WO2000074094A1 - Electric switching device - Google Patents
Electric switching device Download PDFInfo
- Publication number
- WO2000074094A1 WO2000074094A1 PCT/SE2000/001099 SE0001099W WO0074094A1 WO 2000074094 A1 WO2000074094 A1 WO 2000074094A1 SE 0001099 W SE0001099 W SE 0001099W WO 0074094 A1 WO0074094 A1 WO 0074094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching device
- surrounding
- cable
- field
- switching
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/48—Means for preventing discharge to non-current-carrying parts, e.g. using corona ring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/0005—Tap change devices
Definitions
- the present invention relates to an electric switching device of the kind described in the preamble to the independent claim 1. More particularly, the invention relates to a diverter switch or a switching device intended to be used in on-load tap-changers for voltages exceeding 1 kilovolt.
- a controllable transformer has one or a plurality of regulating windings which, with the aid of on-load tap-changers, are connected to or disconnected from the primary or secon- dary winding of the transformer.
- on-load tap-changers there are two types of on-load tap-changers, namely, tap-changers of selector-switch type and tap-changers or diverter-switch type.
- an on-load tap changer of diverter-switch type the power is broken by means of a special switching device, a so-called diverter switch, and the choice of regulating winding is performed by a separate switching device, a so- called switch.
- the choice of regulating winding and power breaking is performed in the same operation and in the same component, the so-called selector-switch pole, in which both the diverter-switching function and the switching function are integrated.
- On-load tap-changers are available in mechanical designs, in which the switching and diverter-switching functions are performed by means of a switching device which closes and opens current paths by means of movable contact members operated by an operating device.
- On-load tap- changers are also available in completely electric designs, in which the switching and diverter-switching functions are performed by a semiconductor switch which closes and opens current paths by controlling the conductivity of semiconductors in the switching device.
- a transformer with windings consisting of cable with an electrically conductive conductor, a semiconductive inner layer surrounding the conductor, an electrically insulating cable body surrounding the inner layer, and a semiconductive outer layer surrounding the cable body, is previously known.
- the inner layer is in electrical contact with the conductor and has the same potential as the conductor.
- the potential of the outer layer is controllable and is normally set at zero by grounding the outer layer .
- Such a winding has the property of enclosing in the cable body, between the inner and outer layers, the electric field which surrounds the conductor of the cable. Since the outer layer has a constant potential, adjacent winding turns need not be insulated from one another. If, in addition, the potential of the outer layer is connected to ground, the windings need not be insulated from the transformer core and the transformer may operate without any electrically insulating transformer oil, which results in a number of technical and environmental advantages .
- the object of the present invention is to achieve a field- enclosing switching device comprising a switching means to make or break a current path between a first cable and at least one second cable, which cables have an electric conductor, an inner semiconductive layer surrounding the conductor, an electrically insulating cable body surrounding the inner layer, and an outer semiconductive layer surrounding the cable body.
- the switching device comprises: a field-controlling means surrounding the switching means and comprising at least one conductive or semiconductive field-controlling body connected to a first potential , an electrically insulating solid body surrounding the field-controlling means, - a conductive or semiconductive shield surrounding the body and connected to a second potential, and at least two contact members movably arranged in relation to each other, wherein one contact member is electrically connected to the conductor of the first cable and the other contact member is electrically connected to the conductor of the second cable, which contacts are operable by means of an operating device between a closed position and an open position.
- the field-controlling body and the shield are conductive or semiconductive means in this context that, at room temperature, they have an electrical resistivity of less than 10,000 ohmmeters .
- the field- controlling means corresponds to the inner layers of the cables and functions in the switching device, in practice, as a continuation of these layers.
- the insulating body corresponds to the cable bodies of the cables
- the shield corresponds to the outer layers of the cables .
- the field-controlling body preferably has a potential which essentially corresponds to the potential of the cable conductors, and the shield preferably has a potential which essentially corresponds to the potential of the outer layer of the cables .
- the field-controlling body is electrically connected to at least one of the inner layers of the cables.
- the shield is electrically connected to at least one of the outer layers of the cables .
- the insulating body assumes the voltage difference between the field-controlling body and the shield.
- the voltage difference between the cables in the open position is assumed in the switching means, for example in air gaps between movable contact members or by power semiconductor devices .
- Figure 1 shows a first embodiment of the invention
- Figure 2 shows a second embodiment of the invention
- Figures 3 and 4 show a third embodiment of the invention.
- Figure 1 shows a first embodiment of a switching device 1 according to the invention, wherein the switching device 1 is connected to a first field-enclosing cable 2 via a first joint means 3 and to a second field-enclosing cable 4 via a second joint means 5.
- the switching device 1 is rotationally symmetrical and is shown in Figure 1 in a section along its axis.
- the cable 2 has an electric conductor 6, an inner semiconductive layer 7 surrounding the conductor 6, an electrically insulating cable body 8 surrounding the inner layer 7, and a first outer semiconductive layer 9 surrounding the cable body 8.
- the second cable 4 has an electric conductor 10, an inner semiconductive layer 11 surrounding the conductor 10, an electrically insulating cable body 12 surrounding the inner layer 11, and an outer semiconductive layer 13 surrounding the cable body 12.
