandiol-l-n-propylether oder 1, 2-Butandiol-lmethylether . Ganz besonders bevorzugt sind Ethanol, Isopropanol und Aceton.
Gemäß einer Ausführungsform des Verfahrens wird eine molekulardisperse Lösung des Wirkstoffes in dem gewählten Lösungsmittel zusammen mit dem Polymer, daß in der Wirkstoff-Zubereitung im Kern der Partikel liegen soll, hergestellt. Dieses Polymer hat die Eigenschaft, in einem bestimmten Temperatur-, pH- oder Salz- Bereich nicht oder nur teilweise in Wasser löslich zu sein.
Die Konzentration der so hergestellten Wirkstoff-Polymer-Lösung beträgt im allgemeinen 10 bis 500 g Wirkstoff pro 1 kg Lösungsmittel und 0,01 bis 400 g Polymer, wobei das Polymer-Wirkstoff- Gewichtsverhältnis zwischen 0.01 zu 1 und 5 zu 1 liegt. In einer bevorzugten Ausführungsform des Verfahrens wird der nieder- molekulare Stabilisator direkt zu der Wirkstoff-Polymer-Lösung gegeben.
In einem sich daran anschließenden Verfahrensschritt wird die Wirkstoff-Polymer-lösung mit einer wässrigen Lösung des polymeren Hüllmaterials vermischt. Die Konzentration des polymeren Hüllmaterials beträgt 0.1 bis 200 g/1, vorzugsweise 1 bis 100 g/1.
Gemäß einer weiteren Ausführungsform des Verfahrens wird eine molekulardisperse Lösung des Wirkstoffes in dem gewählten Lösungsmittel ohne dem Polymer, daß in der Wirkstoff-Zubereitung im Kern der Partikel liegen soll, hergestellt. Die Konzentration der so hergestellten Wirkstoff-Lösung beträgt im allgemeinen 10 bis 500 g Wirkstoff pro 1 kg Lösungsmittel.
In einem sich daran anschließendem Verfahrensschritt wird diese Lösung mit einer wäßrigen molekularen Lösung des Polymers gemischt, daß in der Wirkstoff-Zubereitung im Kern der Partikel liegen soll. Die Konzentration der so hergestellten Polymer- Lösung beträgt im allgemeinen 0,01 bis 400 g Polymer. Dabei wer- den die Temperaturen, pH-Werte und Salzkonzentrationen der beiden zu vereinigenden Lösungen so gewählt, daß nach der Vereinigung der Lösungen der Wirkstoff und das Polymer unlöslich sind. In einer bevorzugten Ausführungsform des Verfahrens wird der niedermolekulare Stabilisator direkt zu der Wirkstoff-Lösung gegeben.
In einem sich daran anschließenden Verfahrensschritt wird das Wirkstoff-Polymer-Präzipitat mit einer wässrigen Lösung des polymeren Hüllmaterials vermischt. Die Konzentration des polymeren Hüllmaterials beträgt 0.1 bis 200 g/1, vorzugsweise 1 bis 100 g/1.
Um beim Mischvorgang möglichst kleine Teilchengrößen zu erzielen, empfiehlt sich ein hoher mechanischer Energieeintrag beim Vermischen der Cyclosporin-Lösung mit der Lösung des Hüllmaterials. Ein solcher Energieeintrag kann beispielsweise durch starkes Rühren oder Schütteln in einer geeigneten Vorrichtung erfolgen, oder dadurch, daß man die beiden Komponenten mit hartem Strahl in eine Mischkammer einspritzt, sodaß es zu einer heftigen Vermischung kommt .
Der Mischvorgang kann diskontinuierlich oder, bevorzugt, konti- nuierlich erfolgen. Als Folge des Mischvorgangs kommt es zu einer Präzipitation. Die so erhaltene Suspension bzw. das Kolloid kann dann auf an sich bekannte Weise in ein Trockenpulver überführt werden, beispielsweise durch Sprühtrocknung, Gefriertrocknung oder Trocknung im Wirbelbett.
Welche Bedingungen bei der Durchführung des erfindungsgemäßen Verfahrens hinsichtlich Variation des Systems Wasser/organisches Lösungsmittel, der pH-Werte, der Temperaturen oder der Ionenstärken im konkreten Fall zu wählen sind, kann der Fachmann mit Hilfe des 2. Virialkoeffizienten durch einige einfache Vorversuche für das entsprechende Polymer ermitteln.
Im folgenden kann die Primärdispersion dem Fachmann bekannten Trocknungsprozessen unterzogen werden.
Demzufolge lassen sich die erfindungsgemäßen nanopartikulären Systeme nach der Herstellung auch Trocknen z.B. durch Sprühtrocknung oder Lyophilisation und anschließend mit nahezu der gleichen Teilchengrößenverteilung wieder redispergieren. Dies ist für alle Anwendungen von großem Vorteil bei denen die Zubereitung möglicherweise lange gelagert werden muß, extremen Belastungen wie Hitze oder Kälte ausgesetzt ist oder von einem wäßrigen Träger in andere Träger als Lösungsmittel überführt werden soll. Damit sind die erfindungsgemäßen Zubereitungen auch nicht mehr an das Lösungsmittel gebunden mit dem sie hergestellt wurden.
Bei der Lyophilisation der erfindungsgemäßen Nanopartikel können kryoprotektive Substanzen wie z.B. Trehalose oder Polyvinypyrro- lidone zugesetzt werden.
Erfindungsgemäß lassen sich damit Trockenpulver erhalten, die ihre in der Primärdispersion gewonnen Eigenschaften nicht mehr verlieren. Das heißt amorpher Charakter des Wirkstoffes und Kern- Schale Struktur bleiben erhalten. Es ist weiterhin eine erfindungsgemäße Eigenschaft, das diese Dispersionen beim erneuten Auflösen mit einer Abweichung von 20% bevorzugt < 15% die gleiche Partikelgrößenverteilung zeigen, die sie als Primärdispersion besaßen.
Die Grenzflächenspannung der erfindungsgemäßen nanopartikulären Dispersionen beträgt zwischen 20 - 40 mN/m, bevorzugt 10 - 30 nM/m. Die Teilchengrößen der Kern-Schale-Strukturen liegen im Bereich von 0,1 bis 2 μ , bevorzugt 0,05 bis 0,9 μm.
Besonders bevorzugt sind erfindungsgemäß schwerlösliche Wirk- Stoffe mit einer Löslichkeit von kleiner 10 mg /ml Wasser bei 25°C.
Geeignete Wirkstoffe sind beispielsweise:
- Analgetika/Antirheumatika wie Codein, Diclofenac, Fentanyl, Hydromorphon, Ibuprofen, Indomethacin, Levomethadon, Morphin, Naproxen, Pritramid, Piroxicam, Tramadol
Antiallergika wie Astemizol, Dimetinden, Doxylamin, Lorata- din, Meclozin, Pheniramin, Terfenadin
Antibiotika/Chemotherapeutica wie Erythromycin, Framycetin, Fusidinsäure, Rifampicin, Tetracyclin, Thiazetazon, Tyrothri- cin
Antiepileptika wie Carbamazepim, Clonazepam, Mesuximid, Phenytoin, Valproinsäure
Antimykotika wie Clotrimazol, Fluconazol, Itraconazol
Calcium-Antagonisten wie Darodipin, Isradipin
Corticoide wie Aldosteron, Betametason, Budesonid, Dexameta- son, Fluocortolon, Fludrocortison, Hydroxycortison, Methyl- prednisolon, Prednisolon
Hypnotika/Sedativa
Benodiazepine, Cyclobarbital, Methagualon, Phenobarbital
- Immunsuppressiva
Azathioprin, Cyclosporin
Lokalanaesthetika
Benzocain, Butanilacain, Etidocain, Lidocain, Oxybuprocain, Tetracain
Migränemittel
Dihydroergotamin,Ergotamin, Lisurid, Methysergid Narkotika
Droperidol,Etomidat, Fentanyl, Ketamin, Methohexital, Propo- fol, Thiopental
- Ophthal ika
