明糸田: Akitoda:
S i Cウェハ、 S i C半導体デバイス、 および、 S i Cウェハの製造方法 技術分野 S i C wafer, S i C semiconductor device, and method for manufacturing S i C wafer
本発明は、 半導体電子部品に適した S i Cウェハ、 これを備えた S i C半導体 デバイス、 および S i Cウェハの製造方法に関するものである。 背景技術 The present invention relates to a SiC wafer suitable for semiconductor electronic components, a SiC semiconductor device provided with the SiC wafer, and a method for manufacturing a SiC wafer. Background art
近年、 炭化珪素 (S i C ) あるいは窒化ガリウム (G a N) 等の軽元素で構成 される化合物半導体の研究が盛んである。 かかる化合物半導体は、 軽元素で構成 されているため結合エネルギーが強く、 その結果、 エネルギーの禁制帯幅 (バン ドギャップ)、 絶縁破壊電界、 熱伝導度が大きいことが特徴である。そして、 この ワイドバンドギャップの特徴を活かして、 高効率 '高耐圧パワーデバイス、 高周 波パワーデバイス、 高温動作デバイス、 あるいは青色から紫外発光デバイス用の 材料として注目を集めている。 しかしながら、 結合エネルギーが強いため、 これ らの化合物は、 大気圧では高温にしても融解せず、 シリコン (S i ) など他の半 導体で用いられる融液の再結晶化によるノ ルク結晶の育成が困難である。 In recent years, compound semiconductors composed of light elements such as silicon carbide (SiC) or gallium nitride (GaN) have been actively studied. Since such compound semiconductors are composed of light elements, they have a high binding energy, and as a result, are characterized by a large energy forbidden band (band gap), a high breakdown electric field, and a high thermal conductivity. Utilizing the characteristics of this wide bandgap, it has attracted attention as a material for high-efficiency, high-withstand-voltage power devices, high-frequency power devices, high-temperature operating devices, or blue to ultraviolet light-emitting devices. However, due to the strong binding energy, these compounds do not melt even at high temperatures at atmospheric pressure, and grow Nork crystals by recrystallization of the melt used in other semiconductors such as silicon (Si). Is difficult.
例えば S i Cを半導体材料として使用するためには、 ある程度の大きさを有す る高品質な単結晶を得る必要がある。 このため従来は、 アチソン法と呼ばれる化 学反応を利用する方法、 レーリー法と呼ばれる昇華再結晶法を利用する方法によ り S i C単結晶の小片を得ていた。 最近は、 これらの方法によって作製された炭 化珪素の単結晶を基板として用い、 この上に昇華再結晶化させる改良レーリー法 によって S i Cインゴットを育成し、 この S i Cインゴットをスライス、 鏡面研 磨した S i C基板が製造されるようになった。 そして、 その基板上に気相ェピ夕 キシャル成長法または液相ェピタキシャル成長法によって目的規模の S i C単結
晶を成長させることにより、 不純物密度と膜厚を制御した活性層が形成され、 こ れを用いて P n接合ダイオード、 ショヅトキ一ダイオードや各種のトランジスタ などの S i C半導体デバイスが作製されていた。 For example, in order to use SiC as a semiconductor material, it is necessary to obtain a high-quality single crystal having a certain size. For this reason, small pieces of SiC single crystal have conventionally been obtained by a method using a chemical reaction called the Acheson method or a method using a sublimation recrystallization method called the Rayleigh method. Recently, a silicon carbide single crystal produced by these methods was used as a substrate, and a SiC ingot was grown thereon by an improved Rayleigh method of sublimation and recrystallization, and the SiC ingot was sliced and mirror-polished. Polished SiC substrates are now being manufactured. Then, single-SiC of the target scale is deposited on the substrate by vapor-phase epitaxy or liquid-phase epitaxy. By growing crystals, an active layer with controlled impurity density and film thickness was formed, and this was used to fabricate SiC semiconductor devices such as Pn junction diodes, Schottky diodes, and various transistors. .
しかしながら、 上記方法の内、 アチソン法は珪石とコークスの混合物を電気炉 で熱し、 自然発生的な核形成によって結晶を析出させるので、 不純物が多く、 得 られる結晶の形および結晶面の制御が困難である。 また、 レーリー法では自然核 発生的な核形成によつて結晶が成長するので、 結晶の形および結晶面の制御が困 難である。 改良レーリー法では例えば特公昭第 5 9 - 4 8 7 9 2号公報記載の発 明では、単一の結晶多形で成る大型の S i Cィンゴヅ卜が得られている。しかし、 かかるインゴットには、 マイクロパイプという大型の欠陥 (く 0 0 0 1 >軸方向 に貫通する小孔)が通常 1〜5 0 c m— 2程度の密度で含まれている。 また、 c軸 方向にバーガースべクトルを持つらせん転位が 1 0 3〜1 0 4 c m一2程度存在す る。 However, of the above methods, the Acheson method heats a mixture of silica and coke in an electric furnace and precipitates crystals by spontaneous nucleation, so that there are many impurities, and it is difficult to control the shape and crystal plane of the obtained crystal. It is. In the Rayleigh method, the crystal grows by spontaneous nucleation, and it is difficult to control the shape and plane of the crystal. In the improved Rayleigh method, for example, in the invention described in Japanese Patent Publication No. 59-48772, a large SiC ingot consisting of a single crystal polymorph is obtained. However, such ingots generally contain large defects called micropipes (<0.001> small holes penetrating in the axial direction), usually at a density of about 1 to 50 cm- 2 . Furthermore, a screw dislocation with A vector Burgers in the c-axis direction that exists about 1 0 3 ~1 0 4 cm one 2.
通常は、 S i C { 0 0 0 1 } 面、 あるいはこの面から 3〜8度のオフ角度を設 けた基板がェピタキシャル成長に使われる。 この時、 基板に存在するマイクロパ イブ欠陥やらせん転位の大半が S i Cェピタキシャル成長層に貫通すること、 お よびェピタキシャル成長層を用いて作製した S i Cデバイスがマイクロパイプ欠 陥を含むとデバイス特性が著しく悪化することが知られている。 したがって、 マ イク口パイプ欠陥は大容量 (大電流、 高耐圧) S i C半導体デバイスを高い歩留 まりで製造するときの最大の障壁となっている。また、通常用いられる S i C { 0 0 0 1 } 面、 あるいはこの面から数度のオフ角度を有する S i C基板を用いて S i Cのホモェピタキシャル成長を行うと、 結晶表面における原子ステップの集合 合体 (ステップバンチング) 現象が起こり易い。 このステップバンチングの度合 いが大きくなると S i Cェピタキシャル成長層の表面粗さが増大し、 金属一酸化 膜—半導体 (M O S ) 界面の平坦性が悪化するので、 M O S型電界効果トランジ ス夕(M O S F E T )の反転層チャネル移動度が低下する。 また、 p n接合、 ショ
ットキ一障壁界面の平坦性が悪化して接合界面における電界集中が発生し、 耐圧 の低下、 漏れ電流の増大などの問題を引き起こす。 Usually, the SiC {00001} plane or a substrate with an off angle of 3 to 8 degrees from this plane is used for epitaxy growth. At this time, most of the micropipe defects and screw dislocations existing on the substrate penetrate into the SiC epitaxial growth layer, and the SiC device fabricated using the epitaxial growth layer contains micropipe defects. It is known that device characteristics are significantly deteriorated. Therefore, the mouth opening defect is the biggest barrier to the production of high capacity (high current, high breakdown voltage) SiC semiconductor devices at high yield. In addition, when SiC homoepitaxial growth is performed using a normally used SiC {00001} plane or a SiC substrate having an off angle of several degrees from this plane, the atomic Aggregation of steps (step bunching) Phenomena are likely to occur. If the degree of this step bunching increases, the surface roughness of the SiC epitaxial growth layer increases, and the flatness of the metal monoxide-semiconductor (MOS) interface deteriorates. The channel mobility of the inversion layer of the MOSFET) decreases. Also, pn junction, The flatness of the interface between the barriers is deteriorated and electric field concentration occurs at the junction interface, causing problems such as a decrease in breakdown voltage and an increase in leakage current.
S i Cには多数の結晶多形が存在するが、 この中で 4H型ポリタイプ (4H- S i C) が高い移動度を有し、 ドナーゃァクセプ夕のイオン化エネルギーも小さ いことから、 S i C半導体デバイス作製に最適な S i Cポリタイプであると考え られている。 しかしながら、 4H— S i C {0001} 面、 あるいはこの面から 3〜 8度のオフ角度を設けた基板上のェピタキシャル成長層を用いて MO S FE Tを作製すると、 チャネル移動度が 1~10
程度と非常に小さく、 高性能トランジスタを実現できない。 There are many crystalline polymorphs in S i C. Among them, the 4H-polytype (4H-S i C) has high mobility, and the ionization energy of the donor is small. It is considered to be the most suitable SiC polytype for SiC semiconductor device fabrication. However, when MO SFETs are fabricated using the 4H—SiC {0001} plane or an epitaxially grown layer on a substrate with an off angle of 3 to 8 degrees from this plane, the channel mobility becomes 1 to Ten Very small and cannot realize high-performance transistors.
これらの問題を解決するために、特許公報第 2804860号では S i Cの(0 In order to solve these problems, Japanese Patent Publication No. 2804860 discloses that the SiC (0
001) 面以外の面、 例えば ( 1— 100) 面等を持った種結晶を用いて改良レ 一リー法による成長を行うことで、 マイクロパイプ数の少ない S i Cインゴヅト を得ている。 しかしながら、 S i C ( 1— 100) 面上にェピタキシャル成長を 行うと、 成長時に積層欠陥が発生しやすく、 半導体デバイス作製に十分な高品質 S i C単結晶を得るのが困難である。 By using a seed crystal having a plane other than the (001) plane, for example, a (1-100) plane, and growing by the improved Rayleigh method, a SiC ingot with a small number of micropipes has been obtained. However, when epitaxial growth is performed on the SiC (1-100) plane, stacking faults are likely to occur during the growth, and it is difficult to obtain a high-quality SiC single crystal sufficient for semiconductor device fabrication.
また、 近年、 S i C ( 1— 100)基板の他に、 6 H型ポリタイプの S i C ( 1 1 -20) 基板を用いて S i Cウェハを作製する研究もなされている。 そして、 かかる 6 H型ポリタイプの S i C ( 1 1-20) 基板を用いれば、 <0001 > 軸方向に伸びるマイクロパイプやらせん転位は基板上のェピ夕キシャル層に到達 しないため、 当該ェピタキシャル層内のマイクロパイプ欠陥を低減することがで ぎる。 発明の開示 In recent years, researches have been made to fabricate SiC wafers using 6H-type polytype SiC (11-20) substrates in addition to SiC (1-100) substrates. If such a 6H-polytype SiC (1 1-20) substrate is used, micropipes and screw dislocations extending in the <0001> axial direction do not reach the epitaxial layer on the substrate. Micropipe defects in the epitaxial layer can be reduced. Disclosure of the invention
しかし、 上記 6 Η型ポリタイプの S i C (1 1-20) 基板を用いた S i Cゥ ェハには、 次のような問題があった。 すなわち、 従来の S i C (1 1— 20) 基 板上に S i Cェピタキシャル層を成長させると、 S i Cェピタキシャル成長と S
i C基板との界面に格子不整合による歪みが発生してしまう。 そして、 この歪み はェピタキシャル成長層の結晶性に悪影響を与え、 高品質の S i Cェピタキシャ ル成長層を作製することが困難になる。 However, the SiC wafer using the 6 6 polytype SiC (11-20) substrate has the following problems. In other words, when a SiC epitaxial layer is grown on a conventional SiC (11-20) substrate, SiC epitaxial growth and Distortion occurs at the interface with the i C substrate due to lattice mismatch. This distortion adversely affects the crystallinity of the epitaxial growth layer, making it difficult to produce a high-quality epitaxial silicon growth layer.
また、 6 型ポリ夕ィプの6 —3 ;1〇 ( 1 1 -20) 基板を用いてデバイス を作製すると、 電子移動度の異方性が問題となる。 詳しくは、 6H— S i C結晶 中ではく 0001 >軸方向の電子移動度が < 1一 100>、 < 1 1ー20 >方向 の移動度の 20〜30%程度と小さいために、 6 H- S i C ( l l— 20)面上の 成長層では、 面内の電気伝導に 3〜 5倍の異方性が生じてしまう。 Also, when a device is fabricated using a 6-3 type 1-6 (11-20) substrate of a 6-inch polytype, anisotropy of electron mobility becomes a problem. In detail, the 6H-SiC crystal has a small electron mobility in the <0001> axial direction, <11-100>, and about 20-30% of the mobility in the <11-20> direction. -In the growth layer on the SiC (ll-20) plane, the in-plane electric conduction has 3 to 5 times anisotropy.