- the outer layers 9 and 13 are connected to ground.
- the switching device 1 has a mechanical switching means for making and breaking a current path between the cable 2 and the cable 4.
- the cable means comprises an elongated contact member 14 of a magnetic material.
- the contact member 14 is movably arranged in a gas-filled switching chamber 15.
- the contact member 14 is in electrical contact with the conductor 10 via a connection 16 in the joint means 5.
- the switching means has a stationary contact member 17 in electrical contact with the conductor 6, via a connection 18 in the joint means 3.
- a first 19 and a second 20 coil are arranged on the outside of the switching device 1.
- the coil 19 Upon a closing signal from control equipment (not shown) , the coil 19 generates a magnetic field in the switching chamber 15 in such a way that magnetic forces force the contact member 14 to an end position where it is in contact with the contact member 17 and electrically connects the conductor 6 to the conductor 10.
- the coil 20 Upon an opening signal from the control equipment, the coil 20 generates a magnetic field in the switching chamber 15 in such way that magnetic forces force the contact member 14 to an end position where it has such a position in relation to the contact member 17 that it is electrically insulated therefrom.
- the switching device 1 has a field-controlling means in the form of an inner semiconductive layer 21 which surrounds the switching means.
- the layer 21 makes contact, via an inner semiconductive connecting layer 22 in the joint means 3, with the inner semiconductive layer 7 of the first cable 2.
- the semiconductive layer 21 makes contact, via an inner semiconductive connecting layer 23 in the second joint means 5, with the inner semiconductive layer 11 of the second cable 4.
- the layer 21 surrounds the contact member 17 and is in electrical contact therewith along the whole of its length.
- the layer 21 also surrounds the contact member 14 but is electrically connected thereto along part of its length only, whereupon the inner surface of the layer 21 deviates from the surface of the contact member 14 and forms the radial limiting surface of the switching chamber 15.
- an electrically insulating body 24 is arranged, which surrounds the layer 21 along substantially the whole of its length. The ends of the body 24 make contact with electrically insulating bodies 25 and 26 in the joint units 3 and 5.
- the switching device 1 has a shield, arranged outside the body 24, in the form of a semiconductive layer 27 which at one end, via a semiconductive connecting layer 28 in the first joint means 3, makes contact with the outer semiconductive layer 9 of the first conductor 2.
- the layer 27 makes contact, via a second semicon- ductive connecting layer 29 in the second joint means 5, with the outer semiconductive layer 13 of the second conductor 4.
- the layers 7, 22, 21, 23 and 11 together form a continuous inner semiconductive layer which surrounds all the current- carrying members of the switching device 1 and the cables 2 and 4.
- the bodies 8, 25, 24, 26 and 12 form a continuous electrically insulating body, and surrounding this continuous body, the layers 9, 28, 27, 29 and 13 form a continuous outer semiconductive layer .
- the layer 21 serves as an extension of the inner layers 7 and 11 of the cables.
- the body 24 functions as an extension of the cables bodies 8 and 12, and the layer 27 as an extension of the layers 9 and 13.
- the layers 9, 28, 27, 29 and 13 are connected to ground, whereby a whole field-enclo- sing arrangement is obtained.
- FIG. 2 shows a second embodiment of the switching device 1 according to the invention.
- a field-controlling device in the form of a conductive cylinder 31 substantially surrounds the switching means instead of the semiconductive layer 21 shown in Figure 1.
- the cylinder has no ability, when the switching device is open, to maintain a voltage gradient in its longitudinal direction, so the cylinder does not make contact with the stationary contact member 17.
- FIGS 3 and 4 show a third embodiment of the switching device according to the invention in the form of a switch.
- the switch is able to connect, via a first connection ter- minal 41, a first cable (not shown) to either a second cable (not shown) via a second connection terminal 42, or to a third cable (not shown) via a third connection terminal 43.
- the switch has a switching means in the form of a movable contact member 44 which, via an insulated drawbar 45, is operable by an operating device 46.
- the switching means is able to make or break a current path between the first cable and the second cable, or between the first cable and the third cable.
- the switching means is substantially surrounded by a field-controlling means in the form of three conductive field-controlling bodies 47, 48 and 49.
- the field-controlling bodies are each in electrical contact with a cable via the connection conductors 50, 51, 52.
- Surrounding the field- controlling means is an electrically insulating body 24, and surrounding the body 24 is a shield in the form of a metal casing 53.
- the field-controlling bodies 47, 48 and 49 form a continuation of the inner semiconductive layer of the cables, the insulating body 24 forms a continuation of the cable bodies of the cables, and the metal casing 53 forms a continuation of the outer semiconductive layer of the cables .
