WO2000072246A1 - Signature capture via interface surface - Google Patents
Signature capture via interface surface Download PDFInfo
- Publication number
- WO2000072246A1 WO2000072246A1 PCT/AU2000/000576 AU0000576W WO0072246A1 WO 2000072246 A1 WO2000072246 A1 WO 2000072246A1 AU 0000576 W AU0000576 W AU 0000576W WO 0072246 A1 WO0072246 A1 WO 0072246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signature
- data
- sensing device
- user
- netpage
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 53
- 230000003993 interaction Effects 0.000 claims abstract description 23
- 230000001133 acceleration Effects 0.000 claims description 20
- 238000003860 storage Methods 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 238000005755 formation reaction Methods 0.000 claims 2
- 239000000976 ink Substances 0.000 description 85
- 238000010586 diagram Methods 0.000 description 47
- 230000004913 activation Effects 0.000 description 15
- 238000001994 activation Methods 0.000 description 15
- 230000002452 interceptive effect Effects 0.000 description 13
- 235000019800 disodium phosphate Nutrition 0.000 description 12
- 239000003292 glue Substances 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000009471 action Effects 0.000 description 9
- VQQKIXKPMJTUMP-UHFFFAOYSA-N 1,2,3,4-tetrachloro-5-(2,3-dichlorophenyl)benzene Chemical compound ClC1=CC=CC(C=2C(=C(Cl)C(Cl)=C(Cl)C=2)Cl)=C1Cl VQQKIXKPMJTUMP-UHFFFAOYSA-N 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 230000004044 response Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000005499 meniscus Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 239000000834 fixative Substances 0.000 description 4
- 230000002085 persistent effect Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 241001422033 Thestylus Species 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZDDZPDTVCZLFFC-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(4-chlorophenyl)benzene Chemical compound C1=CC(Cl)=CC=C1C1=C(Cl)C(Cl)=CC(Cl)=C1Cl ZDDZPDTVCZLFFC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000021152 breakfast Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004171 remote diagnosis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
- G06F3/04883—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J13/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
- B41J13/10—Sheet holders, retainers, movable guides, or stationary guides
- B41J13/103—Sheet holders, retainers, movable guides, or stationary guides for the sheet feeding section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J13/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
- B41J13/10—Sheet holders, retainers, movable guides, or stationary guides
- B41J13/106—Sheet holders, retainers, movable guides, or stationary guides for the sheet output section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17513—Inner structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/1752—Mounting within the printer
- B41J2/17523—Ink connection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17543—Cartridge presence detection or type identification
- B41J2/17546—Cartridge presence detection or type identification electronically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17553—Outer structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17556—Means for regulating the pressure in the cartridge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17563—Ink filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2107—Ink jet for multi-colour printing characterised by the ink properties
- B41J2/2114—Ejecting specialized liquids, e.g. transparent or processing liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42C—BOOKBINDING
- B42C19/00—Multi-step processes for making books
- B42C19/02—Multi-step processes for making books starting with single sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42C—BOOKBINDING
- B42C9/00—Applying glue or adhesive peculiar to bookbinding
- B42C9/0006—Applying glue or adhesive peculiar to bookbinding by applying adhesive to a stack of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42C—BOOKBINDING
- B42C9/00—Applying glue or adhesive peculiar to bookbinding
- B42C9/0081—Applying glue or adhesive peculiar to bookbinding applying adhesive to individual sheets for binding them together
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/26—Delivering or advancing articles from machines; Advancing articles to or into piles by dropping the articles
- B65H29/34—Delivering or advancing articles from machines; Advancing articles to or into piles by dropping the articles from supports slid from under the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H37/00—Article or web delivery apparatus incorporating devices for performing specified auxiliary operations
- B65H37/04—Article or web delivery apparatus incorporating devices for performing specified auxiliary operations for securing together articles or webs, e.g. by adhesive, stitching or stapling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/606—Protecting data by securing the transmission between two devices or processes
- G06F21/608—Secure printing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/0304—Detection arrangements using opto-electronic means
- G06F3/0317—Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
- G06F3/0321—Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface by optically sensing the absolute position with respect to a regularly patterned surface forming a passive digitiser, e.g. pen optically detecting position indicative tags printed on a paper sheet
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03545—Pens or stylus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03545—Pens or stylus
- G06F3/03546—Pens or stylus using a rotatable ball at the tip as position detecting member
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/038—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/038—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
- G06F3/0386—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry for light pen
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K17/00—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/142—Image acquisition using hand-held instruments; Constructional details of the instruments
- G06V30/1423—Image acquisition using hand-held instruments; Constructional details of the instruments the instrument generating sequences of position coordinates corresponding to handwriting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/1444—Selective acquisition, locating or processing of specific regions, e.g. highlighted text, fiducial marks or predetermined fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3263—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00204—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00204—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server
- H04N1/00244—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server with a server, e.g. an internet server
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
- H04N1/00326—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a data reading, recognizing or recording apparatus, e.g. with a bar-code apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/0035—User-machine interface; Control console
- H04N1/00352—Input means
- H04N1/00355—Mark-sheet input
- H04N1/00358—Type of the scanned marks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/0035—User-machine interface; Control console
- H04N1/00352—Input means
- H04N1/00355—Mark-sheet input
- H04N1/00376—Means for identifying a mark sheet or area
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00567—Handling of original or reproduction media, e.g. cutting, separating, stacking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00962—Input arrangements for operating instructions or parameters, e.g. updating internal software
- H04N1/00968—Input arrangements for operating instructions or parameters, e.g. updating internal software by scanning marks on a sheet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32106—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title separate from the image data, e.g. in a different computer file
- H04N1/32122—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title separate from the image data, e.g. in a different computer file in a separate device, e.g. in a memory or on a display separate from image data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32128—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/327—Initiating, continuing or ending a single-mode communication; Handshaking therefor
- H04N1/32765—Initiating a communication
- H04N1/32771—Initiating a communication in response to a request, e.g. for a particular document
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/327—Initiating, continuing or ending a single-mode communication; Handshaking therefor
- H04N1/32765—Initiating a communication
- H04N1/32771—Initiating a communication in response to a request, e.g. for a particular document
- H04N1/32778—Initiating a communication in response to a request, e.g. for a particular document using a mark-sheet or machine-readable code request
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42P—INDEXING SCHEME RELATING TO BOOKS, FILING APPLIANCES OR THE LIKE
- B42P2261/00—Manufacturing; Forming
- B42P2261/04—Producing books by printing sheets in following order, e.g. for ordering via the Internet
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/038—Indexing scheme relating to G06F3/038
- G06F2203/0384—Wireless input, i.e. hardware and software details of wireless interface arrangements for pointing devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2153—Using hardware token as a secondary aspect
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/12—Digital output to print unit, e.g. line printer, chain printer
- G06F3/1201—Dedicated interfaces to print systems
- G06F3/1202—Dedicated interfaces to print systems specifically adapted to achieve a particular effect
- G06F3/1203—Improving or facilitating administration, e.g. print management
- G06F3/1204—Improving or facilitating administration, e.g. print management resulting in reduced user or operator actions, e.g. presetting, automatic actions, using hardware token storing data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/12—Digital output to print unit, e.g. line printer, chain printer
- G06F3/1201—Dedicated interfaces to print systems
- G06F3/1223—Dedicated interfaces to print systems specifically adapted to use a particular technique
- G06F3/1237—Print job management
- G06F3/1265—Printing by reference, e.g. retrieving document/image data for a job from a source mentioned in the job
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/12—Digital output to print unit, e.g. line printer, chain printer
- G06F3/1201—Dedicated interfaces to print systems
- G06F3/1278—Dedicated interfaces to print systems specifically adapted to adopt a particular infrastructure
- G06F3/1284—Local printer device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/56—Financial cryptography, e.g. electronic payment or e-cash
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/60—Digital content management, e.g. content distribution
- H04L2209/603—Digital right managament [DRM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/80—Wireless
- H04L2209/805—Lightweight hardware, e.g. radio-frequency identification [RFID] or sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00127—Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0077—Types of the still picture apparatus
- H04N2201/0082—Image hardcopy reproducer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3204—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium
- H04N2201/3205—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium of identification information, e.g. name or ID code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3204—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium
- H04N2201/3207—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium of an address
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3226—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of identification information or the like, e.g. ID code, index, title, part of an image, reduced-size image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3242—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of processing required or performed, e.g. for reproduction or before recording
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3243—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of type information, e.g. handwritten or text document
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3247—Data linking a set of images to one another, e.g. sequence, burst or continuous capture mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3249—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document data relating to a linked page or object, e.g. hyperlink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3269—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3269—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs
- H04N2201/327—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs which are undetectable to the naked eye, e.g. embedded codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3271—Printing or stamping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3278—Transmission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99941—Database schema or data structure
- Y10S707/99942—Manipulating data structure, e.g. compression, compaction, compilation
Definitions
- the present invention relates to a method and system for enabling user interaction with computer software running in a computer system
- the invention has been developed primarily to allow hand signing of documents in the context of a surface- based interface which allows a user to interact with networked information in a computer system
- the invention will largely be described herein with reference to this use, it will be appreciated that the invention is not limited to use in this field
- PCT/AUOO/00524 PCT/AU00/00525, PCT/AU00/00526, PCT/AU00/00527, PCT/AU00/00528, PCT/AUOO/00529, PCT/AUOO/00530, PCT/AU00/00531 , PCT/AU00/00532, PCT/AU00/00533, PCT/AU00/00534, PCT/AUOO/00535, PCT/AUOO/00536, PCT/AUOO/00537.
- PCT/AU00/00572 PCT/AU00/00573, PCT/AU00/00574, PCT/AU00/00575, PCT/AU00/00576, PCT/AUOO/00577, PCT/AUOO/00578, PCT/AU00/00579, PCT/AU00/00581 , PCT/AU00/00580,
- PCT/AUOO/00582 PCT/AUOO/00587, PCT/AU00/00588.
- PCT/AUOO/00592, PCT/AUOO/00594, PCT/AUOO/00595, PCT/AU00/00596, PCT/AU00/00597, PCT/AU00/00598, PCT/AUOO/00516, and PCT/AUOO/00517 The disclosures of these co-pending applications are incorporated herein by cross-reference
- a method of enabling user interaction with computer software running in a computer system via an interface surface containing information relating to the computer software and including coded data indicative of a signature field relating to the computer software, and a sensing device which, when placed in an operative position relative to the interface surface, senses indicating data indicative of the signature field and generates movement data indicative of the sensing device's movement the method including the steps of, in the computer system (a) receiving the indicating data from the sensing device, (b) receiving the movement data from the sensing device,
- the first aspect includes the step of verifying that the movement data represents a handwritten signature of the user
- the first aspect includes the step of identifying the user, more preferably by using the movement data
- the first aspect preferably includes the step of receiving, in the computer system, data indicative of the identity of the user
- the first aspect includes the step of receiving, in the computer system, data from storage means of the sensing device, the data being indicative of the identity of the user
- the first aspect includes the step of generating, the computer system and using a signature key of the user, a digital signature of digital content related to the computer software
- this includes the steps of generating a fixed length hash based on the digital content and encrypting the hash m accordance with the signature key after the signature has been ve ⁇ fied, thereby generating the digital signature
- the signature field is associated with a visible signature zone defined on the interface surface
- a system for enabling user interaction with computer software running in a computer system including an interface surface containing information relating to the computer software and including coded data indicative of a signature field relating to the computer software, and a sensing device which, when placed m an operative position relative to the interface surface, senses indicating data indicative of the signature field and generates movement data indicative of the sensing device's movement, the system being configured to, in the computer system (a) receive the indicating data from the sensing device, (b) receive the movement data from the sensing device,
- a system for enabling user interaction with computer software running in a computer system including an interface surface containing information relating to the computer software and including coded data indicative of a signature field relating to the computer software, the system being configured to, in the computer system
- the computer system is configured to verify that the movement data represents a handwritten signature of the user
- the computer system is configured to identify the user, more preferably by using the movement data
- the computer system is configured to receive data indicative of the identity of the user More preferably, the computer system is configured to receive data from storage means of the sensing device, the data being indicative of the identity of the user
- the computer system is configured to use a signature key of the user to generate a digital signature of digital content related to the computer software
- the computer system is configured to generate a fixed length hash based on the digital content and to encrypt the hash in accordance with the signature key after the signature has been verified, thereby to generate the digital signature
- the signature field is associated with a visible signature zone defined on the interface surface
- coded data is provided in the form of tags p ⁇ nted onto a piece of paper, the tags being configured to be read by a sensing device in the form of an optical sensing stylus
- the tags are preferably p ⁇ nted using an ink that absorbs near infrared light but is substantially invisible to a human viewer under normal lighting conditions
- a sensing end of the stylus close to the surface, one or more of the tags are imaged, interpreted and decoded to provide an indication of the signature field within which the user is operating
- the movement data can be generated in any of a number of ways
- the coded data includes information indicative of positions of points withm the region, and the movement data is based on coded data sensed by the sensing device as it is moved relative to the surface
- the movement data can be generated in ways not related to the coded data, such as by use of accelerometers within the sensing device or by physical rollerballs or wheels associated with the sensing device
- Figure 1 is a schematic of a the relationship between a sample p ⁇ nted netpage and its online page desc ⁇ ption
- Figure 2 is a schematic view of a interaction between a netpage pen, a netpage p ⁇ nter, a netpage page server, and a netpage application server,
- Figure 3 illustrates a collection of netpage servers and pnnters interconnected via a network
- Figure 4 is a schematic view of a high-level structure of a p ⁇ nted netpage and its online page desc ⁇ ption
- Figure 5 is a plan view showing a structure of a netpage tag
- Figure 6 is a plan view showing a relationship between a set of the tags shown in Figure 5 and a field of view of a netpage sensing device in the form of a netpage pen
- Figure 7 is a flowchart of a tag image processing and decoding algo ⁇ thm
- Figure 8 is a perspective view of a netpage pen and its associated tag-sensing field-of-view cone
- Figure 9 is a perspective exploded view of the netpage pen shown in Figure 8
- Figure 10 is a schematic block diagram of a pen controller for the netpage pen shown in Figures 8 and 9
- Figure 11 is a perspective view of a wall-mounted netpage p ⁇ nter
- Figure 12 is a section through the length of the netpage p ⁇ nter of Figure 11 ,
- Figure 12a is an enlarged portion of Figure 12 showing a section of the duplexed p ⁇ nt engines and glue wheel assembly
- Figure 13 is a detailed view of the ink cart ⁇ dge, ink, air and glue paths, and p ⁇ nt engines of the netpage p ⁇ nter of Figures 11 and 12,
- Figure 14 is a schematic block diagram of a p ⁇ nter controller for the netpage p ⁇ nter shown in Figures 11 and 12,
- Figure 15 is a schematic block diagram of duplexed pnnt engine controllers and MemjetTM p ⁇ ntheads associated with the p ⁇ nter controller shown in Figure 14,
- Figure 16 is a schematic block diagram of the p ⁇ nt engine controller shown in Figures 14 and 15, ⁇ 4 -
- Figure 17 is a perspective view of a single MemjetTM p ⁇ nting element, as used in, for example, the netpage p ⁇ nter of
- Figure 18 is a perspective view of a small part of an array of MemjetTM p ⁇ nting elements
- Figure 19 is a se ⁇ es of perspective views illustrating the operating cycle of the MemjetTM p ⁇ nting element shown in Figure 13,
- Figure 20 is a perspective view of a short segment of a pagewidth MemjetTM p ⁇ nthead
- Figure 21 is a schematic view of a user class diagram
- Figure 22 is a schematic view of a p ⁇ nter class diagram
- Figure 23 is a schematic view of a pen class diagram
- Figure 24 is a schematic view of an application class diagram
- Figure 25 is a schematic view of a document and page desc ⁇ ption class diagram
- Figure 26 is a schematic view of a document and page ownership class diagram
- Figure 27 is a schematic view of a terminal element specialization class diagram
- Figure 28 is a schematic view of a static element specialization class diagram
- Figure 29 is a schematic view of a hyperlink element class diagram
- Figure 30 is a schematic view of a hyperlink element specialization class diagram
- Figure 31 is a schematic view of a hyperlmked group class diagram
- Figure 32 is a schematic view of a form class diagram
- Figure 33 is a schematic view of a digital ink class diagram
- Figure 34 is a schematic view of a field element specialization class diagram
- Figure 35 is a schematic view of a checkbox field class diagram
- Figure 36 is a schematic view of a text field class diagram
- Figure 37 is a schematic view of a signature field class diagram
- Figure 38 is a flowchart of an input processing algo ⁇ thm
- Figure 38a is a detailed flowchart of one step of the flowchart of Figure 38
- Figure 39 is a schematic view of a page server command element class diagram
- Figure 40 is a schematic view of a resource desc ⁇ ption class diagram
- Figure 41 is a schematic view of a favo ⁇ tes list class diagram
- Figure 42 is a schematic view of a history list class diagram
- Figure 43 is a schematic view of a subsc ⁇ ption delivery protocol
- Figure 44 is a schematic view of a hyperlink request class diagram
- Figure 45 is a schematic view of a hyperlink activation protocol
- Figure 46 is a schematic view of a form submission protocol
- Figure 47 is a schematic view of a commission payment protocol DETAILED DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS
- MemjetTM is a trade mark of Silverbrook Research Pty Ltd, Australia
- the invention is configured to work with the netpage networked computer system, a detailed overview of which follows It will be appreciated that not every implementation will necessa ⁇ ly embody all or even most of the specific details and extensions discussed below m relation to the basic system However, the system is desc ⁇ bed in its most complete form to reduce the need for external reference when attempting to understand the context in which the prefe ⁇ ed embodiments and aspects of the present invention operate
- the prefe ⁇ ed form of the netpage system employs a computer interface in the form of a mapped surface, that is, a physical surface which contains references to a map of the surface maintained m a computer - 5 - system
- the map references can be que ⁇ ed by an approp ⁇ ate sensing device
- the map references may be encoded visibly or invisibly, and defined in such a way that a local query on the mapped surface yields an unambiguous map reference both within the map and among different maps
- the computer system can contain information about features on the mapped surface, and such information can be ret ⁇ eved based on map references supplied by a sensing device used with the mapped surface The information thus ret ⁇ eved can take the form of actions which are initiated by the computer system on behalf of the operator in response to the operator's interaction with the surface features
- the netpage system relies on the production of, and human interaction with, netpages
- netpages These are pages of text, graphics and images p ⁇ nted on ordinary paper, but which work like interactive web pages
- Information is encoded on each page using ink which is substantially invisible to the unaided human eye
- the ink, however, and thereby the coded data, can be sensed by an optically imaging pen and transmitted to the netpage system
- buttons and hyperlinks on each page can be clicked with the pen to request information from the network or to signal preferences to a network server
- text w ⁇ tten by hand on a netpage is automatically recognized and converted to computer text in the netpage system, allowing forms to be filled in
- signatures recorded on a netpage are automatically ve ⁇ fied, allowing e-commerce transactions to be securely autho ⁇ zed
- a p ⁇ nted netpage 1 can represent a interactive form which can be filled in by the user both physically, on the p ⁇ nted page, and "electronically", via communication between the pen and the netpage system
- the example shows a "Request" form containing name and address fields and a submit button
- the netpage consists of graphic data 2 p ⁇ nted using visible ink, and coded data 3 p ⁇ nted as a collection of tags 4 using invisible ink
- the co ⁇ esponding page desc ⁇ ption 5 stored on the netpage network, desc ⁇ bes the individual elements of the netpage In particular it desc ⁇ bes the type and spatial extent (zone) of each interactive element (l e text field or button in the example), to allow the netpage system to co ⁇ ectly interpret input via the netpage
- the submit button 6, for example, has a zone 7 which co ⁇ esponds to the spatial extent of the co ⁇ esponding graphic 8 As illustrated in Figure 2, the netpage pen 101, a pref
- the netpage p ⁇ nter 601 a prefe ⁇ ed form of which is shown m Figures 11 to 13 and desc ⁇ bed in more detail below, is able to deliver, pe ⁇ odically or on demand, personalized newspapers, magazines, catalogs, brochures and other publications, all p ⁇ nted at high quality as interactive netpages Unlike a personal computer, the netpage p ⁇ nter is an appliance which can be, for example, wall-mounted adjacent to an area where the morning news is first consumed, such as in a user's kitchen, near a breakfast table, or near the household's point of departure for the day It also comes in tabletop, desktop, portable and miniature versions Netpages pnnted at their point of consumption combine the ease-of-use of paper with the timeliness and interactivity of an interactive medium
