[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000026522A1 - Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren - Google Patents

Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren Download PDF

Info

Publication number
WO2000026522A1
WO2000026522A1 PCT/DE1999/003479 DE9903479W WO0026522A1 WO 2000026522 A1 WO2000026522 A1 WO 2000026522A1 DE 9903479 W DE9903479 W DE 9903479W WO 0026522 A1 WO0026522 A1 WO 0026522A1
Authority
WO
WIPO (PCT)
Prior art keywords
lambda
torque
determination
determining
air
Prior art date
Application number
PCT/DE1999/003479
Other languages
English (en)
French (fr)
Other versions
WO2000026522A9 (de
Inventor
Hartmut Bauer
Dieter Volz
Juergen Gerhardt
Juergen Pantring
Michael Oder
Werner Hess
Christian Koehler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP99960845A priority Critical patent/EP1129279B1/de
Priority to DE59904486T priority patent/DE59904486D1/de
Priority to US09/830,872 priority patent/US6512983B1/en
Priority to JP2000579880A priority patent/JP2003502540A/ja
Publication of WO2000026522A1 publication Critical patent/WO2000026522A1/de
Publication of WO2000026522A9 publication Critical patent/WO2000026522A9/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to the setting of a desired engine torque by a suitable calculation of the manipulated variables, in particular for setting the air and fuel supply to the engine in an engine with gasoline direct injection.
  • An important operating mode of an engine with gasoline direct injection is the approximately unthrottled operation with a high excess of air.
  • the air mass in the combustion chamber is then largely constant and the air ratio lambda as a measure of the composition of the fuel / air mixture is determined by the injected fuel mass.
  • the air mass in the combustion chamber in conjunction with the air ratio lambda and the speed n determine the torque applied by the engine. If there is a high excess of air, the desired torque can largely be set by varying the amount of fuel.
  • the flammability of the mixture with a high excess of air is achieved through a spatially inhomogeneous mixture distribution in the combustion chamber.
  • This operating mode is also called shift operation. A distinction is made between the operation with homogeneous Mixture distribution without or with less excess air.
  • the invention relates to the determination of the actuating variable depending on the required moment in shift operation.
  • the object of the invention is to avoid undesirable changes in torque.
  • the determination of the manipulated variable injection time is advantageously supplemented by a determination of the manipulated variable of the air supply.
  • This additional task is solved by restricting the air supply to maximum values. This restriction ensures the reproducible setting small torques by varying the injection pulse widths. Without this restriction, undesirable lean mixtures could be set, which could cause problems with the flammability of the mixture and / or the exhaust gas emissions.
  • Fig. 1 shows the technical environment of the invention.
  • Fig. 2 discloses an exemplary embodiment of the invention in the form of functional blocks and
  • Fig. 3 shows the formation of the restriction of the air supply.
  • the 1 in FIG. 1 represents the combustion chamber of a
  • Cylinder of an internal combustion engine Cylinder of an internal combustion engine.
  • the inflow of air to the combustion chamber is controlled via an inlet valve 2.
  • the air is sucked in via a suction pipe 3.
  • the amount of intake air can be varied via a throttle valve 4, which is controlled by a control device 5.
  • the tax device
  • Signals about the driver's torque request for example about the position of an accelerator pedal 6, a signal about the engine speed n from a speed sensor 7 and a signal about the amount ml of the intake air supplied by an air flow meter 8. From these and possibly other input signals via further parameters of the
  • the control unit 5 forms output signals for setting the throttle valve angle alpha by an actuator 9 and for controlling a fuel injection valve 10, through which fuel is metered into the combustion chamber of the engine.
  • the throttle valve angle alpha and the injection pulse width ti are considered within the scope of the invention as essential, coordinated actuating variables for realizing the desired torque.
  • the control device controls an exhaust gas recirculation system 11, a tank ventilation 12 and other functions such as the ignition of the fuel / air mixture in the combustion chamber.
  • the gas force resulting from the combustion is converted into a torque by pistons 13 and crank mechanism 14.
  • FIG. 2 shows an exemplary embodiment of the invention.
  • Block 2.1 represents a map that is addressed by the speed n and the relative air filling rl.
  • the relative air filling is related to a maximum filling of the combustion chamber with air and thus indicates to a certain extent the fraction of the maximum combustion chamber or cylinder filling. It is essentially formed from the signal ml.
