[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000014880A1 - Method of adjusting voltage-controlled oscillator - Google Patents

Method of adjusting voltage-controlled oscillator Download PDF

Info

Publication number
WO2000014880A1
WO2000014880A1 PCT/JP1999/004696 JP9904696W WO0014880A1 WO 2000014880 A1 WO2000014880 A1 WO 2000014880A1 JP 9904696 W JP9904696 W JP 9904696W WO 0014880 A1 WO0014880 A1 WO 0014880A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
controlled oscillator
adjustment
variable
frequency
Prior art date
Application number
PCT/JP1999/004696
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Miyagi
Original Assignee
T.I.F. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.I.F. Co., Ltd. filed Critical T.I.F. Co., Ltd.
Publication of WO2000014880A1 publication Critical patent/WO2000014880A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/06Phase locked loops with a controlled oscillator having at least two frequency control terminals

Definitions

  • the present invention relates to a voltage controlled oscillator adjustment method for adjusting a variable frequency range of a voltage controlled oscillator.
  • available frequency bands are determined in advance according to their uses.
  • a carrier signal included in an available frequency band is generated, and a signal obtained by modulating the carrier signal with an information signal such as voice is transmitted.
  • a predetermined demodulation process is performed on the received signal to remove the carrier signal, thereby extracting an information signal such as voice.
  • an oscillation signal output from a voltage controlled oscillator (VCO) is often used to generate and remove a carrier signal, which is required for the VCO. It is necessary to output the oscillation frequency signal correctly.
  • VCO voltage controlled oscillator
  • FIG. 5 is a diagram showing a configuration of a conventional frequency synthesizer using a VCO.
  • the frequency synthesizer 200 shown in the figure includes a VCO 202 in which an oscillation frequency is set based on an applied control voltage, a frequency divider 204 having a predetermined frequency division ratio, a phase comparator 206, A phase locked loop (P LL: Phase Locked Loop) is formed by including a pass filter (LPF) 208.
  • VC0202 is, for example, an LC oscillation circuit including a variable capacitance diode.
  • variable frequency range of the oscillation signal output from the VC 0202 includes the plurality of communication channels described above. Must be set to be equal to or wider than the frequency range.
  • FIG. 6 is a diagram showing a relationship between the control voltage Vc applied to the VCO 202 and the oscillation frequency: fosc.
  • the variable range of the carrier frequency in a communication device using the frequency synthesizer 200 shown in FIG. When the control voltage Vc applied to the VCQ 202 changes from 0 to Vcc, the variable range of the oscillation signal output from the VCO 202 becomes the variable range of the carrier frequency (f min ⁇ : fmax) must be included.
  • the control voltage-oscillation frequency characteristic line A shown in Fig. 6 satisfies this condition, and by using the VCO 202 having such characteristics, communication using a communication channel having the required carrier frequency is possible. become.
  • the inductor, capacity, variable Capacitance diode is selected.
  • V C 0202 since various elements actually used and wiring patterns for connecting the elements have variations, even in the case of V C 0202 manufactured through the same process, the characteristics are often different. Therefore, even if the VCO 202 is manufactured so as to satisfy the ideal characteristic line A shown in FIG. 6, in many cases, the VC 0202 actually has the characteristic lines B and C shown in FIG. . Of course, for the characteristic lines B and C, even if the control voltage Vc of the VC 0202 is set to its lower limit or upper limit, the required carrier frequency cannot be obtained, so communication via some communication channels is not possible. C In particular, since mobile phones use high-frequency bands such as 800 MHz and 1.5 GHz, the oscillation frequency of VC0202 varies due to variations in elements. There are few that meet the ideal characteristic line A without adjustment.
  • variable range of the oscillation frequency is adjusted so as to satisfy the characteristic line A by adjusting the element constant of one of the elements included in CO 202.
  • the oscillation frequency of the VC0 202 is obtained by removing a part of the pattern by a method such as laser trimming while displaying the oscillation frequency on a monitor screen or the like. Is changed so that the characteristic line A is satisfied.
  • the inductance value is adjusted by laser trimming, or the capacitance value of the trimmer capacitor is adjusted.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a voltage controlled oscillator adjustment method which can easily adjust the variable range of the oscillation frequency of the voltage controlled oscillator. .
  • variable range of the oscillation frequency of the voltage controlled oscillator is adjusted based on the value of the control voltage applied to the voltage controlled oscillator when the voltage controlled oscillator is oscillated at a predetermined frequency. Since the variable range adjusting means is provided, the variable range can be automatically adjusted, and the labor required for the adjustment can be saved.
  • the above-described voltage-controlled oscillator includes a first element constant variable element whose element constant can be changed according to an applied control voltage, and a second element constant variable element whose element constant can be changed according to an applied adjustment voltage. It is preferable that the variable element adjuster adjusts the value of the adjustment voltage applied to the second element constant variable element by using a variable range adjuster. By changing the value of the adjustment voltage applied to one of the two element constant variable elements, the oscillation frequency changes when the value of the control voltage applied to the other is changed. The range to be formed can be easily adjusted.
  • the above-mentioned voltage controlled oscillator is configured to include an LC resonance circuit, and in the LC resonance circuit, the first variable capacitance diode connected in parallel with the inductor is used as the above-described first element constant variable element, It is preferable that the second variable capacitance diode connected in series with the inductor is a second element constant variable element.
  • variable range adjusting means allows the value of the control voltage to be included in the predetermined range when the value of the control voltage when the voltage controlled oscillator is oscillated at the predetermined frequency is out of the predetermined range. It is preferable to change the adjustment voltage until it is. By performing the adjusting operation so that the value of the control voltage corresponding to the predetermined frequency is included in the predetermined range, the variable range of the oscillation frequency can be set to a desired value.
  • the value of the adjustment voltage set at the start of the adjustment operation by the variable range adjustment means is approximately / of the power supply voltage.
  • the adjustment voltage can be changed in any direction in the subsequent adjustment operation, so that the variable range of the oscillation frequency that is shifted at the start of the adjustment operation is ensured. It can be set to a desired value.
  • the value of the adjusted voltage adjusted by the variable range adjusting means is stored in the voltage value storage means.
  • the optimum adjusted voltage can be set each time the power is turned on.
  • a frequency synthesizer is configured by combining a frequency divider, a phase comparator, and a low-pass filter with the above-described voltage-controlled oscillator.
  • the voltage control oscillator can be oscillated at a predetermined frequency only by setting the frequency division ratio of the frequency divider to a predetermined value by the variable range adjusting means, so that the above-described adjustment operation is facilitated.
  • FIG. 1 is a diagram illustrating a configuration of a frequency adjustment mechanism according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a relationship between an adjustment voltage V s applied to a variable capacitance diode and a capacitance C s.
  • FIG. 3 is a flowchart of an operation procedure for adjusting the variable range of the oscillation frequency of V C0 by the frequency adjustment mechanism of the present embodiment
  • FIG. 4 is a diagram showing the relationship between the lower limit value fmin of the variable range of the oscillation frequency and the control voltage Vc applied to V C0,
  • FIG. 5 is a diagram illustrating a configuration of a conventional frequency synthesizer using V C0
  • FIG. 6 is a diagram illustrating a relationship between a control voltage Vc applied to a VCO and an oscillation frequency fosc.
  • FIG. 1 is a diagram showing a configuration of a frequency adjustment mechanism according to an embodiment to which the present invention is applied.
  • the frequency adjustment mechanism shown in FIG. 1 includes a VC010 forming a frequency synthesizer, a frequency divider 30, a phase comparator 40, It is configured to include an LPF 50, a CPU 60 for adjusting a variable range of the oscillation frequency of the VCO 10 by executing a predetermined adjustment program, and a memory 70.
  • VCO 10 is a clap oscillation circuit that performs a predetermined oscillation operation using LC resonance.
  • a reverse bias voltage applied to a variable capacitance diode 14 connected in parallel to the inductor 12 in the LC resonance circuit is determined.
  • the variable oscillation frequency fosc is set by changing the control voltage Vc applied from the LPF 50.
  • a variable capacitance diode 20 is connected in series with the inductor 12 included in the LC resonance circuit in order to adjust the variable range of the oscillation frequency.
  • the reverse bias voltage of the variable capacitance diode 20 is set by the adjustment voltage Vs applied from the CPU 60, and by varying the adjustment voltage Vs, the variable range of the oscillation frequency of VC ⁇ 10 is adjusted. You.
