WO1999036280A1 - Air-conditioning device for vehicles and method for controlling the device - Google Patents
Air-conditioning device for vehicles and method for controlling the device Download PDFInfo
- Publication number
- WO1999036280A1 WO1999036280A1 PCT/JP1998/003528 JP9803528W WO9936280A1 WO 1999036280 A1 WO1999036280 A1 WO 1999036280A1 JP 9803528 W JP9803528 W JP 9803528W WO 9936280 A1 WO9936280 A1 WO 9936280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- vehicle
- air conditioner
- air
- vehicle interior
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00735—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
Definitions
- the present invention relates to an air conditioner, and more particularly to an air conditioner for a vehicle for appropriately controlling the temperature in a passenger compartment to a target temperature and a control method thereof.
- the first 1 Figure is a diagram showing a control flow of a conventional vehicle weight air conditioner, a conventional air conditioning apparatus for a vehicle, and the target temperature T z set by the temperature setting unit 4, the installed car cabin
- the control logic 1 p is used to control the measured temperature T i measured by the inside air temperature sensor 6 as a room temperature detection means as a parameter, and the control logic 1 p controls the temperature of the air-conditioned air blown into the vehicle compartment. Control the air volume etc. to control the vehicle interior temperature T. To keep it properly.
- the inside air temperature sensor 6 is usually installed below the front panel, the measured temperature ⁇ ⁇ is the temperature near the occupant's seating position due to the effects of outside air temperature and solar radiation. T. Is not necessarily the same.
- the vehicle in order to bring the measured temperature Ti of the inside air temperature sensor 6 closer to the actual vehicle interior temperature T0, the vehicle is provided with an outside air temperature sensor and a solar radiation sensor, and the measured temperature ⁇ ⁇ is determined based on the output of each sensor.
- the measurement temperature T i is corrected or corrected according to the air-conditioning air blowing mode.
- Japanese Patent Application Laid-Open No. 6-1955323 also discloses that, as shown in FIG. 12, a target temperature T 7 , a measured temperature of the internal air temperature sensor 6 ⁇ , an outside air temperature T A , and a solar radiation amount T s. And the input signal and There is disclosed a technology for controlling the amount of air-conditioned air to be blown using the neural network type additional learning device described above.
- the neural network the final airflow is controlled by learning and calculating each arithmetic expression such as the target air outlet temperature, air outlet mode status, and blower air volume.
- the learning is difficult to converge and that the learning time becomes longer because of the large number of teacher signals used in the training.
- the present invention has been made in view of the conventional problems, and accurately adjusts a control logic by accurately estimating a vehicle interior temperature which is a main element of a control logic of an air conditioner. It is an object of the present invention to provide a vehicle air conditioner capable of controlling the temperature with high accuracy and a control method thereof. Disclosure of the invention
- the control method for a vehicle air conditioner includes: setting a temperature model for estimating a vehicle interior temperature from an output value of a vehicle interior temperature detecting means for detecting a vehicle interior temperature; The temperature and air volume of the conditioned air blown into the cabin are adjusted based on the estimated value to control the temperature in the cabin. That is, instead of the output value of the vehicle interior temperature detecting means itself, an estimated value of the vehicle interior temperature that is very close to the actual temperature of the vehicle interior is obtained, and the temperature in the vehicle interior is controlled using the above estimated value. The temperature in the passenger compartment is quickly controlled to the target temperature.
- control method of the vehicle air conditioner of the present invention is characterized in that the temperature model is formed by a dual network in which an environmental factor of the vehicle and a state of the air conditioner are input signals and an estimated value of the temperature in the vehicle compartment is an output value.
- the system estimates the temperature of the cabin temperature with high accuracy.
- the environmental factors may be the outside air temperature and the amount of solar radiation, and any one of the information of the state of the air conditioner, the blow mode, the blow temperature, the blow air volume, and the position of the suction port. Estimate the vehicle interior temperature with a small number of input signals.
- the vehicle air conditioner of the present invention includes a temperature estimator constituted by a neural network, and adjusts the temperature and the amount of air-conditioned air blown into the vehicle interior based on the estimated value of the vehicle interior temperature from the temperature estimator.
- the temperature in the vehicle compartment is controlled.
- the vehicle air conditioner of the present invention controls the temperature in the vehicle cabin by adjusting the temperature and air volume of the air-conditioned air blown into the vehicle cabin using the above-mentioned estimated value as a feedback value, thereby achieving accurate and quick temperature control. Is what you do.
- the environmental factors are the outside air temperature and the amount of solar radiation
- the state of the air conditioner is any combination of the following information: a blow mode, a blow temperature, a blow air volume, and a suction port position.
- the entire system is designed to reliably estimate the temperature in the cabin.
- the temperature data of the outlet other than the outlet set in the outlet mode is fixed to a predetermined value in the outlet temperature data. is there. As a result, unnecessary temperature fluctuations were suppressed, and the estimated value of the temperature in the vehicle interior was obtained more accurately.