Acetazolamid, Betaxolol, Bupranolol, Carbachol, Carteolol, Cyclodrin, Cyclopentolat, Diclofenamid, Edoxodin, Homatropin, Levobununol, Pholedrin, Pindolol, Timolol, Tropicamid
- Phytopharmaka
Hypernicum, Urtica folia, Artischoke, Agnus Castus, Cimici- fuga, Teufelskralle, Besenginster, Pfefferminzöl, Eukalyptus, Schöllkraut, Efeu, Kava-Kava, Echinacea, Baldrian, Sabalex- trakt, Hypericum, Mariendistel, Ginkgo Biloba, Aloe barbaden- sis, Allium sativum, Panax Ginseng, Serenoa Repens, Hydrastis canadensis, Vaccinium macrocarpon oder Mischungen daraus
Proteasehemmer z. B. Saquinavir, Indinavir, Ritonavir, Nelfinavir, Palinavir oder Kombinationnen aus diesen Proteaseinhibitoren
Sexualhormone und ihre Antagonisten
Anabolika, androgene, Antiandrogene, Estradiole, Gestagene, Progesteron, Oestrogene, Antioestrogene wie Tamoxifen
Vitamine/Antioxidantien wie Carotinoide oder Carotinoid- Analoge, z.B. ß-Carotin, Canthaxanthin, Astaxanthin, Lycopin oder Liponsäure
- Zytostatika/Antimetastatica
Busulfan, Carmustin, Chlorambucil, Cyclophosphamid, Dacarba- cin, Dactinomycin, Estramustin, Etoposid, Flurouracil, Ifosfa- mid, Methotrexat, Paclitaxel, Vinblastin, Vincristin, Vinde- sin
Die erfindungsgemäßen nanopartikulären Zubereitungen eignen sich prinzipiell zur Herstellung aller pharmazeutischer Darreichungsformen: orale Arzneiformen, topische Arzneiformen wie Dermatica, Ophtalmica, pulmonale oder nasale Formen, buccale Formen, anale oder intravaginale Formen, enterale und parenterale Formen.
So lassen sich die erfindungsgemäßen Zubereitungen zu Tabletten, Pellets, Sachets, Trinkformulierungen, Suppositorien, Injektionslösungen oder als Kapselfüllungen verarbeiten. So ist z. B. die Formulierung in Weich- oder Hartgelatine- Zubereitungen. Solche Formulierungen stellen dann Beispiele multipartikulärer Systeme dar, in denen die Nanopartikel die eine Phase die Zubereitung der Weichgelatine Matrix eine andere Phase ist, die zudem wieder einen anderen oder den gleichen Wirkstoff enthalten kann.
Im gleichen Sinne könne die erfindungsgemäßen Systeme auch in andere Matrizes eingebracht werden und dabei eine getrennte Phase von der Restlichen Matrix darstellen. Solche Matrizes können
Tabletten, Zäpfchen oder Systeme zur pulmonalen Applikation oder transdermalen Applikation sein.
Im Zusammenhang mit amorpher Wirkstoffeinbettung ist auch eine besondere besondere Eigenschaft von Wirkstoffen, die Polymorphie, zu nennen. Viele Wirkstoffe existieren in mehr als einer kristallinen Form. Generell kann angenommen werden, daß mehr als 50 % aller Wirkstoffe in mehreren kristallinen Formen existieren All diese polymorphen Modifikationen eines Wirkstoffes sind chemisch identisch, besitzen aber unterschiedliche physikalische Eigenschaften wie Schmelzpunkt, Dichte und Löslichkeit. Damit nehmen die unterschiedlichen Modifikationen auch Einfluß auf die Verarbeitbarkeit und im kritischsten Fall auch auf die Bioverfügbarkeit.
Die erfindungsgemäßen Zubereitungen ermöglichen es in einfacher Weise, Wirkstoffe in den amorphen Zustand zu überführen und kann als Einsatzstoffe auch Produkte unterschiedlichster Korngrößenverteilung als auch amorphe Bulk-Materialien verwenden und somit das Problem verschiedener Polymorpher Formen und damit verbundener möglicher Nachteile mit Hinblick auf Löslichkeit, Lagerstabilität und Bioverfügbarkeit umgehen.
Aufgabe der vorliegenden Erfindung war es auch, für die nanopar- tikulären amorphen Kern-Schale Strukturen neue Zubereitungsformen zu finden. Überraschenderweise gelang es, nach Anpassung der eingesetzten polymeren Stabilisatoren gemäß den Anforderungen an Injektibila stabile Kern-Schale Strukturen auch mit Gelatine- Hydrolisaten zu erreichen. Vorteilhaft an der Verwendung solcher Gelatine Hydrolisate ist die deutlich geringere Histaminantwort in vivo bei Applikation als intravenöse, intramuskuläre oder subkutane Verabreichung.
Die erfindungsgemäßen Nanopartikel ermöglichen eine aseptische Herstellung und Steril-Filtration. Da feste Tumore die Fähigkeit besitze, Partikel aus dem Blutstrom zu filtern, sind die erfindungsgemäßen Zubereitungen geeignet, ein Tumortargetting zu erreichen. Es können so lokal hochkonzentrierte Anreicherungen cytotoxischer Substanzen erzielt werden. Damit ist die Therapie von Krebserkrankungen durch die erfindungsgemäßen nanopartikulären Systeme besonders bevorzugt.
Cytostatika die sich bevorzugt für die erfindungsgemäße Technologie eignen sind Taxole wie Paclitaxel, cis-Platin aber auch nicht interkalierende Famesyltransferaseinhibitoren.
Weiterhin ist es bekannt, daß nanopartikuläre Systeme die Blut- Hirn Schranke überwinden können und damit insbesondere im Bereich der Therapie von ZNS-Erkrankungen eingesetzt werden können. Gleiches gilt auch für die erfindungsgemäßen Nanopartikel die sich damit insbesondere auch für den Einsatz zur Behandlungen von Erkrankungen im Gebiet der ZNS eignen.
Obwohl die das Polymergewicht deutlich niedriger ist als bei in EP-A 425 892 beschriebenen Formen, gelingt es den Anforderungen angepaßte stabile Produkte zu erhalten. Vorteilhaft ist die geringe Anzahl von Hilfsstoffen im Vergleich zu anderen Verfahren. Die erfindungsgemäßen Zubereitungen der amorphen Kern-Schale Nanopartikel bestehen oftmals lediglich aus dem polymeren Träger und der biologisch aktiven Substanz.
Die erfindungsgemäßen amorphen Kern-Schale Nanopartikel besitzen aufgrund des Verfahrens einen weiteren Vorteil . Durch die intensive Vermischung der biologisch aktiven Substanz aus einem Lösungsmittel in ein Nicht-Lösungsmittel gelingt es geringe Anteile des Polymeren das später durch Adsorption an der Oberfläche aggregiert, während der Ausbildung der sphärischen Struktur in die Matrix einzubringen. Dies trägt zur Stabilisierung des amorphen und damit metastabilen Zustandes bei. Konkret handelt es sich als um ein Mehrphasen-System mit eine äußeren Schale aus dem für die Dispergierung verantwortlichen polymeren Zusatz und einer amorphen Struktur, die weiterhin gelöst den gleichen polymeren oder einen anderen Zusatz als Kristallisationsinhibitor enthält.
Eine besondere Situation ist das Auftreten flüssig kristalliner Systeme in der amorphen Phase der erfindungsgemäßen Zubereitungen. Zubereitungen niedermolekularer Peptide wie z.B. dem LMWH ermöglicht die Applikation auf oralem Wege sowie vorteilhafterweise mit einer gleichen Formulierung als Injektion, dem derzeit standardmäßig eingesetzten Applikationsweg bei Deep vein thrombosis.