  • the oscillation frequency f osc of the VCO 10 varies not only when the capacitance Cd of the variable capacitance diode 14 connected in parallel with the inductor 12 is changed, but also when the capacitance of the variable capacitance diode 20 connected in series with the inductor 12. It can be varied by changing Cs. Therefore, by setting the reverse bias voltage applied to one variable capacitance diode 14 by the control voltage Vc applied from the LPF 50, the oscillation frequency of the VCO 10 is variably controlled, and the other variable voltage is set. By setting the reverse bias voltage applied to the capacitance diode 2 ° by the adjustment voltage Vs applied from the CPU 6 °, the variable range of the oscillation frequency of VC010 can be adjusted.
  • the adjustment voltage Vs applied from the CPU 60 to the variable capacitance diode 20 is set to a certain value, and the VCO 10 has the characteristic lines B and C shown in FIG.
  • the characteristic can be made to match the optimum one (characteristic line A).
  • FIG. 2 is a diagram showing the relationship between the adjustment voltage Vs applied to the variable capacitance diode 20 and the capacitance Cs. As shown in the figure, the variable capacitance diode 20 has a reverse bias voltage. The characteristic shows that the capacitance Cs appearing at both ends decreases as the adjustment voltage Vs applied to both ends as the voltage increases.
  • the VCO 10 has the characteristic B shown in FIG. 6, it is necessary to lower the oscillation frequency f osc corresponding to the control voltage Vc applied from the LPF 50.
  • the capacitance Cs of the variable capacitance diode 20 must be increased from the above-described equation (2). Therefore, as shown in FIG. 2, the adjustment voltage Vs applied to the variable capacitance diode 20 may be reduced.
  • the VCO 10 has the characteristic C shown in FIG. 6, it is necessary to increase the oscillation frequency f osc corresponding to the control voltage Vc applied from the LPF 50.
  • the capacitance Cs of the varactor diode 20 must be reduced from the above equation (2). Therefore, as shown in FIG. 2, the adjustment voltage Vs applied to the variable capacitance diode 20 may be increased.
  • Divider 30 divides frequency f osc of the signal output from VC ⁇ 10 to 1 / N (N is an integer).
  • the dividing ratio N can be changed, and its value is set by the CPU 10.
  • the phase comparator 40 compares the phase of the signal of frequency fosc / N output from the frequency divider 30 with the reference signal of frequency fr, and outputs a signal having a duty ratio according to the comparison result.
  • the LPF 50 removes high-frequency components from the signal output from the phase comparator 40 to generate a DC control voltage Vc applied to the VCO 10.
  • the CPU 60 has an A / D converter and a D / A converter (both not shown), and converts the control voltage Vc applied from the LPF 50 into digital data by the A / D converter. During the conversion, the adjustment voltage V s applied to the variable capacitance diode 20 is generated by the D / A converter.
  • the CPU 60 sets the value of the variable frequency division ratio N of the frequency divider 40 in order to output an oscillation signal having a desired frequency from the VCO 10. For example, if the required oscillation frequency is 1.5 GHz and the reference frequency input to the phase comparator 40: r is 100 kHz, set the division ratio N to 15000. .
  • the memory 70 stores data corresponding to the adjustment voltage Vs set by the CPU 60.
  • Adjustment voltage data (Adjustment voltage data). Once the adjustment voltage data is stored in the memory 70, Then, every time the power is turned on, the adjustment voltage data is read from the memory 70 by the CPU 60, the adjustment voltage Vs is generated by the D / A converter in the CPU 60, and applied to the variable capacitance diode 20. Is done.
  • Most of recent mobile phones and other communication devices are equipped with a general-purpose CPU and a memory for storing the operation program of the CPU and various data in order to control the display of the liquid crystal display device.
  • the CPU 60 described above is used as the variable range adjusting means, the variable capacitance diode 14 is used as the first element constant variable element, and the variable capacitance diode 20 is used as the second element constant variable element.
  • the memory 70 corresponds to the voltage value storage means.
  • FIG. 3 is a flowchart of an operation procedure for adjusting the variable range of the oscillation frequency of the VCO 10 by the frequency adjustment mechanism of the present embodiment.
  • the CPU 60 sets the adjustment voltage Vs applied to the variable capacitance diode 20 to 1/2 of the power supply voltage Vcc (step 100).
  • the adjustment voltage Vs which is 1/2 of the power supply voltage Vcc is applied to the variable capacitance diode 20 in the control operation of the adjustment voltage Vs performed later, in the direction of increasing or decreasing the adjustment voltage Vs. This is because it is unclear whether the characteristic is changed or not.
  • the characteristic of the VCO 10 corresponding to such an adjustment voltage Vs can be adjusted with respect to either of the curves B and C shown in FIG.
  • the CPU 60 sets the frequency division ratio N of the frequency divider 30 to a value corresponding to the lower limit value fmin of the required variable range of the oscillation frequency (step 101). For example, when the lower limit value fmin of the frequency is 1.45 GHz and the frequency of the reference signal input to the phase comparator 40 is 100 kHz, the division ratio N is 14500.
  • the CPU 60 converts the control voltage Vc applied from the LPF 50 to the VCO 10 into digital data by the A / D converter and reads it (step 102), and determines whether the value is within a predetermined range. Is determined (step 103).
  • FIG. 4 is a diagram showing the relationship between the lower limit value fmin of the variable range of the oscillation frequency and the control voltage Vc applied to VC010.
  • the characteristic line D in the figure when the control voltage Vc is varied, the frequency range of the oscillation frequency fosc of VCO 10 becomes fmi
  • the control voltage Vc corresponding to the lower limit value fmin of the oscillation frequency of the VCO 10 is included in the predetermined range V1 to V2 shown in FIG. Should be.
  • the CPU 60 determines whether or not the read control voltage Vc is included in the predetermined range V1 to V2.
  • the adjustment voltage data corresponding to the value of the adjustment voltage Vs at this time is stored in the memory 70 (Ste 104) End the adjustment operation of the variable range of the oscillation frequency.
  • the CPU 60 determines whether or not the control voltage Vc has exceeded the upper limit value V2 of the predetermined range (step 105). The case where the control voltage Vc exceeds the upper limit V2 corresponds to the case corresponding to the characteristic line C shown in FIG. 6, and it is necessary to increase the oscillation frequency of the VCO 10 with respect to the control voltage Vc. is there.
  • the CPU 60 performs control to increase the adjustment voltage Vs applied to the variable capacitance diode 20 by a predetermined amount (step 106). .
  • the capacitance Cs of the variable capacitance diode 20 decreases, and the oscillation frequency fosc operates to change to a higher value by a predetermined amount.
  • the oscillation frequency f osc of the VCO 10 is fixed to the lower limit value fmin of the variable range, so that the control voltage Vc applied to the VCO 10 becomes lower. Then, returning to step 102, the adjustment operation is repeated.
  • step 105 determines the adjustment voltage Vs to be applied to the variable capacitance diode 20.
  • Step 107 the adjustment voltage Vs to be applied to the variable capacitance diode 20.
  • the frequency adjustment mechanism of the present embodiment is configured such that when the variable range of the oscillation frequency of the VCO 10 does not include the entire range from the lower limit value of the required oscillation frequency: min to the upper limit value fmax, The variable range of the oscillation frequency of the VCO 10 is changed by automatically adjusting the value of the adjustment voltage Vs applied to the variable capacitance diode 20. Therefore, when the VCO 10 is manufactured, if the operator adjusts the variable range of the oscillation frequency of the VCO 10 while looking at the monitor screen or the like displaying the oscillation frequency characteristics, there is no need to perform complicated work. The variable range of the oscillation frequency of VCO 10 can be easily adjusted.
  • the adjustment voltage data corresponding to the value of the adjustment voltage Vs applied to the variable capacitance diode 20 when the variable range of the oscillation frequency of the VCO 10 is adjusted is stored in the memory ⁇ 0.
  • this adjustment voltage data is only necessary to read this adjustment voltage data from the memory 70 and apply the corresponding adjustment voltage Vs to the variable capacitance diode 20.Therefore, the processing load when the adjustment voltage Vs is automatically adjusted Can be reduced.
  • the variable range of the oscillation frequency of the VCO 10 is changed in an arbitrary direction by setting the adjustment voltage Vs applied to the variable capacitance diode 20 to 1/2 of the power supply voltage Vcc. It is possible to reliably secure a predetermined variable range even when the variation in the oscillation frequency of the VCO 10 is large.
  • the present invention is not limited to the above-described embodiment. Various modifications can be made within the scope of the gist.
  • a clap oscillation circuit which is a kind of LC oscillation circuit, is used as the VCO 10.
  • the variable range of the oscillation frequency may be automatically adjusted.
  • the oscillation frequency of the VCO 10 is set to the lower limit value fmin of the required variable range, and the control voltage Vc applied to VC01 0 at this time falls within the predetermined range V1 to V2.
  • the oscillation frequency of VC010 was set to the upper limit value fmax of the required variable range, and the control applied to VCO10 at this time was set. It may be determined whether the voltage Vc is included in the predetermined range VI ′ to V2 ′.
  • variable range of the oscillation frequency of the voltage-controlled oscillator is determined based on the value of the control voltage applied to the voltage-controlled voltage when the voltage-controlled oscillator is oscillated at the predetermined frequency. It is adjusted automatically, and the variable range of the oscillation frequency can be easily adjusted.