- the vehicle air conditioner of the present invention includes a temperature estimator configured as a neural network that outputs an estimated value of the temperature at the front part and the rear part of the vehicle interior as an output value. It controls the temperature in the cabin by adjusting the temperature, air volume, etc. of the air-conditioned air sent to the rear and rear sections. As a result, even when the set temperature and air flow are different between the front and rear seats, control is performed in consideration of the mutual influences, and the temperatures at the front and rear in the passenger compartment are quickly adjusted to each. Set the target temperature.
- the vehicle air conditioner of the present invention controls the temperature of the vehicle interior by adjusting the temperature and air volume of the conditioned air blown to the front and rear portions of the vehicle interior using the above two estimated values as feedback values, The temperature at the front and rear of the vehicle compartment is accurately and quickly set to the target temperature.
- the environmental factors are the outside air temperature and the amount of solar radiation
- the state of the air conditioner is the front and rear blow modes, the blow temperature, the blow air volume, and the suction port position. Any combination or all of the information is used to ensure that control is performed in consideration of the settings of the front and rear seats.
- the teacher signal used at the time of learning of the neural network is set as an average temperature of a position corresponding to a head and a foot of a driver's seat and a passenger's seat, and a vehicle interior temperature is obtained. The difference between the estimated value and the actual cabin temperature is made extremely small.
- the vehicle air conditioner of the present invention is configured such that the input state of the teacher signal used during learning of the neural network is changed from 0.02 to 0.98, and the neural network learning is performed. Learning efficiency and safety are improved.
- the absolute value of the error between the output value in each input range of the linear function and the output value of the sigmoid function is set to 3%. The approximation is made by a function in which the input range and the coefficient of the linear function are set so as to be within the range. As a result, the number of required memories can be reduced, and the calculation time can be significantly reduced, and the temperature in the vehicle interior can be more quickly set to the target temperature.
- FIG. 1 is a diagram illustrating a configuration of a vehicle air conditioner according to a first embodiment of the present invention
- FIG. 2 is a diagram illustrating a configuration of a neural network of a temperature estimator according to the first embodiment. It is.
- FIG. 3 is a diagram showing a sigmoid function used in the neural network.
- FIG. 4 is a diagram showing a relationship between an estimated value and a measured value of the vehicle interior temperature by the temperature estimator of the first embodiment
- FIG. 5 is a control flow of the vehicle air conditioner according to the first embodiment.
- FIG. 6 is a diagram showing the configuration of a neural network of a temperature estimator according to the second embodiment of the present invention.
- FIG. 7 is a diagram showing the estimation of the vehicle interior temperature by the temperature estimator according to the second embodiment. It is a figure showing the relation between a value and an actual measurement value.
- FIG. 8 is a diagram showing an approximation method of a sigmoid function according to the third embodiment of the present invention
- FIG. 9 is a diagram showing an error between the sigmoid function and a linear function
- FIG. 10 is a diagram showing a control flow of the vehicle air conditioner according to Embodiment 3 of the present invention.
- FIG. 11 is a diagram showing a control flow of a conventional vehicle air conditioner
- FIG. FIG. 2 is a diagram showing a configuration of a conventional neural network of a vehicle air conditioner.
- FIG. 1 is a diagram showing a configuration of a vehicle air conditioner according to a first embodiment of the present invention, wherein 1 is a control device, 2 is an air duct, 3 is a setting panel for setting the temperature and air volume of the conditioned air, 4 temperature settings for outputting to the control unit 1 sets the target temperature T z of the vehicle interior which is input from the setting panel 3, 5 or perform opening degree adjustment of the air air mix door 2 e in the air duct 2, the inside and outside air
- a driving device for switching the switching door 2a and the outlet switching door, and for driving the blower 2b, 6 is an inside air temperature sensor as room temperature detecting means usually installed below the front panel, and 7 is The outside air temperature sensor is installed near the bumper of the vehicle, and the solar radiation sensor 8 is installed above the front panel.
- the air duct 2 includes an inside / outside air switching door 2a that adjusts a ratio of inside air and outside air introduced into the air duct, a blower 2b that blows air taken in from the inside / outside air switching door 2a, and cools the blown air.
- the temperature of the blown air is controlled by controlling the amount of air that passes through the heater 2d of the blown air cooled by the evaporator 2p, based on the evaporator 2p, the heater 2d that warms the blast air, and the opening / closing degree of the heater.
- the upper outlet 2 f is provided with an upper outlet temperature sensor 2 m for detecting the temperature of the air blown from the upper outlet 2 f
- the lower outlet 2 g is provided with a lower outlet 2 g from the lower outlet 2 g.
- a lower outlet temperature sensor 2n that detects the temperature of the blast air is installed.
- the driving device 5 includes a control device of the actuator 1c that drives the inside / outside air switching door 2a, a control device of the control device 2c for controlling the rotation speed of the blower 2b, and a laser door 2e.
- the control device 1 transmits a control signal for controlling the opening degree of the air mix door 2 e according to the environmental factors such as the outside air temperature and the condition (control factors) of the air conditioning equipment such as the air-conditioning air blowing mode.