本発明は、 かかる事情に鑑みてなされたものでり、 半導体デバイスとして使用 した場合に電子移動度の異方性が小さく、 かつ、 S i C基板と S i Cェピ夕キシ ャル成長層との格子不整合による歪みを緩和できる S i Cウェハ、 これを備えた 半導体デバイス、 および S i Cウェハの製造方法を提供することを目的とする。 上記目的を達成するために、 本発明の S i Cウェハは、 面方位がほぼ (1 1— 20) であり、 4 H型ポリタイプまたは 15 R型ポリタイプの S i C基板と、 S i C基板上に形成された S i Cからなるバッファ層と、 を備えることを特徴とす る。 The present invention has been made in view of such circumstances, and when used as a semiconductor device, has low anisotropy of electron mobility, and has an SiC substrate and a SiC epitaxial growth layer. It is an object of the present invention to provide a SiC wafer capable of alleviating distortion due to lattice mismatch with a semiconductor device, a semiconductor device having the SiC wafer, and a method for manufacturing a SiC wafer. In order to achieve the above object, the SiC wafer of the present invention has a plane orientation of approximately (11-20), a 4H-type or 15R-type SiC substrate, and a SiC substrate. And a buffer layer made of SiC formed on a C substrate.
本発明に係る S i Cウェハによれば、 面方位がほぼ (1 1一 20) の S i C基 板を用いるため、 本発明の S i Cウェハ上に S i Cの活性層をェピタキシャル成 長させても、 S i C基板の <0001 >軸方向に伸びるマイクロパイプやらせん 転位は活性層には到達しない。 また、 6H型ポリタイプの S i C基板と比較して 電子移動度の異方性が小さい 4 H型ポリタイプまたは 15 R型ポリ夕ィプの基板 を用いるため、 S i Cウェハ上に成長させた活性層における電子移動度の異方性 が低減される。 さらに、 S i C基板上に S i Cからなるバッファ層が形成されて いるため、 本発明の S i Cウェハ上に S i C活性層を成長させた場合に、 S i C 基板と S i C活性層との格子不整合による歪みが当該 S i C活性層に発生する事 態を防止することができる。
また、 ノ ッファ層は、 厚さが 0. 3 zm以上 15〃m以下であることが好まし い。 本発明者らの鋭意研究により、 本発明のバッファ層上に S i C活性層を成長 させ、 さらに当該バッファ層の厚さを 0. 3〃m以上にした場合に、 格子不整合 に基づく歪みを効果的に低減でき、 S i C活性層の結晶性を良好にすることが見 出された。 また、 バッファ層を 15〃m以下にすれば、 成長時間およびコス トの 低減を図ることができる。 According to the SiC wafer according to the present invention, since the SiC substrate whose plane orientation is substantially (111-20) is used, the active layer of the SiC is epitaxially formed on the SiC wafer of the present invention. Even when grown, micropipes and screw dislocations extending in the <0001> axis direction of the SiC substrate do not reach the active layer. In addition, since a 4H-type or 15R-type polysubstrate, which has a smaller anisotropy of electron mobility than a 6H-type SiC substrate, is used, it grows on a SiC wafer. The anisotropy of the electron mobility in the activated layer is reduced. Furthermore, since the buffer layer made of SiC is formed on the SiC substrate, when the SiC active layer is grown on the SiC wafer of the present invention, the SiC substrate and the SiC substrate are formed. It is possible to prevent a situation in which distortion due to lattice mismatch with the C active layer is generated in the SiC active layer. The thickness of the buffer layer is preferably not less than 0.3 zm and not more than 15 μm. According to the inventor's intensive research, when a SiC active layer is grown on the buffer layer of the present invention and the thickness of the buffer layer is set to 0.3 μm or more, distortion based on lattice mismatch is caused. Was found to be able to be effectively reduced, and the crystallinity of the SiC active layer was improved. If the buffer layer is made 15 μm or less, the growth time and cost can be reduced.
さらに、 バッファ層は、 窒素、 リン、 アルミニウム、 またはボロンのうちの少 なくとも 1つを不純物として含み、 バッファ層における不純物の密度は、 2 x 1 015cm一3以上 3 x 1019cm— 3以下であることが好ましい。 バッファ層に含 まれる不純物密度をこのような範囲にするのは、 不純物密度が 2 X 101 5 cm一 3未満のときは格子不整合に基づく歪み緩和の効果が薄れ、 3 X 1019 cm— 3よ りも大きいときは、 高濃度ドーピングによりバッファ層自体の結晶性が劣化する ためである。 Furthermore, the buffer layer, nitrogen, including phosphorus, aluminum, or one even without less of boron as an impurity, the density of impurities in the buffer layer, 2 x 1 0 15 cm one 3 or more 3 x 10 19 cm- It is preferably 3 or less. To the free Murrell impurity density in this range is the buffer layer, diminished the effect of strain relaxation based on the lattice mismatching when the impurity concentration is less than 2 X 10 1 5 cm one 3, 3 X 10 19 cm If the value is larger than —3 , the high concentration doping degrades the crystallinity of the buffer layer itself.
また、 バッファ層における上記不純物の密度は、 S i C基板中の不純物の密度 よりも低いことが好ましい。 バッファ層の不純物密度をこのようにすることで、 S i Cウェハ上に S i C活性層を形成した場合に、 S i Cウェハ、 バッファ層、 S i C活性層の順に不純物密度を徐々に少なくすることができる。 Further, it is preferable that the density of the impurity in the buffer layer is lower than the density of the impurity in the SiC substrate. By setting the impurity density of the buffer layer in this way, when the SoC active layer is formed on the SoC wafer, the impurity density is gradually increased in the order of the SoC wafer, the buffer layer, and the SoC active layer. Can be reduced.
また、 本発明の S i Cウェハは、 バッファ層上に、 S i Cからなる活性層をさ らに備えることを特徴とする。 さらに、 この場合に、 バッファ層における不純物 の密度を S i C基板との界面から S i C活性層との界面に向けて減少させること が好ましい。 Further, the SiC wafer of the present invention is characterized in that an active layer made of SiC is further provided on the buffer layer. Further, in this case, it is preferable to decrease the density of impurities in the buffer layer from the interface with the SiC substrate to the interface with the SiC active layer.
本発明の S i C半導体デバイスは、 上述の S i Cウェハを備えることを特徴と する。 上述のように S i Cウェハは、 電子移動度の異方性が小さく且つ S i C基 板と S i C活性層との格子不整合による歪みが殆ど発生しないため、 かかる半導 体デバイスは高品質なものとなる。 A SiC semiconductor device according to the present invention includes the above-described SiC wafer. As described above, the SiC wafer has a small anisotropy of electron mobility and hardly generates distortion due to lattice mismatch between the SiC substrate and the SiC active layer. It will be of high quality.
本発明の S i C半導体デバイスは、 表面に S i C活性層と金属層とによるショ
ットキ一障壁や、 ェピタキシャル成長またはイオン注入によって形成された pn 接合を有してもよい。 さらに、 熱酸化または化学気相堆積法で形成された酸化膜 をゲート絶縁膜として有したり、 熱酸化または化学気相堆積法で形成された酸化 膜を表面保護膜の一部として有してもよい。 The SiC semiconductor device of the present invention has a surface formed by a SiC active layer and a metal layer. It may have a barrier, or a pn junction formed by epitaxial growth or ion implantation. In addition, an oxide film formed by thermal oxidation or chemical vapor deposition is used as a gate insulating film, or an oxide film formed by thermal oxidation or chemical vapor deposition is used as a part of the surface protection film. Is also good.
本発明の S i Cウェハの製造方法は、 面方位がほぼ ( 1 1— 20) であると共 に 4 H型ポリ夕ィプまたは 1 5 R型ポリタイプの S i C基板上に、 S i Cからな るバッファ層を成長させることを特徴とする。 また、 バッファ層上に、 S i Cか らなる活性層をさらに成長させてもよい。 図面の簡単な説明 According to the method for manufacturing a SiC wafer of the present invention, the plane orientation is almost (11-20) and the SiC substrate of the 4H-type or 15R-type polytype is formed on the SiC substrate. It is characterized by growing a buffer layer made of iC. Further, an active layer made of SiC may be further grown on the buffer layer. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の S i Cウェハを示す図である。 FIG. 1 is a diagram showing a SiC wafer of the present invention.
図 2は、 S i C基板中のマイクロパイプおよびらせん転位を示す図である。 図 3 A〜図 3 Cは、 異なる S i C基板上に成長させた S i C活性層の表面状態 を示す図である。 FIG. 2 is a diagram showing micropipes and screw dislocations in a SiC substrate. FIGS. 3A to 3C are diagrams showing the surface states of the SiC active layers grown on different SiC substrates.
図 4は、 バッファ層の膜厚と X線ロッキングカーブの FWHMの関係を示すグ ラフである。 Figure 4 is a graph showing the relationship between the thickness of the buffer layer and the FWHM of the X-ray rocking curve.
図 5 A〜図 5 Dは、 不純物密度が異なるバッファ層を備えた S i Cウェハを示 す図である。 FIG. 5A to FIG. 5D are views showing SoC wafers provided with buffer layers having different impurity densities.
図 6は、 15R— S i C ( l l— 20) 基板上に形成した S i C活性層の X線 ロッキング力一ブを示すグラフである。 FIG. 6 is a graph showing the X-ray rocking force of a SiC active layer formed on a 15R-SiC (ll-20) substrate.
図 7は、 本発明の S i Cショットキ一ダイォードを示す図である。 FIG. 7 is a diagram showing a SiC Schottky diode of the present invention.
図 8は、 4H— S i C ( 1 1—20) 基板上に成長させた S i C活性層を用い て作製したショットキ一ダイオードの電流—電圧特性を示す図である。 FIG. 8 is a diagram showing current-voltage characteristics of a Schottky diode manufactured using an S i C active layer grown on a 4H—S i C (11-20) substrate.
図 9は、 4H— S i Cショットキ一ダイオードの電極面積と耐圧との関係を示 すグラフである。 FIG. 9 is a graph showing the relationship between the electrode area and the breakdown voltage of the 4H—SiC Schottky diode.
図 10は、 本発明の MOSFET (S i C半導体デバイス) を示す図である。
図 11は、 4H— S iC (11-20)基板上に成長させた S i C活性層を用 いて作製した M〇 S F E Tの電流—電圧特性を示す図である。 FIG. 10 is a diagram showing a MOSFET (SiC semiconductor device) of the present invention. FIG. 11 is a diagram showing current-voltage characteristics of an M〇SFET manufactured using an SiC active layer grown on a 4H—SiC (11-20) substrate.
図 12は、 複数の S i C基板を用いて作製した MO SFETのチャネル移動度 を示す表である。 発明を実施するための最良の形態 FIG. 12 is a table showing channel mobility of a MOS FET manufactured using a plurality of SiC substrates. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る S i Cウェハ、 S i C半導体デバイ ス、 および S i Cウェハの製造方法の好適な実施形態について詳細に説明する。 尚、 同一要素には同一符号を用いるものとし、 重複する説明は省略する。 また、 実施形態および実施例の説明で結晶の格子方向および格子面を使用する場合があ るが、 ここで、 格子方向及び格子面の記号の説明をしておく。 個別方位は [ :]、 集合方位は < >、 個別面は ( )、 集合面は { } でそれそれ示すことにする。 ま た、 負の指数については、 結晶学上、" 一" (バー) を数字の上に付けることにな つているが、 明細書作成の都合上、 数字の前に負号を付けることにする。 Hereinafter, preferred embodiments of a SiC wafer, a SiC semiconductor device, and a method for manufacturing a SiC wafer according to the present invention will be described in detail with reference to the accompanying drawings. In addition, the same reference numerals are used for the same elements, and duplicate description will be omitted. Further, in the description of the embodiments and examples, the lattice direction and the lattice plane of the crystal may be used. Here, the symbols of the lattice direction and the lattice plane will be described. The individual direction is [:], the collective direction is <>, the individual plane is (), and the collective plane is {}. For negative indices, "one" (bar) is attached to the number in crystallography, but a negative sign is added before the number for the convenience of preparing the specification. .