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A method is provided for facilitating adjustment of the oscillation frequency of a voltage-controlled oscillator. A CPU (60) sets the ratio of a frequency divider (30) so that the oscillation frequency of a VCO (10) may become the lower limit (fmin) of a desired range, and then measures the value (Vc) of a control voltage applied by an LPF (50) to the VCO (10). The voltage (Vs) applied to a varactor (20) connected in series to an inductor (12) in an LC resonance circuit of the VCO (10) can be adjusted if the measured control voltage (Vc) is out of a predetermined range.

Description

明 細 書 電圧制御発振器調整方式 技術分野  Description Voltage controlled oscillator adjustment method Technical field
本発明は、 電圧制御発振器の可変周波数範囲の調整を行う電圧制御発振器調整 方式に関する。 背景技術  The present invention relates to a voltage controlled oscillator adjustment method for adjusting a variable frequency range of a voltage controlled oscillator. Background art
携帯電話等の各種の通信機器においては、 その用途に応じてあらかじめ利用可 能な周波数帯域が定められている。 電波の送信側では、 利用可能な周波数帯域に 含まれる搬送波信号を生成し、 この搬送波信号を音声等の情報信号によって変調 した信号を送信する。 また、 電波の受信側では、 受信した信号に対して所定の復 調処理を行って搬送波信号を除去することにより音声等の情報信号を抽出する。 これらの変調処理や復調処理においては、 搬送波信号の生成や除去に電圧制御発 振器 (VCO : Voltage Controlled Oscillator ) から出力される発振信号が用 いられることが多く、 V COには要求される発振周波数の信号を正しく出力する ことが求められる。  For various communication devices such as mobile phones, available frequency bands are determined in advance according to their uses. On the radio wave transmitting side, a carrier signal included in an available frequency band is generated, and a signal obtained by modulating the carrier signal with an information signal such as voice is transmitted. On the radio wave receiving side, a predetermined demodulation process is performed on the received signal to remove the carrier signal, thereby extracting an information signal such as voice. In these modulation and demodulation processes, an oscillation signal output from a voltage controlled oscillator (VCO) is often used to generate and remove a carrier signal, which is required for the VCO. It is necessary to output the oscillation frequency signal correctly.
図 5は、 VCOを用いた従来の周波数シンセサイザの構成を示す図である。 同 図に示す周波数シンセサイザ 200は、 印加される制御電圧に基づいて発振周波 数が設定される VCO 202と、 所定の分周比を有する分周器 204と、 位相比 較器 206と、 口一パスフィルタ (LPF) 208とを含んで構成されており、 位相同期ループ (P LL : Phase Locked Loop ) が形成されている。 VC020 2は、 例えば可変容量ダイォ一ドを備えた L C発振回路である。  FIG. 5 is a diagram showing a configuration of a conventional frequency synthesizer using a VCO. The frequency synthesizer 200 shown in the figure includes a VCO 202 in which an oscillation frequency is set based on an applied control voltage, a frequency divider 204 having a predetermined frequency division ratio, a phase comparator 206, A phase locked loop (P LL: Phase Locked Loop) is formed by including a pass filter (LPF) 208. VC0202 is, for example, an LC oscillation circuit including a variable capacitance diode.
分周器 204の分周比を N、 位相比較器 206の一方の入力端子に入力される 基準信号の周波数を: fr とすると、 VC 0202から出力される発振信号の周波 数 f osc が Nx f r に一致するように、 LPF 208から VCO 202に印加さ れる電圧 Vc が制御される。  Assuming that the frequency division ratio of frequency divider 204 is N and the frequency of the reference signal input to one input terminal of phase comparator 206 is fr, the frequency f osc of the oscillation signal output from VC 0202 is Nx fr The voltage Vc applied from the LPF 208 to the VCO 202 is controlled so that
ところで、 携帯電話やラジオ受信器、 テレビジョン受像器等においては、 あら かじめ設定されている所定の周波数範囲に含まれる複数の通信チャンネルの中か らいずれかを選択して所定の通信動作を行っている。 したがって、 各通信チャン ネルに対応した搬送波信号を図 5に示した周波数シンセサイザ 200によって生 成しようとすると、 VC 0202から出力される発振信号の可変周波数範囲を、 上述した複数の通信チャンネルが含まれる周波数範囲と同じか、 あるいはそれよ りも広く設定する必要がある。 By the way, in mobile phones, radio receivers, television receivers, etc., A predetermined communication operation is performed by selecting one of a plurality of communication channels included in a predetermined frequency range set in advance. Therefore, when trying to generate a carrier signal corresponding to each communication channel by the frequency synthesizer 200 shown in FIG. 5, the variable frequency range of the oscillation signal output from the VC 0202 includes the plurality of communication channels described above. Must be set to be equal to or wider than the frequency range.
図 6は、 VCO 202に印加される制御電圧 Vc と発振周波数: fosc との関係 を示す図である。 例えば、 図 5に示した周波数シンセサイザ 200が用いられる 通信装置における搬送波周波数の可変範囲を fmir! 〜 f max とすると、 VCQ 2 02に印加される制御電圧 Vc が 0から Vccまで変化したときに、 VCO 202 から出力される発振信号の可変範囲が上述した搬送波周波数の可変範囲 ( f min 〜: fmax ) を含んでいる必要がある。 図 6に示した制御電圧—発振周波数特性線 Aはこの条件を満たすものであり、 このような特性を有する VCO 202を用い ることにより、 必要な搬送波周波数を有する通信チャンネルを用いた通信が可能 になる。 例えば、 携帯電話に用いられる周波数シンセサイザを考えた場合であつ て、 VCO 202を L C発振回路で構成する場合には、 この特性を満たすように、 L C発振回路に含まれるインダク夕、 キャパシ夕、 可変容量ダイオードが選択さ れる。  FIG. 6 is a diagram showing a relationship between the control voltage Vc applied to the VCO 202 and the oscillation frequency: fosc. For example, the variable range of the carrier frequency in a communication device using the frequency synthesizer 200 shown in FIG. When the control voltage Vc applied to the VCQ 202 changes from 0 to Vcc, the variable range of the oscillation signal output from the VCO 202 becomes the variable range of the carrier frequency (f min ~: fmax) must be included. The control voltage-oscillation frequency characteristic line A shown in Fig. 6 satisfies this condition, and by using the VCO 202 having such characteristics, communication using a communication channel having the required carrier frequency is possible. become. For example, when considering a frequency synthesizer used in a mobile phone and configuring the VCO 202 with an LC oscillator circuit, the inductor, capacity, variable Capacitance diode is selected.
しかし、 実際に使用される各種の素子や素子間を接続する配線パターンには、 ばらつきがあるため、 同一の工程を経て製造された V C 0202であっても、 そ の特性は異なる場合が多い。 このため、 図 6に示した理想的な特性線 Aを満たす ように VCO 202の製造を行っても、 実際には図 6に示す特性線 Bや Cを有す る V C 0202となる場合も多い。 当然ながら、 特性線 Bや Cにおいては、 VC 0202の制御電圧 Vc をその下限値や上限値に設定しても、 所要の搬送波周波 数が得られないため、 一部の通信チャンネルを介して通信が行えないことになる c 特に、 携帯電話等においては、 800 MH zや 1. 5 GH z等の高周波帯域の搬 送波が使用されるため、 素子のばらつき等による VC0202の発振周波数のば らつきが大きく、 未調整の状態で理想的な特性線 Aを満たすものは少ない。  However, since various elements actually used and wiring patterns for connecting the elements have variations, even in the case of V C 0202 manufactured through the same process, the characteristics are often different. Therefore, even if the VCO 202 is manufactured so as to satisfy the ideal characteristic line A shown in FIG. 6, in many cases, the VC 0202 actually has the characteristic lines B and C shown in FIG. . Of course, for the characteristic lines B and C, even if the control voltage Vc of the VC 0202 is set to its lower limit or upper limit, the required carrier frequency cannot be obtained, so communication via some communication channels is not possible. C In particular, since mobile phones use high-frequency bands such as 800 MHz and 1.5 GHz, the oscillation frequency of VC0202 varies due to variations in elements. There are few that meet the ideal characteristic line A without adjustment.