  • the relative charge rl formed from measured quantities and the speed n define an operating point of the engine. With characteristic diagram 2.1, different operating points are assigned torques which the engine generates under standard conditions in the different operating points.
  • Standard conditions can be determined by certain values of
  • Lambda is 1 as a standard condition with regard to the air ratio.
  • the ignition angle can be defined at which the maximum possible moment occurs.
  • an efficiency eta can be defined as the ratio of the moment under standard conditions to the moment which occurs when the influencing variable is isolated.
  • desired torque / standard torque product of the efficiency.
  • the division of the desired or target torque depending on the driver's request, for example, by the standard torque determined for the individual operating point in block 2.2 therefore provides the product of all efficiencies.
  • the values of the influencing variables such as EGR rate, ignition angle USW are available in the control unit.
  • E.g. The associated efficiencies are determined with the aid of stored characteristic curves.
  • the product of the efficiencies of the known influencing variables follows. These are all influencing variables except lambda.
  • the associated lambda is determined in block 2.4 from the lambda efficiency etalam, for example, by accessing a characteristic curve.
  • the characteristic curve eta of lambda indicates the ratio of the standard torque for lambda equal to one to the torque for other lambda values for different lambda values.
  • Block 2.4 thus provides exactly the load value that must be set in the combustion chamber in order to induce the desired torque in the current operating point defined by the air filling rl and speed n in the case of the known other influencing variables such as ignition timing, EGR rate etc.
  • inducing means generating the gas force that delivers the desired torque via the piston and crank mechanism.
  • This target lambda value in conjunction with the air filling rl of the combustion chamber derived from measured variables, determines the amount of fuel that must be injected in order to generate the desired torque.
  • a relative fuel mass can be determined by dividing rl by the lambda setpoint value determined as a function of the desired torque in block 2.5, which is then converted into the specific injection pulse width as a manipulated variable in the fuel path.
  • This exemplary embodiment enables the desired torque to be set in the largely dethrottled shift operation of the engine.
  • the addition shown in FIG. 3 enables the appropriate adjustment of the fuel and air supply to the engine in order to implement a predetermined engine torque, taking into account a maximum permissible value for the air ratio lambda.
  • variable lambda is permitted, there is a certain bandwidth of adjustable moments with a solid filling.
  • the bandwidth is specified by lambda limit values, outside of which, for example, the flammability is not guaranteed.
  • the appropriate air filling and fuel mass, which deliver this predetermined target torque are set in shift operation for a specific predetermined target torque, taking into account a maximum permissible lambda value.
  • the air fill can be set as a manipulated variable via the throttle valve opening angle.
  • This manipulated variable is calculated in the so-called air path.
  • the fuel mass is set as a manipulated variable, for example, by varying an injection pulse width. As described above, this manipulated variable is calculated in the so-called fuel path.
  • the actual setting of the engine torque is done as described using the fuel path.
  • the filling is limited in the air path to values that correspond to moments that can be set via the fuel supply.
  • the cylinder charge is limited to a value that results from the maximum permissible lambda for the desired torque.
  • the maximum permissible lambda value Lambda_zul is first determined, which can be dependent, for example, on the speed n and which can therefore be determined, for example, from a characteristic curve.
  • the associated lambda efficiency etalam is determined from this maximum permissible lambda in block 3.2.
  • this product corresponds to the ratio of the desired or actual moment to that
  • this actual moment corresponds to the moment that arises at the maximum permissible lambda.
  • This actual torque to be assigned to the maximum permissible lambda value is generated in block 3.4 by linking the product of the efficiencies with the standard torque provided by block 3.5.
  • a maximum cylinder charge rl f (Lambda_zul) can be uniquely assigned to this special actual torque by accessing the characteristic curve in block 3.6, at which this torque assumes a maximum lambda, i.e. a lambda at the lean-burn limit between just combustible and just no longer combustible mixtures.
  • This air filling rl thus represents the upper filling limit below which the desired torque can be achieved solely by intervening in the fuel path.
  • This filling limit can be achieved by limiting the opening angle of the throttle valve to a maximum value alpha max in block 3.7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

