[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2000012787A1 - Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them - Google Patents

Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them Download PDF

Info

Publication number
WO2000012787A1
WO2000012787A1 PCT/JP1999/004652 JP9904652W WO0012787A1 WO 2000012787 A1 WO2000012787 A1 WO 2000012787A1 JP 9904652 W JP9904652 W JP 9904652W WO 0012787 A1 WO0012787 A1 WO 0012787A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
wafer
doped
crystal wafer
Prior art date
Application number
PCT/JP1999/004652
Other languages
French (fr)
Japanese (ja)
Inventor
Masaro Tamatsuka
Ken Aihara
Katsuhiko Miki
Hiroshi Takeno
Yoshinori Hayami
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP26084398A external-priority patent/JP2000072595A/en
Priority claimed from JP26084698A external-priority patent/JP3412531B2/en
Priority claimed from JP26084498A external-priority patent/JP3433678B2/en
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to US09/529,661 priority Critical patent/US6478883B1/en
Priority to KR1020007004623A priority patent/KR100588098B1/en
Priority to EP99940537A priority patent/EP1035236A4/en
Publication of WO2000012787A1 publication Critical patent/WO2000012787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Definitions

  • the present invention relates to an epitaxial silicon single crystal wafer for semiconductor device production with few heavy metal impurities harmful to the reliability of the device existing in the epitaxial layer, and a boron single silicon wafer serving as the substrate thereof.
  • the present invention relates to a crystal wafer, an antimony-silicon single-crystal wafer, a Lind-silicon single-crystal wafer, and methods for producing these. Background art
  • Epitaxial silicon single crystal wafers have long been used as wafers for producing individual semiconductors, bipolar ICs, and the like because of their excellent properties. MOSLSI is also widely used in microprocessor unit flash memory devices because of its excellent soft error and latchup characteristics. In addition, the demand for epitaxial silicon single crystal wafers is increasing to reduce DRAM reliability failure due to so-called Grown-in defects introduced during silicon single crystal manufacturing. ing.
  • heavy metal impurities on the epitaxial silicon single crystal wafer used in such semiconductor devices may cause the semiconductor devices to have poor characteristics.
  • antimony-doped N-type substrates used for low-resistance devices (hereinafter referred to as antimony-doped silicon single-crystal wafers) have an atomic radius of antimony that is larger than that of silicon.
  • the density of G row-in defects is higher than that of a normal boron-doped P-type substrate (hereinafter referred to as a boron-silicon single crystal wafer). This was a problem because the effect of rown-in defects was very large compared to other substrates.
  • Ultra high boron silicon single crystal substrate is used as the substrate for epitaxy growth and has a resistivity of less than 1 ⁇ 'cm.
  • the device yield is higher than when a ⁇ + type substrate with a high boron concentration of 1 1 ⁇ ⁇ .cm or less (hereinafter referred to as a high boron-doped silicon single crystal layer 18) is used as the substrate wafer.
  • a high boron-doped silicon single crystal layer 18 a ⁇ + type substrate with a high boron concentration of 1 1 ⁇ ⁇ .cm or less
  • the ultra-high boron doped silicon single crystal wafer has a very high boron concentration, there is a problem that the boron impurity in the substrate, which is called auto-doping, jumps out into the gas phase and is taken into the epitaxial growth layer again. Occurs.
  • N-type substrate doped with phosphorus hereinafter referred to as a "lin-doped silicon single crystal wafer" or an N-type substrate such as antimony-p-silicon single crystal wafer is used as a substrate wafer for epitaxy growth.
  • these N-type substrates have a problem that oxygen precipitation is less likely to occur as compared with a polysilicon single crystal wafer.
  • Such a lack of gettering ability due to a lack of oxygen precipitation on the N-type substrate is a fatal problem in devices such as CCDs that are sensitive to crystal defects caused by heavy metal impurities.
  • a first stage heat treatment at a high temperature of 110 ° C. or higher which is called IG heat treatment
  • a second stage heat treatment at about 600 ° C. to 700 ° C.
  • oxygen precipitate formation heat treatment at about 100 ° C. is performed for several hours.
  • the present invention has been made in view of such problems, and is directed to a high boron-doped silicon single crystal wafer, an antimony silicon single crystal wafer, and a phosphorus-doped silicon single crystal wafer. Therefore, despite the fact that the oxygen concentration in the substrate is suppressed to a level that does not cause problems such as deformation of the wafer and a decrease in the strength of the wafer, silicon is easily deposited in oxygen and has a high gettering ability.
  • the main purpose is to produce and supply an epitaxial silicon single crystal wafer with extremely low concentration of heavy metal impurities in an epitaxial layer grown by using the wafer as a wafer for the substrate with high productivity. .
  • the present invention for solving the above-mentioned problems is directed to a silicon single crystal wafer doped with a dopant, comprising: an oxygen precipitate or an oxidation-induced stacking fault density after a heat treatment for precipitation of the silicon single crystal wafer.
  • a dopant comprising: an oxygen precipitate or an oxidation-induced stacking fault density after a heat treatment for precipitation of the silicon single crystal wafer.
  • the good sea urchin, a silicon single crystal Ueha doped with de one pan DOO, oxygen precipitates or oxidation induced stacking fault density after the precipitation heat treatment of ⁇ Shi Li Gong monocrystalline ⁇ E one tooth is 1 XI 0 9 pieces
  • Silicon single crystal wafers having a cm 3 or more have a high gettering effect regardless of the type of dopant, and these wafers are used as epitaxy silicon single crystal wafers. If it is used for the substrate wafer, a high-quality epitaxial silicon single crystal wafer can be obtained.
  • the present invention for solving the above-mentioned problem provides a boron-doped silicon single crystal wafer having a resistivity of l O m Q'cm or more and 100 m ⁇ cm or less,
  • the oxygen concentration in the boron-doped silicon single crystal wafer is not more than 16 ppma (JEIDA: Japan Electronic Industry Development Association standard), and the oxygen precipitate or oxidation-induced stacking fault density after the heat treatment for precipitation is 1
  • X 1 is a boron-doped silicon single crystal ⁇ E one cog, characterized in that at 0 9 cm 3 or more.
  • a boron single-crystal silicon wafer having a resistivity of 10 m ⁇ ⁇ cm or more and 100 m ⁇ ⁇ cm or less, wherein the boron-doped silicon single crystal wafer Oxygen precipitates with a low oxygen concentration of 16 ppma or less but oxygen precipitates or oxidized and melted stacking faults after precipitation heat treatment of 1 ⁇ 10 9 / cm 3 or more
  • Doped silicon single crystal wafers have a high gettering ability against heavy metal impurities such as copper and nickel, and the oxygen concentration in the wafers is low, so that the wafers may be deformed or the strength of the wafers may be insufficient. It is possible to prevent snarling.
  • the present invention also provides a boron-silicon single crystal wafer having a resistivity of 10 m ⁇ cm to 100 m ⁇ cm,
  • the boron-doped silicon single-crystal wafer is obtained by slicing a silicon single-crystal rod grown by doping nitrogen by the Chiyo-Kralski method. This is a single crystal crystal wafer.
  • silicon monocrystal rods grown by doping with nitrogen by the method are sliced, oxygen precipitation is promoted by the presence of nitrogen in the bulk part of the wafer. Therefore, even if the oxygen concentration in the substrate is low enough not to cause problems such as deformation of the wafer or reduction in the strength of the wafer, the substrate has a high gettering effect. Become.
  • the boron-doped silicon single-crystal wafer when such a boron-doped silicon single-crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, impurities due to a dopant in the epitaxial layer can be obtained.
  • an epitaxial silicon single crystal wafer having a high gettering effect and a very low heavy metal impurity concentration can be obtained with high productivity.
  • the boron-doped silicon single crystal wafer can have an oxygen concentration of 16 ppma or less.
  • the oxygen content is 16 ppma or less as described above, the risk of deformation of the wafer and the decrease in the strength of the wafer are further reduced, and the formation of crystal defects in the boron single-crystal silicon wafer is suppressed.
  • the formation of oxygen precipitates on the surface layer of the wafer can be prevented. Therefore, when the epitaxial layer is formed on the wafer surface, there is no adverse effect on the crystallinity of the epitaxial layer.
  • oxygen precipitation is promoted by the presence of nitrogen in the bulk portion, the gettering effect can be sufficiently exhibited even with such low oxygen.
  • the present invention for solving the above-mentioned problem is directed to an antimony-polysilicon single crystal wafer, wherein the density of crystal defects on the surface of the antimony-silicon single crystal wafer is 0.1 / cm2.
  • an antimony-doped silicon single-crystal wafer having a crystal defect density of 0.1 cm 2 or less on the surface of the antimony-doped silicon single-crystal wafer is: This is a silicon single crystal wafer in which the density of grown-in defects on the wafer surface is extremely small as compared with the conventional antimony silicon single crystal wafer. Therefore, if such an antimony-silicon single-crystal wafer is used as a substrate for manufacturing an epitaxial wafer, an epitaxial silicon single-crystal wafer having a high-quality epitaxy layer can be obtained. I can get one.
  • the present invention is antimony Dopushiri con single crystal ⁇ E - A c, oxygen precipitates or oxidation induced electromotive stacking fault density after the precipitation heat treatment of the en Chimondo one psiri con single crystal Ueha is 1 X 1 0 9 pieces
  • the antimony-doped silicon single crystal wafer has an oxygen precipitate or oxidation-induced laminar defect density of 1 ⁇ 10 9 after the heat treatment for precipitation of the antimony-doped silicon single crystal wafer. Since the antimony-doped silicon single crystal wafer having the number of pieces / cm 3 or more has an extremely high gettering ability, the density of heavy metal impurities on the wafer surface is high. It becomes a silicon single crystal wafer with extremely low degree. Therefore, when such an anti-monitor silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, an epitaxial silicon wafer having a high-quality epitaxy layer can be obtained. A single crystal wafer can be obtained.
  • the present invention relates to an antimony-doped silicon single crystal wafer, wherein the density of crystal defects on the surface of the antimony-doped silicon single crystal wafer is 0.1 Zcm 2 or less, and antimony-doped silicon single crystal ⁇ Eha, wherein the oxygen precipitates or oxidation induced stacking fault density after the heat treatment is 1 X 1 0 9 pieces / cm 3 or more.
  • the density of crystal defects on the surface of the antimony-doped silicon single crystal wafer is 0.1 Zcm 2 or less, and after the precipitation heat treatment.
  • antimony-doped silicon single crystal ⁇ E one tooth oxygen precipitates or oxidation induced stacking fault density of 1 X 1 0 9 pieces / "cm 3 or more, G rown of Ueha table surface - the density of in defects, conventional
  • This is a silicon single crystal silicon wafer that is extremely small compared to antimony silicon silicon single crystal wafers, and has extremely high gettering ability, so the heavy metal impurity density on the wafer surface is extremely low. Therefore, such an antimony-doped silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer.
  • an epitaxial silicon single crystal wafer having an extremely high quality epitaxial layer can be obtained.
  • the present invention also relates to an antimony-doped silicon single-crystal wafer, wherein the antimony-doped silicon single-crystal wafer is grown by nitrogen doping by the Chiyo-Kralski method.
  • an antimony-doped silicon single-crystal wafer which is obtained by slicing a silicon single-crystal rod grown by doping with nitrogen by the Czochralski method. If so, the density of large row-in defects with large wafer surface size will be significantly reduced due to the effect of nitrogen.
  • oxygen precipitation is caused by the presence of nitrogen.
  • concentration of oxygen in the substrate is relatively low so as not to cause problems such as ⁇ deformation of the wafer ⁇ and reduction of the strength of the wafer, high gettering can be achieved by short-time heat treatment. It has a rolling effect.
  • an antimony-p-silicon single-crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, the number of large row-in defects on the surface of the substrate wafer is small.
  • the adverse effect on the epitaxial layer is extremely small, a high gettering effect is obtained by a short-time heat treatment, and the concentration of heavy metal impurities in the epitaxial layer can be significantly reduced. Therefore, an epitaxy silicon single crystal wafer having an extremely high quality epitaxy layer can be obtained with high productivity.
  • the oxygen concentration of the antimony-p-silicon single-crystal wafer is set to 20 ppma (JEIDA: Japan Electronics Industry Development Association Standard) or less.
  • the oxygen content is lower than 20 ppma, there is no need to worry about deformation of the wafer and decrease in wafer strength.
  • crystal defects in the antimony-doped silicon single crystal wafer are considered.
  • the formation of oxygen precipitates can be suppressed, and the formation of oxygen precipitates on the surface layer of the wafer can be prevented. Therefore, when an epitaxial layer is formed on the wafer surface, the crystallinity of the epitaxial layer is not adversely affected.
  • the precipitation of oxygen is promoted by the presence of nitrogen, so that the gettering effect can be sufficiently exhibited even in such low oxygen content.
  • the present invention for solving the above-mentioned problem is directed to a phosphorus-doped silicon single crystal wafer having an oxygen concentration of 18 ppma (JEI DA: Japan Electronic Industry Development Association). (Specification) This is a single-crystal silicon single-crystal wafer characterized by having an oxide precipitate or oxidation-induced stacking fault density after precipitation heat treatment of 1 ⁇ 10 9 or more Zcm 3 or more.
  • the oxygen concentration in the silicon single crystal wafer is not more than 18 ppma even though the oxygen concentration is low or low.
  • Oxygen precipitate thin silicon oxide single crystal wafers with an oxygen precipitate or oxidation-induced stacking fault density after precipitation heat treatment of 1 ⁇ 10 9 / cm 3 or more are: It has high gettering ability even for short-time heat treatment for heavy metal impurities such as copper and nickel, and the oxygen concentration in the wafer is low. Can be prevented from becoming insufficient.
  • the present invention also relates to a silicon-doped silicon single-crystal wafer, wherein the silicon-doped silicon single-crystal wafer is grown by doping nitrogen by the Chioklarski method.
  • a single-crystal silicon single-crystal wafer is a silicon single-crystal wafer grown by doping nitrogen with the Chiral Clarke method. If the crystal rod is obtained by slicing, the oxygen concentration in the substrate is promoted by the presence of nitrogen in the pulp portion of the wafer, so that the oxygen concentration in the substrate will be affected by the deformation of the wafer and the strength of the wafer. Even if the concentration is relatively low so as not to cause a problem such as a decrease in the temperature, a high gettering effect can be obtained by a short-time heat treatment.
  • a phosphorus-doped silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, it has a high gettering effect by a short heat treatment and has a very heavy metal impurity concentration. A low epitaxial silicon single crystal wafer can be obtained with high productivity.
  • the oxygen concentration of the single-crystal silicon single crystal wafer can be set to 18 ppmm or less.
  • the oxygen content is below 18 ppma, the risk of wafer deformation and reduction of wafer strength is further reduced.
  • the formation of crystal defects in the wafer can be suppressed, and the formation of oxygen precipitates on the surface layer of the wafer can be prevented. Therefore, when the epitaxial layer is formed on the wafer surface, the crystallinity of the epitaxial layer is not adversely affected.
  • oxygen precipitation is promoted by the presence of nitrogen in the bulk portion, the gettering effect can be sufficiently exhibited even with such low oxygen.
  • the nitrogen concentration of the silicon single crystal substrate should be 1 XI 0 10 to 5 X 10 15 atoms / cm 3. Is preferred.
  • the silicon single crystal wafer has been subjected to a heat treatment at a temperature of 900 ° C. to the melting point of silicon.
  • the silicon single crystal wafer is subjected to a heat treatment at a temperature of 900 ° C. to the melting point of silicon or less, nitrogen and oxygen on the surface of the silicon single crystal wafer are diffused outward. Thus, the crystal defects on the wafer surface layer are extremely small. Further, when a high-temperature heat treatment such as formation of an epitaxy layer is performed thereafter, the precipitation nucleus does not dissolve and the precipitation does not occur, and the wafer has a sufficient gettering effect.
  • the present invention is an epitaxial silicon single crystal wafer, characterized in that an epitaxial layer is formed on a surface portion of the silicon single crystal wafer of the present invention.
  • This is an epitaxial silicon single crystal wafer.
  • the epitaxial silicon single crystal wafer having the epitaxial layer formed on the surface layer of the silicon single crystal wafer 18 of the present invention has a desired resistance value because it has no problem of auto-doping.
  • the productivity is high and the oxygen concentration in the substrate is suppressed to a level that does not cause problems such as deformation of the wafer and reduction in the strength of the wafer. Nevertheless, it has a high gettering effect on heavy metals such as copper and nickel, and becomes an epitaxial silicon single crystal wafer with an extremely low heavy metal impurity concentration.
  • the present invention relates to a resin material having a resistivity of not less than 10 m ⁇ cm and not more than 100 m ⁇ cm In the method of manufacturing a silicon single crystal wafer,
  • boron is doped by the Chiyo-Kralski method and nitrogen is added. Then, a silicon single crystal rod is grown, and the silicon single crystal rod is sliced and processed into a silicon single crystal wafer to produce a boron single-crystal silicon wafer. ⁇ ⁇ Since oxygen precipitation is promoted by the presence of nitrogen in the bulk part of the aerial wafer, the getter is high even if the oxygen concentration in the substrate is such that it does not cause problems such as ⁇ deformation of the aerial ⁇ ⁇ reduction of the aerial strength. It is possible to manufacture a polysilicon single crystal wafer having a ring effect.
  • the polon-doped silicon single crystal wafer manufactured by such a method is used as a substrate for manufacturing an epitaxial wafer, it is possible to prevent impurities from being taken into the epitaxial layer due to single doping.
  • an epitaxial silicon single crystal wafer having a high gettering effect and an extremely low heavy metal impurity concentration can be obtained with high productivity.
  • the concentration of oxygen contained in the single crystal rod can be reduced to 16 ppma or less.
  • the gettering effect can be sufficiently exhibited without adversely affecting the crystallinity of the epitaxial layer.
  • the present invention provides a method for producing an antimony-doped silicon single crystal wafer, comprising: growing a silicon single crystal rod doped with antimony by the Cjochralski method and also doped with nitrogen; Characterized by being processed into silicon single crystal wafers by slicing.
  • antimony is doped by the Tycho-Kralski method and nitrogen is also doped.
  • a silicon single crystal rod is grown, and the silicon single crystal rod is sliced and processed into a silicon single crystal wafer to produce an antimony silicon single crystal wafer. Due to this effect, the density of Grown-in defects on the wafer surface is significantly reduced.
  • oxygen precipitation is promoted by the presence of nitrogen in the bulk portion of the wafer, the oxygen concentration in the substrate causes problems such as deformation of the wafer and reduction in the strength of the wafer. Even with such a relatively low concentration, an antimony-doped silicon single crystal wafer having a high gettering effect can be manufactured by a short-time heat treatment.
  • the antimony-p-silicon single-crystal wafer manufactured by such a method is used as a substrate for manufacturing a epitaxial wafer, the Grown-in defect on the surface of the substrate wafer can be improved. Has very little adverse effect on the epitaxy layer, has a high gettering effect by short-time heat treatment, and can significantly reduce the concentration of heavy metal impurities in the epitaxy layer, resulting in extremely high quality epitaxy. An epitaxial silicon single crystal wafer having a layer can be obtained with high productivity.
  • the concentration of oxygen contained in the single crystal rod can be reduced to 20 ppma or less.
  • the gettering effect can be sufficiently exhibited without adversely affecting the crystallinity of the epitaxial layer.
  • the present invention provides a method of manufacturing a silicon single crystal wafer having a silicon single crystal rod doped with nitrogen and doped with nitrogen by a Czochralski method.
  • a method for producing a silicon single crystal wafer comprising growing a silicon single crystal rod and processing it into a silicon single crystal wafer.
  • a silicon single crystal rod in which the silicon is doped by nitrogen and the nitrogen is doped by the Chiyokuralski method is grown. If a silicon single crystal rod is sliced and added to a silicon single crystal wafer to produce a silicon single crystal silicon wafer, oxygen is reduced due to the presence of nitrogen in the bulk part of the silicon wafer.
  • Oxygen precipitation is relatively unlikely because precipitation is promoted Even if the substrate is a single crystal silicon wafer doped with silicon, and the oxygen concentration in the substrate is such that it does not cause problems such as deformation of the wafer or reduction in the strength of the wafer, heat treatment for a short time Thus, a single-crystal silicon single crystal wafer having a high gettering effect can be manufactured.
  • the silicon single crystal wafer produced by such a method is used as a substrate wafer for producing an epitaxial wafer, a high gettering time can be obtained by a short heat treatment. It is possible to obtain an epitaxial silicon single crystal wafer having a high quality epitaxy layer having an extremely low concentration of heavy metal impurities and having a high concentration of heavy metal impurities with high productivity.
  • the concentration of oxygen contained in the single crystal rod can be made 18 ppma or less.
  • the gettering effect can be sufficiently exhibited without adversely affecting the crystallinity of the epitaxial layer.
  • the concentration of nitrogen doped into the single crystal rod is set to 1 ⁇ 10 1 Q to 1 ⁇ 10 15 atoms / cm 3 is preferable, and a heat treatment is preferably applied to the silicon single crystal wafer at a temperature of 900 ° C. to the melting point of silicon or lower.
  • a silicon single crystal wafer is manufactured, it can be used as a substrate for epitaxial growth with high gettering ability, few surface defects, and excellent characteristics. Suitable silicon single crystal wafers can be manufactured.
  • a silicon single crystal wafer is produced by the method for producing a silicon single crystal wafer according to the present invention.
  • a silicon single crystal wafer is manufactured by the above-described method for manufacturing a silicon single crystal wafer, and the silicon single crystal wafer is manufactured. If an epitaxial layer is formed on the surface layer of the wafer, the effect of Grown-in defects on the substrate wafer surface on the epitaxial layer is extremely small.- The oxygen concentration in the substrate can be reduced.
  • a nitrogen-doped silicon wafer as a substrate of an epitaxial silicon single crystal wafer, a high boron-doped silicon single crystal wafer having a low oxygen concentration is used.
  • FIG. 1 is a result diagram showing the measurement results of the oxygen precipitate defect density of wafers by the OPP method after the heat treatment for depositing oxygen precipitates in Example 1 and Comparative Example 1.
  • FIG. 2 is a result diagram showing the measurement results of the crystal defect density on the wafer surface before and after the epitaxial growth in Example 2 and Comparative Example 2 using a particle counter.