そこで、 実際には特性線 B、 Cを有する VCO 202が製造された場合に、 V C O 2 0 2に含まれるいずれかの素子の素子定数を調整して、 特性線 Aを満たす ように発振周波数の可変範囲を調整することが行われている。 例えば、 パターン 配線によってインダク夕が形成されている場合に、 発振周波数をモニタ画面等に 表示させながら、 レーザトリミング等の手法によってそのパターンの一部を除去 することにより V C 0 2 0 2の発振周波数の可変範囲を変更して、 特性線 Aを満 たすようにしている。 あるいは、 V C〇 2 0 2に周波数調整用のトリマコンデン サを含ませておいて、 発振周波数をモニタ画面等に表示させながら、 このトリマ コンデンサの容量値を調整して、 特性線 Aを満たすようにしている。 Therefore, when a VCO 202 having characteristic lines B and C is actually manufactured, The variable range of the oscillation frequency is adjusted so as to satisfy the characteristic line A by adjusting the element constant of one of the elements included in CO 202. For example, when an inductance is formed by the pattern wiring, the oscillation frequency of the VC0 202 is obtained by removing a part of the pattern by a method such as laser trimming while displaying the oscillation frequency on a monitor screen or the like. Is changed so that the characteristic line A is satisfied. Alternatively, include a trimmer capacitor for frequency adjustment in VC〇202, and adjust the capacitance value of this trimmer capacitor while displaying the oscillation frequency on a monitor screen or the like so that the characteristic line A is satisfied. I have to.
このように、 従来の V C O 2 0 2は、 発振周波数の可変範囲を調整するために、 レ一ザトリミングによってィンダクタンスの値を調整したり、 トリマコンデンサ の容量値を調整したりしており、 いずれも特定の作業者が V C O 2 0 2の発振周 波数を監視しながら調整作業を行う必要があり、 調整に要する手間がかかるとい う問題点があった。 発明の開示  As described above, in the conventional VCO 202, in order to adjust the variable range of the oscillation frequency, the inductance value is adjusted by laser trimming, or the capacitance value of the trimmer capacitor is adjusted. In any case, it is necessary for a specific worker to perform the adjustment work while monitoring the oscillation frequency of the VCO 202, and there is a problem in that the adjustment work is time-consuming. Disclosure of the invention
本発明は、 このような点に鑑みて創作されたものであり、 その目的は、 容易に 電圧制御発振器の発振周波数の可変範囲を調整することができる電圧制御発振器 調整方式を提供することにある。  The present invention has been made in view of the above points, and an object of the present invention is to provide a voltage controlled oscillator adjustment method which can easily adjust the variable range of the oscillation frequency of the voltage controlled oscillator. .
本発明の電圧制御発振器調整方式では、 電圧制御発振器を所定周波数で発振動 作させたときに電圧制御発振器に印加される制御電圧の値に基づいて、 電圧制御 発振器の発振周波数の可変範囲を調整する可変範囲調整手段が備わっているため、 この可変範囲の調整を自動的に行うことができ、 調整に要する手間を省くことが できる。  In the voltage controlled oscillator adjustment method of the present invention, the variable range of the oscillation frequency of the voltage controlled oscillator is adjusted based on the value of the control voltage applied to the voltage controlled oscillator when the voltage controlled oscillator is oscillated at a predetermined frequency. Since the variable range adjusting means is provided, the variable range can be automatically adjusted, and the labor required for the adjustment can be saved.
また、 上述した電圧制御発振器は、 印加される制御電圧に応じて素子定数が変 更可能な第 1の素子定数可変素子と、 印加される調整電圧に応じて素子定数が変 更可能な第 2の素子定数可変素子とを含んで構成するとともに、 この第 2の素子 定数可変素子に印加される調整電圧の値を可変範囲調整手段によって調整するこ とが好ましい。 2つの素子定数可変素子の一方に印加する調整電圧の値を変更す ることにより、 他方に印加する制御電圧の値を変化させたときに発振周波数が変 化する範囲を容易に調整することができる。 Further, the above-described voltage-controlled oscillator includes a first element constant variable element whose element constant can be changed according to an applied control voltage, and a second element constant variable element whose element constant can be changed according to an applied adjustment voltage. It is preferable that the variable element adjuster adjusts the value of the adjustment voltage applied to the second element constant variable element by using a variable range adjuster. By changing the value of the adjustment voltage applied to one of the two element constant variable elements, the oscillation frequency changes when the value of the control voltage applied to the other is changed. The range to be formed can be easily adjusted.
特に、 上述した電圧制御発振器を L C共振回路を含んで構成し、 L C共振回路 においてィンダクタと並列に接続される第 1の可変容量ダイォードを上述した第 1の素子定数可変素子とし、 L C共振回路においてィンダクタと直列に接続され る第 2の可変容量ダイォードを第 2の素子定数可変素子とすることが好ましい。 ィンダクタと直列に接続された第 2の可変容量ダイォ一ドに調整電圧を印加する ことにより、 調整電圧に応じて設定される電圧制御発振器の発振周波数の可変範 囲を大きく変更することができる。  In particular, the above-mentioned voltage controlled oscillator is configured to include an LC resonance circuit, and in the LC resonance circuit, the first variable capacitance diode connected in parallel with the inductor is used as the above-described first element constant variable element, It is preferable that the second variable capacitance diode connected in series with the inductor is a second element constant variable element. By applying the adjustment voltage to the second variable capacitance diode connected in series with the inductor, the variable range of the oscillation frequency of the voltage controlled oscillator set according to the adjustment voltage can be largely changed.
また、 上述した可変範囲調整手段によって、 電圧制御発振器を所定周波数で発 振動作させたときの制御電圧の値が所定範囲から外れているときに制御電圧の値 がこの所定範囲に含まれるようになるまで調整電圧を変化させることが好ましい。 所定周波数に対応する制御電圧の値が所定範囲に含まれるように調整動作を行う ことにより、 発振周波数の可変範囲を所望値に設定することができる。  In addition, the variable range adjusting means described above allows the value of the control voltage to be included in the predetermined range when the value of the control voltage when the voltage controlled oscillator is oscillated at the predetermined frequency is out of the predetermined range. It is preferable to change the adjustment voltage until it is. By performing the adjusting operation so that the value of the control voltage corresponding to the predetermined frequency is included in the predetermined range, the variable range of the oscillation frequency can be set to a desired value.
また、 可変範囲調整手段によって調整動作開始時に設定される調整電圧の値は、 電源電圧のほぼ 1 / 2にすることが好ましい。 電源電圧のほぼ 1 / 2に調整電圧 を設定することにより、 以後の調整動作において調整電圧を任意方向に変化させ ることができるため、 調整動作開始時にずれている発振周波数の可変範囲を確実 に所望値に設定することができる。  Further, it is preferable that the value of the adjustment voltage set at the start of the adjustment operation by the variable range adjustment means is approximately / of the power supply voltage. By setting the adjustment voltage to approximately one-half of the power supply voltage, the adjustment voltage can be changed in any direction in the subsequent adjustment operation, so that the variable range of the oscillation frequency that is shifted at the start of the adjustment operation is ensured. It can be set to a desired value.
また、 可変範囲調整手段によつて調整された後の調整電圧の値を電圧値記憶手 段に記憶しておくことが好ましい。 調整後の調整電圧の値を記憶しておくことに より、 電源を投入する毎に最適な調整電圧の設定を行うことができる。  Further, it is preferable that the value of the adjusted voltage adjusted by the variable range adjusting means is stored in the voltage value storage means. By storing the value of the adjusted voltage after the adjustment, the optimum adjusted voltage can be set each time the power is turned on.
また、 分周器と位相比較器とローパスフィル夕を上述した電圧制御発振器と組 み合わせて周波数シンセサイザを構成することが好ましい。 可変範囲調整手段に よって分周器の分周比を所定の値に設定するだけで、 電圧制御発振器を所定周波 数で発振動作させることができるため、 上述した調整動作が容易となる。 図面の簡単な説明  It is preferable that a frequency synthesizer is configured by combining a frequency divider, a phase comparator, and a low-pass filter with the above-described voltage-controlled oscillator. The voltage control oscillator can be oscillated at a predetermined frequency only by setting the frequency division ratio of the frequency divider to a predetermined value by the variable range adjusting means, so that the above-described adjustment operation is facilitated. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明を適用した一実施形態の周波数調整機構の構成を示す図、 図 2は、 可変容量ダイオードに印加する調整電圧 V s と容量 C s との関係を示 す図、 FIG. 1 is a diagram illustrating a configuration of a frequency adjustment mechanism according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating a relationship between an adjustment voltage V s applied to a variable capacitance diode and a capacitance C s. Figure,