- Control logic 1a to be output to 5 and measured temperature 1 from inside air temperature sensor 6 and information on environmental factors and air conditioner status from control logic 1a as input signals and output to control logic 1a above
- a temperature estimator 1b configured by a neural network that outputs an estimated value 1 of the temperature in the vehicle compartment as an output value.
- the above control factors include, for example, the output from the outside air temperature sensor 7 and the solar radiation sensor 8, the switching mode of the inside / outside air switching door 2a, the opening degree of the air mixing door 2e, and the switching mode of the outlet switching door 2h.
- the switching mode of the inside / outside air switching door 2a has two modes, an inside air introduction mode and an outside air introduction mode.
- the switching mode of the outlet switching door 2h includes a vent mode, a foot blowing mode, There are four modes, bi-level mode and defrost mode.
- Fig. 2 is a diagram showing the configuration (temperature model) of the neural network in the temperature estimator 1b.
- the neural network is a three-layer hierarchical network consisting of an input layer, a hidden layer, and an output layer.
- the input signals are the outside air temperature T A (° C) from the outside air temperature sensor 7, the measured temperature 1 ⁇ (° C) from the inside air temperature sensor (Inc.s) 6, and the opening P of the air mix door 2 e. (%), Blower duty ratio D (%) corresponding to the drive voltage that controls the speed of blower 2b, foot outlet temperature TF (° C) from lower outlet temperature sensor 2n, upper outlet temperature sensor 2m Venting temperature T B (° C) from the outlet, a blowing mode switching signal M x indicating the switching mode of the outlet 2 h set on the setting panel 3, indicating the inside / outside air switching mode of the inside / outside air switching door 2 a made from Intel Ichiku signal M y, and insolation T s (Kc al / m 2 hour) from solar radiation sensor 8, the output value is an estimate of the temperature of the passenger compartment T N (° C).
- y j l / (1 + exp (-
- ) > (1)
- yj is The output signal from layer i (the input signal to layer :) '). Note that this sigmoid function outputs 0 to 1 when the input variable is (1 ⁇ to + ⁇ ) as shown in FIG.
- the temperature estimator lb uses the four-point average temperatures of the driver's seat and the passenger's seat at positions corresponding to the head and feet as teacher signals when learning the neural network, and estimates the temperature in the above-mentioned cabin.
- the value of weight w and bias bj for each input signal in the formula for calculating the value TN is determined by learning, and at the time of control, the estimated value TN of the temperature in the vehicle compartment for each of the input signals is controlled by control logic. Output to 1a.
- each input signal is normalized from the minimum value to the maximum value of the measurement data from 0 to 1 so that the weight Wij for each of the above input signal types can be evaluated equally.
- the teacher signal takes the maximum and minimum values of the measurement data from 0.02 to 0.98 in consideration of the fact that 0 and 1 are saturation output values as output characteristics of the sigmoid function. Is becoming In other words, in learning a neural network using the above sigmoid function as an input function of a neuron, considering the learning efficiency and safety, a range of 0 which is slightly narrower than that of normalizing the teacher signal from 0 to 1 is considered. The convergence speed is faster and more effective when the normalization is performed from .02 to 0.98.
- Graph Figure 4 is have your temperature estimator 1 b made of a neural network as described above, was thoroughly learned by the learning under the following conditions, estimating the vehicle interior temperature T 0 by entering Isseki outside air temperature de It is.
- the above vehicle interior temperature T. Is the average value of the measured temperatures measured at the positions corresponding to the head and feet of the driver's seat and the passenger's seat. Learning conditions
- the maximum error is 4.9 ° C when the outside air temperature changes suddenly, but the average of the absolute value of the error is 0.
- the temperature inside the vehicle, T which is as small as 83 ° C and indicated by ⁇ . Almost follow the change in c.
- the temperature T in the vehicle compartment is much higher. It can be seen that the value is close to.
- the maximum error is 2.8 ° C, and the average absolute error is 0.64 ° C
- the maximum error is 2.4 ° C and the average absolute error is 0.90 ° C
- the maximum error is 4.0 ° C, and the average absolute error is 0.69 ° C
- the maximum error is 2.8 and the average absolute error is 1.04 ° C
- the estimated value T N close to can be obtained.
- the foot air temperature T F (° C)
- the vent blowout temperature T B (° C)
- the number of input signal Even if the number is set to 5 the maximum error is 1.5 ° C and the average of the absolute error values is 0.5 ° C, which is enough to meet the specifications.
- the control logic la is a control factor that becomes an input signal of the temperature estimator 1b from each control factor consisting of an environmental factor such as the input outside air temperature T A and an air conditioner state such as an air conditioning air blowing mode. Is extracted and output to the temperature estimator 1b.
- the temperature estimator lb receives the control factor extracted above and the measured temperature 1 ⁇ from Inc. s (internal temperature sensor) 6 as input signals, and estimates the interior temperature T N of the vehicle interior temperature using a neural network. And outputs it to the control logic 1a.