  • FIG. 3 is a result diagram showing the measurement results of the oxygen precipitate defect density of wafers by the OPP method after the heat treatment for precipitating oxygen precipitates in Example 2 and Comparative Example 2.
  • FIG. 4 is a result diagram showing the measurement results of the oxygen precipitate defect density of wafers by the OPP method in Example 3 and Comparative Example 3.
  • the present invention relates to a boron-doped silicon single crystal wafer having a resistivity of 1 ⁇ ⁇ ⁇ cm or more and 10 1 ⁇ ⁇ cm or less, or an antimony-doped silicon single crystal wafer or a Lind manufactured by the CZ method.
  • One silicon single crystal wafer low Obtain silicon single crystal wafers with high oxygen concentration and high oxygen precipitates or oxidation-induced stacking fault density, especially with the technology of doping nitrogen during crystal growth, to produce epitaxial silicon single crystal wafers.
  • the substrate is used for wafers, so that the epitaxial layer does not generate harmful defects due to outward diffusion of impurity oxygen, has a high gettering effect, and has an extremely low concentration of heavy metal impurities.
  • the inventors have found that wafers can be manufactured with high productivity and low cost, and have scrutinized various conditions to complete the present invention.
  • a silicon single crystal having a high oxygen precipitate concentration and a silicon single crystal wafer can be obtained by processing the silicon single crystal.
  • a boron oxide single crystal single crystal substrate with a low oxygen concentration and an antimony silicon single crystal substrate that is originally difficult to deposit oxygen can be obtained.
  • a high oxygen precipitate density can be obtained even with a mono-doped silicon single crystal wafer, and as a result, an epitaxial layer having a very low heavy metal impurity density can be grown.
  • the oxygen concentration in the wafer can be lowered, there is no problem such as ⁇ ⁇ deformation of the wafer ⁇ ⁇ reduction of the wafer strength, and no adverse effect of impurity oxygen on the epitaxal layer is caused. .
  • the silicon single crystal wafer manufactured by doping nitrogen during the growth of the silicon single crystal in this manner has a doping amount of not less than 10 m ⁇ ⁇ cm in terms of resistivity. High quality because it has a high gettering effect even if it is doped with antimony that is less than 0 m ⁇ .
  • a method for growing a silicon single crystal rod doped with boron and doped with boron by the Czochralski method is described, for example, in Japanese Patent Application Laid-Open No. 60-251190. Good according to known methods, such as:
  • a seed crystal is brought into contact with a melt of a polycrystalline silicon raw material contained in a quartz crucible, and is slowly pulled up while being rotated, and the silicon single crystal rod having a desired diameter is rotated.
  • a polycrystalline silicon raw material in which polon is doped is placed in advance in a quartz crucible, and a nitride is placed in the quartz crucible.
  • nitrogen or setting the atmosphere gas By injecting nitrogen or setting the atmosphere gas to an atmosphere containing nitrogen, nitrogen can be doped into the pulled crystal.
  • the nitrogen doping amount in the crystal can be controlled by adjusting the amount of the nitride, the concentration of the nitrogen gas, the introduction time, and the like.
  • the oxygen concentration in the latter half of the grown single-crystal rod with a high antimony concentration is as follows: It is very difficult to maintain a high oxygen concentration due to the evaporation of antimony oxide, and as a result, the oxygen concentration becomes extremely low, so that oxygen precipitation of silicon wafers cut from this site is suppressed. I In other words, the gettering ability required for device manufacturing could not be obtained.
  • Doping nitrogen into the silicon single crystal promotes the aggregation of oxygen atoms in the silicon and increases the concentration of oxygen precipitates, as described above, because the aggregation process of oxygen atoms starts from uniform nucleation. This is considered to be due to the shift to heterogeneous nucleation with impurity nitrogen as nuclei.
  • the concentration of doping nitrogen causes sufficient heterogeneous nucleation, 1 ⁇ 10 1 . It is preferable to set to atoms / cm 3 or more. As a result, the concentration of the oxygen precipitate can be sufficiently increased. On the other hand, if the nitrogen concentration exceeds the solid solubility limit of 5 ⁇ 10 5 atoms / cm 3 in the silicon single crystal, single crystallization of the silicon single crystal itself may be hindered. It is preferred not to exceed this concentration.
  • the concentration of oxygen precipitates is high even at a low oxygen concentration, when growing a silicon single crystal rod doped with nitrogen by the Chiochralsky method, the oxygen concentration contained in the single crystal rod is increased.
  • Low and low oxygen concentrations of 16 ppma or less when boron is doped, 20 ppma or less when antimony is doped, and 18 ppma or less when phosphorus is doped. Can be.
  • the oxygen concentration in the silicon single crystal is set to the above value or less, defects such as oxygen precipitates, which lower the crystallinity of the epitaxial layer, are almost completely formed on the silicon single crystal wafer surface. Therefore, it is possible to prevent adverse effects on the crystallinity of the epitaxial layer grown on the surface of the silicon single crystal wafer.
  • the precipitation of oxygen is promoted by the presence of nitrogen, so that the gettering effect can be sufficiently exhibited even with low oxygen.
  • the method used may be a conventionally used method.
  • the above oxygen concentration range can be easily obtained by means such as a decrease in the number of rotations of the crucible, an increase in the flow rate of the introduced gas, a decrease in the atmospheric pressure, and a control of the temperature distribution and convection of the silicon melt.
  • boron, antimony, or phosphorus is doped and a desired concentration of nitrogen is doped, and a silicon containing a large concentration of crystal defects and a desired concentration of oxygen.
  • a single crystal rod is obtained.
  • the wafer is sliced with a cutting device such as an inner peripheral blade slicer or a wire saw, and then processed into a silicon single crystal wafer through processes such as chamfering, lapping, etching, and polishing.
  • a cutting device such as an inner peripheral blade slicer or a wire saw
  • processes such as chamfering, lapping, etching, and polishing.
  • these steps are only listed as examples, and there may be various other steps such as washing, heat treatment, and the like. I have.
  • the obtained silicon single crystal wafer is subjected to a heat treatment at a temperature of 90 ° C. to the melting point of silicon before performing epitaxial growth.
  • a heat treatment at a temperature of 90 ° C. to the melting point of silicon before performing epitaxial growth.
  • the out-diffusion of nitrogen on the surface of the silicon single crystal wafer is due to the oxygen precipitation promoting effect of nitrogen, which causes oxygen to precipitate on the surface layer of the silicon single crystal wafer and the formation of defects based on this. This is to prevent subsequent adverse effects on the epitaxy layer.
  • the diffusion rate of nitrogen in silicon is much higher than that of oxygen, and the heat treatment ensures that nitrogen on the surface can be diffused outward.
  • the heat treatment is preferably performed in a temperature range of 900 ° C. to the melting point of silicon, more preferably, 110 ° C. to 1200 ° C.
  • nitrogen in the silicon single crystal layer can be sufficiently diffused outward, and oxygen can also be diffused outward at the same time.
  • nitrogen in the silicon single crystal layer can be sufficiently diffused outward, and oxygen can also be diffused outward at the same time.
  • a crystalline silicon is charged, and a silicon wafer having a silicon nitride film is charged and melted together with the raw material polycrystalline silicon to form a single-crystal rod having a diameter of 8 inches, a P type, and an orientation of 100>.
  • the crucible rotation was controlled so that the oxygen concentration in the single crystal became 14 to 16 ppma (JEIDA).
  • the nitrogen concentration was 2 to 7 ⁇ 10 14 atoms / cm 3 as calculated by the segregation coefficient.
  • the oxygen concentration of the single crystal rod was measured by the gas fusion method, it was confirmed that the oxygen concentration was 14 to 16 ppma.
  • a wafer is cut out using a wire saw, chamfered, wrapped, etched, and mirror-polished to obtain an 8-inch diameter silicon single crystal mirror surface wafer.
  • Four sheets were produced.
  • the resistivity of the four silicon single crystal wafers was measured to be about 14 to 17 ⁇ ′cm, which was within the range expected from the amount of boron added.
  • the measurement of the oxygen precipitate concentration was performed by an OPP (Optical Precipitate Profiler) method.
  • This OPP method is based on the application of a Normalski type differential interference microscope. First, a laser beam emitted from a light source is separated into two mutually orthogonal beams of 90 ° linearly polarized light with different phases by a polarization prism. Inject from the mirror side. At this time, when one beam crosses the defect, a phase shift occurs, and a phase difference occurs with the other beam. Defects are detected by detecting this phase difference using a polarization analyzer after passing through the back surface of the wafer.
  • Figure 1 shows the measurement results.
  • the plot shown on the right side of FIG. 1 shows the oxygen precipitate defect density of a wafer having a nitrogen drop amount of 2 to 7 ⁇ 10 14 atoms / cm 3 , and a circular plot Indicates a case where the epitaxial growth was performed at 117 ° C., and a triangular plot indicates the oxygen precipitate defect density when the epitaxial growth was performed at 110 ° C.
  • the wafer grown epitaxially on the surface of the boron-doped silicon single crystal wafer doped with nitrogen has an oxygen concentration of 14 regardless of the presence or absence of the heat treatment before the epitaxial growth.
  • one of the two silicon single crystal wafers was at 117 ° C and the other was at 113 ° C.
  • a 6 ⁇ thick silicon epitaxial layer was grown at a temperature of 0 ° C.
  • oxygen precipitates were deposited on the obtained epitaxial wafer by heat treatment, and the getters of these epitaxial silicon single crystal wafers were obtained by the ⁇ method.
  • the ring effect was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer.
  • FIG. 1 shows the oxygen precipitate defect density of the wafer without nitrogen doping
  • the circular plot shows the case where epitaxial growth was performed at 117 ° C.
  • the triangular plot shows the oxygen precipitate defect density when epitaxial growth was performed at 110 ° C.
  • wafers grown epitaxially on the surface of boron-doped silicon single crystal wafers without nitrogen doping have a low oxygen concentration of 14 to 16 ppma. It can be seen that the density of oxygen precipitates is similarly low and the gettering effect is low when epitaxy is performed at either temperature.
  • a quartz crucible having a diameter of 24 inches is charged with a raw material polycrystalline silicon to which a predetermined concentration of antimony is added, and a silicon wafer having a silicon nitride film together with the raw material polycrystalline silicon is charged. It was charged and melted, and a single-crystal rod of 8 inches in diameter, N-type, and orientation of 100> was pulled up at a normal pulling rate of 1 ⁇ O mmZmin. When the crystal was pulled, the crucible rotation was controlled so that the oxygen concentration in the single crystal was 20 ppma (JEI DA) or less. In addition, this In the pulling of the single crystal rod, two single crystal rods were pulled with different nitrogen doping amounts.
  • JEI DA ppma
  • wafers were cut out using a wire saw, chamfered, wrapped, etched, and mirror polished to obtain a silicon single crystal mirror wafer with a diameter of 8 inches.
  • One single crystal rod was manufactured from two single rods, for a total of four.
  • the resistivity of the four silicon single crystals was measured to be about 7 to 25 mO ⁇ cm, which was within the range expected from the amount of doped antimony.
  • one of the two silicon wafers cut from the same single crystal rod was 120 At 0 ° C, the other was grown at a temperature of 112 ° C with a silicon epitaxial layer with a thickness of 6 ⁇ m.
  • the epitaxy growth reactor was of a leaf-to-leaf type, and the heating method was a lamp heating method.
  • each wafer was subjected to a heat treatment at 800 ° C. for 4 hours in an N 2 gas atmosphere.
  • a heat treatment was performed at 1000 ° C. for 16 hours in a 2 gas atmosphere to precipitate oxygen precipitates.
  • the gettering effect of these epitaxial silicon single crystal wafers was evaluated by the oxygen precipitate concentration in the silicon wafer. The measurement of this oxygen precipitate concentration This was performed by the OPP method.
  • the crystal defect density on the surface of these epitaxial silicon single crystal wafers after the growth of the epitaxial layer was measured.
  • Each was measured using a particle counter as particles having a size of 0.13 / im or more.
  • the results of measuring the crystal defect density before and after epitaxial growth are shown in FIG.
  • the plot shown in the center of FIG. 2 shows the crystal defect density on the wafer surface with a nitrogen drop amount of 1.0 ⁇ 10 14 atoms / cm 3
  • the plot shown on the right The graph shows the crystal defect density on the wafer surface with a nitrogen doping amount of 5.0 ⁇ 10 14 atoms m 3 .
  • the circular plot shows the crystal defect density before epitaxy growth
  • the triangular plot shows the crystal defect density after epitaxy growth.
  • epitaxial growth is performed in both the case where the nitrogen doping amount is 1.0 X 10 14 atoms / cm 3 and the nitrogen doping amount is 5.0 X 10 14 atoms / cm 3. It can be seen that the crystal defect density on the front and rear wafer surfaces is extremely low, less than 0.1 / cm 2 .
  • FIG. 3 shows the measurement results of the oxygen precipitate density after the oxygen precipitation heat treatment.
  • the plot shown in the center of FIG. 3 shows the oxygen precipitate density of the wafer with the nitrogen drop amount of 1.0 ⁇ 10 1 atoms / cm 3
  • the plot shown on the right shows the plot.
  • the graph shows the oxygen precipitate density of a wafer with a nitrogen doping amount of 5.0 X 10 14 atoms / cm 3 .
  • the circular plot shows the density of oxygen precipitate defects when epitaxy was performed at 1200 ° C
  • the triangular plot shows the density of oxygen precipitate defects when epitaxy was performed at 125 ° C. .
  • An antimony-doped silicon single crystal rod having a diameter of 8 inches, an N-type, an orientation of ⁇ 100>, and an oxygen concentration of 20 ppm or less was pulled in the same manner as in the example except that nitrogen was not dropped. Then, two silicon single crystal mirror wafers having a diameter of 8 inches were produced from this single crystal rod in the same manner as in the example.
  • the resistivity of each of the two silicon single crystal wafers was about 7 to 25 ⁇ ′cm as in the example.
  • the crystal defect density on the surface of the silicon single crystal wafer was measured by a particle counter. Of these two wafers, one is 120. The other was grown by silicon epitaxial growth with a thickness of 6 ⁇ m at a temperature of 115 ° C.
  • Oxygen precipitates are deposited on the obtained epitaxial wafer by heat treatment, as in the example, and the gettering effect of these epitaxial silicon single crystal wafers is obtained by the OPP method.
  • OPP method was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer, and the crystal defect density on the wafer surface after the epitaxial growth was measured by a particle counter.
  • the measurement results of the crystal defect density before and after the epitaxial growth of the wafer of this comparative example are also shown in FIG.
  • the plot shown on the left side of FIG. 2 shows the crystal defect density on the surface of the wafer without nitrogen doping.
  • the circular plot shows the crystal defect density before epitaxy growth
  • the triangular plot shows the crystal defect density after epitaxy growth.
  • the measurement results of the oxygen precipitate density after the oxygen precipitation heat treatment of the wafer of Comparative Example are also shown in FIG.
  • the plot shown on the left side of FIG. 3 shows the oxygen precipitate density of the wafer without nitrogen doping.
  • the circular plot is for epitaxy growth at 1200 ° C
  • the triangular plot is for epitaxy at 125 ° C.
  • the graph shows the oxygen precipitate defect density in the case where the thermal growth was performed.
  • the epitaxial growth on the surface of an antimony-doped silicon single-crystal wafer not doped with nitrogen showed that the boron-doped silicon single-crystal wafer was used as the substrate wafer.
  • the heat treatment time is about the same as the case of (1), and since the oxygen concentration is medium at 20 ppma or less, the density of oxygen precipitates is similarly low regardless of the temperature at which the epitaxial growth is performed, and the getter It can be seen that the ring effect is low.
  • a silicon crucible with a predetermined concentration of phosphorus added to a quartz crucible with a diameter of 18 inches is charged by the CZ method, and a silicon nitride film with a silicon nitride film together with the material polycrystalline silicon.
  • a single-crystal rod having a diameter of 6 inches, N-type, and 100> was pulled up at a normal pulling rate of 1.0 mmZmin.
  • the crucible rotation was controlled so that the oxygen concentration in the single crystal became Isppma (JEIDA).
  • a wafer was cut out using a wire saw, chamfered, wrapped, etched, and mirror-polished to produce four silicon single crystal mirror-finished wafers with a diameter of 6 inches. .
  • the resistivity of the four silicon single crystal wafers was measured to be about 5 to 10 ⁇ cm, which was within the range expected from the doping amount of the added phosphorus. there were.
  • the epitaxy growth reactor has a susceptor on which the substrate and the wafer are placed in a cylinder-type peruger.
  • the heating method is a radiant heating method. This is S i HC 13 + H. Introduces a single-crystal silicon single crystal ⁇ Epitaxially grown silicon on eha.
  • the gettering effect of these epitaxial single crystal wafers was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer.
  • the measurement of the oxygen precipitate concentration was performed by the OPP method.
  • Fig. 4 shows the measurement results.
  • the plot shown on the right side of FIG. 4 shows the oxygen precipitate defect density of a wafer with a nitrogen drop amount of 5.0 ⁇ 10 14 atoms / cm 3
  • a circular plot Indicates a case where the epitaxial growth was performed at 117 ° C.
  • a triangular plot indicates the oxygen precipitate defect density when the epitaxial growth was performed at 110 ° C.
  • Fig. 4 shows the measurement results.
  • the plot shown on the right side of FIG. 4 shows the oxygen precipitate defect density of a wafer with a nitrogen drop amount of 5.0 ⁇ 10 14 atoms / cm 3
  • a circular plot Indicates a case where the epitaxial growth was performed at 117 ° C.
  • a triangular plot indicates the oxygen precipitate defect density when the epitaxial growth was performed at 110 ° C.
  • the wafer grown epitaxially on the surface of a single-crystal silicon single crystal doped with nitrogen indicates the 1 XI 0 9 pieces / cm 3 or more high oxygen precipitate density in the same manner, it can be seen that a high getter-ring effect. Comparing the presence or absence of the heat treatment before the epitaxial growth, it can be seen that the gettering effect is even greater with the heat treatment. The crystallinity of the epitaxial layer was very good because of the low oxygen concentration. Furthermore, the precipitation heat treatment time before the epitaxial growth in this embodiment is either no heat treatment at all, or very short compared to the conventional IG heat treatment, and an improvement in productivity can be expected.
  • a single-crystal silicon single-crystal rod having a diameter of 6 inches, an N-type, an orientation of ⁇ 100> and an oxygen concentration of 18 ppm was pulled up in the same manner as in the example except that nitrogen was not dropped. Then, four silicon single crystal mirror wafers having a diameter of 6 inches were produced from this single crystal rod in the same manner as in the example. The resistivity of each of the four silicon single crystal wafers was about 5 to 10 ⁇ 'cm as in the example.
  • a heat treatment for 16 hours was applied. Of these two silicon single crystal wafers, one was at 110 ° C and the other was at 110 ° C at a thickness of 20 ⁇ . The growth of the conepitaxial layer was performed. Then, in the same manner as in the examples, oxygen precipitates were further deposited on the obtained epitaxial wafers by heat treatment, and getters of these epitaxial silicon single crystal wafers were obtained by the ⁇ method. The ring effect was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer.
  • FIG. 4 shows the oxygen precipitate defect density of the wafer without nitrogen doping
  • the circular plot shows the epitaxial growth at 117 ° C.
  • the triangular plot shows the oxygen precipitate defect density when epitaxial growth was performed at 110 ° C.
  • Fig. 4 wafers grown by epitaxial growth on the surface of a single silicon single crystal without nitrogen were grown without epitaxial heat treatment without IG heat treatment.
  • the oxygen concentration is 18 ppma, which is a medium level, it is understood that the density of oxygen precipitates is low and the gettering effect is low regardless of which temperature the epitaxial growth is performed.
  • the IG heat treatment is performed for a long time as described above, only the same precipitate density as that obtained when the nitrogen is doped and the heat treatment before the epitaxial growth is not performed can be obtained.
  • the Kralski method when growing a silicon single crystal rod doped with nitrogen by the Czochralski method, it does not matter whether a magnetic field is applied to the melt or not.
  • the Kralski method includes the MCZ method in which a magnetic field is applied.
  • the present invention is not limited to the epitaxial growth by the CVD method, but is also applicable to the case where the epitaxial growth is performed by the MBE method to produce an epitaxial silicon single crystal substrate. Can be applied.
  • the present invention is not limited to this, and the resistivity is 10 m ⁇ ′cm or more and 1 ⁇ m or more.
  • a high boron-doped silicon single crystal wafer of ⁇ ⁇ cm or less wherein the oxygen concentration in the silicon single crystal wafer is as low as 16 ppma or less, and Oxygen precipitates or oxidation-induced stacking fault densities as high as 1 ⁇ 10 9 Zcm 3 or more, or antimony silicon single crystal wafers, and the surface of the silicon single crystal wafers der ones density of crystal defects is small and one Zc m 2 or less 0.1 Ri, those oxygen precipitates or oxidation induced stacking defect density after the precipitation heat treatment is often a 1 XI 0 9 or ZCM 3 or more, or a re-emission Dopushiri con Tan'yui crystal Ueha, the silicon co down monocrystalline Ueha in if the oxygen concentration is of medium-low concentration under 1 8 ppma or less, and oxygen precipitates or oxidation-induced product layer defect density after the precipitation heat treatment is 1 X 1 0 9 pieces / cm 3 but higher and often For example, they
  • the oxygen precipitate or the oxidation-induced stacking fault density of 1 ⁇ 10 9 / cm 3 or more referred to in the present invention means that even after the silicon wafer has been subjected to a precipitation heat treatment, it can be used for epitaxial growth.
  • the present invention is also included in the scope of the present invention as long as the above-described oxygen precipitate or oxidation-induced stacking fault density can be obtained similarly when the precipitation heat treatment is performed after the heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A boron heavily-doped silicon wafer, an antimony doped silicon wafer, and a phosphorous doped silicon wafer each used for epitaxial growth, having a low oxygen concentration, easily allowing oxygen deposition in spite of the low oxygen concentration, and having a high gettering ability, and an epitaxial silicon wafer including an epitaxial layer which is grown on a substrate wafer which is any of the doped silicon wafer and has an extremely low heavy metal impurity concentration are produced with high productivity and supplied. The invention provides a boron doped single crystal silicon wafer, an antimony doped single crystal silicon wafer, or a phosphorus doped single crystal silicon wafer having a resistivity of 10 to 100 mΦ.cm and produced by growing a silicon single crystal rod by a Czochralski method while doping it with nitrogen and slicing the rod. The invention also provides an epitaxial wafer having an epitaxial layer on the surface of any of the doped silicon wafers and a method for producing such doped wafers and epitaxial wafer.