図 1は、 本実施形態の S i Cウェハ 1の側面図である。 S i Cウェハ 1は、 4 H型ポリタイプ ("H"は六方晶系、 "4"は原子積層が 4層で一周期となる結晶 構造を意味する) の 4H— SiC (11— 20)基板 2と、 当該 SiC (11- 20)基板 2上に形成された S i Cからなるバッファ層 4と、 当該バッファ層 4 上に形成されたデバイス作製用の S i Cからなる活性層 6と、 を有している。 な お、 4H— S iC (l l— 20)基板 2の面方位は、 (11— 20)から多少傾け たものとしてもよい。 また、 各層 2〜6は、 全て n型である。 FIG. 1 is a side view of the SiC wafer 1 of the present embodiment. The SiC wafer 1 is a 4H polytype (“H” is a hexagonal system, “4” is a crystal structure with four atomic layers and one period), 4H—SiC (11-20) A substrate 2, a buffer layer 4 made of SiC formed on the SiC (11-20) substrate 2, and an active layer 6 made of SiC for device fabrication formed on the buffer layer 4. , have. The plane orientation of the 4H—SiC (ll-20) substrate 2 may be slightly inclined from (11-20). Each of the layers 2 to 6 is all n-type.
次に、 本実施形態の SiCウェハ 1の製造方法を説明する。 4H—SiC (1 1-20)基板 2は、 例えば 4H— S i C (000— 1)面上に改良レーリー法 によって成長したインゴットを成長方向に平行にスライスし、 鏡面研磨すること によって作製する。 このとき、 4H_S iC (l l— 20)基板 2の厚さは、 約 150 /m〜約 400〃mの範囲にすることが好ましい。 また、 実効ドナー密度
は、 約 5 x 1017 cm— 3〜約 5 x 1019 c m_3の範囲にすることが好ましい。 次いで、 4H— S i C ( l l— 20) 基板 2を鏡面仕上げして、 その後、 膜厚 や不純物ドーピングの制御性、 成長層の表面平坦性に優れた化学気相堆積( CV D )法によりバッファ層 4および活性層 6をェピタキシャル成長させる。具体的に は、 まず、 4H— S i C ( 1 1—20) 基板 2を有機溶媒、 王水、 フヅ酸などで 洗浄した後、 脱イオン水でリンスして S i C膜で被覆されたグラフアイ ト製サセ プ夕に設置し、 CVD成長装置にセッ トする。 CVD成長には水素 (H2) をキ ャリャガスとする常圧の横形 CVD装置を用い、 サセプ夕の加熱は高周波誘導加 熱により行う。 4H— S i C ( 1 1— 20) 基板 2を反応炉内に設置した後、 ガ ス置換と高真空排気を数回繰り返し、 H2キヤリャガスを導入して CVD成長プ ログラムに入る。 Next, a method for manufacturing the SiC wafer 1 of the present embodiment will be described. The 4H—SiC (1 1-20) substrate 2 is fabricated by, for example, slicing an ingot grown on the 4H—SiC (000-1) plane by the modified Rayleigh method in parallel to the growth direction and mirror-polishing. . At this time, it is preferable that the thickness of the 4H_SiC (ll-20) substrate 2 be in a range of about 150 / m to about 400 μm. Also, the effective donor density Is preferably in the range of about 5 x 10 17 cm- 3 ~ about 5 x 10 19 c m_ 3. Next, the 4H—SiC (ll—20) substrate 2 is mirror-finished, and thereafter, a chemical vapor deposition (CV D) method is used, which has excellent controllability of film thickness, impurity doping, and surface flatness of the grown layer. The buffer layer 4 and the active layer 6 are epitaxially grown. Specifically, first, the 4H—SiC (11-20) substrate 2 is washed with an organic solvent, aqua regia, hydrofluoric acid, etc., rinsed with deionized water, and coated with a SiC film. Installed on a Graphite susceptor and set in a CVD growth system. For CVD growth, a normal pressure horizontal CVD system using hydrogen (H 2 ) as a carrier gas is used, and the susceptor is heated by high-frequency induction heating. 4H- S i C (1 1- 20 ) after placing the substrate 2 in the reaction furnace, repeated several times gas replacement and high-vacuum evacuation, into the CVD growth program by introducing of H 2 Kiyaryagasu.
まず、 約 1300 °Cで H C 1 /H 2ガスによる気相ェヅチングを行った後、 4 H-S i C ( 1 1 -20)基板 2を約 1500°Cに昇温し、 原料ガス(シラン: S iH4、 プロパン: C3H8など)を導入してバッファ層 4および活性層 6の成長を 開始する。 CVD成長では、 実効ドナー密度約 1016 cm— 3〜約 1019 cm一3 の n型 S i Cバッファ層 4を約 0. 3 zm〜約 15〃m成長した後、 実効ドナ一 密度約 1014cm— 3〜約 1016 cm_3の n型活性層 6を約 5〃m〜約 80 m成長させる。 なお、 成長中に窒素ガスを添加することで、 n型伝導性制御を 行う。 First, after vapor Edzuchingu by HC 1 / H 2 gas at about 1300 ° C, 4 HS i C (1 1 -20) was heated substrate 2 to approximately 1500 ° C, the raw material gas (silane: S iH 4 , propane: C 3 H 8 etc.) are introduced to start the growth of the buffer layer 4 and the active layer 6. The CVD growth, after about 0. 3 Zm~ about 15〃M growing an n-type S i C buffer layer 4 of an effective donor density of approximately 10 16 cm- 3 ~ about 10 19 cm one 3, the effective donor one density of about 10 An n-type active layer 6 of 14 cm— 3 to about 10 16 cm — 3 is grown for about 5 μm to about 80 m. The n-type conductivity is controlled by adding nitrogen gas during growth.
また、 ノ ヅファ層 4の厚さは、 特に、 0. 3/ m以上 15 /m以下にするとよ い。 さらに、 バッファ層 4に含ませる不純物は、 窒素、 リン、 アルミニウム、 ま たはボロンのうちの何れかであることが好ましい。 また、 ノ ッファ層 4における 不純物密度は、 4H— S i C ( 1 1— 20) 基板 2との界面から活性層 6との界 面に向けて徐々に減少することが好ましい。 In addition, the thickness of the buffer layer 4 is preferably not less than 0.3 / m and not more than 15 / m. Further, the impurity contained in the buffer layer 4 is preferably any one of nitrogen, phosphorus, aluminum, and boron. It is preferable that the impurity density in the buffer layer 4 gradually decreases from the interface with the 4H—SiC (11-20) substrate 2 toward the interface with the active layer 6.
続いて、 図 2を参照して、 本実施形態の S i Cウェハ 1の効果を説明する。 通 常、 S i C基板にはマイクロパイプやらせん転位が存在するが、 図 2に示すよう
に、マイクロパイプなどは S i C基板のく 000 1 >軸方向に伸びる。ところが、 本実施形態の S i Cウェハ 1では面方位が ( 1 1— 20) の S i C基板を用いて いるため、 マイクロパイプ (一点鎖線で示す) 8やらせん転位 (破線で示す) 1 0は活性層 6に殆ど到達しない。 このため、 活性層 6は欠陥が少なく平坦性の優 れたものとなる。 Next, the effects of the SiC wafer 1 of the present embodiment will be described with reference to FIG. Usually, micropipes and screw dislocations are present on the SiC substrate. In addition, micropipes extend in the axial direction of the SiC substrate. However, since the SiC wafer 1 of this embodiment uses a SiC substrate having a plane orientation of (11-20), micropipes (shown by dashed lines) 8 and screw dislocations (shown by broken lines) 1 0 hardly reaches the active layer 6. Therefore, the active layer 6 has few defects and excellent flatness.
また、 本実施形態では、 6H型ポリタイプの S i C基板等と比較して電子移動 度の異方性が小さい 4 H型ポリタイプの基板を用いるため、 S i Cウェハ 1上に 成長させた活性層 6における電子移動度の異方性が低減される。 また、 異種ポリ タイプの混入も完全に防止される。 さらに、 S i C基板 2上に S i Cからなるバ ヅファ層 4が形成されているため、 S i C基板 2と S i C活性層 6との格子不整 合による歪みが活性層 6に発生する事態を防止することができる。 Further, in the present embodiment, since a 4H polytype substrate having smaller anisotropy of electron mobility than a 6H polytype SiC substrate or the like is used, the substrate is grown on the SiC wafer 1. The anisotropy of the electron mobility in the active layer 6 is reduced. In addition, contamination of different polytypes is completely prevented. Further, since the buffer layer 4 made of SiC is formed on the SiC substrate 2, strain occurs in the active layer 6 due to lattice mismatch between the SiC substrate 2 and the SiC active layer 6. Can be prevented.
また、 本発明者らの鋭意研究により、 バッファ層 4の厚さを 0. 3 zm以上に することで格子不整合に基づく歪みを効果的に低減でき、 活性層 6の結晶性を良 好にすることが見出された。 一方、 バッファ層 4を 15 zm以下にすれば、 成長 時間およびコストの低減を図ることができる。 In addition, according to the inventor's intensive research, the strain due to lattice mismatch can be effectively reduced by setting the thickness of the buffer layer 4 to 0.3 zm or more, and the crystallinity of the active layer 6 is improved. Was found to work. On the other hand, if the buffer layer 4 is set to 15 zm or less, the growth time and cost can be reduced.
さらに、 ノ ヅファ層 4に含ませる不純物の密度は、 2 X 1015 cm一3以上 3 X 1019 cm一3以下にすることが好ましい。バッファ層 4に含まれる不純物密度を このような範囲にするのは、不純物密度が 2 101 5 cm一3未満のときは格子不 整合に基づく歪み緩和の効果が薄れ、 3 x 1019 cm— 3よりも大きいときは、 高 濃度ドーピングによりバッファ層 4自体の結晶性が劣化するためである。 Furthermore, the density of impurities to be contained in Bruno Dzufa layer 4 is preferably in the 2 X 10 15 cm one 3 or more 3 X 10 19 cm one 3 below. To the impurity density contained in the buffer layer 4 to this range, diminished the effect of strain relaxation based on the lattice mismatching when the impurity concentration is less than 2 10 1 5 cm one 3, 3 x 10 19 cm- If it is larger than 3 , the high concentration doping degrades the crystallinity of the buffer layer 4 itself.
なお、 本実施形態では、 4H型ポリタイプの S i C基板を用いたが、 この他、 15 R型ポリタイプ ("R" は菱面体系、 "15" は原子積層が 15層で一周期と なる結晶構造を意味する) の 15R— S i C ( 1 1-20) 基板を用いても、 S i Cウェハ上に成長させた活性層は、 マイクロパイプやらせん転位が存在せず、 非常に平坦性に優れたものとなる。 In this embodiment, the 4H-type poly-type SiC substrate is used. In addition, a 15 R-type polytype (“R” is a rhombohedral system, “15” is a 15-layer atomic stack and one period) Even if a 15R—SiC (11-20) substrate is used, the active layer grown on the SiC wafer does not have micropipes or screw dislocations. It is excellent in flatness.
また、 本実施形態の S i Cウェハ 1を用いて、 種々の S i C半導体デバイスを
製造することができる。 たとえば、 かかる S i C半導体デバイスは、 表面に金属 /S i Cのショットキ一障壁や、 ェピタキシャル成長またはイオン注入によって 形成された pn接合を有するように構成することができる。 さらに、 熱酸化また は化学気相堆積法で形成された酸化膜をゲ一ト絶縁膜として有したり、 熱酸化ま たは化学気相堆積法で形成された酸化膜を表面保護膜の一部として有するように 構成してもよい。 Various SiC semiconductor devices can be manufactured using the SiC wafer 1 of the present embodiment. Can be manufactured. For example, such a SiC semiconductor device can be configured to have a metal / SiC Schottky barrier or pn junction formed by epitaxial growth or ion implantation on the surface. Further, an oxide film formed by thermal oxidation or chemical vapor deposition is used as a gate insulating film, and an oxide film formed by thermal oxidation or chemical vapor deposition is used as a surface protection film. You may comprise so that it may have as a part.