Vorgestellt wird ein Verfahren zur Einstellung des Drehmomentes bei einem Verbrennungsmotor mit den Schritten: Bestimmung eines Soll-Momentes; Bestimmung eines Betriebspunktes aus Messwerten für Luftfüllung und Drehzahl; Bestimmung eines Normmomentes für diesen Betriebspunkt; Bestimmung eines Soll-Wirkungsgrades aus Normmoment und Sollmoment; Bestimmung des zu diesem Wirkungsgrad zugehörigen Lambda; Bestimmung der Kraftstoffmenge aus dem zugehörigen Lambda und der aus Messgrössen abgeleiteten Luftfüllung, die in Verbindung mit der Luftfüllung das zugehörige Lambda zur Realisierung des Sollmomentes ergibt.

Description

Verfahren zur Bestimmung von Stellgrößen bei der Steuerung von Benzindirekteinspritzmotoren
Stand der Technik
Die Erfindung betrifft die Einstellung eines gewünschten Motormomentes durch passende Berechnung der Stellgroßen, insbesondere zur Einstellung der Luft- und der Kraftstoffzufuhr zum Motor bei einem Motor mit Benzindirekteinspritzung .
Eine wichtige Betriebsart eines Motors mit Benzindirekteinspritzung ist der naherungsweise ungedrosselte Betrieb mit hohem Luftuberschuß . Die Luftmasse im Brennraum ist dann weitgehend konstant und die Luftzahl Lambda als Maß für die Zusammensetzung des Kraftstoff/Luft- Gemisches wird durch die eingespritzte Kraftstoffmasse bestimmt. Die Luftmasse im Brennraum bestimmt in Verbindung mit der Luftzahl Lambda und der Drehzahl n das vom Motor aufgebrachte Drehmoment. Bei hohem Luftuberschuß laßt sich das gewünschte Drehmoment weitgehend über eine Variation der Kraftstoffmenge einstellen. Die Brennfahigkeit des Gemisches mit hohem Luftuberschuß wird dabei durch eine raumlich inhomogene Gemischverteilung im Brennraum erreicht. Diese Betriebsart wird auch als Schichtbetrieb bezeichnet. Davon zu unterscheiden ist der Betrieb mit homogener Gemischverteilung ohne oder mit geringerem Luftuberschuß. Die Erfindung betrifft die Stellgroßenbestimmung abhangig vom geforderten Moment im Schichtbetrieb.
Externe Anforderungen an den Saugrohrdruck im Schichtbetrieb beeinflussen die Luftfullung. Solche Anforderungen ergeben sich bspw. daraus, daß die Abgasruckführung und die Tankentluftung ein gewisses Druckgefalle fordern. Die Forderung, die den niedrigsten Saugrohrdruck hervorruft, wird durch eine Minimalauswahl und Eingriff in die Drosselklappenstellung realisiert .
Laßt man die für ein gewünschtes Drehmoment bestimmte einzuspritzende Kraftstoffmenge unverändert, ändert sich die Luftzahl. Dies hat unerwünschte Drehmomentanderungen zur Folge.
Aufgabe der Erfindung ist die Vermeidung der unerwünschten Drehmomentanderungen .
Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelost.
Vorteilhafterweise wird die Bestimmung der Stellgroße Einspritzzeit noch durch eine Bestimmung der Stellgroße der Luftzufuhr ergänzt.
Damit wird die weitere Aufgabe gelost, eine passende Einstellung von Kraftstoff- und Luftzufuhr zum Motor zur Realisierung eines vorgegebenen Motormomentes unter Berücksichtigung eines maximal zulassigen Wertes für die Luftzahl Lambda.