- Control logic 1 a said from the control factors and the estimated value T N, as vehicle interior temperature T 0 is set target temperature T z at a temperature setter 4, the opening degree of the air mixing door 2 e [rho
- the feedback control of the temperature in the passenger compartment of the control element of the air duct 2 such as () is performed according to the preset control logic 1a. That is, the temperature in the cabin is measured by the inside air temperature sensor 6 and then input to the temperature estimator 1b, and is sent to the control logic 1a as the estimated value TN. It is eavesdropped. Therefore, the control logic la is not the measured temperature ⁇ ⁇ from the internal air temperature sensor 6 but the vehicle interior temperature T. Since the estimated value TN of the cabin temperature from the temperature estimator 1b, which is very close to the above, is used as the feedback value, it is possible to accurately and quickly bring the cabin temperature to the target temperature Tz. it can.
- the measured temperature T i from the inside air temperature sensor 6, the outside air temperature T A , the opening degree P (%) of the air mixing door 2 e, and the blow duty ratio D (%) As input signals, and a temperature estimator lb composed of a neural network that uses the estimated value TN of the cabin temperature as an output value as input signals, and a control logic 1a
- control is performed using the above-mentioned estimated value T N as a feedback value, so that the temperature in the vehicle compartment can be accurately and quickly set to the target temperature T z .
- the learning of the neural network is easy because learning of the temperature estimator lb is easy because the teacher signal is only the four-point average temperature at the positions corresponding to the head and foot of the driver's seat and the passenger's seat.
- the learning of the estimated value T N can be performed in a short time.
- the estimated value T N of the vehicle interior temperature used in the control logic 1 a is the vehicle interior temperature T. Since the value is very close to, not only does the matching accuracy of the control logic 1a greatly improve, but also the time required for the matching process and the number of wind tunnel experiments in the matching process can be significantly reduced.
- control temperature of the internal temperature sensor 6 as a control factor is simply changed to the estimated value 1 of the vehicle interior temperature at the control port jack 1a. Since there is no need to adjust the temperature, there is no need to change the control logic 1a for each vehicle type, and only the temperature model for each vehicle type needs to be adjusted, thus significantly improving development efficiency.
- the temperature estimator 1b is obtained from the environmental factors such as the outside air temperature input to the control logic 1a and the control factors such as the state of the air conditioner such as the air-conditioning air blowing mode.
- the control factors may be independently input to the control logic 1a and the temperature estimator 1b.
- the control factors input to the control logic 1a do not need to be all the parameters used in the control logic 1a, and the parameters used in the control logic 1a are not necessarily the temperature estimator 1b. Need not include all of the input signals Needless to say.
- FIG. 6 is a diagram showing a configuration (temperature model) of a neural network according to the second embodiment of the present invention.
- the neural network has an input layer, a hidden layer, This is a three-layer hierarchical network consisting of an output layer.
- the input signals are the measured temperature ⁇ ⁇ (° C) from the inside air temperature sensor (Inc. s) 6, the outside air temperature T A (° C) from the outside air temperature sensor 7, and the amount of solar radiation T s ( Kc al / m 2 hour), blower duty ratio D (% corresponding to a drive voltage of the blower 2 b), the set blowing mode switching signal M x at setting panel 3, foot from the lower air outlet temperature sensor 2 n It consists of the outlet temperature T F (° C) and the vent outlet temperature T B (° C) from the upper outlet temperature sensor 2 m, and the output value is the estimated value T N (° C) of the cabin temperature. .
- the foot outlet temperature TF (° C) and the vent outlet temperature T B (° C) are defined as a predetermined value (for example, the temperature data of outlets other than the outlets set in the outlet mode). , 25 ° C).
- each input signal is normalized from the minimum value of the measurement data to the maximum value from 0 to 1 so that the Eight for each type of the input signal can be evaluated in the same manner. I have to.
- the teacher signal is normalized from the minimum value to the maximum value of the measured data from 0.02 to 0.98. are doing.
- Figure 7 is have your temperature estimator 1 b made of a neural network as described above, was thoroughly learned by the learning conditions below, is a graph estimating the vehicle interior temperature T 0 by entering the outside air temperature data .
- the above vehicle interior temperature T. are the average values of the measured temperatures measured at the positions corresponding to the head and feet of the driver's seat and front passenger seat, respectively. Learning conditions
- the maximum error is 1.9. C, the average of the absolute value of the error is 0.5 ° C, Temperature is the input signal (maximum error; 4.9 ° C, average of absolute value of error; 0.83 ° C)), and the vehicle interior temperature T indicated by 2 in the figure. Good follow-up to changes in This is because not only the factor used as the input signal is properly selected, but also the temperature data of the outlets other than the outlets set in the blowout mode is fixed to a predetermined value (for example, 25 ° C). As a result, unnecessary temperature fluctuations have been eliminated, and the estimated value T N of the vehicle interior temperature can be obtained more accurately. Note that the broken line in the figure is the detection temperature of Inc. s (internal temperature sensor) 6.