Description

明 細 書 シリ コン単結晶ゥェ一ハ及びェピタキシャルシリ コンゥエーハ 及びこれらの製造方法  Description Silicon single crystal wafers, epitaxial silicon wafers, and methods for their manufacture
技術分野 Technical field
本発明は、 ェピタキシャル層中に存在するデバイスの信頼性に有害な重金属不 純物が少ない半導体デバイス製造用ェピタキシャルシリ コン単結晶ゥェ一ハおよ びその基板となるボロン ド一プシリ コン単結晶ゥェ一ハ、 アンチモンド一プシリ コン単結晶ゥェ一 及びリ ンド一プシリ コン単結晶ゥエーハならびにこれらの 製造方法に関する。 背景技術  The present invention relates to an epitaxial silicon single crystal wafer for semiconductor device production with few heavy metal impurities harmful to the reliability of the device existing in the epitaxial layer, and a boron single silicon wafer serving as the substrate thereof. The present invention relates to a crystal wafer, an antimony-silicon single-crystal wafer, a Lind-silicon single-crystal wafer, and methods for producing these. Background art
ェピタキシャルシリ コン単結晶ゥェ一ハは、 その優れた特性から広く個別半導 体やバイポーラ I C等を製造するゥェ一ハと して、 古くから用いられてきた。 ま た、 M O S L S I についても、 ソフ トエラーやラッチァップ特性が優れている 事力 ら、 マイク ロプロセッサュニッ トゃフラ ッシュメモリデバイスに広く用いら れている。 さ らに、 シリ コ ン単結晶製造時に導入される、 いわゆる G r o w n — i n欠陥による D R A Mの信頼性不良を低減させるため、 ェピタキシャルシリ コ ン単結晶ゥェ一ハの需要はますます拡大している。  Epitaxial silicon single crystal wafers have long been used as wafers for producing individual semiconductors, bipolar ICs, and the like because of their excellent properties. MOSLSI is also widely used in microprocessor unit flash memory devices because of its excellent soft error and latchup characteristics. In addition, the demand for epitaxial silicon single crystal wafers is increasing to reduce DRAM reliability failure due to so-called Grown-in defects introduced during silicon single crystal manufacturing. ing.
しかし、 このよ うな半導体デバイスに使用されるェピタキシャルシリ コン単結 晶ゥエーハ上に重金属不純物が存在すると、 半導体デバイスの特性不良を引き起 こ してしま う。 特に最先端のデバイスに必要と されるク リーン度は重金属不純物 濃度が 1 X 1 0 1。 atoms/cm 2以下と考えられており シリ コンゥエーハ上に存在 する重金属不純物は極力減少させなければならない。 However, the presence of heavy metal impurities on the epitaxial silicon single crystal wafer used in such semiconductor devices may cause the semiconductor devices to have poor characteristics. Particularly clean degree heavy metal impurity concentration 1 X 1 0 1 required for the leading edge of the device. It is considered to be less than atoms / cm 2, and heavy metal impurities present on the silicon wafer must be reduced as much as possible.
また、 最近の研究ではこのよ うなェピタキシャルゥエーハといえどもェピタキ シャルプロセスの条件及びェピタキシャル膜厚によつてはェピタキシャル成長後 に、 基板ゥェ一ハ表面に存在する G r o w n - i n欠陥の影響が顕在化すること が指摘されている (木村ら、 日本結晶成長学会誌 Vol.24 No.5 p .444, 1997)。 特に、 低抵抗デバィス用と して用いられるアンチモンを ド一プされた N型基板 (以下、 アンチモン ド一プシリ コン単結晶ゥェ一ハと呼ぶ) は、 アンチモンの原 子半径がシリ コンに比べて大きいことから、 通常のボロンを ドープされた P型基 板 (以下、 ボロンド一プシリ コン単結晶ゥェ一ハと呼ぶ) に比べて G r o w n— i n欠陥の密度が高く、 ェピタキシャル成長後に G r o w n - i n欠陥の影響が その他の基板に比べて非常に大きいので問題であった。 According to recent research, even though such an epitaxial wafer is used, depending on the conditions of the epitaxial process and the epitaxial film thickness, the Grown-in defect existing on the surface of the substrate wafer after the epitaxial growth. It has been pointed out that the effect of crystallization becomes apparent (Kimura et al., Journal of the Japanese Association for Crystal Growth Vol.24 No.5 p.444, 1997). In particular, antimony-doped N-type substrates used for low-resistance devices (hereinafter referred to as antimony-doped silicon single-crystal wafers) have an atomic radius of antimony that is larger than that of silicon. Therefore, the density of G row-in defects is higher than that of a normal boron-doped P-type substrate (hereinafter referred to as a boron-silicon single crystal wafer). This was a problem because the effect of rown-in defects was very large compared to other substrates.
このよ うな重金属不純物を低減させる技術の一つと してゲッタ リ ング技術の重 要性がますます高く なつてきている。 従来からロジックデバイス用ェピタキシャ ルシリ コン単結晶ゥエーハの製造には、 ゲッタ リ ング効果の高いボロンド一プシ リ コン単結晶ゥェ一ハであって、 抵抗率 1 Ο πι Ω ' cm未満の超高ボロ ン濃度の ρ τ +型基板 (以下、 超高ボロン ド一プシリ コン単結晶ゥ ハと呼ぶ) をェピ タキシャル成長を行う基板ゥエーハと して用いており、 抵抗率 1 Ο πι Ω ' cm以 上 1 Ο Ο πι Ω . cm以下の高ボロ ン濃度の Ρ +型基板 (以下、 高ボロンドープシ リ コン単結晶ゥェ一八と呼ぶ) を基板ゥェ一ハと した場合に比べて高いデバイス 歩留りが得られていた。 しかし、 超高ボロン ド一プシリ コン単結晶ゥエーハは非 常にボロン濃度が高いためオー ト ドープと呼ばれる基板中のポロン不純物がいつ たん気相中に飛び出し、 再びェピタキシャル成長層に取り込まれるという問題が 生じる。 Gettering technology is becoming increasingly important as one of the technologies to reduce such heavy metal impurities. Conventionally, epitaxial silicon single crystal wafers for logic devices have been manufactured using boron-silicon single crystal wafers with a high gettering effect and ultra-high boron with a resistivity of less than 1 ππιΩ'cm. Ρ τ + type substrate (hereinafter referred to as ultra high boron silicon single crystal substrate) is used as the substrate for epitaxy growth and has a resistivity of less than 1 ΟπιΩ'cm. The device yield is higher than when a Ρ + type substrate with a high boron concentration of 1 1 Οπι Ω.cm or less (hereinafter referred to as a high boron-doped silicon single crystal layer 18) is used as the substrate wafer. Was obtained. However, since the ultra-high boron doped silicon single crystal wafer has a very high boron concentration, there is a problem that the boron impurity in the substrate, which is called auto-doping, jumps out into the gas phase and is taken into the epitaxial growth layer again. Occurs.
このよ うな、 オー ト ドープの対策と してェピタキシャル成長を減圧雰囲気下で 行う方法や、 あるいは基板裏面に C V D酸化膜をつけてシール材とする等の方法 が有るが、 このよ うな処理を行うために、 いずれも生産性の悪化やコス ト高につ ながってしまう という問題点があった。  As a countermeasure against such auto doping, there is a method of performing epitaxy growth under reduced pressure atmosphere, or a method of applying a CVD oxide film on the back surface of the substrate as a sealing material. In doing so, there was a problem that all of them led to lower productivity and higher costs.
そこで、 ォー ト ド一プの対策の必要がない高ポロンドープシリ コン単結晶ゥェ をェピタキシャル成長を行う基板ゥェ一ハと して用いることが考えられた。 しかし、 低酸素濃度の高ボロンド一プシリ コン単結晶ゥヱ一ハのゲッタ リ ングは ポロン原子による偏析型のゲッタ リ ングであり酸素析出物による緩和型のゲッタ リ ングに比べて銅や二ッケル等の重金属不純物に対しゲッタ リ ング能力が低いと いう問題点があった。  Therefore, it was conceived to use a high-polon-doped silicon single-crystal wafer, which does not require any countermeasures against auto-doping, as a substrate wafer for epitaxy growth. However, gettering of high boron mono-silicon single crystal with low oxygen concentration is segregation type gettering by polon atoms, and copper and nickel gettering is compared with relaxation type gettering by oxygen precipitates. There is a problem that gettering ability is low for heavy metal impurities such as.
—方、 従来から、 C C D用ェピタキシャルシリ コン単結晶ゥェ一ハの製造には、 リ ンを ドープされた N型基板 (以下、 リ ンドープシリ コン単結晶ゥエーハと呼ぶ) やアンチモンド一プシリ コン単結晶ゥエーハ等の N型基板がェピタキシャル成長 を行う基板ゥェ一ハと して用いられていた。 しかし、 これらの N型基板は、 ポロ ンド一プシリ コン単結晶ゥェ一ハと比較すると酸素析出しにくいという問題があ つた。このよ うな N型基板の酸素析出量の不足によるゲッタ リ ング能力の不足は、 C C Dのよ うな重金属不純物に起因する結晶欠陥に敏感なデバイスにおいては致 命的な問題である。 —However, conventionally, the production of epitaxial silicon single crystal wafers for CCDs has An N-type substrate doped with phosphorus (hereinafter referred to as a "lin-doped silicon single crystal wafer") or an N-type substrate such as antimony-p-silicon single crystal wafer is used as a substrate wafer for epitaxy growth. Had been. However, these N-type substrates have a problem that oxygen precipitation is less likely to occur as compared with a polysilicon single crystal wafer. Such a lack of gettering ability due to a lack of oxygen precipitation on the N-type substrate is a fatal problem in devices such as CCDs that are sensitive to crystal defects caused by heavy metal impurities.
特に、 アンチモン ドープシリ コン単結晶ゥェ一ハの場合、 アンチモンを ド一プ したシリ コン単結晶棒をチヨ クラルスキー法によって成長させる際に、 アンチモ ン濃度の高い単結晶棒成長の後半の酸素濃度は、 酸化アンチモンの蒸発によ り高 酸素濃度に維持することが非常に難しい。 このため酸素濃度が低く なることによ り、 この部位から切断されたシリ コンゥエーハの酸素析出が抑制されてしまい、 デバイス製造に必要なゲッタ リ ング能力を得ることができなかった。  In particular, in the case of an antimony-doped silicon single crystal wafer, when a silicon single crystal rod doped with antimony is grown by the Czochralski method, the oxygen concentration in the latter half of the growth of the single crystal rod having a high antimony concentration is increased. However, it is very difficult to maintain a high oxygen concentration by evaporating antimony oxide. As a result, the oxygen concentration was reduced, so that oxygen precipitation of the silicon wafer cut from this site was suppressed, and the gettering ability required for device manufacturing could not be obtained.
そこで、 ァンチモンド一プシリ コン単結晶ゥエーハゃリ ンドープシリ コン単結 晶ゥエーハにおいてボロン ド一ブシリ コン単結晶ゥエーハと同程度の酸素析出量 を得よ う とすると、 ボロンド一プシリ コン単結晶ゥエーハに比べて長時間の酸素 析出熱処理が必要となってしまい、 生産性の悪化につながってしま う という問題 があった。  In order to obtain the same amount of oxygen precipitation as boron boron silicon single crystal wafers in antimony silicon silicon single crystal silicon wafers, compared to boron silicon silicon single crystal wafers. There has been a problem that a long-term oxygen precipitation heat treatment is required, leading to a decrease in productivity.
例えばリ ンド一プシリ コン単結晶ゥエーハの場合、 具体的には I G熱処理と呼 ばれる高温 1 1 0 0 °C以上の初段熱処理、 2段目 と して 6 0 0〜 7 0 0 °C程度の 析出核形成熱処理、 三段目 と して 1 0 0 0 °c程度の酸素析出物形成熱処理が数時 間ずつ行われる。  For example, in the case of a single-crystal silicon single crystal wafer, a first stage heat treatment at a high temperature of 110 ° C. or higher, which is called IG heat treatment, and a second stage heat treatment at about 600 ° C. to 700 ° C. As the third stage of the precipitation nucleation heat treatment, oxygen precipitate formation heat treatment at about 100 ° C. is performed for several hours.
—方、 これらの高ボロン ド一プシリ コン単結晶ゥエーハ、 アンチモン ドープシ リ コン単結晶ゥェ一ハ、 リ ンド一プシリ コン単結晶ゥエーハの酸素析出を増やす ためにゥエーハの酸素濃度を高くすることができた場合は、 酸素析出が促進され て、 このよ うな熱処理に要する時間を短縮することが可能とはなるが、 ゥェ一ハ の酸素析出量が過多となり ゥエーハの変形及びゥェ一ハの強度低下等の問題を引 き起こしてしま う。 また、 これらのシリ コン単結晶ゥェ一ハの表面にェピタキシ ャル層を形成した場合、 ェピタキシャル層中に不純物酸素の外方拡散による有害 な欠陥が発生して半導体デバイス特性に悪影響を及ぼすという問題点がある。 発明の開示 On the other hand, to increase the oxygen precipitation of these high boron silicon single crystal wafers, antimony-doped silicon single crystal wafers and Lind silicon single crystal wafers, it is necessary to increase the oxygen concentration of the wafer. When this is achieved, oxygen precipitation is promoted and the time required for such heat treatment can be reduced, but the amount of oxygen precipitation in the wafer becomes excessive and the deformation of the wafer and the wafer This can cause problems such as reduced strength. In addition, when an epitaxial layer is formed on the surface of these silicon single crystal wafers, harmful effects due to outward diffusion of impurity oxygen in the epitaxial layer are obtained. There is a problem that various defects occur to adversely affect semiconductor device characteristics. Disclosure of the invention
本発明はこのよ うな問題点に鑑みてなされたもので、 高ボロンドープシリ コン 単結晶ゥェ一ハ、 アンチモン ド一プシリ コン単結晶ゥエーハ、 及びリ ンドープシ リ コン単結晶ゥェ一ハであって、 基板中の酸素濃度がゥエーハの変形及びゥエー ハの強度低下等の問題を引き起こさない程度に抑えられているにもかかわらず、 酸素析出しやすく ゲッタ リ ング能力の高いェピタキシャル成長用シリ コンゥエー ハ、 及び当該ゥエーハを基板ゥェ一ハに用いて成長されたェピタキシャル層中の 重金属不純物濃度の極めて低いェピタキシャルシリ コン単結晶ゥエーハを高生産 性で製造し供給する事を主たる目的とする。  The present invention has been made in view of such problems, and is directed to a high boron-doped silicon single crystal wafer, an antimony silicon single crystal wafer, and a phosphorus-doped silicon single crystal wafer. Therefore, despite the fact that the oxygen concentration in the substrate is suppressed to a level that does not cause problems such as deformation of the wafer and a decrease in the strength of the wafer, silicon is easily deposited in oxygen and has a high gettering ability. The main purpose is to produce and supply an epitaxial silicon single crystal wafer with extremely low concentration of heavy metal impurities in an epitaxial layer grown by using the wafer as a wafer for the substrate with high productivity. .
上記課題を解決するための本発明は、 ド一パントを ドープしたシリ コン単結晶 ゥエーハであって、 該シリ コン単結晶ゥェ一ハの析出熱処理後の酸素析出物また は酸化誘起積層欠陥密度が 1 X I 0 9個 / c m 3以上であることを特徴とする ド —パントを ドープしたシリ コン単結晶ゥェ一ハである。 The present invention for solving the above-mentioned problems is directed to a silicon single crystal wafer doped with a dopant, comprising: an oxygen precipitate or an oxidation-induced stacking fault density after a heat treatment for precipitation of the silicon single crystal wafer. There 1 XI 0 9 pieces / wherein the cm 3 or more de - a silicon single crystal © E one doped with dopant Ha.
このよ うに、 ド一パン トを ドープしたシリ コン単結晶ゥエーハであって、 該シ リ コン単結晶ゥェ一ハの析出熱処理後の酸素析出物または酸化誘起積層欠陥密度 が 1 X I 0 9個ノ c m 3以上であるシリ コン単結晶ゥェ一ハは、 ド一パントの種 類によらず高いゲッタ リ ング効果を持つものであり、 このゥェ一ハをェピタキシ ャルシリ コン単結晶ゥェ一ハの基板ゥェ一ハに用いれば、 高品質のェピタキシャ ルシリ コン単結晶ゥェ一ハを得ることができる。 The good sea urchin, a silicon single crystal Ueha doped with de one pan DOO, oxygen precipitates or oxidation induced stacking fault density after the precipitation heat treatment of該Shi Li Gong monocrystalline © E one tooth is 1 XI 0 9 pieces Silicon single crystal wafers having a cm 3 or more have a high gettering effect regardless of the type of dopant, and these wafers are used as epitaxy silicon single crystal wafers. If it is used for the substrate wafer, a high-quality epitaxial silicon single crystal wafer can be obtained.
また、 上記課題を解決するための本発明は、 抵抗率が l O m Q ' cm以上 1 0 0 m Ω · cm以下のボロンド一プシリ コン単結晶ゥェーハであって、  Further, the present invention for solving the above-mentioned problem provides a boron-doped silicon single crystal wafer having a resistivity of l O m Q'cm or more and 100 mΩcm or less,
該ボロンドープシリ コン単結晶ゥェ一ハ中の酸素濃度が 1 6 p p m a ( J E I D A : 日本電子工業振興協会規格) 以下であり、 且つ析出熱処理後の酸素析出物 または酸化誘起積層欠陥密度が 1 X 1 0 9個 cm 3以上であることを特徴とする ボロンドープシリ コン単結晶ゥェ一ハである。 The oxygen concentration in the boron-doped silicon single crystal wafer is not more than 16 ppma (JEIDA: Japan Electronic Industry Development Association standard), and the oxygen precipitate or oxidation-induced stacking fault density after the heat treatment for precipitation is 1 X 1 is a boron-doped silicon single crystal © E one cog, characterized in that at 0 9 cm 3 or more.
このよ うに、 抵抗率が 1 0 m Ω · cm以上 1 0 0 m Ω · cm以下のボ口ンド一 プシリ コン単結晶ゥェ一ハであって、 該ボロンドープシリ コン単結晶ゥエーハ中 の酸素濃度が 1 6 p p m a以下の低酸素濃度であるにもかかわらず析出熱処理後 の酸素析出物または酸化融起積層欠陥密度が 1 X 1 0 9個/ cm 3以上である酸素 析出しゃすいボロン ドープシリ コン単結晶ゥエーハは、 銅ゃニッケル等の重金属 不純物に対して高いゲッタ リ ング能力を持ち、 なおかつゥェ一ハ中の酸素濃度が 低いため、 ゥエーハが変形したり ゥエーハの強度が不足するよ うなことを防ぐこ とができる。 As described above, a boron single-crystal silicon wafer having a resistivity of 10 mΩ · cm or more and 100 mΩ · cm or less, wherein the boron-doped silicon single crystal wafer Oxygen precipitates with a low oxygen concentration of 16 ppma or less but oxygen precipitates or oxidized and melted stacking faults after precipitation heat treatment of 1 × 10 9 / cm 3 or more Doped silicon single crystal wafers have a high gettering ability against heavy metal impurities such as copper and nickel, and the oxygen concentration in the wafers is low, so that the wafers may be deformed or the strength of the wafers may be insufficient. It is possible to prevent snarling.
さらに、 このよ うなボロンド一プシリ コン単結晶ゥエーハを、 ェピタキシャル ゥェ一ハを製造するための基板ゥェ一ハに供すれば、 ェピタキシャル層中に不純 物酸素の外方拡散による有害な欠陥を発生することがなく、 かつ高いゲッタ リ ン グ効果を有し、 半導体デバイ ス作製層中の重金属不純物濃度が極めて低いェピタ キシャルシリ コン単結晶ゥエーハを髙生産性で得ることができると ともに、 前記 ォー ト ド一プの問題も解決することができる。  Further, if such a boron-doped silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, harmful oxygen due to outward diffusion of impurity oxygen in the epitaxial layer can be obtained. Epitaxial silicon single crystal wafers with no defects, high gettering effect, and extremely low heavy metal impurity concentration in the semiconductor device fabrication layer can be obtained with high productivity. The above-mentioned problem of the automatic mapping can also be solved.
また本発明は、 抵抗率が 1 0 m Ω · cm以上 1 0 0 m Ω · cm以下のボロ ン ド 一プシリ コン単結晶ゥエーハであって、  The present invention also provides a boron-silicon single crystal wafer having a resistivity of 10 mΩcm to 100 mΩcm,
該ボロンドープシリ コン単結晶ゥェ一ハは、 チヨ クラルスキー法によって窒素 をド一プして育成されたシ リ コン単結晶棒をスライスして得られたものであるこ とを特徴とするポロン ドープシリ コン単結晶ゥエーハである。  The boron-doped silicon single-crystal wafer is obtained by slicing a silicon single-crystal rod grown by doping nitrogen by the Chiyo-Kralski method. This is a single crystal crystal wafer.
このよ うに、 抵抗率が 1 0 m Ω · cm以上 1 0 0 m Ω · cm以下のボ口ンドー プシリ コン単結晶ゥェ一ハであって、該ボロンド一プシリ コン単結晶ゥエーハは、 チヨ クラルスキー法によって窒素を ド一プして育成されたシリ コン単結晶棒をス ライスして得られたものであれば、 ゥェ一ハのバルク部では窒素の存在によ り酸 素析出が促進されるので、 基板中の酸素濃度がゥェ一ハの変形やゥェ一ハの強度 の低下等の問題を引き起こ さない程度の低い濃度であっても高いゲッタ リ ング効 果を有するものとなる。  As described above, a boron-doped silicon single crystal wafer having a resistivity of 10 mΩ · cm or more and 100 mΩ · cm or less, wherein the boron-doped silicon single crystal wafer is Chiyo-Kralski If silicon monocrystal rods grown by doping with nitrogen by the method are sliced, oxygen precipitation is promoted by the presence of nitrogen in the bulk part of the wafer. Therefore, even if the oxygen concentration in the substrate is low enough not to cause problems such as deformation of the wafer or reduction in the strength of the wafer, the substrate has a high gettering effect. Become.
さらに、 このよ うなボロンド一プシリ コン単結晶ゥェ—ハをェピタキシャルゥ ェ一ハを製造するための基板ゥェ一ハに供すれば、 ェピタキシャル層へのォ一 ト ド一プによる不純物の取り込みを防ぐことができ、高いゲッタ リ ング効果を有し、 重金属不純物濃度が極めて低いェピタキシャルシリ コン単結晶ゥェ一ハを髙生産 性で得ることができる。 また、 この場合、 前記ボロンドープシリ コン単結晶ゥェ一ハの酸素濃度を、 1 6 p p m a以下のものとすることができる。 Furthermore, when such a boron-doped silicon single-crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, impurities due to a dopant in the epitaxial layer can be obtained. Thus, an epitaxial silicon single crystal wafer having a high gettering effect and a very low heavy metal impurity concentration can be obtained with high productivity. In this case, the boron-doped silicon single crystal wafer can have an oxygen concentration of 16 ppma or less.
このよ うに 1 6 p p m a以下の低酸素とすれば、 ゥエーハの変形及びゥエーハ 強度の低下の恐れはさらに減少することに加えて、 ボロンド一プシリ コン単結晶 ゥエーハ中の結晶欠陥の形成を抑制することができ、 ゥエーハの表面層での酸素 析出物の形成を防止することができる。 そのためゥエーハ表面にェピタキシャル 層を形成した場合に、 ェピタキシャル層の結晶性に悪影響が生じることもない。 一方、 バルク部では窒素の存在によ り酸素析出が促進されるので、 このよ うな低 酸素と しても十分にゲッタ リ ング効果を発揮することができる。  If the oxygen content is 16 ppma or less as described above, the risk of deformation of the wafer and the decrease in the strength of the wafer are further reduced, and the formation of crystal defects in the boron single-crystal silicon wafer is suppressed. Thus, the formation of oxygen precipitates on the surface layer of the wafer can be prevented. Therefore, when the epitaxial layer is formed on the wafer surface, there is no adverse effect on the crystallinity of the epitaxial layer. On the other hand, since oxygen precipitation is promoted by the presence of nitrogen in the bulk portion, the gettering effect can be sufficiently exhibited even with such low oxygen.
また、 上記課題を解決するための本発明は、 アンチモンド一プシリ コン単結晶 ゥエー八であって、 該アンチモン ド一プシリ コン単結晶ゥェ一ハ表面の結晶欠陥 の密度が 0 . 1個/ cm 2以下であることを特徴とするアンチモン ド一プシリ コン 単結晶ゥエーハである。 Further, the present invention for solving the above-mentioned problem is directed to an antimony-polysilicon single crystal wafer, wherein the density of crystal defects on the surface of the antimony-silicon single crystal wafer is 0.1 / cm2. An antimony-doped silicon single crystal wafer characterized by having a size of not more than cm 2 .
このよ うに、 アンチモン ド一プシリ コン単結晶ゥェ一ハであって、 該アンチモ ンドープシリ コン単結晶ゥエーハ表面の結晶欠陥の密度が 0 . 1個 cm 2以下で あるアンチモン ドープシリ コン単結晶ゥエーハは、 ゥェ一ハ表面の G r o w n— i n欠陥の密度が従来のアンチモン ド一プシリ コン単結晶ゥェーハに比べて極め て少なく抑えられているシリ コン単結晶ゥエーハである。 そのため、 このよ うな アンチモンド一プシリ コン単結晶ゥェ一ハを、 ェピタキシャルゥエーハを製造す るための基板ゥエー八に供すれば、 良質のェピタキシャル層をもつェピタキシャ ルシリ コン単結晶ゥェ一ハを得ることができる。 As described above, an antimony-doped silicon single-crystal wafer having a crystal defect density of 0.1 cm 2 or less on the surface of the antimony-doped silicon single-crystal wafer is: This is a silicon single crystal wafer in which the density of grown-in defects on the wafer surface is extremely small as compared with the conventional antimony silicon single crystal wafer. Therefore, if such an antimony-silicon single-crystal wafer is used as a substrate for manufacturing an epitaxial wafer, an epitaxial silicon single-crystal wafer having a high-quality epitaxy layer can be obtained. I can get one.
また、 本発明は、 アンチモン ドープシリ コン単結晶ゥェ—ハであって、 該アン チモンド一プシリ コン単結晶ゥエーハの析出熱処理後の酸素析出物または酸化誘 起積層欠陥密度が 1 X 1 0 9個 Z cm 3以上であることを特徴とするアンチモン ド —プシリ コン単結晶ゥェ一ハである。 Further, the present invention is antimony Dopushiri con single crystal © E - A c, oxygen precipitates or oxidation induced electromotive stacking fault density after the precipitation heat treatment of the en Chimondo one psiri con single crystal Ueha is 1 X 1 0 9 pieces An antimony-p-silicon single crystal wafer having a Z cm of 3 or more.