上述のように、 S i Cウェハ 1は電子移動度の異方性が小さく且つ S i C基板 2と S i C活性層 6との格子不整合による歪みが殆ど発生しないため、 このよう な半導体デバイスは高品質なものとなる。 より詳しくは、 特に活性層 6の表面平 坦性が優れているので、 ェビタキシャル成長によって形成した pn接合やェピ夕 キシャル成長表面に形成したショットキ一障壁界面での電界集中が大幅に低減さ れ、 デバイスの高耐圧化が容易となる。 さらに、 S i C ( 1 1— 20) は S i C {000 1} 面より単位面積あたりの原子結合ボンド数が少ないので、 酸化膜/ S i Cの MO S界面における界面準位が低減されて高品質な MO S界面を作製で き、 高性能 MOS型トランジスタを実現できる。 ま鐘 I As described above, since the SiC wafer 1 has a small anisotropy of electron mobility and almost no distortion due to lattice mismatch between the SiC substrate 2 and the SiC active layer 6, such a semiconductor The device will be of high quality. More specifically, since the surface flatness of the active layer 6 is particularly excellent, the electric field concentration at the pn junction formed by epitaxial growth and at the Schottky barrier interface formed on the epitaxially grown surface is greatly reduced. This makes it easy to increase the breakdown voltage of the device. Furthermore, S i C (11-20) has fewer atomic bond bonds per unit area than the S i C {000 1} plane, so the interface state of the oxide film / S i C at the MOS interface is reduced. A high-quality MOS interface can be fabricated, and a high-performance MOS transistor can be realized. Ma Bell I
以下、 上記実施形態の実施例を説明する。 但し、 本発明は、 実施例に限定され るものではない。 Hereinafter, examples of the above embodiment will be described. However, the present invention is not limited to the examples.
[実施例 1 ] [Example 1]
図 1を参照して、 実施例 1を説明する。 本実施例では、 S i C基板から S i C 活性層へのマイク口パイプやらせん転位の貫通、 および活性層 6の表面の平坦性 を調べるために、 n型 4H— S i C ( 1 1 - 20)基板 2上に化学気相堆積( C V D)法により n型の活性層 6を成長した。比較のために、 4H— S i C ( 1— 10 0)、 および( 000 1 ) 8度オフ (< 1 1— 20 >方向) を面方向とする基板に も同時に活性層を成長させて評価した。 4H— S i C ( 1 1— 20)、 ( 1— 10
0) 基板は、 4H— S i C (000 - 1 ) 面上に改良レーリ一法によって成長し たインゴットを成長方向に平行にスライスし、 鏡面研磨することによって作製し た。 基板は全て n型で、 ショッ トキ一障壁の容量—電圧特性から求めた実効ドナ —密度は 1 X 1018cm— 3~2 1018 cm— 3で、 厚さは約 380〃mであつ た。 The first embodiment will be described with reference to FIG. In this embodiment, in order to investigate the penetration of a microphone opening pipe or a screw dislocation from the SiC substrate to the SiC active layer and the flatness of the surface of the active layer 6, n-type 4H—SiC (11 -20) An n-type active layer 6 was grown on the substrate 2 by chemical vapor deposition (CVD). For comparison, the active layer was simultaneously grown on a substrate with 4H-SiC (1-100) and (0001) 8 degrees off (<11-20> direction) as the plane direction. did. 4H—SiC (1 1—20), (1—10 0) The substrate was prepared by slicing an ingot grown on the 4H-SiC (000-1) plane by the modified Rayleigh method parallel to the growth direction and mirror-polishing. The substrates were all n-type, and the effective donor calculated from the capacitance-voltage characteristics of the Schottky barrier—density was 1 × 10 18 cm— 3 to 2 10 18 cm— 3 , and the thickness was about 380 mm. .
これらの基板を溶融水酸化カリウム (KOH) で 500°C、 10分の条件でェ ツチングした結果、 いずれもマイクロパイプ密度 12 cm一2〜 28 cm-2、 らせ ん転位密度 5 X 103cm— 2〜2 X 104 c m_ 2程度の欠陥が存在することが分 かった。 ただし、 ( 1 1— 20)、 ( 1 - 100)面については、基板端部に約 80 度の斜め研磨を行なって (000 1 ) 面から約 10度傾いた面を出し、 この面を エツチング後に観察して欠陥密度を見積もった。 Result of market shares Tsuchingu in the these substrates 500 ° C, 10 minutes in a molten potassium hydroxide (KOH) conditions, both micropipe density 12 cm one 2 ~ 28 cm- 2, the dislocation density N racemate 5 X 10 3 it did not amount to cm- 2 ~2 X 10 4 c m_ 2 about defects are present. However, for the (11-20) and (1-100) planes, the edge of the substrate is polished at an angle of about 80 degrees to obtain a plane inclined about 10 degrees from the (000 1) plane, and this plane is etched. Observation was made later to estimate the defect density.
次に、 KOHエッチングを行った基板を再研磨し、 鏡面仕上げをして CVD成 長を行った。 これらの基板を有機溶媒、 王水、 フッ酸で洗浄した後、 脱イオン水 でリンスして S i C膜で被覆されたグラフアイ ト製サセプ夕に設置し、 CVD成 長装置にセットした。 そして、 ガス置換と高真空排気を数回繰り返した後、 H2 キヤリャガスを導入して CVD成長プログラムに入った。 Next, the KOH-etched substrate was polished again, mirror-finished, and CVD grown. These substrates were washed with an organic solvent, aqua regia, and hydrofluoric acid, rinsed with deionized water, placed on a graphite susceptor coated with a SiC film, and set in a CVD growth apparatus. Then, after repeating several times the gas replacement and high-vacuum evacuation, entered the CVD growth program with H 2 introduced Kiyaryagasu.
まず、 1300°Cで HC 1/H2ガスによる気相エッチングを行った後、 15 00°Cに昇温し、 原料ガス(シラン: S i H4、 プロパン : C3H8など)を導入し て成長を開始した。 CVD成長では、 実効ドナー密度 3 X 1017cm— 3〜4 x 1 017 cm— 3の n型 S i Cバッファ層を 4. 6 /m成長させた後、 実効ドナ一密度 I X 1016cm_3〜2 x 1016 cm一3の n型活性層を 12 zm成長させた。 こ のときの主な成長条件は下記の通りである。 なお、 一般に、 (0001)面と ( 1 1-20) 面では不純物の取り込み効率が違うので、 基板の面方位によってドー ビングガス流量を調整するのが好ましい。 First, after vapor phase etching by HC 1 / H 2 gas at 1300 ° C, the temperature was raised to 15 00 ° C, the raw material gas (silane: S i H 4, propane: C 3, etc. H 8) introduced And started growing. The CVD growth, after the n-type S i C buffer layer effective donor density 3 X 10 17 cm- 3 ~4 x 1 0 17 cm- 3 4. to 6 / m growth, the effective donor one density IX 10 16 CM_ An n-type active layer of 3 to 2 × 10 16 cm- 3 was grown at 12 zm. The main growth conditions at this time are as follows. In general, since the efficiency of taking in impurities is different between the (0001) plane and the (11-20) plane, it is preferable to adjust the doping gas flow rate according to the plane orientation of the substrate.
バッファ層: SiH4流量 0.30sccm Buffer layer: SiH4 flow rate 0.30sccm
C3H8流量 0.20sccm
N2流 6x10—seem C3H8 flow rate 0.20sccm N2 flow 6x10—seem
H2流】 3.0slm H2 style] 3.0slm
1500°C 1500 ° C
成長時間 110分 活性層: SiH4流量 0.50sccm Growth time 110 minutes Active layer: SiH4 flow rate 0.50sccm
C3H8流量 0.50sccm C3H8 flow rate 0.50sccm
N2流量 2xl0-2sccm N2 flow 2xl0- 2 sccm
H2流量 3.0slm H2 flow 3.0slm
基板温度 1500°C Substrate temperature 1500 ° C
成長時間 180分 Growth time 180 minutes
ェピタキシャル成長させた活性層 6の表面を微分干渉光学顕微鏡で観察したと ころ、 4H (1 1— 20) および (0001) 8度オフ基板上では鏡面が得られ たが、 4H ( 1— 100) 基板上では部分的にく 1 1— 20>方向に走る筋状の 凹凸や溝が観測された。 この 4H ( 1- 100) 面上の筋状の欠陥は、 6H (1 - 100) 面上の成長層でも観察され、 成長前の基板表面処理法の最適化ゃ過飽 和度の低い成長条件 (例えば低い原料ガス流量)で CVD成長を行うと、 この筋状 欠陥の発生がやや低減されるが、 完全に無くすことはできなかった。 また、 15 mmx 20mmの大きさの基板上の活性層表面を観察して表面欠陥(転位などの 構造欠陥とは必ずしも一致しない)の密度を見積もったところ、 4 H( 1 1— 20) 基板では 4 X 102 cm_2、 ( 1— 100) 基板では 8 x 103cm_2、 (000 1) 8度オフ基板では 2 x 103cm_2であり、 4H (1 1 -20) 基板上の活 性層が最も優れていた。 Observation of the surface of the active layer 6 grown by epitaxy with a differential interference optical microscope revealed that a mirror surface was obtained on the 4H (11-20) and (0001) 8 degree off substrates, but 4H (1-100). ) On the substrate, streaky irregularities and grooves running in the direction 1 1-20> were observed. This streak-like defect on the 4H (1-100) plane is also observed in the growth layer on the 6H (1-100) plane, and optimization of the substrate surface treatment method before growth 成長 growth conditions with low oversaturation Performing CVD growth (for example, at low source gas flow rates) slightly reduced the occurrence of streak defects, but could not completely eliminate them. Observing the active layer surface on a 15 mm x 20 mm substrate and estimating the density of surface defects (which do not always match structural defects such as dislocations), the 4H (11-20) substrate 4 X 10 2 cm_ 2, ( 1- 100) 8 x 10 3 cm_ 2 denotes a substrate, (000 1) in the 8-degree off substrates is 2 x 10 3 cm_ 2, 4H (1 1 -20) active on the board The active layer was the best.
図 3 A〜図 3 Cは、 原子間力顕微鏡 (AFM) 観察を行い、 その表面形状プロ ファイルを測定した結果を示すグラフである。 図 3A, 図 3B, 図 3 Cは、 それ それ 4H (1 1— 20)基板、 4H ( 1 - 100)基板、 (000 1) 8度オフ基
板に関するグラフである。 ( 1— 1 00)基板上に形成した活性層の表面は、前述 の深い溝 (深さ約 100〜300 nm) が無い領域を選んでも、 図 3 Bに示すよ うに凹凸が激しくなつている。 また、 図 3 Cより、 (000 1 ) 8度オフ基板上に 形成した活性層の表面には、 原子ステツプの集合合体(ステツプバンチング)に起 因する階段状の凹凸が存在することが分かった。 これに対して、 4H ( 1 1— 2 0)基板上に形成した活性層では、図 3 Aに示されているように、溝、 ヒロック、 ステップ等が全く観測されず、 非常に平坦性のよい表面が得られた。 また、 2pi mx 2 mの範囲を AFM観察したときの表面粗さの二乗平均 (Rms) は ( 1 1 -20) 基板上に形成した活性層で 0. 1 8 nm、 ( 1— 100) 基板上で 6. 4nm、 (000 1) 8度オフ基板上で 0. 24nmとなり、 ( 1 1— 20) 基板 上に成長させた活性層が最も優れていた。 FIGS. 3A to 3C are graphs showing the results obtained by performing an atomic force microscope (AFM) observation and measuring the surface profile. Figures 3A, 3B, and 3C show 4H (1 1-20) board, 4H (1-100) board, (000 1) 8 degree off It is a graph regarding a board. (1-100) The surface of the active layer formed on the substrate has severe irregularities as shown in Fig. 3B, even if the area without the above-mentioned deep groove (depth about 100-300nm) is selected. . Also, from FIG. 3C, it was found that the surface of the active layer formed on the (000 1) 8 ° off-substrate had step-like irregularities due to the assembling of atomic steps (step bunching). . On the other hand, in the active layer formed on the 4H (11-20) substrate, no grooves, hillocks, steps, etc. were observed at all, as shown in Fig. 3A. Good surface was obtained. In addition, the root mean square (Rms) of the surface roughness when observing the area of 2 pi mx 2 m by AFM is 0.18 nm for the active layer formed on the (11-20) substrate, and the (1-100) substrate The active layer grown on the (11-20) substrate was the best, with 6.4 nm above and 0.24 nm on the (000 1) 8 degree off substrate.