- the netpage pen 101 interacts with the coded data on a p ⁇ nted netpage 1 and communicates, via a short-range radio link 9, the interaction to a netpage p ⁇ nter
- the p ⁇ nter 601 sends the interaction to the relevant netpage page server 10 for interpretation
- the page server sends a co ⁇ esponding message to application computer software running on a netpage application server 13
- the application server may in turn send a response which is p ⁇ nted on the o ⁇ ginating pnnter
- netpage system is made considerably more convenient in the prefe ⁇ ed embodiment by being used in conjunction with high-speed microelectromechanical system (MEMS) based Inkjet (MemjetTM) pnnters
- MEMS microelectromechanical system
- MemjetTM Inkjet
- a netpage publication has the physical characte ⁇ stics of a traditional newsmagazine, such as a set of letter- size glossy pages p ⁇ nted in full color on both sides, bound together for easy navigation and comfortable handling
- the netpage p ⁇ nter exploits the growing availability of broadband Internet access Cable service is available to 95% of households in the United States, and cable modem service offenng broadband Internet access is already available to 20% of these
- the netpage p ⁇ nter can also operate with slower connections, but with longer delivery times and lower image quality Indeed, the netpage system can be enabled using existing consumer Inkjet and laser pnnters, although the system will operate more slowly and will therefore be less acceptable from a consumer's point of view
- the netpage system is hosted on a pnvate intranet
- the netpage system is hosted on a single computer or computer-enabled device, such as a p ⁇ nter
- Netpage publication servers 14 on the netpage network are configured to deliver pnnt-quality publications to netpage pnnters
- Penodical publications are delivered automatically to subscnbing netpage pnnters via pointcastmg and multicasting Internet protocols Personalized publications are filtered and formatted according to individual user profiles
- a netpage p ⁇ nter can be configured to support any number of pens, and a pen can work with any number of netpage pnnters
- each netpage pen has a unique identifier
- a household may have a collection of colored netpage pens, one assigned to each member of the family This allows each user to maintain a distinct profile with respect to a netpage publication server or application server
- a netpage pen can also be registered with a netpage registration server 11 and linked to one or more payment card accounts This allows e-commerce payments to be securely autho ⁇ zed using the netpage pen
- the netpage registration server compares the signature captured by the netpage pen with a previously registered signature, allowing it to authenticate the user's identity to an e-commerce server
- Other biometrics can also be used to venfy identity
- a version of the netpage pen includes fingerp ⁇ nt scanning, ve ⁇ fied in a similar way by the netpage registration server
- netpage p ⁇ nter may deliver pe ⁇ odicals such as the morning newspaper without user intervention, it can be configured never to deliver unsolicited junk mail In its prefe ⁇ ed form, it only delivers penodicals from subscnbed or otherwise autho ⁇ zed sources In this respect, the netpage p ⁇ nter is unlike a fax machine or e-mail account which is visible to any junk mailer who knows the telephone number or email address 1 NETPAGE SYSTEM ARCHITECTURE
- UML Unified Modeling Langu j_p
- a class diagram consists of a set of object classes connected by relationships, and two kinds of relationships are of interest here associations and generalizations
- An association represents some kind of relationship between objects, l e between instances of classes
- a generalization relates actual classes, and can be understood m the following way if a class is thought of as the set of all objects of that class, and class A is a generalization of class B, then B is simply a subset of A
- the UML does not directly support second-order modelling - I e classes of classes
- Each class is drawn as a rectangle labelled with the name of the class It contains a list of the att ⁇ butes of the class, separated from the name by a honzontal line, and a list of the operations of the class, separated from the att ⁇ bute list by a honzontal line In the class diagrams which follow, however, operations are never modelled
- An association is drawn as a line joining two classes, optionally labelled at either end with the multiplicity of the association The default multiplicity is one
- An aste ⁇ sk (*) indicates a multiplicity of "many", l e zero or more
- Each association is optionally labelled with its name, and is also optionally labelled at either end with the role of the co ⁇ esponding class
- An open diamond indicates an aggregation association ("ls-part-of '), and is drawn at the aggregator end of the association line
- any class which is duplicated is shown with a dashed outline in all but the main diagram which defines it It is shown with att ⁇ butes only where it is defined 1.1 NETPAGES
- Netpages are the foundation on which a netpage network is built They provide a paper-based user interface to published information and interactive services
- a netpage consists of a p ⁇ nted page (or other surface region) invisibly tagged with references to an online desc ⁇ ption of the page
- the online page desc ⁇ ption is maintained persistently by a netpage page server
- the page desc ⁇ ption desc ⁇ bes the visible layout and content of the page, including text, graphics and images It also descnbes the input elements on the page, including buttons, hyperlinks, and input fields
- a netpage allows markings made with a netpage pen on its surface to be simultaneously captured and processed by the netpage system
- each netpage is assigned a unique page identifier This page ID has sufficient precision to distinguish between a very large number of netpages
- Tags are p ⁇ nted m infrared-absorptive ink on any substrate which is infrared-reflective, such as ordinary paper Near-infrared wavelengths are invisible to the human eye but are easily sensed by a solid-state image sensor with an approp ⁇ ate filter
- a tag is sensed by an area image sensor in the netpage pen, and the tag data is transmitted to the netpage system via the nearest netpage p ⁇ nter
- the pen is wireless and communicates with the netpage p ⁇ nter via a short-range radio link Tags are sufficiently small and densely a ⁇ anged that the pen can reliably image at least one tag even on a single click on the page It is important that the pen recognize the page ID and position on every interaction with the page, since the interaction is stateless Tags are e ⁇ or-co ⁇ ectably encoded to make them partially tolerant to surface damage
- the netpage page server maintains a unique page instance for each p ⁇ nted netpage, allowing it to maintain a distinct set of user-supplied values for input fields in the page desc ⁇ ption for each p ⁇ nted netpage
- the relationship between the page desc ⁇ ption, the page instance, and the p ⁇ nted netpage is shown in Figure
- the page instance is associated with both the netpage p ⁇ nter which p ⁇ nted it and, if known, the netpage user who requested it
- each tag identifies the region in which it appears, and the location of that tag within the region
- a tag may also contain flags which relate to the region as a whole or to the tag
- One or more flag bits may, for example, signal a tag sensing device to provide feedback indicative of a function associated with the immediate area of the tag, without the sensing device having to refer to a desc ⁇ ption of the region
- a netpage pen may, for example, illuminate an "active area" LED when m the zone of a hyperlink
- each tag contains an easily recognized lnva ⁇ ant structure which aids initial detection, and which assists in minimizing the effect of any warp induced by the surface or by the sensing process
- the tags preferably tile the entire page, and are sufficiently small and densely a ⁇ anged that the pen can reliably image at least one tag even on a single click on the page It is important that the pen recognize the page
- Each tag contains 120 bits of information, typically allocated as shown in Table 1 Assuming a maximum tag density of 64 per square inch, a 16-bit tag ID supports a region size of up to 1024 square inches Larger regions can be mapped continuously without increasing the tag ID precision simply by using abutting regions and maps The 100-bit region ID allows 2 10 ° (-10 30 or a million t ⁇ lhon trillion) different regions to be uniquely identified
- the 120 bits of tag data are redundantly encoded using a (15, 5) Reed-Solomon code
- the (15, 5) code allows up to 5 symbol e ⁇ ors to be co ⁇ ected per codeword, I e it is tolerant of a symbol e ⁇ or rate of up to 33% per codeword
- Each 4-bit symbol is represented in a spatially coherent way in the tag, and the symbols of the six codewords are interleaved spatially within the tag This ensures that a burst e ⁇ or (an e ⁇ or affecting multiple spatially ad j acent bits) damages a minimum number of symbols overall and a minimum number of symbols in any one codeword, thus maximising the likelihood that the burst e ⁇ or can be fully co ⁇ ected
- the physical representation of the tag shown in Figure 5, includes fixed target structures 15, 16, 17 and vanable data areas 18
- the fixed target structures allow a sensing device such as the netpage pen to detect the tag and infer its three-dimensional o ⁇ entation relative to the sensor
- the data areas contain representations of the individual bits of the encoded tag data
- the tag is rendered at a resolution of 256x256 dots When p ⁇ nted at 1600 dots per inch this yields a tag with a diameter of about 4 mm At this resolution the tag is designed to be su ⁇ ounded by a "quiet area" of radius 16 dots Since the quiet area is also cont ⁇ ubbed by adjacent tags, it only adds 16 dots to the effective diameter of the tag
- the tag includes six target structures
- a detection ⁇ ng 15 allows the sensing device to initially detect the tag The nng is easy to detect because it is rotationally inva ⁇ ant and because a simple co ⁇ ection of its aspect ratio removes most of the effects of perspective distortion
- An o ⁇ entation axis 16 allows the sensing device to determine the approximate planar o ⁇ entation of the tag due to the yaw of the sensor The o ⁇ entation axis is skewed to yield a unique o ⁇ entation
- Four perspective targets 17 allow the sensing device to infer an accurate two-dimensional perspective transform of the tag and hence an accurate three-dimensional position and o ⁇ entation of the tag relative to the sensor All target structures are redundantly large to improve their immunity to noise
- the overall tag shape is circular This supports, amongst other things, optimal tag packing on an l ⁇ egular t ⁇ angular gnd In combination with the circular detection ⁇ ng, this makes a circular a ⁇ angement of data bits within the tag optimal To maximise its size,
- the 15 4-bit data symbols of each of the six codewords are allocated to the four concentnc symbol nngs 18a to 18d in interleaved fashion Symbols are allocated alternately in circular progression around the tag
- the interleaving is designed to maximise the average spatial distance between any two symbols of the same - 9 - codeword
- the sensing device In order to support "single-click" interaction with a tagged region via a sensing device, the sensing device must be able to see at least one entire tag in its field of view no matter where in the region or at what onentation it is positioned The required diameter of the field of view of the sensing device is therefore a function of the size and spacing of the tags
- Binary shape moments 25 are then computed (at 24) for each shape, and these provide the basis for subsequently locating target structures
- Central shape moments are by their nature inva ⁇ ant of position, and can be easily made invanant of scale, aspect ratio and rotation
- the ⁇ ng target structure 15 is the first to be located (at 26)
- a ⁇ ng has the advantage of being very well behaved when perspective-distorted Matching proceeds by aspect-normalizing and rotation-normalizing each shape's moments Once its second-order moments are normalized the ⁇ ng is easy to recognize even if the perspective distortion was significant
- the ⁇ ng's onginal aspect and rotation 27 together provide a useful approximation of the perspective transform
- the axis target structure 16 is the next to be located (at 28)
- Matching proceeds by applying the ⁇ ng's normalizations to each shape's moments, and rotation-normalizing the resulting moments Once its second-order moments are normalized the axis target is easily recognized Note that one third order moment is required to disambiguate the two possible o ⁇ entations of the axis The shape is deliberately skewed to one side to make this possible Note also that it is only possible to rotation-normalize the axis target after it has had the ⁇ ng's normalizations applied, since the perspective distortion can hide the axis target's axis The axis target's onginal rotation provides a useful approximation of the tag's rotation due to pen yaw 29
- the four perspective target structures 17 are the last to be located (at 30) Good estimates of their positions are computed based on their known spatial relationships to the ⁇ ng and axis targets, the aspect and rotation of the ⁇ ng, and the rotation of the axis Matching proceeds by applying the ⁇ ng's normalizations to each shape's moments Once their second-order moments are normalized the circular perspective targets are easy to recognize, and the target closest to each estimated position is taken as a match
- the onginal centroids of the four perspective targets are then taken to be the perspective-distorted corners 31 of a square of known size in tag space, and an eight-degree-of-freedom perspective transform 33 is infe ⁇ ed (at 32) based on solving the well-understood equations relating the four tag-space and image- space point pairs (see Heckbert, P , Fundamentals of Texture Mapping and Image Warping, Masters Thesis, Dept of EECS, U of California at Berkeley, Technical Report No UCB/CSD 89/516, June 1989, the contents
- the infe ⁇ ed tag-space to image-space perspective transform is used to project (at 36) each known data bit position in tag space into image space where the real-valued position is used to bilinearly interpolate (at 36) the four relevant adjacent pixels in the input image
- the previously computed image threshold 21 is used to threshold the result to produce the final bit value 37
- each of the six 60-bit Reed-Solomon codewords is decoded (at 38) to yield 20 decoded bits 39, or 120 decoded bits in total Note that the codeword symbols are sampled in - 10 - codeword order, so that codewords are implicitly de-interleaved du ⁇ ng the sampling process
- the ⁇ ng target 15 is only sought in a subarea of the image whose relationship to the image guarantees that the ⁇ ng, if found, is part of a complete tag If a complete tag is not found and successfully decoded, then no pen position is recorded for the cu ⁇ ent frame Given adequate processing power and ideally a non-minimal field of view 193, an alternative strategy involves seeking another tag in the cu ⁇ ent image
- the obtained tag data indicates the identity of the region containing the tag and the position of the tag within the region
- An accurate position 35 of the pen nib the region, as well as the overall o ⁇ entation 35 of the pen, is then infe ⁇ ed (at 34) from the perspective transform 33 observed on the tag and the known spatial relationship between the pen's physical axis and the pen's optical axis 1.2.5 Tag Map
- Decoding a tag results in a region ID, a tag ID, and a tag-relative pen transform
- a tag map a function which maps each tag ID in a tagged region to a co ⁇ esponding location
- the tag map class diagram is shown in Figure 22, as part of the netpage p ⁇ nter class diagram
- a tag map reflects the scheme used to tile the surface region with tags, and this can vary according to surface type When multiple tagged regions share the same tiling scheme and the same tag numbe ⁇ ng scheme, they can also share the same tag map
- the tag map for a region must be ret ⁇ evable via the region ID
- the tag map can be ret ⁇ eved, the tag ID can be translated into an absolute tag location within the region, and the tag-relative pen location can be added to the tag location to yield an absolute pen location within the region 1.
- a location-indicating tag contains a tag ID which, when translated through the tag map associated with the tagged region, yields a unique tag location within the region
- the tag-relative location of the pen is added to this tag location to yield the location of the pen withm the region
- This is used to determine ne location of the pen relative to a user interface element in the page desc ⁇ ption associated with the region Not only is the user interface element itself identified, but a location relative to the user interface element is identified
- Location-indicating tags therefore t ⁇ vially support the capture of an absolute pen path in the zone of a particular user interface element
- An ob j ect-indicating tag contains a tag ID which directly identifies a user interface element in the page descnption associated with the region All the tags in the zone of the user interface element identify the user interface element, making them all identical and therefore indistinguishable Object-indicating tags do not, therefore, support the capture of an absolute pen path They do, however, support the capture of a relative pen path So long as the position sampling frequency exceeds twice the encountered tag frequency, the displacement from one sampled pen position to the next within a stroke can be unambiguously determined
- the tags function in cooperation with associated visual elements on the netpage as user interactive elements m that a user can interact with the pnnted page using an approp ⁇ ate sensing device in order for tag data to be read by the sensing device and for an appropnate response to be generated in the netpage system 1.3 DOCUMENT AND PAGE DESCRIPTIONS
- FIG. 25 and 26 A prefe ⁇ ed embodiment of a document and page desc ⁇ ption class diagram is shown in Figures 25 and 26
- a document is desc ⁇ bed at three levels
- the document 836 has a hierarchical structure whose terminal elements 839 are associated with content objects 840 such as text objects, text style objects, image objects, etc
- content objects 840 such as text objects, text style objects, image objects, etc
- the document is paginated and otherwise formatted Formatted terminal elements 835 will in some cases be associated with content objects which are different from those associated with their corresponding terminal elements, particularly where the content objects are style-related
- Each p ⁇ nted instance of a document and page is also desc ⁇ bed separately, to allow input captured through a particular page instance 830 to be recorded separately from input captured through other instances of the same page desc ⁇ ption
- a formatted document 834 consists of a set of formatted page desc ⁇ ptions 5, each of which consists of a set of formatted terminal elements 835
- Each formatted element has a spatial extent or zone 58 on the page This defines the active area of input elements such as hyperlinks and input fields
- a document instance 831 co ⁇ esponds to a formatted document 834 It consists of a set of page instances 830, each of which co ⁇ esponds to a page desc ⁇ ption 5 of the formatted document Each page instance 830 desc ⁇ bes a single unique pnnted netpage 1, and records the page ID 50 of the netpage
- a page instance is not part of a document instance if it represents a copy of a page requested in isolation
- a page instance consists of a set of terminal element instances 832 An element instance only exists if it records instance-specific information Thus, a hyperlink instance exists for a hyperlink element because it records a transaction ID 55 which is specific to the page instance, and a field instance exists for a field element because it records input specific to the page instance An element instance does not exist, however, for static elements such as textflows
- a terminal element can be a static element 843, a hyperlink element 844, a field element 845 or a page server command element 846, as shown in Figure 27
- a static element 843 can be a style element 847 with an associated style object 854, a textflow element 848 with an associated styled text object 855, an image element 849 with an associated image element 856, a graphic element 850 with an associated graphic object 857, a video clip element 851 with an associated video clip object 858, an audio clip element 852 with an associated audio clip object 859, or a scnpt element 853 with an associated scnpt object 860, as shown in Figure 28
- a page instance has a background field 833 which is used to record any digital ink captured on the page which does not apply to a specific input element
- a tag map 811 is associated with each page instance to allow tags on the page to be translated into locations on the page 1.4 THE NETPAGE NETWORK
- a netpage network consists of a dist ⁇ ubbed set of netpage page servers 10, netpage registration servers 11, netpage ID servers 12, netpage application servers 13, netpage publication servers 14, and netpage pnnters 601 connected via a network 19 such as the Internet, as shown in Figure 3
- the netpage registration server 11 is a server which records relationships between users, pens, pnnters, applications and publications, and thereby autho ⁇ zes va ⁇ ous network activities It authenticates users and acts as a signing proxy on behalf of authenticated users in application transactions It also provides handw ⁇ ting recognition services
- a netpage page server 10 maintains persistent information about page descnptions and page instances
- the netpage network includes any number of page servers, each handling a subset of page instances Since a page server also maintains user input values for each page instance, clients such as netpage pnnters send netpage input directly to the appropnate page server The page server interprets any such input relative to the descnption of
- a netpage ID server 12 allocates document IDs 51 on demand, and provides load-balancing of page servers via its ID allocation scheme - 12 -
- a netpage p ⁇ nter uses the Internet Distn Published Name System (DNS), or similar, to resolve a netpage page ID 50 into the network address of the netpage page server handling the co ⁇ esponding page instance
- DNS Internet Distn Published Name System
- a netpage application server 13 is a server which hosts interactive netpage applications
- a netpage publication server 14 is an application server which publishes netpage documents to netpage pnnters They are desc ⁇ bed in detail in Section 2
- Netpage servers can be hosted on a vanety of network server platforms from manufacturers such as IBM, Hewlett-Packard, and Sun Multiple netpage servers can run concurrently on a single host, and a single server can be dist ⁇ aded over a number of hosts Some or all of the functionality provided by netpage servers, and in particular the functionality provided by the ID server and the page server, can also be provided directly in a netpage appliance such as a netpage p ⁇ nter, in a computer workstation, or on a local network 1.5 THE NETPAGE PRINTER
- the netpage p ⁇ nter 601 is an appliance which is registered with the netpage system and p ⁇ nts netpage documents on demand and via subsc ⁇ ption
- Each p ⁇ nter has a unique pnnter ID 62, and is connected to the netpage network via a network such as the Internet, ideally via a broadband connection
- the netpage p ⁇ nter contains no persistent storage
- the network is the computer
- Netpages function interactively across space and time with the help of the dist ⁇ ubbed netpage page servers 10, independently of particular netpage pnnters
- the netpage pnnter receives subsc ⁇ bed netpage documents from netpage publication servers 14 Each document is dist ⁇ ubbed in two parts the page layouts, and the actual text and image objects which populate the pages Because of personalization, page layouts are typically specific to a particular subsc ⁇ ber and so are pomtcast to the subsc ⁇ ber's p ⁇ nter via the approp ⁇ ate page server Text and image objects, on the other hand, are typically shared with other subsc ⁇ bers, and so are multicast to all subsc ⁇ bers' pnnters and the approp ⁇ ate page servers
- the netpage publication server optimizes the segmentation of document content into pointcasts and multicasts After receiving the pomtcast of a document's page layouts, the p ⁇ nter knows which multicasts, if any, to listen to
- the pnnter Once the pnnter has received the complete page layouts and objects that define the document to be p ⁇ nted, it can p ⁇ nt the document
- the p ⁇ nter raste ⁇ zes and p ⁇ nts odd and even pages simultaneously on both sides of the sheet It contains duplexed p ⁇ nt engine controllers 760 and pnnt engines utilizing MemjetTM p ⁇ ntheads 350 for this purpose
- the p ⁇ nting process consists of two decoupled stages rastenzation of page desc ⁇ ptions, and expansion and p ⁇ nting of page images
- the raster image processor (RIP) consists of one or more standard DSPs 757 running in parallel
- the duplexed pnnt engine controllers consist of custom processors which expand, dither and pnnt page images in real time, synchronized with the operation of the pnntheads in the p ⁇ nt engines
- Pnnters not enabled for IR p ⁇ nting have the option to p ⁇ nt tags using IR-absorptive black ink, although this rest ⁇ cts tags to otherwise empty areas of the page Although such pages have more limited functionality than IR-pnnted pages, they are still classed as netpages
- the tag map 811 which desc ⁇ bes the tag tiling scheme actually used to p ⁇ nt a document becomes associated with that document so that the document's tags can be co ⁇ ectly interpreted
- Figure 2 shows the netpage pnnter class diagram, reflecting pnnter-related information maintained by a registration server 11 on the netpage network
- a prefe ⁇ ed embodiment of the netpage p ⁇ nter is desc ⁇ bed in greater detail in Section 6 below, with reference to Figures 11 to 16 - 13 -
- the netpage system can operate using pnnters made with a wide range of digital pnntmg technologies, including thermal mkjet, piezoelect ⁇ c inkjet, laser electrophotographic, and others
- pnnters made with a wide range of digital pnntmg technologies, including thermal mkjet, piezoelect ⁇ c inkjet, laser electrophotographic, and others
- thermal mkjet thermal mkjet
- piezoelect ⁇ c inkjet piezoelect ⁇ c inkjet
- laser electrophotographic and others
- MemjetTM is a drop-on-demand inkjet technology that incorporates pagewidth p ⁇ ntheads fab ⁇ cated using microelectromechanical systems (MEMS) technology
- Figure 17 shows a single pnnting element 300 of a MemjetTM pnnthead
- the netpage wallpnnter incorporates 168960 pnnt g elements 300 to form a 1600 dpi pagewidth duplex pnnter
- This pnnter simultaneously p ⁇ nts cyan, magenta, yellow, black, and infrared inks as well as paper conditioner and ink fixative
- the p ⁇ nting element 300 is approximately 110 microns long by 32 microns wide A ⁇ ays of these pnntmg elements are formed on a silicon substrate 301 that incorporates CMOS logic, data transfer, timing, and d ⁇ ve circuits (not shown)
- Major elements of the pnnt g element 300 are the nozzle 302, the nozzle nm 303, the nozzle chamber 304, the fluidic seal 305, the ink channel nm 306, the lever arm 307, the active actuator beam pair 308, the passive actuator beam pair 309, the active actuator anchor 310, the passive actuator anchor 311, and the ink inlet 312