このよ うに、 アンチモン ド一プシリ コン単結晶ゥェ—ハであって、 該アンチモ ンドープシリ コン単結晶ゥェ一ハの析出熱処理後の酸素析出物または酸化誘起積 層欠陥密度が 1 X 1 0 9個/ cm 3以上であるアンチモンドープシリ コン単結晶ゥ ェ一ハは、 ゲッタ リ ング能力が極めて高いため、 ゥェ一ハ表面の重金属不純物密 度が極めて低いシリ コン単結晶ゥェ一ハとなる。 そのため、 このよ うなアンチモ ンド一プシリ コン単結晶ゥェ一ハを、 ェピタキシャルゥェ一ハを製造するための 基板ゥェ一ハに供すれば、 良質のェピタキシャル層をもつェピタキシャルシリ コ ン単結晶ゥェ一ハを得ることができる。 As described above, the antimony-doped silicon single crystal wafer has an oxygen precipitate or oxidation-induced laminar defect density of 1 × 10 9 after the heat treatment for precipitation of the antimony-doped silicon single crystal wafer. Since the antimony-doped silicon single crystal wafer having the number of pieces / cm 3 or more has an extremely high gettering ability, the density of heavy metal impurities on the wafer surface is high. It becomes a silicon single crystal wafer with extremely low degree. Therefore, when such an anti-monitor silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, an epitaxial silicon wafer having a high-quality epitaxy layer can be obtained. A single crystal wafer can be obtained.
さらに、 本発明は、 アンチモン ド一プシリ コン単結晶ゥェ一ハであって、 該ァ ンチモン ド一プシリ コン単結晶ゥエーハ表面の結晶欠陥の密度が 0 . 1個 Zcm 2 以下であり、 且つ析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個/ cm 3以上であることを特徴とするアンチモンドープシリ コン単結晶ゥ エーハである。 Furthermore, the present invention relates to an antimony-doped silicon single crystal wafer, wherein the density of crystal defects on the surface of the antimony-doped silicon single crystal wafer is 0.1 Zcm 2 or less, and antimony-doped silicon single crystal © Eha, wherein the oxygen precipitates or oxidation induced stacking fault density after the heat treatment is 1 X 1 0 9 pieces / cm 3 or more.
このよ うに、 アンチモン ドープシリ コン単結晶ゥエーハであって、 該アンチモ ンド一プシリ コン単結晶ゥェ一ハの表面の結晶欠陥の密度が 0 . 1個 Z cm 2以下 であり、 且つ析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 /" cm 3以上であるアンチモンドープシリ コン単結晶ゥェ一ハは、 ゥエーハ表 面の G r o w n - i n欠陥の密度が、 従来のアンチモン ド一プシリ コン単結晶ゥ エーハに比べて極めて少なく抑えられているシリ コ ン単結晶ゥエーハであり、 且 つゲッタ リ ング能力が極めて高いため、 ゥエーハ表面の重金属不純物密度が極め て低いシリ コン単結晶ゥエーハとなる。 そのため、 このよ うなアンチモン ドープ シリ コン単結晶ゥエーハを、 ェピタキシャルゥエーハを製造するための基板ゥェ —ハに供すれば、 極めて良質のェピタキシャル層をもつェピタキシャルシリ コン 単結晶ゥェ一ハを得るこ とができる。 As described above, in the antimony-doped silicon single crystal wafer, the density of crystal defects on the surface of the antimony-doped silicon single crystal wafer is 0.1 Zcm 2 or less, and after the precipitation heat treatment. antimony-doped silicon single crystal © E one tooth oxygen precipitates or oxidation induced stacking fault density of 1 X 1 0 9 pieces / "cm 3 or more, G rown of Ueha table surface - the density of in defects, conventional This is a silicon single crystal silicon wafer that is extremely small compared to antimony silicon silicon single crystal wafers, and has extremely high gettering ability, so the heavy metal impurity density on the wafer surface is extremely low. Therefore, such an antimony-doped silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer. Thus, an epitaxial silicon single crystal wafer having an extremely high quality epitaxial layer can be obtained.
また本発明は、 アンチモン ド一プシリ コン単結晶ゥェ—ハであって、 該アンチ モン ド一プシリ コン単結晶ゥェ一ハは、 チヨ クラルスキ一法によって窒素ド一プ して育成されたシリ コン単結晶棒をスライスして得られたものであることを特徴 とするアンチモン ド一プシリ コン単結晶ゥェ—ハである。  The present invention also relates to an antimony-doped silicon single-crystal wafer, wherein the antimony-doped silicon single-crystal wafer is grown by nitrogen doping by the Chiyo-Kralski method. An antimony silicon single crystal wafer characterized by being obtained by slicing a silicon single crystal rod.
このよ うに、 アンチモン ド一プシリ コン単結晶ゥエーハであって、 該アンチモ ンドープシリ コン単結晶ゥエーハは、 チヨ クラルスキー法によって窒素を ドープ して育成されたシリ コン単結晶棒をスライスして得られたものであれば、 窒素の 影響によ り ゥェ一ハ表面のサイズの大きな G r o w n - i n欠陥の密度は著しく 低減されたものとなる。 また、 ゥェ一ハのバルク部では窒素の存在によ り酸素析 出が促進されるので、 基板中の酸素濃度がゥエーハの変形ゃゥエーハの強度の低 下等の問題を引き起こ さないよ うな比較的低濃度であっても、 短時間の熱処理で 高いゲッタ リ ング効果を有するものとなる。 Thus, an antimony-doped silicon single-crystal wafer, which is obtained by slicing a silicon single-crystal rod grown by doping with nitrogen by the Czochralski method. If so, the density of large row-in defects with large wafer surface size will be significantly reduced due to the effect of nitrogen. In the bulk part of the wafer, oxygen precipitation is caused by the presence of nitrogen. As the concentration of oxygen in the substrate is relatively low so as not to cause problems such as {deformation of the wafer} and reduction of the strength of the wafer, high gettering can be achieved by short-time heat treatment. It has a rolling effect.
さらに、 このよ うなアンチモンド一プシリ コン単結晶ゥエーハをェピタキシャ ルゥエーハを製造するための基板ゥェ一ハに供すれば、 基板ゥェ一ハ表面のサイ ズの大きな G r o w n - i n欠陥が少ないので、 ェピタキシャル層に与える悪影 響が極めて少なく、 短時間の熱処理で高いゲッタ リ ング効果を有し、 ェピタキシ ャル層の重金属不純物濃度を著しく低減することができる。 したがって極めて高 品質のェピタキシャル層を有するェピタキシャルシリ コン単結晶ゥエーハを高生 産性で得ることができる。  Furthermore, if such an antimony-p-silicon single-crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, the number of large row-in defects on the surface of the substrate wafer is small. However, the adverse effect on the epitaxial layer is extremely small, a high gettering effect is obtained by a short-time heat treatment, and the concentration of heavy metal impurities in the epitaxial layer can be significantly reduced. Therefore, an epitaxy silicon single crystal wafer having an extremely high quality epitaxy layer can be obtained with high productivity.
この場合、 前記アンチモンド一プシリ コン単結晶ゥェ一ハの酸素濃度を、 2 0 p p m a ( J E I DA : 日本電子工業振興協会規格) 以下のものとすることがで さる。  In this case, the oxygen concentration of the antimony-p-silicon single-crystal wafer is set to 20 ppma (JEIDA: Japan Electronics Industry Development Association Standard) or less.
このよ うに 2 0 p p m a以下の中 ' 低酸素とすれば、 ゥエーハの変形及びゥェ —ハ強度の低下の心配はないことに加えて、 アンチモンドープシリ コン単結晶ゥ ェ―ハ中の結晶欠陥の形成を抑制することができ、 ゥエーハの表面層での酸素析 出物の形成を防止することができる。 そのためゥエーハ表面にェピタキシャル層 を形成した場合に、 ェピタキシャル層の結晶性に悪影響が生じることもない。 一 方、 バルク部では窒素の存在によ り酸素析出が促進されるので、 このよ うな中 ' 低酸素と しても十分にゲッタ リ ング効果を発揮することができる。  As described above, if the oxygen content is lower than 20 ppma, there is no need to worry about deformation of the wafer and decrease in wafer strength. In addition, crystal defects in the antimony-doped silicon single crystal wafer are considered. The formation of oxygen precipitates can be suppressed, and the formation of oxygen precipitates on the surface layer of the wafer can be prevented. Therefore, when an epitaxial layer is formed on the wafer surface, the crystallinity of the epitaxial layer is not adversely affected. On the other hand, in the bulk part, the precipitation of oxygen is promoted by the presence of nitrogen, so that the gettering effect can be sufficiently exhibited even in such low oxygen content.
また、 上記課題を解決するための本発明は、 リ ンドープシリ コン単結晶ゥエー ハであって、 該リ ンド一プシリ コン単結晶ゥエーハ中の酸素濃度が 1 8 p p m a ( J E I DA : 日本電子工業振興協会規格) 以下であり、 且つ析出熱処理後の酸 素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 Zcm3以上であることを特 徴とする リ ンド一プシリ コン単結晶ゥエーハである。 Further, the present invention for solving the above-mentioned problem is directed to a phosphorus-doped silicon single crystal wafer having an oxygen concentration of 18 ppma (JEI DA: Japan Electronic Industry Development Association). (Specification) This is a single-crystal silicon single-crystal wafer characterized by having an oxide precipitate or oxidation-induced stacking fault density after precipitation heat treatment of 1 × 10 9 or more Zcm 3 or more.
このよ うに、 リ ン ド一プシリ コン単結晶ゥエーハであって、 該リ ンド—プシリ コン単結晶ゥェ一ハ中の酸素濃度が 1 8 p p m a以下の中 · 低酸素濃度であるに もかかわらず析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個/ cm3以上である酸素析出しゃすいリ ンド一プシリ コン単結晶ゥエーハは、 銅や二ッケル等の重金属不純物に対して短時間の熱処理であつても高いゲッタ リ ング能力を持ち、 ゥェ一ハ中の酸素濃度が低いため、 ゥエーハが変形したり ゥェ —ハの強度が不足することを防ぐことができる。 As described above, in the case of the silicon single crystal wafer, the oxygen concentration in the silicon single crystal wafer is not more than 18 ppma even though the oxygen concentration is low or low. Oxygen precipitate thin silicon oxide single crystal wafers with an oxygen precipitate or oxidation-induced stacking fault density after precipitation heat treatment of 1 × 10 9 / cm 3 or more are: It has high gettering ability even for short-time heat treatment for heavy metal impurities such as copper and nickel, and the oxygen concentration in the wafer is low. Can be prevented from becoming insufficient.
さらに、 このよ うなリ ン ドープシリ コン単結晶ゥエーハを、 ェピタキシャルゥ ェ一ハを製造するための基板ゥエーハに供すれば、 ェピタキシャル層に不純物酸 素の外方拡散による有害な欠陥を発生することがなく、 かつ短時間の熱処理で高 ぃゲッタ リ ング効果を有し、 重金属不純物濃度が極めて低いェピタキシャルシリ コン単結晶ゥエーハを高生産性で得ることができる。  Furthermore, when such a line of doped silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, harmful defects due to outward diffusion of impurity oxygen are generated in the epitaxial layer. It is possible to obtain an epitaxial silicon single crystal wafer having a high gettering effect and a very low heavy metal impurity concentration with high productivity by a short heat treatment without any heat treatment.
また本発明は、 リ ン ドープシリ コン単結晶ゥェ一ハであって、 該リ ン ドープシ リ コン単結晶ゥェ一ハは、 チヨ クラルスキ一法によって窒素を ド一プして育成さ れたシリ コン単結晶棒をスライ ス して得られたものであることを特徴とする リ ン ド一プシリ コン単結晶ゥェ一ハである。  The present invention also relates to a silicon-doped silicon single-crystal wafer, wherein the silicon-doped silicon single-crystal wafer is grown by doping nitrogen by the Chioklarski method. A single-crystal silicon single crystal wafer characterized by being obtained by slicing a silicon single crystal rod.
このよ う に、 リ ン ド一プシリ コン単結晶ゥェ一ハであって、 該リ ン ド一プシリ コン単結晶ゥエーハは、 チヨ ク ラルスキ一法によって窒素を ドープして育成され たシリ コン単結晶棒をスライ ス して得られたものであれば、 ゥエーハのパルク部 では窒素の存在によ り酸素析出が促進されるので、 基板中の酸素濃度がゥエーハ の変形やゥェ一ハの強度の低下等の問題を引き起こさないよ うな比較的低濃度で あっても、 短時間の熱処理で高いゲッタ リ ング効果を有するものとなる。  As described above, a single-crystal silicon single-crystal wafer is a silicon single-crystal wafer grown by doping nitrogen with the Chiral Clarke method. If the crystal rod is obtained by slicing, the oxygen concentration in the substrate is promoted by the presence of nitrogen in the pulp portion of the wafer, so that the oxygen concentration in the substrate will be affected by the deformation of the wafer and the strength of the wafer. Even if the concentration is relatively low so as not to cause a problem such as a decrease in the temperature, a high gettering effect can be obtained by a short-time heat treatment.
さらに、 このよ うなリ ン ドープシリ コン単結晶ゥエーハをェピタキシャルゥェ —ハを製造するための基板ゥエーハに供すれば、 短時間の熱処理で高いゲッタ リ ング効果を有し、 重金属不純物濃度が極めて低いェピタキシャルシリ コン単結晶 ゥェ一ハを高生産性で得ることができる。  Furthermore, if such a phosphorus-doped silicon single crystal wafer is used as a substrate wafer for manufacturing an epitaxial wafer, it has a high gettering effect by a short heat treatment and has a very heavy metal impurity concentration. A low epitaxial silicon single crystal wafer can be obtained with high productivity.
この場合、 前記リ ンド一プシリ コン単結晶ゥエーハの酸素濃度を、 1 8 p p m a以下のものとすることができる。  In this case, the oxygen concentration of the single-crystal silicon single crystal wafer can be set to 18 ppmm or less.
このよ う に 1 8 p p m a以下の中 ' 低酸素とすれば、 ゥェ一ハの変形及びゥェ —ハ強度の低下の恐れはさ らに減少することに加えて、 リ ンドープシリ コン単結 晶ゥエーハ中の結晶欠陥の形成を抑制するこ とができ、 ゥエーハの表面層での酸 素析出物の形成を防止することができる。 そのためゥェ一ハ表面にェピタキシャ ル層を形成した場合に、ェピタキシャル層の結晶性に悪影響が生じることもない。 一方、 バルク部では窒素の存在によ り酸素析出が促進されるので、 このよ うな低 酸素と しても十分にゲッタ リ ング効果を発揮することができる。 As described above, if the oxygen content is below 18 ppma, the risk of wafer deformation and reduction of wafer strength is further reduced. The formation of crystal defects in the wafer can be suppressed, and the formation of oxygen precipitates on the surface layer of the wafer can be prevented. Therefore, when the epitaxial layer is formed on the wafer surface, the crystallinity of the epitaxial layer is not adversely affected. On the other hand, since oxygen precipitation is promoted by the presence of nitrogen in the bulk portion, the gettering effect can be sufficiently exhibited even with such low oxygen.
さらに、 窒素を ド一プしてシリ コン単結晶を育成する場合には、 前記シリ コン 単結晶ゥエーハの窒素濃度が、 1 X I 0 1 0〜 5 X 1 0 1 5 atoms/cm 3であること が好ましい。 Further, when growing a silicon single crystal by doping nitrogen, the nitrogen concentration of the silicon single crystal substrate should be 1 XI 0 10 to 5 X 10 15 atoms / cm 3. Is preferred.
これは、 窒素によ り シリ コンゥェ一ハ中のサイズの大きな G r o w n - i n欠 陥の形成を抑制すると ともに、 酸素析出を充分に促進する効果をもたせるには、 1 X 1 0 1 ° atoms/cm 3以上にするのが望ましいこと と、 チヨ クラルスキ一法に おけるシリ コン単結晶の単結晶化の妨げにならないよ うにするためには、 5 X I 0 1 5 atoms m 3以下とするのが好ましいからである。 This is, nitrogen by the Ri Siri Konwe of size in one tooth large G rown - together and to inhibit the formation of in defects, to impart an effect to sufficiently promote oxygen precipitation, 1 X 1 0 1 ° atoms / it to the cm 3 or more is desirable and, in order to Uni by do not interfere with the single crystal of silicon single crystal definitive in chiyo Kurarusuki one method is preferably set to 5 XI 0 1 5 atoms m 3 or less Because.
さらに、 前記シリ コン単結晶ゥェ—ハは、 9 0 0 °C〜シリ コンの融点以下の温 度の熱処理を加えられたものであることが好ましい。  Further, it is preferable that the silicon single crystal wafer has been subjected to a heat treatment at a temperature of 900 ° C. to the melting point of silicon.
このよ うに、 シリ コン単結晶ゥエーハが 9 0 0 °C〜シリ コンの融点以下の温度 の熱処理を加えられたものであれば、 シリ コン単結晶ゥエーハ表面の窒素や酸素 は外方拡散されており、 ゥェ一ハ表面層の結晶欠陥は極めて少ないものとなる。 またその後にェピタキシャル層の形成等の高温の熱処理を行った際に析出核が溶 解してしまい析出が起こ らなく なるよ うなこ ともなく 、 充分なゲッタ リ ング効果 を有するゥエーハとなる。  As described above, if the silicon single crystal wafer is subjected to a heat treatment at a temperature of 900 ° C. to the melting point of silicon or less, nitrogen and oxygen on the surface of the silicon single crystal wafer are diffused outward. Thus, the crystal defects on the wafer surface layer are extremely small. Further, when a high-temperature heat treatment such as formation of an epitaxy layer is performed thereafter, the precipitation nucleus does not dissolve and the precipitation does not occur, and the wafer has a sufficient gettering effect.
そして、 本発明は、 ェピタキシャルシリ コン単結晶ゥェ—ハであって、 本発明 のシリ コン単結晶ゥェ一ハの表層部にェピタキシャル層が形成されているもので あることを特徴とするェピタキシャルシリ コン単結晶ゥェ—ハである。  Further, the present invention is an epitaxial silicon single crystal wafer, characterized in that an epitaxial layer is formed on a surface portion of the silicon single crystal wafer of the present invention. This is an epitaxial silicon single crystal wafer.
このよ うに、 本発明のシリ コン単結晶ゥェ一八の表層部にェピタキシャル層が 形成されているェピタキシャルシリ コン単結晶ゥエーハは、 オー ト ド―プの問題 がないために所望抵抗値を有する高品質のェピタキシャル層を有するものとなる とともに、 生産性が高く、 基板中の酸素濃度がゥエーハの変形およびゥェ—ハの 強度低下等の問題を引き起こさない程度に抑えられているにもかかわらず、 銅や ニッケル等の重金属に対して高いゲッタ リ ング効果を有し、 重金属不純物濃度の 極めて低いェピタキシャルシリ コン単結晶ゥエーハとなる。  As described above, the epitaxial silicon single crystal wafer having the epitaxial layer formed on the surface layer of the silicon single crystal wafer 18 of the present invention has a desired resistance value because it has no problem of auto-doping. In addition to having a high quality epitaxy layer having the following characteristics, the productivity is high and the oxygen concentration in the substrate is suppressed to a level that does not cause problems such as deformation of the wafer and reduction in the strength of the wafer. Nevertheless, it has a high gettering effect on heavy metals such as copper and nickel, and becomes an epitaxial silicon single crystal wafer with an extremely low heavy metal impurity concentration.
また、 本発明は、 抵抗率が 1 0 m Ω · cm以上 1 0 0 m Ω · cm以下のボ口ン ド一プシリ コン単結晶ゥェ一ハの製造方法において、 In addition, the present invention relates to a resin material having a resistivity of not less than 10 mΩcm and not more than 100 mΩcm In the method of manufacturing a silicon single crystal wafer,
チヨクラルスキー法によってボロンを ド一プすると と もに窒素を ドープしたシ リ コン単結晶棒を育成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶ゥ ェ一ハに加工することを特徴とするボロンド一プシリ コン単結晶ゥエーハの製造 方法である。  To grow silicon single crystal rods doped with nitrogen by doping boron by the Czochralski method, slice the silicon single crystal rods, and process them into silicon single crystal wafers. A method for producing a boron-doped silicon single crystal wafer.
このよ うに、 抵抗率が 1 Ο πι Ω ' cm以上 1 Ο Ο πι Ω ' cm以下のボロン ド一 プシリ コン単結晶ゥェ一ハの製造方法において、 チヨ クラルスキー法によってボ ロンをドープすると ともに窒素を ド一プしたシリ コン単結晶棒を育成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶ゥエー八に加工してボロンド一プシ リ コン単結晶ゥェ一ハを製造すれば、 ゥエーハのバルク部では窒素の存在によ り 酸素析出が促進されるので、 基板中の酸素濃度がゥエーハの変形ゃゥエーハの強 度の低下等の問題を引き起こさない程度の濃度であっても高いゲッタ リ ング効果 を有するポロン ド一プシリ コン単結晶ゥエーハを製造することができる。  As described above, in the method for manufacturing a boron-silicon single crystal wafer having a resistivity of 1ΟπιΩ′cm or more and 1ΟππΩΩcm or less, boron is doped by the Chiyo-Kralski method and nitrogen is added. Then, a silicon single crystal rod is grown, and the silicon single crystal rod is sliced and processed into a silicon single crystal wafer to produce a boron single-crystal silicon wafer.窒 素 Since oxygen precipitation is promoted by the presence of nitrogen in the bulk part of the aerial wafer, the getter is high even if the oxygen concentration in the substrate is such that it does not cause problems such as ゥ deformation of the aerial ゃ ゥ reduction of the aerial strength. It is possible to manufacture a polysilicon single crystal wafer having a ring effect.
さらに、 このよ うな方法で製造されたポロン ドープシリ コン単結晶ゥエーハを ェピタキシャルゥエーハを製造するための基板ゥエーハに供すれば、 ェピタキシ ャル層へのォ一 ト ドープによる不純物の取り込みを防ぐことができ、 高いゲッタ リ ング効果を有し、 重金属不純物濃度が極めて低いェピタキシャルシリ コン単結 晶ゥエーハを高生産性で得ることができる。  Furthermore, if the polon-doped silicon single crystal wafer manufactured by such a method is used as a substrate for manufacturing an epitaxial wafer, it is possible to prevent impurities from being taken into the epitaxial layer due to single doping. Thus, an epitaxial silicon single crystal wafer having a high gettering effect and an extremely low heavy metal impurity concentration can be obtained with high productivity.
この場合、 該単結晶棒に含有される酸素濃度を 1 6 p p m a以下にすることが できる。  In this case, the concentration of oxygen contained in the single crystal rod can be reduced to 16 ppma or less.
このよ うにすれば、 ェピタキシャル層の結晶性に悪影響が生じることもなく、 十分にゲッタ リ ング効果を発揮することができる。  In this case, the gettering effect can be sufficiently exhibited without adversely affecting the crystallinity of the epitaxial layer.
また、 本発明は、 アンチモン ドープシリ コ ン単結晶ゥエーハの製造方法におい て、 チヨクラルスキー法によってアンチモンを ドープすると と もに窒素を ドープ したシリ コン単結晶棒を育成し、 該シリ コン単結晶棒をスライ ス してシリ コン単 結晶ゥエーハに加工するこ とを特徴とするアンチモン ド一プシリ コン単結晶ゥェ Further, the present invention provides a method for producing an antimony-doped silicon single crystal wafer, comprising: growing a silicon single crystal rod doped with antimony by the Cjochralski method and also doped with nitrogen; Characterized by being processed into silicon single crystal wafers by slicing.
—ハの製造方法である。 —This is the manufacturing method of c.
このよ うに、 アンチモン ドープシリ コン単結晶ゥェ一ハの製造方法において、 チヨ クラルスキー法によってアンチモンを ドープすると と もに窒素を ドープした シリ コン単結晶棒を育成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶 ゥェ一ハに加工してアンチモン ド一プシリ コン単結晶ゥェ一ハを製造すれば、 窒 素の影響によ り ゥエーハ表面の G r o w n - i n欠陥の密度は著しく低減された ものとなる。 また、 ゥェ一ハのバルク部では窒素の存在によ り酸素析出が促進さ れるので、 基板中の酸素濃度がゥェ一ハの変形やゥェ一ハの強度の低下等の問題 を引き起こさないよ うな比較的低濃度であっても、 短時間の熱処理で高いゲッタ リ ング効果を有するアンチモン ドープシリ コン単結晶ゥェ一ハを製造することが できる。 As described above, in the method of manufacturing an antimony-doped silicon single crystal wafer, antimony is doped by the Tycho-Kralski method and nitrogen is also doped. A silicon single crystal rod is grown, and the silicon single crystal rod is sliced and processed into a silicon single crystal wafer to produce an antimony silicon single crystal wafer. Due to this effect, the density of Grown-in defects on the wafer surface is significantly reduced. In addition, since oxygen precipitation is promoted by the presence of nitrogen in the bulk portion of the wafer, the oxygen concentration in the substrate causes problems such as deformation of the wafer and reduction in the strength of the wafer. Even with such a relatively low concentration, an antimony-doped silicon single crystal wafer having a high gettering effect can be manufactured by a short-time heat treatment.