次に、 成長した試料を溶融 KOHでエッチングして、 活性層 6中の構造欠陥を 調べた。 (000 1) 8度オフ基板上の活性層では、マイクロパイプ密度が 1 8 c ~ らせん転位密度 8 X 103 cm一2となり、 成長前の基板の値とほぼ同じで あり、エッチングにより生じたピッ トの位置も成長前とよく一致していた。 ( 1一 100) 基板上の活性層をエッチングすると、 多角形のピッ卜が多数 ( 1 x 10 5 cm_2)見られた他に、活性層の表面に現れた筋状の欠陥がさらに深くなつた。 この筋状の溝は必ず < 1 1一 20 >方向に伸びていることから、 積層欠陥に起因 すると考えられる。 この溶融 KOHによって深くエッチングされた溝の数は、 成 長前の ( 1— 100) 基板では 3〜8 cm-1であったのに対し、 成長後には 30 〜200 cm一1と増大していた。 したがって、 ( 1— 100) 基板上に活性層を 成長させる場合は、 CVD成長によって新たに積層欠陥が発生するものと考えら れる。 Next, the grown sample was etched with molten KOH, and structural defects in the active layer 6 were examined. (000 1) In the active layer on the 8 ° off-substrate, the micropipe density is 18 c ~ screw dislocation density 8 × 10 3 cm- 12 , which is almost the same as the value of the substrate before growth, and was generated by etching. The position of the pit was in good agreement with that before growth. When etching the active layer (1 one 100) substrate, in addition to polygonal pitch Bok was seen many (1 x 10 5 CM_ 2), is deeper summer streak defects that appeared on the surface of the active layer Was. This streak-like groove always extends in the <111> direction, and is considered to be caused by stacking faults. The number of deep etched grooves by molten KOH is growth before (1 100) in the substrate while was 3 to 8 cm- 1, after the growth has increased the 30 to 200 DEG cm one 1 Was. Therefore, when an active layer is grown on a (1-100) substrate, it is considered that stacking faults are newly generated by CVD growth.
これに対して、 ( 1 1— 20)基板上に成長した活性層を溶融 KOHでエツチン グすると、 転位を反映する三角形状ピッ卜の密度が 2 X 103cm_2程度、 積層 欠陥密度は 5 cm一1以下と小さかった。 また、 この試料を斜め研磨した面をエツ
チングして見積もったマイクロパイプ密度は 1 cm_2未満、 らせん転位密度も 1In contrast, when the active layer grown on the (11-20) substrate was etched with molten KOH, the density of triangular pits reflecting dislocations was about 2 × 10 3 cm_2, and the stacking fault density was 5 It was as small as 1 cm or less. In addition, the surface obtained by diagonally polishing this sample was etched. Micropipe density is less than 1 CM_ 2 was estimated by quenching, also screw dislocation density of 1
00 cm— 2未満であることが分かった。 すなわち、 4H— S iC ( 11-20) 基板を用いることによって、 基板からのマイクロパイプ、 らせん転位の貫通を大 幅に抑制し、 積層欠陥も極めて少ない高品質 S i Cェピタキシャル結晶の作製が 可能となる。 これは、 上述のように、 マイクロパイプやらせん転位が主として SIt was found to be less than 00 cm- 2 . In other words, by using a 4H—SiC (11-20) substrate, it is possible to greatly suppress the penetration of micropipes and screw dislocations from the substrate, and to produce high-quality SiC epitaxial crystals with extremely few stacking faults. It becomes possible. This is mainly because micropipes and screw dislocations are mainly S
1 C結晶の <0001〉方向に伸びる (図 2参照) ため、 この方位と平行な結晶 面である ( 11— 20) 面を用いれば、 S i C基板中に存在するマイクロパイプ などがこの上の活性層に引き継がれないためである。 なお、 15R— S iC (1Since it extends in the <0001> direction of the 1C crystal (see Fig. 2), if the (11-20) plane, which is a crystal plane parallel to this direction, is used, micropipes and the like existing in the SiC substrate will be This is because the active layer does not carry over. Note that 15R—S iC (1
1-20)基板上の活性層をェピタキシャル成長させた場合も、 当該活性層は非 常に平坦性に優れたものとなり、 マイクロパイプやらせん転位の貫通はほとんど 無かった。 1-20) Even when the active layer on the substrate was epitaxially grown, the active layer was extremely excellent in flatness, and there was almost no penetration of micropipes or screw dislocations.
[実施例 2 ] [Example 2]
本実施例では、 バッファ層が活性層に及ぼす影響を調べるために、 n型 4H— S i C ( 11 - 20)基板上に様々な厚さの n型 4H-S i Cバッファ層を形成し た後、 活性層となる高純度厚膜ェピタキシャル成長層を形成してその結晶性を評 価した。 用いた S i C基板 2は、 改良レーリー法によって 4H— S i C (11- In this example, in order to investigate the effect of the buffer layer on the active layer, n-type 4H-SiC buffer layers of various thicknesses were formed on an n-type 4H—SiC (11-20) substrate. After that, a high-purity thick epitaxial growth layer to be an active layer was formed and its crystallinity was evaluated. The S i C substrate 2 used was 4H—S i C (11-
20)種結晶上に成長させた 4 H-S i Cィンゴヅトをスライスして作製した n 型 4H— S i C ( 11— 20) で、 ショットキ一障壁の容量一電圧特性から求め た実効ドナ一密度は 3 X 1018 cm— 3〜 4 X 1018 cm— 3で、 厚さは約 340 〃mであった。 20) For an n-type 4H-SiC (11-20) fabricated by slicing a 4HSiC ingot grown on a seed crystal, the effective donor density obtained from the capacitance-voltage characteristics of the Schottky barrier is It was 3 × 10 18 cm— 3 to 4 × 10 18 cm— 3 and was about 340 μm thick.
この S i C基板 2上にドナ一密度 4 X 1017 cm— 3〜 5 X 1017 cm— 3の n 型 4H- S i Cバッファ層を形成した後、高純度 n型 4H-S i。層(ドナ一密度 4 X 1015 cm— 3)を約 24〃m成長させた。 なお、 成長中に窒素ガスを添加する ことで n型伝導性制御を行った。 そして、 バッファ層の厚さを 0. l mから 2 2 mの範囲で変化させた S i Cウェハ、 および比較のためにバッファ層を設け ずに基板上に直接高純度 S i C活性層を成長した S i Cウェハを作製した。 CV
D成長には実施例 1と同じ CVD装置を用いた。 まず、 1 4 0 0°Cで H C 1ZH 2ガスによる気相エッチングを行った後、 1 5 6 0°Cに昇温し、 原料ガスを導入 して成長を開始した のときの成長条件は下記の通りである, The S i C Donna on the substrate 2 one density 4 X 10 17 cm- 3 ~ 5 X 10 17 cm- 3 of n-type 4H- after forming the S i C buffer layer, a high-purity n-type 4H-S i. A layer (done density 4 × 10 15 cm— 3 ) was grown about 24 μm. The n-type conductivity was controlled by adding nitrogen gas during growth. Then, a SiC wafer with a buffer layer thickness varied from 0.1 lm to 22 m, and a high-purity SiC active layer grown directly on the substrate without a buffer layer for comparison The fabricated SiC wafer was manufactured. CV The same CVD apparatus as in Example 1 was used for D growth. First, after performing gas phase etching with HC1ZH2 gas at 1400 ° C, the temperature was raised to 1650 ° C, growth was started by introducing a source gas, and the growth conditions were as follows. As is,
ファ層: SiH4流 0.30sccm Fa layer: SiH4 flow 0.30sccm
υ3Ηο流 _ι 0.20scc υ3Ηο flow _ι 0.20scc
Ν2流量 9xl0 sccm Ν2 flow rate 9xl0 sccm
Η2流量 3.0slm Η2 flow rate 3.0slm
1560°C 1560 ° C
成長時間 3分〜 520分 活性層: SiH4流量 0.50sccm Growth time 3 minutes to 520 minutes Active layer: SiH4 flow rate 0.50sccm
¾t里 0.66sccm ¾t village 0.66sccm
N2流量 6x10— 3sccm N2 flow 6x10— 3 sccm
nZ流里 3.0slm nZ style 3.0slm
基板温度 1560°C Substrate temperature 1560 ° C
成長時間 360分 Growth time 360 minutes
図 4は、 様々な厚さのバッファ層を持つ S i Cウェハの活性層 6の X線回折の ロッキング力一ブ測定から求めた回折ピークの半値幅( F HM )のバヅファ層膜厚依 存性を示すグラフである。 X線回折には、 Ge単結晶 (40 0) 回折を利用した 5結晶 X線回折を用い、 S i C ( 1 1— 2 0) 回折ピーク (20=60.05度) の半 値幅で試料の結晶性を評価した。 なお、 成長前の 4 H— S i C ( 1 1— 2 0) 基 板を測定して得られた回折ピークの半値幅は 32〜3 8arcsec (平均 3 5arcsec) であった。 Figure 4 shows the dependence of the half-width (F HM) of the diffraction peak on the buffer layer thickness obtained from the X-ray diffraction rocking force measurement of the active layer 6 of the SiC wafer with buffer layers of various thicknesses. It is a graph which shows sex. For the X-ray diffraction, five-crystal X-ray diffraction using Ge single crystal (400) diffraction was used. The sex was evaluated. The half width of the diffraction peak obtained by measuring the 4 H—Si C (11—20) substrate before growth was 32 to 38 arcsec (average 35 arcsec).
バッファ層を用いずに基板上に直接高純度 n型 S i C層 (24〃m) を成長し た S i Cウェハの活性層 6では、 X線ロッキングカーブの半値幅が 5 2 arcsecと なり、 S i C基板 2より悪化した (図 4中、 四角印で示す)。 この問題は、 n型バ
ッファ層を導入することにより改善できた。 すなわち、 バッファ層厚さが 0 〃mの場合は、 まだ基板より若干悪い半値幅 (43arcsec) が得られたが、 ファ層の厚さが 0. 3〃m以上の場合は、 基板より小さい半値幅が得られ、 ェビ タキシャル成長によって結晶性が改善されていることが分かった。 特に、 バッフ ァ層の厚さが 1.2〃m程度以上では、半値幅が 2 larcsecでほぼ一定になった。 溶融 KOHエッチングによって (11— 20) 面上の転位密度を評価すると、 基 板で 6x 104cm_2、 バッファ層なしで成長した活性層では 2 X 105 cm— 2、 2 zm以上のバッファ層を設けた活性層では 3 X 103cm— 2〜6 x 103cm一 2となり、 やはりバッファ層の効果が明らかに見られた。 In the active layer 6 of a SiC wafer in which a high-purity n-type SiC layer (24 m) was grown directly on the substrate without using a buffer layer, the half-width of the X-ray rocking curve was 52 arcsec. However, it was worse than the SiC substrate 2 (indicated by a square in FIG. 4). The problem is n-type This was improved by introducing a buffer layer. In other words, when the thickness of the buffer layer was 0 μm, a half width (43 arcsec) was still obtained, which was slightly worse than that of the substrate. However, when the thickness of the fa layer was 0.3 μm or more, the half width was smaller than the substrate. The value range was obtained, and it was found that crystallinity was improved by epitaxial growth. In particular, when the thickness of the buffer layer was about 1.2 m or more, the half width became almost constant at 2 larcsec. When the dislocation density on the (11-20) plane was evaluated by molten KOH etching, the buffer layer was 6 × 10 4 cm_ 2 on the substrate, 2 × 10 5 cm— 2 on the active layer grown without the buffer layer, and 2 zm or more. the provided was 3 X 10 3 cm- 2 ~6 x 10 3 cm one 2 becomes the active layer, the effect of also the buffer layer was clearly seen.