- the active actuator beam pair 308 is mechanically joined to the passive actuator beam pair 309 at the join
- Figure 18 shows a small part of an a ⁇ ay of p ⁇ nting elements 300, including a cross section 315 of a pnnting element 300
- the cross section 315 is shown without ink, to clearly show the ink inlet 312 that passes through the silicon wafer 301
- Figures 19(a), 19(b) and 19(c) show the operating cycle of a MemjetTM pnnting element 300
- Figure 19(a) shows the quiescent position of the ink meniscus 316 p ⁇ or to pnntmg an ink droplet Ink is retained in the nozzle chamber by surface tension at the ink meniscus 316 and at the fluidic seal 305 formed between the nozzle chamber 304 and the ink channel nm 306 While p ⁇ nting, the pnnthead CMOS circuitry dist ⁇ butes data from the pnnt engine controller to the co ⁇ ect p ⁇ nting element, latches the data, and buffers the data to d ⁇ ve the electrodes 318 of the active actuator beam pair 308 This causes an electncal cu ⁇ ent to pass through the beam pair 308 for about one microsecond, resulting in Joule heating The temperature increase resulting from Joule heating causes the beam pair 308 to expand As the passive actuator beam - 14 - pair 309 is not heated, it does not expand, resulting in a stress difference between the two beam pairs This stress difference is partially resolved by the cantilevered end
- Figure 20 shows a segment of a pnnthead 350 In a netpage p ⁇ nter, the length of the pnnthead is the full width of the paper (typically 210 mm) in the direction 351 The segment shown is 04 mm long (about 0 2% of a complete pnnthead) When pnnting, the paper is moved past the fixed pnnthead in the direction 352
- the pnnthead has 6 rows of interdigitated pnnting elements 300, pnntmg the six colors or types of ink supplied by the ink inlets 312
- a nozzle guard wafer 330 is attached to the pnnthead substrate 301 for each nozzle 302 there is a co ⁇ esponding nozzle guard hole 331 through which the ink droplets are fired To prevent the nozzle guard holes 331 from becoming blocked by paper fibers or other deb ⁇ s, filtered air is pumped through the air inlets 332 and out of the nozzle guard holes du ⁇ ng p ⁇ nting To prevent ink 321 from drying, the nozzle guard is sealed while the pnnter is idle 1.6
- the Netpage Pen The active sensing device of the netpage system is typically a pen 101, which, using its embedded controller
- the system is able to sense when the nib is in contact with the surface, and the pen is able to sense tags at a sufficient rate to capture human handw ⁇ ting (I e at 200 dpi or greater and 100 Hz or faster)
- Information captured by the pen is encrypted and wirelessly transmitted to the p ⁇ nter (or base station), the pnnter or base station interpreting the data with respect to the (known) page structure
- the prefe ⁇ ed embodiment of the netpage pen operates both as a normal marking ink pen and as a non- marking stylus
- the marking aspect is not necessary for using the netpage system as a browsing system, such as when it is used as an Internet interface
- Each netpage pen is registered with the netpage system and has a unique pen ID 61
- Figure 23 shows the netpage pen class diagram, reflecting pen-related information maintained by a registration server 11 on the netpage network
- the pen determines its position and orientation relative to the page
- the nib is attached to a force sensor, and the force on the nib is interpreted relative to a threshold to indicate whether the pen is "up” or "down”
- a threshold to indicate whether the pen is "up” or "down”
- the force is captured as a continuous value to allow, say, the full dynamics of a signature to be ve ⁇ fied
- the pen determines the position and onentation of its nib on the netpage by imaging, in the infrared spectrum, an area 193 of the page m the vicinity of the nib It decodes the nearest tag and computes the position of the nib relative to the tag from the observed perspective distortion on the imaged tag and the known geometry of the pen optics
- the position resolution of the tag may be low, because the tag density on the page is inversely proportional to the tag size, the adjusted position resolution is quite high, exceeding the minimum resolution required for accurate handw ⁇ ting recognition
- Pen actions relative to a netpage are captured as a senes of strokes
- a stroke consists of a sequence of time- stamped pen positions on the page, initiated by a pen-down event and completed by the subsequent pen-up event
- Each netpage pen has a cu ⁇ ent selection 826 associated with it, allowing the user to perform copy and paste operations etc
- the selection is timestamped to allow the system to discard it after a defined time penod
- the cu ⁇ ent selection desc ⁇ bes a region of a page instance It consists of the most recent digital ink stroke captured through the pen relative to the background area of the page It is interpreted in an application-specific manner once it is submitted to an application via a selection hyperlink activation
- Each pen has a cu ⁇ ent nib 824 This is the nib last notified by the pen to the system In the case of the default netpage pen desc ⁇ bed above, either the marking black ink nib or the non-mark g stylus nib is cu ⁇ ent
- Each pen also has a cu ⁇ ent nib style 825 This is the nib style last associated with the pen by an application, e g in response to the user selecting a color from a palette
- the default nib style is the nib style associated with the cu ⁇ ent nib Strokes captured through a pen are tagged with the cu ⁇ ent mb style When the strokes are subsequently reproduced, they are reproduced in the nib style with which they are tagged
- the pen Whenever the pen is within range of a p ⁇ nter with which it can communicate, the pen slowly flashes its "online" LED When the pen fails to decode a stroke relative to the page, it momenta ⁇ ly activates its "e ⁇ or” LED When the pen succeeds in decoding a stroke relative to the page, it momenta ⁇ ly activates its "ok” LED
- a sequence of captured strokes is refe ⁇ ed to as digital ink
- Digital ink forms the basis for the digital exchange of drawings and handw ⁇ ting, for online recognition of handw ⁇ ting, and for online ve ⁇ fication of signatures
- the pen is wireless and transmits digital ink to the netpage pnnter via a short-range radio link
- the transmitted digital ink is encrypted for p ⁇ vacy and secu ⁇ ty and packetized for efficient transmission, but is always flushed on a pen-up event to ensure timely handling m the p ⁇ nter
- the pen When the pen is out-of-range of a p ⁇ nter it buffers digital ink in internal memory, which has a capacity of over ten minutes of continuous handwntmg When the pen is once again within range of a pnnter, it transfers any buffered digital ink
- a pen can be registered with any number of pnnters, but because all state data resides in netpages both on paper and on the network, it is largely immate ⁇ al which p ⁇ nter a pen is communicating with at any particular time
- a prefe ⁇ ed embodiment of the pen is desc ⁇ bed in greater detail in Section 6 below, with reference to Figures 8 to 10
- the netpage p ⁇ nter 601 receives data relating to a stroke from the pen 101 when the pen is used to interact with a netpage 1
- the coded data 3 of the tags 4 is read by the pen when it is used to execute a movement, such as a stroke
- the data allows the identity of the particular page and associated interactive element to be determined and an indication of the relative positioning of the pen relative to the page to be obtained
- the indicating data is transmitted to the pnnter, where it resolves, via the DNS, the page ID 50 of the stroke into the network address of the netpage page server 10 which maintains the co ⁇ esponding page instance 830 It then transmits the stroke to the page server If the page was recently identified in an earlier stroke, then the p ⁇ nter may already have the address of the relevant page server in its cache
- Each netpage consists of a compact page layout maintained persistently by a netpage page server (see below)
- the page layout refers to objects such as images, fonts and pieces of text, typically stored elsewhere on the netpage
- the page server When the page server receives the stroke from the pen, it retneves the page desc ⁇ ption to which the stroke applies, and determines which element of the page desc ⁇ ption the stroke intersects It is then able to interpret the stroke in the context of the type of the relevant element
- a “click” is a stroke where the distance and time between the pen down position and the subsequent pen up position are both less than some small maximum
- An object which is activated by a click typically requires a click to be activated, and accordingly, a longer stroke is ignored
- the failure of a pen action, such as a "sloppy" click, to register is - 16 - mdicated by the lack of response from the pen's "ok" LED
- a hyperlink is a means of sending a message to a remote application, and typically elicits a p ⁇ nted response m the netpage system
- a hyperlink element 844 identifies the application 71 which handles activation of the hyperlink, a link ID 54 which identifies the hyperlink to the application, an "alias required" flag which asks the system to include the user's application alias ID 65 in the hyperlink activation, and a desc ⁇ ption which is used when the hyperlink is recorded as a favo ⁇ te or appears in the user's history
- the hyperlink element class diagram is shown in Figure 29
- a hyperlink When a hyperlink is activated, the page server sends a request to an application somewhere on the network
- the application is identified by an application ID 64, and the application ID is resolved in the normal way via the DNS
- a general hyperlink can implement a request for a linked document, or may simply signal a preference to a server
- a form hyperlink submits the co ⁇ esponding form to the application
- a selection hyperlink submits the cu ⁇ ent selection to the application If the cu ⁇ ent selection contains a single-word piece of text, for example, the application may return a single-page document giving the word's meaning within the context in which it appears, or a translation into a different language
- Each hyperlink type is charactenzed by what information is submitted to the application
- the co ⁇ esponding hyperlink instance 862 records a transaction ID 55 which can be specific to the page instance on which the hyperlink instance appears
- the transaction ID can identify user-specific data to the application, for example a "shopping cart" of pending purchases maintained by a purchasing application on behalf of the user
- the system includes the pen's cu ⁇ ent selection 826 in a selection hyperlink activation
- the system includes the content of the associated form instance 868 in a form hyperlink activation, although if the hyperlink has its "submit delta" att ⁇ bute set, only input since the last form submission is included
- the system includes an effective return path in all hyperlink activations
- a hyperlmked group 866 is a group element 838 which has an associated hyperlink, as shown in Figure 31 When input occurs through any field element in the group, the hyperlink 844 associated with the group is activated
- a hyperlmked group can be used to associate hyperlink behavior with a field such as a checkbox It can also be used, in conjunction with the "submit delta" att ⁇ bute of a form hyperlink, to provide continuous input to an application It can therefore be used to support a "blackboard" interaction model, l e where input is captured and therefore shared as soon as it occurs 1.7.2 Forms
- a form defines a collection of related input fields used to capture a related set of inputs through a p ⁇ nted netpage
- a form allows a user to submit one or more parameters to an application software program running on a server
- a form 867 is a group element 838 in the document hierarchy It ultimately contains a set of terminal field elements 839
- a form instance 868 represents a pnnted instance of a form It consists of a set of field instances 870 which co ⁇ espond to the field elements 845 of the form
- Each field instance has an associated value 871 , whose type depends on the type of the co ⁇ esponding field element
- Each field value records input through a particular p ⁇ nted form instance, l e through one or more p ⁇ nted netpages
- the form class diagram is shown in Figure 32
- Each form instance has a status 872 which indicates whether the form is active, frozen, submitted void or expired A form is active when first p ⁇ nted A form becomes frozen once it is signed
- Each form instance is associated (at 59) with any form instances denved from it, thus providing a version history This allows all but the latest version of a form in a particular time penod to be excluded from a search
- Digital ink 873 consists of a set of timestamped stroke groups 874, each of which consists of a set of styled strokes 875 Each stroke consists of a set of timestamped pen positions 876, each of which also includes pen onentation and nib force
- the digital ink class diagram is shown in Figure 33
- a field element 845 can be a checkbox field 877, a text field 878, a drawing field 879, or a signature field 880
- the field element class diagram is shown m Figure 34 Any digital ink captured in a field's zone 58 is assigned to the field
- a checkbox field has an associated boolean value 881, as shown in Figure 35 Any mark (a tick, a cross, a stroke, a fill zigzag, etc ) captured in a checkbox field's zone causes a true value to be assigned to the field's value
- a text field has an associated text value 882, as shown in Figure 36 Any digital ink captured in a text field's zone is automatically converted to text via online handwnting recognition, and the text is assigned to the field's value
- a signature field has an associated digital signature value 883, as shown in Figure 37
- Any digital ink captured in a signature field's zone is automatically ve ⁇ fied with respect to the identity of the owner of the pen, and a digital signature of the content of the form of which the field is part is generated and assigned to the field's value
- the digital signature is generated using the pen user's p ⁇ vate signature key specific to the application which owns the form Online signature ve ⁇ fication is well-understood (see, for example, Plamondon, R and G Lorette, "Automatic Signature Venfication and W ⁇ ter Identification - The State of the Art", Pattern Recognition, Vol 22, No 2, 1989, the contents of which are herein incorporated by cross-reference)
- a field element is hidden if its "hidden" att ⁇ bute is set
- a hidden field element does not have an input zone on a page and does not accept input It can have an associated field value which is included in the form data when the form containing the field is submitted
- Digital ink as already stated, consists of a sequence of strokes Any stroke which starts in a particular element's zone is appended to that element's digital ink stream, ready for interpretation Any stroke not appended to an object's digital mk stream is appended to the background field's digital ink stream
- the system maintains a cu ⁇ ent selection for each pen
- the selection consists simply of the most recent stroke captured in the background field
- the selection is cleared after an inactivity timeout to ensure predictable behavior
- the raw digital ink captured in every field is retained on the netpage page server and is optionally transmitted with the form data when the form is submitted to the application.
- the entire background area of a form can be designated as a drawing field
- the application can then decide, on the basis of the presence of digital ink outside the explicit fields of the form, to route the form to a human operator, on the assumption that the user may have indicated amendments to the filled-m fields outside of those fields
- Figure 38 shows a flowchart of the process of handling pen input relative to a netpage
- the process consists of receiving (at 884) a stroke from the pen, identifying (at 885) the page instance 830 to which the page ID 50 in the stroke refers, ret ⁇ eving (at 886) the page desc ⁇ ption 5, identifying (at 887) a formatted element 839 whose zone 58 the stroke intersects, determining (at 888) whether the formatted element co ⁇ esponds to a field element, and if so appending (at 892) the received stroke to the digital ink of the field value 871 , interpreting (at 893) the accumulated digital ink of the field, and determining (at 894) whether the field is part of a hyperlmked group 866 and if so activating (at 895) the associated hyperlink, alternatively determining (at 889) whether the formatted element co ⁇ cs ⁇ onds to a hyperlink element and if so activating (at 895) the co
- Figure 38a shows a detailed flowchart of step 893 in the process shown in Figure 38, where the accumulated digital ink of a field is interpreted according to the type of the field
- the process consists of determining (at 896) whether the field is a checkbox and (at 897) whether the digital ink represents a checkmark, and if so assigning (at 898) a true value to the field value, alternatively determining (at 899) whether the field is a text field and if so converting (at 900) the digital ink to computer text, with the help of the appropnate registration server, and assigning (at 901) the converted computer text to the field value, alternatively determining (at 902) whether the field is a signature field and if so ve ⁇ fying (at 903) the digital ink as the signature of the pen's owner, with the help of the approp ⁇ ate registration server, creating (at 904) a digital signature of the contents of the co ⁇ esponding form, also with the help of the registration server and
- a page server command is a command which is handled locally by the page server It operates directly on form, page and document instances - 19 -
- a page server command 907 can be a void form command 908, a duplicate form command 909, a reset form command 910, a get form status command 911, a duplicate page command 912, a reset page command 913, a get page status command 914, a duplicate document command 915, a reset document command 916, or a get document status command 917, as shown in Figure 39
- a void form command voids the co ⁇ esponding form instance
- a duplicate form command voids the co ⁇ esponding form instance and then produces an active p ⁇ nted copy of the cu ⁇ ent form instance with field values preserved The copy contains the same hyperlink transaction IDs as the onginal, and so is indistinguishable from the onginal to an application
- a reset form command voids the co ⁇ esponding form instance and then produces an active p ⁇ nted copy of the form instance with field values discarded
- a get form status command produces a p ⁇ nted report on the status of the co ⁇ esponding form instance,
- a duplicate page command produces a p ⁇ nted copy of the co ⁇ esponding page instance with the background field value preserved If the page contains a form or is part of a form, then the duplicate page command is interpreted as a duplicate form command
- a reset page command produces a p ⁇ nted copy of the co ⁇ esponding page instance with the background field value discarded If the page contains a form or is part of a form, then the reset page command is interpreted as a reset form command
- a get page status command produces a pnnted report on the status of the co ⁇ esponding page instance, including who published it, when it was p ⁇ nted, for whom it was pnnted, and the status of any forms it contains or is part of
- the netpage logo which appears on every netpage is usually associated with a duplicate page element
- field values are p ⁇ nted in their native form
- l e a checkmark appears as a standard checkmark graphic
- text appears as typeset text Only drawings and signatures appear in their onginal form, with a signature accompanied by a standard graphic indicating successful signature venfication
- a duplicate document command produces a p ⁇ nted copy of the co ⁇ esponding document instance with background field values preserved If the document contains any forms, then the duplicate document command duplicates the forms in the same way a duplicate form command does A reset document command produces a pnnted copy of the co ⁇ esponding document instance with background field values discarded If the document contains any forms, then the reset document command resets the forms in the same way a reset form command does A get document status command produces a pnnted report on the status of the co ⁇ esponding document instance, including who published it, when it was p ⁇ nted, for whom it was p ⁇ nted, and the status of any forms it contains
- the command operates on the page identified by the pen's cu ⁇ ent selection rather than on the page containing the command This allows a menu of page server commands to be p ⁇ nted If the target page doesn't contain a page server command element for the designated page server command, then the command is ignored
- An application can provide application-specific handling by embedding the relevant page server command element in a hyperlmked group
- the page server activates the hyperlink associated with the hyperlmked group rather than executing the page server command
- a page server command element is hidden if its "hidden" att ⁇ bute is set
- a hidden command element does not have an input zone on a page and so cannot be activated directly by a user It can, however, be activated via a page server command embedded in a different page, if that page server command has its "on selected" att ⁇ bute set 1.8 STANDARD FEATURES OF NETPAGES
- each netpage is p ⁇ nted with the netpage logo at the bottom to indicate that it is a - 20 - netpage and therefore has interactive properties
- the logo also acts as a copy button In most cases pressing the logo produces a copy of the page In the case of a form, the button produces a copy of the entire form And in the case of a secure document, such as a ticket or coupon, the button elicits an explanatory note or advertising page
- the netpage p ⁇ nter has a single button labelled "Help" When pressed it elicits a single page of information, including
- the help menu provides a hierarchical manual on how to use the netpage system
- the document function menu includes the following functions
- a document function is initiated by simply pressing the button and then touching any page of the document
- the status of a document indicates who published it and when, to whom it was delivered, and to whom and when it was subsequently submitted as a form
- the netpage network directory allows the user to navigate the hierarchy of publications and services on the network As an alternative, the user can call the netpage network "900" number "yellow pages” and speak to a human operator The operator can locate the desired document and route it to the user' s pnnter Depending on the document type, the publisher or the user pays the small "yellow pages" service fee
- the help page is obviously unavailable if the p ⁇ nter is unable to p ⁇ nt In this case the "e ⁇ or" light is lit and the user can request remote diagnosis over the network 2 PERSONALIZED PUBLICATION MODEL
- news is used as a canonical publication example to illustrate personalization mechanisms m the netpage system
- news is often used in the limited sense of newspaper and newsmagazine news, the intended scope in the present context is wider
- the edito ⁇ al content and the advertising content of a news publication are personalized using different mechanisms
- the editonal content is personalized according to the reader's explicitly stated and implicitly captured interest profile
- the advertising content is personalized according to the reader's locality and demographic 2.1 EDITORIAL PERSONALIZATION
- a subscnber can draw on two kinds of news sources those that deliver news publications, and those that deliver news streams While news publications are aggregated and edited by the publisher, news streams are aggregated either by a news publisher or by a specialized news aggregator News publications typically co ⁇ espond to traditional newspapers and newsmagazines, while news streams can be many and va ⁇ ed a "raw" news feed from a news service, a cartoon st ⁇ p, a freelance w ⁇ ter's column, a friend's bulletin board, or the reader's own e-mail
- the netpage publication server supports the publication of edited news publications as well as the aggregation of multiple news streams By handling the aggregation and hence the formatting of news streams selected directly by the reader, the server is able to place advertising on pages over which it otherwise has no editonal control - 21 -
- the subscnber builds a daily newspaper by selecting one or more cont ⁇ butmg news publications, and creating a personalized version of each
- the resulting daily editions are p ⁇ nted and bound together into a single newspaper
- the vanous members of a household typically express their different interests and tastes by selecting different daily publications and then customizing them For each publication, the reader optionally selects specific sections Some sections appear daily, while others appear weekly
- the daily sections available from The New York Times online for example, include "Page One Plus”, “National”, “International”, “Opinion”, “Business”, “Arts/Living", “Technology”, and "Sports"
- the set of available sections is specific to a publication, as is the default subset
- Custom sections might be created for e-mail and friends' announcements ("Personal"), or for monitonng news feeds for specific topics ("Alerts” or "Clippings")
- the reader optionally specifies its size, either qualitatively (e g short, medium, or long), or nume ⁇ cally (I e as a limit on its number of pages), and the desired proportion of advertising, either qualitatively (e g high, normal, low, none), or nume ⁇ cally (l e as a percentage)
- the reader also optionally expresses a preference for a large number of shorter articles or a small number of longer articles Each article is ideally w ⁇ tten (or edited) in both short and long forms to support this preference
- An article may also be wntten (or edited) in different versions to match the expected sophistication of the reader, for example to provide children's and adults' versions
- the approp ⁇ ate version is selected according to the reader's age
- the reader can specify a "reading age” which takes precedence over their biological age
- the articles which make up each section are selected and pno ⁇ tized by the editors, and each is assigned a useful lifetime By default they are delivered to all relevant subsc ⁇ bers, m p ⁇ o ⁇ ty order, subject to space constraints in the subscnbers' editions
- the reader may optionally enable collaborative filtenng This is then applied to articles which have a sufficiently long lifetime
- Each article which qualifies for collaborative filtenng is p ⁇ nted with rating buttons at the end of the article
- the buttons can provide an easy choice (e g "liked” and “disliked'), making it more likely that readers will bother to rate the article
- the reader optionally specifies a serendipity factor, either qualitatively (e g do or don't surpnse me), or numencally
- a serendipity factor lowers the threshold used for matching du ⁇ ng collaborative filtenng
- a high factor makes it more likely that the co ⁇ esponding section will be filled to the reader's specified capacity
- a different serendipity factor can be specified for different days of the week