Generell kann festgehalten werden, daß die erfindungsgemäßen Zubereitungen vorteilhafterweise in nahezu allen Applikationsformen auf Basis nur einer einzigen Formulierung eingesetzt werden können.
Die erfindungsgemäßen Zubereitungen eignen sich auch für das Colon-Targetting.
Erfindungsgemäß ist es ebenfalls möglich, injezierbarer Depot- Präparate zu erhalten.
Weiterhin lassen sich die erfindungsgemäßen Präparationen in der parenteralen Ernährung einsetzen. Dabei läßt sich die erfindungsgemäße Präparation insbesondere zur Formulierung von Vitaminen und Aminosäuren verwenden.
In der Nikotin-Ersatztherapie können mit den erfindungsgemäßen Zubereitungen z.B. mit Nicotin-Tartrat oder Nicotin-Base die notwendigen Plasmaspitzen erreicht werden, denen im Ent- wöhungsprozess besondere Bedeutung zukommt.
Auch die topikale Anwendung für Haar-Wachstums-Wirkstoffe wie Minoxidil ist mit der erfindungsgemäßen Zubereitung vorteilhaft. Aufgrund der Struktur können die Haarfolikel besser erreicht werden.
In der pulmonalen Applikation der erfindungsgemäßen Präparationen ist neben der Verabreichung von Asthmatherapeutika wie Budesonid und cytostatika insbesondere an die Verabreichung von Protein- und Peptidtherapeutika gedacht. Beispiele sind Vasopressinanalog, LHRH-Antagonisten, Glukagon, Parathyroides Hormon, Calcitonin, Insulin, LHRH-Analog Leuprolipide, Granuloctye-colony stimulating factor und Somatropin.
Die Applikation kann neben der Verabreichung als Pulver auch als zerstäubte wässrige Suspension erfolgen. Die Applikation kann über Nase, Bronchien bzw. Lunge erfolgen. Es ist bei nasaler Applikation insbesondere Vorteilhaft eine wäßrige Suspension zu wählen, da so eine Reizung der Nasenschleimhäute und das Empfin- den eines Brennens durch organische Lösungsmittel vermieden wird. Insbesondere die Wirkstoffklasse der Leukotrienantagonisten eignet sich als Einsatzgebiet für die Technologie.
Die erfindungsgemäßen Zubereitungen könne auch genutzt werden, um Antisense-Wirkstoffe also Oligonukleotide mit komplementärer Basensequenz zu Boten-RNA in applizierbare Formulierungen zu bringen. Bevorzugt sind Phosphorothioate Oligonukleotide. Dabei kann neben lokaler Injektion auch an subkutaner oder intravenöse Applikation als Infusion oder Injektion auch die orale Applika- tion genutzt werden. Weiter ist aber auch die dermale Applikation und die Inhalation denkbar.
In oralen Formen die sowohl aus Zubereitungen in herkömmlichen Tabletten, als auch in Kapseln Verwendung finden können lassen sich die erfindungsgemäßen Formen einsetzen. Insbesondere die Möglichkeit auch Zäpfchen Formulierungen herstellen zu können, was durch die Stabilität der erfindungsgemäßen Nanopartikel beim Einrühren in die Trägermatrizes gewährleistet wird, eröffnet dieses Anwendungsfeld. Vorteilhaft ist hier das bei rektaler Verabreichung nur ein begrenztes Flüssigkeitsvolumen zur Verfügung steht und die erfindungsgemäßen Zubereitungen außerordentlich gut in dem kleinen Flüssigkeitsvolumen dispergieren und resorbiert werden können.
Allgemein kann die Vorteilhaftigkeit der erfindungsgemäßen Formen in den Punkten:
• größere relative Bioverfügbarkeit
• geringer Food-Effekt • geringere Variabilität
festgehalten werden.
Da als Schalepolymeren auch Acrylate, Lektine, Kaseinate, Gelatinen, Chitosane, Hyaluronsäuren oder Muscheladhäsionsprotein verwendet werden kann, können auch mukoadhäsive Präparationen mit nanopartikulärer Größe hergestellt werden.
Das erhöhte Haftvermögen von nanopartikulären Zubereitungen kann letztendlich auch zur Erhöhung der Bioverfügbarkeit führen. Dies kann insbesondere bei nasaler Applikation von Interesse sein. Hinzu kommt, daß das Haftvermögen der nanopartikulären Teilchen an der Mucosa der Nasenschleimhaut einen positiven Effekt auf die sonst eher zu kurze Verweildauer hat, und so zur Erhöhung der Bioverfügbarkeit beitragen kann. Auch am Auge sind die erfindungsgemäßen Zubereitungen einsetzbar. Insbesondere in Gel-Systemen, die durch Viskositätserhöhung bei Körpertemperatur reagieren, bilden die erfindungsgemäßen nanopartikulären Systeme eine separate Phase, die den Wirkstoff in nanopartikulärer amorpher Form dem Auge zu führen kann und sich homogen währen der Gelbildung in der Matrix verteilt.
Ebenso sind Kontrastmittel für die bildgebende medizinische Diagnostik wie Röntgenverfahren, Szintigraphie, Ultraschall, Magne- toresonanztomographie, Flureszenzgiogographie und Opthalmologie mit den erfindungsgemäßen Zubereitungen herstellbar.
In Kosmetika und Dermatika können die erfindungsgemäßen nanopartikulären Kern-Schale Nanopartikel zum Schutz von hydrolyse- empfindlichen Wirkstoffen eingesetzt werden. Weiterhin sind solche Zubereitungen in der Lage, aufgrund der geringen Partikelgröße die Penetration zwischen die Stratum Corneum Zellen zu erleichtern. Im Bereich der Kosmetik können die erfindungsgemäßen Zubereitungen Anwendung in der Formulierung von Parfüms sowie de- korativen Kosmetik finden, wie z.B. der Einbringung von Farbstoffen oder Pigmenten in Lippenstifte, Eyeliner, Lidschatten oder Nagellacke. Auch in Cremes, Gelen und Salben sind die Präparationen einsetzbar.
Besonders vorteilhaft an den erfindungsgemäßen nanopartikulären Zubereitungen ist, daß nur wenige Hilfsstoffe benötigt werden. Abgesehen von der polymeren Hüllmatrix und den Matrixpolymeren im Kern kann auf weitere oberflächenaktive Hilfsstoffe weitgehend verzichtet werden.
Herstellbeispiel 1
Herstellung eines Ritonavir Trockenpulvers mit einem Wirkstoffgehalt im Bereich von 20 Gew.-%
a) Herstellung des Mikronisates
3 g Ritonavir wurden in eine Lösung von 0,6 g Ascorbylpalmitat und 0.6 g eines Copolymers aus Ethylacrylat und Methacrylsäure (1:1), (Kollicoat® MAE, BASF AG) in 36 g Isopropanol bei 25°C eingerührt, wobei eine trübe grobdisperse Suspension entstand.
Zur Überführung des Ritonavirs und des Kollicoats in eine molekulardisperse Form wurde diese grobdisperse Lösung mit 120 g Wasser bei einer Mischungstemperatur von 200 °C für 0.3 s gemischt. Zur Ausfällung des Ritonavirs und des Kollicoats in kolloiddisperser Form wurde diese molekulardisperse Lösung einer weiteren Misch- kammer zugeführt. Dort erfolgte die Vermischung mit 490 g einer mittels 1 N NaOH auf pH = 9,0 eingestellten wäßrigen Lösung von 4.3 g Gelatine A 100 und 6,5 g Lactose in vollentsalztem Wasser bei 25 °C. Der gesamte Prozeß erfolgte unter Druckbegrenzung auf 30 bar. Nach dem Mischen wurde eine kolloiddisperse Ritonavir- Dispersion mit einem gelblich-trüben Farbton erhalten.