Diese weitere Aufgabe wird durch eine ergänzende Beschrankung der Luftzufuhr auf maximale Werte gelost. Diese Beschrankung gewahrleistet die reproduzierbare Einstellung kleiner Drehmomente über eine Variation der Einspritzimpulsbreiten. Ohne diese Beschrankung konnte es zur unerwünschten Einstellung zu magerer Gemische kommen, was Probleme bei der Brennbarkeit des Gemisches und/oder den Abgasemissionen mit sich bringen konnte.
Im folgenden wird ein Ausfuhrungsbeispiel der Erfindung mit Bezug auf die Figuren erläutert.
Fig. 1 zeigt das technische Umfeld der Erfindung. Fig. 2 offenbart ein Ausfuhrungsbeispiel der Erfindung in der Form von Funktionsblocken und Fig. 3 stellt die Bildung der Beschrankung der Luftzufuhr dar.
Die 1 in der Fig. 1 repräsentiert den Brennraum eines
Zylinders eines Verbrennungsmotors. Über ein Einlaßventil 2 wird der Zustrom von Luft zum Brennraum gesteuert. Die Luft wird über ein Saugrohr 3 angesaugt. Die Ansaugluftmenge kann über eine Drosselklappe 4 variiert werden, die von einem Steuergerat 5 angesteuert wird. Dem Steuergerat werden
Signale über den Drehmomentwunsch des Fahrers, bspw. über die Stellung eines Fahrpedals 6, ein Signal über die Motordrehzahl n von einem Drehzahlgeber 7 und ein Signal über die Menge ml der angesaugten Luft von einem Luftmengenmesser 8 zugeführt. Aus diesen und ggf. weiteren Eingangssignalen über weitere Parameter des
Verbrennungsmotors wie Ansaugluft- und Kuhlmitteltemperatur USW bildet das Steuergerat 5 Ausgangssignale zur Einstellung der des Drosselklappenwinkels alpha durch ein Stellglied 9 und zur Ansteuerung eines Kraftstoffeinspritzventils 10, durch das Kraftstoff in den Brennraum des Motors dosiert wird. Der Drosselklappenwinkel alpha und die Einspritzimpulsbreite ti werden im Rahmen der Erfindung als wesentliche, aufeinander abzustimmende Stellgroßen zur Realisierung des Wunschmomentes betrachtet. Weiterhin steuert das Steuergerat ggf. eine Abgasruckfuhrung 11, eine Tankentluftung 12 sowie weitere Funktionen wie die Zündung des Kraftstoff/Luftgemisches im Brennraum. Die aus der Verbrennung resultierende Gaskraft wird durch Kolben 13 und Kurbeltrieb 14 in ein Drehmoment gewandelt.
FIG. 2 zeigt ein Ausfuhrungsbeispiel der Erfindung. Block 2.1 stellt ein Kennfeld dar, das durch die Drehzahl n und die relative Luftfullung rl adressiert wird. Die relative Luftfullung ist auf eine maximale Füllung des Brennraums mit Luft bezogen und gibt damit gewissermaßen den Bruchteil der maximalen Brennraum- oder Zylinderfullung an. Sie wird im wesentlichen aus dem Signal ml gebildet. Die aus Meßgroßen gebildete relative Füllung rl und die Drehzahl n definieren einen Betriebspunkt des Motors. Mit dem Kennfeld 2.1 werden verschiedenen Betriebspunkten Drehmomente zugeordnet, die der Motor unter Normbedingungen in den verschiedenen Betriebspunkten erzeugt.
Normbedingungen lassen sich durch bestimmte Werte von
Einflußgroßen wie Zundwinkel, Luftzahl Lambda, AGR-Rate, Tankentluftungszustand usw. festlegen. Als Normbedingung bezuglich der Luftzahl kommt Lambda gleich 1 in Frage. Als Normbedingung bezuglich des Zundwinkels laßt sich der Zundwinkel definieren, bei dem sich das maximal mögliche Moment einstellt.