- the reader also optionally specifies topics of particular interest within a section, and this modifies the p ⁇ onties assigned by the editors
- the speed of the reader's Internet connection affects the quality at which images can be delivered
- the reader optionally specifies a preference for fewer images or smaller images or both If the number or size of images is not reduced, then images may be delivered at lower quality (l e at lower resolution or with greater compression)
- the reader specifies how quantities, dates, times and monetary values are localized This involves specifying whether units are impe ⁇ al or metnc, a local timezone and time format, and a local cu ⁇ ency, and whether the localization consist of in situ translation or annotation These preferences are de ⁇ ved from the reader's locality by default
- the reader optionally specifies a global preference for a larger presentation Both text and images are scaled accordingly, and less information is accommodated on each page
- the language in which a news publication is published, and its co ⁇ esponding text encoding, is a property of - 22 - the publication and not a preference expressed by the user
- the netpage system can be configured to provide automatic translation services in vanous guises
- Effective advertising is placed on the basis of locality and demographics
- Locality determines proximity to particular services, retailers etc , and particular interests and concerns associated with the local community and environment Demographics determine general interests and preoccupations as well as likely spending patterns
- a news publisher's most profitable product is advertising "space", a multi-dimensional entity determined by the publication's geographic coverage, the size of its readership, its readership demographics, and the page area available for advertising
- the netpage publication server computes the approximate multi-dimensional size of a publication's saleable advertising space on a per-section basis, taking into account the publication's geographic coverage, the section's readership, the size of each reader's section edition, each reader's advertising proportion, and each reader's demographic
- the netpage system allows the advertising space to be defined in greater detail, and allows smaller pieces of it to be sold separately It therefore allows it to be sold at closer to its true value
- the same advertising "slot" can be sold in varying proportions to several advertisers, with individual readers' pages randomly receiving the advertisement of one advertiser or another, overall preserving the proportion of space sold to each advertiser
- the netpage system allows advertising to be linked directly to detailed product information and online purchasing It therefore raises the lntnnsic value of the advertising space
- an advertising aggregator can provide arbitra ⁇ ly broad coverage of both geography and demorraphics
- the subsequent disaggregation is efficient because it is automatic This makes it more cost-effective for pubh in is to deal with advertising aggregators than to directly capture advertising Even though the advertising aggregator is taking a proportion of advertising revenue, publishers may find the change profit-neutral because of the greater efficiency of aggregation
- the advertising aggregator acts as an intermediary between advertisers and publishers, and may place the same advertisement in multiple publications
- ad placement in a netpage publication can be more complex than ad placement in the publication's traditional counterpart, because the publication's advertising space is more complex While igno ⁇ ng the full complexities of negotiations between advertisers, advertising aggregators and publishers, the prefe ⁇ ed form of the netpage system provides some automated support for these negotiations, including support for automated auctions of advertising space Automation is particularly desirable for the placement of advertisements which generate small amounts of income, such as small or highly localized advertisements
- the aggregator captures and edits the advertisement and records it on a netpage ad server Co ⁇ espondingly, the publisher records the ad placement on the relevant netpage publication server When the netpage publication server lays out each user's personalized publication, it picks the relevant advertisements from the netpage ad server 2.3 USER PROFILES
- the customization of a publication is typically publication-specific, and so the customization information is maintained by the relevant netpage publication server
- a collaborative filtenng vector consists of the user's ratings of a number of news items It is used to co ⁇ elate different users' interests for the purposes of making recommendations
- Presentation preferences including those for quantities, dates and times, are likewise global and maintained in the same way
- the localization of advertising relies on the locality indicated in the user's contact details, while the targeting of advertising relies on personal information such as date of birth, gender, mantal status, income, profession, education, or qualitative denvatives such as age range and income range
- the information is maintained by the relevant netpage registration server
- advertising can be targeted on the basis of the demographic associated with the user's ZIP or ZIP+4 Code
- Each user, pen, pnnter, application provider and application is assigned its own unique identifier, and the netpage registration server maintains the relationships between them, as shown in Figures 21, 22, 23 and 24
- a publisher is a special kind of application provider
- a publication is a special kind of application
- Each user 800 may be authonzed to use any number of pnnters 802, and each pnnter may allow any number of users to use it
- Each user has a single default p ⁇ nter (at 66), to which penodical publications are delivered by default, whilst pages p ⁇ nted on demand are delivered to the p ⁇ nter through which the user is interacting
- the server keeps track of which publishers a user has autho ⁇ zed to p ⁇ nt to the user's default p ⁇ nter
- a publisher does not record the ID of any particular p ⁇ nter, but instead resolves the ID when it is required
- the publisher 806 (I e application provider 803) is authonzed to pnnt to a specified p ⁇ nter or the user's default p ⁇ nter This autho ⁇ zation can be revoked at any time by the user
- Each user may have several pens 801, but a pen is specific to a single user If a user is authonzed to use a particular pnnter, then that pnnter recognizes any of the user's pens
- the pen ID is used to locate the co ⁇ esponding user profile maintained by a particular netpage registration server, via the DNS m the usual way
- a Web terminal 809 can be autho ⁇ zed to p ⁇ nt on a particular netpage p ⁇ nter, allowing Web pages and netpage documents encountered du ⁇ ng Web browsing to be conveniently pnnted on the nearest netpage pnnter
- the netpage system can collect, on behalf of a p ⁇ nter provider, fees and commissions on income earned through publications p ⁇ nted on the provider' s pnnters Such income can include advertising fees, click-through fees, e- commerce commissions, and transaction fees If the pnnter is owned by the user, then the user is the p ⁇ nter provider - 24 -
- Each user also has a netpage account 820 which is used to accumulate micro-debits and credits (such as those descnbed in the preceding paragraph), contact details 815, including name, address and telephone numbers, global preferences 816, including pnvacy, delivery and localization settings, any number of biometnc records 817, containing the user's encoded signature 818, fmgerp ⁇ nt 819 etc, a handw ⁇ ting model 819 automatically maintained by the system, and SET payment card accounts 821 with which e-commerce payments can be made 2.3.2 Favorites List
- a netpage user can maintain a list 922 of "favontes" - links to useful documents etc on the netpage network
- the list is maintained by the system on the user's behalf It is organized as a hierarchy of folders 924, a prefer ⁇ ed embodiment of which is shown in the class diagram Figure 41 2.3.3 History List
- the system maintains a history list 929 on each user's behalf, containing links to documents etc accessed by the user through the netpage system It is organized as a date-ordered list, a prefe ⁇ ed embodiment of which is shown in the class diagram Figure 42
- the netpage publication server automatically lays out the pages of each user s personalized publication on a section-by-section basis Since most advertisements are m the form of pre-formatted rectangles, they are placed on the page before the editonal content
- the advertising ratio for a section can be achieved with wildly varying advertising ratios on individual pages within the section, and the ad layout algonthm exploits this
- the algo ⁇ thm is configured to attempt to co-locate closely tied editonal and advertising content, such as placing ads for roofing matenal specifically within the publication because of a special feature on do-it-yourself roofing repairs
- the editonal content selected for the user including text and associated images and graphics, is then laid out according to vanous aesthetic rules
- section size preference can, however, be matched on average over time, allowing significant day-to-day va ⁇ ations
- the p ⁇ mary efficiency mechanism is the separation of information specific to a single user's edition and information shared between multiple users' editions
- the specific information consists of the page layout
- the shared information consists of the objects to which the page layout refers, including images, graphics, and pieces of text
- a text object contains fully-formatted text represented in the Extensible Markup Language (XML) using the Extensible Stylesheet Language (XSL) XSL provides precise control over text formatting independently of the region into which the text is being set, which this case is being provided by the layout
- the text object contains embedded language codes to enable automatic translation, and embedded hyphenation hints to aid with paragraph formatting
- An image object encodes an image in the JPEG 2000 wavelet-based compressed image format
- a graphic object encodes a 2D graphic in Scalable Vector Graphics (SVG) format
- the layout itself consists of a senes of placed image and graphic objects, linked textflow objects through which text objects flow, hyperlinks and input fields as descnbed above, and watermark regions These layout objects are summanzed in Table 3
- the layout uses a compact format suitable for efficient dist ⁇ bution and storage
- the netpage publication server allocates, with the help of the netpage ID server 12, a unique ID for each page, page instance, document, and document instance
- the server computes a set of optimized subsets of the shared content and creates a multicast channel for each subset, and then tags each user-specific layout with the names of the multicast channels which will carry the shared content used by that layout
- the server then pointcasts each user's layouts to that user's p ⁇ nter via the approp ⁇ ate page server, and when the pointcasting is complete, multicasts the shared content on the specified channels
- each page server and pnnter subscnbes to the multicast channels specified in the page layouts Du ⁇ ng the multicasts, each page server and p ⁇ nter extracts from the multicast streams those objects refe ⁇ ed to by its page layouts
- the page servers persistently archive the received page layouts and shared content
- the p ⁇ nter re-creates the fully- populated layout and then raste ⁇ zes and p ⁇ nts it
- the pnnter pnnts pages faster than they can be delivered Assuming a quarter of each page is covered with images, the average page has a size of less than 400KB The pnnter can therefore hold in excess of 100 such pages in its internal 64MB memory, allowing for temporary buffers etc
- the p ⁇ nter p ⁇ nts at a rate of one page per second This is equivalent to 400KB or about 3Mbit of page data per second, which is similar to the highest expected rate of page data delivery over a broadband network
- the netpage publication server therefore allows pnnters to submit requests for re-multicasts When a c ⁇ tical number of requests is received or a timeout occurs, the server re-multicasts the co ⁇ esponding shared objects
- a pnnter can produce an exact duplicate at any time by retnevmg its page layouts - 26 - and contents from the relevant page server 2.7 ON-DEMAND DOCUMENTS
- a netpage formatting server is a special instance of a netpage publication server
- the netpage formatting server has knowledge of vanous Internet document formats, including Adobe's Portable Document Format (PDF), and Hypertext Markup Language (HTML)
- PDF Portable Document Format
- HTML Hypertext Markup Language
- HTML it can make use of the higher resolution of the p ⁇ nted page to present Web pages m a multi-column format, with a table of contents It can automatically include all Web pages directly linked to the requested page The user can tune this behavior via a preference
- the netpage formatting server makes standard netpage behavior, including interactivity and persistence, available on any Internet document, no matter what its ongin and format It hides knowledge of different document formats from both the netpage p ⁇ nter and the netpage page server, and hides knowledge of the netpage system from Web servers
- Cryptography is used to protect sensitive information, both in storage and in transit, and to authenticate parties to a transaction
- the netpage network uses both classes of cryptography
- Secret-key cryptography also refe ⁇ ed to as symmet ⁇ c cryptography, uses the same key to encrypt and decrypt a message Two parties wishing to exchange messages must first a ⁇ ange to securely exchange the secret key
- Public-key cryptography also refe ⁇ ed to as asymmetnc cryptography, uses two encryption keys The two keys are mathematically related in such a way that any message encrypted using one key can only be decrypted using the other key One of these keys is then published, while the other is kept pnvate
- the public kf > y is used to encrypt any message intended for the holder of the pnvate key
- a n _. ⁇ _.ge can only be decrypted using the pnvate key
- Public-key cryptography can be used to create a digital signature
- the holder of the pnvate key can create a known hash of a message and then encrypt the hash using the pnvate key
- anyone can then ve ⁇ fy that the encrypted hash constitutes the "
- a certificate authonty is a trusted third party which authenticates the connection between a public key and someone's identity
- the certificate authonty venfies the person's identity by examining identity documents, and then creates and signs a digital certificate containing the person's identity details and public key
- convinced who trusts the certificate authonty can use the public key in the certificate with a high degree of certainty that it is genuine They just have to venfy that the certificate has indeed been signed by the certificate authonty, whose public key is well-known
- Each netpage p ⁇ nter is assigned a pair of unique identifiers at time of manufacture which are stored in readonly memory in the p ⁇ nter and in the netpage registration server database
- the first ID 62 is public and uniquely identifies the p ⁇ nter on the netpage network
- the second ID is secret and is used when the p ⁇ nter is first registered on the network
- the server compares the secret ID against the pnnter' s secret ID recorded in its database, and accepts the registration if the IDs match It then creates and signs a certificate containing the p ⁇ nter' s public ID and public signature key, and stores the certificate in the registration database
- the netpage registration server acts as a certificate authonty for netpage pnnters, since it has access to secret information allowing it to venfy pnn
- a record is created m the netpage registration server database autho ⁇ zing the publisher to pnnt the publication to the user's default p ⁇ nter or a specified p ⁇ nter
- Every document sent to a p ⁇ nter via a page server is addressed to a particular user and is signed by the publisher using the publisher's pnvate signature key
- the page server venfies, via the registration database, that the publisher is autho ⁇ zed to deliver the publication to the specified user
- the page server venfies the signature using the publisher's public key, obtained from the publisher's certificate stored m the registration database
- the netpage registration server accepts requests to add p ⁇ nting autho ⁇ zations to the database, so long as those requests are initiated via a pen registered to the p ⁇ nter 3.3 NETPAGE PEN SECUR ⁇
- Each netpage pen is assigned a unique identifier at time of manufacture which is stored in read-only memory in the pen and in the netpage registration server database
- the pen ID 61 uniquely identifies the pen on the netpage network
- a netpage pen can "know” a number of netpage pnnters, and a pnnter can "know” a number of pens
- a pen communicates with a pnnter via a radio frequency signal whenever it is within range of the p ⁇ nter
- a pen stores a session key for every p ⁇ nter it knows, indexed by p ⁇ nter ID, and a p ⁇ nter stores a session key for every pen it knows, indexed by pen ID Both have a large but finite storage capacity for session keys, and will forget a session key on a least-recently-used basis if necessary
- the pen and p ⁇ nter discover whether they know each other If they don't know each other, then the p ⁇ nter determines whether it is supposed to know the pen This might be, for example, because the pen belongs to a user who is registered to use the p ⁇ nter If the p ⁇ nter is meant to know the pen but doesn't, then it initiates the automatic pen registration procedure If the pnnter isn't meant to know the pen, then it agrees with the pen to ignore it until the pen is placed in a charging cup, at which time it initiates the registration procedure
- the pen In addition to its public ID, the pen contains a secret key-exchange key
- the key-exchange key is also recorded in the netpage registration server database at time of manufacture Du ⁇ ng registration, the pen transmits its pen ID to the p ⁇ nter, and the p ⁇ nter transmits the pen ID to the netpage registration server
- the server generates a session key for the p ⁇ nter and pen to use, and securely transmits the session key to the pnnter It also transmits a copy of the session - 28 - key encrypted with the pen's key-exchange key
- the pnnter stores the session key internally, indexed by the pen ID, and transmits the encrypted session key to the pen
- the pen stores the session key internally, indexed by the pnnter ID
- the pen uses secret-key rather than public-key encryption because of hardware performance constraints in the pen 3.4 SECURE DOCUMENTS
- the netpage system supports the delivery of secure documents such as tickets and coupons
- the netpage p ⁇ nter includes a facility to p ⁇ nt watermarks, but will only do so on request from publishers who are suitably autho ⁇ zed
- the publisher indicates its authonty to pnnt watermarks in its certificate, which the pnnter is able to authenticate
- the "watermark" pnnting process uses an alternative dither mat ⁇ x in specified "watermark" regions of the page Back-to-back pages contain minor-image watermark regions which coincide when p ⁇ nted
- the dither matnces used m odd and even pages' watermark regions are designed to produce an interference effect when the regions are viewed together, achieved by looking through the p ⁇ nted sheet
- Secure documents are typically generated as part of e-commerce transactions They can therefore include the user's photograph which was captured when the user registered biometnc information with the netpage registration server, as desc ⁇ bed in Section 2
- the recipient When presented with a secure netpage document, the recipient can ve ⁇ fy its authenticity by requesting its status in the usual way
- the unique ID of a secure document is only valid for the lifetime of the document, and secure document IDs are allocated non-contiguously to prevent their prediction by opportunistic forgers
- a secure document ve ⁇ fication pen can be developed with built-in feedback on ve ⁇ fication failure, to support easy point-of-presentation document ve ⁇ fication Clearly neither the watermark nor the user's photograph are secure in a cryptographic sense They simply provide a significant obstacle to casual forgery Online document ve ⁇ fication, particularly using a ve ⁇ fication pen, provides an added level of secu ⁇ ty where it is needed, but is still not entirely immune to forge ⁇ es 3.5 NON-
- the netpage registration server acts as a proxy for the netpage user (l e the cardholder) m SET payment transactions
- the netpage system uses biometncs to authenticate the user and autho ⁇ ze SET payments Because the system is pen-based, the biometnc used is the user's on-line signature, consisting of time-varying pen position and pressure A fingerp ⁇ nt biometnc can also be used by designing a fingerpnnt sensor into the pen, although at a higher cost The type of biometnc used only affects the capture of the biometnc, not the autho ⁇ zation aspects of the system
- the first step to being able to make SET payments is to register the user's biometnc with the netpage registration server This is done in a controlled environment, for example a bank, where the biometnc can be captured at the same time as the user's identity is ve ⁇ fied The biometnc is captured and stored in the registration database, linked to the user's record The user's photograph is also optionally captured and linked to the record The SET cardholder registration process is completed, and the resulting pnvate signature key and certificate
- the p ⁇ nter securely transmits the order information, the pen ID and the biometnc data to the netpage registration server
- the server venfies the biometnc with respect to the user identified by the pen ID, and from then on acts as the user's proxy in completing the SET payment transaction
- the netpage system includes a mechanism for micro-payments, to allow the user to be conveniently charged for pnnting low-cost documents on demand and for copying copy ⁇ ght documents, and possibly also to allow the user to be reimbursed for expenses incu ⁇ ed in p ⁇ nting advertising matenal The latter depends on the level of subsidy already provided to the user
- a network account which aggregates micro-payments
- the user receives a statement on a regular basis, and can settle any outstanding debit balance using the standard payment mechanism
- the network account can be extended to aggregate subsc ⁇ ption fees for pe ⁇ odicals, which would also otherwise be presented to the user in the form of individual statements
- the application When a user requests a netpage in a particular application context, the application is able to embed a user-specific transaction ID 55 in the page Subsequent input through the page is tagged with the transaction ID, and the application is thereby able to establish an approp ⁇ ate context for the user's input
- the application When input occurs through a page which is not user-specific, however, the application must use the user's unique identity to establish a context
- a typical example involves adding items from a pre-p ⁇ nted catalog page to the user's virtual "shopping cart"
- the unique user ID 60 known to the netpage system is not divulged to applications This is to prevent different application providers from easily co ⁇ elatmg independently accumulated behavioral data - 30 -
- the netpage registration server instead maintains an anonymous relationship between a user and an application via a unique alias ID 65, as shown in Figure 24 Whenever the user activates a hyperlink tagged with the "registered" att ⁇ bute, the netpage page server asks the netpage registration server to translate the associated application ID 64, together with the pen ID 61, into an alias ID 65 The alias ID is then submitted to the hyperlink's application The application maintains state information indexed by alias ID, and is able to retrieve user-specific state information without knowledge of the global identity of the user
- the system also maintains an independent certificate and pnvate signature key for each of a user's applications, to allow it to sign application transactions on behalf of the user using only application-specific information
- UPC product bar code
- Each application is associated with an application provider, and the system maintains an account on behalf of each application provider, to allow it to credit and debit the provider for click-through fees etc
- An application provider can be a publisher of penodical subscnbed content
- the system records the user's willingness to receive the subscnbed publication, as well as the expected frequency of publication 4.5 RESOURCE DESCRIPTIONS AND COPYRIGHT
- Each document and content object may be desc ⁇ bed by one or more resource desc ⁇ ptions 842
- Resource desc ⁇ ptions use the Dublin Core metadata element set, which is designed to facilitate discovery of electronic resources Dublin Core metadata conforms to the World Wide Web Consortium (W3C) Resource Desc ⁇ ption Framework (RDF)
- W3C World Wide Web Consortium
- RDF Resource Desc ⁇ ption Framework
- a resource desc ⁇ ption may identify nghts holders 920
- the netpage system automatically transfers copy ⁇ ght fees from users to nghts holders when users p ⁇ nt copy ⁇ ght content 5 COMMUNICATIONS PROTOCOLS
- a communications protocol defines an ordered exchange of messages between entities
- entities such as pens, pnnters and servers utilise a set of defined protocols to cooperatively handle user interaction with the netpage system
- Each protocol is illustrated by way of a sequence diagram in which the horwntal dimension is used to represent message flow and the vertical dimension is used to represent time Each entit) - lepresented by a rectangle containing the name of the entity and a vertical column representing the lifeline of the entity Dunng the time an entity exists, the lifeline is shown as a dashed line Dunng the time an entity is active, the lifeline is shown as a double line Because the protocols considered here do not create or destroy entities, lifelines are generally cut short as soon as an entity ceases to participate in a protocol 5.1 SUBSCRIPTION DELIVERY PROTOCOL
- a large number of users may subscnbe to a penodical publication
- Each user's edition may be laid out differently, but many users' editions will share common content such as text objects and image objects
- the subscnption delivery protocol therefore delivers document structures to individual pnnters via pomtcast, but delivers shared content objects via multicast
- the application (I e publisher) first obtains a document ID 51 for each document from an ID server 12 It then sends each document structure, including its document ID and page desc ⁇ ptions, to the page server 10 responsible for the document's newly allocated ID It includes its own application ID 64, the subscnber's alias ID 65, and the relevant set of multicast channel names It signs the message using its pnvate signature key
- the page server uses the application ID and alias ID to obtain from the registration server the co ⁇ esponding user ID 60, the user s selected p ⁇ nter ID 62 (which may be explicitly selected for the application or may be the user's default p ⁇ nter), and the application's certificate - 31 -
- the application's certificate allows the page server to venfy the message signature.