図 3は、 本実施形態の周波数調整機構によって V C 0の発振周波数の可変範囲 を調整する動作手順の流れ図、  FIG. 3 is a flowchart of an operation procedure for adjusting the variable range of the oscillation frequency of V C0 by the frequency adjustment mechanism of the present embodiment,
図 4は、 発振周波数の可変範囲の下限値 fmin と V C 0に印加される制御電圧 Vc との関係を示す図、  FIG. 4 is a diagram showing the relationship between the lower limit value fmin of the variable range of the oscillation frequency and the control voltage Vc applied to V C0,
図 5は、 V C 0を用いた従来の周波数シンセサイザの構成を示す図、 図 6は、 VCOに印加される制御電圧 Vc と発振周波数 fosc との関係を示す 図である。 発明を実施するための最良の形態  FIG. 5 is a diagram illustrating a configuration of a conventional frequency synthesizer using V C0, and FIG. 6 is a diagram illustrating a relationship between a control voltage Vc applied to a VCO and an oscillation frequency fosc. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した一実施形態について、 図面を参照しながら具体的に説 明する。  Hereinafter, an embodiment to which the present invention is applied will be specifically described with reference to the drawings.
図 1は、 本発明を適用した一実施形態の周波数調整機構の構成を示す図である 同図に示す周波数調整機構は、 周波数シンセサイザを形成する VC01 0、 分周 器 30、 位相比較器 40、 LP F 50と、 所定の調整用プログラムを実行するこ とにより VCO 1 0の発振周波数の可変範囲の調整を行う CPU 60およびメモ リ 70とを含んで構成されている。  FIG. 1 is a diagram showing a configuration of a frequency adjustment mechanism according to an embodiment to which the present invention is applied. The frequency adjustment mechanism shown in FIG. 1 includes a VC010 forming a frequency synthesizer, a frequency divider 30, a phase comparator 40, It is configured to include an LPF 50, a CPU 60 for adjusting a variable range of the oscillation frequency of the VCO 10 by executing a predetermined adjustment program, and a memory 70.
VCO 1 0は、 L C共振を利用した所定の発振動作を行うクラップ発振回路で あり、 L C共振回路においてインダクタ 1 2に対して並列に接続された可変容量 ダイオード 1 4に印加される逆バイアス電圧を、 LP F 5 0から印加される制御 電圧 Vc によって可変することにより、 可変の発振周波数 fosc が設定される。 また、 L C共振回路に含まれるインダクタ 1 2に対して直列に、 発振周波数の可 変範囲を調整するために可変容量ダイォード 2 0が接続されている。 この可変容 量ダイォード 2 0の逆バイアス電圧は、 CPU 60から印加される調整電圧 Vs によって設定されており、 この調整電圧 Vs を可変することにより VC〇 1 0の 発振周波数の可変範囲が調整される。  VCO 10 is a clap oscillation circuit that performs a predetermined oscillation operation using LC resonance. In the LC resonance circuit, a reverse bias voltage applied to a variable capacitance diode 14 connected in parallel to the inductor 12 in the LC resonance circuit is determined. , The variable oscillation frequency fosc is set by changing the control voltage Vc applied from the LPF 50. Further, a variable capacitance diode 20 is connected in series with the inductor 12 included in the LC resonance circuit in order to adjust the variable range of the oscillation frequency. The reverse bias voltage of the variable capacitance diode 20 is set by the adjustment voltage Vs applied from the CPU 60, and by varying the adjustment voltage Vs, the variable range of the oscillation frequency of VC〇10 is adjusted. You.
次に、 VCO 1 0の発振周波数について検討する。 ィンダク夕 1 2のィンダク タンスを L、 可変容量ダイオード 2 0の容量を Cs とすると、 ィンダクタ 1 2と 可変容量ダイォード 2 0とを直列接続した全体の合成インピーダンス L' は、 【数 1】
Figure imgf000008_0001
Next, the oscillation frequency of the VCO 10 will be considered. Assuming that the inductance of the inductor 12 is L and the capacitance of the variable capacitance diode 20 is Cs, the total combined impedance L ′ of the inductor 12 and the variable capacitance diode 20 connected in series is [Equation 1]
Figure imgf000008_0001
となる。 また、 可変容量ダイオード 14の容量を Cd、 これと並列に現れる周辺 素子の容量を△ Cとすると、 L C共振回路の各素子定数によって決定される V C 〇 10の発振周波数: fosc は、 Becomes Further, assuming that the capacitance of the variable capacitance diode 14 is Cd and the capacitance of the peripheral element appearing in parallel with this is △ C, the oscillation frequency of V C 〇10 determined by each element constant of the LC resonance circuit: fosc is
【数 2】  [Equation 2]
Figure imgf000008_0002
Figure imgf000008_0002
となる。 すなわち、 VCO 10の発振周波数 f osc は、 インダクタ 12に並列に 接続された可変容量ダイオード 14の容量 Cd を変化させる場合だけでなく、 ィ ンダクタ 1 2に直列に接続された可変容量ダイオード 20の容量 Cs を変化させ ることによって可変することができる。 したがって、 一方の可変容量ダイオード 14に印加する逆バイアス電圧を LP F 50から印加される制御電圧 Vc によつ て設定することにより、 VCO 10の発振周波数を可変に制御するとともに、 他 方の可変容量ダイォ一ド 2◦に印加する逆バイァス電圧を CPU 6◦から印加さ れる調整電圧 Vs によって設定することにより、 VC010の発振周波数の可変 範囲を調整することが可能になる。 Becomes That is, the oscillation frequency f osc of the VCO 10 varies not only when the capacitance Cd of the variable capacitance diode 14 connected in parallel with the inductor 12 is changed, but also when the capacitance of the variable capacitance diode 20 connected in series with the inductor 12. It can be varied by changing Cs. Therefore, by setting the reverse bias voltage applied to one variable capacitance diode 14 by the control voltage Vc applied from the LPF 50, the oscillation frequency of the VCO 10 is variably controlled, and the other variable voltage is set. By setting the reverse bias voltage applied to the capacitance diode 2 ° by the adjustment voltage Vs applied from the CPU 6 °, the variable range of the oscillation frequency of VC010 can be adjusted.
例えば、 C P U 60から可変容量ダイオード 20に印加される調整電圧 Vs が ある値に設定されており、 VCO 10が図 6に示した特性線 Bや Cを有している 場合には、 CPU 60から可変容量ダイォード 20に印加される調整電圧 Vs の 値を調整して可変容量ダイオード 20の容量 Cs を変化させることによって、 そ の特性を最適なもの (特性線 A) に一致させることができる。  For example, if the adjustment voltage Vs applied from the CPU 60 to the variable capacitance diode 20 is set to a certain value, and the VCO 10 has the characteristic lines B and C shown in FIG. By adjusting the value of the adjustment voltage Vs applied to the variable capacitance diode 20 to change the capacitance Cs of the variable capacitance diode 20, the characteristic can be made to match the optimum one (characteristic line A).
図 2は、 可変容量ダイオード 20に印加する調整電圧 Vs と容量 Cs との関係 を示す図である。 同図に示すように、 可変容量ダイオード 20は、 逆バイアス電 圧として両端に印加される調整電圧 Vs が大きくなると、 両端に現れる容量 Csが 小さくなるという特性を示している。 FIG. 2 is a diagram showing the relationship between the adjustment voltage Vs applied to the variable capacitance diode 20 and the capacitance Cs. As shown in the figure, the variable capacitance diode 20 has a reverse bias voltage. The characteristic shows that the capacitance Cs appearing at both ends decreases as the adjustment voltage Vs applied to both ends as the voltage increases.
例えば、 VCO 1 0が図 6に示す特性 Bを有している場合には、 LP F 50か ら印加される制御電圧 Vc に対応する発振周波数 f osc を下げる必要がある。 こ の場合には、 上述した (2) 式から、 可変容量ダイオード 20の容量 Cs を大き くしなければならない。 したがって、 図 2に示すように、 可変容量ダイオード 2 0に印加する調整電圧 Vs を下げればよい。  For example, when the VCO 10 has the characteristic B shown in FIG. 6, it is necessary to lower the oscillation frequency f osc corresponding to the control voltage Vc applied from the LPF 50. In this case, the capacitance Cs of the variable capacitance diode 20 must be increased from the above-described equation (2). Therefore, as shown in FIG. 2, the adjustment voltage Vs applied to the variable capacitance diode 20 may be reduced.
反対に、 VCO 1 0が図 6に示す特性 Cを有している場合には、 LP F 50か ら印加される制御電圧 Vc に対応する発振周波数 f osc を上げる必要がある。 こ の場合には、 上述した (2) 式から、 可変容量ダイオード 20の容量 Cs を小さ くしなければならない。 したがって、 図 2に示すように、 可変容量ダイオード 2 0に印加する調整電圧 Vs を上げればよい。  Conversely, when the VCO 10 has the characteristic C shown in FIG. 6, it is necessary to increase the oscillation frequency f osc corresponding to the control voltage Vc applied from the LPF 50. In this case, the capacitance Cs of the varactor diode 20 must be reduced from the above equation (2). Therefore, as shown in FIG. 2, the adjustment voltage Vs applied to the variable capacitance diode 20 may be increased.