Durch quasielastische Lichtstreuung wurde die mittlere Teilchengröße zu 260 nm bei einer Varianz von 42 % bestimmt. Die mittlere Teilchengröße vergrößerte sich innerhalb einer Stunde um nur
20 nm auf 280 nm. Eine analog hergestellte kolloidale Ritonavir- Dispersion ohne Kollicoat zeigt innerhalb einer Stunde eine Zunahme der Teilchengröße um 400 nm. Dieser Sachverhalt ist in Tabelle 1 zusammengestellt.
Tabelle 1
Figure imgf000019_0001
b) Trocknung der Dispersion a) zu einem nanopartikulären. Trockenpulver
Sprühtrocknung des Produktes la) ergab ein nanopartikuläres Trockenpulver. Der Wirkstoffgehalt im Pulver wurde chromatographisch zu 19.84 Gew.-% bestimmt. Das Trockenpulver löst sich in Trinkwasser unter Ausbildung einer gelblieh-trüben Dispersion (Hydrosol) mit einer mittleren Teilchengröße von 306 nm bei einer Varianz von 48 %. Die mittlere Teilchengröße vergrößerte sich innerhalb einer Stunde um nur ca. 30 nm auf 349 nm. Eine analog hergestellte kolloidale Ritonavir-Dispersion ohne Kollicoat zeigt innerhalb einer Stunde eine Zunahme der Teilchengröße um ca. 350 nm. Dieser Sachverhalt ist in Tabelle 2 zusammengestellt. Tabelle 2
Figure imgf000020_0001
c) RöntgenweitwinkelStreuung
In Figur 1 sind die Streukurven von Wirkstoff (oben) und Trockenpulver gemäß 1b) (unten) abgebildet. Das Ritonavir Ausgangs- material ist, wie das durch eine Reihe scharfer Interferenzen ausgezeichnete Röntgendiagramm belegt, kristallin. Im Gegensatz dazu weist die Streukurve des Trockenpulvers nur diffuse, breite Interferenzmaxima auf, wie sie für ein amorphes Material typisch sind. Der Wirkstoff liegt im nach lb) hergestellten Trockenpulver demnach röntgenamorph vor. Dies gilt auch für die sonst kristallinen Hilfsstoffe Lactose und Ascorbylpalmitat
Herstellbeispiel 2
Herstellung eines Cyclosporin Trockenpulvers mit einem Wirkstoffgehalt im Bereich von 20 Gew.-%
a) Herstellung des Mikronisates
3 g Cyclosporin wurden in eine Lösung von 0,6 g Ascorbylpalmitat und 0.6 g Kollicoat® MAE (BASF AG) in 36 g Isopropanol bei 25 °C eingerührt, wobei eine leicht trübe Suspension entstand.
Zur Überführung des Cyclosporin A und des Kollicoats in eine molekulardisperse Form wurde diese grobdisperse Lösung mit 120 g Wasser bei einer Mischungstemperatur von 200 °C für 0.3 s gemischt. Zur Ausfällung des Cyclosporin und des Kollicoats in kolloiddisperser Form wurde diese molekulardisperse Lösung einer weiteren Mischkammer zugeführt. Dort erfolgte die Vermischung mit 490 g einer mittels 1 N NaOH auf pH = 9,0 eingestellten wäßrigen Lösung von 4.3 g Gelatine A 100 und 6,5 g Lactose in vollentsalztem Wasser bei 25 °C. Der gesamte Prozeß erfolgte unter Druckbegrenzung auf 30 bar. Nach dem Mischen wurde eine kolloiddisperse Cyclosporin A-Dispersion mit einem weiß-trüben Farbton erhalten. Durch quasielastische Lichtstreuung wurde die mittlere Teilchengröße zu 249 nm bei einer Varianz von 42 % bestimmt. Die mittlere Teilchengröße vergrößerte sich innerhalb einer Stunde im Rahmen der Meßgenauigkeit nicht. Eine analog hergestellte kolloidale Cy- closporin-Dispersion ohne Kollicoat zeigt innerhalb einer Stunde eine Zunahme der Teilchengröße um 250 nm. Dieser Sachverhalt ist in Tabelle 3 zusammengestellt.
Tabelle 3
Figure imgf000021_0001
b) Trocknung der Dispersion a) zu einem nanopartikulärem Trockenpulver
Sprühtrocknung des Produktes 2a) ergab ein nanopartikuläres Trockenpulver. Der Wirkstoffgehalt im Pulver wurde chromatographisch zu 20.03 Gew.-% bestimmt. Das Trockenpulver löst sich in Trinkwasser unter Ausbildung einer weiß-trüben Dispersion
(Hydrosol) mit einer mittleren Teilchengröße von 263 nm bei einer Varianz von 48 %. Die mittlere Teilchengröße vergrößerte sich innerhalb einer Stunde im Rahmen der Meßgenauigkeit nicht. Eine analog hergestellte kolloidale Cyclosporin-Dispersion ohne Kolli- coat zeigt innerhalb einer Stunde eine Zunahme der Teilchengröße um ca.150 nm. Dieser Sachverhalt ist in Tabelle 4 zusammengestellt.
Tabelle 4
Figure imgf000021_0002
Herstellbeispiel 3
Analog zu Beispiel 1 wurde ein Mikronisat, welches Propafenon als Wirkstoff enthielt, hergestellt. 5
Herstellbeispiel 4
Analog zu Beispiel 2 wurde ein Mikronisat, welches anstelle des Polymers Kolliciat® MAE als Polymer ein Poly (D, L-lactid-co- 10 glycolid) (49 mol-% D,L-Lactid, 51 mol-% Glycolid) enthielt, hergestellt.
Herstellbeispiel 5
Herstellung eines Canthaxanthin Trockenpulvers mit einem Wirk- 15 stoffgehalt im Bereich von 5 Gew. -%
a) Herstellung des Mikronisates
15 g Canthaxanthin wurden in eine Lösung von 6 g Ethoxiquin und 20 45 g Kollicoat MAE in 400 g Tetrahydrofuran bei 25°C eingerührt, wobei eine trübe grobdisperse Suspension entstand.
Zur Überführung des Canthaxanthins in eine molekulardisperse Form wurde diese grobdisperse Lösung mit einem Massenfluß von 1,8 kg/h
25 durch einen Wärmetauscher gepumpt und dabei auf eine Temperatur von 161, 5°C erhitzt. Zur Ausfällung des Canthaxanthins und des Kollicoats in kolloiddisperser Form wurde diese molekulardisperse Lösung 1,4 sec. nach Erreichen der Temperatur von 161, 5°C einer weiteren Mischkammer zugeführt. Dort erfolgte die Vermischung mit
30 9600 g einer mittels 1 N NaOH auf pH = 11,8 eingestellten wäßrigen Lösung von 30 g Gelatine B 200 und 25 g Saccharose in vollentsalztem Wasser bei 25°C. Der gesamte Prozeß erfolgte unter Druckbegrenzung auf 60 bar. Nach dem Mischen wurde eine kolloiddisperse Canthaxanthin-Dispersion mit einem rot-trüben Farbton
35 erhalten.
Durch quasielastische Lichtstreuung wurde die mittlere Teilchengröße zu 796 nm bei einer Varianz von 81 % bestimmt.
40 b) Trocknung der Dispersion a) zu einem nanopartikulärem Trockenpulver
Aufarbeitung am Rotationsverdampfer und anschließende Sprühtrocknung des Produktes la) ergab ein nanopartikuläres Trocken- 45 pulver. Der Wirkstoffgehalt im Pulver wurde UV/VIS-spektroskopisch zu 5,75 Gew. -% bestimmt. Das Trockenpulver löst sich in Wasser bei pH-Werten > 7 unter Ausbildung einer ro -trüben Dis- persion (Hydrosol) mit einer mittleren Teilchengröße von 722 nm bei einer Varianz von 43 %.
Herstellbeispiel 6
Herstellung eines Astaxanthin Trockenpulvers mit einem Wirkstoffgehalt im Bereich von 25 Gew.-%