Bezuglich jeder Einflußgroße laßt sich ein Wirkungsgrad eta definieren als Verhältnis vom Moment unter Normbedingungen zu dem Moment, das sich bei isolierter Änderung der Einflußgroße einstellt.
Bei Abweichungen mehrerer Einflußgroßen von ihren Normwerten gibt das Produkt der Wirkungsgrade das Verhältnis des Normmomentes bei den Normwerten der Einflußgroßen zu dem Moment bei den abweichenden Einflußgroßen an.
Mit anderen Worten: Wunschmoment/Normmoment = Produkt der Wirkungsgrade. Die Division des bspw. vom Fahrerwunsch abhangigen Wunsch- oder Sollmomentes durch das für den individuellen Betriebspunkt bestimmten Normmomentes im Block 2.2 liefert daher das Produkt samtlicher Wirkungsgrade.
Die Werte der Einflußgroßen wie AGR-Rate, Zundwinkel USW liegen im Steuergerat vor. Bspw. mit Hilfe abgespeicherter Kennlinien werden die zugehörigen Wirkungsgrade bestimmt. Es folgt die Bildung des Produktes der Wirkungsgrade der bekannten Einflußgroßen. Dies sind alle Einflußgroßen außer Lambda.
Die Division des Produktes samtlicher Wirkungsgrade durch das Produkt der Wirkungsgrade der bekannten Einflußgroßen im Block 2.3 liefert den Lambdawirkungsgrad etalam.
Aus dem Lambdawirkungsgrad etalam wird im Block 2.4 bspw. über einen Kennlinienzugriff das zugehörige Lambda bestimmt.
Die Kennlinie eta von Lambda gibt für verschiedene Lambdawerte das Verhältnis des Normmomentes bei Lambda gleich Eins zu dem Moment bei anderen Lambdawerten an.
Block 2.4 liefert damit genau den La bdawert dar, der im Brennraum eingestellt werden muß, um im aktuellen, durch die Luftfullung rl und Drehzahl n definierten Betriebspunkt bei den bekannten übrigen Einflußgroßen wie Zundzeitpunkt, AGR- Rate usw. das gewünschte Moment zu induzieren. Dabei bedeutet Induzieren hier das Erzeugen der Gaskraft, die über Kolben und Kurbeltrieb das Wunschmoment liefert. Dieser Soll-Lambdawert determiniert in Verbindung mit der aus Meßgroßen abgeleiteten Luftfullung rl des Brennraums die Kraftstoffmenge, die zur Erzeugung des gewünschten Momentes eingespritzt werden muß.
Daraus laßt sich durch Division von rl durch den wunschmomentabhangig bestimmten Lambdasollwert im Block 2.5 eine relative Kraftstoffmasse bestimmen, die dann in die konkrete Einspritzimpulsbreite als Stellgroße im Kraftstoffpfad umgerechnet wird.
Dieses Ausfuhrungsbeispiel ermöglicht eine Einstellung des Wunschdrehmomentes im weitgehend entdrosselten Schichtbetrieb des Motors.
Die in Fig. 3 dargestellte Ergänzung ermöglicht die passende Einstellung von Kraftstoff- und Luftzufuhr zum Motor zur Realisierung eines vorgegebenen Motormomentes unter Berücksichtigung eines maximal zulassigen Wertes für die Luftzahl Lambda.
Ohne die letztere Bedingung konnte es zur unerwünschten Einstellung zu magerer Gemische kommen, was Probleme bei der Brennbarkeit des Gemisches und/oder den Abgasemissionen mit sich bringen konnte.
Dies deshalb, weil das Moment bei festem Lambda mit zunehmender Zylinderfullung steigt. Wird variables Lambda zugelassen, ergibt sich bei fester Füllung eine gewisse Bandbreite einstellbarer Momente. Dabei wird die Bandbreite durch Lambdagrenzwerte vorgegeben, außerhalb derer beispielsweise die Brennbarkeit nicht gewahrleistet ist.