- the page server's request to the registration server fails if the application ID and alias ID don't together identify a subscnption 808
- the page server then allocates document and page instance IDs and forwards the page desc ⁇ ptions, including page IDs 50, to the p ⁇ nter. It includes the relevant set of multicast channel names for the p ⁇ nter to listen to It then returns the newly allocated page IDs to the application for future reference
- the pen When a user clicks on a netpage with a netpage pen, the pen communicates the click to the nearest netpage p ⁇ nter 601 The click identifies the page and a location on the page The p ⁇ nter already knows the ID 61 of the pen from the pen connection protocol
- the pnnter determines, via the DNS, the network address of the page server 10a handling the particular page ID 50. The address may already be in its cache if the user has recently interacted with the same page
- the p ⁇ nter then forwards the pen ID, its own p ⁇ nter ID 62, the page ID and click location to the page server
- the page server loads the page desc ⁇ ption 5 identified by the page ID and determines which input element's zone 58, if any, the click lies in Assuming the relevant input element is a hyperlink element 844, the page server then obtains the associated application ID 64 and link ID 54, and determines, via the DNS, the network address of the application server hosting the application 71
- the page server uses the pen ID 61 to obtain the co ⁇ esponding user ID 60 from the registration server 11, and then allocates a globally unique hyperlink request ID 52 and builds a hyperlink request 934
- the hyperlink request class diagram is shown in Figure 44
- the hyperlink request records the IDs of the requesting user and p ⁇ nter, and identifies the clicked hyperlink instance 862
- the page server then sends its own server ID 53, the hyperlink request ID, and the link ID to the application
- the application produces a response document according to application-specific logic, and obtains a document ID 51 from an ID server 12 It then sends the document to the page server 10b responsible for the document's newly allocated ID, together with the requesting page server's ID and the hyperlink request ID
- the second page server sends the hyperlink request ID and application ID to the first page server to obtain the co ⁇ esponding user ID and p ⁇ nter ID 62
- the first page server rejects the request if the hyperlink request has expired or is for a different application
- the second page server allocates document instance and page IDs 50, returns the newly allocated page IDs to the application, adds the complete document to its own database, and finally sends the page descnptions to the requesting pnnter
- the hyperlink instance may include a meaningful transaction ID 55, in which case the first page server includes the transaction ID m the message sent to the application This allows the application to establish a transaction- specific context for the hyperlink activation If the hyperlink requires a user alias, l e its "alias required" att ⁇ bute is set, then the first page server sends both the pen ID 61 and the hyperlink's application ID 64 to the registration server 11 to obtain not just the user ID co ⁇ esponding to the pen ID but also the alias ID 65 co ⁇ esponding to the application ID and the user ID It includes the alias ID in the message sent to the application, allowing the application to establish a user-specific context for the hyperlink activation - 32 -
- the pen When a user draws a stroke on a netpage with a netpage pen, the pen communicates the stroke to the nearest netpage p ⁇ nter The stroke identifies the page and a path on the page
- the p ⁇ nter forwards the pen ID 61, its own p ⁇ nter ID 62, the page ID 50 and stroke path to the page server 10 in the usual way
- the page server loads the page desc ⁇ ption 5 identified by the page ID and determines which input element's zone 58, if any, the stroke intersects Assuming the relevant input element is a text field 878, the page server appends the stroke to the text field's digital ink
- the page server After a penod of inactivity in the zone of the text field, the page server sends the pen ID and the pending strokes to the registration server 11 for interpretation
- the registration server identifies the user co ⁇ esponding to the pen, and uses the user's accumulated handwnting model 822 to interpret the strokes as handwntten text
- the registration server returns the text to the requesting page server
- the page server appends the text to the text value of the text field
- the page server After a penod of inactivity in the zone of the signature field, the page server sends the pen ID 61 and the pending strokes to the registration server 11 for venfication It also sends the application ID 64 associated with the form of which the signature field is part, as well as the form ID 56 and the cu ⁇ ent data content of the form
- the registration server identifies the user co ⁇ esponding to the pen, and uses the user's dynamic signature biometnc 818 to venfy the strokes as the user's signature
- the registration server uses the application ID 64 and user ID 60 to identify the user's application-specific pnvate signature key It then uses the key to generate a digital signature of the form data, and returns the digital signature to the requesting page server
- the page server assigns the digital signature to the signature field and sets the associated form's status to frozen
- the digital signature includes the alias ID 65 of the co ⁇ esponding user This allows a single form to capture multiple users' signatures
- the application venfies each one by extracting the alias ID 65 associated with the co ⁇ esponding digital signature and obtaining the co ⁇ esponding certificate from the registration server 11 5.6 COMMISSION PAYMENT PROTOCOL
- fees and commissions may be payable from an application provider to a publisher on chck-throughs, transactions and sales Commissions on fees and commissions on commissions may also be payable from the publisher to the provider of the pnnter
- the hyperlink request ID 52 is used to route a fee or commission credit from the target application provider
- the target application receives the hyperlink request ID from the page server 10 when the hyperlink is first activated, as desc ⁇ bed in Section 5 2
- the target application needs to credit the source application provider it sends - 33 - the application provider credit to the onginal page server together with the hyperlink request ID
- the page server uses the hyperlink request ID to identify the source application, and sends the credit on to the relevant registration server 11 together with the source application ID 64, its own server ID 53, and the hyperlink request ID
- the registration server credits the co ⁇ esponding application provider's account 827 It also notifies the application provider If the application provider needs to credit the p ⁇ nter provider, it sends the p ⁇ nter provider credit to the onginal page server together with the hyperlink request ID
- the page server uses the hyperlink request ID to identify the p ⁇ nter, and sends the credit on to the relevant registration server together with the p ⁇ nter ID
- the registration server credits the co ⁇ esponding p ⁇ nter provider account 814
- the source application provider is optionally notified of the identity of the target application provider, and the p ⁇ nter provider of the identity of the source application provider 6.
- the pen generally designated by reference numeral 101, includes a housing 102 m the form of a plastics moulding having walls 103 defining an inte ⁇ or space 104 for mounting the pen components
- the pen top 105 is in operation rotatably mounted at one end 106 of the housing 102
- a semi-transparent cover 107 is secured to the opposite end 108 of the housing 102
- the cover 107 is also of moulded plastics, and is formed from semi- transparent matenal in order to enable the user to view the status of the LED mounted within the housing 102
- the cover 107 includes a main part 109 which substantially su ⁇ ounds the end 108 of the housing 102 and a projecting portion 110 which projects back from the ma part 109 and fits within a co ⁇ esponding slot 111 formed the walls 103 of the housing 102
- a radio antenna 112 is mounted behind the projecting portion 110, within the housing 102
- Screw threads 113 su ⁇ oundmg an aperture 113A on the cover 107 are a
- a t ⁇ -color status LED 116 on a flex PCB 117 The antenna 112 is also mounted on the flex PCB 117
- the status LED 116 is mounted at the top of the pen 101 for good all-around visibility
- the pen can operate both as a normal marking ink pen and as a non-marking stylus
- An ink pen cartndge 118 with nib 119 and a stylus 120 with stylus nib 121 are mounted side by side within the housing 102 Either the ink cart ⁇ dge nib 119 or the stylus nib 121 can be brought forward through open end 122 of the metal end piece 114, by rotation of the pen top 105
- Respective slider blocks 123 and 124 are mounted to the ink cart ⁇ dge 118 and stylus 120, respectively
- a rotatable cam ba ⁇ el 125 is secured to the pen top 105 in operation and a ⁇ anged to rotate therewith
- the cam ba ⁇ el 125 includes a cam 126 in the form of a slot within the walls 181
- a second flex PCB 129 is mounted on an electronics chassis 130 which sits within the housing 102
- the second flex PCB 129 mounts an infrared LED 131 for providing infrared radiation for projection onto the surface
- An image sensor 132 is provided mounted on the second flex PCB 129 for receiving reflected radiation from the surface
- the second flex PCB 129 also mounts a radio frequency chip 133, which includes an RF transmitter and RF receiver, and a controller chip 134 for controlling operation of the pen 101
- An optics block 135 (formed from moulded clear plastics) sits withm the cover 107 and projects an infrared beam onto the surface and receives images onto the image sensor 132
- Power supply wires 136 connect the components on the second flex PCB 129 to battery contacts 137 which are mounted - 34 - within the cam ba ⁇ el 125
- a terminal 138 connects to the battery contacts 137 and the cam ba ⁇ el 125
- a three volt rechargeable battery 139 sits with
- Rubber gnp pads 141 and 142 are provided towards the end 108 of the housing 102 to assist g ⁇ pping the pen 101, and top 105 also includes a clip 142 for clipping the pen 101 to a pocket 6.2 PEN CONTROLLER
- the pen 101 is a ⁇ anged to determine the position of its nib (stylus nib 121 or ink cart ⁇ dge nib 119) by imaging, m the infrared spectrum, an area of the surface in the vicinity of the nib It records the location data from the nearest location tag, and is a ⁇ anged to calculate the distance of the nib 121 or 119 from the location tab utilising optics
- controller chip 134 calculates the o ⁇ entation of the pen and the nib-to-tag distance from the perspective distortion observed on the imaged tag
- the pen 101 can transmit the digital ink data (which is encrypted for secunty and packaged for efficient transmission) to the computing system
- the digital mk data is transmitted as it is formed
- digital ink data is buffered within the pen 101 (the pen 101 circuitry includes a buffer a ⁇ anged to store digital ink data for approximately 12 minutes of the pen motion on the surface) and can be transmitted later
- the controller chip 134 is mounted on the second flex PCB 129 m the pen 101
- Figure 10 is a block diagram illustrating in more detail the architecture of the controller chip 134 Figure 10 also shows representations of the RF chip 133, the image sensor 132, the tn-color status LED 116, the IR illumination LED 131, the IR force sensor LED 143, and the force sensor photodiode 144
- the pen controller chip 134 includes a controlling processor 145 Bus 146 enables the exchange of data between components of the controller chip 134 Flash memory 147 and a 512 KB DRAM 148 are also included
- An analog-to-digital converter 149 is a ⁇ anged to convert the analog signal from the force sensor ⁇ liotodiode 144 to a digital signal
- An image sensor interface 152 interfaces with the image sensor 132
- a transceiver controller 153 and base band circuit 154 are also included to interface with the RF chip 133 which includes an RF circuit 155 and RF resonators and inductors 156 connected to the antenna 112
- the controlling processor 145 captures and decodes location data from tags from the surface via the image sensor 132, monitors the force sensor photodiode 144, controls the LEDs 116, 131 and 143, and handles short-range radio communication via the radio transceiver 153 It is a medium-performance ( ⁇ 40MHz) general-purpose RISC processor
- the processor 145, digital transceiver components (transceiver controller 153 and baseband circuit 154), image sensor interface 152, flash memory 147 and 512KB DRAM 148 are integrated in a single controller ASIC Analog RF components (RF circuit 155 and RF resonators and inductors 156) are provided in the separate RF chip
- the image sensor is a 215x215 pixel CCD (such a sensor is produced by Matsushita Electronic Corporation, and is desc ⁇ bed in a paper by Itakura, K T Nobusada, N Okusenya, R Nagayoshi, and M Ozaki, "A 1mm 50k-P ⁇ xel IT CCD Image Sensor for Miniature Camera System", IEEE Transactions on Electronic Devices, Volt 47, number 1, January 2000, which is incorporated herein by reference) with an IR filter
- the controller ASIC 134 enters a quiescent state after a penod of inactivity when the pen 101 is not in contact with a surface It incorporates a dedicated circuit 150 which monitors the force sensor photodiode 144 and wakes up the controller 134 via the power manager 151 on a pen-down event - 35 -
- the radio transceiver communicates in the unlicensed 900MHz band normally used by cordless telephones, or alternatively the unlicensed 2 4GHz industnal, scientific and medical (ISM) band, and uses frequency hopping and collision detection to provide interference-free communication
- ISM scientific and medical
- the pen incorporates an Infrared Data Association (IrDA) interface for short- range communication with a base station or netpage p ⁇ nter
- IrDA Infrared Data Association
- the pen 101 includes a pair of orthogonal accelerometers mounted m the normal plane of the pen 101 axis
- the accelerometers 190 are shown in Figures 9 and 10 m ghost outline
- each location tag ID can then identify an object of interest rather than a position on the surface For example, if the object is a user interface input element (e g a command button), then the tag ID of each location tag with the area of the input element can directly identify the input element
- the acceleration measured by the accelerometers in each of the x and y directions is integrated with respect to time to produce an instantaneous velocity and position Since the starting position of the stroke is not known, only relative positions within a stroke are calculated
- Letter/ A4 sized media using duplexed 8V ⁇ " MemjetTM p ⁇ nt engines 602 and 603, as shown in Figures 12 and 12a It uses a straight paper path with the paper 604 passing through the duplexed p ⁇ nt engines 602 and 603 which p ⁇ nt both sides of a sheet simultaneously, in full color and with full bleed
- An integral binding assembly 605 applies a st ⁇ p of glue along one edge of each pnnted sheet, allowing it to adhere to the previous sheet when pressed against it This creates a final bound document 618 which can range in thickness from one sheet to several hundred sheets
- the replaceable ink cartndge 627 shown in Figure 13 coupled with the duplexed p ⁇ nt engines, has bladders or chambers for sto ⁇ ng fixative, adhesive, and cyan, magenta, yellow, black and infrared inks
- the cart ⁇ dge also contains a micro air filter in a base molding
- the micro air filter interfaces with an air pump 638 inside the p ⁇ nter via a hose 639 This provides filtered air to the pnntheads to prevent ingress of micro particles into the MemjetTM pnntheads 350 which might otherwise clog the pnnthead nozzles
- the operational life of the filter is effectively linked to the life of the cartndge
- the ink cart ⁇ dge is a fully recyclable product with a capacity for p ⁇ nting and gluing 3000 pages (1500 sheets)
- the motonzed media pick-up roller assembly 626 pushes the top sheet directly from the media tray past a paper sensor on the first p ⁇ nt engine 602 into the duplexed MemjetTM pnnthead assembly
- the two MemjetTM pnnt engines 602 and 603 are mounted m an opposing in-line sequential configuration along the straight paper path
- the paper 604 is drawn into the first pnnt engine 602 by integral, powered pick-up rollers 626
- the position and size of the paper 604 is sensed and full bleed p ⁇ nting commences Fixative is pnnted simultaneously to aid drying m the shortest possible time
- the paper 604 passes from the duplexed p ⁇ nt engines 602 and 603 into the - 36 - bmder assembly 605
- the p ⁇ nted page passes between a powered spike wheel axle 670 with a fibrous support roller and another movable axle with spike wheels and a momentary action glue wheel
- the movable axle/glue assembly 673 is mounted to a metal support bracket and it is transported forward to interface with the powered axle 670 via gears by action of a camshaft A separate motor powers this camshaft
- the glue wheel assembly 673 consists of a partially hollow axle 679 with a rotating coupling for the glue supply hose 641 from the ink cartndge 627 This axle 679 connects to a glue wheel, which absorbs adhesive by capillary action through radial holes
- a molded housing 682 su ⁇ ounds the glue wheel, with an opening at the front Pivoting side moldings and sprung outer doors are attached to the metal bracket and hinge out sideways when the rest of the assembly 673
- the netpage p ⁇ nter controller consists of a controlling processor 750, a factory-installed or field-installed network interface module 625, a radio transceiver (transceiver controller 753, baseband circuit 754, RF circuit 755, and RF resonators and inductors 756), dual raster image processor (RIP) DSPs 757, duplexed p ⁇ nt engine controllers 760a and 760b, flash memory 658, and 64MB of DRAM 657, as illustrated in Figure 14
- the controlling processor handles communication with the network 19 and with local wireless netpage pens 101, senses the help button 617, controls the user interface LEDs 613-616, and feeds and synchronizes the RIP DSPs 757 and pnnt engine controllers 760 It consists of a medium-performance general-purpose microprocessor
- the controlling processor 750 communicates with the pnnt engine controllers 760 via a high-speed senal bus 659
- the RIP DSPs rastenze and compress page descnptions to the netpage pnnter' s compressed page format
- Each pnnt engine controller expands, dithers and p ⁇ nts page images to its associated MemjetTM pnnthead 350 in real time (l e at over 30 pages per minute)
- the duplexed p ⁇ nt engine controller s p ⁇ nt both sides of a sheet simultaneously
- the master p ⁇ nt engine controller 760a controls the paper transport and monitors ink usage in conjunction with the master QA chip 665 and the ink cart ⁇ dge QA chip 761
- the p ⁇ nter controller's flash memory 658 holds the software for both the processor 750 and the DSPs 757, as well as configuration data This is copied to main memory 657 at boot time
- the processor 750, DSPs 757, and digital transceiver components are integrated in a single controller ASIC 656
- Analog RF components RF circuit 755 and RF resonators and inductors 756) are provided in a separate RF chip 762
- the network interface module 625 is separate, since netpage pnnters allow the network connection to be factory-selected or field-selected Flash memory 658 and the 2x256Mbit
- DRAM 657 is also off-chip
- the pnnt engine controllers 760 are provided m separate ASICs
- a vanety of network interface modules 625 are provided, each providing a netpage network interface 751 and optionally a local computer or network interface 752
- Netpage network Internet interfaces include POTS modems, Hyb ⁇ d Fiber-Coax (HFC) cable modems, ISDN modems, DSL modems, satellite transceivers, cu ⁇ ent and next-generation cellular telephone transceivers, and wireless local loop (WLL) transceivers
- Local interfaces include IEEE 1284 (parallel port), lOBase-T and 100Base-T Ethernet, USB and USB 2 0, IEEE 1394 (Firewire), and vanous emerging home networking interfaces If an Internet connection is available on the local network, then the local network interface can be used as the netpage network interface
- the radio transceiver 753 communicates in the unlicensed 900MHz band normally used by cordless telephones, or alternatively in the unlicensed 2 4GHz industnal, scientific and medical (ISM) band, and uses frequency hopping and collision detection to provide interference-free communication - 37 -
- ISM scientific and medical
- the p ⁇ nter controller optionally incorporates an Infrared Data Association (IrDA) interface for receiving data "squirted" from devices such as netpage cameras
- IrDA Infrared Data Association
- the p ⁇ nter uses the IrDA interface for short-range communication with suitably configured netpage pens 7.2.1 RASTERIZATION AND PRINTING
- the DSPs 757 raste ⁇ ze each page desc ⁇ ption and compress the raste ⁇ zed page image
- the main processor stores each compressed page image in memory
- the simplest way to load-balance multiple DSPs is to let each DSP rastenze a separate page
- the DSPs can always be kept busy since an arbitrary number of raste ⁇ zed pages can, in general, be stored in memory This strategy only leads to potentially poor DSP utilization when raste ⁇ zing short documents
- Watermark regions in the page desc ⁇ ption are raste ⁇ zed to a contone-resolution bi-level bitmap which is losslessly compressed to negligible size and which forms part of the compressed page image