このように、 バッファ層が高品質 S i Cェピタキシャル成長層の作製に有効で ある理由は、 高濃度に不純物ドーピングされた S i C基板と低濃度ドーピングさ れた高純度 S i C活性層の間に存在する格子不整合に起因する歪みがバッファ層 によって緩和されるためであると考えられる。一般に、 1018 cm一3程度以上の 不純物を含む S i C結晶では、 その不純物の種類によって S i C結晶の格子定数 が増大、 あるいは減少し、 しかもこの格子定数増減の割合は、 (11一 20)面上 の方が {0001}面上の場合より大きい。 したがって、 4H— S i C ( 11— 20)基板上にェピタキシャル成長を行う場合には、 基板とその上に形成するデ バイス作製用活性層の不純物密度の中間の値となる不純物密度を有する S i Cバ ッファ層を設けて格子不整合に起因する格子歪みを緩和することが効果的である。 通常、 縦形のパワーデバイスを作製する際には、 基板の抵抗を小さくするため に不純物(ドナ一あるいはァクセプ夕)を高濃度にド一ビングした基板が用いられ るので、 この基板の不純物密度より低く、 かつ活性層の不純物密度より高いドー ビングを行った S i Cバッファ層を設けるのがよい。 なお、 上記の実施例では窒 素(N) ド一プ n型 S i Cを用いたが、 リン (P) ド一プ n型 S iC、 アルミ (A 1)、 およびホウ素 (B) ド一プ p型 S i Cを用いて実験を行ったところ、 バッフ ァ層の同様な効果が見られた。 また、 15R—SiC (11— 20)基板を用い
ても、 同様の効果を得ることができた。 The reason why the buffer layer is effective for producing a high-quality SiC epitaxial growth layer is that the highly doped SiC substrate and the lightly doped high-purity SiC active layer are effective. It is considered that the strain caused by the lattice mismatch existing between them is alleviated by the buffer layer. Generally, the S i C crystals containing 10 18 cm one 3 about or more impurities, the lattice constant of the S i C crystal according to the type of impurity increased or decreased, yet the ratio of the lattice constant increase or decrease, (11 one 20) On the plane is larger than on the {0001} plane. Therefore, when epitaxial growth is performed on a 4H—SiC (11-20) substrate, the impurity density has an intermediate value between that of the substrate and the active layer for device fabrication formed thereon. It is effective to provide a SiC buffer layer to reduce lattice distortion caused by lattice mismatch. Normally, when fabricating a vertical power device, a substrate is used which is heavily doped with impurities (donor or acetonitrile) to reduce the resistance of the substrate. It is preferable to provide a SiC buffer layer that is low and is doped higher than the impurity density of the active layer. In the above embodiment, the nitrogen (N) doped n-type SiC was used, but the phosphorus (P) doped n-type SiC, aluminum (A1), and boron (B) doped SiC were used. When an experiment was performed using p-type SiC, a similar effect of the buffer layer was observed. Also, using a 15R-SiC (11-20) substrate However, the same effect was obtained.
[実施例 3 ] [Example 3]
本実施例では、 バッファ層 4の膜厚を一定 (3〃m) にして、 バッファ層 4内 の不純物密度を変化させてその効果を調べた。 基板には、 1 Ommx 15 mmの 大きさの n型 15R— S i C ( l l— 20) 基板を使用し、 実効ドナ一密度は 5 X 1018 cm— 3、 厚さは 350〃mとした。 そして、 この S i C基板上に、 図 5 A〜図 5 Cに示す窒素ドナ一密度分布を持つ厚さ 3 /mのバッファ層 4を形成し た後、 ドナ一密度 5 X 1014 cm— 3、 厚さ 32〃111の高純度11型15R-S i C 活性層 6をェピタキシャル成長させた。 また、 比較のために、 図 5 Dのように、 ノ 'ヅファ層 4なしの S i Cウェハ (以下、 「試料 (d)」 と称する) も作製した。 図 5 Aに示す S i Cウェハ(試料(a))では、 バッファ層内のドナー密度が 5 X 1017 cm— 3で一定であるのに対し、 図 5 Bに示す S i Cウェハ(試料(b)) では、下から 2 X 1017 cm_8 (厚さ 8〃m)、 7 x 101 cm"3 (厚さ 8〃m)、 2 x l 017cm— 3 (厚さ 0. 8 m)、 5 x 1017 cm-3 (厚さ 0. 6〃m) と階段的に、 図 5 Cに示す S i Cウェハ (試料 (c)) では 3 x 1018 cm一3から 2 x 1016 cm一3まで下から上に傾斜的にドナー密度を変化させた c 主な成長条件は下記の通りである。 In the present example, the effect was investigated by changing the impurity density in the buffer layer 4 while keeping the thickness of the buffer layer 4 constant (3 μm). The substrate used was an n-type 15R—SiC (ll—20) substrate with a size of 1 Ommx15 mm, an effective donor density of 5 × 10 18 cm— 3 , and a thickness of 350 mm. . Then, a buffer layer 4 having a thickness of 3 / m having a nitrogen donor density distribution as shown in FIGS. 5A to 5C is formed on the SiC substrate, and then a donor density of 5 × 10 14 cm— 3. A high-purity 11-type 15R-SiC active layer 6 with a thickness of 32 to 111 was epitaxially grown. For comparison, a SiC wafer without the noise layer 4 (hereinafter referred to as “sample (d)”) was also prepared as shown in FIG. 5D. In the S i C wafer (sample (a)) shown in FIG. 5A, the donor density in the buffer layer is constant at 5 × 10 17 cm− 3 , while the S i C wafer (sample (a)) shown in FIG. (B)) from the bottom 2 x 10 17 cm_ 8 (8〃m thick), 7 x 10 1 cm " 3 (8〃m thick), 2 xl 0 17 cm— 3 (0.8 thick m), 5 x 10 17 cm- 3 (0.6 厚 m thick) in a stepwise manner. For the SiC wafer (sample (c)) shown in Fig. 5C, 3 x 10 18 cm 1-3 to 2 x c the major growth conditions inclined alter the donor density from the bottom to the top to 10 16 cm one 3 is as follows.
バッファ層: SiH4流量 0.15sccm Buffer layer: SiH4 flow rate 0.15sccm
C3H8流量 O.lOsccm C3H8 flow rate O.lOsccm
N2流量 2xl0—3〜0.3sccm (試料により異なる)N2 flow rate 2xl0— 3 to 0.3sccm (depends on sample)
H2流量 3.0slm H2 flow 3.0slm
基板温度 1550°C Substrate temperature 1550 ° C
成長時間 150分 活性層 SiH4 W 0.50sccm Growth time 150 minutes Active layer SiH4 W 0.50sccm
N2流量 7xl0-4sccm N2 flow rate 7xl0- 4 sccm
H2流量 3.0slm H2 flow 3.0slm
基板温度 1550°C Substrate temperature 1550 ° C
成長時間 480分 Growth time 480 minutes
図 6は、 これらの試料 (a) 〜 (d) について、 実施例 2と同様に X線回折の ロッキングカーブを測定した結果を示す。バッファ層なしの試料 (d)では、活性層 と基板との格子不整合の影響で活性層のモザィク度が増大し、 口ッキングカーブ の半値幅が 86 arcsecと基板(43arcsec)より大きくなつている。これに対し、 ドービング密度一定のバッファ層を有する試料 (a) では、 半値幅が 35arcsec となり、 基板より結晶性が改善されている。 さらに、 バッファ層内部でドナー密 度を徐々に減少させた試料 (b)、 (c) では半値幅が 28〜3 larcsecとなり、 試料 (a) より若干よい結果が得られた。 このように、 S i C基板 2から活性層 6にかけて不純物密度を徐々に減少させたバッファ層 4を設けることが最も有効 であることが明らかになった。 なお、 バッファ層 4内部の不純物密度分布として 階段状に減少させる場合と連続的に(直線的に)変化させる場合では、 特に大きな 差異は認められなかった。 FIG. 6 shows the results of measuring rocking curves of X-ray diffraction for these samples (a) to (d) in the same manner as in Example 2. In sample (d) without the buffer layer, the degree of mosaic of the active layer increased due to the lattice mismatch between the active layer and the substrate, and the half-width of the opening curve was 86 arcsec, which was larger than that of the substrate (43 arcsec). On the other hand, sample (a), which has a buffer layer with a constant doving density, has a half-width of 35 arcsec, which is better than the substrate. In samples (b) and (c) where the donor density was gradually reduced inside the buffer layer, the half-value width was 28 to 3 larcsec, which was slightly better than sample (a). As described above, it has been found that it is most effective to provide the buffer layer 4 having the impurity density gradually reduced from the SiC substrate 2 to the active layer 6. It should be noted that no significant difference was observed between the case where the impurity density distribution inside the buffer layer 4 was reduced stepwise and the case where it was changed continuously (linearly).
[実施例 4] [Example 4]
本実施例では、 4H— S i C ( 1 1 -20) 基板および (0001) 8度オフ 基板を使用した S i Cウェハを用いて、図 7に示す高耐圧ダイォ一ドを作製した。 S i C基板 2は、 4H- S i C (000— 1)種結晶上に改良レーリー法によって 成長したィンゴットを成長方向に平行にスライスし、 鏡面研磨することによって 作製した。 基板は共に n型で、 ショットキー障壁の容量—電圧特性から求めた実 効ドナー密度は 6 X 1018 cm— 3、 厚さは約 340〃mとした。 そして、 この S i C基板 2上に、 CVD法によって窒素ドープ n型 4H-S i C層をェピ夕キシャ ル成長させた。 In this example, a high breakdown voltage diode shown in FIG. 7 was manufactured using a 4H—SiC (11-20) substrate and a SiC wafer using a (0001) 8 ° off substrate. The S iC substrate 2 was fabricated by slicing an ingot grown on a 4H-S i C (000-1) seed crystal by the modified Rayleigh method in parallel to the growth direction and mirror-polishing. Substrate are both n-type, the capacity of the Schottky barrier - the effective donors was determined from the voltage characteristic density 6 X 10 18 cm- 3, the thickness was about 340〃M. Then, a nitrogen-doped n-type 4H-SiC layer was epitaxially grown on the SiC substrate 2 by a CVD method.
実施例 3の試料 (b) と同様に、 3 x 1018cm一3から 1 x 1016cm一3ま
でドナー密度を階段的に変化させながら各層につき約 0 . 3〃mずつ、 合計約 1 1 . 5〃mのバッファ層 4を形成した後、活性層 6となる高純度 n型 4 H- S i C 層を成長させた。活性層のドナ一密度は 6 X 1 0 1 5 c m— 3、膜厚は 1 6 z mであ る。なお、比較のためにバッファ層なしの試料も作製した。また、 4 H- S i C ( 0 0 0 1 ) 8度オフ基板上にも、 同様にバッファ層および活性層を成長させて S i Cウェハを作製した。 主な成長条件は下記の通りである。 As well as the sample (b) of Example 3, 3 x 10 18 cm one 3 from 1 x 10 16 cm one 3 or After forming a buffer layer 4 of about 11.5〃m in total, about 0.3〃m for each layer while changing the donor density stepwise, a high-purity n-type 4 H-S An i C layer was grown. The active layer has a donor density of 6 × 10 15 cm— 3 and a thickness of 16 zm. A sample without a buffer layer was also prepared for comparison. In addition, a buffer layer and an active layer were similarly grown on a 4H-SiC (00001) 8 ° off substrate to produce a SiC wafer. The main growth conditions are as follows.
バッファ層: SiH4流量 0.30sccm Buffer layer: SiH4 flow rate 0.30sccm
C3H8流量 0.20sccm C3H8 flow rate 0.20sccm
N2流量 2xl0-3〜0.5sccm N2 flow rate 2xl0-3 ~ 0.5sccm
HH22流流』量 3.0slm HH22 flow flow 3.0slm
1520°C 1520 ° C
成長時間 60分 活性層: SiH4流量 0.50sccm Growth time 60 minutes Active layer: SiH4 flow rate 0.50sccm
C3H8流量 0.50sccm C3H8 flow rate 0.50sccm
N2流量 4xl0-3sccm N2 flow rate 4xl0-3sccm
H2流量 3.0slm H2 flow 3.0slm
基板温度 1520°C Substrate temperature 1520 ° C
成長時間 240分 Growth time 240 minutes
さらに、 このようにして作製した各 S i Cウェハに、 ショットキー電極 1 2お よびオーム性電極 1 4を形成した。 ショットキ一電極 1 2は活性層 6の上面に形 成し、 オーム性電極 1 4は S i C基板 2の下面に形成した。 また、 ショットキ一 電極 1 2にはチタン(Ti : 180nm)、 裏面のオーム性電極 1 4には 1 0 0 0 °Cで 2 0分間の熱処理を施したニッケル (Ni : 200nm)を用いた。 つまり、 活性層 6の表 面に S i C活性層と金属層とによるショットキ一障壁が形成されていることにな る。 さらに、 ショットキ一電極 1 2は円形で、 直径 1 0 0〃mから 3 mmの範囲
で変化させた。 Further, a Schottky electrode 12 and an ohmic electrode 14 were formed on each SiC wafer thus manufactured. The Schottky electrode 12 was formed on the upper surface of the active layer 6, and the ohmic electrode 14 was formed on the lower surface of the SiC substrate 2. The Schottky electrode 12 was made of titanium (Ti: 180 nm), and the back ohmic electrode 14 was made of nickel (Ni: 200 nm) heat-treated at 100 ° C. for 20 minutes. That is, a Schottky barrier is formed on the surface of the active layer 6 by the SiC active layer and the metal layer. In addition, the Schottky electrode 12 is circular, with a diameter of 100 1m to 3 mm. Was changed.