さらに、 このよ うな方法で製造されたアンチモンド一プシリ コン単結晶ゥエー ハをヱピタキシャルゥェ一ハを製造するための基板ゥエーハに供すれば、 基板ゥ ェ一ハ表面の G r o w n - i n欠陥がェピタキシャル層に与える悪影響が極めて 少なく、 短時間の熱処理で高いゲッタ リ ング効果を有し、 ェピタキシャル層の重 金属不純物濃度を著しく低減することができ るため、 極めて高品質のェピタキシ ャル層を有するェピタキシャルシリ コン単結晶ゥエーハを高生産性で得ることが できる。  Furthermore, if the antimony-p-silicon single-crystal wafer manufactured by such a method is used as a substrate for manufacturing a epitaxial wafer, the Grown-in defect on the surface of the substrate wafer can be improved. Has very little adverse effect on the epitaxy layer, has a high gettering effect by short-time heat treatment, and can significantly reduce the concentration of heavy metal impurities in the epitaxy layer, resulting in extremely high quality epitaxy. An epitaxial silicon single crystal wafer having a layer can be obtained with high productivity.
この場合、 該単結晶棒に含有される酸素濃度を 2 0 p p m a以下にすることが できる。  In this case, the concentration of oxygen contained in the single crystal rod can be reduced to 20 ppma or less.
このよ うにすれば、 ェピタキシャル層の結晶性に悪影響が生じることもなく、 十分にゲッタ リ ング効果を発揮することができる。  In this case, the gettering effect can be sufficiently exhibited without adversely affecting the crystallinity of the epitaxial layer.
また、 本発明は、 リ ン ド一プシリ コン単結晶ゥェ一ハの製造方法において、 チ ョ ク ラルスキ一法によってリ ンを ド一プすると と もに窒素を ドープしたシリ コン 単結晶棒を育成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶ゥヱ—ハ に加工することを特徴とするリ ンド一プシリ コン単結晶ゥェ一ハの製造方法であ る。  Further, the present invention provides a method of manufacturing a silicon single crystal wafer having a silicon single crystal rod doped with nitrogen and doped with nitrogen by a Czochralski method. A method for producing a silicon single crystal wafer comprising growing a silicon single crystal rod and processing it into a silicon single crystal wafer.
このよ う に、 リ ンド一プシリ コン単結晶ゥェ一ハの製造方法において、 チヨク ラルスキー法によってリ ンを ド一プすると と もに窒素を ド一プしたシリ コン単結 晶棒を育成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶ゥェ一ハに加 ェしてリ ンド一プシリ コン単結晶ゥエーハを製造すれば、 ゥエーハのバルク部で は窒素の存在によ り酸素析出が促進されるので、 酸素析出が比較的起こ りにくい リ ンドープシリ コン単結晶ゥェ一ハであって、 基板中の酸素濃度がゥェ一ハの変 形ゃゥエーハの強度の低下等の問題を引き起こさないよ うな濃度であっても、 短 時間の熱処理で高いゲッタ リ ング効果を有する リ ンド一プシリ コン単結晶ゥエー ハを製造することができる。 As described above, in the method of manufacturing a silicon single crystal wafer, a silicon single crystal rod in which the silicon is doped by nitrogen and the nitrogen is doped by the Chiyokuralski method is grown. If a silicon single crystal rod is sliced and added to a silicon single crystal wafer to produce a silicon single crystal silicon wafer, oxygen is reduced due to the presence of nitrogen in the bulk part of the silicon wafer. Oxygen precipitation is relatively unlikely because precipitation is promoted Even if the substrate is a single crystal silicon wafer doped with silicon, and the oxygen concentration in the substrate is such that it does not cause problems such as deformation of the wafer or reduction in the strength of the wafer, heat treatment for a short time Thus, a single-crystal silicon single crystal wafer having a high gettering effect can be manufactured.
さらに、 このよ うな方法で製造されたリ ンド一プシリ コン単結晶ゥェ一ハをェ ピタキシャルゥェ一ハを製造するための基板ゥエーハに供すれば、 短時間の熱処 理で高いゲッタ リ ング効果を有し、 重金属不純物濃度が極めて低い高品質のェピ タキシャル層を有するェピタキシャルシリ コン単結晶ゥェ一ハを高生産性で得る ことができる。  Furthermore, if the silicon single crystal wafer produced by such a method is used as a substrate wafer for producing an epitaxial wafer, a high gettering time can be obtained by a short heat treatment. It is possible to obtain an epitaxial silicon single crystal wafer having a high quality epitaxy layer having an extremely low concentration of heavy metal impurities and having a high concentration of heavy metal impurities with high productivity.
この場合、 該単結晶棒に含有される酸素濃度を 1 8 p p m a以下にすることが できる。  In this case, the concentration of oxygen contained in the single crystal rod can be made 18 ppma or less.
このよ うにすれば、 ェピタキシャル層の結晶性に悪影響が生じることもなく 、 十分にゲッタ リ ング効果を発揮することができる。  By doing so, the gettering effect can be sufficiently exhibited without adversely affecting the crystallinity of the epitaxial layer.
さらに、 この場合、 チヨ クラルスキー法によって窒素を ドープしたシリ コン単 結晶棒を育成する際に、 該単結晶棒に ドープする窒素濃度を、 1 X 1 0 1 Q〜 1 X 1 0 1 5 atoms/cm 3にするこ とが好ましく 、 また前記シリ コン単結晶ゥェ一ハ に 9 0 0 C〜シリ コンの融点以下の温度の熱処理を加えることが好ましい。 Further, in this case, when growing a silicon single crystal rod doped with nitrogen by the Chiyoklarski method, the concentration of nitrogen doped into the single crystal rod is set to 1 × 10 1 Q to 1 × 10 15 atoms / cm 3 is preferable, and a heat treatment is preferably applied to the silicon single crystal wafer at a temperature of 900 ° C. to the melting point of silicon or lower.
このよ うにして、 シリ コ ン単結晶ゥェ一ハを製造すれば、 さ らにゲッタ リ ング 能力が高く、 表面欠陥の少ない、 諸特性に優れたェピタキシャル成長を行う基板 ゥエーハと して適したシリ コン単結晶ゥェ一ハを製造することができる。  In this way, if a silicon single crystal wafer is manufactured, it can be used as a substrate for epitaxial growth with high gettering ability, few surface defects, and excellent characteristics. Suitable silicon single crystal wafers can be manufactured.
そして、 本発明は、 ェピタキシャルシリ コン単結晶ゥェ一ハの製造方法におい て、 本発明のシリ コン単結晶ゥェ一ハの製造方法によ りシリ コン単結晶ゥェ一ハ を製造し、 該シリ コン単結晶ゥェ一ハの表層部にェピタキシャル層を形成するこ とを特徴とするェピタキシャルシリ コン単結晶ゥェ一ハの製造方法である。  Further, according to the present invention, in a method for producing an epitaxial silicon single crystal wafer, a silicon single crystal wafer is produced by the method for producing a silicon single crystal wafer according to the present invention. A method of manufacturing an epitaxial silicon single crystal wafer, comprising forming an epitaxial layer on a surface portion of the silicon single crystal wafer.
このよ うに、 ェピタキシャルシリ コン単結晶ゥエーハの製造方法において、 上 記のシリ コン単結晶ゥェ一ハの製造方法によ りシリ コン単結晶ゥェ一ハを製造し、 該シリ コン単結晶ゥェ一ハの表層部にェピタキシャル層を形成すれば、 基板ゥェ ーハ表面の G r o w n - i n欠陥がェピタキシャル層に与える影響が極めて少な く - 基板中の酸素濃度をゥェ一ハの変形およびゥエーハの強度低下等の問題を引 き起こさない程度に抑えたと しても、 重金属に対して短時間の熱処理で高いゲッ タ リ ング効果を有するために、 ェピタキシャル層の重金属不純物濃度を著しく低 減することができ、 高品質のェピタキシャル層を有するェピタキシャルシリ コン 単結晶ゥェ一ハを高生産性で製造することができる。 As described above, in the method for manufacturing an epitaxial silicon single crystal wafer, a silicon single crystal wafer is manufactured by the above-described method for manufacturing a silicon single crystal wafer, and the silicon single crystal wafer is manufactured. If an epitaxial layer is formed on the surface layer of the wafer, the effect of Grown-in defects on the substrate wafer surface on the epitaxial layer is extremely small.- The oxygen concentration in the substrate can be reduced. Problems such as deformation of Even if it is suppressed to the extent that it does not occur, since the heavy metal has a high gettering effect by a short heat treatment, the concentration of heavy metal impurities in the epitaxial layer can be significantly reduced, and high quality An epitaxial silicon single crystal wafer having an epitaxial layer can be manufactured with high productivity.
以上説明したよ うに、 本発明では、 ェピタキシャルシリ コン単結晶ゥェ一ハの 基板と して窒素を ドープしたシリ コンゥエーハを用いることによ り、 低酸素濃度 の高ボロンドープシリ コン単結晶ゥエーハゃ、 酸素析出しにく いアンチモン ド一 プ、 リ ン ドープシリ コン単結晶ゥエーハにおいても、 酸素析出しやすく高いゲッ タ リ ング能力を持ち、 ゥェ一ハ表面にェピタキシャル成長を行った場合には、 ェ ピタキシャル層中の欠陥密度および重金属不純物濃度の低い高品質のェピタキシ ャルシリ コン単結晶ゥエーハを、 高生産性でかつ簡単に作製することができる。 図面の簡単な説明  As described above, in the present invention, by using a nitrogen-doped silicon wafer as a substrate of an epitaxial silicon single crystal wafer, a high boron-doped silicon single crystal wafer having a low oxygen concentration is used.ア ン チ Even antimony dopants and line-doped silicon single crystal wafers, which are difficult to precipitate oxygen, have a high gettering ability because they are easy to precipitate oxygen, and when epitaxial growth is performed on the wafer surface. Can produce high-quality epitaxial silicon single crystal wafers with low defect density and heavy metal impurity concentration in the epitaxial layer with high productivity and easily. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施例 1 、 比較例 1 において、 酸素析出物を析出させる熱処理の後、 O P P法によるゥェ一ハの酸素析出物欠陥密度の測定結果を示す結果図である。 図 2は、 実施例 2、 比較例 2において、 ェピタキシャル成長前後のゥェ一ハ表 面の結晶欠陥密度をパ一ティ クルカウンタ一によ り測定した測定結果を示す結果 図である。  FIG. 1 is a result diagram showing the measurement results of the oxygen precipitate defect density of wafers by the OPP method after the heat treatment for depositing oxygen precipitates in Example 1 and Comparative Example 1. FIG. 2 is a result diagram showing the measurement results of the crystal defect density on the wafer surface before and after the epitaxial growth in Example 2 and Comparative Example 2 using a particle counter.
図 3は、 実施例 2、 比較例 2において、 酸素析出物を析出させる熱処理の後、 O P P法によるゥエーハの酸素析出物欠陥密度の測定結果を示す結果図である。 図 4は、 実施例 3、 比較例 3において、 O P P法によるゥエーハの酸素析出物 欠陥密度の測定結果を示す結果図である。 発明を実施するための最良の形態  FIG. 3 is a result diagram showing the measurement results of the oxygen precipitate defect density of wafers by the OPP method after the heat treatment for precipitating oxygen precipitates in Example 2 and Comparative Example 2. FIG. 4 is a result diagram showing the measurement results of the oxygen precipitate defect density of wafers by the OPP method in Example 3 and Comparative Example 3. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明についてさ らに詳述するが、 本発明はこれらに限定されるもので はない。  Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto.
本発明は、 C Z法によって製造された抵抗率 1 Ο πι Ω · c m以上 1 0 Ο πι Ω · c m以下の高ボロンドープシリ コン単結晶ゥエーハ、 またはアンチモン ド一プシ リ コン単結晶ゥエーハあるいはリ ンド一プシリ コン単結晶ゥェ一ハであって、 低 酸素濃度でかつ酸素析出物あるいは酸化誘起積層欠陥密度が高いシリ コン単結晶 ゥエーハを、 特に結晶育成中に窒素を ドープする技術で得て、 ェピタキシャルシ リ コン単結晶ゥェ一ハを製造するための基板ゥエーハに供する事によ り、 ェピタ キシャル層に不純物酸素の外方拡散による有害な欠陥を発生することなくかつ高 ぃゲッタ リ ング効果を有し重金属不純物濃度が極めて低いェピタキシャル単結晶 ゥェ一ハを高生産性、 低コス トで製造することができることを見出し、 諸条件を 精査して本発明を完成させたものである。 The present invention relates to a boron-doped silicon single crystal wafer having a resistivity of 1 抵抗 πιΩ · cm or more and 10 1πιΩ · cm or less, or an antimony-doped silicon single crystal wafer or a Lind manufactured by the CZ method. One silicon single crystal wafer, low Obtain silicon single crystal wafers with high oxygen concentration and high oxygen precipitates or oxidation-induced stacking fault density, especially with the technology of doping nitrogen during crystal growth, to produce epitaxial silicon single crystal wafers. The substrate is used for wafers, so that the epitaxial layer does not generate harmful defects due to outward diffusion of impurity oxygen, has a high gettering effect, and has an extremely low concentration of heavy metal impurities. The inventors have found that wafers can be manufactured with high productivity and low cost, and have scrutinized various conditions to complete the present invention.
すなわち、 窒素をシリ コン単結晶中に ド一プすると、 シリ コ ン中の酸素原子の 凝集が助長され、 酸素析出物濃度が高く なるこ とが指摘されている (T.Abe and H. Takeno, Mat. Res. So Symp.Proc, Vol.262, 3 , 1992 ) = 二の効果は酸素原子の凝 集過程が、 均一核形成から不純物窒素を核と した不均一核形成に移行するためで あると考えられる。 In other words, it has been pointed out that dropping nitrogen into a silicon single crystal promotes the aggregation of oxygen atoms in the silicon and increases the concentration of oxygen precipitates (T. Abe and H. Takeno , Mat. Res. So Symp. Proc, Vol. 262, 3, 1992) = The second effect is that the process of agglomeration of oxygen atoms shifts from homogeneous nucleation to heterogeneous nucleation with impurity nitrogen as nuclei. It is believed that there is.
したがって、 チヨ クラルスキー法によ り シリ コン単結晶を育成する際に窒素を ドープすれば、 酸素析出物濃度の高いシリ コ ン単結晶およびこれを加工してシリ コン単結晶ゥエーハを得ることができる。 そしてこのシ リ コン単結晶ゥエーハを 基板と してェピタキシャル層を成長させるこ とによ り 、 低い酸素濃度のボロンド 一プシリ コン単結晶ゥエーハゃ本来酸素析出しにく いアンチモンシリ コン単結晶 ゥヱ一ハゃリ ンドープシリ コン単結晶ゥェ一ハでも高い酸素析出物密度を得るこ とができ、 その結果と して、 きわめて重金属不純物密度の少ないェピタキシャル 層を成長することができる。 さ らにゥェ一ハ中の酸素濃度を低くすることができ るため、 ゥエー八の変形ゃゥエーハ強度の低下等の問題が起こ らず、 ェピタキシ ャル層に不純物酸素による悪影響がおよぶこ ともない。  Therefore, if nitrogen is doped when growing a silicon single crystal by the Chiyo-Kralski method, a silicon single crystal having a high oxygen precipitate concentration and a silicon single crystal wafer can be obtained by processing the silicon single crystal. . By growing an epitaxial layer using the silicon single crystal substrate as a substrate, a boron oxide single crystal single crystal substrate with a low oxygen concentration and an antimony silicon single crystal substrate that is originally difficult to deposit oxygen can be obtained. A high oxygen precipitate density can be obtained even with a mono-doped silicon single crystal wafer, and as a result, an epitaxial layer having a very low heavy metal impurity density can be grown. Furthermore, since the oxygen concentration in the wafer can be lowered, there is no problem such as ゃ ゥ deformation of the wafer ゃ ゥ reduction of the wafer strength, and no adverse effect of impurity oxygen on the epitaxal layer is caused. .
そして、 このよ うにシリ コン単結晶育成時に窒素を ド一プして製造されたシリ コン単結晶ゥエーハは、 ボ口ンの ド一プ量が抵抗率換算で 1 0 m Ω · cm 以上 1 0 0 m Ω . cm 以下程度のものや本来酸素析出しにく いアンチモンを ド―プされ たものゃリ ンを ド一プされたものであっても高いゲッタ リ ング効果を有するため、 高品質のェピタキシャル層を形成することができ、 かつォー ト ドープに対する対 策も不必要となり、 ェピタキシャルシリ コン単結晶ゥェ一ハの品質の向上のみな らず生産性およびコス 卜の改善をも期待することができる。 本発明において、 チヨ ク ラルスキ一法によってボロ ンを ドープすると と もに窒 素を ドープしたシリ コン単結晶棒を育成するには、 例えば特開昭 6 0— 2 5 1 1 9 0号に記載されているよ うな公知の方法によれば良レ、。 The silicon single crystal wafer manufactured by doping nitrogen during the growth of the silicon single crystal in this manner has a doping amount of not less than 10 mΩ · cm in terms of resistivity. High quality because it has a high gettering effect even if it is doped with antimony that is less than 0 mΩ. In addition, it is possible to form an epitaxial layer, and it is not necessary to take measures against auto-doping, thereby improving not only the quality of the epitaxial silicon single crystal wafer but also the productivity and cost. Can also be expected. In the present invention, a method for growing a silicon single crystal rod doped with boron and doped with boron by the Czochralski method is described, for example, in Japanese Patent Application Laid-Open No. 60-251190. Good according to known methods, such as:
すなわち、 チヨ ク ラルスキー法は、 石英ルツボ中に収容された多結晶シリ コン 原料の融液に種結晶を接触させ、 これを回転させながらゆっく り と引き上げて所 望直径のシリ コン単結晶棒を育成する方法であるが、 あらかじめ石英ルツボ内に ポロンがド一プされた多結晶シリ コン原料を入れておく とともに、 石英ルツボ内 に窒化物を入れておく カ シリ コン融液中に窒化物を投入するか、 雰囲気ガスを 窒素を含む雰囲気等とすることによって、 引き上げ結晶中に窒素を ドープするこ とができる。 この際、 窒化物の量あるいは窒素ガスの濃度あるいは導入時間等を 調整するこ とによって、 結晶中の窒素 ドープ量を制御することが出来る。  In other words, in the Chiyo-Kralski method, a seed crystal is brought into contact with a melt of a polycrystalline silicon raw material contained in a quartz crucible, and is slowly pulled up while being rotated, and the silicon single crystal rod having a desired diameter is rotated. In this method, a polycrystalline silicon raw material in which polon is doped is placed in advance in a quartz crucible, and a nitride is placed in the quartz crucible. By injecting nitrogen or setting the atmosphere gas to an atmosphere containing nitrogen, nitrogen can be doped into the pulled crystal. At this time, the nitrogen doping amount in the crystal can be controlled by adjusting the amount of the nitride, the concentration of the nitrogen gas, the introduction time, and the like.
このよ う に、 チヨ ク ラルスキー法によって単結晶棒を育成する際に、 窒素を ド —ブするこ とによって、 導入されるサイズの大きな G r o w n — i n欠陥を減少 させることができると ともに、 シリ コン中の酸素原子の凝集を助長し、 酸素析出 物濃度を高くすることが出来る。 この方法は、 従来 G r o w n - i n欠陥を減少 させるため行われる引き上げ速度を遅く したりするよ うな必要はなく、 従来の製 造装置を用いて容易に実施可能な方法であるため、 新たに製造装置の増設等を必 要とせず、 高い生産性でシリ コ ン単結晶を製造できる。  In this way, when growing a single crystal rod by the Chiyo-Kralski method, by introducing nitrogen, it is possible to reduce the large-sized Grown-in defects to be introduced and to reduce the amount of silicon. It promotes the coagulation of oxygen atoms in the concrete and can increase the concentration of oxygen precipitates. This method does not require slowing down the pulling speed that is conventionally performed to reduce Grown-in defects, and is a method that can be easily implemented using conventional manufacturing equipment. Silicon single crystals can be manufactured with high productivity without the need for additional equipment.
また、 従来は、 抵抗率 1 Ο πι Ω ' cm 以上 1 0 0 m Ω - cm 以下の高ボロ ン ド —プシリ コン単結晶ゥエーハの場合、 抵抗率 1 Ο πι Ω - cm 未満の超高濃度ポロ ンド一プシリ コン単結晶ゥェ一ハに比べて酸素析出が抑制されてしまい、 またァ ンチモン ド一プシリ コン単結晶ゥェ一ハ及びリ ン ド一プシリ コン単結晶ゥェ一ハ の場合は、 ボ口ンド一プシリ コン単結晶ゥエーハに比べて酸素析出がおこ りにく く 、 デバイス製造に必要なゲッタ リ ング能力を得ることができなかった。  Conventionally, in the case of a high boron single-crystal silicon wafer having a resistivity of 1ΟπιΩ'cm or more and 100 mΩ-cm or less, an ultra-high concentration porosity of less than 1 1πιΩ-cm is used. Oxygen precipitation is suppressed as compared with a single-crystal silicon wafer, and in the case of a single-crystal silicon wafer and a single-crystal silicon wafer. On the other hand, oxygen precipitation did not occur easily as compared with silicon monocrystal silicon wafers, and the gettering ability required for device fabrication could not be obtained.
特に、 アンチモン ド一プシリ コン単結晶ゥエーハの場合、 アンチモンを ド一プ したシリ コン単結晶棒をチヨ クラルスキー法によって成長させる際に、 アンチモ ン濃度が高い成長単結晶棒の後半の酸素濃度は、 酸化アンチモンの蒸発によ り高 酸素濃度に維持することが非常に難しく 、 このため酸素濃度が極めて低く なるこ とによ り、 この部位から切断されたシリ コンゥェ一ハの酸素析出が抑制されてし まい、 デバイス製造に必要なゲッタ リ ング能力を得ることができなかった。 In particular, in the case of antimony-doped silicon single crystal wafers, when growing a silicon single-crystal rod with antimony doped by the Czochralski method, the oxygen concentration in the latter half of the grown single-crystal rod with a high antimony concentration is as follows: It is very difficult to maintain a high oxygen concentration due to the evaporation of antimony oxide, and as a result, the oxygen concentration becomes extremely low, so that oxygen precipitation of silicon wafers cut from this site is suppressed. I In other words, the gettering ability required for device manufacturing could not be obtained.
一方、 これらのゥエーハについて、 この問題を解決するためにゥエーハ内の酸 素濃度を高くすると、ゥエーハの変形あるいはゥェ一ハ強度の低下を引き起こし、 またゥエーハ表面にェピタキシャル層を形成した場合には、 ェピタキシャル層へ の不純物酸素の外方拡散による欠陥が発生して、 かえって特性の劣化をもたら し てしまっていた。 しかし、 本発明のよ うに窒素をシリ コン単結晶中に ド一プする ことによ り、 酸素濃度を高くせずと も、 デバイス製造に必要なゲッタ リ ング能力 を得ることができる。  On the other hand, for these wafers, if the oxygen concentration in the wafer is increased to solve this problem, the wafer will be deformed or the wafer strength will be reduced, and if an epitaxial layer is formed on the wafer surface, In this case, defects occurred due to outward diffusion of impurity oxygen into the epitaxial layer, resulting in deterioration of characteristics. However, by doping nitrogen into a silicon single crystal as in the present invention, the gettering ability required for device fabrication can be obtained without increasing the oxygen concentration.
窒素をシリ コン単結晶中に ド一プすると、 シリ コン中の酸素原子の凝集が助長 され、 酸素析出物濃度が高く なる理由は、 前述の通り酸素原子の凝集過程が、 均 一核形成から不純物窒素を核と した不均一核形成に移行するためであると考えら れる。  Doping nitrogen into the silicon single crystal promotes the aggregation of oxygen atoms in the silicon and increases the concentration of oxygen precipitates, as described above, because the aggregation process of oxygen atoms starts from uniform nucleation. This is considered to be due to the shift to heterogeneous nucleation with impurity nitrogen as nuclei.
従って、 ド一プする窒素の濃度は、 十分に不均一核形成を引き起こす、 1 X 1 0 1。atoms/cm 3以上とするのが好ま しい。 これによつて酸素析出物濃度を充分 に高くすることができる。 一方、 窒素濃度が、 シリ コン単結晶中の固溶限界であ る 5 X 1 0 ! 5 atoms/cm 3を越える と、 シリ コン単結晶の単結晶化そのものが阻 害されることがあるので、 この濃度を越えないよ うにすることが好ましい。 Thus, the concentration of doping nitrogen causes sufficient heterogeneous nucleation, 1 × 10 1 . It is preferable to set to atoms / cm 3 or more. As a result, the concentration of the oxygen precipitate can be sufficiently increased. On the other hand, if the nitrogen concentration exceeds the solid solubility limit of 5 × 10 5 atoms / cm 3 in the silicon single crystal, single crystallization of the silicon single crystal itself may be hindered. It is preferred not to exceed this concentration.
また、 本発明では、 低酸素濃度でも酸素析出物濃度は高いため、 チヨ クラルス キー法によ り窒素を ドープしたシリ コン単結晶棒を育成する際に、 単結晶棒に含 有される酸素濃度を、 ボロ ンを ド一プした場合は 1 6 p p m a以下に、 アンチモ ンを ドープした場合は 2 0 p p m a以下に、 リ ンを ドープした場合は 1 8 p p m a以下の中 · 低酸素濃度にすることができる。  Further, in the present invention, since the concentration of oxygen precipitates is high even at a low oxygen concentration, when growing a silicon single crystal rod doped with nitrogen by the Chiochralsky method, the oxygen concentration contained in the single crystal rod is increased. Low and low oxygen concentrations of 16 ppma or less when boron is doped, 20 ppma or less when antimony is doped, and 18 ppma or less when phosphorus is doped. Can be.