- the sigmoid function shown in equation (1) was used for the neural network.
- approximation of this sigmoid function with a plurality of straight lines required the temperature estimator 1b. Since the number of memories can be reduced and the calculation time can be significantly reduced, the temperature in the vehicle compartment can be more quickly brought to the target temperature Tz .
- Fig. 9 shows the error between the sigmoid function of equation (1) and the function obtained by approximating the sigmoid function with the linear function. If there are 17 straight lines, the magnitude of the error is The range can be within ⁇ 0.005.
- the sigmoid function is set so that the error is within ⁇ 0.005. Although 17 straight lines were approximated, there is no practical problem if the error is within ⁇ 0.03 ( ⁇ 3%).
- the function approximated above does not necessarily have to be a broken line, and in some cases, it may be better to make the function discontinuous in order to reduce the number of straight lines (the number of divisions of the input range) and increase the calculation speed.
- Equation (1) the logarithmic sigmoid function of Equation (1) is used has been described.
- Equation (2) a tanh sigmoid function as shown in Equation (2) below is used.
- other types of sigmoid functions may be used.
- the set temperature T .zeta.1, T ?? 2 and air volume W z! , W Z2 can also be set in a one-box twin type vehicle air conditioner, such as the environmental factors such as the outside air temperature, the state of the air conditioning equipment such as the air-conditioning air blowing mode, and the inside air temperature sensor of the front seat (front seat temperature) sensor) 6 a and an inside air temperature sensor (rear temperature sensor in the rear seat) as a measurement temperature i ⁇ have the input signal and T i2 from 6 b, the front seat estimated temperature T N i and rear estimated temperature T N2 by controlling the vehicle dual air conditioner based on providing the temperature estimator 1 B configured in a neural network to an output value in the above front seat estimated temperature T N i and rear estimated temperature T N 2 the passenger compartment
- the temperature of the front and rear seats can be accurately and quickly set to the respective target temperatures ⁇ ⁇ 1
- FIG. 10 is a control flow chart showing a method of controlling the temperature in the passenger compartment of the vehicle air conditioner according to the fourth embodiment of the present invention.
- the control factors input to the front seat control logic 11 and the rear seat control logic 12 have been omitted.
- the temperature estimator 1B calculates the outside air temperature ⁇ ⁇ , the amount of solar radiation T s , the amount of air blown by the front seat 9 and the rear seat 10, the air mix door opening of each of the front and rear air ducts (not shown), the front and rear
- Each of the blowout modes and the measured temperatures T and Ti2 from the front seat temperature sensor 6a and the rear seat temperature sensor 6b installed near the front and rear seats, respectively, are used as input signals, and a neural network is used.
- the estimated values T N1 and T N2 of the temperatures at the front and rear of the vehicle cabin are obtained and output to the control outlet jacks 11 and 12, respectively. .
- the estimated value T N1 of the temperature at the front part is the amount of air blown to the rear seat 10, the opening degree of the air mix door at the rear part, the blowing mode at the rear part, and the measured temperature from the rear seat temperature sensor 6b.
- the control logic 11 that can obtain values very close to the actual temperatures T i and T 2 at the front of the passenger compartment is From the above control factors and the above estimated value T N1 , the temperature T! So it becomes the target temperature T z i is set at a temperature setter 4 a, to control the front of Eadaku bets.
- the control logic 12 the from the regulator and the estimated value 1 2, urchin by the temperature T 2 of the cabin front reaches a target temperature T z 2 is set at a temperature setter 4 b, the rear of the air duct Control. Therefore, by performing control using the estimated values T N1 and T N2 of the front and rear temperatures in the passenger compartment as feedback values, the temperatures in the front and rear of the passenger compartment can be accurately and promptly set to the respective target temperatures. T z ⁇ ⁇ 2 .
- the measured temperatures T ii and T i 2 of the temperature sensor 6b were used as input signals, but are not limited thereto. For example, it was used as the input signal in the above best mode 1, may be added to the input signal a foot blow-out temperature T F and the vent outlet air temperature T B, and the like. Further, one or more of the input signals may be appropriately deleted.
- the present invention is excellent as a vehicle air conditioner control method and a vehicle air conditioner for appropriately controlling the temperature in a vehicle cabin to a target temperature.
- the control method is effective in improving the development efficiency of vehicle air conditioners.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
A control logic (1a) for an air conditioner for vehicles, comprising a temperature-estimating unit (1b) for estimating the room temperature of the vehicle which is a main factor of the control logic. The temperature-estimating unit (1b) is constituted of a neural network which receives input signals representing environmental factors of the vehicle, such as temperature Ti measured with an internal temperature sensor (6), the external air temperature TA, the opening P(%) of an air-mixing door (2e), the blower duty ratio D(%), etc., and the state of the air-conditioner, and outputs an estimated value TN of the room temperature. The air-conditioner is controlled by using the estimated value TN as a feedback value, and the room temperature is quickly regulated to a target temperature TZ.