そして、ショットキ一電極 1 2端部での電界集中を緩和するために、ホウ素(B) イオンを注入して高抵抗 p型領域(ガードリング) 16を形成し、 ショットキーダ ィオードを完成させた。 ホウ素イオンの注入は 120keV、 80keV、 50 keV、 30 k eVの 4段階で行い、 総ドーズ量は 3 x 1013 cm一2とした。 ま た、 ガードリングを形成する P型領域 16の幅は 100〃m、 この p型領域 16 とショットキー電極 12の重なり部の幅は 1 である。 また、 イオン注入は 室温で行い、 注入イオン活性化のための熱処理(ァニール)はアルゴンガス雰囲気 中 1550°C、 30分の条件で行った。 なお、 これらの選択的イオン注入用マス クゃ電極金属のパターニングには、 フォトリソグラフィ技術を用いた。 Then, in order to alleviate the electric field concentration at the end of the Schottky electrode 12, boron (B) ions were implanted to form a high-resistance p-type region (guard ring) 16, thereby completing a Schottky diode. Boron ion implantation was performed in four steps of 120 keV, 80 keV, 50 keV, and 30 keV, and the total dose was 3 × 10 13 cm− 2 . The width of the P-type region 16 forming the guard ring is 100 μm, and the width of the overlapping portion between the p-type region 16 and the Schottky electrode 12 is 1. The ion implantation was performed at room temperature, and the heat treatment (anneal) for activating the implanted ions was performed in an argon gas atmosphere at 1550 ° C. for 30 minutes. The photolithography technology was used for patterning the mask metal for selective ion implantation.
図 8は、 作製したショットキ一ダイオードの典型的な電流密度一電圧特性を示 すグラフである。 これは 4H— S i C ( 1 1— 20) 基板上にバッファ層を設け て成長した S i Cウェハで作製したダイオードで、電極直径は 500〃mである。 逆方向特性では耐圧 2100 Vを達成し、 しかも— 1000V印加時のリーク電 流も 6 X 10— 6A/cm2と小さい。順方向特性ではオン電圧(電流密度 10 OA /cm2時の電圧降下)が 1. 2V、 オン抵抗が 4 X 10_3Ω cm2という非常に 優れた特性が得られた。電極面積が 300 zm以下の小さいダイオードでは 4H- S i C (0001) 8度オフ基板上でも同様のダイォ一ド特性が得られたが、 電 極面積の大きいダイォードでは両者の間に大きな差が見られた。 FIG. 8 is a graph showing typical current density-voltage characteristics of the produced Schottky diode. This is a diode fabricated on a 4H-SiC (11-20) SiC wafer grown with a buffer layer on it, and the electrode diameter is 500 m. To achieve the breakdown voltage 2100 V in reverse characteristics, moreover - leakage current at 1000V applied is small and 6 X 10- 6 A / cm 2 . In the forward characteristics, excellent on-voltage (voltage drop at a current density of 10 OA / cm 2 ) of 1.2 V and on-resistance of 4 × 10 3 Ω cm 2 were obtained. Similar diode characteristics were obtained on a 4H-SiC (0001) 8 ° off substrate in a small diode with an electrode area of 300 zm or less, but there was a large difference between the two in a diode with a large electrode area. Was seen.
図 9は、 4H— S i C ( 1 1— 20) 基板(バッファ層あり、 なしの 2種類)お よび 4H- S i C (0001) 8度オフ基板の計 3種類の S i C基板上に活性層を 成長させた S i Cウェハを用いて作製したショットキ一ダイオードの耐圧(平均 値)の電極面積依存性を示すグラフである。各電極面積について、少なくとも 12 ケのダイオードを測定して耐圧の平均値を求めた。 4H-S i C (0001) 8度 オフ基板上の成長層を用いて作製したショヅトキ一ダイォードでは、 電極面積が 5 X 10_3cm2〜l X 10一2 cm2を越えると急激に耐圧が低下する。 4H—
S i C ( 1 1 - 20) 基板の場合でも、 バッファ層を設けない場合は電極面積が 1 X 10一2 cm2程度より大きいダイオードは耐圧が低下する。 Figure 9 shows a total of three types of 4H—SiC (11-20) substrates (with and without buffer layer) and 4H-SiC (0001) 8 ° off substrate, for a total of three types of SiC substrates. 4 is a graph showing the electrode area dependence of the breakdown voltage (average value) of a Schottky diode manufactured using a SoC wafer having an active layer grown thereon. For each electrode area, at least 12 diodes were measured and the average withstand voltage was determined. The 4H-S i C (0001) 8 ° Shodzutoki one Daiodo prepared by using the growth layer off the substrate, rapidly breakdown voltage when the electrode area is more than 5 X 10_ 3 cm 2 ~l X 10 one 2 cm 2 descend. 4H— Even in the case of a S i C (11-20) substrate, a diode having an electrode area larger than about 1 × 10 12 cm 2 has a reduced breakdown voltage unless a buffer layer is provided.
これに対して、 4H— S i C ( 1 1— 20) 基板上にバッファ層を設けて作製 したェピタキシャル成長層を用いた場合には、 5 10— 2 cm2程度の電極面積 でも高い耐圧を維持しており、 0. 07 cm2の場合でも 40%以上の歩留まり で 1500 V以上の耐圧が得られた。 また、 耐圧だけでなく、 — 1 000 V印加 時のリーク電流密度の平均値を電極直径 500〃mのダイォードで比較すると、 4H-S i C (000 1 ) 8度オフ基板上に作製したダイオードでは 8 X 1 0_5 A/cm2、 バッファ層のない (1 1— 20) 面上のダイォードで 6 X 10— 5A /cm2であるのに対して、 ノ ソファ層を設けた ( 1 1— 20) 面上のダイォー ドでは 1 X 10— 5A/cm2と最も小さかった。 In contrast, 4H-S i C in the case of using the Epitakisharu growth layer produced by providing a buffer layer (1 1 20) on the substrate, 5 10- 2 cm 2 about the electrode area even higher breakdown voltage Even at 0.07 cm 2 , a withstand voltage of 1500 V or more was obtained with a yield of 40% or more. In addition to the breakdown voltage, when comparing the average value of the leak current density when applying 1 000 V with a diode with an electrode diameter of 500 m, the diode fabricated on a 4H-SiC (000 1) 8 degree off substrate in 8 X 1 0_ 5 a / cm 2, with respect to 6 X 10- 5 to a a / cm 2 at Daiodo on without buffer layer (1 1 20) surfaces, provided Bruno couch layer (1 1 20) in Daio de on the surface was the smallest and 1 X 10- 5 a / cm 2 .
これは、 4H— S i C ( 1 1— 20) 面を用いることによって S i C基板から 活性層へのマイクロパイプやらせん転位の貫通が抑制され、 しかもバッファ層の 採用によって高品質 S i C結晶が得られたからであると考えられる。 また、 4H -S i C ( 1 1—20) 面を用いることによって成長表面の平坦性がよくなり、 ショットキ一電極/ S i C界面での電界集中が低減されるという効果もある。 な お、 この実施例ではショットキ一ダイオードの作製例を述べたが、 ェピ夕キシャ ル成長あるいはイオン注入で形成された P n接合を有する p n接合ダイォードゃ サイリス夕の場合でも、 4H— S i C ( 1 1 -20) 基板、 あるいは 15R— S i C ( 1 1— 20) 基板を用いることが有効である。 This is because the use of the 4H—SiC (11-20) plane suppresses the penetration of micropipes and screw dislocations from the SiC substrate into the active layer, and the use of a buffer layer provides high quality SiC. This is probably because crystals were obtained. Also, the use of the 4H-SiC (11-20) plane improves the flatness of the growth surface, and also has the effect of reducing the electric field concentration at the Schottky electrode / SiC interface. In this embodiment, an example of manufacturing a Schottky diode has been described. However, even in the case of a pn junction diode サ イ thyristor having a Pn junction formed by epitaxial growth or ion implantation, 4H-Si It is effective to use a C (11-20) substrate or a 15R-SiC (111-20) substrate.
[:実施例 5 ] [: Example 5]
本実施例では、 ( 1 1一 20)基板および(000 1)オフ基板により形成した S i Cウェハを用いて、 図 10に示す nチャネル反転型 MOSFET 20を作製 した。 用いた S i C基板 2は、 改良レ一リー法によって成長したインゴットをス ライスし、鏡面研磨することによって作製した (1)6 H— S i C (000 1) 3. 5度オフ基板、 (2)6H-S i C ( 1 1 -20) 基板、 (3)4H-S i C (00
01) 8度オフ基板、 (4)4H— S i C ( 1 1 -20) 基板、 (5)15R-S i C ( 000 1) 3. 5度オフ基板、 および(6) 1 5R— S i C ( 1 1— 20)基板 である。 In this example, an n-channel inversion type MOSFET 20 shown in FIG. 10 was manufactured using a SiC wafer formed by a (111-20) substrate and a (001) off substrate. The S i C substrate 2 used was fabricated by slicing an ingot grown by the modified Rayleigh method and polishing it to a mirror surface. (1) 6 H—S i C (000 1) 3.5-degree off substrate, (2) 6H-S i C (1 1 -20) substrate, (3) 4H-S i C (00 01) 8 ° off board, (4) 4H— S i C (1 1 -20) board, (5) 15R-S i C (000 1) 3. 5 ° off board, and (6) 15 R— S i C (11-20) substrate.
S i C基板 2は全て p型で、 ショットキ一障壁の容量一電圧特性から求めた実 効ァクセプ夕密度は 2 X 1018 cm— 3〜 5 X 1018 cm— 3、 厚さは 320 um 〜340〃mである。 そして、 各 S i C基板 2上に、 CVD法によってホウ素ド —プ P型 S i C層をェピタキシャル成長した。 まず、 実施例 3の試料 (b) と同 様に、 8 X 1017 cm— 3から 1 X 1016 cm-3までァクセプ夕密度を階段的に 変化させながら各層につき約 0. 4〃mずつ、 合計約 1. 6〃mのバッファ層 4 を形成した後、 活性層 6となる高純度 p型 S i C層を成長した。 活性層 6のァク セプ夕密度は 5 X 1015 cm— 3、膜厚は 5〃mである。主な成長条件は下記の通 りである。 All the SiC substrates 2 are p-type, the effective peak density determined from the Schottky-barrier capacitance-voltage characteristics is 2 × 10 18 cm— 3 to 5 × 10 18 cm— 3 , and the thickness is 320 μm or more. 340 m. Then, a boron-doped P-type SiC layer was epitaxially grown on each SiC substrate 2 by a CVD method. First, as in the case of the sample (b) of Example 3, the thickness of each layer was about 0.4 μm while the step density was varied stepwise from 8 × 10 17 cm- 3 to 1 × 10 16 cm- 3. After forming a buffer layer 4 having a total thickness of about 1.6 μm, a high-purity p-type SiC layer serving as an active layer 6 was grown. The active layer 6 has an average density of 5 × 10 15 cm— 3 and a thickness of 5 μm. The main growth conditions are as follows.