a) Herstellung des Mikronisates
1 g Astaxanthin wurden in eine Lösung von 3 g eines Copolymers aus Methacrylsäure/Methylmethacrylat im Verhältnis 1:1 (Eudragit L 100, Röhm GmbH) in 200 g Tetrahydrofuran bei 25°C eingerührt. Zur Überführung des Astaxanthins in eine molekulardisperse Form wurde diese disperse Lösung mit einem Massenfluß von 1,8 kg/h durch einen Wärmetauscher gepumpt und dabei auf eine Temperatur von 73°C erhitzt. Zur Ausfällung des Astaxanthins und des Eudragit L 100 in kolloiddisperser Form wurde diese molekulardisperse Lösung einer weiteren Mischkammer zugeführt. Dort erfolgte die Vermischung mit 10 000 g vollentsalztem Wasser bei 25°C. Der gesamte Prozeß erfolgte unter Druckbegrenzung auf 30 bar. Nach dem Mischen wurde eine kolloiddisperse Astaxanthin-Dispersion mit einem roten Farbton erhalten.
Durch quasielastische Lichtstreuung wurde die mittlere Teilchengröße zu 256 nm bei einer Varianz von 56 % bestimmt.
b) Trocknung der Dispersion a) zu einem nanopartikulärem Trockenpulver
Aufarbeitung am Rotationsverdampfer und anschließende Sprühtrocknung des Produktes la) ergab ein nanopartikuläres Trockenpulver. Der Wirkstoffgehalt im Pulver wurde UV/VIS-spektrosko- pisch zu 24,3 Gew. -% bestimmt. Das Trockenpulver löst sich in al- kalischem Wasser unter Ausbildung einer roten Dispersion (Hydrosol) mit einer mittleren Teilchengröße von 273 nm bei einer Varianz von 53 %. Herstellbeispiel 7
Herstellung eines Astaxanthin Trockenpulvers mit einem Wirkstoffgehalt im Bereich von 25 Gew.-%
5 a) Herstellung des Mikronisates
2 g Astaxanthin wurden in eine Lösung von 6 g Eudragit L 100 (Röhm GmbH) in 200 g Tetrahydrofuran bei 25°C eingerührt. Zur 0 Überführung des Astaxanthins in eine molekulardisperse Form wurde diese disperse Lösung mit einem Massenfluß von 2,0 kg/h durch einen Wärmetauscher gepumpt und dabei auf eine Temperatur von 73°C erhitzt. Zur Ausfällung des Astaxanthins und des Eudragit L 100 in kolloiddisperser Form wurde diese molekulardisperse Lösung 5 einer weiteren Mischkammer zugeführt. Dort erfolgte die Vermischung mit 10 000 g vollentsalztem Wasser bei 25°C. Der gesamte Prozeß erfolgte unter Druckbegrenzung auf 30 bar. Nach dem Mischen wurde eine kolloiddisperse Astaxanthin-Dispersion mit einem roten Farbton erhalten. 0
Durch quasielastische Lichtstreuung wurde die mittlere Teilchengröße zu 178 nm bei einer Varianz von 22 % bestimmt.
b) Trocknung der Dispersion a) zu einem nanopartikulärem 25 Trockenpulver
Aufarbeitung am Rotationsverdampfer und anschließende Sprühtrocknung des Produktes la) ergab ein nanopartikuläres Trockenpulver. Der Wirkstoffgehalt im Pulver wurde UV/VIS-spektrosko- 30 pisch zu 22,7 Gew. -% bestimmt. Das Trockenpulver löst sich in alkalischem Wasser unter Ausbildung einer rot-trüben Dispersion (Hydrosol) mit einer mittleren Teilchengröße von 175 nm bei einer Varianz von 25 %.
35 Mit Hilfe der erfindungsgemäßen Nanopartikel können beispielsweise folgende Darreichungsformen hergestellt werden:
1. Tablette
40 10 Gew. % der nanoteiligen (geträgert auf Laktose) Zubereitung werden mit 10 Gew% Saccharose 28 Gew. % mikrokristalliner Cellu- lose, 3 Gew. % Kollidon VA 64 sowie 0,2 Gew. % Aerosil gemischt und anschließend direkt verpreßt. Das Tablettengewicht beträgt 250 mg. Der Durchmesser beträgt 8 mm. Die Härte 150 N, der
45 Zerfall in Wasser 13 min. 2 . Patch
Ein Patch mit einem Reservoir aus 17.5 Gew. % Polystyrol und 17.5 Gew. % Polyvinylacetat und 30 Gew% der erfindungsgemäßen Nano- partikel wurde hergestellt.
3. Öl in Wasser Creme
24 g Paraffinöl, 5 g Cremophor S 9 (Polyethylenglykolstearat) , 6 g Bienenwachs, 2 g Cutina CP (Cetyl Palmitat) 3 g Gylcerin und 60 g Wasser bilden die Basis für die Creme in die 20 g der erfindungsgemäßen nanoteiligen Zubereitung eingerührt werden.
Zu Anfertigung wird Cremophor in der Fettphase gelöst und diese Mischung mit Wasser unter heftigem Rühren versetzt. Es wird bis zum Erkalten gerührt und dann die nanoteilige Zubereitung zugegeben und homogenisiert.
4. Formulierung zur topischen Anwendung
Eine Zubereitung zur topischen Anwendung mit den nanopartikulären kern-schale Zubereitungen wurde wie folgt erhalten: (in g/lOOg)
0,14 g Methylparaben und 0,1 g Propylparaben sowie 0,1 g EDTA- Dihydrat werden in 78,42 g Wasser bei 80°C gelöst. Man läßt auf ca. 30 °C abkühlen und gibt dann 20 g der erfindungsgemäßen Nanopartikel als Pulver zu und homogenisiert durch Rühren. Anschließend werden 0,8 g Carbomer 934 P und 0,44 g NaOH zugegeben.
5. Gel
Propylenglykol 20 g, Poloxamer 188 5 g, Poloxamer 407 22 g, NaCl 1 g, Wasser 51 g, Mikronisat gemäß Beispiel 1 20 g.
6. Augentropfen
10 g Mikronisat gemäß Beispiel 1, 14 g Kollidon K 25, Konservierungsmittel q.s., Wasser ad 100 g. 7. Aerosol
Zubereitung einer Pulverformulierung aus: einer Nanopartikelformulierung mit 75 mg Budesonid zu deren wäßriger kolloidaler Suspension 1400 g Laktose gegeben werden. Anschließend wird die Mischung sprühgetrocknet. Die Partikelgröße des erhaltenen Pulvers liegt bei 7 μm, der Feuchtegehalt bei 0,8 Gew. %. Zubereitung mit Treibmittel:
0,25 Gew. % einer nanoteiligen Budesonid Zubereitung werden mit einer Mischung von 4 Gew. % aus Ethnaol und Wasser (50:50) und 5 95,75 Gew. % 1,1,1,2 Tetrafluorethan in einem Aluminium Gefäß unter Druck abgefüllt.
8. Pflaster
10 Zu einer Mischung von 6 Gew. % Polyacrylsäure und 5 Gew. %
Natriumpolyacrylat sowie 0,5 Gew. % Aerosil 200 werden 7 Gew. % Glykol gegeben. Diese Mischung wird unter Rühren homogenisiert. Anschließend wird die Mischung zu einer Lösung aus 0.03 Gew. % EDTA in 65 Gew. % Wasser gegeben. Dazu werden weitere 0,3 Gew. %
15 Polyoxyethlensorbitmonostearat unter Erwärmen auf 50 °C gegeben. Zuletzt wird das erfindungsgemäße nanoteilige Pulver in die Mischung gerührt und die Masse wird auf nichtgewobene Pflasterbasis aufgetragen.
20 9. Injizierbares Depotgel
10 Gew%. der erfindungsgemäßen Nanopartikel, 30 Gew. % eines Milchsäure-Glykol Copolymeren, 10 Gew. % Ethanol, 50 Gew. % isotonische Kochsalzlösung 25
10. Brausetablette
217 g Propafenon-Mikronisat gemäß Herstellbeispiel 3 200 g Kaliumhydrogencarbonat 30 205,7 g Citronensäure 142,1 g Instant-Zucker 32,0 g Macrogol 200 2 g Zitronenaroma 1,2 g Saccharin 35
Die Mischung wurde unter üblichen Bedingungen zu einer Tablette mit einer Dicke von 5,9 mm und einem Gewicht von 2,9 g verpresst. Zerfall in Wasser (Becherglas) : 9 min.
40
45