Es gibt daher zu jeder Füllung ein minimales Moment. Werden kleinere Momente gewünscht, kann dies nicht mehr allein über einen Eingriff auf den Kraftstoffpfad realisiert werden. Vielmehr ist dann eine Reduzierung der Füllung zwingend erforderlich.
Dazu werden erfindungsgemaß im Schichtbetrieb für ein bestimmtes vorgegebenes Sollmoment unter Berücksichtigung eines maximal zulassigen Lambdawertes die passende Luftfullung und Kraftstoffmasse eingestellt, die dieses vorgegebene Sollmoment liefern.
Die Luftfullung kann bspw. bei Systemen mit elektronisch gesteuerter Drosselklappe (EGAS) über den Drosselklappenoffnungswinkel als Stellgroße eingestellt werden. Die Berechnung dieser Stellgroße erfolgt im sogenannten Luftpfad.
Die Kraftstoffmasse wird bspw. über die Variation einer Einspritzimpulsbreite als Stellgroße eingestellt. Die Berechnung dieser Stellgroße erfolgt wie weiter oben dargestellt wurde, im sogenannten Kraftstoffpfad.
Die eigentliche Einstellung des Motormomentes geschieht wie beschrieben mit Hilfe des Kraftstoffpfades.
Im Luftpfad findet ergänzend eine Begrenzung der Füllung auf Werte statt, die Momenten entsprechen, die über die Kraftstoffzufuhr einstellbar sind. Mit anderen Worten: Im Luftpfad wird die Zylinderfullung auf einen Wert begrenzt, der sich aus dem maximal zulassigen Lambda für das gewünschte Moment ergibt.
Dies ist in Fig. 3 dargestellt: Im Block 3.1 wird zunächst der maximal zulassige Lambdawert Lambda_zul ermittelt, der bspw. von der Drehzahl n abhangig sein kann und der daher bspw. aus einer Kennlinie ermittelbar ist. Aus diesem maximal zulassigen Lambda wird im Block 3.2 der zugehörige Lambdawirkungsgrad etalam bestimmt.
Bei bekannten übrigen Einflußgroßen ist damit das Produkt aller Wirkungsgrade für das maximal zulassige Lambda im Block 3.3 bestimmbar.
Dieses Produkt entspricht, wie weiter oben dargestellt wurde, dem Verhältnis von Wunsch- bzw. Ist-Moment zu dem
Moment unter Normbedingungen. Bei dieser von einem maximal zulassigen Lambdawert ausgehenden Betrachtung entspricht dieses Ist-Moment dem Moment, das sich bei dem maximal zulassigen Lambda einstellt. Dieses dem maximal zulassigen Lambdawert zuzuordnende Istmoment wird im Block 3.4 durch Verknüpfung des Produktes der Wirkungsgrade mit dem durch Block 3.5 bereitgestellten Normmoment erzeugt.
Diesem speziellen Ist-Moment laßt sich durch Kennlinienzugriff im Block 3.6 eine maximale Zylinderfullung rl = f (Lambda_zul) eindeutig zuordnen, bei der sich dieses Moment unter der Annahme eines maximalen Lambda, d.h. einem Lambda an der Magerlaufgrenze zwischen gerade noch brennfahigen und gerade nicht mehr brennfahigen Gemischen, einstellt.
Diese Luftfullung rl stellt damit die obere Fullungsgrenze dar, unterhalb derer sich das Wunschmoment allein durch Eingriffe in den Kraftstoffpfad realisieren laßt.
Diese Fullungsgrenze laßt sich durch eine Begrenzung des Offnungswinkels der Drosselklappe auf einen maximalen Wert alpha max im Block 3.7 realisieren.