- the infrared (IR) layer of the p ⁇ nted page contains coded netpage tags at a density of about six per inch Each tag encodes the page ID, tag ID, and control bits, and the data content of each tag is generated du ⁇ ng rastenzation and stored in the compressed page image
- the main processor 750 passes back-to-back page images to the duplexed p ⁇ nt engine controllers 760
- Each p ⁇ nt engine controller 760 stores the compressed page image in its local memory, and starts the page expansion and p ⁇ nting pipeline Page expansion and p ⁇ nting is pipelined because it is impractical to store an entire 114MB bi-level CMYK+IR page image in memory 7.2.2 PRINT ENGINE CONTROLLER
- the page expansion and p ⁇ nting pipeline of the p ⁇ nt engine controller 760 consists of a high speed IEEE 1394 se ⁇ al interface 659, a standard JPEG decoder 763, a standard Group 4 Fax decoder 764, a custom halftoner/compositor unit 765, a custom tag encoder 766, a line loader/formatter unit 767, and a custom interface 768 to the MemjetTM pnnthead 350
- the p ⁇ nt engine controller 360 operates in a double buffered manner While one page is loaded into DRAM
- the previously loaded page is read from DRAM 769 and passed through the pnnt engine controller pipeline Once the page has finished p ⁇ nting, the page just loaded is pnnted while another page is loaded
- the first stage of the pipeline expands (at 763) the JPEG-compressed contone CMYK layer, expands (at 764) the Group 4 Fax-compressed bi-level black layer, and renders (at 766) the bi-level netpage tag layer according to the tag format defined in section 1 2, all m parallel
- the second stage dithers (at 765) the contone CMYK layer and composites (at 765) the bi-level black layer over the resulting bi-level CMYK layer
- the resultant bi-level CMYK+IR dot data is buffered and formatted (at 767) for pnnt g on the MemjetTM pnnthead 350 via a set of line buffers Most of these line buffers are stored in the off-chip DRAM
- the final stage pnnts the six channels of bi-level dot data (including fixative) to the MemjetTM pnnthead 350 via the pnnthead interface 768
- the pnnt engine controller 760 contains a low-speed processor 772 for synchronizing the page expansion and rendenng pipeline, configu ⁇ ng the pnnthead 350 via a low-speed se ⁇ al bus 773, and controlling the stepper motors 675, 676
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Security & Cryptography (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Bioethics (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- User Interface Of Digital Computer (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
- Character Discrimination (AREA)
- Image Input (AREA)
- Document Processing Apparatus (AREA)
- Pens And Brushes (AREA)
- Facsimiles In General (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Position Input By Displaying (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Collating Specific Patterns (AREA)
- Information Transfer Between Computers (AREA)
- Magnetic Record Carriers (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Sampling And Sample Adjustment (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002371970A CA2371970A1 (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
AU47311/00A AU761509B2 (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
EP00929088A EP1222618A4 (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
BR0010848-0A BR0010848A (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
MXPA01012062A MXPA01012062A (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface. |
IL14667900A IL146679A0 (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
JP2000620565A JP4606599B2 (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
IL146679A IL146679A (en) | 1999-05-25 | 2001-11-22 | Signature capture via interface surface |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPQ0559A AUPQ055999A0 (en) | 1999-05-25 | 1999-05-25 | A method and apparatus (npage01) |
AUPQ0559 | 1999-05-25 | ||
AUPQ1313 | 1999-06-30 | ||
AUPQ1313A AUPQ131399A0 (en) | 1999-06-30 | 1999-06-30 | A method and apparatus (NPAGE02) |
AUPQ3632 | 1999-10-25 | ||
AUPQ3632A AUPQ363299A0 (en) | 1999-10-25 | 1999-10-25 | Paper based information inter face |
AUPQ4392A AUPQ439299A0 (en) | 1999-12-01 | 1999-12-01 | Interface system |
AUPQ4392 | 1999-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000072246A1 true WO2000072246A1 (en) | 2000-11-30 |
Family
ID=27424495
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2000/000576 WO2000072246A1 (en) | 1999-05-25 | 2000-05-24 | Signature capture via interface surface |
PCT/AU2000/000574 WO2000072133A1 (en) | 1999-05-25 | 2000-05-24 | Hand-drawing capture via interface surface |
PCT/AU2000/000575 WO2000072134A1 (en) | 1999-05-25 | 2000-05-24 | Handwritten text capture via interface surface |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2000/000574 WO2000072133A1 (en) | 1999-05-25 | 2000-05-24 | Hand-drawing capture via interface surface |
PCT/AU2000/000575 WO2000072134A1 (en) | 1999-05-25 | 2000-05-24 | Handwritten text capture via interface surface |
Country Status (15)
Country | Link |
---|---|
US (43) | US7456820B1 (en) |
EP (3) | EP1228420B1 (en) |
JP (3) | JP4606595B2 (en) |
KR (3) | KR100727522B1 (en) |
CN (3) | CN1224890C (en) |
AT (2) | ATE412939T1 (en) |
AU (3) | AU4731000A (en) |
BR (3) | BR0010851A (en) |
CA (3) | CA2374661C (en) |
DE (2) | DE60040679D1 (en) |
HK (2) | HK1048683A1 (en) |
IL (6) | IL146679A0 (en) |
MX (3) | MXPA01012062A (en) |
SG (7) | SG122804A1 (en) |
WO (3) | WO2000072246A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8292180B2 (en) | 2001-07-13 | 2012-10-23 | Hand Held Products, Inc. | Optical reader having an imager |
US8416463B2 (en) | 2007-03-23 | 2013-04-09 | Anoto Ab | Printing of a position-coding pattern |
US8636224B2 (en) | 2004-10-05 | 2014-01-28 | Hand Held Products, Inc. | System and method to automatically discriminate between different data types |
US8789758B2 (en) | 2003-05-12 | 2014-07-29 | Hand Held Products, Inc. | Picture taking reading apparatus |
US8794522B2 (en) | 2001-05-15 | 2014-08-05 | Hand Held Products, Inc. | Image capture apparatus and method |
WO2014175879A1 (en) * | 2013-04-24 | 2014-10-30 | Hewlett-Packard Development Company, L.P. | Displacement signatures |
US11301583B2 (en) * | 2019-10-09 | 2022-04-12 | Mastercard International Incorporated | Method and system for protection of customer PII via cryptographic tokens |
Families Citing this family (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPQ055999A0 (en) * | 1999-05-25 | 1999-06-17 | Silverbrook Research Pty Ltd | A method and apparatus (npage01) |
US7800592B2 (en) * | 2005-03-04 | 2010-09-21 | Apple Inc. | Hand held electronic device with multiple touch sensing devices |
US6825945B1 (en) * | 1999-05-25 | 2004-11-30 | Silverbrook Research Pty Ltd | Method and system for delivery of a brochure |
US7243835B2 (en) * | 1999-05-25 | 2007-07-17 | Silverbrook Research Pty Ltd | Competition entry via label |
US7456820B1 (en) * | 1999-05-25 | 2008-11-25 | Silverbrook Research Pty Ltd | Hand drawing capture via interface surface |
SE9904746L (en) * | 1999-12-23 | 2001-06-24 | Anoto Ab | payment |
US7657128B2 (en) * | 2000-05-23 | 2010-02-02 | Silverbrook Research Pty Ltd | Optical force sensor |
US7346848B1 (en) | 2000-06-21 | 2008-03-18 | Microsoft Corporation | Single window navigation methods and systems |
US6883168B1 (en) | 2000-06-21 | 2005-04-19 | Microsoft Corporation | Methods, systems, architectures and data structures for delivering software via a network |
US7191394B1 (en) | 2000-06-21 | 2007-03-13 | Microsoft Corporation | Authoring arbitrary XML documents using DHTML and XSLT |
US7624356B1 (en) | 2000-06-21 | 2009-11-24 | Microsoft Corporation | Task-sensitive methods and systems for displaying command sets |
US7000230B1 (en) | 2000-06-21 | 2006-02-14 | Microsoft Corporation | Network-based software extensions |
US6948135B1 (en) | 2000-06-21 | 2005-09-20 | Microsoft Corporation | Method and systems of providing information to computer users |
US7155667B1 (en) * | 2000-06-21 | 2006-12-26 | Microsoft Corporation | User interface for integrated spreadsheets and word processing tables |
US7167164B2 (en) | 2000-11-10 | 2007-01-23 | Anoto Ab | Recording and communication of handwritten information |
US7127682B2 (en) | 2000-11-10 | 2006-10-24 | Anoto Ab | Device and system for information management utilizing a filing appliance |
SE521214C2 (en) * | 2000-11-10 | 2003-10-14 | Anoto Ab | Binder device with input field provided with position coding pattern through which an operation in a computer system can be initiated, as well as information management system comprising such a binder device |
US20050110778A1 (en) * | 2000-12-06 | 2005-05-26 | Mourad Ben Ayed | Wireless handwriting input device using grafitis and bluetooth |
US7916124B1 (en) | 2001-06-20 | 2011-03-29 | Leapfrog Enterprises, Inc. | Interactive apparatus using print media |
US7013029B2 (en) * | 2001-06-29 | 2006-03-14 | Intel Corporation | Incorporating handwritten notations into an electronic document |
US20030004991A1 (en) * | 2001-06-29 | 2003-01-02 | Keskar Dhananjay V. | Correlating handwritten annotations to a document |
HUP0103350A2 (en) * | 2001-08-17 | 2003-04-28 | Péter Ladányi | Electronic writing device for generating electronic signature of enhanced security |
SE520748C2 (en) * | 2001-12-27 | 2003-08-19 | Anoto Ab | Activation of products with embedded functionality in an information management system |
US7120299B2 (en) * | 2001-12-28 | 2006-10-10 | Intel Corporation | Recognizing commands written onto a medium |
GB0223074D0 (en) * | 2002-10-04 | 2002-11-13 | Motion Touch Ltd | Recording writing movements |
US7123143B2 (en) * | 2003-02-11 | 2006-10-17 | Topaz Systems, Inc. | Wireless signature management system |
JP2004252621A (en) * | 2003-02-19 | 2004-09-09 | Chiyoda Maintenance Kk | Product authentication system preventing market distribution of fake |
US20040229195A1 (en) * | 2003-03-18 | 2004-11-18 | Leapfrog Enterprises, Inc. | Scanning apparatus |
US7370066B1 (en) | 2003-03-24 | 2008-05-06 | Microsoft Corporation | System and method for offline editing of data files |
US7415672B1 (en) | 2003-03-24 | 2008-08-19 | Microsoft Corporation | System and method for designing electronic forms |
US7275216B2 (en) | 2003-03-24 | 2007-09-25 | Microsoft Corporation | System and method for designing electronic forms and hierarchical schemas |
US6908058B2 (en) * | 2003-03-28 | 2005-06-21 | Suncast Corporation | Hose reel cart with elevated crank handle |
US7913159B2 (en) | 2003-03-28 | 2011-03-22 | Microsoft Corporation | System and method for real-time validation of structured data files |
US7296017B2 (en) | 2003-03-28 | 2007-11-13 | Microsoft Corporation | Validation of XML data files |
JP4142982B2 (en) * | 2003-05-13 | 2008-09-03 | 株式会社Pfu | Image reading device |
JP4240293B2 (en) * | 2003-05-27 | 2009-03-18 | 株式会社ソニー・コンピュータエンタテインメント | Multimedia playback apparatus and multimedia playback method |
US20040243852A1 (en) * | 2003-05-28 | 2004-12-02 | Rosenstein Adam H. | Method, system and software for state signing of internet resources |
JP2005010863A (en) * | 2003-06-16 | 2005-01-13 | Toho Business Kanri Center:Kk | Terminal equipment, display system, display method, program and recording medium |
US7398550B2 (en) * | 2003-06-18 | 2008-07-08 | Microsoft Corporation | Enhanced shared secret provisioning protocol |
US7451392B1 (en) | 2003-06-30 | 2008-11-11 | Microsoft Corporation | Rendering an HTML electronic form by applying XSLT to XML using a solution |
US7406660B1 (en) | 2003-08-01 | 2008-07-29 | Microsoft Corporation | Mapping between structured data and a visual surface |
US7334187B1 (en) | 2003-08-06 | 2008-02-19 | Microsoft Corporation | Electronic form aggregation |
US7542160B2 (en) * | 2003-08-29 | 2009-06-02 | Hewlett-Packard Development Company, L.P. | Rendering with substituted validation input |
JP4150923B2 (en) * | 2003-12-09 | 2008-09-17 | 富士ゼロックス株式会社 | Data output system and method |
JP5006049B2 (en) * | 2004-01-13 | 2012-08-22 | ザ・ユニバーシティ・オブ・トレド | Non-invasive birefringence compensated sensing polarimeter |
US8819072B1 (en) | 2004-02-02 | 2014-08-26 | Microsoft Corporation | Promoting data from structured data files |
US20060127872A1 (en) * | 2004-03-17 | 2006-06-15 | James Marggraff | Method and device for associating a user writing with a user-writable element |
US20060078866A1 (en) * | 2004-03-17 | 2006-04-13 | James Marggraff | System and method for identifying termination of data entry |
US20060125805A1 (en) * | 2004-03-17 | 2006-06-15 | James Marggraff | Method and system for conducting a transaction using recognized text |
US7453447B2 (en) * | 2004-03-17 | 2008-11-18 | Leapfrog Enterprises, Inc. | Interactive apparatus with recording and playback capability usable with encoded writing medium |
US7853193B2 (en) | 2004-03-17 | 2010-12-14 | Leapfrog Enterprises, Inc. | Method and device for audibly instructing a user to interact with a function |
US7831933B2 (en) | 2004-03-17 | 2010-11-09 | Leapfrog Enterprises, Inc. | Method and system for implementing a user interface for a device employing written graphical elements |
US20060067576A1 (en) * | 2004-03-17 | 2006-03-30 | James Marggraff | Providing a user interface having interactive elements on a writable surface |
US20060077184A1 (en) * | 2004-03-17 | 2006-04-13 | James Marggraff | Methods and devices for retrieving and using information stored as a pattern on a surface |
US20060066591A1 (en) * | 2004-03-17 | 2006-03-30 | James Marggraff | Method and system for implementing a user interface for a device through recognized text and bounded areas |
US20060033725A1 (en) * | 2004-06-03 | 2006-02-16 | Leapfrog Enterprises, Inc. | User created interactive interface |
GB2413419B (en) * | 2004-04-23 | 2007-12-27 | Hewlett Packard Development Co | Digital pen system |
US7496837B1 (en) | 2004-04-29 | 2009-02-24 | Microsoft Corporation | Structural editing with schema awareness |
US7281018B1 (en) | 2004-05-26 | 2007-10-09 | Microsoft Corporation | Form template data source change |
US7774620B1 (en) | 2004-05-27 | 2010-08-10 | Microsoft Corporation | Executing applications at appropriate trust levels |
CA2567751C (en) | 2004-06-01 | 2013-08-27 | Mattel, Inc. | An electronic learning device with a graphic user interface for interactive writing |
US7284192B2 (en) | 2004-06-24 | 2007-10-16 | Avaya Technology Corp. | Architecture for ink annotations on web documents |
US20060031755A1 (en) * | 2004-06-24 | 2006-02-09 | Avaya Technology Corp. | Sharing inking during multi-modal communication |
US8458783B2 (en) * | 2004-06-30 | 2013-06-04 | Citrix Systems, Inc. | Using application gateways to protect unauthorized transmission of confidential data via web applications |
US20060007163A1 (en) * | 2004-07-08 | 2006-01-12 | Aiptek International Inc. | Optical pen with page-scrolling function |
US7702750B2 (en) | 2004-09-29 | 2010-04-20 | Citrix Systems, Inc. | System and method for event detection and re-direction over a network using a presentation level protocol |
US8069226B2 (en) | 2004-09-30 | 2011-11-29 | Citrix Systems, Inc. | System and method for data synchronization over a network using a presentation level protocol |
US7692636B2 (en) | 2004-09-30 | 2010-04-06 | Microsoft Corporation | Systems and methods for handwriting to a screen |
CN101133418B (en) * | 2004-10-12 | 2011-06-29 | 阿诺托股份公司 | Method and a system for secure management of information from an electronic pen |
US8487879B2 (en) * | 2004-10-29 | 2013-07-16 | Microsoft Corporation | Systems and methods for interacting with a computer through handwriting to a screen |
US7584417B2 (en) * | 2004-11-15 | 2009-09-01 | Microsoft Corporation | Role-dependent action for an electronic form |
US7712022B2 (en) | 2004-11-15 | 2010-05-04 | Microsoft Corporation | Mutually exclusive options in electronic forms |
US7509353B2 (en) * | 2004-11-16 | 2009-03-24 | Microsoft Corporation | Methods and systems for exchanging and rendering forms |
US7721190B2 (en) | 2004-11-16 | 2010-05-18 | Microsoft Corporation | Methods and systems for server side form processing |
US7904801B2 (en) | 2004-12-15 | 2011-03-08 | Microsoft Corporation | Recursive sections in electronic forms |
CN100374976C (en) * | 2004-12-23 | 2008-03-12 | 国际商业机器公司 | Method to validate the identity of a user of a mobile computer and mobile computer |
US7937651B2 (en) | 2005-01-14 | 2011-05-03 | Microsoft Corporation | Structural editing operations for network forms |
US7725834B2 (en) | 2005-03-04 | 2010-05-25 | Microsoft Corporation | Designer-created aspect for an electronic form template |
US8340476B2 (en) * | 2005-03-18 | 2012-12-25 | The Invention Science Fund I, Llc | Electronic acquisition of a hand formed expression and a context of the expression |
US7672512B2 (en) | 2005-03-18 | 2010-03-02 | Searete Llc | Forms for completion with an electronic writing device |
US8823636B2 (en) | 2005-03-18 | 2014-09-02 | The Invention Science Fund I, Llc | Including environmental information in a manual expression |
US7826687B2 (en) | 2005-03-18 | 2010-11-02 | The Invention Science Fund I, Llc | Including contextual information with a formed expression |
US8232979B2 (en) | 2005-05-25 | 2012-07-31 | The Invention Science Fund I, Llc | Performing an action with respect to hand-formed expression |
US20060212430A1 (en) | 2005-03-18 | 2006-09-21 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Outputting a saved hand-formed expression |
US8290313B2 (en) | 2005-03-18 | 2012-10-16 | The Invention Science Fund I, Llc | Electronic acquisition of a hand formed expression and a context of the expression |
US7809215B2 (en) | 2006-10-11 | 2010-10-05 | The Invention Science Fund I, Llc | Contextual information encoded in a formed expression |
US8787706B2 (en) | 2005-03-18 | 2014-07-22 | The Invention Science Fund I, Llc | Acquisition of a user expression and an environment of the expression |
US8229252B2 (en) | 2005-03-18 | 2012-07-24 | The Invention Science Fund I, Llc | Electronic association of a user expression and a context of the expression |
GB2424510A (en) * | 2005-03-24 | 2006-09-27 | Nesta | Interactive blocks. |
US8010515B2 (en) | 2005-04-15 | 2011-08-30 | Microsoft Corporation | Query to an electronic form |
US8200975B2 (en) | 2005-06-29 | 2012-06-12 | Microsoft Corporation | Digital signatures for network forms |
US20070008571A1 (en) * | 2005-07-11 | 2007-01-11 | Marshall John D | System and method for multi-print mechanism printing |
US7922099B1 (en) | 2005-07-29 | 2011-04-12 | Leapfrog Enterprises, Inc. | System and method for associating content with an image bearing surface |
US20070030257A1 (en) * | 2005-08-04 | 2007-02-08 | Bhogal Kulvir S | Locking digital pen |
JP4645379B2 (en) * | 2005-09-14 | 2011-03-09 | 富士ゼロックス株式会社 | Printing apparatus, printing method, and program |
JP2007080076A (en) * | 2005-09-15 | 2007-03-29 | Fuji Xerox Co Ltd | Written content recording system and written content recording method |
US7621442B2 (en) | 2005-09-19 | 2009-11-24 | Silverbrook Research Pty Ltd | Printing a subscription using a mobile device |
US7756526B2 (en) | 2005-09-19 | 2010-07-13 | Silverbrook Research Pty Ltd | Retrieving a web page via a coded surface |
US7558597B2 (en) * | 2005-09-19 | 2009-07-07 | Silverbrook Research Pty Ltd. | Retrieving a ringtone via a coded surface |
US8078578B2 (en) * | 2005-10-14 | 2011-12-13 | Cisco Technology, Inc. | Sharing of presence-based time-zone information |
GB0521754D0 (en) * | 2005-10-25 | 2005-11-30 | Esselte | Tape printing apparatus |
US8001459B2 (en) | 2005-12-05 | 2011-08-16 | Microsoft Corporation | Enabling electronic documents for limited-capability computing devices |
JP4289350B2 (en) * | 2005-12-26 | 2009-07-01 | 富士ゼロックス株式会社 | Image processing apparatus and image processing method |
US8165899B2 (en) | 2006-01-13 | 2012-04-24 | Medrule Business Solutions, Inc. | System and method for managing form-generated data |
JP4743866B2 (en) * | 2006-02-02 | 2011-08-10 | キヤノン株式会社 | Printing instruction apparatus, printing apparatus and printing system |
US8599143B1 (en) | 2006-02-06 | 2013-12-03 | Leapfrog Enterprises, Inc. | Switch configuration for detecting writing pressure in a writing device |
US7884811B2 (en) * | 2006-05-22 | 2011-02-08 | Adapx Inc. | Durable digital writing and sketching instrument |
US8495380B2 (en) * | 2006-06-06 | 2013-07-23 | Red Hat, Inc. | Methods and systems for server-side key generation |
US7445160B2 (en) * | 2006-06-14 | 2008-11-04 | Hewlett-Packard Development Company, L.P. | Position location using error correction |
SG139559A1 (en) * | 2006-07-10 | 2008-02-29 | Sony Corp | Method and apparatus for pseudo interaction with a surface by interaction with an interacting mechanism using a wireless positioning system |
DE102006033443A1 (en) * | 2006-07-19 | 2008-01-31 | Saphirwerk Industrieprodukte Ag | Stylus with integrated RFID chip |
US8261967B1 (en) | 2006-07-19 | 2012-09-11 | Leapfrog Enterprises, Inc. | Techniques for interactively coupling electronic content with printed media |
US20080020733A1 (en) * | 2006-07-21 | 2008-01-24 | Tomas Karl-Axel Wassingbo | Mobile electronic device with motion detection authentication |
US8316324B2 (en) * | 2006-09-05 | 2012-11-20 | Navisense | Method and apparatus for touchless control of a device |
US20080138028A1 (en) * | 2006-10-13 | 2008-06-12 | Jeff Grady | Interface systems for portable digital media storage and playback devices |
US20080129766A1 (en) * | 2006-12-05 | 2008-06-05 | Adapx, Inc. | Carrier for a digital pen |
EP2098946B1 (en) * | 2006-12-25 | 2013-05-15 | Konica Minolta Holdings, Inc. | Handwriting electronic input system |
US8787672B2 (en) * | 2007-03-12 | 2014-07-22 | In-Dot Ltd. | Reader device having various functionalities |
WO2008111055A1 (en) * | 2007-03-12 | 2008-09-18 | In-Dot Ltd. | Color sensing for a reader device and the like |