分周器 30は、 VC〇 10から出力される信号の周波数 f osc を 1/N (Nは 整数) に分周する。 分周比 Nは変更可能であり、 その値は CPU 10によって設 定される。 位相比較器 40は、 分周器 30から出力される周波数が fosc /Nの 信号と周波数 f rの基準信号の位相比較を行い、 比較結果に応じたデューティ比 を有する信号を出力する。 LP F 50は、 この位相比較器 40から出力される信 号から高周波成分を除去することによって、 VCO 10に印加される直流の制御 電圧 Vc を生成する。  Divider 30 divides frequency f osc of the signal output from VC〇10 to 1 / N (N is an integer). The dividing ratio N can be changed, and its value is set by the CPU 10. The phase comparator 40 compares the phase of the signal of frequency fosc / N output from the frequency divider 30 with the reference signal of frequency fr, and outputs a signal having a duty ratio according to the comparison result. The LPF 50 removes high-frequency components from the signal output from the phase comparator 40 to generate a DC control voltage Vc applied to the VCO 10.
また、 CPU 60は、 A/D変換器および D/A変換器 (いずれも図示せず) を内蔵しており、 LPF 50から印加される制御電圧 Vc を A/D変換器でデジ タルデータに変換するとともに、 可変容量ダイォード 20に印加する調整電圧 V s を D/A変換器によって生成する。 また、 CPU 60は、 VCO 1 0から所望 の周波数を有する発振信号を出力するために、 分周器 40の可変分周比 Nの値を 設定する。 例えば、 要求される発振周波数が 1. 5 GH zであり、 位相比較器 4 0に入力される基準周波数: r が 100 kH zである場合には、 分周比 Nの値を 15000に設定する。  The CPU 60 has an A / D converter and a D / A converter (both not shown), and converts the control voltage Vc applied from the LPF 50 into digital data by the A / D converter. During the conversion, the adjustment voltage V s applied to the variable capacitance diode 20 is generated by the D / A converter. The CPU 60 sets the value of the variable frequency division ratio N of the frequency divider 40 in order to output an oscillation signal having a desired frequency from the VCO 10. For example, if the required oscillation frequency is 1.5 GHz and the reference frequency input to the phase comparator 40: r is 100 kHz, set the division ratio N to 15000. .
メモリ 70は、 CPU 60によって設定された調整電圧 Vs に対応するデ一夕 The memory 70 stores data corresponding to the adjustment voltage Vs set by the CPU 60.
(調整電圧データ) を記憶する。 一旦、 調整電圧データがメモリ 70に記憶され ると、 以後、 電源投入の度に CPU 60によってこの調整電圧データがメモリ 7 0から読み出され、 CPU 60内の D/A変換器によって調整電圧 Vs が生成さ れ、 可変容量ダイオード 20に印加される。 なお、 最近の携帯電話やその他の通 信機器は、 液晶表示装置に対する表示制御等を行うために、 汎用の CPUやこの CP Uの動作プログラムや各種のデータを格納するメモリを備えるものがほとん どであり、 これらを上述した CPU 60やメモリ 70として用いることができる c 上述した CPU 60が可変範囲調整手段に、 可変容量ダイオード 14が第 1の 素子定数可変素子に、 可変容量ダイオード 20が第 2の素子定数可変素子に、 メ モリ 70が電圧値記憶手段にそれぞれ対応する。 (Adjustment voltage data). Once the adjustment voltage data is stored in the memory 70, Then, every time the power is turned on, the adjustment voltage data is read from the memory 70 by the CPU 60, the adjustment voltage Vs is generated by the D / A converter in the CPU 60, and applied to the variable capacitance diode 20. Is done. Most of recent mobile phones and other communication devices are equipped with a general-purpose CPU and a memory for storing the operation program of the CPU and various data in order to control the display of the liquid crystal display device. These can be used as the CPU 60 and the memory 70 described above.c The CPU 60 described above is used as the variable range adjusting means, the variable capacitance diode 14 is used as the first element constant variable element, and the variable capacitance diode 20 is used as the second element constant variable element. The memory 70 corresponds to the voltage value storage means.
本実施形態の周波数調整機構はこのような構成を有しており、 次にその動作を 説明する。 図 3は、 本実施形態の周波数調整機構によって VCO 1 0の発振周波 数の可変範囲を調整する動作手順の流れ図である。  The frequency adjustment mechanism of the present embodiment has such a configuration, and the operation will be described next. FIG. 3 is a flowchart of an operation procedure for adjusting the variable range of the oscillation frequency of the VCO 10 by the frequency adjustment mechanism of the present embodiment.
電源が投入されると、 まず CPU 60は、 可変容量ダイオード 20に印加する 調整電圧 Vs を電源電圧 Vccの 1/2に設定する (ステップ 100) 。 ここで、 可変容量ダイオード 20に電源電圧 Vccの 1 / 2の調整電圧 Vs を印加するのは、 後に行われる調整電圧 Vs の制御動作において、 調整電圧 Vs を上げる方向に変 化させるのか下げる方向に変化させるのかが不明だからであり、 このような調整 電圧 Vs に対応する VCO 10の特性が図 6に示した曲線 B、 Cのどちらに対し ても調整が可能となる。  When the power is turned on, first, the CPU 60 sets the adjustment voltage Vs applied to the variable capacitance diode 20 to 1/2 of the power supply voltage Vcc (step 100). Here, the adjustment voltage Vs which is 1/2 of the power supply voltage Vcc is applied to the variable capacitance diode 20 in the control operation of the adjustment voltage Vs performed later, in the direction of increasing or decreasing the adjustment voltage Vs. This is because it is unclear whether the characteristic is changed or not. The characteristic of the VCO 10 corresponding to such an adjustment voltage Vs can be adjusted with respect to either of the curves B and C shown in FIG.
次に、 CPU 60は、 分周器 30の分周比 Nを要求される発振周波数の可変範 囲の下限値 fmin に対応する値に設定する (ステップ 10 1 ) 。 例えば、 周波数 の下限値 fmin が 1. 45 GH zであり、 位相比較器 40に入力される基準信号 の周波数が 100 kH zである場合には、 分周比 Nは 14500となる。  Next, the CPU 60 sets the frequency division ratio N of the frequency divider 30 to a value corresponding to the lower limit value fmin of the required variable range of the oscillation frequency (step 101). For example, when the lower limit value fmin of the frequency is 1.45 GHz and the frequency of the reference signal input to the phase comparator 40 is 100 kHz, the division ratio N is 14500.
次に、 CPU 60は、 LP F 50から VCO 10に印加される制御電圧 Vc を A/D変換器でデジタルデータに変換して読み取り (ステップ 1 02) 、 その値 が所定範囲内にあるか否かを判定する (ステップ 103) 。  Next, the CPU 60 converts the control voltage Vc applied from the LPF 50 to the VCO 10 into digital data by the A / D converter and reads it (step 102), and determines whether the value is within a predetermined range. Is determined (step 103).
図 4は、 発振周波数の可変範囲の下限値 fmin と V C 01 0に印加される制御 電圧 Vc との関係を示す図である。 同図において特性線 Dで示されるように、 制 御電圧 Vc を可変したときに、 VCO 1 0の発振周波数 fosc の可変範囲に fmi n から fmax までの全範囲が含まれている場合には、 VCO 1 0の発振周波数の 下限値 fmin に対応する制御電圧 Vc が図 4に示す所定の範囲 V 1〜V 2に含ま れているはずである。 上述したステップ 1 03において、 CPU 60は、 読み取 つた制御電圧 Vc がこの所定範囲 V 1〜V 2に含まれているか否かを判定してい る。 FIG. 4 is a diagram showing the relationship between the lower limit value fmin of the variable range of the oscillation frequency and the control voltage Vc applied to VC010. As shown by the characteristic line D in the figure, when the control voltage Vc is varied, the frequency range of the oscillation frequency fosc of VCO 10 becomes fmi When the entire range from n to fmax is included, the control voltage Vc corresponding to the lower limit value fmin of the oscillation frequency of the VCO 10 is included in the predetermined range V1 to V2 shown in FIG. Should be. In step 103 described above, the CPU 60 determines whether or not the read control voltage Vc is included in the predetermined range V1 to V2.