Landscapes
- Switch Cases, Indication, And Locking (AREA)
- Gas-Insulated Switchgears (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00935799A EP1196934A1 (en) | 1999-05-27 | 2000-05-26 | Electric switching device |
AU51207/00A AU5120700A (en) | 1999-05-27 | 2000-05-26 | Electric switching device |
JP2001500305A JP2003501799A (ja) | 1999-05-27 | 2000-05-26 | 電気スイッチ装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9901985-3 | 1999-05-27 | ||
SE9901985A SE516289C2 (sv) | 1999-05-27 | 1999-05-27 | Elkopplare |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000074094A1 true WO2000074094A1 (en) | 2000-12-07 |
Family
ID=20415814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2000/001099 WO2000074094A1 (en) | 1999-05-27 | 2000-05-26 | Electric switching device |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1196934A1 (sv) |
JP (1) | JP2003501799A (sv) |
CN (1) | CN1357151A (sv) |
AU (1) | AU5120700A (sv) |
SE (1) | SE516289C2 (sv) |
WO (1) | WO2000074094A1 (sv) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681077A (zh) * | 2013-12-13 | 2014-03-26 | 西安天顺成套电器厂 | 多节气动隔离开关 |
US9666392B2 (en) | 2013-05-30 | 2017-05-30 | Siemens Aktiengesellschaft | Electric switching device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3559141A (en) * | 1969-10-23 | 1971-01-26 | Gen Electric | Underground electric power cable fuse housing having a semi-conductive corona shield |
GB2125637A (en) * | 1982-06-14 | 1984-03-07 | Raychem Corp | Providing insulation and shielding to an electrical component/terminal combination |
DE19719739A1 (de) * | 1997-05-09 | 1998-11-12 | Kaiser Kabel Gmbh | Spannungs-Schaltvorrichtung |
-
1999
- 1999-05-27 SE SE9901985A patent/SE516289C2/sv not_active IP Right Cessation
-
2000
- 2000-05-26 JP JP2001500305A patent/JP2003501799A/ja active Pending
- 2000-05-26 CN CN 00808132 patent/CN1357151A/zh active Pending
- 2000-05-26 AU AU51207/00A patent/AU5120700A/en not_active Abandoned
- 2000-05-26 WO PCT/SE2000/001099 patent/WO2000074094A1/en not_active Application Discontinuation
- 2000-05-26 EP EP00935799A patent/EP1196934A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3559141A (en) * | 1969-10-23 | 1971-01-26 | Gen Electric | Underground electric power cable fuse housing having a semi-conductive corona shield |
GB2125637A (en) * | 1982-06-14 | 1984-03-07 | Raychem Corp | Providing insulation and shielding to an electrical component/terminal combination |
DE19719739A1 (de) * | 1997-05-09 | 1998-11-12 | Kaiser Kabel Gmbh | Spannungs-Schaltvorrichtung |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9666392B2 (en) | 2013-05-30 | 2017-05-30 | Siemens Aktiengesellschaft | Electric switching device |
CN103681077A (zh) * | 2013-12-13 | 2014-03-26 | 西安天顺成套电器厂 | 多节气动隔离开关 |
Also Published As
Publication number | Publication date |
---|---|
SE9901985L (sv) | 2000-11-28 |
AU5120700A (en) | 2000-12-18 |
SE516289C2 (sv) | 2001-12-10 |
CN1357151A (zh) | 2002-07-03 |
SE9901985D0 (sv) | 1999-05-27 |
JP2003501799A (ja) | 2003-01-14 |
EP1196934A1 (en) | 2002-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5541561A (en) | Integral electrical circuit controller | |
US11152178B2 (en) | Disconnect switches with combined actuators and related circuit breakers and methods | |
EP1008219A1 (en) | Device and method relating to protection of an object against over-currents comprising over-current reduction | |
US11101646B2 (en) | Circuit breaker system with an internal voltage limiter | |
CA2325008A1 (en) | High-speed current-limiting switch | |
EP4026155B1 (en) | Switch assembly with energy harvesting | |
US6801421B1 (en) | Switchable flux control for high power static electromagnetic devices | |
US20160211090A1 (en) | Switching system with preselector | |
EP1196934A1 (en) | Electric switching device | |
EP1050059B1 (en) | Instantaneous trip power transformer | |
SU1542428A3 (ru) | Выключатель максимального тока | |
JPS6216004B2 (sv) | ||
JP4190320B2 (ja) | スイッチギヤ | |
EP4333009A1 (en) | An electrical switch for an on-load tap changer | |
CN116171482A (zh) | 一种抽头变换器以及包括所述抽头变换器的变压器装置 | |
WO2001091151A1 (en) | Combination of a vacuum interruption device and oil-filled transformer | |
CN115346826A (zh) | 三位隔离开关 | |
WO2000019459A1 (en) | A switchable flux control for high power static electromagnetic devices | |
Berger et al. | Vacuum contactors for voltage levels more than 12 kV | |
GB2082391A (en) | Electrical circuit interrupters | |
MXPA99005677A (en) | Device and method relating to protection of an object against over-currents comprising over-current reduction and current limitation | |
MXPA99005678A (en) | Device and method relating to protection of an object against over-currents comprising over-current reduction | |
JPH01146218A (ja) | ガス断路器 | |
GB2331855A (en) | Transformer with regulating means | |
JPH0877890A (ja) | 接地開閉器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00808132.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09926610 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2001 500305 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000935799 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 2000935799 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000935799 Country of ref document: EP |