US8347206B2 (en) * | 2007-03-15 | 2013-01-01 | Microsoft Corporation | Interactive image tagging |
US20080249791A1 (en) * | 2007-04-04 | 2008-10-09 | Vaidy Iyer | System and Method to Document and Communicate On-Site Activity |
WO2008141250A2 (en) * | 2007-05-09 | 2008-11-20 | Adapx, Inc. | Digital paper-enabled products and methods relating to same |
US20080301542A1 (en) * | 2007-06-01 | 2008-12-04 | Mcgee David | Digital paper-enabled spreadsheet systems |
AU2008259843A1 (en) | 2007-06-01 | 2008-12-11 | Adapx, Inc. | Digital paper-enabled spreadsheet systems |
TW200926002A (en) * | 2007-09-21 | 2009-06-16 | Silverbrook Res Pty Ltd | Coding pattern with data elements encoding by multi-pulse position modulation |
US8279039B2 (en) * | 2007-10-12 | 2012-10-02 | Sony Mobile Communications Ab | Using touches to transfer information to a device |
FR2925709B1 (en) * | 2007-12-20 | 2011-04-15 | Dav | METHOD FOR CONTROLLING A TOUCH-SURFACE CONTROL DEVICE AND CORRESPONDING CONTROL DEVICE |
US8556732B2 (en) * | 2008-02-13 | 2013-10-15 | In-Dot Ltd. | Method and an apparatus for managing games and a learning plaything |
US8591302B2 (en) * | 2008-03-11 | 2013-11-26 | In-Dot Ltd. | Systems and methods for communication |
US9286596B2 (en) * | 2008-04-01 | 2016-03-15 | Topaz Systems, Inc. | Signing ceremony system and method |
US20110027770A1 (en) * | 2008-04-09 | 2011-02-03 | In-Dot Ltd. | Reader devices and related housings and accessories and methods of using same |
US8843552B2 (en) * | 2008-04-21 | 2014-09-23 | Syngrafii Inc. | System, method and computer program for conducting transactions remotely |
US20090292546A1 (en) * | 2008-05-20 | 2009-11-26 | Aleixo Jeffrey A | Human Resources Employment Method |
US8154524B2 (en) * | 2008-06-24 | 2012-04-10 | Microsoft Corporation | Physics simulation-based interaction for surface computing |
US20100139992A1 (en) * | 2008-12-10 | 2010-06-10 | International Business Machines Corporation | User-authenticating, digital data recording pen |
US20100149096A1 (en) * | 2008-12-17 | 2010-06-17 | Migos Charles J | Network management using interaction with display surface |
US20100188332A1 (en) * | 2009-01-23 | 2010-07-29 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Thin-film transistor imager |
US8172675B2 (en) * | 2009-03-27 | 2012-05-08 | Microsoft Corporation | Personalization using a hand-pressure signature |
EP2494433A4 (en) * | 2009-10-21 | 2018-01-17 | Rightsignature, LLC | Form completion rate enhancement system and method |
US8391604B2 (en) | 2010-07-22 | 2013-03-05 | Sharp Laboratories Of America, Inc. | Camera-vision systems, used in collaboration whiteboards, for pre-formatted, reusable, annotatable, movable menus and forms |
US9852457B2 (en) | 2010-10-15 | 2017-12-26 | League Sports Services Llc | Method and system to facilitate transactions between organization registrants and merchandise suppliers |
US20130047268A1 (en) * | 2010-12-07 | 2013-02-21 | Sigza Authentication Systems | Methods for Using Biometric Authentication Methods for Securing Files and for Providing Secure Access to Such Files by Originators and/or Authorized Others |
US8884916B2 (en) * | 2010-12-09 | 2014-11-11 | Synaptics Incorporated | System and method for determining user input using polygons |
US8842916B2 (en) * | 2011-02-22 | 2014-09-23 | Hewlett-Packard Development Company, L.P. | Method and system for model-based signature profile extraction |
US20130097479A1 (en) * | 2011-08-24 | 2013-04-18 | Graphium, LLC | Electronic forms system |
US9507441B2 (en) | 2011-09-08 | 2016-11-29 | Jcm Electronic Stylus Llc | Electronic stylus with low skew tip for capacitive touch screens |
US9110523B2 (en) | 2011-09-08 | 2015-08-18 | JCM Electronics Stylus, LLC | Stylus and stylus circuitry for capacitive touch screens |
US9007302B1 (en) | 2011-11-11 | 2015-04-14 | Benjamin D. Bandt-Horn | Device and user interface for visualizing, navigating, and manipulating hierarchically structured information on host electronic devices |
US10360578B2 (en) | 2012-01-30 | 2019-07-23 | Visa International Service Association | Systems and methods to process payments based on payment deals |
US8866769B2 (en) | 2012-03-13 | 2014-10-21 | Blackberry Limited | Device cover with drawing pad input device |
US9460436B2 (en) | 2012-03-16 | 2016-10-04 | Visa International Service Association | Systems and methods to apply the benefit of offers via a transaction handler |
US9922338B2 (en) | 2012-03-23 | 2018-03-20 | Visa International Service Association | Systems and methods to apply benefit of offers |
US9864988B2 (en) | 2012-06-15 | 2018-01-09 | Visa International Service Association | Payment processing for qualified transaction items |
US9176604B2 (en) | 2012-07-27 | 2015-11-03 | Apple Inc. | Stylus device |
US20140028635A1 (en) * | 2012-07-27 | 2014-01-30 | Christoph Horst Krah | Modular stylus device |
US9626678B2 (en) | 2012-08-01 | 2017-04-18 | Visa International Service Association | Systems and methods to enhance security in transactions |
US20140040135A1 (en) * | 2012-08-03 | 2014-02-06 | Visa International Service Association | Systems and methods to digitally sign transactions |
US10438199B2 (en) | 2012-08-10 | 2019-10-08 | Visa International Service Association | Systems and methods to apply values from stored value accounts to payment transactions |
US10685367B2 (en) | 2012-11-05 | 2020-06-16 | Visa International Service Association | Systems and methods to provide offer benefits based on issuer identity |
US10354187B2 (en) | 2013-01-17 | 2019-07-16 | Hewlett Packard Enterprise Development Lp | Confidentiality of files using file vectorization and machine learning |
US20140267016A1 (en) * | 2013-03-18 | 2014-09-18 | James Michael Stavoe | Digital interface media |
US9104353B2 (en) | 2013-03-28 | 2015-08-11 | Hewlett-Packard Development Company, L.P. | Printing of confidential documents |
US9411445B2 (en) | 2013-06-27 | 2016-08-09 | Synaptics Incorporated | Input object classification |
JP5841297B1 (en) | 2013-10-25 | 2016-01-13 | 株式会社ワコム | Handwritten data output method and computer system |
US9235748B2 (en) | 2013-11-14 | 2016-01-12 | Wacom Co., Ltd. | Dynamic handwriting verification and handwriting-based user authentication |
US10032065B2 (en) | 2013-10-25 | 2018-07-24 | Wacom Co., Ltd. | Dynamic handwriting verification, handwriting-based user authentication, handwriting data generation, and handwriting data preservation |
JP2015207819A (en) * | 2014-04-17 | 2015-11-19 | 株式会社リコー | Information processing apparatus, information processing system, communication control method, and program |
US9733731B2 (en) * | 2014-05-12 | 2017-08-15 | Atmel Corporation | Timing synchronization of active stylus and touch sensor |
CN105447433B (en) | 2014-09-01 | 2020-01-31 | 阿里巴巴集团控股有限公司 | identity registration method and device |
US9830001B2 (en) * | 2015-02-03 | 2017-11-28 | Sony Mobile Communications Inc. | Method, device and system for collecting writing pattern using ban |
US9804717B2 (en) | 2015-03-11 | 2017-10-31 | Synaptics Incorporated | Input sensing and exclusion |
CN107921799B (en) * | 2015-08-18 | 2020-06-23 | 惠普发展公司,有限责任合伙企业 | Printer arrangement for use with printed materials |
CN105677629A (en) * | 2015-12-30 | 2016-06-15 | 联想(北京)有限公司 | Information processing method and electronic device |
EP3291504B1 (en) * | 2016-08-30 | 2020-03-11 | Wacom Co., Ltd. | Authentication and secure transmission of data between signature devices and host computers using transport layer security |
US10997362B2 (en) * | 2016-09-01 | 2021-05-04 | Wacom Co., Ltd. | Method and system for input areas in documents for handwriting devices |
US10031353B2 (en) | 2016-09-22 | 2018-07-24 | Hewlett Packard Enterprise Development Lp | Circuits with delay tap lines |
JP7298330B2 (en) * | 2019-06-24 | 2023-06-27 | 富士フイルムビジネスイノベーション株式会社 | Information processing device and information processing program |
US11694046B2 (en) * | 2019-07-24 | 2023-07-04 | Datalogic Usa Inc. | Microcontroller-based code reader and related method and device |
US11195172B2 (en) * | 2019-07-24 | 2021-12-07 | Capital One Services, Llc | Training a neural network model for recognizing handwritten signatures based on different cursive fonts and transformations |
US11233640B2 (en) | 2020-05-13 | 2022-01-25 | Ridgeline, Inc. | Mutation processing for events |
US11818259B2 (en) | 2020-05-13 | 2023-11-14 | Ridgeline, Inc. | Query and projection processing for events |
US11949784B2 (en) * | 2020-05-13 | 2024-04-02 | Ridgeline, Inc. | Auditing for events |
US12100231B2 (en) * | 2020-07-10 | 2024-09-24 | Fujifilm Business Innovation Corp. | Information processing apparatus and non-transitory computer readable medium storing program |
CN111882004B (en) * | 2020-09-28 | 2021-01-05 | 北京易真学思教育科技有限公司 | Model training method, question judging method, device, equipment and storage medium |
US11348617B1 (en) | 2021-03-08 | 2022-05-31 | Bank Of America Corporation | System for implementing content retrofitting using information vectorization |
US11876795B2 (en) | 2021-08-27 | 2024-01-16 | Bank Of America Corporation | Resource processing terminal device with enhanced secure resource transmissions based on image capture |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856077A (en) * | 1986-04-28 | 1989-08-08 | Eric Rothfjell | Method of signature verification and device for carrying out the method |
GB2306669A (en) * | 1995-11-01 | 1997-05-07 | Ricoh Kk | Manual entry interactive paper and electronic document handling and processing system |
US5661506A (en) * | 1994-11-10 | 1997-08-26 | Sia Technology Corporation | Pen and paper information recording system using an imaging pen |
US5852434A (en) * | 1992-04-03 | 1998-12-22 | Sekendur; Oral F. | Absolute optical position determination |
WO1999050787A1 (en) * | 1998-04-01 | 1999-10-07 | Xerox Corporation | Cross-network functions via linked hardcopy and electronic documents |
US6076734A (en) * | 1997-10-07 | 2000-06-20 | Interval Research Corporation | Methods and systems for providing human/computer interfaces |
Family Cites Families (178)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US500598A (en) * | 1893-07-04 | Crushing-machine | ||
US24193A (en) * | 1859-05-31 | Pump-gearing | ||
AUPQ055999A0 (en) * | 1999-05-25 | 1999-06-17 | Silverbrook Research Pty Ltd | A method and apparatus (npage01) |
US3279095A (en) * | 1961-10-24 | 1966-10-18 | Ncr Co | Information encoding and decoding method |
DE2306669C2 (en) | 1973-02-10 | 1975-03-06 | Nottebohm & Co, Kg, 5880 Luedenscheid | Furniture handle fitting with a foldable handle |
US3915090A (en) * | 1973-03-21 | 1975-10-28 | Armstrong Cork Co | Printed pattern and embossed pattern registration control system |
SE463896B (en) | 1983-07-01 | 1991-02-04 | Esselte Security Syst Ab | PROCEDURE AND DEVICE FOR SIGNATURE VERIFICATION |
US4819267A (en) * | 1984-02-22 | 1989-04-04 | Thumbscan, Inc. | Solid state key for controlling access to computer systems and to computer software and/or for secure communications |
GB8616470D0 (en) * | 1985-11-05 | 1986-08-13 | Hilton C | Optical scanner |
US4703511A (en) * | 1986-10-09 | 1987-10-27 | Paul Conoval | Writing input and dynamics regeneration device |
US4864618A (en) | 1986-11-26 | 1989-09-05 | Wright Technologies, L.P. | Automated transaction system with modular printhead having print authentication feature |
LU86904A1 (en) * | 1987-05-29 | 1989-01-19 | Oreal | NOVEL CHLOROMETAPHENYLENEDIAMINES, THEIR USE IN TANKS FOR KERATINOX FIBER OXIDATION COUPLERS, TINCTORIAL COMPOSITIONS FOR HAIR CONTAINING THESE COMPOUNDS AND DYEING METHOD USING THE SAME |
JPS6423383A (en) * | 1987-07-20 | 1989-01-26 | Empire Airport Service | Bar-code system |
CA1337132C (en) * | 1988-07-15 | 1995-09-26 | Robert Filepp | Reception system for an interactive computer network and method of operation |
US5174759A (en) * | 1988-08-04 | 1992-12-29 | Preston Frank S | TV animation interactively controlled by the viewer through input above a book page |
US5003598A (en) * | 1989-01-23 | 1991-03-26 | Kunstadt George H | Secure communication system |
US5252951A (en) * | 1989-04-28 | 1993-10-12 | International Business Machines Corporation | Graphical user interface with gesture recognition in a multiapplication environment |
US5051736A (en) | 1989-06-28 | 1991-09-24 | International Business Machines Corporation | Optical stylus and passive digitizing tablet data input system |
DE69028185T2 (en) * | 1989-12-15 | 1997-02-20 | Toshiba Kawasaki Kk | System for recording an image with an image of the face and with identification information |
US5333126A (en) * | 1990-01-03 | 1994-07-26 | Hitachi, Ltd. | Information recording method and optical disk apparatus using same |
US5103486A (en) * | 1990-04-19 | 1992-04-07 | Grippi Victor J | Fingerprint/signature synthesis |
US5340971A (en) * | 1990-09-17 | 1994-08-23 | Metrologic Instruments, Inc. | Automatic bar code reading system having selectable long range and short range modes of operation |
US5616908A (en) * | 1991-09-17 | 1997-04-01 | Metrologic Instruments, Inc. | Automatic countertop laser scanner with flickering laser scanner beam for improved visibility thereof during bar code symbol reading |
US5076734A (en) * | 1990-10-05 | 1991-12-31 | H & S Machine And Supply Co., Inc. | Roof bolt with paddle resin mixer and method for making the same |
US5340966A (en) * | 1990-10-23 | 1994-08-23 | Matsushita Electric Industrial Co., Ltd. | Automatic facsimile-receiving-sheet recognizing apparatus |
US5491495A (en) * | 1990-11-13 | 1996-02-13 | Wang Laboratories, Inc. | User interface having simulated devices |
US5148155A (en) * | 1990-11-13 | 1992-09-15 | Wang Laboratories, Inc. | Computer with tablet input to standard programs |
JPH04250587A (en) * | 1991-01-09 | 1992-09-07 | Seiko Epson Corp | Method and device for recognizing handwritten characters |
US5195133A (en) * | 1991-01-11 | 1993-03-16 | Ncr Corporation | Apparatus and method for producing a digitized transaction record including an encrypted signature |
US5199068A (en) * | 1991-01-22 | 1993-03-30 | Professional Achievement Systems, Inc. | Computer-based training system with student verification |
US5083814A (en) | 1991-03-27 | 1992-01-28 | Sms Group Inc. | Security method with applied invisible security code markings |
US5499107A (en) * | 1991-04-30 | 1996-03-12 | Minolta Co., Ltd. | Laser beam optical scanning system |
JPH07117868B2 (en) * | 1991-04-30 | 1995-12-18 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Method and device for defining touch-type operating keyboard |
US5120906A (en) * | 1991-05-17 | 1992-06-09 | Ncr Corporation | Handwriting capture device |
US5298919A (en) * | 1991-08-02 | 1994-03-29 | Multipoint Technology Corporation | Multi-dimensional input device |
JPH0550738A (en) | 1991-08-23 | 1993-03-02 | Dainippon Printing Co Ltd | Catalogue with transparent invisible mark and advance ordering system using the catalogue |
US5223677A (en) * | 1991-09-09 | 1993-06-29 | Ncr Corporation | Handwriting capture device with insertable form interface |
US5162720A (en) * | 1991-10-15 | 1992-11-10 | Lambert Gordon K | Vehicle electrical system |
US5294792A (en) * | 1991-12-31 | 1994-03-15 | Texas Instruments Incorporated | Writing tip position sensing and processing apparatus |
US5477012A (en) | 1992-04-03 | 1995-12-19 | Sekendur; Oral F. | Optical position determination |
KR940701567A (en) * | 1992-04-06 | 1994-05-28 | 알프레드 피. 로렌조 | Cordless electronic stylus, digitizer system and electronic organizer |
US5243149A (en) * | 1992-04-10 | 1993-09-07 | International Business Machines Corp. | Method and apparatus for improving the paper interface to computing systems |
US5903388A (en) * | 1992-06-11 | 1999-05-11 | Sedlmayr Steven R | High efficiency electromagnetic beam projector and systems and method for implementation thereof |
EP0996083B1 (en) * | 1992-09-28 | 2003-03-26 | Olympus Optical Co., Ltd. | Information reproducing system for optically reading a dot code from a recording medium |
JPH06183187A (en) | 1992-12-22 | 1994-07-05 | Dainippon Printing Co Ltd | Card and identification device |
US5453762A (en) * | 1993-01-20 | 1995-09-26 | Hitachi, Ltd. | Systems for processing information and identifying individual |
JPH06266490A (en) * | 1993-03-12 | 1994-09-22 | Toshiba Corp | Information input device and position recognition system for information input |
US6119944A (en) * | 1997-02-03 | 2000-09-19 | Symbol Technologies, Inc. | Down-loadable hand-held optical reader |
US5441309A (en) * | 1993-04-19 | 1995-08-15 | D'alessio; Sergio | Negotiable instrument |
JP3262297B2 (en) * | 1993-04-27 | 2002-03-04 | 株式会社ワコム | Optical coordinate input device |
US5465412A (en) * | 1993-05-19 | 1995-11-07 | Motorola, Inc. | Apparatus and method for determining a point in time for detecting a sampled signal in a receiver |
US5460002A (en) * | 1993-05-21 | 1995-10-24 | General Electric Company | Catalytically-and aerodynamically-assisted liner for gas turbine combustors |
JP3227906B2 (en) | 1993-05-31 | 2001-11-12 | 富士通株式会社 | Handwriting input information processing device |
US5734373A (en) * | 1993-07-16 | 1998-03-31 | Immersion Human Interface Corporation | Method and apparatus for controlling force feedback interface systems utilizing a host computer |
JP3277052B2 (en) * | 1993-11-19 | 2002-04-22 | シャープ株式会社 | Coordinate input device and coordinate input method |
JP2610114B2 (en) * | 1993-12-30 | 1997-05-14 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Pointing system, computer system and force response method |
JPH07239745A (en) * | 1994-02-28 | 1995-09-12 | Toshiba Corp | Information input device and position recognition system in information input |
US5577733A (en) * | 1994-04-08 | 1996-11-26 | Downing; Dennis L. | Targeting system |
JPH07311813A (en) * | 1994-05-17 | 1995-11-28 | Olympus Optical Co Ltd | Information reproducing device, method therefor and recording medium |
US5704029A (en) * | 1994-05-23 | 1997-12-30 | Wright Strategies, Inc. | System and method for completing an electronic form |
US5687254A (en) * | 1994-06-06 | 1997-11-11 | Xerox Corporation | Searching and Matching unrecognized handwriting |
US5781661A (en) * | 1994-06-29 | 1998-07-14 | Nippon Telegraph And Telephone Corporation | Handwritting information detecting method and apparatus detachably holding writing tool |
US5652412A (en) | 1994-07-11 | 1997-07-29 | Sia Technology Corp. | Pen and paper information recording system |
JPH0836452A (en) * | 1994-07-21 | 1996-02-06 | Oki Electric Ind Co Ltd | Writing pen and writing pen device |
GB9415627D0 (en) * | 1994-08-01 | 1994-09-21 | Marshall James | Verification apparatus |
US5534684A (en) | 1994-08-30 | 1996-07-09 | Norand Corporation | Portable optical reader with motion sensing system and method |
US5544255A (en) * | 1994-08-31 | 1996-08-06 | Peripheral Vision Limited | Method and system for the capture, storage, transport and authentication of handwritten signatures |
US5680460A (en) * | 1994-09-07 | 1997-10-21 | Mytec Technologies, Inc. | Biometric controlled key generation |
US5883144A (en) * | 1994-09-19 | 1999-03-16 | Sentinel Products Corp. | Silane-grafted materials for solid and foam applications |
US5822230A (en) * | 1994-09-22 | 1998-10-13 | Elonex Plc Ltd. | Personal digital assistant module having a broadcast pointer device |
US5600781A (en) * | 1994-09-30 | 1997-02-04 | Intel Corporation | Method and apparatus for creating a portable personalized operating environment |
US5933550A (en) * | 1994-10-27 | 1999-08-03 | Nec Corporation | Data inputting device |
JPH08139840A (en) * | 1994-11-08 | 1996-05-31 | Matsushita Graphic Commun Syst Inc | Facsimile equipment |
EP0713197A1 (en) * | 1994-11-15 | 1996-05-22 | Landis & Gyr Technology Innovation AG | Data carrier and corresponding read/write device |
JPH08154157A (en) * | 1994-11-28 | 1996-06-11 | Ricoh Co Ltd | Book source document image reader |
US5621514A (en) * | 1995-01-05 | 1997-04-15 | Hughes Electronics | Random pulse burst range-resolved doppler laser radar |
US5760773A (en) * | 1995-01-06 | 1998-06-02 | Microsoft Corporation | Methods and apparatus for interacting with data objects using action handles |
JP2817646B2 (en) * | 1995-02-01 | 1998-10-30 | 日本電気株式会社 | Document editing device |
US5578813A (en) * | 1995-03-02 | 1996-11-26 | Allen; Ross R. | Freehand image scanning device which compensates for non-linear movement |
NL9500597A (en) * | 1995-03-28 | 1996-11-01 | Scantech Bv | Method and device for decoding barcodes. |
NO300943B1 (en) * | 1995-04-03 | 1997-08-18 | Steinar Pedersen | Tools for positioning and controlling objects in two or three dimensions |
JPH08305778A (en) * | 1995-04-21 | 1996-11-22 | Xerox Corp | Method for investigation of existence mark created by user |
JP3006482B2 (en) * | 1995-05-12 | 2000-02-07 | 富士ゼロックス株式会社 | Information retrieval apparatus and method |
US5736978A (en) * | 1995-05-26 | 1998-04-07 | The United States Of America As Represented By The Secretary Of The Air Force | Tactile graphics display |
US5857029A (en) * | 1995-06-05 | 1999-01-05 | United Parcel Service Of America, Inc. | Method and apparatus for non-contact signature imaging |
US5745592A (en) * | 1995-07-27 | 1998-04-28 | Lucent Technologies Inc. | Method for detecting forgery in a traced signature by measuring an amount of jitter |
JP3261935B2 (en) * | 1995-08-02 | 2002-03-04 | 松下電器産業株式会社 | Non-destructive insulation test method and apparatus for small electric machine |
US5640002A (en) * | 1995-08-15 | 1997-06-17 | Ruppert; Jonathan Paul | Portable RF ID tag and barcode reader |
WO1997017666A2 (en) * | 1995-10-23 | 1997-05-15 | Hypermed Ltd. | Structured focused hypertext data structure |
US5917942A (en) * | 1995-12-28 | 1999-06-29 | Motorla, Inc. | Device and method for handwriting recognition with adaptive weighting of recognition data |
US6081610A (en) * | 1995-12-29 | 2000-06-27 | International Business Machines Corporation | System and method for verifying signatures on documents |