Claims

Patentansprüche
1. Nanopartikuläre Zubereitungen von pharmazeutischen und kosme- tischen Wirkstoffen mit einer Kern-Schale Struktur, in denen der Wirkstoff im Kern röntgenamorph zusammen mit einem oder mehreren Polymeren vorliegt und die Schale aus einer stabilisierenden Hüllmatrix besteht.
2. Zubereitungen nach Anspruch 1, in denen der Kern mindestens zwei getrennte Phasen aufweist, wobei die eine Phase aus amorphen Partikeln des Wirkstoffs besteht, und die andere Phase eine molekulardisperse Verteilung des Wirkstoffs in einer Polymermatrix darstellt.
3. Zubereitungen nach Anspruch 1, in denen der Kern mindestens zwei getrennte Phasen aufweist, wobei die eine Phase aus amorphem Wirkstoff besteht, und die andere Phase eine Wirkstoff-freie Polymermatrix darstellt.
4. Zubereitungen nach Anspruch 1 oder 2, enthaltend als Kernpolymere für pharmazeutische und kosmetische Anwendungen geeignete Polymere, welche in Wasser nicht oder nur teilweise löslich sind.
5. Zubereitungen nach einem der Ansprüche 1 bis 4, enthaltend als Hüllmatrix peptidische Polymere.
6. Zubereitungen, enthaltend als Hüllpolymer Gelatine.
7. Zubereitungen nach einem der Ansprüche 1 bis 5, enthaltend als Hüllmatrix Casein oder Natriumcaseinat .
8. Zubereitungen nach einem der Ansprüche 1 bis 7, in denen die Kern-Schale-Strukturen einen mittleren Teilchendurchmesser zwischen 0,01 und 2 μm aufweisen.
9. Hydrosole der Zubereitungen gemäß einem der Ansprüche 1 - 8.
10. Hydrosole nach Anspruch 9, in denen die Teilchengrößen der nanopartikulären Hydrosolteilchen innerhalb der ersten Stunde nach Herstellung der Hydrosole um weniger als 50 % anwachsen.
11. Verfahren zur Herstellung von Zubereitungen gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man eine Lösung des Wirkstoffs in einem zu mindestens 10 Gew.-% mit Wasser mischbaren organischen Lösungsmittel herstellt, 5 diese mit dem Kernpolymer oder einer Lösung des Kernpolymers in einem organischen Lösungsmittel vermischt, und die resultierende Mischung mit einer wässrigen Lösung des Hüllpolymers in Kontakt bringt.
10 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß beim Mischen der Wirkstoff-Lösung mit der Lösung der Kernpolymere eine Ausfällung der Kernpartikel erfolgt.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, 15 daß beim Vermischen mit der Lösung des Wirkstoffs der
2. Virialkoeffizient für die Kernpolymere einen Wert kleiner Null annimmt.
14. Verwendung der Zubereitungen nach einem der Ansprüche 1 bis 20 7, zur Herstellung von pharmazeutischen und kosmetischen
Darreichungsformen.
25
30
35
40
45
PCT/EP1999/009545 1998-12-08 1999-12-07 Nanopartikuläre kern-schale systeme sowie deren verwendung in pharmazeutischen und kosmetischen zubereitungen WO2000033820A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000586313A JP2002531492A (ja) 1998-12-08 1999-12-07 ナノ粒子状コア/シェル系、ならびに医薬品および化粧品におけるその使用
US09/857,480 US7687071B1 (en) 1998-12-08 1999-12-07 Nanoparticulate core shell systems and the use thereof in pharmaceutical and cosmetic preparation
CA002353809A CA2353809A1 (en) 1998-12-08 1999-12-07 Nanoparticulate core-shell systems and use thereof in pharmaceutical and cosmetic preparations
EP99963399A EP1137404A2 (de) 1998-12-08 1999-12-07 Nanopartikuläre kern-schale systeme sowie deren verwendung in pharmazeutischen und kosmetischen zubereitungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19856432A DE19856432A1 (de) 1998-12-08 1998-12-08 Nanopartikuläre Kern-Schale Systeme sowie deren Verwendung in pharmazeutischen und kosmetischen Zubereitungen
DE19856432.5 1998-12-08

Publications (2)

Publication Number Publication Date
WO2000033820A2 true WO2000033820A2 (de) 2000-06-15
WO2000033820A3 WO2000033820A3 (de) 2000-10-12

Family

ID=7890273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/009545 WO2000033820A2 (de) 1998-12-08 1999-12-07 Nanopartikuläre kern-schale systeme sowie deren verwendung in pharmazeutischen und kosmetischen zubereitungen

Country Status (7)

Country Link
US (1) US7687071B1 (de)
EP (1) EP1137404A2 (de)
JP (1) JP2002531492A (de)
CN (1) CN100346775C (de)
CA (1) CA2353809A1 (de)
DE (1) DE19856432A1 (de)
WO (1) WO2000033820A2 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511629A (ja) * 2001-11-20 2005-04-28 アドバンスト インハレーション リサーチ,インコーポレイテッド 持続作用生成物送達用組成物
WO2005044221A3 (de) * 2003-10-31 2006-04-06 Bayer Technology Services Gmbh Feste wirkstoff-formulierung
WO2006062740A2 (en) * 2004-11-22 2006-06-15 Nu-Tein Co., Inc. Topical skin patch containing xanthophylls
WO2007048730A1 (de) * 2005-10-27 2007-05-03 Basf Se Nanopartikuläre wirkstoffformulierungen
WO2007093232A1 (de) * 2005-10-27 2007-08-23 Basf Se Agrochemische nanopartikuläre wirkstoffformulierungen
US7473693B2 (en) 2003-02-06 2009-01-06 Astrazeneca Ab Stable dispersion of solid particles comprising a water-insoluble pyrazine compound
US7780989B2 (en) 2002-07-18 2010-08-24 Astrazeneca Ab Process for the preparation of crystalline nano-particle dispersions
WO2010111517A1 (en) * 2009-03-25 2010-09-30 Northeastern University Stable polyelectrolyte coated nanoparticles
WO2011034809A1 (en) * 2009-09-16 2011-03-24 R.P. Scherer Technologies, Llc Oral solid dosage form containing nanoparticles and process of formulating the same using fish gelatin
US8137699B2 (en) * 2002-03-29 2012-03-20 Trustees Of Princeton University Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use
WO2012140181A1 (de) 2011-04-15 2012-10-18 Basf Se Verfahren zur herstellung wässriger dispersionen aliphatischer polycarbonate
US10406102B2 (en) 2017-07-11 2019-09-10 Sustained Nano Systems Llc Hypercompressed pharmaceutical formulations
US10500163B2 (en) 2017-07-11 2019-12-10 Sustained Nano Systems Llc Radiation sterilization of hypercompressed polymer dosage forms
EP3804701A1 (de) * 2019-10-10 2021-04-14 Bayer AG Verfahren zur herstellung einer pharmazeutischen formulierung mit kristallinen und amorphen anteilen eines wirkstoffes