シリ コン単結晶中の酸素濃度を上記の値以下にすると、 ェピタキシャル層の結 晶性を低下させる酸素析出物等の欠陥がシリ コン単結晶ゥェ一ハ表面に形成され ることをほぼ完全に防ぐこ とができるため、 シリ コン単結晶ゥェ一ハの表面に成 長されるェピタキシャル層の結晶性に悪影響が生じることを防ぐことができる。 一方、 バルク部では、 窒素の存在によ り酸素析出が促進されるので、 低酸素と し ても十分にゲッタ リ ング効果を発揮することが出来る。  When the oxygen concentration in the silicon single crystal is set to the above value or less, defects such as oxygen precipitates, which lower the crystallinity of the epitaxial layer, are almost completely formed on the silicon single crystal wafer surface. Therefore, it is possible to prevent adverse effects on the crystallinity of the epitaxial layer grown on the surface of the silicon single crystal wafer. On the other hand, in the bulk portion, the precipitation of oxygen is promoted by the presence of nitrogen, so that the gettering effect can be sufficiently exhibited even with low oxygen.
シリ コン単結晶棒を育成する際に、 含有される酸素濃度を上記範囲に低下させ る方法は、 従来から慣用されている方法によれば良い。 例えば、 ルツボ回転数の 減少、 導入ガス流量の増加、 雰囲気圧力の低下、 シリ コ ン融液の温度分布および 対流の調整等の手段によって、 簡単に上記酸素濃度範囲とすることが出来る。 こ う して、 チヨ クラルスキー法においてボロン、 アンチモンあるいはリ ンを ド —プすると ともに所望濃度の窒素が ド一プされ、 サイズの大きな結晶欠陥が少な いと ともに所望濃度の酸素を含有する、 シリ コン単結晶棒が得られる。 これを通 常の方法にしたがい、 内周刃スライサあるいはワイャソ一等の切断装置でスライ スした後、 面取り、 ラ ッピング、 エッチング、 研磨等の工程を経てシリ コン単結 晶ゥエーハに加工する。 もちろん、 これらの工程は例示列挙したにと どまり、 こ の他にも洗浄、 熱処理等種々の工程があり得るし、 工程順の変更、 一部省略等目 的に応じ適宜工程は変更使用されている。 When growing silicon single crystal rods, lower the oxygen concentration contained to the above range. The method used may be a conventionally used method. For example, the above oxygen concentration range can be easily obtained by means such as a decrease in the number of rotations of the crucible, an increase in the flow rate of the introduced gas, a decrease in the atmospheric pressure, and a control of the temperature distribution and convection of the silicon melt. In this way, in the Chiyo-Kralski method, boron, antimony, or phosphorus is doped and a desired concentration of nitrogen is doped, and a silicon containing a large concentration of crystal defects and a desired concentration of oxygen. A single crystal rod is obtained. According to the usual method, the wafer is sliced with a cutting device such as an inner peripheral blade slicer or a wire saw, and then processed into a silicon single crystal wafer through processes such as chamfering, lapping, etching, and polishing. Of course, these steps are only listed as examples, and there may be various other steps such as washing, heat treatment, and the like. I have.
次に、 ェピタキシャル成長を行う前に、 得られたシリ コン単結晶ゥエーハに 9 0 o °c〜シリ コンの融点以下の温度の熱処理を加えることが好ましい。 この熱処 理をェピタキシャル層を形成する前に行う こ とによ り シリ コン単結晶ゥェ一ハ表 面の窒素を外方拡散させることができる。  Next, it is preferable to subject the obtained silicon single crystal wafer to a heat treatment at a temperature of 90 ° C. to the melting point of silicon before performing epitaxial growth. By performing this heat treatment before forming the epitaxial layer, nitrogen on the surface of the silicon single crystal wafer can be diffused outward.
シリ コン単結晶ゥェ一ハ表面の窒素を外方拡散するのは、 窒素の酸素析出促進 効果によ り、 シリ コン単結晶ゥエーハ表面層で酸素が析出し、 これに基づく欠陥 の形成によ り、 その後のェピタキシャル層に悪影響を及ぼすこ とを防止するため である。  The out-diffusion of nitrogen on the surface of the silicon single crystal wafer is due to the oxygen precipitation promoting effect of nitrogen, which causes oxygen to precipitate on the surface layer of the silicon single crystal wafer and the formation of defects based on this. This is to prevent subsequent adverse effects on the epitaxy layer.
この場合、 窒素のシリ コン中での拡散速度は、 酸素よ り著しく速いので、 熱処 理を加えることによって、 確実に表面の窒素を外方拡散するこ とができる。 具体 的な熱処理の条件と しては、 9 0 0 °C〜シリ コンの融点以下、 よ り好ましく は 1 1 0 0 °C〜 1 2 0 0 °Cの温度範囲で行なうのが好ましい。  In this case, the diffusion rate of nitrogen in silicon is much higher than that of oxygen, and the heat treatment ensures that nitrogen on the surface can be diffused outward. As a specific heat treatment condition, the heat treatment is preferably performed in a temperature range of 900 ° C. to the melting point of silicon, more preferably, 110 ° C. to 1200 ° C.
このよ うな温度範囲で熱処理をすることによって、 十分にシリ コン単結晶ゥェ —ハ表面層の窒素を外方拡散できると ともに、 同時に酸素をも外方拡散させるこ とができるので、 表面層における酸素析出物に起因する欠陥の発生をほぼ完全に 防ぎ、 ェピタキシャル層の結晶性に悪影響が及ぶこ とを防ぐことが出来る。  By performing the heat treatment in such a temperature range, nitrogen in the silicon single crystal layer can be sufficiently diffused outward, and oxygen can also be diffused outward at the same time. Thus, it is possible to almost completely prevent the generation of defects due to oxygen precipitates in the above, and to prevent the crystallinity of the epitaxial layer from being adversely affected.
また、 ェピタキシャル成長を行う前に上記の熱処理を行わず、 直接ェピタキシ ャル成長のための高温熱処理が加わると、 酸素析出核が溶解してしまい、 その後 の熱処理によっても充分に析出が起こ らず、 ゲッタ リ ング効果が得られないとい う心配があるが、 ェピタキシャル成長の高温熱処理を行う前に上記のよ うな熱処 理を行えば、 ェピタキシャル層形成時に充分なゲッタ リ ング効果を得ることがで き、 重金属不純物濃度のきわめて低いェピタキシャルシリ コン単結晶ゥエーハを 得ることができる。 In addition, if the above-mentioned heat treatment is not performed before the epitaxial growth and a high-temperature heat treatment is directly applied for the epitaxial growth, the oxygen precipitate nuclei are dissolved, and thereafter, There is a concern that the gettering effect cannot be obtained due to insufficient precipitation even by the heat treatment of the above.However, if the above heat treatment is performed before the high-temperature heat treatment of the epitaxial growth, A sufficient gettering effect can be obtained at the time of layer formation, and an epitaxial silicon single crystal wafer having an extremely low heavy metal impurity concentration can be obtained.
さらに、 副次的な作用と してゥエーハのバルク中の酸素析出物がさらに成長し 積層欠陥 (B S F : B u l k S t a c k i n g F a u l t s ) を誘起するこ とによ り、 よ り強力なゲッタ リ ング効果を発揮する場合もある。  In addition, as a side effect, oxygen precipitates in the bulk of the wafer grow further and induce stacking faults (BSFs), resulting in stronger gettering. In some cases, it is effective.
以下、 本発明の実施例および比較例を挙げて具体的に説明するが、 本発明はこ れらに限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例 1 )  (Example 1)
C Z法によ り、 直径 2 4イ ンチの石英ルツボに、 抵抗率が l O m Q ' cm以上 1 0 0 m Ω · cm以下となるよ うに所定の濃度のボ口 ンを添加した原料多結晶シ リ コンをチャージし、 なおかつ原料多結晶シ リ コンと一緒に窒化珪素膜を有する シリ コンゥエーハをチャージして溶融し、 直径 8イ ンチ、 P型、 方位く 1 0 0 > の単結晶棒を通常の引き上げ速度である l . O mmZm i nの速度で引き上げた。 また結晶を引き上げる際に、 ルツボ回転を制御して、 単結晶中の酸素濃度が 1 4 〜 1 6 p p m a ( J E I D A) となるよ うにした。  A large number of raw materials obtained by adding a predetermined concentration of boron to a 24-inch diameter quartz crucible by the CZ method so that the resistivity is lOm Q'cm or more and 100 mΩcm or less. A crystalline silicon is charged, and a silicon wafer having a silicon nitride film is charged and melted together with the raw material polycrystalline silicon to form a single-crystal rod having a diameter of 8 inches, a P type, and an orientation of 100>. Was pulled up at a normal pulling rate of l. O mmZmin. In addition, when pulling the crystal, the crucible rotation was controlled so that the oxygen concentration in the single crystal became 14 to 16 ppma (JEIDA).
窒素濃度は、 偏析係数による計算値で 2〜 7 X 1 0 1 4 atoms/cm3であった。 また、 単結晶棒の酸素濃度をガスフユ一ジョ ン法によ り測定したところ、 1 4〜 1 6 p p m aの酸素濃度となっていることを確認した。 The nitrogen concentration was 2 to 7 × 10 14 atoms / cm 3 as calculated by the segregation coefficient. When the oxygen concentration of the single crystal rod was measured by the gas fusion method, it was confirmed that the oxygen concentration was 14 to 16 ppma.
ここで得られた単結晶棒から、 ワイヤソ一を用いてゥェ一ハを切り出し、 面取 り、 ラ ッピング、 エッチング、 鏡面研磨加工を施して、 直径 8イ ンチのシリ コン 単結晶鏡面ゥエーハを 4枚作製した。 この 4枚のシリ コン単結晶ゥエーハの抵抗 率を測定したところ 4枚とも約 1 4〜 1 7 πι Ω ' cm であり 、 添加したボロンの ド一プ量から期待される範囲内にあった。  From the single crystal rod obtained here, a wafer is cut out using a wire saw, chamfered, wrapped, etched, and mirror-polished to obtain an 8-inch diameter silicon single crystal mirror surface wafer. Four sheets were produced. The resistivity of the four silicon single crystal wafers was measured to be about 14 to 17 πιΩ′cm, which was within the range expected from the amount of boron added.
これらのシリ コン単結晶ゥェ一ハの 4枚中 2枚を表面にェピタキシャル層を形 成する前に、 1 0 5 0 °Cの温度の熱処理を加えてゥェ一ハ表面の窒素を外方拡散 させた。 そして、 これら 2枚ずつのシリ コン単結晶ゥェ一ハの内、 1枚は 1 1 7 0 °Cで、 も う 1枚は 1 1 3 0 °Cの温度で厚さ 6 /z mのシリ コンェピタキシャル層の成長を 行った。 ェピタキシャル成長炉は毎葉式タイプで、 加熱方式はランプ加熱方式の ものと した。 これに S i H C l 3 + H 2を導入することによって、 ボロンドープ シリ コン単結晶ゥェ一ハ上にシリ コンをェピタキシャル成長させた。 Before forming an epitaxial layer on two of the four silicon single crystal wafers, heat treatment at a temperature of 150 ° C. was performed to remove nitrogen from the wafer surface. Spread out. Of these two silicon single crystal wafers, one is at 110 ° C. and the other is at 110 ° C. and has a thickness of 6 / zm. Conepitaxial layer was grown. The epitaxy growth reactor is of a leaf-to-leaf type, and the heating method is a lamp heating method. By introducing a S i HC l 3 + H 2 This was allowed to Epitakisharu grow silicon on boron-doped silicon single crystal © E one tooth.
こ う して得られたェピタキシャルゥェ一ハのゲッタ リ ング能力を測定するため, N 2ガス雰囲気によ り 8 0 0 °Cで 4時間の熱処理の後、 O 2ガス雰囲気によ り 1 0 0 0 °Cで 1 6時間の熱処理を施し、 酸素析出物を析出させた。 この後、 これら のェピタキシャルシリ コン単結晶ゥェ一ハのゲッタ リ ング効果を、 シリ コンゥェ —ハのバルク中の酸素析出物濃度で評価した。 In order to measure the gettering ability of the obtained epitaxial wafer, heat treatment was performed at 800 ° C for 4 hours in an N 2 gas atmosphere and then in an O 2 gas atmosphere. Heat treatment was performed at 1000 ° C. for 16 hours to precipitate oxygen precipitates. Thereafter, the gettering effect of these epitaxial silicon single crystal wafers was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer.
この酸素析出物濃度の測定は O P P ( Optical Precipitate Profiler) 法で行 つた。 この O P P法は、 ノルマルスキ一タイプ微分干渉顕微鏡を応用したもので、 まず光源からでたレーザ光を偏光プリ ズムで 2本の互いに直交する 9 0 ° 位相が 異なる直線偏光のビームに分離して、 ゥェ一ハ鏡面側から入射させる。 この時 1 つのビームが欠陥を横切ると位相シフ トが生じ、 も う 1つのビームとの位相差が 生じる。 この位相差をゥエーハ裏面透過後に、 偏光アナライザ一によ り検出する ことによ り欠陥を検出する。  The measurement of the oxygen precipitate concentration was performed by an OPP (Optical Precipitate Profiler) method. This OPP method is based on the application of a Normalski type differential interference microscope. First, a laser beam emitted from a light source is separated into two mutually orthogonal beams of 90 ° linearly polarized light with different phases by a polarization prism. Inject from the mirror side. At this time, when one beam crosses the defect, a phase shift occurs, and a phase difference occurs with the other beam. Defects are detected by detecting this phase difference using a polarization analyzer after passing through the back surface of the wafer.
この測定結果を図 1 に示した。 ここで図 1 の右側に示したプロ ッ トが、 窒素ド ープ量 2 〜 7 X 1 0 1 4 atoms/cm 3のゥェ一ハの酸素析出物欠陥密度を示し、 円 形プロ ッ トは 1 1 7 0 °Cでェピタキシャル成長を行った場合で、 三角形プロ ッ ト は 1 1 3 0 °Cでェピタキシャル成長を行った場合の酸素析出物欠陥密度を示す。 図 1 よ り 、 窒素をド一プしたボロンド一プシリ コン単結晶ゥェ一ハの表面にェ ピタキシャル成長を行ったゥエーハは、 ェピタキシャル成長前熱処理の有無によ らず、 酸素濃度が 1 4 〜 1 6 p p m a と低いにもかかわらず、 どちらの温度でェ ピタキシャル成長を行った場合にも同様に高い酸素析出物密度を示しており、 高 いゲッタ リ ング効果を有していることがわかる。 ェピタキシャル成長前熱処理の 有無を比較した場合、 ゲッタ リ ング効果は熱処理有りの方がさ らに大きいことが わかる。 そして、 酸素濃度が低いためェピタキシャル層の結晶性は大変良好であ つた。 さらに、 この程度のボロンドープ濃度ではオー ト ドープの対策は必要ない ため、 生産性の向上が期待できる。 Figure 1 shows the measurement results. Here, the plot shown on the right side of FIG. 1 shows the oxygen precipitate defect density of a wafer having a nitrogen drop amount of 2 to 7 × 10 14 atoms / cm 3 , and a circular plot Indicates a case where the epitaxial growth was performed at 117 ° C., and a triangular plot indicates the oxygen precipitate defect density when the epitaxial growth was performed at 110 ° C. According to Fig. 1, the wafer grown epitaxially on the surface of the boron-doped silicon single crystal wafer doped with nitrogen has an oxygen concentration of 14 regardless of the presence or absence of the heat treatment before the epitaxial growth. Despite being as low as ~ 16 ppma, the same high oxygen precipitate density is exhibited when epitaxial growth is performed at either temperature, indicating a high gettering effect. . Comparing the presence / absence of heat treatment before epitaxial growth, it is clear that the gettering effect is even greater with heat treatment. The crystallinity of the epitaxial layer was very good because of the low oxygen concentration. Furthermore, at this level of boron doping, no auto-doping measures are required. Therefore, improvement in productivity can be expected.
(比較例 1 )  (Comparative Example 1)
窒素を ド一プしない以外は、 実施例と同様にして、 直径 8インチ、 P型、 方位 く 1 0 0 >、 酸素濃度 1 4〜 1 6 p p m aのボロンドープシリ コン単結晶棒を引 き上げた。 そして、 この単結晶棒から実施例と同様に直径 8イ ンチのシリ コン単 結晶鏡面ゥエーハを 2枚作製した。 この 2枚のシリ コン単結晶ゥエーハの抵抗率 は、 実施例と同様に 2枚と も約 1 4〜 1 7111 0 ' (;111であった。 Pull up a boron-doped silicon single crystal rod with a diameter of 8 inches, P-type, orientation>100>, oxygen concentration of 14 to 16 ppma, in the same manner as in the example except that nitrogen is not dropped. Was. Then, two silicon single crystal mirror-finished wafers having a diameter of 8 inches were produced from this single crystal rod in the same manner as in the example. Resistivity of the two silicon single crystal Ueha also the two as in Example about 1 4-1 7 1 11 0 '(; it was 111.
そして窒素を外方拡散する熱処理を行わない以外は実施例と同様に、 これら 2 枚のシリ コン単結晶ゥエーハの内、 1枚は 1 1 7 0 °Cで、 も う 1枚は 1 1 3 0 °C の温度で厚さ 6 μ πιのシリ コンェピタキシャル層の成長を行った。  Then, in the same manner as in the embodiment except that the heat treatment for outward diffusion of nitrogen was not performed, one of the two silicon single crystal wafers was at 117 ° C and the other was at 113 ° C. A 6 μπι thick silicon epitaxial layer was grown at a temperature of 0 ° C.
そして、 得られたェピタキシャルゥエーハに、 さらに実施例と同様に、 熱処理 によ り酸素析出物を析出させ、 Ο Ρ Ρ法によ り これらのェピタキシャルシリ コン 単結晶ゥェ一ハのゲッタ リ ング効果を、 シリ コンゥエーハのバルク中の酸素析出 物濃度で評価した。  Then, similarly to the example, oxygen precipitates were deposited on the obtained epitaxial wafer by heat treatment, and the getters of these epitaxial silicon single crystal wafers were obtained by the Ο method. The ring effect was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer.
この測定結果を図 1 に合せて示した。 ここで図 1 の左側に示したプロ ッ トが、 窒素 ドープをしていないゥエーハの酸素析出物欠陥密度を示し、 円形プロ ッ トは 1 1 7 0 °Cでェピタキシャル成長を行った場合で、 三角形プロ ッ トは 1 1 3 0 °C でェピタキシャル成長を行った場合の酸素析出物欠陥密度を示す。  The measurement results are shown in FIG. Here, the plot shown on the left side of Fig. 1 shows the oxygen precipitate defect density of the wafer without nitrogen doping, and the circular plot shows the case where epitaxial growth was performed at 117 ° C. The triangular plot shows the oxygen precipitate defect density when epitaxial growth was performed at 110 ° C.
図 1 よ り、 窒素を ド一プしていないボロン ド一プシリ コン単結晶ゥエーハの表 面にェピタキシャル成長を行ったゥェ一ハは、 酸素濃度が 1 4〜 1 6 p p m a と 低いため、 どちらの温度でェピタキシャル成長を行った場合も同様に酸素析出物 密度は低く 、 ゲッタ リ ング効果は低いことがわかる。  As shown in Fig. 1, wafers grown epitaxially on the surface of boron-doped silicon single crystal wafers without nitrogen doping have a low oxygen concentration of 14 to 16 ppma. It can be seen that the density of oxygen precipitates is similarly low and the gettering effect is low when epitaxy is performed at either temperature.
(実施例 2 )  (Example 2)
C Z法によ り、 直径 2 4インチの石英ルツボに、 所定の濃度のアンチモンを添 加した原料多結晶シリ コンをチャージし、 なおかつ原料多結晶シリ コンと一緒に 窒化珪素膜を有するシリ コンゥエーハをチャージして溶融し、 直径 8インチ、 N 型、 方位く 1 0 0 >の単結晶棒を通常の引き上げ速度である 1 · O mmZm i n の速度で引き上げた。 また結晶を引き上げる際に、 ルツボ回転を制御して、 単結 晶中の酸素濃度が 2 0 p p m a ( J E I DA) 以下となるよ う にした。 なお、 こ の単結晶棒の引き上げにおいては、 それぞれ窒素ドープ量を変えて 2本の単結晶 棒を引き上げた。 Using a CZ method, a quartz crucible having a diameter of 24 inches is charged with a raw material polycrystalline silicon to which a predetermined concentration of antimony is added, and a silicon wafer having a silicon nitride film together with the raw material polycrystalline silicon is charged. It was charged and melted, and a single-crystal rod of 8 inches in diameter, N-type, and orientation of 100> was pulled up at a normal pulling rate of 1 · O mmZmin. When the crystal was pulled, the crucible rotation was controlled so that the oxygen concentration in the single crystal was 20 ppma (JEI DA) or less. In addition, this In the pulling of the single crystal rod, two single crystal rods were pulled with different nitrogen doping amounts.
この 2本の単結晶棒の尾部の窒素濃度を偏析係数による計算値で見積ったとこ ろ、 それぞれ 1 . 0 X 1 0 1 4 atoms/cm 3および 5 . 0 X 1 0 1 4 atoms/cm 3であ つた。 また、 単結晶棒の酸素濃度をガスフュージョ ン法によ り測定したところ、 2本とも 1 0 〜 2 0 p p m aの酸素濃度となっていることを確認した。 When the nitrogen concentrations at the tails of the two single crystal rods were estimated by the calculated values based on the segregation coefficient, they were 1.0 X 10 14 atoms / cm 3 and 5.0 X 10 14 atoms / cm 3 , respectively. It was. When the oxygen concentration of the single crystal rod was measured by the gas fusion method, it was confirmed that the oxygen concentration of both rods was 10 to 20 ppma.
ここで得られた 2本の単結晶棒から、ワイヤソ一を用いてゥェ一ハを切り出し、 面取り、 ラ ッピング、 エッチング、 鏡面研磨加工を施して、 直径 8インチのシリ コン単結晶鏡面ゥェ一ハを 1本の単結晶棒から 2枚づつ、 合計 4枚作製した。 こ の 4枚のシリ コン単結晶ゥエーハの抵抗率を測定したところ 4枚とも約 7 〜 2 5 m O · cmであり、 添加したアンチモンの ドープ量から期待される範囲内にあつ た。  From the two single crystal rods obtained here, wafers were cut out using a wire saw, chamfered, wrapped, etched, and mirror polished to obtain a silicon single crystal mirror wafer with a diameter of 8 inches. One single crystal rod was manufactured from two single rods, for a total of four. The resistivity of the four silicon single crystals was measured to be about 7 to 25 mO · cm, which was within the range expected from the amount of doped antimony.
これらのシリ コン単結晶ゥェ一ハの表面にェピタキシャル層を形成する前に、 1 1 0 0 °cの温度の熱処理を加えてゥエーハ表面の窒素を外方拡散させた。  Prior to forming an epitaxial layer on the surface of these silicon single crystal wafers, a heat treatment at a temperature of 110 ° C. was applied to diffuse nitrogen on the wafer surface outward.
さらに、ェピタキシャル成長前のゥヱ一ハ表面の結晶欠陥密度を測定するため、 これらの 4枚のシリ コン単結晶ゥエーハを十分に洗浄した後、 ゥェ一ハ表面上の 結晶欠陥密度をパ一ティクルカウンタ一を用いて測定した。  Further, in order to measure the crystal defect density on the wafer surface before the epitaxial growth, these four silicon single crystal wafers were sufficiently cleaned, and the crystal defect density on the wafer surface was measured. The measurement was performed using one tickle counter.
そして、 これら 2本のシリ コン単結晶棒から切り出された 4枚のシリ コン単結 晶ゥェ一ハの内の、 同じ単結晶棒から切り出された 2枚の内、 1枚は 1 2 0 0 °C で、 も う 1枚は 1 1 2 5 °Cの温度で厚さ 6 μ mのシリ コンェピタキシャル層の成 長を行った。 ェピタキシャル成長炉は、 毎葉式タイプのもので、 加熱方式はラン プ加熱方式のものと した。 これに S i H C 1 3 + H 2を導入することによって、 アンチモンド一プシリ コン単結晶ゥェ一ハ上にシリ コンをェピタキシャル成長さ せた。 Of the four silicon single crystal wafers cut from these two silicon single crystal rods, one of the two silicon wafers cut from the same single crystal rod was 120 At 0 ° C, the other was grown at a temperature of 112 ° C with a silicon epitaxial layer with a thickness of 6 μm. The epitaxy growth reactor was of a leaf-to-leaf type, and the heating method was a lamp heating method. By introducing a S i HC 1 3 + H 2 This was allowed to Epitakisharu grow silicon on anti Mondo one psiri con single crystal © E one tooth.
こ う して得られたェピタキシャルゥェ一ハのゲッタ リ ング能力を測定するため、 いずれのゥェ一ハも N 2ガス雰囲気によ り 8 0 0 °Cで 4時間の熱処理後、 〇 2ガ ス雰囲気によ り 1 0 0 0 °Cで 1 6時間の熱処理を施し、酸素析出物を析出させた。 この後、これらのェピタキシャルシリ コン単結晶ゥエーハのゲッタ リ ング効果を、 シリ コンゥエーハ中の酸素析出物濃度で評価した。 この酸素析出物濃度の測定は 前記 O P P法によ り行った。 In order to measure the gettering ability of the obtained epitaxial wafers, each wafer was subjected to a heat treatment at 800 ° C. for 4 hours in an N 2 gas atmosphere. A heat treatment was performed at 1000 ° C. for 16 hours in a 2 gas atmosphere to precipitate oxygen precipitates. Thereafter, the gettering effect of these epitaxial silicon single crystal wafers was evaluated by the oxygen precipitate concentration in the silicon wafer. The measurement of this oxygen precipitate concentration This was performed by the OPP method.
一方、 基板ゥェ一ハ表面の結晶欠陥がェピタキシャル層に与えた影響を測定す るため、 ェピタキシャル層成長後の、 これらのェピタキシャルシリ コン単結晶ゥ ェ一ハ表面の結晶欠陥密度をそれぞれ 0 . 1 3 /i m以上のサイズのパーティクル と してパーティ クルカウンタ一を用いて測定した。  On the other hand, in order to measure the effect of crystal defects on the surface of the substrate wafer on the epitaxial layer, the crystal defect density on the surface of these epitaxial silicon single crystal wafers after the growth of the epitaxial layer was measured. Each was measured using a particle counter as particles having a size of 0.13 / im or more.
まず、 ェピタキシャル成長前後の結晶欠陥密度の測定結果を図 2に示した。 こ こで図 2の中央に示したプロ ッ トが窒素ド一プ量 1 . 0 X 1 0 1 4 atoms/cm 3の ゥェ一ハ表面の結晶欠陥密度を示し、 右側に示したプロ ッ トが窒素ドープ量 5 . 0 X 1 0 1 4 atoms m 3のゥェ一ハ表面の結晶欠陥密度を示している。 そして、 円形プロ ッ トはェピタキシャル成長前の結晶欠陥密度を示し、 三角形プロ ッ トは ェピタキシャル成長後の結晶欠陥密度を示している。 尚、 これらの数値はそれぞ れ同じ窒素ドープ量の 2枚のゥエー八の平均値を示したものである。 First, the results of measuring the crystal defect density before and after epitaxial growth are shown in FIG. Here, the plot shown in the center of FIG. 2 shows the crystal defect density on the wafer surface with a nitrogen drop amount of 1.0 × 10 14 atoms / cm 3 , and the plot shown on the right The graph shows the crystal defect density on the wafer surface with a nitrogen doping amount of 5.0 × 10 14 atoms m 3 . The circular plot shows the crystal defect density before epitaxy growth, and the triangular plot shows the crystal defect density after epitaxy growth. These figures show the average values of two PA-8s with the same nitrogen doping amount.