Claims

Patentansprüche
1. Verfahren zur Einstellung des Drehmomentes bei einem Verbrennungsmotor mit den Schritten:
- Bestimmung eines Soll-Momentes - Bestimmung eines Betriebspunktes aus Meßwerten für Luftfullung und Drehzahl.
- Bestimmung eines Normmomentes für diesen Betriebspunkt
- Bestimmung eines Soll-Wirkungsgrades aus Normmoment und Sollmoment - Bestimmung des zu diesem Wirkungsgrad zugehörigen Lambda
- Bestimmung der Kraftstoffmenge aus dem zugehörigen Lambda und der aus Meßgroßen abgeleiteten Luftfullung, die in Verbindung mit der Luftfullung das zugehörige Lambda zur Realisierung des Sollmomentes ergibt.
2. Verfahren nach Anspruch 1, gekennzeichnet durch die weiteren Schritte:
- Bestimmung des maximal zulassigen Lambdawert für eine reguläre Verbrennung - Bestimmung des zugehörigen Lambdawirkungsgrades
- Bestimmung des Gesamtwirkungsgrades als Produkt aller Wirkungsgrade der übrigen bekannten Einflußgroßen für das maximal zulassige Lambda - Bestimmung des Ist-Momentes, das sich bei dem maximal zulassigen Lambda und den Wirkungsgraden einstellt unter Berücksichtigung des Normmomentes
- Bestimmung einer maximalen Zylinderfullung rl zu diesem Ist-Moment, bei der sich dieses Ist-Moment unter der Annahme eines maximalen Lambda einstellt
- Bestimmung eines maximalen Drosselklappenwinkels alpha_max zur Beschrankung der Füllung
PCT/DE1999/003479 1998-11-03 1999-11-02 Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren WO2000026522A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99960845A EP1129279B1 (de) 1998-11-03 1999-11-02 Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren
DE59904486T DE59904486D1 (de) 1998-11-03 1999-11-02 Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren
US09/830,872 US6512983B1 (en) 1998-11-03 1999-11-02 Method for determining the controller output for controlling fuel injection engines
JP2000579880A JP2003502540A (ja) 1998-11-03 1999-11-02 ガソリン直接噴射機関の制御における操作量の決定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19851990A DE19851990A1 (de) 1998-11-03 1998-11-03 Verfahren zur Bestimmung von Stellgrößen bei der Steuerung von Benzindirekteinspritzmotoren
DE19851990.7 1998-11-03

Publications (2)

Publication Number Publication Date
WO2000026522A1 true WO2000026522A1 (de) 2000-05-11
WO2000026522A9 WO2000026522A9 (de) 2000-09-28

Family

ID=7887423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003479 WO2000026522A1 (de) 1998-11-03 1999-11-02 Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren

Country Status (5)

Country Link
US (1) US6512983B1 (de)
EP (1) EP1129279B1 (de)
JP (1) JP2003502540A (de)
DE (2) DE19851990A1 (de)
WO (1) WO2000026522A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578546B2 (en) 2000-01-12 2003-06-17 Volkswagen Aktiengesellshaft Method and device for controlling an internal combustion engine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040251A1 (de) * 2000-08-14 2002-03-07 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regeleinrichtung zum Betreiben einer Brennkraftmaschine
DE10043375A1 (de) 2000-09-02 2002-03-14 Bosch Gmbh Robert Verfahren zur Aufheizung eines Katalysators bei Verbrennungsmotoren mit Benzindirekteinspritzung
DE10043699A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zur Bestimmung des Kraftstoffgehaltes des Regeneriergases bei einem Verbrennungsmotor mit Benzindirekteinspritzung im Schichtbetrieb
DE10043687A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Koordination verschiedener Anforderungen an die Abgastemperatur und entsprechende Heiz-oder Kühl-Maßnahmen
DE10043859A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zur Diagnose der Gemischbildung
DE10043690A1 (de) * 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zur NOx-Massenstrombestimmung aus Kennfelddaten bei variabler Lufteinlass- und Motortemperatur
DE10100682A1 (de) * 2001-01-09 2002-07-11 Bosch Gmbh Robert Verfahren zur Aufheizung eines Katalysators bei Verbrennungsmotoren mit Benzindirekteinspritzung
DE10255488A1 (de) 2002-11-27 2004-06-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10317464A1 (de) * 2003-04-16 2004-11-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102004054240B4 (de) * 2004-11-10 2016-07-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006015264A1 (de) * 2006-04-01 2007-10-04 Bayerische Motoren Werke Ag Verfahren zum Steuern einer Brennkraftmaschine
JP4396748B2 (ja) * 2007-08-21 2010-01-13 トヨタ自動車株式会社 内燃機関の制御装置
WO2011142018A1 (ja) 2010-05-13 2011-11-17 トヨタ自動車株式会社 内燃機関の制御装置
EP3877235A4 (de) 2018-11-09 2023-07-19 Iocurrents, Inc. Auf maschinenlernen basierende vorhersage, planung und optimierung der reisezeit, der reisekosten und/oder der schadstoffemission während der navigation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024550A1 (de) * 1994-03-07 1995-09-14 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung eines fahrzeugs
US5479898A (en) * 1994-07-05 1996-01-02 Ford Motor Company Method and apparatus for controlling engine torque
DE19618849A1 (de) * 1996-05-10 1997-11-13 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273076B1 (en) * 1997-12-16 2001-08-14 Servojet Products International Optimized lambda and compression temperature control for compression ignition engines
DE19850581C1 (de) * 1998-11-03 2000-02-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung des Drehmoments einer Brennkraftmaschine mit Benzindirekteinspritzung
DE19900740A1 (de) * 1999-01-12 2000-07-13 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US6308697B1 (en) * 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024550A1 (de) * 1994-03-07 1995-09-14 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung eines fahrzeugs
US5479898A (en) * 1994-07-05 1996-01-02 Ford Motor Company Method and apparatus for controlling engine torque
DE19618849A1 (de) * 1996-05-10 1997-11-13 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578546B2 (en) 2000-01-12 2003-06-17 Volkswagen Aktiengesellshaft Method and device for controlling an internal combustion engine