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY145265A (en) * 1998-07-20 2012-01-13 Abbott Lab Amorphous ritonavir
US6471951B1 (en) * 1999-04-30 2002-10-29 Color Access, Inc. Eyebrow pencil with agglomerated pigments
GB9911037D0 (en) * 1999-05-13 1999-07-14 Micap Limited Nicotine delivery service
DE10026698A1 (de) * 2000-05-30 2001-12-06 Basf Ag Selbstemulgierende Wirkstoffformulierung und Verwendung dieser Formulierung
DE10240956B4 (de) * 2002-09-05 2005-03-17 Christian-Albrechts-Universität Zu Kiel Heterogene Kern-Schale Mikrogele mit mehrstufigem Schaltverhalten
DE10248619A1 (de) * 2002-10-18 2004-04-29 Bayer Ag Verfahren zur Herstellung pulverförmiger Wirkstoff-Formulierungen mit kompressiblen Fluiden
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) * 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
DE10350528A1 (de) * 2003-10-29 2005-06-09 Boehringer Ingelheim Pharma Gmbh & Co. Kg Arzneimittelformulierung, enthaltend einen LTB4-Antagonisten, sowie Verfahren zu deren Herstellung und deren Verwendung
DE10355400A1 (de) 2003-11-25 2005-07-07 Noack, Andreas, Dr. Multikomponenten Mineralstoffpräparate und Verfahren zur Herstellung von Multikomponenten-Mineralstoffpräparaten
WO2005105039A1 (en) * 2004-05-04 2005-11-10 Boehringer Ingelheim International Gmbh Solid pharmaceutical form comprising an ltb4 antagonist
US20110177306A1 (en) * 2004-12-17 2011-07-21 Mitsubishi Chemical Corporation Novel Core-Shell Structure
DE102005026755A1 (de) * 2005-06-09 2006-12-14 Basf Ag Herstellung von festen Lösungen schwerlöslicher Wirkstoffe durch Kurzzeitüberhitzung und schnelle Trocknung
DE102005027333B4 (de) 2005-06-13 2017-04-13 Terra Nano Ltd. Nanoskalische Reaktivdesorption - ein Verfahren zur Herstellung kolloidalisierter Wirkstoff- oder Vitalstoffspezies, insbesondere entsprechender Wirkstoff- oder Vitalstoffkonzentraten sowie Vorrichtungen zur Durchführung derselben
EP2399573B1 (de) * 2005-08-31 2019-01-02 Abraxis BioScience, LLC Zusammensetzungen aus schwer wasserlöslichen pharmazeutischen Mitteln
WO2007109244A2 (en) * 2006-03-21 2007-09-27 Morehouse School Of Medicine Novel nanoparticles for delivery of active agents
AU2007240986A1 (en) * 2006-04-04 2007-11-01 Stc.Unm Swellable particles for drug delivery
WO2008054508A2 (en) * 2006-04-13 2008-05-08 Alza Corporation Stable nanosized amorphous drug
WO2008109483A1 (en) * 2007-03-02 2008-09-12 The Board Of Trustees Of The University Of Illinois Particulate drug delivery
WO2010005721A2 (en) 2008-06-16 2010-01-14 Bind Biosciences, Inc. Drug loaded polymeric nanoparticles and methods of making and using same
JP2012501966A (ja) 2008-06-16 2012-01-26 バインド バイオサイエンシズ インコーポレイテッド ビンカアルカロイド含有治療用ポリマーナノ粒子並びにその製造方法及び使用方法
WO2010005726A2 (en) 2008-06-16 2010-01-14 Bind Biosciences Inc. Therapeutic polymeric nanoparticles with mtor inhibitors and methods of making and using same
EA201100765A1 (ru) 2008-12-15 2012-04-30 Бинд Биосаиэнсис Наночастицы длительной циркуляции для замедленного высвобождения терапевтических средств
JP2012524779A (ja) * 2009-04-23 2012-10-18 サステインド ナノ システムズ リミテッド ライアビリティ カンパニー 制御放出分配デバイス
WO2011023446A1 (en) * 2009-08-31 2011-03-03 Technische Universität Graz Sensitive paints
ES2721898T3 (es) 2009-12-11 2019-08-06 Pfizer Formulaciones estables para liofilizar partículas terapéuticas
WO2011084518A2 (en) * 2009-12-15 2011-07-14 Bind Biosciences, Inc. Therapeutic polymeric nanoparticles comprising corticosteroids and methods of making and using same
JP5965844B2 (ja) 2009-12-15 2016-08-10 バインド セラピューティックス インコーポレイテッド 高いガラス転移温度または高分子量のコポリマーを有する治療用ポリマーナノ粒子組成物
CN102406941B (zh) * 2011-07-29 2015-03-11 沈阳药科大学 含有改性明胶肽的纳米化难溶性活性组分及其制备方法
GB201115635D0 (en) * 2011-09-09 2011-10-26 Univ Liverpool Compositions of lopinavir and ritonavir
PT2895156T (pt) 2012-09-17 2019-06-28 Pfizer Processo para a preparação de nanopartículas terapêuticas
SG10201706968UA (en) * 2013-02-05 2017-09-28 1Globe Health Inst Llc Biodegradable and clinically-compatible nanoparticles as drug delivery carriers
WO2015138835A1 (en) 2014-03-14 2015-09-17 Pfizer Inc. Therapeutic nanoparticles comprising a therapeutic agent and methods of making and using same
EP3177274A1 (de) 2014-08-07 2017-06-14 Nestec S.A. Ausgabesystem
CN105640819A (zh) * 2014-11-13 2016-06-08 广州十长生化妆品有限公司 一种具有嫩滑美白肌肤的去角质微球及其应用
CA3081358A1 (en) * 2017-11-10 2019-05-16 Dispersol Technologies, Llc Improved drug formulations
JP2021524505A (ja) * 2018-05-19 2021-09-13 ゲイリー ビンヤミン, 発泡体製剤および身体への送達法
EP4291136A1 (de) * 2021-02-12 2023-12-20 Ephemeral Solutions, Inc. Partikel mit färbemitteln und verfahren zur verwendung davon
CN118680952A (zh) * 2023-03-24 2024-09-24 国家纳米科学中心 一种药物组合物及其在制备治疗肿瘤药物中的用途
CN116459231B (zh) * 2023-05-23 2023-09-08 中国农业大学 一种温敏载药核壳纳米颗粒的制备及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275796A1 (de) * 1986-12-31 1988-07-27 Centre National De La Recherche Scientifique Herstellungsverfahren für kolloid-disperse Systeme aus einer Substanz in Form von Nanopartikeln
WO1993025221A1 (en) * 1992-06-11 1993-12-23 Alkermes Controlled Therapeutics, Inc. Erythropoietin drug delivery system
WO1995005164A1 (en) * 1993-08-12 1995-02-23 Kirsten Westesen Particles with modified physicochemical properties, their preparation and uses
WO1998014174A1 (en) * 1996-10-01 1998-04-09 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1282405C (en) 1984-05-21 1991-04-02 Michael R. Violante Method for making uniformly sized particles from water-insoluble organic compounds
US4826689A (en) 1984-05-21 1989-05-02 University Of Rochester Method for making uniformly sized particles from water-insoluble organic compounds
NL194638C (nl) * 1986-12-19 2002-10-04 Novartis Ag Hydrosol die vaste deeltjes van een farmaceutisch actieve stof bevat en farmaceutisch preparaat dat deze hydrosol bevat.
FR2634397B2 (fr) * 1986-12-31 1991-04-19 Centre Nat Rech Scient Procede de preparation de systemes colloidaux dispersibles d'une proteine sous forme de nanoparticules
DE3702029A1 (de) 1987-01-24 1988-08-04 Basf Ag Waessriges oder pulverfoermiges, wasserdispergierbares praeparat eines in wasser schwerloeslichen pharmazeutischen wirkstoffs und verfahren zu seiner herstellung
DE3936053A1 (de) 1989-10-28 1991-05-02 Basf Ag Verfahren zur verbesserung der bioverfuegbarkeit von pharmazeutischen wirkstoffen mit peptidbindungen
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5399363A (en) 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
DE4131562A1 (de) 1991-09-18 1993-03-25 Medac Klinische Spezialpraep Arzneistofftraeger aus festen lipidteilchen-feste lipidnanosphaeren (sln)
EP0713389A4 (de) * 1993-08-13 1997-05-21 Bayer Ag Hydrolysierte gelatine als geschmacksverbesserer in einer kautablette
ATE197124T1 (de) * 1993-09-09 2000-11-15 Schering Ag Wirkstoffe und gas enthaltende mikropartikel
DE4414755C2 (de) * 1994-04-27 2000-11-16 Lohmann Therapie Syst Lts Kollagenzubereitung zur gesteuerten Abgabe von Wirkstoffen, Verfahren und Verwendung
ES2078190B1 (es) * 1994-05-20 1996-08-01 Cusi Lab Procedimiento para el recubrimiento de goticulas o particulas de tamaño nanometrico.
DE4440337A1 (de) 1994-11-11 1996-05-15 Dds Drug Delivery Services Ges Pharmazeutische Nanosuspensionen zur Arzneistoffapplikation als Systeme mit erhöhter Sättigungslöslichkeit und Lösungsgeschwindigkeit
JP5038552B2 (ja) 1995-10-17 2012-10-03 オバン・エナジー・リミテッド 不溶性薬物の送達
US5891474A (en) * 1997-01-29 1999-04-06 Poli Industria Chimica, S.P.A. Time-specific controlled release dosage formulations and method of preparing same
US6045829A (en) * 1997-02-13 2000-04-04 Elan Pharma International Limited Nanocrystalline formulations of human immunodeficiency virus (HIV) protease inhibitors using cellulosic surface stabilizers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275796A1 (de) * 1986-12-31 1988-07-27 Centre National De La Recherche Scientifique Herstellungsverfahren für kolloid-disperse Systeme aus einer Substanz in Form von Nanopartikeln
WO1993025221A1 (en) * 1992-06-11 1993-12-23 Alkermes Controlled Therapeutics, Inc. Erythropoietin drug delivery system
WO1995005164A1 (en) * 1993-08-12 1995-02-23 Kirsten Westesen Particles with modified physicochemical properties, their preparation and uses
WO1998014174A1 (en) * 1996-10-01 1998-04-09 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1137404A2 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956179B2 (en) 2001-03-30 2018-05-01 The Trustees Of Princeton University Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use
JP2005511629A (ja) * 2001-11-20 2005-04-28 アドバンスト インハレーション リサーチ,インコーポレイテッド 持続作用生成物送達用組成物
US8137699B2 (en) * 2002-03-29 2012-03-20 Trustees Of Princeton University Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use
US7780989B2 (en) 2002-07-18 2010-08-24 Astrazeneca Ab Process for the preparation of crystalline nano-particle dispersions
US7473693B2 (en) 2003-02-06 2009-01-06 Astrazeneca Ab Stable dispersion of solid particles comprising a water-insoluble pyrazine compound
WO2005044221A3 (de) * 2003-10-31 2006-04-06 Bayer Technology Services Gmbh Feste wirkstoff-formulierung
WO2006062740A2 (en) * 2004-11-22 2006-06-15 Nu-Tein Co., Inc. Topical skin patch containing xanthophylls
WO2006062740A3 (en) * 2004-11-22 2006-08-10 Nu Tein Co Inc Topical skin patch containing xanthophylls
WO2007048730A1 (de) * 2005-10-27 2007-05-03 Basf Se Nanopartikuläre wirkstoffformulierungen
WO2007093232A1 (de) * 2005-10-27 2007-08-23 Basf Se Agrochemische nanopartikuläre wirkstoffformulierungen
WO2010111517A1 (en) * 2009-03-25 2010-09-30 Northeastern University Stable polyelectrolyte coated nanoparticles
US8685538B2 (en) 2009-03-25 2014-04-01 Northeastern University Stable polyelectrolyte coated nanoparticles
WO2011034809A1 (en) * 2009-09-16 2011-03-24 R.P. Scherer Technologies, Llc Oral solid dosage form containing nanoparticles and process of formulating the same using fish gelatin
WO2012140181A1 (de) 2011-04-15 2012-10-18 Basf Se Verfahren zur herstellung wässriger dispersionen aliphatischer polycarbonate
US10406102B2 (en) 2017-07-11 2019-09-10 Sustained Nano Systems Llc Hypercompressed pharmaceutical formulations
US10500163B2 (en) 2017-07-11 2019-12-10 Sustained Nano Systems Llc Radiation sterilization of hypercompressed polymer dosage forms
EP3804701A1 (de) * 2019-10-10 2021-04-14 Bayer AG Verfahren zur herstellung einer pharmazeutischen formulierung mit kristallinen und amorphen anteilen eines wirkstoffes
WO2021069349A1 (en) * 2019-10-10 2021-04-15 Bayer Aktiengesellschaft Process for producing a pharmaceutical formulation comprising crystalline and amorphous fractions of an active substance
CN114514019A (zh) * 2019-10-10 2022-05-17 拜耳股份有限公司 生产包含活性物质的结晶和无定形级份的药物制剂的方法