Description
明 細 書 車両用空調装置とその制御方法 技術分野 Description Vehicle air conditioner and control method
本発明は、 空調装置に関するもので、 特に車室内の温度を適正に目標温度に制 御するための車両用空調装置とその制御方法に関する。 背景技術 The present invention relates to an air conditioner, and more particularly to an air conditioner for a vehicle for appropriately controlling the temperature in a passenger compartment to a target temperature and a control method thereof. Background art
第 1 1図は、 従来の車両量空調装置の制御フローを示す図で、 従来の車両用空 調装置は、 温度設定器 4で設定された目標温度 T zと、 車室内に設置された車室 内温度検出手段としての内気温センサ 6で測定した測定温度 T iとをパラメータ として制御を行う制御ロジック 1 pを備え、 この制御ロジック 1 pにより、 車室 内に送風する空調空気の温度や風量等を制御して車室内温度 T。を適正に保つよ うにしている。 しかしながら、 上記内気温センサ 6は、 通常、 フロントパネルの 下方に設置されているので、 外気温度や日射等の影響のため、 測定温度 Ί\は乗 員の着座位置近傍の温度である車室内温度 T。とは必ずしも一致してはいない。 そこで、 上記内気温センサ 6の測定温度 T iを実際の車室内温度 T 0に近づける ため、 車両に外気温センサや日射センサを設けて、 上記各センサの出力に基づい て上記測定温度 Τ\を補正したり、 更には、 空調空気の吹出しモードに応じて上 記測定温度 T iを補正していた。 The first 1 Figure is a diagram showing a control flow of a conventional vehicle weight air conditioner, a conventional air conditioning apparatus for a vehicle, and the target temperature T z set by the temperature setting unit 4, the installed car cabin The control logic 1 p is used to control the measured temperature T i measured by the inside air temperature sensor 6 as a room temperature detection means as a parameter, and the control logic 1 p controls the temperature of the air-conditioned air blown into the vehicle compartment. Control the air volume etc. to control the vehicle interior temperature T. To keep it properly. However, since the inside air temperature sensor 6 is usually installed below the front panel, the measured temperature Ί \ is the temperature near the occupant's seating position due to the effects of outside air temperature and solar radiation. T. Is not necessarily the same. Therefore, in order to bring the measured temperature Ti of the inside air temperature sensor 6 closer to the actual vehicle interior temperature T0, the vehicle is provided with an outside air temperature sensor and a solar radiation sensor, and the measured temperature Τ \ is determined based on the output of each sensor. The measurement temperature T i is corrected or corrected according to the air-conditioning air blowing mode.
しかしながら、 内気温センサ 6で測定した測定温度 T iと実際の車室内温度 T 0との差を補正するためには、 上記制御ロジックで用いるパラメ一夕が多いため 、 マッチング作業に時間がかるという問題点があった。 更に、 車内の前部及び後 部にそれそれ空調空気を送風するような車両用空調装置においては、 前部及び後 部の空調空気の状態が、 それそれ他方の空調空気に影響を与えるので、 制御ロジ ヅクのマヅチング作業は更に難しくなる。 However, in order to correct the difference between the measured temperature T i measured by the inside air temperature sensor 6 and the actual vehicle interior temperature T 0, there are many parameters used in the above control logic, so that the matching work takes time. There was a point. Furthermore, in a vehicle air-conditioning system that blows conditioned air to the front and rear portions of the vehicle, the condition of the front and rear conditioned air affects the other conditioned air. The task of matching the control logic becomes more difficult.
また、 特開平 6— 1 9 5 3 2 3号公報には、 第 1 2図に示すように、 目標温度 T 7 , 内気温センサ 6の測定温度 Ί\ , 外気温度 T A, 日射量 T sとを入力信号と
したニューラルネットワーク型追加学習装置を用いて、 空調空気の送風量等を制 御する技術が開示されている。 これは、 ニューラルネットワークにおいて、 目標 吹出し温度, 吹出しモード状態, ブロア風量等の各演算式を学習して求めて最終 送風量を制御するものであるが、 ニューラルネットワークの入出力関係を学習す るために使用する教師信号が多いため、 学習が収束しにくく、 また、 学習時間が 長くなつてしまうといった問題点があった。 Japanese Patent Application Laid-Open No. 6-1955323 also discloses that, as shown in FIG. 12, a target temperature T 7 , a measured temperature of the internal air temperature sensor 6 外, an outside air temperature T A , and a solar radiation amount T s. And the input signal and There is disclosed a technology for controlling the amount of air-conditioned air to be blown using the neural network type additional learning device described above. In the neural network, the final airflow is controlled by learning and calculating each arithmetic expression such as the target air outlet temperature, air outlet mode status, and blower air volume. However, there are problems that the learning is difficult to converge and that the learning time becomes longer because of the large number of teacher signals used in the training.