バッファ層: SiH4流量 0.30sccm Buffer layer: SiH4 flow rate 0.30sccm
C3H8流量 0.20sccm C3H8 flow rate 0.20sccm
B2H6流量 8xl0-5〜7xl0— 3sccm B2H6 flow rate 8xl0- 5 ~7xl0- 3 sccm
H2流量 3.0slm H2 flow 3.0slm
基板温度 1500°C Substrate temperature 1500 ° C
成長時間 70分 活性層: SiH4流量 0.48sccm Growth time 70 minutes Active layer: SiH4 flow rate 0.48sccm
C3H8流量 0.64sccm C3H8 flow rate 0.64sccm
B2H6流量 4xl0"6sccm B2H6 flow rate 4xl0 " 6 sccm
H2流量 3.0slm H2 flow 3.0slm
基板温度 1500°C Substrate temperature 1500 ° C
成長時間 120分 Growth time 120 minutes
.のようにして作製した S i Cウェハに、 さらに、 ソース、 ドレイン領域形成
のために、 窒素 (N) イオンを注入して低抵抗 n型領域 22 , 24を形成した。 Νイオン注入は 14 Oke V、 80keV、 50keV、 25 keVの 4段階で 行い、 総ドーズ量は 8 x l 014 cm—2とした。 イオン注入は室温で行い、 注入ィ オン活性化のための熱処理はアルゴンガス雰囲気中 1 4 5 0°C、 30分の条件で 行った。 次に、 ドライ酸化により S i Cウェハ 1上に絶縁層 26を形成した。 酸 化条件は、 S i C (0001) オフ基板を用いる場合は 1 150°C、 3時間で、 S i C (1 1-20) 試料の場合は 1 150°C、 1時間であり、 絶縁層 26の厚 さは 35〜46 nmである。 The source and drain regions are further formed on the SiC wafer prepared as in For this purpose, low-resistance n-type regions 22 and 24 were formed by implanting nitrogen (N) ions. ΝIon implantation was performed in four stages of 14 Oke V, 80 keV, 50 keV, and 25 keV, and the total dose was 8 xl 0 14 cm- 2 . The ion implantation was performed at room temperature, and the heat treatment for activating the implantation ions was performed in an argon gas atmosphere at 1450 ° C. for 30 minutes. Next, an insulating layer 26 was formed on the SiC wafer 1 by dry oxidation. Oxidation conditions are 1 150 ° C for 3 hours when using the SiC (0001) off substrate, and 1 150 ° C for 1 hour for the SiC (1 1-20) sample. Layer 26 has a thickness of 35-46 nm.
次に、 n型領域 2 2 , 24上に、 それそれソース電極 2 8、 ドレイン電極 3 0 を形成した。 ソース電極 28およびドレイン電極 30にはアルミ/チタン(A1: Next, a source electrode 28 and a drain electrode 30 were formed on the n-type regions 22 and 24, respectively. Aluminum / titanium (A1:
250皿、 Ti: 30nm)を用い、 800°Cで 60分間の熱処理を施した。 さらに、 絶縁 層 26上に、 A 1製のゲート電極 32 (厚さ 200 nm) を形成し、 その後、 フ ォ一ミングガス (H2ZN2) 中で 4 5 0°C、 1 0分間の熱処理を行った。 なお、 これらの選択的イオン注入用マスクや電極金属のパ夕一ニングには、 フォトリソ グラフィ技術を用いた。 Using a 250 dish, Ti: 30 nm), a heat treatment was performed at 800 ° C. for 60 minutes. Further, a gate electrode 32 (thickness: 200 nm) made of A1 is formed on the insulating layer 26, and then subjected to a heat treatment at 450 ° C. for 10 minutes in a forming gas (H 2 ZN 2 ). Was done. In addition, photolithography technology was used for the selective ion implantation mask and electrode metal patterning.
また、 MO S FE T 2 0のチャネル長は 3 Ο ΠΚ チャネル幅は 2 00 mと した。 さらに、 S i C ( 1 1 -20) 面上に MO S FE Tを作製する場合には、 面方位を考慮して、 ドレイン電流が < 0001 >方向またはく 1一 100 >方向 に流れるようにした。 The channel length of the MOS FET 20 is set to 3 3 3, and the channel width is set to 200 m. Furthermore, when fabricating a MOS FET on the SiC (1 1 -20) plane, the drain current must flow in the <0001> direction or the <100> direction in consideration of the plane orientation. did.
図 11は、作製した MO S FE Tの典型的なドレイン特性を示すグラフである。 これは 4 H— S i C (1 1— 20) 基板上に成長した活性層を用い、 チャネルが < 0001 >軸に平行になっている MO S FE Tの特性である。 線形領域と飽和 領域が明確に観測され、 しかもゼロゲートバイァス時にオフとなるノーマリオフ 型の MO S F E Tとして良好な動作をしている。 他の試料を用いた MO S FE T でも、 全て FE T動作は確認されたが、 チャネル移動度やしきい値電圧に違いが 見られた。
図 12は、 それそれの MO S FE Tについて線形領域から求めた実効チャネル 移動度の平均値を示す。 各試料について少なくとも 6個以上の MO S FE Τを評 価してチャネル移動度を測定し、 その平均を求めた。 また、 S i C ( 11— 20) 基板上に作製した MO SFETについては、 < 0001 >に平行方向のチャネル 移動度( 〃)とく 1— 100>方向 (く 0001 >軸に垂直な方向) のチャネル 移動度(〃丄)とを求め、 その比も示した。 FIG. 11 is a graph showing typical drain characteristics of the fabricated MOS FET. This is a characteristic of a MOS FET using an active layer grown on a 4H—SiC (11-20) substrate, with the channel parallel to the <0001> axis. The linear region and the saturation region are clearly observed, and the device operates well as a normally-off type MOS FET that turns off at zero gate bias. In the case of MO S FET using other samples, FET operation was confirmed, but differences were found in channel mobility and threshold voltage. Figure 12 shows the average of the effective channel mobilities obtained for each MOS FET from the linear region. The channel mobility was measured by evaluating at least 6 or more of the MOSFETs for each sample, and the average was determined. In addition, for MO SFETs fabricated on SiC (11-20) substrates, the channel mobility in the direction parallel to <0001> (〃), especially the 1-100> direction (the direction perpendicular to the <0001> axis) The channel mobility (〃 丄) was determined, and the ratio was also shown.
図 12から分かるように、 6H-S i C、 4H-S i C、 15R- S iCともに 丄で比較すると、 ( 0001 )オフ基板上に作製した M〇 SFETより (11— 2 0) 面上に作製した MO S FE Tの方が高いチャネル移動度が得られている。 こ の理由として、 ( 11 _ 20)基板上の活性層 6ではステップバンチングに起因す る表面粗さが低減され、 極めて平坦な M OS界面が得られており、 表面粗さによ る散乱が低減されていることが考えられる。さらに、 (0001 )基板と ( 11— 20)基板を比較すると、単位面積あたりの S iC結合ボンド数が(11— 20) 面の方が少ないので、 酸化膜を作製した時に MO S界面に形成される界面準位密 度が (11—20)面の方が少ないことが挙げられる。 As can be seen from Fig. 12, when comparing 6H-SiC, 4H-SiC, and 15R-SiC with 丄, the M〇 SFET fabricated on the (0001) off-substrate has a higher (11—20) plane. The higher channel mobility is obtained with the MOS FET prepared in Example 1. The reason is that in the active layer 6 on the (11_20) substrate, the surface roughness due to step bunching is reduced, an extremely flat MOS interface is obtained, and scattering due to the surface roughness is reduced. It is conceivable that it has been reduced. Furthermore, when comparing the (0001) substrate and the (11-20) substrate, the number of SiC bond bonds per unit area is smaller on the (11-20) plane, so that the number The lower the interface state density, the lower the (11-20) plane.
次に、 ポリタイプ毎に特性を比較すると、 6H— SiC (11— 20)基板上 の MO S FE Tでは〃丄が 74 cm2/Vsと比較的高いものの、 〃〃は 22 c m2/Vsと小さい。 これは、 6 H-S i Cバルク中の電子移動度の異方性と同様 の傾向であるので、有効質量や散乱因子の異方性が影響しているものと思われる。 いずれにせよ、 このように面内で 3倍以上の電気伝導の異方性を示すデバイスは 望ましくない。 4H- SiCの場合には、 (0001) 8度オフ基板上の MOSF E Tではチャネル移動度が 8. 4 cm2/Vsと非常に小さいが、 (11— 20) 基板上では〃丄 =46 cm2/Vs、 u//= 55 cm2/Vsとなり、 比較的良好 な値で異方性も小さい。 一方、 15 R— S iC (11-20)基板上の MOSF ETでは、 〃丄 =76 cm2/Vs、 〃〃= 64 c m2/V sであり、 4H-Si Cより高いチャネル移動度が得られた。 以上の結果から、 4H— S iC (11—
20)、 あるいは 15R— SiC ( 11-20)基板上に作製した MOMO S F E Tではチャネル移動度が高く、 かつ異方性が小さいので、 高性能 MOSFET、 I GB T (Insulated Gate Bipolar Transistor)、 MO Sゲートサイリス夕等を作 製するのに有効である。 Next, comparing the characteristics of each polytype, the S of the MOS FET on the 6H—SiC (11-20) substrate is relatively high at 74 cm 2 / Vs, but the 〃 丄 is 22 cm 2 / Vs And small. This is similar to the electron mobility anisotropy in the 6HSiC bulk, and is thought to be due to the effective mass and the anisotropy of the scattering factor. In any case, a device exhibiting more than three times the anisotropy of electrical conduction in the plane is undesirable. In the case of 4H-SiC, the channel mobility is as small as 8.4 cm 2 / Vs in MOSF ET on the (0001) 8 ° off substrate, but 〃 丄 = 46 cm on the (11-20) substrate 2 / Vs, u // = 55 cm 2 / Vs, which are relatively good values and small in anisotropy. On the other hand, for MOSF ET on a 15 R—SiC (11-20) substrate, 〃 丄 = 76 cm 2 / Vs and 〃〃 = 64 cm 2 / V s, indicating higher channel mobility than 4H-SiC. Obtained. From the above results, 4H— S iC (11— 20) or 15R—MOMO SFETs fabricated on SiC (11-20) substrates have high channel mobility and low anisotropy, so high-performance MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), It is effective for making gate thyrists and the like.
なお、 ここでは熱酸化によってゲート電極用の絶縁層 26を形成したが、 C V D法によって S i〇2膜を堆積させる場合でも 4H- S i Cあるいは 15R— S i C ( 11-20) を用いるのが効果的である。 また、 ここでは MOS界面の特 性を調べるために反転型 MOSFETを作製したが、 4H-S i Cあるいは 15R -S iC(l 1-20)を用いると良好な酸化膜/ S i C界面特性が得られるので、 他のデバイス作製にも適用できる。 例えば、 S i C半導体デバイスに酸化膜を第 一層とする表面保護膜を熱酸化または化学気相堆積法で形成する場合には、 非常 に安定で、 界面におけるキヤリャ生成速度の低い界面特性が得られる。 産業上の利用可能性 Although an insulating layer 26 for the gate electrode by a thermal oxidation, using even 4H-S i C or 15R- S i C (11-20) when depositing the S I_〇 2 film by CVD here Is effective. In addition, here we fabricated an inverting MOSFET to investigate the characteristics of the MOS interface, but using 4H-SiC or 15R-SiC (l 1-20) gives good oxide / SiC interface characteristics. Can be obtained, so that it can be applied to other device fabrication. For example, when a surface protection film having an oxide film as a first layer is formed on a SoC semiconductor device by thermal oxidation or chemical vapor deposition, very stable interface characteristics with a low carrier generation rate at the interface can be obtained. Can be Industrial applicability
以上説明したように、 本発明に係る S i Cウェハによれば、 面方位がほぼ (1 1-20) の S i C基板を用いるため、 ウェハ上に S i Cの活性層をェピ夕キシ ャル成長させても、 S i C基板の <0001 >軸方向に伸びるマイクロパイプや らせん転位は活性層には到達しない。 また、 6 H型ポリタイプの S i C基板と比 較して電子移動度の異方性が小さい 4 H型ポリタイプまたは 15 R型ポリタイプ の基板を用いるため、 S i Cウェハ上に成長させた活性層における電子移動度の 異方性が低減される。 さらに、 S i C基板上に S i Cからなるバッファ層が形成 されているため、 ウェハ上に S i C活性層を成長させた場合に、 3 ;1( 基板と3 i C活性層との格子不整合による歪みが当該 S i C活性層に発生する事態を防止 することができる。
As described above, according to the SiC wafer according to the present invention, since the SiC substrate having a plane orientation of approximately (11-20) is used, an active SiC layer is formed on the wafer. Even with xy growth, micropipes and screw dislocations extending in the <0001> axis direction of the SiC substrate do not reach the active layer. In addition, since a 4H-type or 15R-type polytype substrate, which has a smaller anisotropy in electron mobility than a 6H-type SiC substrate, is used, it can be grown on a SiC wafer. The anisotropy of electron mobility in the activated layer is reduced. Furthermore, since the buffer layer made of SiC is formed on the SiC substrate, when the SiC active layer is grown on the wafer, the 3; 1 ( It is possible to prevent a situation in which distortion due to lattice mismatch occurs in the SiC active layer.