制御電圧 Vc が所定範囲に含まれている場合には調整電圧 Vs を変更する必要 がないため、 このときの調整電圧 Vs の値に対応する調整電圧デ一夕をメモリ 7 0に記憶して (ステップ 1 04) 、 発振周波数の可変範囲の調整動作の終了する。 また、 制御電圧 Vc が所定範囲に含まれていない場合には、 CPU 60は、 制 御電圧 Vc が所定範囲の上限値 V2を越えているか否かを判定する (ステップ 1 05) 。 制御電圧 Vc がこの上限値 V 2を越えている場合とは、 図 6に示した特 性線 Cに対応する場合に対応しており、 制御電圧 Vc に対する VCO 1 0の発振 周波数を上げる必要がある。 したがって、 CPU 60は、 制御電圧 Vc が所定範 囲の上限値 V 2を越えている場合には、 可変容量ダイオード 2 0に印加する調整 電圧 Vs を所定量だけ上げる制御を行う (ステップ 1 06) 。 これにより、 可変 容量ダイオード 2 0の容量 Cs が小さくなるため、 発振周波数 fosc が所定量だ け高い方に変化するように動作する。 但し、 実際には VCO 1 0の発振周波数 f osc は、 可変範囲の下限値 fmin に固定されるため、 VCO 1 0に印加される制 御電圧 Vc が低くなる。 その後、 ステップ 1 02に戻って調整動作が繰り返され る。  When the control voltage Vc is within the predetermined range, there is no need to change the adjustment voltage Vs. Therefore, the adjustment voltage data corresponding to the value of the adjustment voltage Vs at this time is stored in the memory 70 ( Step 104) End the adjustment operation of the variable range of the oscillation frequency. If the control voltage Vc is not included in the predetermined range, the CPU 60 determines whether or not the control voltage Vc has exceeded the upper limit value V2 of the predetermined range (step 105). The case where the control voltage Vc exceeds the upper limit V2 corresponds to the case corresponding to the characteristic line C shown in FIG. 6, and it is necessary to increase the oscillation frequency of the VCO 10 with respect to the control voltage Vc. is there. Therefore, when the control voltage Vc exceeds the upper limit value V2 of the predetermined range, the CPU 60 performs control to increase the adjustment voltage Vs applied to the variable capacitance diode 20 by a predetermined amount (step 106). . As a result, the capacitance Cs of the variable capacitance diode 20 decreases, and the oscillation frequency fosc operates to change to a higher value by a predetermined amount. However, in practice, the oscillation frequency f osc of the VCO 10 is fixed to the lower limit value fmin of the variable range, so that the control voltage Vc applied to the VCO 10 becomes lower. Then, returning to step 102, the adjustment operation is repeated.
反対に、 制御電圧 Vc が所定範囲の下限値 V 1より低い場合には上述したステ ップ 1 05において否定判断がなされ、 次に CPU 60は、 可変容量ダイオード 20に印加する調整電圧 Vs を所定量だけ下げる制御を行う (ステップ 1 07) c これにより、 可変容量ダイオード 2 0の容量 Cs が大きくなるため、 発振周波数 f osc が高い方に変化するように動作し、 結果的に VCO 1 0を可変範囲の下限 値; fmin に対応する制御電圧 Vc が高くなる。 その後、 ステップ 1 02に戻って 調整動作が繰り返される。 このようにして、 V CO 1 0の発振周波数の可変範囲 の下限値 fmin に対応する制御電圧 Vc が所定範囲 V 1〜V 2から外れる場合に は、 この制御電圧 Vc が所定範囲に含まれるように調整電圧 Vs の値が調整され、 このときの調整電圧データがメモリ 70に格納されて、 一連の調整動作が終了す る。 Conversely, if the control voltage Vc is lower than the lower limit value V1 of the predetermined range, a negative determination is made in step 105 described above, and then the CPU 60 determines the adjustment voltage Vs to be applied to the variable capacitance diode 20. Perform control to lower only by a fixed amount (Step 107). C As a result, since the capacitance Cs of the variable capacitance diode 20 increases, the oscillation frequency f osc operates to change to a higher value, and as a result, the VCO 10 decreases. The lower limit of the variable range; the control voltage Vc corresponding to fmin increases. Then, returning to step 102, the adjustment operation is repeated. In this manner, when the control voltage Vc corresponding to the lower limit value fmin of the variable range of the oscillation frequency of VCO 10 falls outside the predetermined range V1 to V2, the control voltage Vc is included in the predetermined range. The value of the adjustment voltage Vs is adjusted The adjustment voltage data at this time is stored in the memory 70, and a series of adjustment operations ends.
このように、 本実施形態の周波数調整機構は、 VCO 1 0の発振周波数の可変 範囲に、 必要な発振周波数の下限値: min から上限値 fmax までの全範囲が含ま れていない場合には、 可変容量ダイオード 2 0に印加する調整電圧 Vs の値を自 動的に調整することにより、 VCO 1 0の発振周波数の可変範囲を変更する。 し たがって、 VCO 1 0の製造時に、 作業者が発振周波数特性を表示したモニタ画 面等を見ながら、 VCO 1 0の発振周波数の可変範囲を調整するといつた煩雑な 作業を行う必要がなく、 容易に V CO 1 0の発振周波数の可変範囲を調整するこ とができる。  As described above, the frequency adjustment mechanism of the present embodiment is configured such that when the variable range of the oscillation frequency of the VCO 10 does not include the entire range from the lower limit value of the required oscillation frequency: min to the upper limit value fmax, The variable range of the oscillation frequency of the VCO 10 is changed by automatically adjusting the value of the adjustment voltage Vs applied to the variable capacitance diode 20. Therefore, when the VCO 10 is manufactured, if the operator adjusts the variable range of the oscillation frequency of the VCO 10 while looking at the monitor screen or the like displaying the oscillation frequency characteristics, there is no need to perform complicated work. The variable range of the oscillation frequency of VCO 10 can be easily adjusted.
また、 VCO 1 0の発振周波数の可変範囲を調整した際に可変容量ダイオード 20に印加した調整電圧 Vs の値に対応する調整電圧データをメモリ Ί 0に記憶 することによって、 それ以降の電源投入時等には、 メモリ 7 0からこの調整電圧 データを読み出して、 対応する調整電圧 Vs を可変容量ダイオード 2 0に印加す るだけでよいため、 調整電圧 Vs の自動調整を行った場合の処理の負担を軽くす ることができる。  In addition, the adjustment voltage data corresponding to the value of the adjustment voltage Vs applied to the variable capacitance diode 20 when the variable range of the oscillation frequency of the VCO 10 is adjusted is stored in the memory Ί0. For example, it is only necessary to read this adjustment voltage data from the memory 70 and apply the corresponding adjustment voltage Vs to the variable capacitance diode 20.Therefore, the processing load when the adjustment voltage Vs is automatically adjusted Can be reduced.
また、 調整動作の初期状態において、 可変容量ダイオード 20に印加する調整 電圧 Vs を電源電圧 Vccの 1/2に設定することによって、 VCO 1 0の発振周 波数の可変範囲を任意の方向に変更することができ、 VCO 1 0の発振周波数の ばらつきが大きい場合であっても確実に所定の可変範囲を確保することができる なお、 本発明は上記実施形態に限定されるものではなく、 本発明の要旨の範囲 内で種々の変形実施が可能である。 例えば、 上述した実施形態では、 VCO 1 0 として L C発振回路の一種であるクラップ発振回路を用いたが、 発振周波数等に よってはクラップ発振回路以外の L C発振回路、 あるいはそれ以外の発振回路を 用いて、 発振周波数の可変範囲を自動調整するようにしてもよい。  Also, in the initial state of the adjustment operation, the variable range of the oscillation frequency of the VCO 10 is changed in an arbitrary direction by setting the adjustment voltage Vs applied to the variable capacitance diode 20 to 1/2 of the power supply voltage Vcc. It is possible to reliably secure a predetermined variable range even when the variation in the oscillation frequency of the VCO 10 is large.The present invention is not limited to the above-described embodiment. Various modifications can be made within the scope of the gist. For example, in the above-described embodiment, a clap oscillation circuit, which is a kind of LC oscillation circuit, is used as the VCO 10. Thus, the variable range of the oscillation frequency may be automatically adjusted.
また、 上述した実施形態では、 VCO 1 0の発振周波数を必要な可変範囲の下 限値 fmin に設定し、 このときに VC01 0に印加される制御電圧 Vc が所定範 囲 V 1〜V 2に含まれているか否かを判断したが、 VC 01 0の発振周波数を必 要な可変範囲の上限値 f max に設定し、 このときに VCO 1 0に印加される制御 電圧 Vc が所定範囲 V I ' 〜V2' に含まれているか否かを判断するようにして もよい。 あるいは、 下限値: min や上限値 f max に対応する制御電圧 Vc の値を 読み取って所定の調整動作を行うのではなく、 中間値: f mid に対応する制御電圧 Vc の値を読み取るようにしてもよい。 産業上の利用可能性 In the above-described embodiment, the oscillation frequency of the VCO 10 is set to the lower limit value fmin of the required variable range, and the control voltage Vc applied to VC01 0 at this time falls within the predetermined range V1 to V2. Although it was determined whether or not it was included, the oscillation frequency of VC010 was set to the upper limit value fmax of the required variable range, and the control applied to VCO10 at this time was set. It may be determined whether the voltage Vc is included in the predetermined range VI ′ to V2 ′. Alternatively, instead of reading the value of the control voltage Vc corresponding to the lower limit value: min or the upper limit value f max and performing the predetermined adjustment operation, read the value of the control voltage Vc corresponding to the intermediate value: f mid. Is also good. Industrial applicability
上述したように、 本発明によれば、 電圧制御発振器を所定周波数で発振動作さ せたときに電圧制御電圧に印加される制御電圧の値に基づいて、 電圧制御発振器 の発振周波数の可変範囲を自動的に調整しており、 容易に発振周波数の可変範囲 を調整することができる。  As described above, according to the present invention, the variable range of the oscillation frequency of the voltage-controlled oscillator is determined based on the value of the control voltage applied to the voltage-controlled voltage when the voltage-controlled oscillator is oscillated at the predetermined frequency. It is adjusted automatically, and the variable range of the oscillation frequency can be easily adjusted.