Also Published As

Publication number Publication date
CN100346775C (zh) 2007-11-07
JP2002531492A (ja) 2002-09-24
WO2000033820A3 (de) 2000-10-12
DE19856432A1 (de) 2000-06-15
EP1137404A2 (de) 2001-10-04
CA2353809A1 (en) 2000-06-15
US7687071B1 (en) 2010-03-30
CN1334724A (zh) 2002-02-06

Similar Documents

Publication Publication Date Title
WO2000033820A2 (de) Nanopartikuläre kern-schale systeme sowie deren verwendung in pharmazeutischen und kosmetischen zubereitungen
DE69825049T2 (de) Im magen verweilende mikrosphären mit gesteuerter freisetzung zur verbesserten arzneistoffabgabe
EP1073426B1 (de) Pharmazeutische ciclosporin-formulierung mit verbesserten biopharmazeutischen eigenschaften, erhöhter physikalischer qualität &amp; stabilität sowie verfahren zur herstellung
DE69520036T2 (de) Verfahren zur herstellung von festen pharmazeutischen dosierungsformen hydrophobischen substanzen
DE3586600T2 (de) Dosierungsform eine vielzahl mit einer diffusionshuelle ueberzogener einheiten enthaltend.
DE69714448T2 (de) Verfahren zur herstellung von präparaten mit kontrollierter wirkstofffreisetzung auf basis von polymeren
DE3587274T2 (de) Dosierungsform eine vielzahl mit einer diffusionshuelle ueberzogener einheiten enthaltend.
DE68903442T2 (de) Feste und poroese einheitsform, enthaltend mikropartikel und/oder nanopartikel und verfahren zu ihrer herstellung.
DE60132239T2 (de) Verfahren zur vorbereitung von mikropartikeln zur verwendung in pharmazeutischen zusammensetzungen zur inhalation
DE60222160T2 (de) Zusammensetzungen mit einer kombination aus eigenschaften sofortiger freisetzung und kontrollierter freisetzung
DE69727386T2 (de) Geschmacksmaskierte flüssige suspensionen
DE69732306T2 (de) Zubereitung von partikelhaltigen arzneimitteln zur inhalation
DE602004012117T2 (de) Neue zusammensetzungen von sildenafil-freier base
US8911788B2 (en) Galenical system for active transport, method for preparation and use
EP3199147B1 (de) Gefriergetrocknete wirkstoffzusammensetzung
EP0650354B1 (de) Feste und flüssige lösungen von schwer wasserlöslichen arzneistoffen
EP2819659B1 (de) Verfahren zur herstellung wirkstoffbeladener nanopartikel
DE69806236T2 (de) Verfahren zur herstellung fester pharmazeutischer dosisformen
DE4201179A1 (de) Wirkstoff(e) enthaltendes granulat oder pellet mit einem geruest aus hydrophilen makromolekuelen und verfahren zu seiner herstellung
JP2005527536A (ja) 建設的な微細化によるミクロ粒子またはナノ粒子の調製プロセスおよび使用。
DE3013839A1 (de) Verfahren zur herstellung einer aktivierten pharmazeutischen zusammensetzung
HUT63539A (en) Bioactive compositions and process for forming bioactive coatings
WO1993010768A1 (de) Pharmazeutisch applizierbares nanosol und verfahren zu seiner herstellung
EP0615442B1 (de) Sol-gesteuerte thermokolloidmatrix auf gelatine basis für perorale retardformen
DE60121574T2 (de) Festes dispersionssystem von pranlukast mit verbesserter auflösung und methode zu dessen herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99816078.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999963399

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 586313

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2353809

Country of ref document: CA

Ref document number: 2353809

Country of ref document: CA

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1999963399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09857480

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 1999963399

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999963399

Country of ref document: EP