Also Published As

Publication number Publication date
EP1129279B1 (de) 2003-03-05
WO2000026522A9 (de) 2000-09-28
US6512983B1 (en) 2003-01-28
DE59904486D1 (de) 2003-04-10
DE19851990A1 (de) 2000-06-21
JP2003502540A (ja) 2003-01-21
EP1129279A1 (de) 2001-09-05

Similar Documents

Publication Publication Date Title
EP0433632B1 (de) Verfahren zum Steuern eines Ottomotors ohne Drosselklappe
EP0441908B1 (de) Verfahren zum einstellen von luft- und kraftstoffmengen für eine mehrzylindrige brennkraftmaschine
DE19829308C2 (de) Regeleinrichtung für einen Ottomotor mit Direkteinspritzung
EP1132600B1 (de) Adaptionsverfahren zur Steuerung der Einspritzung
EP1129279B1 (de) Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren
DE10157104A1 (de) Verfahren und Vorrichtung zur Steuerung von Betriebsübergängen bei Brennkraftmaschinen
DE19631986A1 (de) Steuereinrichtung für eine direkteinspritzende Benzinbrennkraftmaschine
DE19741180A1 (de) Motorsteuerungssystem und -Verfahren
DE102017114105B4 (de) System und Verfahren zur Steuerung eines Motors basierend auf einer Abweichung der Kolbentemperatur
DE3929104C2 (de)
DE10137587A1 (de) Motordrehzahl-/Fahrzeuggeschwindigkeitsregelung für fremdgezündete Motoren mit Direkteinspritzung
EP0995025B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE3633509C2 (de)
WO2009033950A2 (de) Verfahren zum regeln eines verbrennungsvorganges und steuergerät
DE19813380A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102011004068B3 (de) Verfahren und Steuervorrichtung zum Gleichstellen mehrerer Zylinder einer Brennkraftmaschine
EP1099051B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE4234692C2 (de) Leistungsregler für einen Verbrennungsmotor
WO2005054648A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE19951581A1 (de) Verfahren und Vorrichtung zur Gleichstellung wenigstens zweier Zylinderbänke einer Brennkraftmaschine
DE19700104B4 (de) Steuervorrichtung für Mehrzylinder-Direkteinpritzmotor
DE10156409B4 (de) Brennkraftmaschine und ein Verfahren zur Verbesserung der Laufruhe mehrzylindriger Brennkraftmaschinen
DE4239842A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2016055465A1 (de) Verfahren zur ermittlung einer drehmomentreserve
EP1184557B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGE 1/3, DRAWINGS, REPLACED BY A NEW PAGE 1/3; AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZEDBY THE INTERNATIONAL SEARCHING AUTHORITY

WWE Wipo information: entry into national phase

Ref document number: 1999960845

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 579880

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09830872

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999960845

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999960845

Country of ref document: EP