本発明は、 従来の問題点に鑑みてなされたもので、 空調装置の制御ロジックの 主要素である車室内温度を正確に推定することにより、 制御ロジックの調整が容 易で、 かつ、 車室内温度を高精度に制御することのできる車両用空調装置とその 制御方法を提供することを目的とする。 発明の開示 The present invention has been made in view of the conventional problems, and accurately adjusts a control logic by accurately estimating a vehicle interior temperature which is a main element of a control logic of an air conditioner. It is an object of the present invention to provide a vehicle air conditioner capable of controlling the temperature with high accuracy and a control method thereof. Disclosure of the invention
本発明の車両用空調装置の制御方法は、 車室内の温度を検出する車室内温度検 出手段の出力値から車室内温度を推定する温度モデルを設定し、 上記温度モデル からの車室内温度の推定値に基づいて車室内に送風する空調空気の温度や風量等 を調節し、 車室内の温度を制御するものである。 すなわち、 車室内温度検出手段 の出力値そのものではなく、 車室内の実際の温度に極めて近い値である車室内温 度の推定値を求め、 上記推定値を用いて車室内の温度を制御して、 車室内の温度 を速やかに目標温度に制御する。 The control method for a vehicle air conditioner according to the present invention includes: setting a temperature model for estimating a vehicle interior temperature from an output value of a vehicle interior temperature detecting means for detecting a vehicle interior temperature; The temperature and air volume of the conditioned air blown into the cabin are adjusted based on the estimated value to control the temperature in the cabin. That is, instead of the output value of the vehicle interior temperature detecting means itself, an estimated value of the vehicle interior temperature that is very close to the actual temperature of the vehicle interior is obtained, and the temperature in the vehicle interior is controlled using the above estimated value. The temperature in the passenger compartment is quickly controlled to the target temperature.
また、 本発明の車両用空調装置の制御方法は、 上記温度モデルを、 車両の環境 因子と空調機器の状態とを入力信号とし車室内の温度の推定値を出力値とする二 ユーラルネットワークで構成し、 車室内の温度の推定値を高精度に求める。 更に、 本発明の車両用空調装置の制御方法は、 上記環境因子を外気温度及び日 射量とし、 上記空調機器の状態と吹出しモード, 吹出し温度, 吹出し風量, 吸い 込み口位置の各情報のいずれかの組合せかあるいは全部とし、 少ない入力信号で 確実に車室内の温度を推定する。 In addition, the control method of the vehicle air conditioner of the present invention is characterized in that the temperature model is formed by a dual network in which an environmental factor of the vehicle and a state of the air conditioner are input signals and an estimated value of the temperature in the vehicle compartment is an output value. The system estimates the temperature of the cabin temperature with high accuracy. Further, in the control method of the vehicle air conditioner according to the present invention, the environmental factors may be the outside air temperature and the amount of solar radiation, and any one of the information of the state of the air conditioner, the blow mode, the blow temperature, the blow air volume, and the position of the suction port. Estimate the vehicle interior temperature with a small number of input signals.
本発明の車両用空調装置は、 ニューラルネットワークで構成した温度推定器を 備え、 上記温度推定器からの車室内温度の推定値に基づいて車室内に送風する空 調空気の温度や風量等を調節して車室内の温度を制御するものである。 このこと
によって、 実際の車室内温度に極めて近い車室内温度の推定値を求め、 上記推定 値に基づいて車室内の温度を制御して、 車室内の温度を速やかに目標温度に到達 するようにした。 The vehicle air conditioner of the present invention includes a temperature estimator constituted by a neural network, and adjusts the temperature and the amount of air-conditioned air blown into the vehicle interior based on the estimated value of the vehicle interior temperature from the temperature estimator. Thus, the temperature in the vehicle compartment is controlled. this thing As a result, an estimated value of the vehicle interior temperature that is extremely close to the actual vehicle interior temperature is obtained, and the vehicle interior temperature is controlled based on the estimated value, so that the vehicle interior temperature quickly reaches the target temperature.
また、 本発明の車両用空調装置は、 上記推定値をフィードバック値として車室 内に送風する空調空気の温度や風量等を調節して車室内の温度を制御し、 正確に かつ迅速な温度制御を行うものである。 In addition, the vehicle air conditioner of the present invention controls the temperature in the vehicle cabin by adjusting the temperature and air volume of the air-conditioned air blown into the vehicle cabin using the above-mentioned estimated value as a feedback value, thereby achieving accurate and quick temperature control. Is what you do.
更に、 本発明の車両用空調装置は、 上記環境因子を外気温度及び日射量とし、 上記空調機器の状態を吹出しモード, 吹出し温度, 吹出し風量, 吸い込み口位置 の各情報のいずれかの組合せかあるいは全部とし、 車室内の温度を確実に推定す るようにしたものである。 Further, in the vehicle air conditioner of the present invention, the environmental factors are the outside air temperature and the amount of solar radiation, and the state of the air conditioner is any combination of the following information: a blow mode, a blow temperature, a blow air volume, and a suction port position. The entire system is designed to reliably estimate the temperature in the cabin.