Claims

請 求 の 範 囲 The scope of the claims
1 . 印加される制御電圧に応じて所定の発振動作を行う電圧制御発振器と、 前記電圧制御発振器を所定周波数で発振動作させたときに、 この所定周波数に 対応する前記制御電圧の値に基づいて、 前記電圧制御発振器の発振周波数の可変 範囲を調整する可変範囲調整手段と、  1. A voltage-controlled oscillator that performs a predetermined oscillating operation according to the applied control voltage, and based on a value of the control voltage corresponding to the predetermined frequency when the voltage-controlled oscillator is oscillated at a predetermined frequency. A variable range adjusting means for adjusting a variable range of the oscillation frequency of the voltage controlled oscillator;
を備えることを特徴とする電圧制御発振器調整方式。  A voltage-controlled oscillator adjustment method comprising:
2 . 前記電圧制御発振器は、 印加される前記制御電圧に応じて素子定数が変更可 能な第 1の素子定数可変素子と、 印加される調整電圧に応じて素子定数が変更可 能な第 2の素子定数可変素子とを含んでおり、  2. The voltage controlled oscillator includes a first element constant variable element whose element constant can be changed according to the applied control voltage, and a second element constant variable element whose element constant can be changed according to the applied adjustment voltage. And an element constant variable element of
前記可変範囲調整手段によって、 前記調整電圧の値を調整することを特徴とす る請求の範囲第 1項記載の電圧制御発振器調整方式。  2. The voltage controlled oscillator adjustment method according to claim 1, wherein the value of the adjustment voltage is adjusted by the variable range adjustment means.
3 . 前記電圧制御発振器は、 L C共振回路を含んでおり、 3. The voltage controlled oscillator includes an LC resonance circuit,
前記第 1の素子定数可変素子は、 前記 L C共振回路においてィンダクタと並列 に接続される第 1の可変容量ダイォードであり、 前記第 2の素子定数可変素子は、 前記 L C共振回路において前記ィンダクタと直列に接続される第 2の可変容量ダ ィオードであることを特徴とする請求項範囲第 2項記載の電圧制御発振器調整方 式。  The first element constant variable element is a first variable capacitance diode connected in parallel with the inductor in the LC resonance circuit, and the second element constant variable element is connected in series with the inductor in the LC resonance circuit. 3. The voltage-controlled oscillator adjusting method according to claim 2, wherein the voltage-controlled oscillator is a second variable capacitance diode connected to the voltage-controlled oscillator.
4 . 前記可変範囲調整手段は、 前記電圧制御発振器を前記所定周波数で発振動作 させたときに、 前記制御電圧発振器に印加される前記制御電圧の値が所定範囲か ら外れているときに、 前記制御電圧の値がこの所定範囲に含まれるようになるま で前記調整電圧を変化させることを特徴とする請求の範囲第 2項記載の電圧制御 発振器調整方式。  4. The variable range adjusting means, when the voltage controlled oscillator is oscillated at the predetermined frequency, when the value of the control voltage applied to the control voltage oscillator is out of a predetermined range, 3. The voltage-controlled oscillator adjusting method according to claim 2, wherein the adjusting voltage is changed until the value of the control voltage falls within the predetermined range.
5 . 前記可変範囲調整手段は、 調整動作開始時に、 前記調整電圧を電源電圧のほ ぽ 1 / 2に設定することを特徴とする請求の範囲第 2項記載の電圧制御発振器調 整方式。  5. The voltage controlled oscillator adjustment method according to claim 2, wherein said variable range adjustment means sets said adjustment voltage to approximately 1/2 of a power supply voltage at the start of an adjustment operation.
6 . 前記可変範囲調整手段によって調整された後の前記調整電圧の値を記憶する 電圧値記憶手段をさらに備えることを特徴とする請求の範囲第 2項記載の電圧制 御発振器調整方式。  6. The voltage-controlled oscillator adjustment method according to claim 2, further comprising a voltage value storage means for storing the value of the adjustment voltage adjusted by the variable range adjustment means.
7 . 前記電圧制御発振器の出力信号に対して所定の分周動作を行う分周器と、 前記分周器から出力される分周信号と所定の周波数を有する基準信号との位相 比較を行う位相比較器と、 7. A frequency divider that performs a predetermined frequency division operation on an output signal of the voltage controlled oscillator, A phase comparator that performs a phase comparison between the frequency-divided signal output from the frequency divider and a reference signal having a predetermined frequency;
前記位相比較器の出力信号に基づいて前記制御電圧を生成するローパスフィル 夕と、  A low-pass filter that generates the control voltage based on an output signal of the phase comparator;
をさらに備えており、 前記可変範囲調整手段によって前記分周器の分周比を所 定の値に設定することにより、 前記電圧制御発振器を前記所定周波数で発振動作 させることを特徴とする請求の範囲第 1項記載の電圧制御発振器調整方式。  Further comprising: setting the frequency division ratio of the frequency divider to a predetermined value by the variable range adjusting means, so that the voltage controlled oscillator oscillates at the predetermined frequency. The voltage-controlled oscillator adjustment method according to item 1.
8 . 前記可変範囲調整手段は、 所定の調整用プログラムを実行することにより調 整動作を行う C P Uによって構成されていることを特徴とする請求の範囲第 1項 記載の電圧制御発振器調整方式。  8. The voltage-controlled oscillator adjusting method according to claim 1, wherein the variable range adjusting means is configured by a CPU which performs an adjusting operation by executing a predetermined adjusting program.
PCT/JP1999/004696 1998-09-04 1999-08-31 Method of adjusting voltage-controlled oscillator WO2000014880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10267302A JP2000082957A (en) 1998-09-04 1998-09-04 Oscillation frequency variable range adjusting system
JP10/267302 1998-09-04

Publications (1)

Publication Number Publication Date
WO2000014880A1 true WO2000014880A1 (en) 2000-03-16

Family

ID=17442949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004696 WO2000014880A1 (en) 1998-09-04 1999-08-31 Method of adjusting voltage-controlled oscillator

Country Status (2)

Country Link
JP (1) JP2000082957A (en)
WO (1) WO2000014880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193875A1 (en) * 2000-09-15 2002-04-03 Alcatel Voltage-controlled oscillator with automatic center frequency calibration
CN109600124A (en) * 2018-12-29 2019-04-09 厦门英诺迅科技有限公司 A kind of voltage-controlled tuning frequency-selective network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746986B1 (en) 2000-04-24 2004-06-08 Nisshin Steel Co., Ltd. Painted metal sheet for printing with a sublimation dye

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284001A (en) * 1993-03-26 1994-10-07 Mitsubishi Electric Corp Voltage-controlled type variable frequency oscillator
JPH0879069A (en) * 1994-09-08 1996-03-22 Mitsubishi Electric Corp Vco circuit and pll circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284001A (en) * 1993-03-26 1994-10-07 Mitsubishi Electric Corp Voltage-controlled type variable frequency oscillator
JPH0879069A (en) * 1994-09-08 1996-03-22 Mitsubishi Electric Corp Vco circuit and pll circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193875A1 (en) * 2000-09-15 2002-04-03 Alcatel Voltage-controlled oscillator with automatic center frequency calibration
US6556093B2 (en) 2000-09-15 2003-04-29 Alcatel Voltage controlled oscillator with automatic center frequency calibration
CN109600124A (en) * 2018-12-29 2019-04-09 厦门英诺迅科技有限公司 A kind of voltage-controlled tuning frequency-selective network

Also Published As

Publication number Publication date
JP2000082957A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US5600279A (en) VCO having adjustment for fluctuations in relation between control voltage and output frequency
JP2002280901A (en) Method for adjusting oscillator, and adjustable oscillator
JP4076350B2 (en) Semiconductor integrated circuit for communication and wireless communication system
KR20010112619A (en) Voltage controlled oscillation circuit
JP2000307458A (en) Tuner ic incorporating pll
US6940359B2 (en) PLL frequency synthesizer using charge pump
WO2000014880A1 (en) Method of adjusting voltage-controlled oscillator
JP2002164786A (en) Fraction and fast response frequency synthesizer and corresponding frequency synthesizing method
JP4794790B2 (en) Variable frequency oscillator
EP1227592A2 (en) Frequency synthesizer and method of generating frequency-divided signal
WO2005031978A1 (en) Pll frequency synthesizer
US6778028B2 (en) Temperature-compensated radio-frequency oscillator and communication device
CN101162889B (en) Voltage controlled oscillator and its control method
JPH07202638A (en) Voltage controlled oscillator
WO2006125473A1 (en) Frequency generation in a wireless communication unit
EP1271788B1 (en) Circuits for use in radio communications
US6140851A (en) PLL synthesizer having a voltage controlled oscillator with tuning offset and output tuning controlled
JP2002540707A (en) Multi-band oscillator using switching inductor
KR100316845B1 (en) Apparatus for combining phase locked frequencies with a dual frequency bands
JPH05300013A (en) Vco circuit
JPH05327490A (en) Pll circuit
JPH0851336A (en) Low-pass filter capable of automatic calibration
KR100353857B1 (en) Voltage control oscillator of dual band intermediate frequency in a mobile station
JPH1022736A (en) Radio communication equipment with modulation correction function and modulation correcting method
JPH11274951A (en) Low power radio system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase