WO2000056335A1 - Methods for treating neurodegenerative disorders using aspartyl protease inhibitors - Google Patents
Methods for treating neurodegenerative disorders using aspartyl protease inhibitors Download PDFInfo
- Publication number
- WO2000056335A1 WO2000056335A1 PCT/US2000/007804 US0007804W WO0056335A1 WO 2000056335 A1 WO2000056335 A1 WO 2000056335A1 US 0007804 W US0007804 W US 0007804W WO 0056335 A1 WO0056335 A1 WO 0056335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- group
- member selected
- alkyl
- aryl
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 115
- 239000003696 aspartic proteinase inhibitor Substances 0.000 title claims abstract description 63
- 208000015122 neurodegenerative disease Diseases 0.000 title claims abstract description 22
- 102000013498 tau Proteins Human genes 0.000 claims abstract description 77
- 108010026424 tau Proteins Proteins 0.000 claims abstract description 77
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 claims abstract description 61
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 claims abstract description 46
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 claims abstract description 42
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 claims abstract description 42
- 238000012545 processing Methods 0.000 claims abstract description 25
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 20
- 102000003908 Cathepsin D Human genes 0.000 claims description 92
- 108090000258 Cathepsin D Proteins 0.000 claims description 92
- 230000000694 effects Effects 0.000 claims description 48
- 125000003118 aryl group Chemical group 0.000 claims description 45
- 125000000623 heterocyclic group Chemical group 0.000 claims description 44
- 125000000217 alkyl group Chemical group 0.000 claims description 43
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 40
- 239000012634 fragment Substances 0.000 claims description 38
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 35
- 125000005160 aryl oxy alkyl group Chemical group 0.000 claims description 34
- 125000003107 substituted aryl group Chemical group 0.000 claims description 34
- 101710110426 Aspartyl protease inhibitor Proteins 0.000 claims description 33
- 125000001072 heteroaryl group Chemical group 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 26
- 208000024827 Alzheimer disease Diseases 0.000 claims description 24
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 22
- 101000823051 Homo sapiens Amyloid-beta precursor protein Proteins 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 125000005343 heterocyclic alkyl group Chemical group 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 17
- 125000004446 heteroarylalkyl group Chemical group 0.000 claims description 16
- 229910052736 halogen Inorganic materials 0.000 claims description 15
- 150000002367 halogens Chemical class 0.000 claims description 15
- 102000004169 proteins and genes Human genes 0.000 claims description 14
- 108090000623 proteins and genes Proteins 0.000 claims description 14
- 210000001124 body fluid Anatomy 0.000 claims description 12
- 239000010839 body fluid Substances 0.000 claims description 12
- 125000004122 cyclic group Chemical group 0.000 claims description 11
- 208000037259 Amyloid Plaque Diseases 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 108010048112 Amyloidogenic Proteins Proteins 0.000 claims description 5
- 102000009091 Amyloidogenic Proteins Human genes 0.000 claims description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical group C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 5
- 230000003942 amyloidogenic effect Effects 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 206010012289 Dementia Diseases 0.000 claims description 4
- 206010008111 Cerebral haemorrhage Diseases 0.000 claims description 3
- 206010019196 Head injury Diseases 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims description 3
- 208000018737 Parkinson disease Diseases 0.000 claims description 3
- 206010002022 amyloidosis Diseases 0.000 claims description 3
- 201000010374 Down Syndrome Diseases 0.000 claims description 2
- 206010044688 Trisomy 21 Diseases 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims 3
- 125000002837 carbocyclic group Chemical group 0.000 claims 3
- 230000019771 cognition Effects 0.000 claims 1
- 230000007547 defect Effects 0.000 claims 1
- 230000004770 neurodegeneration Effects 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 description 125
- 239000003112 inhibitor Substances 0.000 description 80
- QMPATRQNERZOMF-YJBOKZPZSA-N chembl2179950 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)C=[N+]=[N-])NC(=O)OCC=1C=CC=CC=1)C1=CC=CC=C1 QMPATRQNERZOMF-YJBOKZPZSA-N 0.000 description 49
- -1 benzimidazoyl Chemical group 0.000 description 35
- 238000003556 assay Methods 0.000 description 32
- 125000000524 functional group Chemical group 0.000 description 24
- 238000003786 synthesis reaction Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 229940123363 Cathepsin D inhibitor Drugs 0.000 description 15
- 101000959886 Solanum tuberosum Aspartic protease inhibitor 2 Proteins 0.000 description 15
- 101000959868 Solanum tuberosum Aspartic protease inhibitor 8 Proteins 0.000 description 15
- 210000004556 brain Anatomy 0.000 description 15
- 230000003389 potentiating effect Effects 0.000 description 15
- 102000005600 Cathepsins Human genes 0.000 description 14
- 108010084457 Cathepsins Proteins 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 14
- 230000005764 inhibitory process Effects 0.000 description 13
- 241000282414 Homo sapiens Species 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 230000000971 hippocampal effect Effects 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 230000002401 inhibitory effect Effects 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 10
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 10
- 125000004423 acyloxy group Chemical group 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 230000002132 lysosomal effect Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000003776 cleavage reaction Methods 0.000 description 8
- 238000003119 immunoblot Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 229950000964 pepstatin Drugs 0.000 description 8
- 108010091212 pepstatin Proteins 0.000 description 8
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 239000003656 tris buffered saline Substances 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 125000002252 acyl group Chemical group 0.000 description 7
- 125000004442 acylamino group Chemical group 0.000 description 7
- 125000003545 alkoxy group Chemical group 0.000 description 7
- 125000003282 alkyl amino group Chemical group 0.000 description 7
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000007995 HEPES buffer Substances 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 108091005804 Peptidases Proteins 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- 102000001708 Protein Isoforms Human genes 0.000 description 6
- 108010029485 Protein Isoforms Proteins 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 229940124639 Selective inhibitor Drugs 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 230000009920 chelation Effects 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 5
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical group NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 0 CC(N(CC1)CCC1C(*(CCc1ccc2OCOc2c1)C[C@@]([C@](Cc1ccccc1)*C(COc1cc(Cl)ccc1)=O)O)=O)=O Chemical compound CC(N(CC1)CCC1C(*(CCc1ccc2OCOc2c1)C[C@@]([C@](Cc1ccccc1)*C(COc1cc(Cl)ccc1)=O)O)=O)=O 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical group C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 239000006180 TBST buffer Substances 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 150000001540 azides Chemical class 0.000 description 4
- 210000005013 brain tissue Anatomy 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 4
- 229960003677 chloroquine Drugs 0.000 description 4
- 238000000326 densiometry Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 230000004064 dysfunction Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 239000012723 sample buffer Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 101100506031 Arabidopsis thaliana CEL5 gene Proteins 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- 101100230385 Dickeya dadantii (strain 3937) celZ gene Proteins 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Chemical group 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 125000004104 aryloxy group Chemical group 0.000 description 3
- 229940072107 ascorbate Drugs 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 238000002884 conformational search Methods 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 210000001320 hippocampus Anatomy 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 150000002576 ketones Chemical group 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 3
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 3
- 108010028067 procathepsin D Proteins 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 150000003333 secondary alcohols Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000010532 solid phase synthesis reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 3
- 125000005871 1,3-benzodioxolyl group Chemical group 0.000 description 2
- 125000005877 1,4-benzodioxanyl group Chemical group 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- JXRGUPLJCCDGKG-UHFFFAOYSA-N 4-nitrobenzenesulfonyl chloride Chemical compound [O-][N+](=O)C1=CC=C(S(Cl)(=O)=O)C=C1 JXRGUPLJCCDGKG-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 101000768857 Arabidopsis thaliana 3-phosphoshikimate 1-carboxyvinyltransferase, chloroplastic Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102000004225 Cathepsin B Human genes 0.000 description 2
- 108090000712 Cathepsin B Proteins 0.000 description 2
- 102000004172 Cathepsin L Human genes 0.000 description 2
- 108090000624 Cathepsin L Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical group C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005844 autocatalytic reaction Methods 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 210000004900 c-terminal fragment Anatomy 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 150000001793 charged compounds Chemical class 0.000 description 2
- 230000007278 cognition impairment Effects 0.000 description 2
- 238000003271 compound fluorescence assay Methods 0.000 description 2
- 238000000205 computational method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 208000017004 dementia pugilistica Diseases 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000007421 fluorometric assay Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000004795 grignard reagents Chemical class 0.000 description 2
- 238000012203 high throughput assay Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Chemical group CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 2
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Chemical group C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical group C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- 238000002898 library design Methods 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- HBZGKOVPGJULGC-UHFFFAOYSA-N n-diazo-4-nitrobenzenesulfonamide Chemical compound [O-][N+](=O)C1=CC=C(S(=O)(=O)N=[N+]=[N-])C=C1 HBZGKOVPGJULGC-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- JPXMTWWFLBLUCD-UHFFFAOYSA-N nitro blue tetrazolium(2+) Chemical compound COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 JPXMTWWFLBLUCD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical group C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 230000036515 potency Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Chemical group COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- LCDCPQHFCOBUEF-UHFFFAOYSA-N pyrrolidine-1-carboxamide Chemical compound NC(=O)N1CCCC1 LCDCPQHFCOBUEF-UHFFFAOYSA-N 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 230000009782 synaptic response Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- CDUQMGQIHYISOP-RMKNXTFCSA-N (e)-2-cyano-3-phenylprop-2-enoic acid Chemical compound OC(=O)C(\C#N)=C\C1=CC=CC=C1 CDUQMGQIHYISOP-RMKNXTFCSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RGUKYNXWOWSRET-UHFFFAOYSA-N 4-pyrrolidin-1-ylpyridine Chemical compound C1CCCN1C1=CC=NC=C1 RGUKYNXWOWSRET-UHFFFAOYSA-N 0.000 description 1
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- LWUXSFZMSNWQPM-UHFFFAOYSA-N Cc(cc1O)cc(O)c1OCc1ccccc1 Chemical compound Cc(cc1O)cc(O)c1OCc1ccccc1 LWUXSFZMSNWQPM-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241001539473 Euphoria Species 0.000 description 1
- 206010015535 Euphoric mood Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010018671 Grandiosity Diseases 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 101710115937 Microtubule-associated protein tau Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010036631 Presenile dementia Diseases 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 241000534944 Thia Species 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 239000003875 Wang resin Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NERFNHBZJXXFGY-UHFFFAOYSA-N [4-[(4-methylphenyl)methoxy]phenyl]methanol Chemical compound C1=CC(C)=CC=C1COC1=CC=C(CO)C=C1 NERFNHBZJXXFGY-UHFFFAOYSA-N 0.000 description 1
- OZUUGOSDELJIHJ-UHFFFAOYSA-N [bromo(phenyl)methoxy]methylbenzene Chemical compound C=1C=CC=CC=1C(Br)OCC1=CC=CC=C1 OZUUGOSDELJIHJ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- GRJWDJVTZAUGDZ-UHFFFAOYSA-N anthracene;magnesium Chemical compound [Mg].C1=CC=CC2=CC3=CC=CC=C3C=C21 GRJWDJVTZAUGDZ-UHFFFAOYSA-N 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 210000004720 cerebrum Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940069078 citric acid / sodium citrate Drugs 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- BMFYCFSWWDXEPB-UHFFFAOYSA-N cyclohexyl(phenyl)methanone Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1 BMFYCFSWWDXEPB-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000001353 entorhinal cortex Anatomy 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 201000000133 gait apraxia Diseases 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000007825 histological assay Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000002303 hypothalamus releasing factor Substances 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003933 intellectual function Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000863 loss of memory Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000002080 lysosomotropic effect Effects 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- VDUIPQNXOQMTBF-UHFFFAOYSA-N n-ethylhydroxylamine Chemical group CCNO VDUIPQNXOQMTBF-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 125000005492 nosylate group Chemical group 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- QNDVLZJODHBUFM-WFXQOWMNSA-N okadaic acid Chemical compound C([C@H](O1)[C@H](C)/C=C/[C@H]2CC[C@@]3(CC[C@H]4O[C@@H](C([C@@H](O)[C@@H]4O3)=C)[C@@H](O)C[C@H](C)[C@@H]3[C@@H](CC[C@@]4(OCCCC4)O3)C)O2)C(C)=C[C@]21O[C@H](C[C@@](C)(O)C(O)=O)CC[C@H]2O QNDVLZJODHBUFM-WFXQOWMNSA-N 0.000 description 1
- VEFJHAYOIAAXEU-UHFFFAOYSA-N okadaic acid Natural products CC(CC(O)C1OC2CCC3(CCC(O3)C=CC(C)C4CC(=CC5(OC(CC(C)(O)C(=O)O)CCC5O)O4)C)OC2C(O)C1C)C6OC7(CCCCO7)CCC6C VEFJHAYOIAAXEU-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- GCSHUYKULREZSJ-UHFFFAOYSA-N phenyl(pyridin-2-yl)methanone Chemical compound C=1C=CC=NC=1C(=O)C1=CC=CC=C1 GCSHUYKULREZSJ-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 108010020708 plasmepsin Proteins 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000001176 projection neuron Anatomy 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000022558 protein metabolic process Effects 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 210000002763 pyramidal cell Anatomy 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/4035—Isoindoles, e.g. phthalimide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4465—Non condensed piperidines, e.g. piperocaine only substituted in position 4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4525—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- RO1 GM53696 and RO1 GM50353 awarded by the National Institutes of Health. The Government has certain rights in this invention.
- Alzheimer's disease is the most common form of both senile and presenile dementia in the world and is recognized clinically as relentlessly progressive dementia that presents with increasing loss of memory, intellectual function and disturbances in speech (Merritt, 1979, A Textbook of Neurology, 6th edition, 484-489 Lea & Febiger, Philadelphia). The disease itself usually has a slow and insidious progress that affects both sexes equally, worldwide.
- Alzheimer's disease afflicts an estimated 4 million human beings in the United States alone at a cost of 35 billion dollars a year (Hay and Ernst, Am. J. Public Health, 77:1169-1175 (1987)).
- Amyloidogenic A ⁇ peptides are the principle component of the amyloid plaques that accumulate intracellularly and extracellularly in the neuritic plaques in the brain in AD.
- a ⁇ is a 4.5 kD protein, about 40-42 amino acids long, that is derived from the C-terminus of amyloid precursor protein (APP).
- APP is a membrane- spanning glycoprotein that, in the normal processing pathway, is cleaved inside the A ⁇ protein to produce ⁇ -sAPP, a secreted form of APP.
- alpha ⁇ -sAPP precludes formation of A ⁇ . It has been proposed that A ⁇ accumulates by virtue of abnormal processing of APP, so that compounds that inhibit the activity of the enzymes responsible for A ⁇ production are desirable (see, e.g. , Wagner, et al , Biotech. Report, 106-107 (1994/1995); and Selkoe, TINS, 16:403-409 (1993)). In addition to the accumulation of amyloid plaques, neurons in AD brains exhibit specific alterations in r, a family of phosphoproteins that bind tubulin (Weingarten, et al , Proc. Natl Acad. Sci.
- T proteins adopt an altered form and comprise the dominant component of abnormal cytosketal fibers known as paired helical filaments (PHFs) (see, Kosik, et al , Proc. Natl. Acad. Sci. USA, 83:4044-4088 (1986); Lee, et al , Science, 251:675-678 (1991); and Mann, et al , Neuropathol. Appl. NeurobioL , 13: 123-139 (1987)).
- PHFs paired helical filaments
- PHF- ⁇ proteins maintain an excessively phosphorylated state throughout postmortem intervals (Matsuo, et al , Neuron, 13:989- 1002 (1994)).
- the present invention relates to (i) non-peptide aspartyl protease inhibitors; (ii) methods for modulating the processing of an amyloid precursor protein (APP); (iii) methods for modulating the processing of a tau protein ( ⁇ -protein); and (iv) methods for treating neurodegenerative diseases.
- APP amyloid precursor protein
- ⁇ -protein tau protein
- the present invention provides a method for modulating the processing of an amyloid precursor protein (APP), the method comprising contacting a composition containing the APP with an aspartyl protease inhibitor having the general formula:
- R R 2 and R 3 are members independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryloxyalkyl, substituted aryloxyalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, heterocycles, substituted heterocycles, heterocyclicalkyl and substituted heterocyclicalkyl.
- R 5 and ⁇ are independently selected from the group consisting of hydrogen, halogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryloxyalkyl and substituted aryloxyalkyl.
- R 5 and R 6 and the carbons to which they are bound join to form an optionally substituted 9- or 10-ring atom carbocyclic or heterocyclic fused ring system.
- Typical 9- or 10-atom fused ring systems include, but are not limited to, napthalyl, 1,3- benzodioxolyl, 2,3-benzofuranyl, 1,4-benzodioxanyl, benzimidazoyl, benzothiazolyl etc.
- R is a functional group including, but not limited to, substituted arylalkyl, substituted aryl, substituted alkyl and substituted heterocyclic groups.
- R is a functional group including, but not limited to, substituted arylalkyl, substituted aryl, substituted alkyl and substituted heterocyclic groups. Examples of such functional groups include, but are not limited to, the following:
- R 2 is a functional group including, but not limited to, substituted alkyl, heterocyclic and substituted heterocyclic groups.
- functional groups include, but are not limited to, the following:
- R 2 is a functional group other than a nitrogen-bonded cyclic ⁇ -amino acid or ester thereof.
- R 3 is a functional group including, but not limited to, substituted alkyl and substituted aryl groups. Examples of such functional groups include, but are not limited to, the following:
- R 5 and R 6 and the carbons to which they are bound join to form an optionally substituted napthalene ring.
- R 5 and R ⁇ 5 are both hydrogen or R 5 is hydrogen and R 6 is a meta or para substituent.
- the aspartyl protease inhibitor is selected from the group consisting of:
- the modulation of APP can be demonstrated in a variety of ways.
- aspartyl protease inhibitors can be evaluated for the ability to modulate generation of A ⁇ or ⁇ -sAPP.
- the formation of A ⁇ is decreased compared to the amount formed in the absence of the aspartyl protease inhibitor.
- formation of ⁇ -sAPP is increased compared to the amount formed in the absence of the asparty protease inhibitor.
- the composition is a body fluid.
- the body fluid is cerebral spinal fluid (CSF).
- the present invention provides a method for modulating the processing of a tau-protein ( ⁇ -protein), the method comprising contacting a composition containing the ⁇ -protein with an aspartyl protease inhibitor of Formula I.
- the modulation of 7-protein can be demonstrated in a variety of ways.
- aspartyl protease inhibitors can be evaluated for the ability to modulate generation of T- fragments.
- the formation of ⁇ -fragments is decreased compared to the amount formed in the absence of the aspartyl protease inhibitor.
- the composition is a body fluid.
- the body fluid is cerebral spinal fluid (CSF).
- the present invention provides a method of treating a neurodegenerative disorder, the method comprising: administering to a mammal a therapeutically effective amount of an aspartyl protease inhibitor of Formula I and a pharmaceutically acceptable carrier or excipient.
- the neurodegenerative disorder is characterized by the accumulation of amyloid plaques.
- the neurodegenerative disorder is characterized by the accumulation of T- fragments.
- the aspartyl protease inhibitors of the present invention can be used to treat all amyloid-pathology related diseases and all tau pathology-related diseases. Examples of such neurodegenerative diseases include, but are not limited to, the following: Alzheimer's disease, Parkinson's disease, cognition deficits, Downs
- dementia e.g. , dementia pugilistica
- head trauma cerebral hemorrhage with amyloidosis, dementia (e.g. , dementia pugilistica) and head trauma.
- FIG. 1 illustrate isostere-based inhibitor design.
- FIG. 2 illustrates components employed to prepare the libraries targeting cathepsin D.
- the same disconnections provide scaffold 2.
- Isocyanates and sulfonyl chlorides which can be used to incorporate R 2 and R 3 , provide ureas and sulfonamides, respectively.
- FIG. 3 illustrates the used of BUILDERopt in designing the combinatorial library:
- FIGS. 5A-5C illustrates the components used to prepare the Diverse Library. Diverse library components are labeled by lower case letter code as for the directed library.
- Thirty-nine compounds incorporating these sidechains were synthesized on resin as described previously, EFD, EHD, FFD, FHD, KFD, KHD, LFD, LHD, MFD, MHD, NFD, NHD, OFD, OHD, PFD, PHD, QFD, QHD, RFD, RHD, SFD, SHD, TFD, THD, UFD, UHD, NFD, VHD, EHA, EHJ, EHK, EHL, EHM, EH ⁇ , EHO, EHP, EHQ, EHR, EHS.
- the compounds were assayed at 333 nM, 100 nM and 33 nM in high-throughput screening.
- the most active compounds were synthesized on large scale and the K x values were determined (Table 3
- FIG. 7 illustrates structural diversity being introduced via Grignard addition to solid support-bound x - alkoxy pyrrolidine amide.
- FIG. 8 illustrates synthesis of solid phase aspartyl protease inhibitor synthesis.
- FIG. 9 illustrates components to generate library diversity in a 204 compound library.
- FIG. 10 illustrates that the cathepsin D inhibitor, i.e. , CEL5-172, by itself, did not detectably change the concentration of either the tau fragment or the APP fragment, but it did block most, if not all, of the increases in the tau and APP fragments produced by ZDAP.
- the cathepsin D inhibitor i.e. , CEL5-172
- FIG. 11 illustrates that like CEL5-172, the cathepsin D inhibitor EA-1, by itself, did not detectably change the concentration of either the phosphorylated taus fragment, but it exhibited a much higher blocking effect than CEL5-172.
- FIG. 12 illustrates the structures of three inhibitors used in the experiments set forth in Example III, all of which have molecular weights of 650-800 Daltons and Ki's for cathepsin D of between 1-15 nM.
- FIG. 13 illustrates the morphological and physiological effects of cathepsin inhibitors. Semi-thin sections through the cell body layer of field CA1 of cultured hippocampal slices given no treatment (A), a 6-day exposure to an inhibitor of cathepsins B and L (B), or a-6 day exposure to an inhibitor of cathepsin D (C). Note the presence in (B) of large numbers of small, dense bodies that in some cases are clustered into torpedo shaped expansions (arrows).
- IPSCs were well developed in treated slices (iii) as can be seen in the Schaffer- commissural responses collected with the membrane potential set to -50mV. A negative going EPSC recorded at -70mV is also shown.
- FIG. 14 illustrates the effects of cathepsin inhibitors on concentrations of phosphorylated tau fragments.
- Cultured slices were incubated for 6 days with an inhibitor of cathepsins B and L (ZPAD), an inhibitor of cathepsin D, or both.
- ZPAD an inhibitor of cathepsin D
- Western blots were then prepared from slice homogenates using an antibody against the hyperphosphorylated tau found in human neurofibrillary tangles.
- the top panels show immunostaining in the 25-35 kDa region of the blots.
- ZPAD increased the concentrations of phosphorylated bands in this region over the levels found in controls.
- the bottom panels summarize analysis of AT8 staining from five separate experiments with all values expressed as percent of yoked controls. *, P ⁇ 0.05; **, P ⁇ 0.01; error bars, standard errors.
- FIG. 15 illustrates the time course and dose dependency for suppression of phosphorylated tau fragments by a cathepsin D inhibitor.
- A Cultured hippocampal slices were incubated for 2, 4, or 6 days with the cathepsin B/L inhibitor-ZPAD, the cathepsin D inhibitor-EA-1, or both. Western blot analyses for phosphorylated tau fragments were carried out at the end of the incubation with densitometric values expressed as percent of concentrations in yoked controls. ZPAD induced increases were detectable after 48 hrs and continued to grow thereafter.
- the cathepsin D inhibitor had no apparent effect but blocked the increases produced by ZPAD at all time points.
- (B) Slices were incubated with ZPAD, EA-1, or ZPAD plus the indicated concentrations of EA-1 for six days.
- the cathepsin D inhibitor had no detectable effects on concentrations of phosphorylated tau fragments at the concentrations tested.
- a dose of 1 ⁇ M caused a sizeable decrease in the effect of ZPAD while 5 ⁇ M completely suppressed it.
- FIG. 16 illustrates the effects of cathepsin inhibitors on tau and cathepsin D isoforms.
- Slices were incubated with ZPAD, EA-1, or both for 6 days after which Western blots were used to assess the concentrations of the target proteins with tau 1 antibodies (A), or anti-cathepsin D antisera (B). Densitometeic values were expressed as percent change from the concentrations in yoked control slices.
- A ZPAD caused sizeable reductions in four unphosphorylated isoforms of native tau; EA-1 was without effect itself and did not block the changes produced by ZPAD. ZPAD also generated a large increase in a 29 kDa tau fragment; this was completely blocked by EA-1.
- B ZPAD resulted in modest increases in procathepsin D and larger increases in the active, heavy chain variant of the protease. EA-1 suppressed the second of these effects.
- the present invention relates to (i) non-peptide aspartyl protease inhibitors; (ii) methods for modulating the processing of an amyloid precursor protein (APP); (iii) methods for modulating the processing of a tau protein ( ⁇ -protein); and (iv) methods for treating neurodegenerative diseases.
- APP amyloid precursor protein
- ⁇ -protein tau protein
- R R 2 and R 3 independently selected are identical or different (e.g. , R,, R 2 and R 3 may all be substituted alkyls or Ri and R 2 may be a substituted alkyl and R 3 may be an aryl, etc.).
- alkyl is used herein to refer to a branched or unbranched, saturated or unsaturated, monovalent hydrocarbon radical having from 1-12 carbons and preferably, from 1-6 carbons. When the alkyl group has from 1-6 carbon atoms, it is referred to as a "lower alkyl. " Suitable alkyl radicals include, for example, methyl, ethyl, n-propyl, i-propyl, 2-propenyl (or allyl), n-butyl, t-butyl, i-butyl (or 2- methylpropyl), etc. As used herein, the term encompasses "substituted alkyls. "
- Substituted alkyl refers to alkyl as just described including one or more functional groups such as lower alkyl, aryl, substituted aryl, acyl, halogen (i.e. , alkylhalos, e.g. , CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, thioamido, acyloxy, aryloxy, aryloxyalkyl, mercapto, thia, aza, oxo, both saturated and unsaturated cyclic hydrocarbons, heterocycles and the like. These groups may be attached to any carbon of the alkyl moiety. Additionally, these groups may be pendent from, or integral to, the alkyl chain.
- aryl is used herein to refer to an aromatic substituent which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety.
- the common lmking group may also be a carbonyl as in benzophenone.
- the aromatic ring(s) may include phenyl, naphthyl, biphenyl, diphenylmethyl and benzophenone among others.
- aryl encompasses "arylalkyl. "
- arylalkyl is used herein to refer to a subset of “aryl” in which the aryl group is attached to the nucleus shown in Formula 1 by an alkyl group as defined herein.
- substituted aryl refers to aryl as just described including one or more functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g.
- cyclic hydrocarbons optionally substituted with one or more heteroatoms, which are fused to the aromatic ring(s), linked covalently or linked to a common group such as a methylene or ethylene moiety.
- the linking group may also be a carbonyl such as in cyclohexyl phenyl ketone.
- substituted aryl encompasses "substituted arylalkyl. " “Substituted arylalkyl” defines a subset of "substituted aryl” wherein the substituted aryl group is attached to the nucleus shown in Formula 1 by an alkyl group as defined herein.
- acyl is used to describe a ketone substituent, — C(O)R, where R is alkyl or substituted alkyl, aryl or substituted aryl as defined herein.
- halogen is used herein to refer to fluorine, bromine, chlorine and iodine atoms.
- hydroxy is used herein to refer to the group —OH.
- amino is used to describe primary amines, R— NH 2 .
- alkoxy is used herein to refer to the —OR group, where R is a lower alkyl, substituted lower alkyl, aryl, substituted aryl, arylalkyl or substituted arylalkyl wherein the alkyl, aryl, substituted aryl, arylalkyl and substituted arylalkyl groups are as described herein.
- alkoxy radicals include, for example, methoxy, ethoxy, phenoxy, substituted phenoxy, benzyloxy, phenethyloxy, t-butoxy, etc.
- alkylamino denotes secondary and tertiary amines wherein the alkyl groups may be either the same or different and are as described herein for “alkyl groups.
- acylamino describes substituents of the general formula RC(O)NR', wherein R' is a lower alkyl group and R represents the nucleus shown in Formula 1 or an alkyl group, as defined herein, attached to the nucleus.
- acyloxy is used herein to describe an organic radical derived from an organic acid by the removal of the acidic hydrogen.
- Simple acyloxy groups include, for example, acetoxy, and higher homologues derived from carboxylic acids such as ethanoic, propanoic, butanoic, etc.
- the acyloxy moiety may be oriented as either a forward or reverse ester (i.e. , RC(O)OR' or R'OC(O)R, respectively, wherein R comprises the portion of the ester attached either directly or through an intermediate hydrocarbon chain to the nucleus shown in claim 1).
- aryloxy denotes aromatic groups which are linked to the nucleus shown in FIG. 1 directly through an oxygen atom. This term encompasses “substituted aryloxy” moieties in which the aromatic group is substituted as described above for “substituted aryl. "
- aryloxyalkyl defines aromatic groups attached, through an oxygen atom to an alkyl group, as defined herein.
- the alkyl group is attached to the nucleus shown in FIG. 1.
- aryloxyalkyl encompasses "substituted 13 aryloxyalkyl” moieties in which the aromatic group is substituted as described for “substituted aryl. "
- mercapto defines moieties of the general structure R— S— R' wherein R and R' are the same or different and are alkyl, aryl or heterocyclic as described herein.
- saturated cyclic hydrocarbon denotes groups such as the cyclopropyl, cyclobutyl, cyclopentyl, etc. , and substituted analogues of these structures. These cyclic hydrocarbons can be single- or multi-ring structures.
- unsaturated cyclic hydrocarbon is used to describe a monovalent non-aromatic group with at least one double bond, such as cyclopentene, cyclohexene, etc. and substituted analogues thereof. These cyclic hydrocarbons can be single- or multi-ring structures.
- heteroaryl refers to aromatic rings in which one or more carbon atoms of the aromatic ring(s) are substituted by a heteroatom such as nitrogen, oxygen or sulfur.
- Heteroaryl refers to structures which may be a single aromatic ring, multiple aromatic ring(s), or one or more aromatic rings coupled to one or more non-aromatic ring(s). In structures having multiple rings, the rings can be fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety.
- the common linking group may also be a carbonyl as in phenyl pyridyl ketone.
- rings such as thiophene, pyridine, isoxazole, phthalimide, pyrazole, indole, furan, etc. or benzo-fused analogues of these rings are defmed by the term "heteroaryl. "
- Heteroarylalkyl defines a subset of “heteroaryl” wherein an alkyl group, as defined herein, links the heteroaryl group to the nucleus shown in FIG. 1.
- Substituted heteroaryl refers to heteroaryl as just described wherein the heteroaryl nucleus is substituted with one or more functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g. , CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto, etc.
- substituted analogues of heteroaromatic rings such as thiophene, pyridine, isoxazole, phthalimide, pyrazole, indole, furan, etc. or benzo-fused analogues of these rings are defined by the term "substituted heteroaryl.
- Substituted heteroarylalkyl refers to a subset of "substituted heteroaryl” as described above in which an alkyl group, as defined herein, links the heteroaryl group to the nucleus shown in FIG. 1.
- heterocyclic is used herein to describe a monovalent saturated or unsaturated non-aromatic group having a single ring or multiple condensed rings from 1-12 carbon atoms and from 1-4 heteroatoms selected from nitrogen, sulfur or oxygen within the ring.
- Such heterocycles are, for example, tetrahydrofuran, morpholine, piperidine, pyrrolidine, etc.
- substituted heterocyclic as used herein describes a subset of “heterocyclic” wherein the heterocycle nucleus is substituted with one or more functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g. , CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto, etc.
- heterocyclicalkyl defines a subset of "heterocyclic” wherein an alkyl group, as defined herein, links the heterocyclic group to the nucleus shown in FIG.
- optionally substituted napthylene ring describes a naphthalene ring which may be unsubstituted or may be substituted with one or more functional groups including lower alkyl, halogen, acyl, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy or aryl.
- substituted heterocyclicalkyl defines a subset of “heterocyclic alkyl” wherein the heterocyclic nucleus is substituted with one or more functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g. , CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto, etc.
- functional groups such as lower alkyl, acyl, halogen, alkylhalos (e.g. , CF 3 ), hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, mercapto, etc.
- amyloid precursor protein or "APP” is used herein to refer to the progenitor of deposited amyloidogenic A ⁇ peptides (A ⁇ ) found in senile plaques in patients with diseases, such as Alzheimer's disease (AD), that are characterized by such deposition.
- a ⁇ amyloidogenic A ⁇ peptides
- AD Alzheimer's disease
- ⁇ -sAPP is an alternative cleavage product of APP; its formation precludes formation of A ⁇ .
- contacting is used herein interchangeably with the following: combined with, added to, mixed with, passed over, incubated with, flowed over, etc.
- aspartyl protease inhibitors of present invention can be "administered" by any conventional method such as, for example, parenteral, oral, topical and inhalation routes as described herein.
- An amount sufficient or “an effective amount” is that amount of a given aspartyl protease inhibitor which exhibits the binding/inhibitory activity of interest or, which provides either a subjective relief of a symptom(s) or an objectively identifiable improvement as noted by the clinician or other qualified observer.
- the present invention relates to the identification of a number of small-molecule compounds which are capable of binding to and inhibiting aspartyl proteases and, in particular, cathepsin D employing a combined combinatorial library (see, e.g., Thompson, et al, Chemical Reviews, 96, 555-600 (1996)) and structure based design approach (see, e.g. , Kuntz, I.D., Science, 257, 1078-1082 (1992)).
- the libraries of potential aspartyl protease inhibitors e.g. , cathepsin D inhibitors
- the Pj sidechain (R 4 ) was held constant as a benzyl substituent based upon X-ray crystallographic data of cathepsin D complexed with the peptide-based natural product pepstatin as reported by Erickson (Baldwin, et al, Proc. Natl. Acad. Sci. USA, 90, 6796-6800 (1993)). As illustrated in FIG. 2, diversity was introduced at three positions: a primary amine introduced the R t substituent, and acylating agents serve to introduce the R 2 and R 3 substituents.
- the libraries were screened to identify compounds capable of binding to and inhibiting aspartyl proteases and, in particular, cathepsin D.
- the present invention provides compounds having the general formula:
- R,, R 2 and R 3 are members independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryloxyalkyl, substituted aryloxyalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, heterocycles, substituted heterocycles, heterocyclicalkyl and substituted heterocyclicalkyl.
- R 5 and $ are independently selected from the group consisting of hydrogen, halogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryloxyalkyl and substituted aryloxyalkyl.
- R 5 and R 6 and the carbons to which they are bound join to form an optionally substituted 9- or 10-ring atom carbocyclic or heterocyclic fused ring system.
- Typical 9- or 10-atom fused ring systems include, but are not limited to, napthalyl, 1,3- benzodioxolyl, 2,3-benzofuranyl, 1,4-benzodioxanyl, benzimidazoyl, benzothiazolyl etc.
- Rj is a functional group including, but not limited to, substituted arylalkyl, substituted aryl, substituted alkyl and substituted heterocyclic groups.
- Rj is a functional group including, but not limited to, substituted arylalkyl, substituted aryl, substituted alkyl and substituted heterocyclic groups. Examples of such functional groups include, but are not limited to, the following:
- R 2 is a functional group including, but not limited to, substituted alkyl, heterocyclic and substituted heterocyclic groups.
- functional groups include, but are not limited to, the following:
- R 2 is a functional group other than a nitrogen-bonded cyclic c--amino acid or ester thereof.
- R 3 is a functional group including, but not limited to, substituted alkyl and substituted aryl groups.
- functional groups include, but are not limited to, the following:
- R 5 and R 6 and the carbons to which they are bound join to form an optionally substituted napthalene ring.
- R 5 and R 6 are both hydrogen or R 5 is hydrogen and R 6 is a meta or para substituent.
- R ⁇ can be a member selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryloxyalkyl, substituted aryloxyalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, heterocycles, substituted heterocycles, heterocyclicalkyl and substituted heterocyclicalkyl.
- the compounds of Formula I can be a racemic mixture (mixtures of diastereomers or enantiomers) or as stereochemically distinct compounds.
- the compounds of the present invention have the following stereochemistry:
- Tables I and II set forth compounds in accordance with the present invention that are particularly preferred.
- the compounds in Table I and throughout this specification are often referred to by code numbers, which are used for convenience only, and are strictly arbitrary for purposes of this invention.
- the compounds of the present invention can be synthesized in a variety of ways, using conventional synthetic chemistry techniques.
- the compounds of the present invention are prepared according to the reaction scheme set forth in FIG. 2, wherein R R 2 and R 3 are as defined above.
- the use of appropriate organic solvents, temperature and time conditions for ranning the reactions are within the level of skill in the art. Reactions of this type are generally described by E.K. Kick and J.A. Ellman, J. Med. Chem. 38, 1427-1430 (1995), the teachings of which are hereby incorporated by reference.
- the compounds of the present invention have been found to be potent inhibitors of aspartyl proteases and, in particular, cathepsin D.
- the present invention contemplates using the compounds of the present invention to inhibit cathepsin D, either in vivo or in vitro.
- the present invention provides a method of inhibiting cathepsin D, the method comprising contacting cathepsin D with an aspartyl protease inhibitor having the general formula:
- R R 2 and R 3 are members independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryloxyalkyl, substituted aryloxyalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl, heterocycles, substituted heterocycles, heterocyclicalkyl and substituted heterocyclicalkyl.
- R x , R 2 and R 3 and their preferred embodiments are fully applicable to the aspartyl protease inhibitors used in this method of the present invention and, thus, will not be repeated with respect to this particular method.
- R 5 and R 6 are as defined above.
- the present invention provides a method of inhibiting protein processing by cathepsin D in living cells, the method comprising contacting the cells with an effective amount of a compound having the general formula:
- the reactants are mixed, the reaction is allowed to proceed for a specific period of time and the fluorescence of the reaction products is monitored to determine the extent to which the peptide substrate has been cleaved.
- Compounds found to exhibit inhibitory activity towards cathepsin D using the foregoing assay can be synthesized on a larger scale and a more detailed kinetic analaysis can be carried out using an assay similar to that set forth in Table IV, infra, and described in greater detail by G. A. Kraft, et al, Methods Enzymol 241, 70-86 (1994). As such, following the methods of the present invention, compounds can be readily synthesized and screened to identify compounds that inhibit cathepsin D.
- the aspartyl protease inhibitors of the present invention modulate the processing of numerous proteins, such as amyloid precursor protein (APP), involved in diseases.
- the aspartyl proteases of the present invention are used to modulate the processing of APP.
- the present invention provides a method for modulating the processing of an amyloid precursor protein (APP), the method comprising contacting a composition containing the APP with an aspartyl protease inhibitor having the general formula:
- the modulation of APP can be demonstrated in a variety of ways.
- aspartyl protease inhibitors can be evaluated for the ability to modulate generation of A ⁇ or ⁇ -sAPP.
- the formation of A ⁇ is decreased compared to the amount formed in the absence of the aspartyl protease inhibitor.
- formation of ⁇ -sAPP is increased compared to the amount formed in the absence of the asparty protease inhibitor.
- the composition is a body fluid.
- the body fluid is cerebral spinal fluid (CSF).
- CSF cerebral spinal fluid
- Numerous in vitro and in vivo animal models can be used to screen a given aspartyl protease inhibitor for its ability to modulate APP processing.
- Exemplar assays are set forth below, in the Example Section and in, for example, Hoffman, et al , Neuroscience Letters, 250:75-78 (1998); Bahr, et al , Experimental Neurology, 129:81-94 (1994); and U.S. Patent No. 5,872,101, the teachings of which are inco ⁇ orated herein by reference.
- a number of commercially available tests can be used to detect A ⁇ in a composition (e.g. , CSF).
- the ADmark Assay which is commercially available from Athena Neurosciences, Inc. , can be used to detect A ⁇ in CSF.
- in vitro assays The aspartyl protease inhibitors provided herein yield a positive result in one or more in vitro assays that assess the effects of test compounds on processing of APP.
- in vitro assay systems for identifying such compounds are provided herein. These assays evaluate the effects of a test compound on processing of APP and use cultured human glioblastoma cell lines that have been transfected with DNA encoding either a wild-type 695 amino acid isoform of APP or a mutein of APP that contains changes (in this case two or three amino acid changes have been made) that appear to make the molecule more susceptible to proteolytic cleavage that results in increased production of A ⁇ (see, e.g. , Mullan, et al , Nature Genet. , 1:345-347 (1992)).
- a test compound is added to the culture medium and, after a selected period of time, the culture medium and/or cell lysates are analyzed using immunochemical assays to detect the relative amounts of A ⁇ , total soluble APP (sAPP), a portion of sAPP designated ⁇ -sAPP, and C-terminal fragments of APP.
- sAPP total soluble APP
- ⁇ -sAPP a portion of sAPP designated ⁇ -sAPP
- C-terminal fragments of APP C-terminal fragments of APP.
- the culture medium and cell lysates are analyzed by immunoblotting coupled with laser scanning densitometry and ELISAs using several different antibodies.
- a positive test occurs when: (1) there is a decrease in the approximately equal to 4-kDa amyloid jS-protein (A ⁇ ) in the medium relative to control cultures (4-kDa assay); and/ or (2) the relative amount of sAPP in the medium increases; and/or (3) there is a decrease in the amount of C-terminal amyloidogenic fragments larger than 9 kDa and smaller than 22 kDa in the cell lysate as a result of differential processing; and/ or (4) there is an increase in the amount of ⁇ -sAPP in the medium relative to control cultures.
- Control cultures can be cultures that have not been contacted with the compound.
- the A ⁇ assay is done using cells (e.g.
- HGB 717/Swed that have been transfected with DNA encoding the mutein APP; the other assays are performed using cells, such as HGB695 cells, that have been transfected with DNA encoding a wild-type APP.
- the relative amount of ⁇ -sAPP and the ratio of ⁇ -sAPP to total sAPP in CSF are known to be useful markers in the detection of neurodegenerative disorders characterized by cerebral deposition of amyloid (e.g. , AD) and in monitoring the progression of such disease. Furthermore, assay systems inco ⁇ orating these markers can be used in monitoring therapeutic intervention of these diseases.
- the amount of ⁇ -sAPP and the ratio of ⁇ -sAPP to total sAPP in CSF samples can be used as an indicator of Alzheimer's Disease and other neurodegenerative disorders. For pu ⁇ oses herein, this amount and/ or the ratio can also be used to assess the effectiveness of compounds provided herein in treating Alzheimer's Disease and neurodegenerative disorders.
- Alzheimer's disease (as diagnosed by other indicia, or confirmed by autopsy) have a statistically significant lower ratio of ⁇ -sAPP to total sAPP in CSF and also have statistically significant lower levels of ⁇ -sAPP. Therefore, by comparison with non- Alzheimer's disease controls or by existence of a ratio lower than a predetermined standard, based, for example, on averages in samples from large numbers of unafflicted individuals, or an amount of ⁇ - sAPP lower than a predetermined standard, Alzheimer's disease or, depending upon other indications, another neurodegenerative disease is indicated.
- the ability of compounds to modulate processing of APP can also be evaulated using in vivo assays (See, e.g. , Lamb, et al , Nature Genet. , 5:22-29 (1993); Pearson, et al. Proc. Natl. Acad. Sci. U.S.A. 90: 10578-10582 (1993); Kowall, et al , Proc. Natl Acad. Sci. U.S.A. , 88:7247-7251 (1991)).
- Compounds can be administered through a canula implanted in the cranium of a rat or other suitable test animal. After a predetermined period of administration the rats are sacrificed.
- the hippocampi are evaluated in immunoblot assays or other suitable assays to determine the relative level of ⁇ -sAPP and C-terminal fragments of APP compared to untreated control animals. Aspartyl protease inhibitors that result in relative increases in the amount of ⁇ -sAPP are selected.
- the present invention provides a method for modulating the processing of a tau-protein ( ⁇ -protein), the method comprising contacting a composition containing the ⁇ -protein with an aspartyl protease inhibitor having the general formula:
- the modulation of ⁇ -protein can be demonstrated in a variety of ways.
- aspartyl protease inhibitors can be evaluated for the ability to modulate generation of T- fragments.
- the formation of ⁇ -fragments is decreased compared to the amount formed in the absence of the aspartyl protease inhibitor.
- the composition is a body fluid.
- the body fluid is cerebral spinal fluid (CSF).
- CSF cerebral spinal fluid
- Numerous in vitro and in vivo animal models can be used to screen a given aspartyl protease inhibitor for its ability to modulate the processing of ⁇ -protein. Exemplar assays are set forth below, in the
- the supernatant is made to 35% ammonium sulfate and kept on ice for 30 minutes.
- the slurry is centrifuged for 20 minutes at 10,000 g; supernatant is saved, made to 45 % ammonium sulfate, and incubated on ice for 30 minutes.
- the pellet is resuspended in ⁇ 4 mL of buffer A and made to 2.5% perchloric acid.
- the slurry is centrifuged for 15 minutes at 15,000 g.
- the supernatant is made to 20% trichloroacetic acid, ice for 25 minutes and centrifuged for 15 minutes at 15,000 g.
- the pellet is resuspended in 95% ethanol and dried under vacuum.
- protease, test compound and substrate are combined and incubated at 37 °C for various durations.
- Partially purified T is first resuspended in assay buffer (50 mM citric acid/sodium citrate buffer, pH 4.0). Reactions are initiated by the addition of human liver cathepsin D (1 U; Calbiochem, San Diego, Ca, U.S.A.) and test compound to 0.1 mg of T and terminated by removing aliquots at the designated time, adding SDS and 2-mercaptoethanol, and boiling for 5 minutes.
- cathepsin D is defined as the amount of enzyme that generates an increase in absorbance (at 280 nm) of 1.0 per hour when co-incubated with hemoglobin in 10% trichloroacetic acid.
- the specific activity of the enzyme is 300 U/mg of protein, and its purity is greater than 98 % by SDS-PAGE.
- Brains from 3-month-old Sprague-Dawley rats are removed and dissected in artificial cerebrospinal fluid (124 mM NaCl, 20 mM glucose, 5mM HEPES, 3 mM KC1, 1.25 mM KH 2 PO 4 , 2.8 mM MgSO 4 , 2 mM CaCl 2 , mM NaHCO 3 , 0.5 mM ascorbate, Ph 7.4).
- Frontal cortices are homogenized (Teflon to glass, 10 strokes) in 7 mM HEPES buffer, pH 7.35, additionally containing 135 mM NaCl, 2mM EDTA, 2mM EGTA, and 2.0 ⁇ M Okadaic acid. Slurries are centrifuged at 1,000 g for five minutes at 4°C. The supernatant is collected, sonicated, and subjected to two freeze/thaw cycles.
- Proteolytic assays are conducted by co-incubating 0.1 mg of the supernatant described above with 0.35 U of human liver cathepsin D and the test compound.
- the enzyme-to-substrate ratio should be about 1:86 (wt/wt).
- the reaction is allowed proceeded at constant pH for 5 hours at 37 °C and is terminated by adding SDS and 2-mercaptoethanol and boiling the samples for five minutes.
- aspartyl proteases e.g. , cathepsin D
- cathepsin D are enzymes that plays an important role in protein metabolism, catabolism and antigen processing.
- the compounds of the present invention can be used for a number of therapeutic applications.
- the present invention provides a method of treating a neurodegenerative disorder, the method comprising: administering to a mammal a therapeutically effective amount of an aspartyl protease inhibitor and a pharmaceutically acceptable carrier or excipient, the aspartyl protease inhibitor having the general formula:
- the neurodegenerative disorder is characterized by the accumulation of amyloid plaques. In another embodiment, the neurodegenerative disorder is characterized by the accumulation of ⁇ -fragments.
- the aspartyl protease inhibitors of the present invention can be used to treat all amyloid-pathology related diseases and all tau pathology-related diseases. Examples of such neurodegenerative diseases include, but are not limited to, the following: Alzheimer's disease, Parkinson's disease, cognition deficits, Downs Syndrome, cerebral hemorrhage with amyloidosis, dementia (e.g. , dementia pugilistica) and head trauma.
- the compounds, i.e. , aspartyl protease inhibitors, of the present invention can be inco ⁇ orated into a variety of formulations for therapeutic administration. More particularly, the compounds of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc. , administration.
- Suitable formulations for use in the present invention are found in Remington 's Pharmaceutical Sciences (Mack Publishing Company, Philadelphia, PA, 17fh ed. (1985)), which is inco ⁇ orated herein by reference.
- Remington 's Pharmaceutical Sciences (Mack Publishing Company, Philadelphia, PA, 17fh ed. (1985)), which is inco ⁇ orated herein by reference.
- Langer, Science 249: 1527-1533 (1990) which is inco ⁇ orated herein by reference.
- the compounds of the present invention can be administered alone, in combination with each other, or they can be used in combination with other known compounds (e.g. , other protease inhibitors).
- the compounds may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination with other pharmaceutically active compounds.
- the following methods and excipients are merely exemplary and are in no way limiting. It should be noted that since the compounds of the present invention are non-peptidic in nature, they tend to have better pharmacokinetic properties (e.g. , better oral availability and increased circulating half- lives) than compounds that are peptidic in nature.
- the compounds can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- conventional additives such as lactose, mannitol, corn starch or potato starch
- binders such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins
- disintegrators such as corn starch, potato starch or sodium carboxymethylcellulose
- lubricants such as talc or magnesium stearate
- the compounds can be formulated into preparations for injections by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- the compounds can be utilized in aerosol formulation to be administered via inhalation.
- the compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- the compounds can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- the compounds of the present invention can be administered rectally via a suppository.
- the suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more compounds of the present invention.
- unit dosage forms for injection or intravenous administration may comprise the compound of the present invention in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
- the specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- the pharmaceutically acceptable excipients such as vehicles, adjuvants, carriers or diluents, are readily available to the public.
- auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- Preferred formulations of the compounds are oral preparations, particularly capsules or tablets containing each from about 10 milligrams up to about 1000 milligrams of active ingredient.
- the compounds are formulated in a variety of physiologically compatible matrixes or solvents suitable for ingestion or injection.
- the library synthesis was designed to use commercially available compounds for inco ⁇ oration of the functionality at R R 2 , and R 3 . Exhaustive combination of available materials would provide a library of over 10 billion compounds.
- version 93.2 of the Available Chemical Directory (ACD) from MDL Information Systems (San Leandro, CA) was used to search for all amines, carboxylic acids, sulfonyl chlorides and isocyanates with MW ⁇ 275 daltons. Compounds with functionality obviously incompatible with the synthesis were eliminated.
- the resulting list included approximately 700 amines and 1900 acylating agents. However, this list still provided access to more than 1 billion compounds.
- additional selection criteria were required, and a computational screening process was turned to in an effort to enhance selection.
- the structure-based design process began with coordinates for pepstatin in a complex with cathepsin D (E. T. Baldwin, et al , Proc. Natl Acad. Sci. , U.S.A. 90, 6796-6800 (1993)).
- the scaffold is identical to pepstatin on the P r P 3 side, but differs on the B r -P 3 . side and cannot form the same hydrogen bonds with the enzyme (FIG. 3A).
- the pepstatin positions for the P r P 3 side were used and the three scaffold torsion angles on the P r -P 3 - side were systemically rotated. Each rotation was followed by energy minimization within the cathepsin D active site, using the AMBER (S. J.
- a diverse library which was set at the same size as the directed library, was prepared to provide a "hit" rate when structure-based methods were not employed.
- the diverse library was designed to maximize the variety of functional groups and structural motifs of the library components.
- the sidechains for this library were selected by clustering the original list of components based on their similarity to each other. Components were clustered with the Jarvis-Patrick algorithm (R. A. Jarvis, et al, IEEE Comput C22, 1025-1034 (1973)) using the Daylight connectivity measure of similarity (Daylight Clustering Toolkit, Daylight Chemical Information Systems, Inc., Santa Fe, NM) and a binary Tanimoto metric (P.
- the R j (amine) components were clustered directly as the primary amines.
- the R 2 and R 3 acylating agents were each attached to a portion of the scaffold before clustering to yield the proper chemical context at the linkage site.
- the directed and diverse libraries (1000 compounds each) were prepared using diastereomer 1 of the hydroxyethylamine scaffold with the components used in library syntheses shown in FIGS. 4 and 5, respectively. Because the pilot study with R and S epimers only showed activity at 1 ⁇ M inhibitor concentration for the S epimers, only the S epimers of the directed and diverse library were synthesized. All libraries were synthesized in a spatially separate format, and were screened in a high-throughput fluorometric assay for inhibitory activity against cathepsin D (G. A. Krafft, et al, Methods Enzymol 241, 70-86 (1994))
- R, B, C, E, F, a, e, h, i, j
- R 2 B, C, D, E, H, a, e, f
- R 3 A, D E H, a, b, e, g, h, i (FIGS. 4 and 5).
- the remaining components were assumed to be compatible with the synthesis sequence.
- the library synthesis was performed on polystyrene beads (20-40 mesh).
- the library was synthesized in a spatially separate array using a 96-well filter apparatus. Transfer of the resin to the individual wells was performed using an isopycnic mixture of NN-dimethylformamide (DMF) and 1,2-dichloroethane. Inco ⁇ oration of R ! was carried out using 1.0 M free amine in N-methylpyrrolidinone ( ⁇ MP) at 80°C for 36 h.
- DMF NN-dimethylformamide
- ⁇ MP N-methylpyrrolidinone
- Inco ⁇ oration of R 2 was carried out using stock solutions of 0.3 M carboxylic acid, 0.3 M benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP), 0.3 M 7-aza-l-hydroxybenzotriazole (HOAt), and 0.9 M .Pr2Et ⁇ in NMP overnight. The coupling reactions were performed twice to ensure that complete coupling had occurred. After azide reduction with SnCl 2 , PhSH and Et 3 N, inco ⁇ oration of R 3 was carried out as reported above for R 2 .
- the cleavage mixture was removed from the resin via filtration, followed by rinsing the resin and concentration of the filtrates using a Jouan 10.10 centrifugation concentrator. Toluene was added to form an azeotrope with trifluoroacetic acid during the concentration step. After concentration, the libraries were stored at -20° C. Compounds from each library, picked by random number generation, were analyzed by mass spectrometry in a matrix of ⁇ -cyano cinnamic acid on a Perseptive Biosystems MALDI instrument. For the diverse library the expected molecular ion peaks were observed for 46 of 49 compounds (poor ionization was obtained for the other three) .
- the assay was performed in DYNATECH Microfluor fluorescence microtiter plates, and readings were taken on a Perkin-Elmer LS-50B with an attached 96-well plate reader.
- the excitation wavelength was 340 nm.
- a 340 nm interference filter (Hoya, U-340) for excitation and a 430 nm cut-off filter for emission were used.
- DMSO (10%) was used to ensure complete dissolution of the inhibitors.
- the fluorescent unit readings were taken at three time points within the linear region of the substrate cleavage, and percent activity of the enzyme was determined by comparing the change of fluorescent units (FU) for each well to the average change in FU for six control wells without inhibitor.
- FU fluorescent units
- Each library was screened at approximately 1 ⁇ M inhibitor with the concentration based on the assumption that 50% of the theoretical yield was obtained for each inhibitor. All wells that showed ⁇ 50% cathepsin D activity were screened at subsequent three-fold dilutions. All active compounds that showed ⁇ 60% enzyme activity in 1 ⁇ M or lower inhibitor concentrations were assayed in duplicate).
- the directed library yielded 67 compounds that inhibited cathepsin D activity > 50%(G. A. Krafft, et al, Methods Enzymol. 241, 70-86 (1994)). Further dilution of 333 nM and 100 nM inhibitor concentrations afforded 23 and 7 compounds, respectively, that inhibited cathepsin D activity > 50% (see, Table III).
- the data for the diverse library are also in Table III, infra. There are many uncertainties that can influence the results of a high-throughput fluorescence assay, including the purity of each compound, the concentration of the compounds, and the experimental errors associated with the microtiter fluorescence assay. From repetitive experiments, these errors were estimated to be approximately 30%, ex ressed as enz me activity. Table III. Number of Compounds with ⁇ 50% Inhibition of Cathepsin D in Library Screen"
- An additional six compounds provided 40-50% inhibition of cathepsin D. tEAA, EFA, EHA, FAA, FFA, FHA, EHB, EFD, EHD, EEF, EHF, FHF, EFH, EHH, FAH, FFH, EH, EHI, EAJ, EFJ, EGJ, EHJ, FHJ.
- An additional thirty compounds provided 40-50% inhibition of cathepsin D. ⁇ One hundred compounds were selected by random number generation for testing at 10 ⁇ M.
- the K t values were calculated from IC 50 determinations (see, Table IV). From the compounds that were fully characterized, one compound was obtained from the directed library with a K ⁇ below 100 nM, whereas the diverse library contained inhibitors that were 3-4 times less potent. Table TV. Inhibition Constants for a Number of the Compounds That Are Potent Inhibitors 0
- Structural diversity may be derived through Grignard addition to a solid support-bound -alkoxy pyrrolidine amide 3 (see, FIG. 7).
- the source of diversity is derived from aromatic and alkyl Grignard reagents.
- the Grignard reagents that are not commercially available can be synthesized using activated magnesium turnings, or a magnesium anthracene THF complex and the corresponding aromatic and alkyl halides.
- Grignard reagents are a suitable source to introduce diversity in the R ⁇ site of potential aspartyl protease inhibitors, since the Sj protease surface tends to be hydrophobic. The resulting ketone is reduced using chelation and non-chelation conditions to provide the desired diastereomer.
- the pyrrolidine amide 4 prepared in 3 steps in an overall 76% yield from commercially available methyl (s)-(-)-2,2-dimethyl-l,3-dioxolane-4-carboxylate, was coupled to benzyloxybenzyl bromide resin 5 using sodium hydride, tetrabutylammonium iodide, and catalytic 18-Crown-6 in THF for 2 hours at 45 °C (see, FIG. 8).
- Bromide resin 5 was derived from carbon tetrabromide, triphenylphosphine, and commercially available Wang resin.
- Secondary alcohol 7 was converted to azide 8 through the formation of a secondary nosylate using 4-nitrobenzenesulfonyl chloride and 4-pyrrolidinopyridine in chloroform followed by azide displacement with sodium azide in NN-dimethylformamide at 50°C.
- the -methoxy trityl protecting group was selectively removed using 1 % p- toluenesulfonic acid in methylene chloride.
- ⁇ osylation of the primary alcohol with 4- nitrobenzenesulfonyl chloride and pyridine in chloroform provided azido-nosylate 9.
- a library of 204 compounds was derived from the components in FIG. 9.
- the most potent inhibitors of Cathepsin D were synthesized on a larger scale, purified, and biologically assayed to determine K, values as detailed in Table VI.
- Overall yields of these scaled-up inhibitors ranged from 46-48 % for the entire 12 step solid-phase synthesis as determined by the mass balance of desired product after column chromatography purification.
- Novel low nanomolar inhibitors of cathepsin D were identified rapidly using combinatorial chemistry coupled with two different computational strategies.
- the diverse and directed libraries together yielded over 90 compounds active at 1 ⁇ M and 26 active in the submicromolar range.
- the "hit rate" for activity at 1 ⁇ M is 6-7% for the directed library and 2-3 % for the diverse library.
- both the directed and diverse libraries are based on the "active" epimer of the scaffold, the results from the directed library are clearly superior.
- At all concentrations ⁇ 1 ⁇ M there were more "hits” in the directed library than the diverse library.
- the most potent inhibitors from the directed library are 3-4 fold better than those in the diverse library. It is clear from the results that the number and quality of the active compounds can be increased by using relevant information about the target.
- a strength of the structure-based procedure is that it leads directly to testable geometrical hypotheses.
- S epimers are predicted to bind better than the R epimers; 2) there are two energetically reasonable scaffold conformations (family 1 +2, family 3 +4), which place R groups into different pockets; 3) all the inhibitors are assumed to bind in approximately the same orientation as pepstatin.
- the first hypothesis was directly tested in pilot experiments where no inhibitors based upon the R epimer had activity at 1 ⁇ M.
- the R epimer of one of the most potent compounds had a K t no better than 5 ⁇ M while the K ⁇ of the S epimer was 15 nM (see, Table V).
- Organotypic entorhinohippocampal cultures were prepared using the technique of Stoppini, et al , J. Neurosci. Methods, 37, 173-182 (1991). Briefly, the caudal pole of the cerebral hemisphere containing the entorhinal cortex and hippocampus were harvested from brains of 6-7 days old Sprague-Dawley rat pups under sterile condition.
- Brain tissue explants were then planted onto 30 mm cell culture inserts (Illicell-CM, Millipore, Bedford, MA) that were placed in 6 well culture trays with 1 mL of growth medium (MEM with Hank's salts, Gibco, 20% horse serum, 3 mM glutamine, 25 mM HEPES, 5 mM NaHCO 3 , 25 mM glucose, 0.5 mM ascorbate, 2 mM CaCl 2 , 2.5 mM MgCl 2 , 0.5 mg/L insulin, and penicillin, pH 7.2; Bi, et al , J. Comp. Neuro. , 401, 382-394 (1998). The cultures were incubated at 35°C with a 5% CO 2 -enriched atmosphere and fed every other day until use.
- MEM Hank's salts, Gibco, 20% horse serum, 3 mM glutamine, 25 mM HEPES, 5 mM NaHCO 3 , 25 mM glucose, 0.5 mM as
- organotypic cultures were incubated with growth medium containing either 20 ⁇ M N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone (ZPAD; BACHEM Bioscience, Torrance, CA), a selective inhibitor of cathepsins B and L (Shaw and Dean, 1980), in 0.01 % DMSO, 20 ⁇ M chloroquine (Sigma) or vehicle alone for days as specified.
- ZPAD N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone
- EA-1 To test the effect of EA-1 on the generation of hype ⁇ hosphorylated tau fragments found in neurofibrillary tangles in Alzheimer's disease and other tau pathology-related diseases, 1 ⁇ M of EA-1 or 10 ⁇ M of CEL5-172 were applied alone or together with 20 ⁇ M ZPAD.
- entorhinohippocampal explants were collected and sonicated in 10 mM Tris-HCl buffer (pH 7.4) containing 0.32 M sucrose, 2 mM EDTA, 2 mM EGTA, and 0.1 mM leupeptin. Aliquots of homogenate (80-100 ⁇ g protein lane) were diluted with equal amounts of 2x sample buffer [Ix sample buffer consists of 2% sodium dodecyl sulphate (SDS), 50 mM Tris-HCl (pH 6.8), 10% 2-mercaptoethanol, 10% glycerol and 0.1 % Bromophenol Blue].
- SDS sodium dodecyl sulphate
- proteins were subjected to SDS-PAGE performed according to the method of Laemmli (1970) using 10% poly acrylamide gel; and then transferred on to nitrocellulose membranes as described by Towbin, et al , Proc. Natl. Acad. Sci. USA, 76, 4350-4354 (1979).
- Nitrocellulose membranes were first incubated in 3 % gelatin in Tris-buffered saline (TBS) for 1 hour at room temperature, followed by incubation with 1 % gelatin in TBS with 0.5% Tween 20 (TTBS) containing antibodies that recognize either the phosphorylated tau protein (AT8; 1:500) or unphosphorylated tau protein (tau 1, PCI C6; 1: 100, Boehringer Mannheim) at room temperature overnight.
- TBS Tris-buffered saline
- TTBS Tween 20
- EA-1 Another four groups of cultured entorhinohippocampal slices were maintained for 14 days and used to test the effect of EA-1: (1) control medium; (2) 20 ⁇ M of ZPAD; (3) a new selective inhibitor (EA-1 at 1 ⁇ M) of cathepsin D; (4) ZPAD combined with EA-1. Following this, the slices ere homogenized and samples processed for immunoblotting. Like CEL5-172, EA-1 by itself did not detectably change the concentrations of hype ⁇ hosphorylated tau fragments (see, FIG. 11); however, it exhibited a much higher blocking effect than CEL5-172. It is noted that EA-1 and CEL5-172 have the following structures, respectively:
- ACSF artificial cerebrospinal fluid
- EDTA ethylenediaminetetraacetic acid
- EGTA ethyleneglycol bis (
- PBS phosphate-buffered saline
- SDS sodium dodecyl sulphate
- TBS Tris-buffered saline
- ZPAD N-CBZ-L-phenylalanyl-L-alanme-diazomethylke tone.
- Hippocampal slice cultures were exposed to medium containing one of three cathepsin D inhibitors (see, below) or to 'ZPAD' (N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone), a selective inhibitor of cathepsins B and L (Green, et al , J. Biol Chem., 256: 1923-1928 (1981); Richardson, et al , J. Cell Biol, 107:2097-2107 (1988); and Shaw, et al , Biochem. J., 186:385-390 (1980)).
- ZPAD was used at 20 ⁇ M, and both ZPAD and cathepsin D inhibitors were dissolved first in dimethyl sulfoxide (DMSO), then diluted to the concentrations needed using culture media. Equal amount of DMSO ( ⁇ 0.1 %) was also applied to control slices.
- DMSO dimethyl sulfoxide
- Physiology experiments were performed on hippocampal slices kept in vitro for 2 weeks followed by being incubated with cathepsin inhibitors for an additional six days.
- the slices were placed in a submersion chamber containing artificial cerebrospinal fluid (ACSF) and maintained at room temperature.
- the flow rate of ACSF through the recording chamber was 1.2 ml/min.
- Electrodes were positioned 120 min after the slices had been placed in the chamber.
- Patch-clamp recordings were made from pyramidal neurons in the stratum pyramidale of area CA1.
- the recording pipettes had resistances of 3-5 M ⁇ . Holding potentials were -70 mV. Currents were recorded using a patch amplifier with a 4-pole low-pass Bessel filter at 2 kHz and digitized at 10 kHz.
- Hippocampal slices were collected and sonicated in 10 mM Tris-HCl buffer (pH 7.4) containing 0.32 M sucrose, 2 mM EDTA, 2 mM EGTA, and 0.1 mM leupeptin. Aliquots of homogenate (80-100 ⁇ g protein/lane) were diluted with equal amount of 2x sample buffer [lx sample buffer consists 2% sodium dodecyl sulphate (SDS), 50 mM Tris-HCl (pH 6.8), 10% 2 mercaptoethanol, 10% glycerol and 0.1 % bromophenol blue].
- SDS sodium dodecyl sulphate
- proteins were subjected to SDS-PAGE performed according to the method of Laemmli (Nature, 227:680-685 (1970)) using 10% polyacrylamide gel; and then transferred on to nitrocellulose membranes as described by Towbin, et al. (Proc. Natl. Acad. Sci. USA, 76:4350-4354 (1979)).
- Nitrocellulose membranes were first incubated in 3 % gelatin in Tris-buffered saline (TBS) for 1 hr at room temperature, followed by incubation with 1 % gelatin in TBS with 0.5% Tween 20 (TTBS) containing antibodies that recognize either the phosphorylated tau protein (AT8; 1:500; Innogenetics, Belgium), unphosphorylated tau protein (tau 1, PCI C6; 1 : 100; Boehringer Mannheim, Indianapolis, IN), or anti- cathepsin D antibodies (1: 100; Oncogene Science, Cambridge, MA) at room temperature overnight.
- TBS Tris-buffered saline
- TTBS Tween 20
- the three inhibitors used in the below experiments had molecular weights of 650-800 Da and Ki's for cathepsin D between 1-15 nM (see, FIG. 12). They were products of a synthesis program in which the crystal structure of cathepsin D complexed with the peptide-based natural product pepstatin served as a model with which to select building blocks for a combinatorial library. Equivalent energy conformations of a (hydroxyethyl) amine scaffold were grouped into families and computational methods (Lewis, et al , J. Mol.
- Carboxy-terminal fragments of the amyloid precursor protein are a characteristic feature of slices treated with ZPAD, chloroquine, or exogenous amyloid (Bahr, et al , Exp Neurol, 129: 1-14 (1994); Bahr, et al , J Comp Neurol, 397: 139-147 (1998)).
- the cathepsin D inhibitors did not induce these peptides (not shown).
- the compounds were also without evident effect on inhibitory and excitatory synaptic currents, extracellular field potentials, or post-synaptic responses to repetitive stimulation (FIG. 13D).
- the new inhibitors are selective in that they do not elicit anatomical and biochemical changes found with inhibitors of cathepsins B and L, or with more generalized lysosomotropic agents, and do not influence sensitive physiological indices.
- Antibodies e.g. , 'AT8'; Goedert, et al , Proc. Natl. Acad. Sci. USA, 90:5066-70 (1993); Greenberg, et al , Proc. Natl. Acad. Sci. USA, 87:5827-31 (1990)
- against hype ⁇ hosphorylated tau or paired helical filaments in human brain variably label a 29 kDa band in western blots from adult rat brains (Bednarski, et al, J Neurochem., 67: 1846-1855 (1996)) or 'mature' cultured slices (Bi, et al , supra (1999)).
- FIG. 14B summarizes the results for EA-1. This compound again had no detectable effects on tau 29 concentrations (lane 3 of FIG.
- FIG. 15 describes the time and dose dependencies of the interactions between cathepsin inhibitors.
- ZPAD induced increases in the phosphorylated tau fragment appeared at 48 hrs — the earliest time point tested - and increased steadily thereafter (FIG. 15A).
- the effect of the cathepsin D inhibitor was evident from the first measurement and resulted in a complete blockade of the ZPAD-elicited changes by 96 hrs.
- the inhibitor EA-1 had dose dependent effects in slices treated with ZPAD for 6 days (FIG. 15B); threshold concentration appeared to lie between 0.05 (no detectable effect) and 1.0 ⁇ M (41 % reduction in ZPAD induced fragments). Note that the cathepsin D inhibitor by itself had no effect on tau 29 concentrations at any time point or dosage.
- Conversion of cathepsin D into active forms may involve autocatalysis (Conner, Biochem. J., 263:601-604 (1989); Conner, et al., Biochem., 28:3530-3533 (1989); and Hasilik, et al , Eur. J. Biochem., 125:317-321 (1982)). If so, then the inhibitors used here could indirectly block the formation of tau fragments by preventing the increases in lysosomal and cytoplasmic cathepsin D that develop within hours of chemically induced lysosomal dysfunction (Bednarski, et al , supra (1998); Hoffman, et al , Neurosci. Lett., 250:75-78 (1998)).
- cathepsin D inhibitors have any effect on the biosynthesis and maturation of cathepsin D
- cultured hippocampal slices were treated with inhibitor alone or inhibitor plus ZPAD.
- EA-1 by itself did not detectably alter the levels of cathepsin D isoforms at concentrations from 50 nM to 5 ⁇ M (FIG. 16B).
- the levels of procathepsin D and single chain cathepsin D were similar to those observed in cultures treated with ZPAD alone.
- the increase in heavy chain isoform was substantially reduced (70 % to 15% , FIG. 16) in the presence of EA-1.
- the compounds did not cause evident physiological changes over the time courses tested and leave unchanged biochemical measures sensitive to cathepsins B/L inhibitors or to the broad-spectrum inhibitor chloroquine. It appears, then, that inhibition of cathepsin D to a degree sufficient to block specific biochemical reactions (below) has discrete consequences and, in general, is well tolerated by brain tissue for at least several days.
- the findings also provide a direct test of the hypothesis that the rapid formation of hype ⁇ hosphorylated tau fragments occurring in association with lysosomal dysfunction is due to cathepsin D, or cathepsin D-like aspartyl proteases. Three distinct inhibitors produced near complete suppression of the increases that normally follow pharmacologically induced lysosomal dysfunction.
- the blocking effects were in evidence from the first appearance of tau fragmentation and had threshold concentrations in the sub-micromolar range. That the inhibitors did not reduce baseline levels may indicate that the fragments have a long half-life, a point of possible significance with regard to the production of tangles.
- the differential effects of cathepsin D inhibitors on ZPAD- induced tau 29 vs basal level tau 29 demonstrate that the blocking effect is not due to modification of the antigenic epitopes by these non-peptidic compounds.
- Cathepsin D inhibitors markedly reduced the formation of tau 29, but did not reverse decreases in native tau, suggesting that cathepsin D is not solely responsible for the breakdown of tau protein that occurs following pharmacologically induced lysosomal dysfunction.
- the cathepsin D inhibitor is a compound selected from the group consisting of CEL5-A, CEL5-G and EA-1, the structures of which are set forth in FIG. 12.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Hydrogenated Pyridines (AREA)
- Plural Heterocyclic Compounds (AREA)
- Indole Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000606240A JP2002539260A (en) | 1999-03-24 | 2000-03-24 | Methods of treating neurodegenerative disorders using aspartyl protease inhibitors |
CA002367112A CA2367112A1 (en) | 1999-03-24 | 2000-03-24 | Methods for treating neurodegenerative disorders using aspartyl protease inhibitors |
AU37717/00A AU3771700A (en) | 1999-03-24 | 2000-03-24 | Methods for treating neurodegenerative disorders using aspartyl protease inhibitors |
EP00916643A EP1178800A4 (en) | 1999-03-24 | 2000-03-24 | TREATMENT OF NEURODEGENERATIVE DISEASES WITH ASPARTYL PROTEASE INHIBITORS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12595899P | 1999-03-24 | 1999-03-24 | |
US60/125,958 | 1999-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000056335A1 true WO2000056335A1 (en) | 2000-09-28 |
Family
ID=22422250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/007804 WO2000056335A1 (en) | 1999-03-24 | 2000-03-24 | Methods for treating neurodegenerative disorders using aspartyl protease inhibitors |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1178800A4 (en) |
JP (1) | JP2002539260A (en) |
AU (1) | AU3771700A (en) |
CA (1) | CA2367112A1 (en) |
WO (1) | WO2000056335A1 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002002512A2 (en) | 2000-06-30 | 2002-01-10 | Elan Pharmaceuticals, Inc. | Compounds to treat alzheimer's disease |
WO2003050073A1 (en) * | 2001-12-06 | 2003-06-19 | Elan Pharmaceuticals, Inc. | Substituted hydroxyethylamines |
WO2003029169A3 (en) * | 2001-10-04 | 2003-08-28 | Elan Pharm Inc | Hydroxypropylamines |
WO2003106405A1 (en) * | 2002-06-01 | 2003-12-24 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
US6696488B2 (en) | 2000-08-11 | 2004-02-24 | The Brigham And Women's Hospital, Inc. | (Hydroxyethyl)ureas as inhibitors of alzheimer's β-amyloid production |
WO2004058686A1 (en) * | 2002-04-30 | 2004-07-15 | Elan Pharmaceuticals, Inc. | Hydroxypropyl amides for the treatment of alzheimer’s disease |
WO2005005374A1 (en) * | 2003-06-16 | 2005-01-20 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
WO2005014540A1 (en) * | 2003-08-08 | 2005-02-17 | Schering Corporation | Cyclic amine base-1 inhibitors having a heterocyclic substituent |
US6982264B2 (en) | 2001-06-27 | 2006-01-03 | Elan Pharmaceuticals, Inc. | Substituted alcohols useful in treatment of Alzheimer's disease |
US7030239B2 (en) | 2000-03-23 | 2006-04-18 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
US7034182B2 (en) | 2000-06-30 | 2006-04-25 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
EP1666452A2 (en) | 2000-06-30 | 2006-06-07 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
US7115652B2 (en) | 2002-06-17 | 2006-10-03 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
US7144897B2 (en) * | 2001-06-01 | 2006-12-05 | Elan Oharmaceuticals, Inc. | Hydroxy alkyl amines |
US7217719B2 (en) | 2001-12-28 | 2007-05-15 | Acadia Pharmaceuticals Inc. | Spiroazacyclic compounds as monoamine receptor modulators |
US7253186B2 (en) | 2002-06-24 | 2007-08-07 | Carl-Magnus Andersson | N-substituted piperidine derivatives as serotonin receptor agents |
US7476682B2 (en) | 2002-06-24 | 2009-01-13 | Acadia Pharmaceuticals, Inc. | N-substituted piperidine derivatives as serotonin receptor agents |
US7538222B2 (en) | 2002-06-24 | 2009-05-26 | Acadia Pharmaceuticals, Inc. | N-substituted piperidine derivatives as serotonin receptor agents |
US7553831B2 (en) | 2000-06-30 | 2009-06-30 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
US7601740B2 (en) | 2003-01-16 | 2009-10-13 | Acadia Pharmaceuticals, Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US7732615B2 (en) | 2004-09-27 | 2010-06-08 | Acadia Pharmaceuticals Inc. | N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and crystalline forms |
US7790899B2 (en) | 2004-09-27 | 2010-09-07 | Acadia Pharmaceuticals, Inc. | Synthesis of N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and crystalline forms |
US7820695B2 (en) | 2004-05-21 | 2010-10-26 | Acadia Pharmaceuticals, Inc. | Selective serotonin receptor inverse agonists as therapeutics for disease |
US7863296B2 (en) | 2004-05-21 | 2011-01-04 | Acadia Pharmaceuticals, Inc. | Selective serotonin receptor inverse agonists as therapeutics for disease |
US8163953B2 (en) | 2008-04-18 | 2012-04-24 | University Of Connecticut | Compounds for lysosomal modulation and methods of use |
US9050343B2 (en) | 2007-03-19 | 2015-06-09 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and risperidone for the treatment of psychosis |
US9296694B2 (en) | 2000-03-06 | 2016-03-29 | Acadia Pharmaceuticals Inc. | Azacyclic compounds |
US10449185B2 (en) | 2017-08-30 | 2019-10-22 | Acadia Pharmaceuticals Inc. | Formulations of pimavanserin |
US10517860B2 (en) | 2016-03-25 | 2019-12-31 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and cytochrome P450 modulators |
WO2020023417A1 (en) * | 2018-07-23 | 2020-01-30 | Enclear Therapies, Inc. | Methods of treating neurological disorders |
US10953000B2 (en) | 2016-03-25 | 2021-03-23 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and cytochrome P450 modulators |
US10981870B2 (en) | 2015-07-20 | 2021-04-20 | Acadia Pharmaceuticals Inc. | Methods for preparing N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and polymorphic form |
US11135211B2 (en) | 2017-04-28 | 2021-10-05 | Acadia Pharmaceuticals Inc. | Pimavanserin for treating impulse control disorder |
US11278657B2 (en) | 2019-04-11 | 2022-03-22 | Enclear Therapies, Inc. | Methods of amelioration of cerebrospinal fluid and devices and systems therefor |
US11419921B2 (en) | 2018-07-23 | 2022-08-23 | Enclear Therapies, Inc. | Methods of treating neurological disorders |
US11464768B2 (en) | 2016-12-20 | 2022-10-11 | Acadia Pharmaceuticals Inc. | Pimavanserin alone or in combination for use in the treatment of Alzheimer's disease psychosis |
US12329930B2 (en) | 2020-09-29 | 2025-06-17 | Enclear Therapies, Inc. | Subarachnoid fluid management method and system |
US12350416B2 (en) | 2022-02-11 | 2025-07-08 | Enclear Therapies, Inc. | Methods of amelioration of cerebrospinal fluid and devices and systems therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998033795A1 (en) * | 1997-02-04 | 1998-08-06 | The Regents Of The University Of California | Nanomolar, non-peptide inhibitors of cathepsin d |
-
2000
- 2000-03-24 WO PCT/US2000/007804 patent/WO2000056335A1/en active Application Filing
- 2000-03-24 JP JP2000606240A patent/JP2002539260A/en not_active Withdrawn
- 2000-03-24 EP EP00916643A patent/EP1178800A4/en not_active Withdrawn
- 2000-03-24 AU AU37717/00A patent/AU3771700A/en not_active Abandoned
- 2000-03-24 CA CA002367112A patent/CA2367112A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998033795A1 (en) * | 1997-02-04 | 1998-08-06 | The Regents Of The University Of California | Nanomolar, non-peptide inhibitors of cathepsin d |
Non-Patent Citations (1)
Title |
---|
See also references of EP1178800A4 * |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9296694B2 (en) | 2000-03-06 | 2016-03-29 | Acadia Pharmaceuticals Inc. | Azacyclic compounds |
US9765053B2 (en) | 2000-03-06 | 2017-09-19 | Acadia Pharmaceuticals Inc. | Methods of treatment using selective 5-HT2A inverse agonists |
US7119085B2 (en) | 2000-03-23 | 2006-10-10 | Elan Pharmaceuticals, Inc. | Methods to treat alzheimer's disease |
US7030239B2 (en) | 2000-03-23 | 2006-04-18 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
US7034182B2 (en) | 2000-06-30 | 2006-04-25 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
US7214715B2 (en) | 2000-06-30 | 2007-05-08 | Pharmacia & Upjohn | Compounds to treat Alzheimer's disease |
US7432389B2 (en) | 2000-06-30 | 2008-10-07 | Elan Pharmaceuticals, Inc. | Compounds for the treatment of Alzheimer's disease |
WO2002002512A2 (en) | 2000-06-30 | 2002-01-10 | Elan Pharmaceuticals, Inc. | Compounds to treat alzheimer's disease |
US7553831B2 (en) | 2000-06-30 | 2009-06-30 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
EP1666452A2 (en) | 2000-06-30 | 2006-06-07 | Elan Pharmaceuticals, Inc. | Compounds to treat Alzheimer's disease |
US6696488B2 (en) | 2000-08-11 | 2004-02-24 | The Brigham And Women's Hospital, Inc. | (Hydroxyethyl)ureas as inhibitors of alzheimer's β-amyloid production |
US7144897B2 (en) * | 2001-06-01 | 2006-12-05 | Elan Oharmaceuticals, Inc. | Hydroxy alkyl amines |
US6982264B2 (en) | 2001-06-27 | 2006-01-03 | Elan Pharmaceuticals, Inc. | Substituted alcohols useful in treatment of Alzheimer's disease |
US7244755B2 (en) | 2001-10-04 | 2007-07-17 | Pharmacia & Upjohn Company | Hydroxypropylamines |
WO2003029169A3 (en) * | 2001-10-04 | 2003-08-28 | Elan Pharm Inc | Hydroxypropylamines |
US7312360B2 (en) | 2001-12-06 | 2007-12-25 | Elan Pharmaceuticals, Inc. | Substituted hydroxyethylamines |
WO2003050073A1 (en) * | 2001-12-06 | 2003-06-19 | Elan Pharmaceuticals, Inc. | Substituted hydroxyethylamines |
US7351707B2 (en) | 2001-12-28 | 2008-04-01 | Acadia Pharmaceuticals, Inc. | Spiroazacyclic compounds as monoamine receptor modulators |
US7511053B2 (en) | 2001-12-28 | 2009-03-31 | Acadia Pharmaceuticals, Inc. | Spiroazacyclic compounds as monoamine receptor modulators |
US7217719B2 (en) | 2001-12-28 | 2007-05-15 | Acadia Pharmaceuticals Inc. | Spiroazacyclic compounds as monoamine receptor modulators |
US7727999B2 (en) | 2001-12-28 | 2010-06-01 | Acadia Pharmaceuticals Inc. | Spiroazacyclic compounds as monoamine receptor modulators |
US7402590B2 (en) | 2001-12-28 | 2008-07-22 | Acadia Pharmaceuticals Inc. | Spiroazacyclic compounds as monoamine receptor modulators |
US7262208B2 (en) | 2002-04-30 | 2007-08-28 | Elan Pharmaceuticals, Inc. | Hydroxypropyl amides for the treatment of Alzheimer's disease |
WO2004058686A1 (en) * | 2002-04-30 | 2004-07-15 | Elan Pharmaceuticals, Inc. | Hydroxypropyl amides for the treatment of alzheimer’s disease |
WO2003106405A1 (en) * | 2002-06-01 | 2003-12-24 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
US7115652B2 (en) | 2002-06-17 | 2006-10-03 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
US7132568B2 (en) | 2002-06-17 | 2006-11-07 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
US7476682B2 (en) | 2002-06-24 | 2009-01-13 | Acadia Pharmaceuticals, Inc. | N-substituted piperidine derivatives as serotonin receptor agents |
US7538222B2 (en) | 2002-06-24 | 2009-05-26 | Acadia Pharmaceuticals, Inc. | N-substituted piperidine derivatives as serotonin receptor agents |
US7253186B2 (en) | 2002-06-24 | 2007-08-07 | Carl-Magnus Andersson | N-substituted piperidine derivatives as serotonin receptor agents |
US10028944B2 (en) | 2003-01-16 | 2018-07-24 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US7601740B2 (en) | 2003-01-16 | 2009-10-13 | Acadia Pharmaceuticals, Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US8618130B2 (en) | 2003-01-16 | 2013-12-31 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US7732462B2 (en) | 2003-01-16 | 2010-06-08 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US10525046B2 (en) | 2003-01-16 | 2020-01-07 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US7659285B2 (en) | 2003-01-16 | 2010-02-09 | Acadia Pharmaceuticals, Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US8377959B2 (en) | 2003-01-16 | 2013-02-19 | Acadia Pharmaceuticals, Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US7713995B2 (en) | 2003-01-16 | 2010-05-11 | Acadia Pharmaceuticals, Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US9566271B2 (en) | 2003-01-16 | 2017-02-14 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US8921393B2 (en) | 2003-01-16 | 2014-12-30 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US8008323B2 (en) | 2003-01-16 | 2011-08-30 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US9211289B2 (en) | 2003-01-16 | 2015-12-15 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
US7994193B2 (en) | 2003-01-16 | 2011-08-09 | Acadia Pharmaceuticals Inc. | Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases |
WO2005005374A1 (en) * | 2003-06-16 | 2005-01-20 | Sunesis Pharmaceuticals, Inc. | Aspartyl protease inhibitors |
US7910590B2 (en) | 2003-08-08 | 2011-03-22 | Schering Corporation | Cyclic amine bace-1 inhibitors having a heterocyclic substituent |
WO2005014540A1 (en) * | 2003-08-08 | 2005-02-17 | Schering Corporation | Cyclic amine base-1 inhibitors having a heterocyclic substituent |
US7863296B2 (en) | 2004-05-21 | 2011-01-04 | Acadia Pharmaceuticals, Inc. | Selective serotonin receptor inverse agonists as therapeutics for disease |
US7875632B2 (en) | 2004-05-21 | 2011-01-25 | Acadia Pharmaceuticals, Inc. | Selective serotonin receptor inverse agonists as therapeutics for disease |
US7820695B2 (en) | 2004-05-21 | 2010-10-26 | Acadia Pharmaceuticals, Inc. | Selective serotonin receptor inverse agonists as therapeutics for disease |
US7923564B2 (en) | 2004-09-27 | 2011-04-12 | Acadia Pharmaceuticals, Inc. | Synthesis of N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy) phenylmethyl)carbamide and its tartrate salt and crystalline forms |
US7868176B2 (en) | 2004-09-27 | 2011-01-11 | Acadia Pharmaceuticals, Inc. | Salts of N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-y1)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and their preparation |
US7790899B2 (en) | 2004-09-27 | 2010-09-07 | Acadia Pharmaceuticals, Inc. | Synthesis of N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and crystalline forms |
US7732615B2 (en) | 2004-09-27 | 2010-06-08 | Acadia Pharmaceuticals Inc. | N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and crystalline forms |
US9050343B2 (en) | 2007-03-19 | 2015-06-09 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and risperidone for the treatment of psychosis |
US8163953B2 (en) | 2008-04-18 | 2012-04-24 | University Of Connecticut | Compounds for lysosomal modulation and methods of use |
US10981870B2 (en) | 2015-07-20 | 2021-04-20 | Acadia Pharmaceuticals Inc. | Methods for preparing N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and polymorphic form |
US10981871B2 (en) | 2015-07-20 | 2021-04-20 | Acadia Pharmaceuticals Inc. | Methods for preparing N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and polymorphic form C |
US11840515B2 (en) | 2015-07-20 | 2023-12-12 | Acadia Pharmaceuticals Inc. | Methods for preparing N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and polymorphic form c |
US10517860B2 (en) | 2016-03-25 | 2019-12-31 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and cytochrome P450 modulators |
US11191757B2 (en) | 2016-03-25 | 2021-12-07 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and cytochrome P450 modulators |
US10953000B2 (en) | 2016-03-25 | 2021-03-23 | Acadia Pharmaceuticals Inc. | Combination of pimavanserin and cytochrome P450 modulators |
US11464768B2 (en) | 2016-12-20 | 2022-10-11 | Acadia Pharmaceuticals Inc. | Pimavanserin alone or in combination for use in the treatment of Alzheimer's disease psychosis |
US11135211B2 (en) | 2017-04-28 | 2021-10-05 | Acadia Pharmaceuticals Inc. | Pimavanserin for treating impulse control disorder |
US10449185B2 (en) | 2017-08-30 | 2019-10-22 | Acadia Pharmaceuticals Inc. | Formulations of pimavanserin |
US10849891B2 (en) | 2017-08-30 | 2020-12-01 | Acadia Pharmaceuticals Inc. | Formulations of pimavanserin |
US11452721B2 (en) | 2017-08-30 | 2022-09-27 | Acadia Pharmaceuticals Inc. | Formulations of pimavanserin |
US10646480B2 (en) | 2017-08-30 | 2020-05-12 | Acadia Pharmaceuticals Inc. | Formulations of pimavanserin |
CN113164563A (en) * | 2018-07-23 | 2021-07-23 | 因柯利尔疗法公司 | Method of treatment of neurological disorders |
US11419921B2 (en) | 2018-07-23 | 2022-08-23 | Enclear Therapies, Inc. | Methods of treating neurological disorders |
US11752200B2 (en) | 2018-07-23 | 2023-09-12 | Enclear Therapies Inc. | Methods of treating neurological disorders |
WO2020023417A1 (en) * | 2018-07-23 | 2020-01-30 | Enclear Therapies, Inc. | Methods of treating neurological disorders |
US11278657B2 (en) | 2019-04-11 | 2022-03-22 | Enclear Therapies, Inc. | Methods of amelioration of cerebrospinal fluid and devices and systems therefor |
US12329930B2 (en) | 2020-09-29 | 2025-06-17 | Enclear Therapies, Inc. | Subarachnoid fluid management method and system |
US12337140B2 (en) | 2020-09-29 | 2025-06-24 | Enclear Therapies, Inc. | Subarachnoid fluid management method and system with varying rates |
US12350416B2 (en) | 2022-02-11 | 2025-07-08 | Enclear Therapies, Inc. | Methods of amelioration of cerebrospinal fluid and devices and systems therefor |
Also Published As
Publication number | Publication date |
---|---|
EP1178800A1 (en) | 2002-02-13 |
JP2002539260A (en) | 2002-11-19 |
EP1178800A4 (en) | 2002-07-31 |
CA2367112A1 (en) | 2000-09-28 |
AU3771700A (en) | 2000-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000056335A1 (en) | Methods for treating neurodegenerative disorders using aspartyl protease inhibitors | |
US6150416A (en) | Nanomolar, non-peptide inhibitors of cathepsin D | |
EP2882428B1 (en) | A method of inhibiting tau phosphorylation | |
Kreft et al. | Recent advances in the identification of γ-secretase inhibitors to clinically test the Aβ oligomer hypothesis of Alzheimer’s disease | |
Costanzo et al. | Potent, small-molecule inhibitors of human mast cell tryptase. Antiasthmatic action of a dipeptide-based transition-state analogue containing a benzothiazole ketone | |
US5834487A (en) | Inhibition of 26S and 20S proteasome by indanones | |
Schiefer et al. | Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors | |
Hoang et al. | Discovery of conformationally restricted human glutaminyl cyclase inhibitors as potent anti-Alzheimer’s agents by structure-based design | |
JPH08301833A (en) | Selective thrombin inhibitor | |
US20030092629A1 (en) | Inhibitors of memapsin 2 and use thereof | |
US7119105B2 (en) | Methods for treating neurodegenerative disorders using aspartyl protease inhibitors | |
Albert | Progress in the development of β-secretase inhibitors for Alzheimer's disease | |
WO2011076854A1 (en) | CLEAVAGE OF β-AMYLOID PRECURSOR PROTEIN | |
AU2005201481A1 (en) | Methods for treating neurodegenerative disorders using aspartyl protease inhibitors | |
KR20090033583A (en) | Novel beta-secretase inhibitor compounds containing glycine arylamide | |
JP2011518188A (en) | Compounds for lysosome regulation and methods of use | |
CN110944639A (en) | Agent for preventing and/or treating alzheimer's disease | |
JP2005532264A (en) | Helical pseudopeptide | |
CN119950537A (en) | Application of α-solanine in the preparation of drugs for treating Alzheimer's disease | |
RU2142939C1 (en) | Thrombin inhibitors of selective action and pharmaceutical composition based on said | |
AU2006202400A1 (en) | Nanomolar, non-peptide inhibitors of cathepsin D | |
KR20090034009A (en) | Novel beta-secretase inhibitor compounds, including glycine mother liquor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 606240 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref document number: 2367112 Country of ref document: CA Ref country code: CA Ref document number: 2367112 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 37717/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000916643 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 2000916643 Country of ref document: EP |