図 2よ り、 窒素 ド一プ量 1 . 0 X 1 0 1 4 atoms/cm 3、 窒素 ドープ量 5 . 0 X 1 0 1 4 atoms/cm 3の場合の両方と も、 ェピタキシャル成長を行う前後のゥエー ハ表面の結晶欠陥密度が 0 . 1個/ cm 2以下と極めて少ないことが判る。 According to FIG. 2, epitaxial growth is performed in both the case where the nitrogen doping amount is 1.0 X 10 14 atoms / cm 3 and the nitrogen doping amount is 5.0 X 10 14 atoms / cm 3. It can be seen that the crystal defect density on the front and rear wafer surfaces is extremely low, less than 0.1 / cm 2 .
次に、 酸素析出熱処理後の酸素析出物密度の測定結果を図 3に示した。 ここで 図 3の中央に示したプロ ッ トが窒素ド一プ量 1 . 0 X 1 0 1 atoms/cm 3のゥェ ーハの酸素析出物密度を示し、 右側に示したプロ ッ 卜が窒素 ドープ量 5 . 0 X 1 0 1 4 atoms/cm 3のゥエーハの酸素析出物密度を示している。 そして、 円形プロ ッ トは 1 2 0 0 °Cでェピタキシャル成長を行った場合で、 三角形プロ ッ トは 1 1 2 5 °Cでェピタキシャル成長を行った場合の酸素析出物欠陥密度を示す。 Next, the measurement results of the oxygen precipitate density after the oxygen precipitation heat treatment are shown in FIG. Here, the plot shown in the center of FIG. 3 shows the oxygen precipitate density of the wafer with the nitrogen drop amount of 1.0 × 10 1 atoms / cm 3 , and the plot shown on the right shows the plot. The graph shows the oxygen precipitate density of a wafer with a nitrogen doping amount of 5.0 X 10 14 atoms / cm 3 . The circular plot shows the density of oxygen precipitate defects when epitaxy was performed at 1200 ° C, and the triangular plot shows the density of oxygen precipitate defects when epitaxy was performed at 125 ° C. .
図 3 よ り 、 窒素を ド一プしたアンチモン ド一プシリ コン単結晶ゥエーハの表面 にェピタキシャル成長を行ったゥェ一ハは、 酸素濃度が 1 0〜 2 0 p p m a と中 程度なのにもかかわらず、 どちらの温度でェピタキシャル成長を行った場合にも 同様に高い酸素析出物密度を示しており、 高いゲッタ リ ング効果を有しているこ とがわかる。 さらに、 この実施例のェピタキシャルシリ コン単結晶ゥエーハの製 造に要したゲッタ リ ング熱処理時間は、 ボロンドープシリ コン単結晶ゥエーハを 基板ゥェ一ハと して用いた場合と同程度の時間しか要しておらず、 生産性の向上 が期待できる。 (比較例 2 ) From Fig. 3, it can be seen that the wafer grown by epitaxy on the surface of an antimony-doped silicon single crystal wafer doped with nitrogen has a medium oxygen concentration of 10 to 20 ppma despite its medium oxygen concentration. However, when the epitaxial growth was performed at either temperature, the density of oxygen precipitates was similarly high, indicating that the gettering effect was high. Furthermore, the gettering heat treatment time required for manufacturing the epitaxial silicon single crystal wafer of this example was about the same as that when the boron-doped silicon single crystal wafer was used as the substrate wafer. Only need to be done and productivity can be expected to improve. (Comparative Example 2)
窒素を ド一プしない以外は、 実施例と同様にして、 直径 8イ ンチ、 N型、 方位 < 1 0 0 >、 酸素濃度 2 0 p p m a以下のアンチモン ド一プシリ コン単結晶棒を 引き上げた。 そして、 この単結晶棒から実施例と同様に直径 8イ ンチのシリ コン 単結晶鏡面ゥェ一ハを 2枚作製した。 この 2枚のシリ コン単結晶ゥエーハの抵抗 率は、 実施例と同様に 2枚とも約 7 ~ 2 5 πι Ω ' cmであった。  An antimony-doped silicon single crystal rod having a diameter of 8 inches, an N-type, an orientation of <100>, and an oxygen concentration of 20 ppm or less was pulled in the same manner as in the example except that nitrogen was not dropped. Then, two silicon single crystal mirror wafers having a diameter of 8 inches were produced from this single crystal rod in the same manner as in the example. The resistivity of each of the two silicon single crystal wafers was about 7 to 25 πιΩ′cm as in the example.
そして窒素を外方拡散する熱処理を行わない以外は実施例と同様に、 これらの シリ コン単結晶ゥェ一ハ表面の結晶欠陥密度をパ一ティ クルカウンタ一によ り測 定し、 さらに、 これらの 2枚のゥェ一ハの内、 1枚は 1 2 0 0。Cで、 も う 1枚は 1 1 2 5 °Cの温度で厚さ 6 μ mのシリ コンェピタキシャル成長を行った。  Then, in the same manner as in the example except that the heat treatment for out-diffusion of nitrogen was not performed, the crystal defect density on the surface of the silicon single crystal wafer was measured by a particle counter. Of these two wafers, one is 120. The other was grown by silicon epitaxial growth with a thickness of 6 μm at a temperature of 115 ° C.
そして得られたェピタキシャルゥェ一ハに、 実施例と同様に、 熱処理によ り酸 素析出物を析出させ、 O P P法によ り これらのェピタキシャルシリ コン単結晶ゥ エーハのゲッタ リ ング効果をシリ コンゥエーハのバルク中の酸素析出物濃度で評 価するとともに、 パーティ クルカゥンタ一によ りェピタキシャル成長後のゥェ一 ハ表面の結晶欠陥密度を測定した。  Oxygen precipitates are deposited on the obtained epitaxial wafer by heat treatment, as in the example, and the gettering effect of these epitaxial silicon single crystal wafers is obtained by the OPP method. Was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer, and the crystal defect density on the wafer surface after the epitaxial growth was measured by a particle counter.
この比較例のゥエーハのェピタキシャル成長前後の結晶欠陥密度の測定結果を 図 2に合せて示した。 ここで図 2の左側に示したプロ ッ トが、 窒素ド一プをして いないゥェ一ハの表面の結晶欠陥密度を示している。 そして、 円形プロ ッ トはェ ピタキシャル成長前の結晶欠陥密度を示し、 三角形プロ ッ トはェピタキシャル成 長後の結晶欠陥密度を示している。 尚、 これらの数値はそれぞれ 2枚のゥェ一ハ の平均値を示したものである。  The measurement results of the crystal defect density before and after the epitaxial growth of the wafer of this comparative example are also shown in FIG. Here, the plot shown on the left side of FIG. 2 shows the crystal defect density on the surface of the wafer without nitrogen doping. The circular plot shows the crystal defect density before epitaxy growth, and the triangular plot shows the crystal defect density after epitaxy growth. These figures show the average of two wafers.
図 2よ り、 窒素を ドープしていないアンチモン ド一プシリ コン単結晶ゥェーハ は、 ニピタキシャル成長の前後ともゥエーハ表面の結晶欠陥密度は 0 · 5個 Zc m 2を越えており、 窒素を ド一プしているゥェーハに比べて、 はるかに高い結晶 欠陥密度であることが判る。 Figure 2 yo is, nitrogen is not doped antimony de one psiri con single crystal Weha, the crystal defect density both before and after Ueha surface of Nipitakisharu growth has exceeded the 0-five Zc m 2, nitrogen de one It can be seen that the crystal defect density is much higher than that of the wafer being loaded.
また比較例のゥエーハの酸素析出熱処理後の酸素析出物密度の測定結果を図 3 に合せて示した。 ここで図 3の左側に示したプロ ッ トが窒素ド一プをしていない ゥエーハの酸素析出物密度を示している。 そして、 円形プロ ッ トは 1 2 0 0 °Cで ェピタキシャル成長を行った場合で、 三角形プロ ッ トは 1 1 2 5 °Cでェピタキシ ャル成長を行った場合の酸素析出物欠陥密度を示す。 The measurement results of the oxygen precipitate density after the oxygen precipitation heat treatment of the wafer of Comparative Example are also shown in FIG. Here, the plot shown on the left side of FIG. 3 shows the oxygen precipitate density of the wafer without nitrogen doping. The circular plot is for epitaxy growth at 1200 ° C, and the triangular plot is for epitaxy at 125 ° C. The graph shows the oxygen precipitate defect density in the case where the thermal growth was performed.
図 3 よ り、 窒素を ド一プしていないアンチモン ド一プシリ コン単結晶ゥェーハ の表面にェピタキシャル成長を行つたゥェ一ハは、 ボロンドープシリ コン単結晶 ゥェ一ハを基板ゥェ一ハと した場合と同程度の熱処理時間であり、 酸素濃度が 2 0 p p m a以下と中程度なため、 どちらの温度でェピタキシャル成長を行った場 合も同様に酸素析出物密度は低く、 ゲッタ リ ング効果は低いことがわかる。  According to Fig. 3, the epitaxial growth on the surface of an antimony-doped silicon single-crystal wafer not doped with nitrogen showed that the boron-doped silicon single-crystal wafer was used as the substrate wafer. The heat treatment time is about the same as the case of (1), and since the oxygen concentration is medium at 20 ppma or less, the density of oxygen precipitates is similarly low regardless of the temperature at which the epitaxial growth is performed, and the getter It can be seen that the ring effect is low.
(実施例 3 )  (Example 3)
C Z法によ り、 直径 1 8インチの石英ルツボに、 所定の濃度のリ ンを添加した 原料多結晶シリ コンをチャージし、 なおかつ原料多結晶シリ コンと一緒に窒化珪 素膜を有するシリ コンゥエーハをチャージして溶融し、 直径 6イ ンチ、 N型、 方 位く 1 0 0 >の単結晶棒を通常の引き上げ速度である 1 . O mmZm i nの速度 で引き上げた。 また結晶を引き上げる際に、 ルツボ回転を制御して、 単結晶中の 酸素濃度が I S p p m a ( J E I DA) となるよ うにした。  A silicon crucible with a predetermined concentration of phosphorus added to a quartz crucible with a diameter of 18 inches is charged by the CZ method, and a silicon nitride film with a silicon nitride film together with the material polycrystalline silicon. Was charged and melted, and a single-crystal rod having a diameter of 6 inches, N-type, and 100> was pulled up at a normal pulling rate of 1.0 mmZmin. In addition, when pulling the crystal, the crucible rotation was controlled so that the oxygen concentration in the single crystal became Isppma (JEIDA).
この単結晶棒の尾部の窒素濃度を F T— I Rによ り測定したところ、 5. 0 X 1 0 1 4atoms m3であった。 また、 単結晶棒の酸素濃度を F T— I Rによ り測 定したところ、 1 8 p p m a の酸素濃度となっていることを確認した。 When the nitrogen concentration at the tail of this single crystal rod was measured by FT-IR, it was 5.0 × 10 14 atoms m 3 . In addition, when the oxygen concentration of the single crystal rod was measured by FT-IR, it was confirmed that the oxygen concentration was 18 ppma.
ここで得られた単結晶棒から、 ワイヤソ一を用いてゥエーハを切り出し、 面取 り、 ラ ッピング、 エッチング、 鏡面研磨加工を施して、 直径 6インチのシリ コン 単結晶鏡面ゥエーハを 4枚作製した。 この 4枚のシリ コン単結晶ゥェ一ハの抵抗 率を測定したところ 4枚と も約 5 ~ 1 0 Ω · cmであり、 添加したリ ンの ド一プ 量から期待される範囲内にあった。  From the single crystal rod obtained here, a wafer was cut out using a wire saw, chamfered, wrapped, etched, and mirror-polished to produce four silicon single crystal mirror-finished wafers with a diameter of 6 inches. . The resistivity of the four silicon single crystal wafers was measured to be about 5 to 10 Ωcm, which was within the range expected from the doping amount of the added phosphorus. there were.
これらのシリ コン単結晶ゥェ一ハの 4枚中 2枚を表面にェピタキシャル層を形 成する前に、 1 1 0 0 °Cで 3 0分の熱処理を加えてゥエーハ表面の窒素を外方拡 散させた。  Before forming an epitaxial layer on two of the four silicon single crystal wafers, heat treatment at 110 ° C for 30 minutes was performed to remove nitrogen from the wafer surface. Was diffused.
そして、 これら 2枚ずつのシリ コン単結晶ゥェ一ハの内、 1枚は 1 1 7 0 °Cで、 も う 1枚は 1 1 3 0 °Cの温度で厚さ 2 0 μ mのシリ コンェピタキシャル層の成長 を行った。 ェピタキシャル成長炉はシリ ンダタイプのペルジャ内に基板ゥエーハ を載置するサセプタを配置したもので、 加熱方式は輻射加熱方式のものと した。 これに S i H C 1 3 + H。を導入するこ とによって、 リ ン ド一プシリ コン単結晶 ゥエーハ上にシリ コンをェピタキシャル成長させた。 Of these two silicon single crystal wafers, one was at 110 ° C. and the other was at 110 ° C. and had a thickness of 20 μm. A silicon epitaxial layer was grown. The epitaxy growth reactor has a susceptor on which the substrate and the wafer are placed in a cylinder-type peruger. The heating method is a radiant heating method. This is S i HC 13 + H. Introduces a single-crystal silicon single crystal ゥ Epitaxially grown silicon on eha.
こ う して得られたェピタキシャルゥエーハのゲッタ リ ング能力を測定するため、 N 2ガス雰囲気によ り 8 0 0 °Cで 4時間の熱処理後、 0 2ガス雰囲気によ り 1 6 時間 1 0 0 0 °Cの熱処理を施し、 酸素析出物を析出させた。 To measure the getter-ring capacity of E pita press roux er Ha obtained by it this, N 2 after the heat treatment for 4 hours at O Ri 8 0 0 ° C in a gas atmosphere, 0 2 1 6 hours Ri by the gas atmosphere Heat treatment was performed at 100 ° C. to precipitate oxygen precipitates.
この後、 これらのェピタキシャル単結晶ゥエーハのゲッタ リ ング効果を、 シリ コンゥェ一ハのバルク中の酸素析出物濃度で評価した。 この酸素析出物濃度の測 定は前記 O P P法によ り行った。  Thereafter, the gettering effect of these epitaxial single crystal wafers was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer. The measurement of the oxygen precipitate concentration was performed by the OPP method.
この測定結果を図 4に示した。 ここで図 4の右側に示したプロ ッ トが、 窒素ド —プ量 5 . 0 X 1 0 1 4 atoms/cm 3のゥェ一ハの酸素析出物欠陥密度を示し、 円 形プロ ッ トは 1 1 7 0 °Cでェピタキシャル成長を行った場合で、 三角形プロ ッ ト は 1 1 3 0 °Cでェピタキシャル成長を行った場合の酸素析出物欠陥密度を示す。 図 4よ り、 窒素を ド一プしたリ ンド一プシリ コン単結晶ゥエーハの表面にェピ タキシャル成長を行つたゥェ一ハは、 酸素濃度が 1 8 p p m a と中程度なのにも かかわらず、 どちらの温度でェピタキシャル成長を行った場合にも同様に 1 X I 0 9個 / cm 3以上の高い酸素析出物密度を示しており、 高いゲッタ リ ング効果を 有していることがわかる。 ェピタキシャル成長前熱処理の有無を比較した場合、 ゲッタ リ ング効果は熱処理有りの方がさらに大きいことがわかる。 そして、 酸素 濃度が低いためェピタキシャル層の結晶性は大変良好であった。 さらに、 この実 施例のェピタキシャル成長前の析出熱処理時間は、 まったく熱処理がないか、 従 来の I G熱処理と比較して非常に短時間ですみ、 生産性の向上が期待できる。 Fig. 4 shows the measurement results. Here, the plot shown on the right side of FIG. 4 shows the oxygen precipitate defect density of a wafer with a nitrogen drop amount of 5.0 × 10 14 atoms / cm 3 , and a circular plot Indicates a case where the epitaxial growth was performed at 117 ° C., and a triangular plot indicates the oxygen precipitate defect density when the epitaxial growth was performed at 110 ° C. As shown in Fig. 4, the wafer grown epitaxially on the surface of a single-crystal silicon single crystal doped with nitrogen, despite the medium oxygen concentration of 18 ppma, also when performing Epitakisharu growth temperature indicates the 1 XI 0 9 pieces / cm 3 or more high oxygen precipitate density in the same manner, it can be seen that a high getter-ring effect. Comparing the presence or absence of the heat treatment before the epitaxial growth, it can be seen that the gettering effect is even greater with the heat treatment. The crystallinity of the epitaxial layer was very good because of the low oxygen concentration. Furthermore, the precipitation heat treatment time before the epitaxial growth in this embodiment is either no heat treatment at all, or very short compared to the conventional IG heat treatment, and an improvement in productivity can be expected.
(比較例 3 )  (Comparative Example 3)
窒素を ド一プしない以外は、 実施例と同様にして、 直径 6イ ンチ、 N型、 方位 < 1 0 0 >、酸素濃度 1 8 p p m aのリ ンド一プシリ コン単結晶棒を引き上げた。 そして、 この単結晶棒から実施例と同様に直径 6インチのシリ コン単結晶鏡面ゥ ェ一ハを 4枚作製した。 この 4枚のシリ コン単結晶ゥェ一ハの抵抗率は、 実施例 と同様に 2枚とも約 5 〜 1 0 Ω ' cmであった。  A single-crystal silicon single-crystal rod having a diameter of 6 inches, an N-type, an orientation of <100> and an oxygen concentration of 18 ppm was pulled up in the same manner as in the example except that nitrogen was not dropped. Then, four silicon single crystal mirror wafers having a diameter of 6 inches were produced from this single crystal rod in the same manner as in the example. The resistivity of each of the four silicon single crystal wafers was about 5 to 10 Ω'cm as in the example.
これら 4枚のゥェ一ハのうち 2枚については、 さ らに酸素析出を促進させる I G熱処理を施した。 すなわち最初に 1 1 0 0 °Cで 3 0分の初段熱処理を加え、 次 に 6 δ 0 °Cの析出核形成熱処理を 4時間行い、 さらに 1 0 0 0 Cの酸素析出物形 P99/04652 Two of these four wafers were subjected to an IG heat treatment to further promote oxygen precipitation. That is, first heat treatment was performed at 110 ° C for 30 minutes, then heat treatment for forming precipitate nuclei at 6δ0 ° C was performed for 4 hours, and then oxygen precipitates at 100 ° C were formed. P99 / 04652
27  27
成熱処理を 1 6時間加えた。 これら 2枚ずつのシリ コ ン単結晶ゥェ一ハの内、 1 枚は 1 1 7 0 °Cで、 も う 1枚は 1 1 3 0 °Cの温度で厚さ 2 0 μ ηιのシリ コンェピ タキシャル層の成長を行った。 そして、 得られたェピタキシャルゥエーハにさら に実施例と同様に、 熱処理によ り酸素析出物を析出させ、 Ο Ρ Ρ法によ り これら のェピタキシャルシリ コン単結晶ゥェ一ハのゲッタ リ ング効果を、 シリ コンゥェ ーハのバルク中の酸素析出物濃度で評価した。  A heat treatment for 16 hours was applied. Of these two silicon single crystal wafers, one was at 110 ° C and the other was at 110 ° C at a thickness of 20 μηι. The growth of the conepitaxial layer was performed. Then, in the same manner as in the examples, oxygen precipitates were further deposited on the obtained epitaxial wafers by heat treatment, and getters of these epitaxial silicon single crystal wafers were obtained by the Ο method. The ring effect was evaluated by the oxygen precipitate concentration in the bulk of the silicon wafer.
この測定結果を図 4に合せて示した。 ここで図 4の左側に示したプロ ッ トが、 窒素 ドープをしていないゥェ一ハの酸素析出物欠陥密度を示し、 円形プロ ッ トは 1 1 7 0 °Cでェピタキシャル成長を行った場合で、 三角形プロ ッ トは 1 1 3 0 °C でェピタキシャル成長を行った場合の酸素析出物欠陥密度を示す。  The measurement results are shown in FIG. Here, the plot shown on the left side of Fig. 4 shows the oxygen precipitate defect density of the wafer without nitrogen doping, and the circular plot shows the epitaxial growth at 117 ° C. The triangular plot shows the oxygen precipitate defect density when epitaxial growth was performed at 110 ° C.
図 4よ り、 窒素を ド一プしていないリ ンド一プシリ コン単結晶ゥエー八の表面 にェピタキシャル成長を行ったゥェ一ハは、 ェピタキシャル成長の前に I G熱処 理がない場合、 酸素濃度が 1 8 p p m a と中程度なため、 どちらの温度でェピタ キシャル成長を行った場合も同様に酸素析出物密度は低く 、 ゲッタ リ ング効果は 低いことがわかる。 また、 上記のよ うな長時間にわたる I G熱処理を施した場合 においても、 窒素を ド一プしェピタキシャル成長前熱処理がない場合と同程度の 析出物密度が得られるのみである。  According to Fig. 4, wafers grown by epitaxial growth on the surface of a single silicon single crystal without nitrogen were grown without epitaxial heat treatment without IG heat treatment. However, since the oxygen concentration is 18 ppma, which is a medium level, it is understood that the density of oxygen precipitates is low and the gettering effect is low regardless of which temperature the epitaxial growth is performed. Also, when the IG heat treatment is performed for a long time as described above, only the same precipitate density as that obtained when the nitrogen is doped and the heat treatment before the epitaxial growth is not performed can be obtained.
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な 構成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の 技術的範囲に包含される。  Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
例えば、 本発明においてチヨ クラルスキー法によって窒素を ド―プしたシリ コ ン単結晶棒を育成するに際しては、 融液に磁場が印加されているか否かは問われ ないものであり、 本発明のチヨ ク ラルスキ一法にはいわゆる磁場を印加する M C Z法も含まれる。  For example, in the present invention, when growing a silicon single crystal rod doped with nitrogen by the Czochralski method, it does not matter whether a magnetic field is applied to the melt or not. The Kralski method includes the MCZ method in which a magnetic field is applied.
また、 ェピタキシャル成長を行うにあたつても、 C V D法によるェピタキシャ ル成長に限られず、 M B E法によ りェピタキシャル成長を行いェピタキシャルシ リ コン単結晶基板を製造する場合にも本発明を適用することができる。  In addition, the present invention is not limited to the epitaxial growth by the CVD method, but is also applicable to the case where the epitaxial growth is performed by the MBE method to produce an epitaxial silicon single crystal substrate. Can be applied.
さらに、 上記実施形態では、 高ボロンドープ濃度でかつ低酸素濃度の高ボロン P99/0 5 Further, in the above embodiment, the high boron doping concentration and the high boron concentration P99 / 0 5
28 28
ドープシリ コン単結晶ゥェ一ハ、 または中 · 低酸素濃度のアンチモンド一プシリ コン単結晶ゥェ一ハあるいはリ ンド一プシリ コン単結晶ゥェ一ハであっても、 高 ぃゲッタ リ ング効果を有するゥェ一ハを、 特に窒素を ドープすることによ り得る 場合を中心に説明したが、 本発明はこれに限定されるものではなく、 抵抗率が 1 0 m Ω ' cm以上 1 Ο Ο πιΩ · cm以下の高ボロンドープシリ コン単結晶ゥェ一 ハであって、 該シリ コン単結晶ゥェ一ハ中の酸素濃度が 1 6 p p m a以下の低い ものであり、 且つ析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 Zcm 3以上と多いもの、 あるいはアンチモン ド一プシリ コン単結晶ゥェ —ハであって、 該シリ コン単結晶ゥェ一ハ表面の結晶欠陥の密度が 0. 1個 Zc m2以下と少ないものであり、 析出熱処理後の酸素析出物または酸化誘起積層欠 陥密度が 1 X I 0 9個 Zcm3以上と多いもの、 あるいはリ ン ドープシリ コン単結 晶ゥエーハであって、 該シリ コ ン単結晶ゥエーハ中の酸素濃度が 1 8 p p m a以 下の中 · 低濃度のものであり、 且つ析出熱処理後の酸素析出物または酸化誘起積 層欠陥密度が 1 X 1 09個/ cm 3以上と多いものであれば、 本発明の範囲に包含 される。 High gettering effect even if doped silicon single crystal wafers or medium / low oxygen concentration antimony silicon single crystal wafers or Lind silicon single crystal wafers Although the wafer having the above-mentioned characteristic has been mainly described in the case where it can be obtained by doping with nitrogen, the present invention is not limited to this, and the resistivity is 10 mΩ′cm or more and 1 μm or more. A high boron-doped silicon single crystal wafer of ΟπιΩ · cm or less, wherein the oxygen concentration in the silicon single crystal wafer is as low as 16 ppma or less, and Oxygen precipitates or oxidation-induced stacking fault densities as high as 1 × 10 9 Zcm 3 or more, or antimony silicon single crystal wafers, and the surface of the silicon single crystal wafers der ones density of crystal defects is small and one Zc m 2 or less 0.1 Ri, those oxygen precipitates or oxidation induced stacking defect density after the precipitation heat treatment is often a 1 XI 0 9 or ZCM 3 or more, or a re-emission Dopushiri con Tan'yui crystal Ueha, the silicon co down monocrystalline Ueha in if the oxygen concentration is of medium-low concentration under 1 8 ppma or less, and oxygen precipitates or oxidation-induced product layer defect density after the precipitation heat treatment is 1 X 1 0 9 pieces / cm 3 but higher and often For example, they are included in the scope of the present invention.
また、 本発明でいう酸素析出物または酸化誘起積層欠陥密度が 1 X 1 09個/ cm 3以上とあるのは、 シリ コンゥェ一ハに析出熱処理を加えた後でも、 ェピタキ シャル成長のための熱処理が加わった後に析出熱処理を加えた場合にも、 同様に 上記の酸素析出物または酸化誘起積層欠陥密度が得られるものであれば本発明の 範囲に含まれる。 Further, the oxygen precipitate or the oxidation-induced stacking fault density of 1 × 10 9 / cm 3 or more referred to in the present invention means that even after the silicon wafer has been subjected to a precipitation heat treatment, it can be used for epitaxial growth. The present invention is also included in the scope of the present invention as long as the above-described oxygen precipitate or oxidation-induced stacking fault density can be obtained similarly when the precipitation heat treatment is performed after the heat treatment.