US5892824A (en) * | 1996-01-12 | 1999-04-06 | International Verifact Inc. | Signature capture/verification systems and methods |
US5991693A (en) * | 1996-02-23 | 1999-11-23 | Mindcraft Technologies, Inc. | Wireless I/O apparatus and method of computer-assisted instruction |
JP3010136B2 (en) * | 1996-03-28 | 2000-02-14 | オリンパス光学工業株式会社 | Code data output device |
EP0895691B1 (en) | 1996-04-23 | 2002-07-10 | Charney, Leon H. | Method and system for identifying documents generated by an unauthorized software copy |
AU2454397A (en) * | 1996-04-24 | 1997-11-12 | Shriners Hospital For Children | Method and apparatus for recording three-dimensional topographies |
US6043818A (en) * | 1996-04-30 | 2000-03-28 | Sony Corporation | Background image with a continuously rotating and functional 3D icon |
US5692073A (en) | 1996-05-03 | 1997-11-25 | Xerox Corporation | Formless forms and paper web using a reference-based mark extraction technique |
US6427063B1 (en) * | 1997-05-22 | 2002-07-30 | Finali Corporation | Agent based instruction system and method |
JP2895803B2 (en) * | 1996-06-27 | 1999-05-24 | 八洲電機株式会社 | Authentication devices such as signatures |
DE19625767A1 (en) * | 1996-06-27 | 1998-01-08 | Mm Lesestift Manager Memory | Reader for the optical acquisition and storage of visually marked and projected alphanumeric characters, graphics and photographic images |
JP3839877B2 (en) * | 1996-07-05 | 2006-11-01 | キヤノン株式会社 | Handwritten pattern processing apparatus and handwritten pattern processing method |
US5898156A (en) * | 1996-08-29 | 1999-04-27 | Lucent Technologies Inc. | Validation stamps for electronic signatures |
US5765176A (en) * | 1996-09-06 | 1998-06-09 | Xerox Corporation | Performing document image management tasks using an iconic image having embedded encoded information |
NO963903D0 (en) * | 1996-09-18 | 1996-09-18 | Gary A Mcconnell | Method of registering validation of a personal signature, compilation of databases for use in the method, an electronic writing device for signature registration and the use of methods and devices |
US6600823B1 (en) * | 1996-10-22 | 2003-07-29 | Unisys Corporation | Apparatus and method for enhancing check security |
JPH10145556A (en) * | 1996-11-13 | 1998-05-29 | Nec Corp | Image reader |
IL125352A (en) * | 1996-11-15 | 2005-09-25 | Toho Business Man Ct | Business management system |
JPH10293803A (en) * | 1996-11-15 | 1998-11-04 | Toho Business Kanri Center:Kk | Business management system |
US5798513A (en) * | 1996-12-03 | 1998-08-25 | Intermec Corporation | Method and apparatus for decoding unresolved profiles produced from relief formed symbols |
JPH10171758A (en) * | 1996-12-06 | 1998-06-26 | Neolex:Kk | Www file reading system using bar code |
US6430305B1 (en) * | 1996-12-20 | 2002-08-06 | Synaptics, Incorporated | Identity verification methods |
US5940187A (en) * | 1997-01-06 | 1999-08-17 | Bellsouth Corporation | Method for certifying facsimile communications over a telephone network |
DE19701685A1 (en) * | 1997-01-20 | 1998-07-23 | Dieter Dr Philipp | Machine read signature identification of cheque card |
GB9701793D0 (en) * | 1997-01-29 | 1997-03-19 | Gay Geoffrey N W | Means for inputting characters or commands into a computer |
JPH10224540A (en) * | 1997-02-05 | 1998-08-21 | Fuji Xerox Co Ltd | Digital copying machine |
US5872848A (en) * | 1997-02-18 | 1999-02-16 | Arcanvs | Method and apparatus for witnessed authentication of electronic documents |
US6401206B1 (en) * | 1997-03-06 | 2002-06-04 | Skylight Software, Inc. | Method and apparatus for binding electronic impressions made by digital identities to documents |
US6542673B1 (en) * | 1997-03-13 | 2003-04-01 | Cirrex Corp. | Identifier system and components for optical assemblies |
US5960085A (en) * | 1997-04-14 | 1999-09-28 | De La Huerga; Carlos | Security badge for automated access control and secure data gathering |
US6041274A (en) * | 1997-04-21 | 2000-03-21 | Shinko Electric Co., Ltd. | Positional deviation detecting device for a mobile body and position correcting apparatus for a working machine mounted on a mobile body |
JP3746378B2 (en) * | 1997-08-26 | 2006-02-15 | シャープ株式会社 | Electronic memo processing device, electronic memo processing method, and computer-readable recording medium recording electronic memo processing program |
DE19740587A1 (en) | 1997-09-15 | 1999-04-01 | Medidata Gmbh | Graphics tablet for data acquisition |
US6201903B1 (en) * | 1997-09-30 | 2001-03-13 | Ricoh Company, Ltd. | Method and apparatus for pen-based faxing |
US5848345A (en) * | 1997-09-30 | 1998-12-08 | Xerox Corporation | Two sided imaging of a continuous web substrate with moving fusers |
AU9692098A (en) * | 1997-10-10 | 1999-05-03 | Interval Research Corporation | Methods and systems for providing human/computer interfaces |
US6027265A (en) * | 1997-10-14 | 2000-02-22 | Powis Parker, Inc. | Printer having improved print head mechanism and method |
US6298176B2 (en) * | 1997-10-17 | 2001-10-02 | Welch Allyn Data Collection, Inc. | Symbol-controlled image data reading system |
DE19747784A1 (en) * | 1997-10-29 | 1999-05-06 | Rothe Lutz Dr Ing Habil | Object identifying using thermal signature analysis and infrared sensor system |
US6105869A (en) * | 1997-10-31 | 2000-08-22 | Microscan Systems, Incorporated | Symbol reading device including optics for uniformly illuminating symbology |
US6377249B1 (en) * | 1997-11-12 | 2002-04-23 | Excel Tech | Electronic light pen system |
US5963614A (en) * | 1997-11-26 | 1999-10-05 | General Electric Company | Filters for single slice helical image reconstruction in a computed tomography system |
WO1999034277A2 (en) | 1997-12-24 | 1999-07-08 | Interval Research Corporation | Printable interfaces and digital linkmarks |
DE19800362A1 (en) * | 1998-01-08 | 1999-07-15 | Rene Baltus | Computer mouse pad with fingerprint and signature sensors |
US6184873B1 (en) * | 1998-01-20 | 2001-02-06 | Electronics For Imaging, Inc. | Pen positioning system |
EP1717677B1 (en) * | 1998-01-26 | 2015-06-17 | Apple Inc. | Method and apparatus for integrating manual input |
US6547620B1 (en) * | 1998-03-18 | 2003-04-15 | Brother Kogyo Kabushiki Kaisha | Communication apparatus, memory medium and method |
WO1999048268A1 (en) * | 1998-03-19 | 1999-09-23 | Siemens Aktiengesellschaft | Mobile communication device |
US6330976B1 (en) * | 1998-04-01 | 2001-12-18 | Xerox Corporation | Marking medium area with encoded identifier for producing action through network |
US6307956B1 (en) * | 1998-04-07 | 2001-10-23 | Gerald R. Black | Writing implement for identity verification system |
US6757826B1 (en) * | 1998-04-14 | 2004-06-29 | Citicorp Development Center, Inc. | Digital graphic signature system |
US6084593A (en) * | 1998-05-14 | 2000-07-04 | Mitsubishi Electric Information Technology Center America, Inc. | Surface net smoothing for surface representation from binary sampled data |
US7039805B1 (en) * | 1998-05-20 | 2006-05-02 | Messing John H | Electronic signature method |
DE19836503B4 (en) | 1998-08-12 | 2007-09-20 | WHD elektronische Prüftechnik GmbH | Method for producing a security feature |
US6321349B1 (en) * | 1998-06-30 | 2001-11-20 | Compaq Computer Corporation | Method and apparatus for developing and debugging portable computers via a peripheral interface slot |
US6141010A (en) * | 1998-07-17 | 2000-10-31 | B. E. Technology, Llc | Computer interface method and apparatus with targeted advertising |
US6577299B1 (en) * | 1998-08-18 | 2003-06-10 | Digital Ink, Inc. | Electronic portable pen apparatus and method |
US6326956B1 (en) * | 1998-08-24 | 2001-12-04 | Intertactile Technologies Corporation | Circuit control devices utilizing electronic display screen light |
JP2943109B1 (en) * | 1998-08-24 | 1999-08-30 | 株式会社ミヤコシ | Random horizontal perforation processing device |
US6964374B1 (en) | 1998-10-02 | 2005-11-15 | Lucent Technologies Inc. | Retrieval and manipulation of electronically stored information via pointers embedded in the associated printed material |
RU2132569C1 (en) * | 1998-11-13 | 1999-06-27 | Богданов Владимир Николаевич | Method for identification of authenticity of object |
US6307955B1 (en) * | 1998-12-18 | 2001-10-23 | Topaz Systems, Inc. | Electronic signature management system |
US6303211B1 (en) * | 1999-01-29 | 2001-10-16 | Xerox Corporation | Tamper-evident electric paper |
US6380930B1 (en) * | 1999-03-09 | 2002-04-30 | K-Tech Devices Corporation | Laptop touchpad with integrated antenna |
US6704906B1 (en) * | 1999-03-27 | 2004-03-09 | Movaris, Inc. | Self-directed routable electronic form system and method |
US7091959B1 (en) * | 1999-03-31 | 2006-08-15 | Advanced Digital Systems, Inc. | System, computer program product, computing device, and associated methods for form identification and information manipulation |
US6614422B1 (en) * | 1999-11-04 | 2003-09-02 | Canesta, Inc. | Method and apparatus for entering data using a virtual input device |
US6192139B1 (en) * | 1999-05-11 | 2001-02-20 | Sony Corporation Of Japan | High redundancy system and method for watermarking digital image and video data |
US6522769B1 (en) * | 1999-05-19 | 2003-02-18 | Digimarc Corporation | Reconfiguring a watermark detector |
US7456820B1 (en) * | 1999-05-25 | 2008-11-25 | Silverbrook Research Pty Ltd | Hand drawing capture via interface surface |
AUPQ363299A0 (en) * | 1999-10-25 | 1999-11-18 | Silverbrook Research Pty Ltd | Paper based information inter face |
US6825945B1 (en) * | 1999-05-25 | 2004-11-30 | Silverbrook Research Pty Ltd | Method and system for delivery of a brochure |
JP4785310B2 (en) * | 1999-05-28 | 2011-10-05 | アノト アクティエボラーク | Products used to record information |
SE516522C2 (en) * | 1999-05-28 | 2002-01-22 | Anoto Ab | Position determining product for digitization of drawings or handwritten information, obtains displacement between symbol strings along symbol rows when symbol strings are repeated on symbol rows |
US6728881B1 (en) * | 1999-10-01 | 2004-04-27 | The United States Of America As Represented By The Secretary Of The Army | Fingerprint and signature identification and authorization card and pen |
SE517445C2 (en) * | 1999-10-01 | 2002-06-04 | Anoto Ab | Position determination on a surface provided with a position coding pattern |
US6836555B2 (en) * | 1999-12-23 | 2004-12-28 | Anoto Ab | Information management system with authenticity check |
US7295193B2 (en) * | 1999-12-23 | 2007-11-13 | Anoto Ab | Written command |
US6603464B1 (en) * | 2000-03-03 | 2003-08-05 | Michael Irl Rabin | Apparatus and method for record keeping and information distribution |
KR100358933B1 (en) * | 2000-03-27 | 2002-10-31 | 차근식 | Planar reference electrode |
US6686579B2 (en) * | 2000-04-22 | 2004-02-03 | International Business Machines Corporation | Digital pen using speckle tracking |
US6703570B1 (en) * | 2000-05-10 | 2004-03-09 | International Business Machines Corporation | Digital pen using ultrasonic tracking |
EP1767383A1 (en) * | 2001-01-11 | 2007-03-28 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
SE0102232L (en) * | 2001-06-25 | 2003-02-06 | Anoto Ab | Method and apparatus in a digital communication system |
WO2003107265A1 (en) * | 2002-06-18 | 2003-12-24 | Anoto Ab | Position-coding pattern |
US7134606B2 (en) * | 2003-12-24 | 2006-11-14 | Kt International, Inc. | Identifier for use with digital paper |
JP5437061B2 (en) * | 2006-05-26 | 2014-03-12 | アッヴィ・インコーポレイテッド | Inhibitors of polo-like kinase |
TWI314033B (en) * | 2007-01-23 | 2009-08-21 | Sunonwealth Electr Mach Ind Co | Mini heat dissipating module |
-
2000
- 2000-05-23 US US09/575,172 patent/US7456820B1/en not_active Expired - Fee Related
- 2000-05-23 US US09/575,170 patent/US7170499B1/en not_active Expired - Lifetime
- 2000-05-23 US US09/575,171 patent/US7106888B1/en not_active Expired - Fee Related
- 2000-05-24 JP JP2000620461A patent/JP4606595B2/en not_active Expired - Fee Related
- 2000-05-24 MX MXPA01012062A patent/MXPA01012062A/en active IP Right Grant
- 2000-05-24 SG SG200306991A patent/SG122804A1/en unknown
- 2000-05-24 CA CA2374661A patent/CA2374661C/en not_active Expired - Fee Related
- 2000-05-24 KR KR1020017014899A patent/KR100727522B1/en not_active IP Right Cessation
- 2000-05-24 IL IL14667900A patent/IL146679A0/en unknown
- 2000-05-24 WO PCT/AU2000/000576 patent/WO2000072246A1/en not_active Application Discontinuation
- 2000-05-24 CN CNB008080194A patent/CN1224890C/en not_active Expired - Fee Related
- 2000-05-24 BR BR0010851-0A patent/BR0010851A/en not_active IP Right Cessation
- 2000-05-24 KR KR1020017014953A patent/KR100727419B1/en not_active IP Right Cessation
- 2000-05-24 SG SG200306910-1A patent/SG143023A1/en unknown
- 2000-05-24 BR BR0010792-1A patent/BR0010792A/en not_active Application Discontinuation
- 2000-05-24 WO PCT/AU2000/000574 patent/WO2000072133A1/en active IP Right Grant
- 2000-05-24 SG SG200306987-9A patent/SG145534A1/en unknown
- 2000-05-24 KR KR1020017014898A patent/KR100727531B1/en not_active IP Right Cessation
- 2000-05-24 BR BR0010848-0A patent/BR0010848A/en not_active IP Right Cessation
- 2000-05-24 SG SG200306992-9A patent/SG149669A1/en unknown
- 2000-05-24 DE DE60040679T patent/DE60040679D1/en not_active Expired - Lifetime
- 2000-05-24 SG SG200306995A patent/SG121831A1/en unknown
- 2000-05-24 CN CNB008101515A patent/CN1224891C/en not_active Expired - Fee Related
- 2000-05-24 EP EP00929086A patent/EP1228420B1/en not_active Expired - Lifetime
- 2000-05-24 EP EP00929087A patent/EP1226489B1/en not_active Expired - Lifetime
- 2000-05-24 MX MXPA01012061A patent/MXPA01012061A/en active IP Right Grant
- 2000-05-24 AT AT00929086T patent/ATE412939T1/en not_active IP Right Cessation
- 2000-05-24 JP JP2000620565A patent/JP4606599B2/en not_active Expired - Fee Related
- 2000-05-24 SG SG200307301-2A patent/SG143025A1/en unknown
- 2000-05-24 EP EP00929088A patent/EP1222618A4/en not_active Withdrawn
- 2000-05-24 CA CA2374658A patent/CA2374658C/en not_active Expired - Fee Related
- 2000-05-24 CN CNB008080186A patent/CN1232928C/en not_active Expired - Fee Related
- 2000-05-24 AU AU47310/00A patent/AU4731000A/en not_active Abandoned
- 2000-05-24 JP JP2000620460A patent/JP4686030B2/en not_active Expired - Fee Related
- 2000-05-24 DE DE60040996T patent/DE60040996D1/en not_active Expired - Lifetime
- 2000-05-24 AU AU47309/00A patent/AU4730900A/en not_active Abandoned
- 2000-05-24 WO PCT/AU2000/000575 patent/WO2000072134A1/en active IP Right Grant
- 2000-05-24 IL IL14667700A patent/IL146677A0/en unknown
- 2000-05-24 AU AU47311/00A patent/AU761509B2/en not_active Ceased
- 2000-05-24 MX MXPA01012113A patent/MXPA01012113A/en active IP Right Grant
- 2000-05-24 AT AT00929087T patent/ATE416412T1/en not_active IP Right Cessation
- 2000-05-24 CA CA002371970A patent/CA2371970A1/en not_active Abandoned
- 2000-05-24 SG SG200306999A patent/SG122807A1/en unknown
- 2000-05-24 IL IL14667800A patent/IL146678A0/en active IP Right Grant
-
2001
- 2001-11-22 IL IL146678A patent/IL146678A/en not_active IP Right Cessation
- 2001-11-22 IL IL146679A patent/IL146679A/en not_active IP Right Cessation
- 2001-11-22 IL IL146677A patent/IL146677A/en not_active IP Right Cessation
-
2002
- 2002-11-12 US US10/291,713 patent/US7133557B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,716 patent/US6982701B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,547 patent/US6982703B2/en not_active Expired - Lifetime
- 2002-11-12 US US10/291,714 patent/US7139431B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,579 patent/US7015900B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,584 patent/US6839053B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,827 patent/US6947027B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,824 patent/US7010147B2/en not_active Expired - Fee Related
- 2002-11-12 US US10/291,538 patent/US7227527B2/en not_active Expired - Lifetime
-
2003
- 2003-01-30 HK HK03100763.2A patent/HK1048683A1/en unknown
- 2003-02-07 HK HK03100895.3A patent/HK1048858A1/en unknown
-
2004
- 2004-09-15 US US10/940,668 patent/US7123245B2/en not_active Expired - Lifetime
- 2004-12-27 US US11/020,160 patent/US6992662B2/en not_active Expired - Fee Related
-
2005
- 2005-03-09 US US11/074,777 patent/US7382354B2/en not_active Expired - Lifetime
- 2005-03-10 US US11/075,917 patent/US7715035B2/en not_active Expired - Fee Related
- 2005-04-11 US US11/102,698 patent/US7221781B2/en not_active Expired - Fee Related
- 2005-04-11 US US11/102,843 patent/US20050175222A1/en not_active Abandoned
- 2005-07-25 US US11/188,016 patent/US7362314B2/en not_active Expired - Fee Related
- 2005-07-25 US US11/188,015 patent/US7180507B2/en not_active Expired - Fee Related
- 2005-08-12 US US11/202,112 patent/US7263225B2/en not_active Expired - Fee Related
-
2007
- 2007-05-24 US US11/753,570 patent/US7751090B2/en not_active Expired - Fee Related
- 2007-07-24 US US11/782,596 patent/US7864162B2/en not_active Expired - Fee Related
-
2008
- 2008-02-25 US US12/036,904 patent/US7864166B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/049,376 patent/US8009149B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,067 patent/US7893930B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/049,377 patent/US7986311B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,014 patent/US7961175B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,080 patent/US7973775B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/049,379 patent/US7986312B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,101 patent/US8009151B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/049,987 patent/US8009150B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,005 patent/US7982722B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,054 patent/US7973774B2/en not_active Expired - Fee Related
- 2008-03-17 US US12/050,025 patent/US7515144B2/en not_active Expired - Fee Related
- 2008-03-24 US US12/054,194 patent/US7973776B2/en not_active Expired - Fee Related
- 2008-04-20 US US12/106,326 patent/US7589716B2/en not_active Expired - Fee Related
- 2008-05-16 US US12/121,787 patent/US7570384B2/en not_active Expired - Fee Related
-
2009
- 2009-04-05 US US12/418,608 patent/US8018443B2/en not_active Expired - Fee Related
- 2009-07-10 US US12/500,599 patent/US7973961B2/en not_active Expired - Fee Related
- 2009-08-17 US US12/542,661 patent/US20090303500A1/en not_active Abandoned
-
2010
- 2010-05-04 US US12/773,728 patent/US8068250B2/en not_active Expired - Fee Related
- 2010-07-01 US US12/829,297 patent/US8004722B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856077A (en) * | 1986-04-28 | 1989-08-08 | Eric Rothfjell | Method of signature verification and device for carrying out the method |
US5852434A (en) * | 1992-04-03 | 1998-12-22 | Sekendur; Oral F. | Absolute optical position determination |
US5661506A (en) * | 1994-11-10 | 1997-08-26 | Sia Technology Corporation | Pen and paper information recording system using an imaging pen |
GB2306669A (en) * | 1995-11-01 | 1997-05-07 | Ricoh Kk | Manual entry interactive paper and electronic document handling and processing system |
US6076734A (en) * | 1997-10-07 | 2000-06-20 | Interval Research Corporation | Methods and systems for providing human/computer interfaces |
WO1999050787A1 (en) * | 1998-04-01 | 1999-10-07 | Xerox Corporation | Cross-network functions via linked hardcopy and electronic documents |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8794522B2 (en) | 2001-05-15 | 2014-08-05 | Hand Held Products, Inc. | Image capture apparatus and method |
US8292180B2 (en) | 2001-07-13 | 2012-10-23 | Hand Held Products, Inc. | Optical reader having an imager |
US8789758B2 (en) | 2003-05-12 | 2014-07-29 | Hand Held Products, Inc. | Picture taking reading apparatus |
US8636224B2 (en) | 2004-10-05 | 2014-01-28 | Hand Held Products, Inc. | System and method to automatically discriminate between different data types |
US9317763B2 (en) | 2004-10-05 | 2016-04-19 | Hand Held Products, Inc. | System and method to automatically discriminate between different data types |
US8416463B2 (en) | 2007-03-23 | 2013-04-09 | Anoto Ab | Printing of a position-coding pattern |
WO2014175879A1 (en) * | 2013-04-24 | 2014-10-30 | Hewlett-Packard Development Company, L.P. | Displacement signatures |
EP2989582A1 (en) * | 2013-04-24 | 2016-03-02 | Hewlett-Packard Development Company, L.P. | Displacement signatures |
EP2989582A4 (en) * | 2013-04-24 | 2017-04-05 | Hewlett-Packard Enterprise Development LP | Displacement signatures |
US11301583B2 (en) * | 2019-10-09 | 2022-04-12 | Mastercard International Incorporated | Method and system for protection of customer PII via cryptographic tokens |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2374658C (en) | Hand-drawing capture via interface surface | |
WO2000072137A1 (en) | Method and system for distributing documents | |
EP1230588A1 (en) | Computer system control via interface surface | |
EP1212714A1 (en) | Method and system for user registration on terminal | |
WO2001003014A9 (en) | Method and system for copyright fee management | |
EP1228418A1 (en) | Computer system interface surface with reference points |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00808018.6 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2000 620565 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2371970 Country of ref document: CA Ref document number: 2371970 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017014899 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/012062 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000929088 Country of ref document: EP Ref document number: 47311/00 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017014899 Country of ref document: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 2000929088 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 47311/00 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020017014899 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000929088 Country of ref document: EP |