Claims

請 求 の 範 囲 The scope of the claims
1 . ドーパン トを ド一プしたシリ コン単結晶ゥェ一ハであって、 該シリ コン単 結晶ゥエーハの析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 / c m 3以上であることを特徴とする ド一パン トを ド一プしたシリ コン単 結晶ゥエーハ。 1. Dopant preparative A de one flop the silicon single crystal © E one wafer, oxygen precipitates or oxidation induced stacking fault density after the precipitation heat treatment of the silicon single crystal Ueha is 1 X 1 0 9 pieces / cm A silicon single crystal wafer whose dopant is doped, characterized in that the number is 3 or more.
2. 抵抗率が 1 0 m Ω · cm以上 1 0 0 m Ω ' cm以下のボ口ンドープシリ コン 単結晶ゥエーハであって、  2. A boron-doped silicon single crystal wafer having a resistivity of 10 mΩ · cm or more and 100 mΩ / cm or less,
該ボロン ド一プシリ コン単結晶ゥェ一ハ中の酸素濃度が 1 6 p p m a以下であ り、 且つ析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 cm 3以上であるこ とを特徴とするボロン ドープシリ コン単結晶ゥエーハ。 The oxygen concentration in the boron silicon single crystal wafer is 16 ppma or less, and the oxygen precipitate or oxidation-induced stacking fault density after the heat treatment for precipitation is 1 × 10 9 cm 3 or more. A boron-doped silicon single crystal wafer characterized in that:
3. 抵抗率が 1 Ο ΓΠ Ω ' cm以上 1 Ο Ο πι Ω - cm以下のボ口ンドープシリ コン 単結晶ゥヱーハであって、  3. A boron-doped silicon single crystal wafer having a resistivity of 1 1 Ω Ω 'cm or more and 1 Ο ππι Ω -cm or less,
該ボロン ド一プシリ コン単結晶ゥエーハは、 チヨ クラルスキ一法によって窒素 を ドープして育成されたシリ コン単結晶棒をスライスして得られたものであるこ とを特徴とするボロン ド一プシリ コン単結晶ゥェーハ。  The boron single-crystal silicon wafer is obtained by slicing a silicon single-crystal rod grown by doping with nitrogen by a Chiyo-Kralski method. Crystal wafer.
4. 前記ボロン ドープシリ コン単結晶ゥェ一ハの酸素濃度が、 1 6 p p m a以下 であることを特徴とする請求項 3に記載したポロンド一プシリ コン単結晶ゥエー 4. The boron-doped silicon single-crystal wafer according to claim 3, wherein the oxygen concentration of the boron-doped silicon single-crystal wafer is 16 ppma or less.
5. アンチモン ドープシリ コン単結晶ゥェ一ハであって、 該アンチモン ドープシ リ コン単結晶ゥェ一ハ表面の結晶欠陥の密度が 0. 1個/ cm2以下であることを 特徴とするアンチモンドープシリ コン単結晶ゥエーハ。 5. An antimony-doped silicon single-crystal wafer, wherein the density of crystal defects on the surface of the antimony-doped silicon single-crystal wafer is 0.1 / cm 2 or less. Silicon single crystal wafer.
6 . アンチモン ド一プシリ コ ン単結晶ゥェ一ハであって、 該アンチモン ドープシ リ コン単結晶ゥェ一ハの析出熱処理後の酸素析出物または酸化誘起積層欠陥密度 が 1 X I 0 9個 Zcm 3以上であることを特徴とするアンチモンド一プシリ コン単 結晶ゥエーハ c 6. A antimony de one psiri co down monocrystalline © E by one tooth, the antimony Dopushi Li Gong monocrystalline © oxygen precipitates after the precipitation heat treatment of the E one tooth or oxidation induced stacking fault density 1 XI 0 9 pieces Zcm anti Mondo one, characterized in that three or more psiri con single crystal Ueha c
7 . アンチモン ド一プシリ コン単結晶ゥェ一ハであって、 該アンチモン ド一プシ リ コン単結晶ゥェ一ハ表面の結晶欠陥の密度が 0. 1個ノ cm2以下であり、 且つ 析出熱処理後の酸素析出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 Zcm3以 上であることを特徴とするアンチモンドープシリ コン単結晶ゥェーハ。 7. An antimony silicon single crystal wafer, wherein the density of crystal defects on the surface of the antimony silicon single crystal wafer is 0.1 cm 2 or less, and Oxygen precipitate or oxidation-induced stacking fault density after heat treatment is 1 X 10 9 or more Zcm 3 An antimony-doped silicon single crystal wafer characterized by the above.
8. アンチモン ド一プシリ コン単結晶ゥェ一ハであって、 該アンチモン ドープシ リ コン単結晶ゥェ一ハは、 チヨ クラルスキー法によって窒素ドープして育成され たシリ コン単結晶棒をスライスして得られたものであることを特徴とするアンチ モン ド一プシリ コン単結晶ゥェ一ハ。  8. An antimony-doped silicon single-crystal wafer, wherein the antimony-doped silicon single-crystal wafer is obtained by slicing a silicon single-crystal rod grown by doping with nitrogen by the Czochralski method. An antimony-silicon single crystal wafer characterized by being obtained.
9. 前記アンチモン ド一プシリ コン単結晶ゥエーハの酸素濃度が、 2 0 p p m a 以下であるこ とを特徴とする請求項 8に記載したアンチモン ド一プシリ コン単結 晶ゥエーハ。  9. The antimony-doped silicon single-crystal wafer according to claim 8, wherein the oxygen concentration of the antimony-doped silicon single-crystal wafer is not more than 20 ppma.
1 0. リ ン ド一プシリ コ ン単結晶ゥエーハであって、 該リ ン ドープシリ コン単結 晶ゥエーハ中の酸素濃度が 1 8 p p m a以下であり、 且つ析出熱処理後の酸素析 出物または酸化誘起積層欠陥密度が 1 X 1 0 9個 cm3以上であることを特徴と するリ ンド一プシリ コン単結晶ゥェ一ハ。 10. Lind-silicon single crystal wafer, wherein the oxygen concentration in the phosphorus-doped silicon single crystal wafer is 18 ppma or less, and oxygen precipitates or oxidation induced substances after the heat treatment for precipitation. Li command one psiri con single crystal © E one tooth, wherein the stacking fault density of 1 X 1 0 9 or cm 3 or more.
1 1. リ ン ド一プシリ コン単結晶ゥエー八であって、 該リ ン ド一プシリ コン単結 晶ゥエーハは、 チヨ クラルスキー法によって窒素を ド一プして育成されたシリ コ ン単結晶棒をスライスして得られたものであることを特徴とするリ ンド一プシリ コン単結晶ゥヱーハ。  1 1. A silicon single-crystal silicon wafer, wherein the single-crystal silicon silicon wafer is a silicon single-crystal rod grown by doping nitrogen by the Chioklarski method. A silicon single crystal wafer obtained by slicing a silicon single crystal.
1 2. 前記リ ン ドープシリ コ ン単結晶ゥェ一八の酸素濃度が、 1 8 p p m a以下 であることを特徴とする請求項 1 1 に記載したリ ンドープシリ コン単結晶ゥェ一 ノヽ。  12. The phosphorus-doped silicon single-crystal layer according to claim 11, wherein the oxygen concentration of the phosphorus-doped silicon single-crystal layer is 18 ppma or less.
1 3. 前記シリ コン単結晶ゥェ一ハの窒素濃度が、 1 X 1 0 1。〜 5 X 1 0 1 5ato ms/cm3であることを特徴とする請求項 3、 請求項 4、 請求項 8、 請求項 9、 請 求項 1 1若しく は請求項 1 2のいずれか 1項に記載のシリ コン単結晶ゥェ一ハ。1 3. The nitrogen concentration of the silicon single crystal wafer is 1 × 10 1 . 55 × 10 15 atom / cm 3 , characterized in that it is one of claim 3, claim 4, claim 8, claim 9, claim 11 or claim 12. 2. The silicon single crystal wafer according to item 1.
1 4. 前記シリ コン単結晶ゥェ一ハは、 9 0 0 °C〜シリ コンの融点以下の温度の 熱処理を加えられたものであることを特徴とする請求項 3、 請求項 4、 請求項 8、 請求項 9、 請求項 1 1 、 請求項 1 2、 請求項 1 3のいずれか 1項に記載したシリ コン単結晶ゥェーハ。 14. The silicon single crystal wafer has been subjected to a heat treatment at a temperature of 900 ° C. to a melting point of the silicon or lower. The silicon single crystal wafer according to any one of claim 8, claim 9, claim 11, claim 12, and claim 13.
1 5. ェピタキシャルシリ コン単結晶ゥエーハであって、 請求項 1ないし請求項 1 4のいずれか 1項に記載のシリ コン単結晶ゥェ一ハの表層部にェピタキシャル 層が形成されているものであることを特徴とするェピタキシャルシリ コン単結晶 ゥェ1 ノヽ 0 1 5. An epitaxial silicon single crystal wafer, wherein an epitaxial layer is formed on a surface portion of the silicon single crystal wafer according to any one of claims 1 to 14. Epitaxial silicon single crystal © E 1 Nono 0
1 6 . 抵抗率が 1 0 m Ω · cm以上 1 0 0 m Ω · cm以下のボ口ンド一プシリ コ ン単結晶ゥエーハの製造方法において、  16. In a method of manufacturing a silicon monocrystal silicon wafer having a resistivity of 10 mΩ · cm or more and 100 mΩ · cm or less,
チヨクラルスキー法によってボロンを ドープすると ともに窒素を ド一プしたシ リ コン単結晶棒を育成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶ゥ エーハに加工することを特徴とするボロンドープシリ コン単結晶ゥエーハの製造 方法。  The method is characterized in that a silicon single crystal rod is grown by doping boron and nitrogen with the Czochralski method and then slicing the silicon single crystal rod into a silicon single crystal wafer. A method for producing boron-doped silicon single crystal wafers.
1 7 . 前記チヨ クラルスキー法によって窒素を ドープしたシリ コン単結晶棒を育 成する際に、 該単結晶棒に含有される酸素濃度を 1 6 p p m a以下にすることを 特徴とする請求項 1 6に記載のポロン ドープシリ コン単結晶ゥェ一ハの製造方法。 17. The method of growing a silicon single crystal rod doped with nitrogen by the Czochralski method, wherein the concentration of oxygen contained in the single crystal rod is set to 16 ppma or less. 3. The method for producing a polon-doped silicon single crystal wafer according to item 1.
1 8 . アンチモン ド一プシリ コン単結晶ゥエーハの製造方法において、 チヨクラ ルスキー法によってアンチモンを ド一プすると ともに窒素を ドープしたシリ コン 単結晶棒を育成し、 該シリ コン単結晶棒をスライス してシリ コン単結晶ゥエーハ に加工することを特徴とするアンチモンドープシリ コン単結晶ゥエーハの製造方 法。 18. In the method of manufacturing an antimony doped silicon single crystal wafer, a silicon single crystal rod doped with nitrogen and doped with nitrogen is grown by the Tycholarski method, and the silicon single crystal rod is sliced. A method for producing an antimony-doped silicon single crystal wafer, which is processed into a silicon single crystal wafer.
1 9 . 前記チヨ クラルスキー法によって窒素を ドープしたシリ コン単結晶棒を育 成する際に、 該単結晶棒に含有される酸素濃度を、 2 0 p p m a以下にすること を特徴とする請求項 1 8に記載のアンチモン ド一プシリ コン単結晶ゥェ一ハの製 造方法。  19. The growth of a nitrogen-doped silicon single crystal rod by the Czochralski method, wherein the concentration of oxygen contained in the single crystal rod is set to 20 ppma or less. 8. The method for producing the antimony silicon single crystal wafer according to 8.
2 0 . リンドープシリ コン単結晶ゥエーハの製造方法において、 チヨ クラルスキ —法によってリ ンを ドープすると ともに窒素を ドープしたシリ コン単結晶棒を育 成し、 該シリ コン単結晶棒をスライスしてシリ コン単結晶ゥエーハに加工するこ とを特徴とする リ ンド一プシリ コン単結晶ゥエー八の製造方法。  20. In the method of producing phosphorus-doped silicon single crystal wafers, silicon single crystal rods doped with nitrogen and doped with nitrogen by the Czochralski method are grown, and the silicon single crystal rods are sliced to produce silicon single crystal rods. A method for producing a single-crystal silicon single crystal wafer, which is processed into a single crystal wafer.
2 1 . 前記チヨクラルスキー法によって窒素を ド一プしたシリ コン単結晶棒を育 成する際に、 該単結晶棒に含有される酸素濃度を 1 8 p p m a以下にすることを 特徴とする請求項 2 0に記載のリ ンドープシリ コン単結晶ゥェ一ハの製造方法。 21. When growing a silicon single crystal rod doped with nitrogen by the Czochralski method, the concentration of oxygen contained in the single crystal rod is set to 18 ppma or less. Item 20. The method for producing a phosphorus-doped silicon single crystal wafer according to Item 20.
2 2 . 前記チヨクラルスキー法によって窒素を ドープしたシリ コン単結晶棒を育 成する際に、 該単結晶棒に ド一プする窒素濃度を、 1 X 1 0 1 °〜 5 X 1 0 1 5 ato ms/cm 3にすることを特徴とする請求項 1 6ないし請求項 2 1 のいずれか 1項に 記載のシリ コン単結晶ゥエーハの製造方法。 2 2. When nitrogen nurturing doped silicon single crystal rods by the Chiyokurarusuki method, the nitrogen concentration of de one up to the single crystal bar, 1 X 1 0 1 ° ~ 5 X 1 0 1 5 to 5 at ms / cm 3 , according to any one of claims 16 to 21. The method for producing the silicon single crystal wafer described above.
2 3 . 前記シリ コン単結晶ゥェ一ハに 9 0 0 °C〜シリ コンの融点以下の温度の熱 処理を加えることを特徴とする請求項 1 6ないし請求項 2 2のいずれか 1項に記 載のシリ コン単結晶ゥェ一ハの製造方法。  23. The silicon single crystal wafer is subjected to a heat treatment at a temperature of 900 ° C. to a melting point of the silicon or lower. The method for producing a silicon single crystal wafer described in (1).
2 4 . ェピタキシャルシリ コン単結晶ゥェ一ハの製造方法において、 請求項 1 6 ないし請求項 2 3のいずれか 1項に記載のシリ コン単結晶ゥエーハの製造方法に よ り シリ コン単結晶ゥェ一ハを製造し、 該シリ コン単結晶ゥエーハの表層部にェ ピタキシャル層を形成することを特徴とするェピタキシャルシリ コン単結晶ゥェ —ハの製造方法。  24. A method for producing an epitaxial silicon single crystal wafer, comprising: the method for producing a silicon single crystal wafer according to any one of claims 16 to 23; A method for producing an epitaxial silicon single crystal wafer, comprising: producing a wafer; and forming an epitaxial layer on a surface portion of the silicon single crystal wafer.
PCT/JP1999/004652 1998-08-31 1999-08-27 Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them WO2000012787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/529,661 US6478883B1 (en) 1998-08-31 1999-08-27 Silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
KR1020007004623A KR100588098B1 (en) 1998-08-31 1999-08-27 Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them
EP99940537A EP1035236A4 (en) 1998-08-31 1999-08-27 Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP26084398A JP2000072595A (en) 1998-08-31 1998-08-31 Single silicon crystal wafer doped with boron and epitaxial silicon wafer and their production
JP26084698A JP3412531B2 (en) 1998-08-31 1998-08-31 Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JP10/260846 1998-08-31
JP10/260844 1998-08-31
JP26084498A JP3433678B2 (en) 1998-08-31 1998-08-31 Antimony-doped silicon single crystal wafer and epitaxial silicon wafer, and methods for producing them
JP10/260843 1998-08-31

Publications (1)

Publication Number Publication Date
WO2000012787A1 true WO2000012787A1 (en) 2000-03-09

Family

ID=27334973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004652 WO2000012787A1 (en) 1998-08-31 1999-08-27 Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them

Country Status (5)

Country Link
US (1) US6478883B1 (en)
EP (1) EP1035236A4 (en)
KR (1) KR100588098B1 (en)
TW (1) TWI227286B (en)
WO (1) WO2000012787A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445190B1 (en) * 2001-11-13 2004-08-21 주식회사 실트론 Manufacturing method of silicon single crystal ingot
US7081422B2 (en) 2000-12-13 2006-07-25 Shin-Etsu Handotai Co., Ltd. Manufacturing process for annealed wafer and annealed wafer
US7153785B2 (en) 2001-08-30 2006-12-26 Shin-Etsu Handotai Co., Ltd. Method of producing annealed wafer and annealed wafer
CN107532325A (en) * 2015-05-08 2018-01-02 胜高股份有限公司 Silicon epitaxial wafer and its manufacture method

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040023874A1 (en) * 2002-03-15 2004-02-05 Burgess Catherine E. Therapeutic polypeptides, nucleic acids encoding same, and methods of use
JP3861524B2 (en) * 1999-09-06 2006-12-20 信越半導体株式会社 Silicon wafer and manufacturing method thereof
JP4463957B2 (en) * 2000-09-20 2010-05-19 信越半導体株式会社 Silicon wafer manufacturing method and silicon wafer
JP2002184779A (en) * 2000-12-13 2002-06-28 Shin Etsu Handotai Co Ltd Annealed wafer and method of manufacturing the same
US6898362B2 (en) * 2002-01-17 2005-05-24 Micron Technology Inc. Three-dimensional photonic crystal waveguide structure and method
JP2002353434A (en) * 2001-05-22 2002-12-06 Sony Corp Method of manufacturing for solid-state image pickup device
JP4615161B2 (en) * 2001-08-23 2011-01-19 信越半導体株式会社 Epitaxial wafer manufacturing method
JP4656788B2 (en) * 2001-11-19 2011-03-23 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP2003188176A (en) * 2001-12-18 2003-07-04 Komatsu Electronic Metals Co Ltd Silicon wafer and its producing method
JP4465141B2 (en) * 2002-01-25 2010-05-19 信越半導体株式会社 Silicon epitaxial wafer and manufacturing method thereof
US6740158B2 (en) * 2002-05-09 2004-05-25 Rwe Schott Solar Inc. Process for coating silicon shot with dopant for addition of dopant in crystal growth
JP4092993B2 (en) 2002-09-13 2008-05-28 信越半導体株式会社 Single crystal growth method
DE10250822B4 (en) * 2002-10-31 2006-09-28 Siltronic Ag A method for producing a single-crystal doped with volatile foreign matter of silicon
US6756681B1 (en) 2002-12-23 2004-06-29 Nokia Corporation Radio frequency integrated circuit having increased substrate resistance enabling three dimensional interconnection with feedthroughs
US7198974B2 (en) * 2003-03-05 2007-04-03 Micron Technology, Inc. Micro-mechanically strained semiconductor film
JP2004315258A (en) * 2003-04-14 2004-11-11 Shin Etsu Handotai Co Ltd Production method for single crystal
US6987037B2 (en) * 2003-05-07 2006-01-17 Micron Technology, Inc. Strained Si/SiGe structures by ion implantation
US7115480B2 (en) 2003-05-07 2006-10-03 Micron Technology, Inc. Micromechanical strained semiconductor by wafer bonding
US7273788B2 (en) 2003-05-21 2007-09-25 Micron Technology, Inc. Ultra-thin semiconductors bonded on glass substrates
US7662701B2 (en) 2003-05-21 2010-02-16 Micron Technology, Inc. Gettering of silicon on insulator using relaxed silicon germanium epitaxial proximity layers
US7501329B2 (en) 2003-05-21 2009-03-10 Micron Technology, Inc. Wafer gettering using relaxed silicon germanium epitaxial proximity layers
US7008854B2 (en) 2003-05-21 2006-03-07 Micron Technology, Inc. Silicon oxycarbide substrates for bonded silicon on insulator
US7439158B2 (en) 2003-07-21 2008-10-21 Micron Technology, Inc. Strained semiconductor by full wafer bonding
US6929984B2 (en) * 2003-07-21 2005-08-16 Micron Technology Inc. Gettering using voids formed by surface transformation
US7153753B2 (en) 2003-08-05 2006-12-26 Micron Technology, Inc. Strained Si/SiGe/SOI islands and processes of making same
JP4832067B2 (en) * 2005-02-01 2011-12-07 東京エレクトロン株式会社 Silicon member and manufacturing method thereof
DE102005045338B4 (en) * 2005-09-22 2009-04-02 Siltronic Ag Epitaxial silicon wafer and process for producing epitaxially coated silicon wafers
DE102005045339B4 (en) * 2005-09-22 2009-04-02 Siltronic Ag Epitaxial silicon wafer and process for producing epitaxially coated silicon wafers
DE102005045337B4 (en) * 2005-09-22 2008-08-21 Siltronic Ag Epitaxial silicon wafer and process for producing epitaxially coated silicon wafers
KR100810566B1 (en) * 2005-12-21 2008-03-18 주식회사 실트론 Sb-DOPED SILICON SINGLE CRYSTAL AND GROWING METHOD THEREOF
JP4805681B2 (en) * 2006-01-12 2011-11-02 ジルトロニック アクチエンゲゼルシャフト Epitaxial wafer and method for manufacturing epitaxial wafer
US7544584B2 (en) 2006-02-16 2009-06-09 Micron Technology, Inc. Localized compressive strained semiconductor
WO2010109873A1 (en) * 2009-03-25 2010-09-30 株式会社Sumco Silicon wafer and method for manufacturing same
JP4869396B2 (en) * 2009-12-07 2012-02-08 株式会社東芝 Electroforming master and its manufacturing method
US9502266B2 (en) 2010-02-08 2016-11-22 Sumco Corporation Silicon wafer and method of manufacturing thereof, and method of manufacturing semiconductor device
WO2012129184A1 (en) * 2011-03-18 2012-09-27 Crystal Solar, Inc. Insitu epitaxial deposition of front and back junctions in single crystal silicon solar cells
KR101303422B1 (en) * 2011-03-28 2013-09-05 주식회사 엘지실트론 Method for Manufacturing Single Crystal Ingot and Single Crystal Ingot, Wafer manufactured by the same
KR101971597B1 (en) * 2011-10-26 2019-04-24 엘지이노텍 주식회사 Wafer and method of fabrication thin film
US9945048B2 (en) * 2012-06-15 2018-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method
CN103094316B (en) * 2013-01-25 2016-01-20 浙江大学 A kind of n/n with high metal gettering ability +silicon epitaxial wafer and preparation method thereof
CN104711675B (en) * 2015-02-16 2017-11-10 浙江金瑞泓科技股份有限公司 The N-type adulterating vertical pulling silicon monocrystalline and its silicon epitaxial wafer of phosphorus arsenic antimony codope
EP3428325B1 (en) * 2017-07-10 2019-09-11 Siltronic AG Semiconductor wafer made of single-crystal silicon and process for the production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298135A (en) * 1996-04-30 1997-11-18 Sumitomo Sitix Corp Silicon semiconductor substrate
JPH10303208A (en) * 1997-04-30 1998-11-13 Toshiba Corp Semiconductor board and its manufacture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850007717A (en) * 1984-04-19 1985-12-07 아놀드 하베이 콜 Improved gettering method of semiconductor substrate material
JPS60251190A (en) * 1984-05-25 1985-12-11 Shin Etsu Handotai Co Ltd Preparation of silicon single crystal
JPS62166531A (en) * 1986-01-20 1987-07-23 Nec Corp Manufacture of epitaxial wafer
JPS63239200A (en) * 1987-03-27 1988-10-05 Shin Etsu Handotai Co Ltd Method for strengthening silicon wafer
US5066359A (en) * 1990-09-04 1991-11-19 Motorola, Inc. Method for producing semiconductor devices having bulk defects therein
JPH06122592A (en) * 1992-10-12 1994-05-06 Sumitomo Metal Ind Ltd Single crystal silicon base plate
DE19637182A1 (en) * 1996-09-12 1998-03-19 Wacker Siltronic Halbleitermat Process for the production of silicon wafers with low defect density
EP0959154B1 (en) * 1998-05-22 2010-04-21 Shin-Etsu Handotai Co., Ltd A method for producing an epitaxial silicon single crystal wafer and the epitaxial single crystal wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298135A (en) * 1996-04-30 1997-11-18 Sumitomo Sitix Corp Silicon semiconductor substrate
JPH10303208A (en) * 1997-04-30 1998-11-13 Toshiba Corp Semiconductor board and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081422B2 (en) 2000-12-13 2006-07-25 Shin-Etsu Handotai Co., Ltd. Manufacturing process for annealed wafer and annealed wafer
US7153785B2 (en) 2001-08-30 2006-12-26 Shin-Etsu Handotai Co., Ltd. Method of producing annealed wafer and annealed wafer
KR100445190B1 (en) * 2001-11-13 2004-08-21 주식회사 실트론 Manufacturing method of silicon single crystal ingot
CN107532325A (en) * 2015-05-08 2018-01-02 胜高股份有限公司 Silicon epitaxial wafer and its manufacture method
CN107532325B (en) * 2015-05-08 2019-01-11 胜高股份有限公司 Silicon epitaxial wafer and its manufacturing method
US10211066B2 (en) 2015-05-08 2019-02-19 Sumco Corporation Silicon epitaxial wafer and method of producing same

Also Published As

Publication number Publication date
TWI227286B (en) 2005-02-01
EP1035236A1 (en) 2000-09-13
KR100588098B1 (en) 2006-06-09
KR20010031575A (en) 2001-04-16
US6478883B1 (en) 2002-11-12
EP1035236A4 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
WO2000012787A1 (en) Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them
TW505709B (en) A method for producing an epitaxial silicon single crystal wafer and the epitaxial silicon single crystal wafer
JP3626364B2 (en) Epitaxial silicon single crystal wafer manufacturing method and epitaxial silicon single crystal wafer
TW589415B (en) Method for producing silicon single crystal wafer and silicon single crystal wafer
TWI225113B (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
WO2002025716A1 (en) Method of producing silicon wafer and silicon wafer
JP3975605B2 (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
TWI402383B (en) Epitaxial wafer and production method thereof
JP2003124219A (en) Silicon wafer and epitaxial silicon wafer
WO2001016408A1 (en) Epitaxial silicon wafer
JP4529416B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JP3771737B2 (en) Method for producing silicon single crystal wafer
JP4656788B2 (en) Manufacturing method of silicon epitaxial wafer
US6835245B2 (en) Method of manufacturing epitaxial wafer and method of producing single crystal as material therefor
JP2000072595A (en) Single silicon crystal wafer doped with boron and epitaxial silicon wafer and their production
JP3412531B2 (en) Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JP3433678B2 (en) Antimony-doped silicon single crystal wafer and epitaxial silicon wafer, and methods for producing them
KR100774070B1 (en) Method of producing silicon epitaxial wafers
US6818197B2 (en) Epitaxial wafer
JP3861524B2 (en) Silicon wafer and manufacturing method thereof
JP4442955B2 (en) Epitaxial wafer manufacturing method
KR100386230B1 (en) Silicon Wafer for Deposition of an Epitaxial Layer and an Epitaxial Wafer and a Method for Manufacturing the Same
JP2005064406A (en) Epitaxial silicon single crystal wafer and method of manufacturing the same
JP2024038818A (en) Silicon wafer and epitaxial silicon wafer
CN116072515A (en) Silicon wafer and epitaxial silicon wafer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09529661

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 1999940537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1999940537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007004623

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999940537

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004623

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007004623

Country of ref document: KR