更にまた、 本発明の車両用空調装置は、 上記吹出し温度データのうち、 吹出 しモ一ドで設定される吹出し口以外の吹出し口の温度データを所定の値に固定す るようにしたものである。 このことによって、 不用な温度変動を抑制し、 車室内 の温度の推定値を更に正確に求めるようにした。 Still further, in the air conditioner for a vehicle according to the present invention, the temperature data of the outlet other than the outlet set in the outlet mode is fixed to a predetermined value in the outlet temperature data. is there. As a result, unnecessary temperature fluctuations were suppressed, and the estimated value of the temperature in the vehicle interior was obtained more accurately.
また、 本発明の車両用空調装置は、 車室内の前部及び後部の温度の推定値を出 力値とするニューラルネットワークで構成した温度推定器を備え、 上記推定値に 基づいて車室内の前部及び後部に送風する空調空気の温度や風量等を調節して車 室内の温度を制御するようにしたものである。 このことによって、 前部座席と後 部座席でそれぞれ設定温度や送風量が異なる場合にも、 互いの影響を考慮した制 御を行い、 車室内の前部及び後部の温度を速やかにそれそれの目標温度にする。 更に、 本発明の車両用空調装置は、 上記 2つの推定値をフィードバック値とし て車室内の前部及び後部に送風する空調空気の温度や風量等を調節して車室内の 温度を制御し、 車室内の前部及び後部の温度を正確にかつ迅速にそれそれの目標 温度にするようにしたものである。 In addition, the vehicle air conditioner of the present invention includes a temperature estimator configured as a neural network that outputs an estimated value of the temperature at the front part and the rear part of the vehicle interior as an output value. It controls the temperature in the cabin by adjusting the temperature, air volume, etc. of the air-conditioned air sent to the rear and rear sections. As a result, even when the set temperature and air flow are different between the front and rear seats, control is performed in consideration of the mutual influences, and the temperatures at the front and rear in the passenger compartment are quickly adjusted to each. Set the target temperature. Furthermore, the vehicle air conditioner of the present invention controls the temperature of the vehicle interior by adjusting the temperature and air volume of the conditioned air blown to the front and rear portions of the vehicle interior using the above two estimated values as feedback values, The temperature at the front and rear of the vehicle compartment is accurately and quickly set to the target temperature.
また、 本発明の車両用空調装置は、 上記環境因子を外気温度及び日射量とし、 上記空調機器の状態を車室の前部及び後部の吹出しモード, 吹出し温度, 吹出し 風量, 吸い込み口位置の各情報のいずれかの組合せかあるいは全部とし、 前部座 席と後部座席のお互いの設定状況を考慮した制御を確実に行うようにしたもので ある。
更に、 本発明の車両用空調装置は、 ニューラルネットワークの学習時に使用す る教師信号を、 運転席と助手席のそれそれの頭部及び足部に相当する位置の平均 温度とし、 車室内温度の推定値と実際の車室内温度との差を極めて小さくするよ うにしたものである。 Further, in the vehicle air conditioner of the present invention, the environmental factors are the outside air temperature and the amount of solar radiation, and the state of the air conditioner is the front and rear blow modes, the blow temperature, the blow air volume, and the suction port position. Any combination or all of the information is used to ensure that control is performed in consideration of the settings of the front and rear seats. Further, in the vehicle air conditioner of the present invention, the teacher signal used at the time of learning of the neural network is set as an average temperature of a position corresponding to a head and a foot of a driver's seat and a passenger's seat, and a vehicle interior temperature is obtained. The difference between the estimated value and the actual cabin temperature is made extremely small.
また、 本発明の車両用空調装置は、 ニューラルネットワークの学習時に使用す る、 教師信号の入力状態を、 0 . 0 2から 0 . 9 8に正規ィ匕するようにし、 ニュ 一ラルネットワークの学習の学習効率及び安全性を向上させたものである。 また、 本発明の車両用空調装置は、 ニューラルネットワークの学習時に使用す るシグモイド関数を、 一次関数のそれぞれの入力範囲における出力値と上記シグ モイド関数の出力値との誤差の絶対値が 3 %以内になるように入力範囲及び上記 一次関数の係数を設定した関数で近似するようにしたものである。 このことこと により、 必要メモリ数を低減するとともに演算時間を大幅に短縮し、 車室内の温 度を更に迅速に目標温度にする。 図面の簡単な説明 Further, the vehicle air conditioner of the present invention is configured such that the input state of the teacher signal used during learning of the neural network is changed from 0.02 to 0.98, and the neural network learning is performed. Learning efficiency and safety are improved. Further, in the vehicle air conditioner of the present invention, the absolute value of the error between the output value in each input range of the linear function and the output value of the sigmoid function is set to 3%. The approximation is made by a function in which the input range and the coefficient of the linear function are set so as to be within the range. As a result, the number of required memories can be reduced, and the calculation time can be significantly reduced, and the temperature in the vehicle interior can be more quickly set to the target temperature. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の最良の形態 1に係わる車両用空調装置の構成を示す図であ り、 第 2図は、 最良の形態 1に係わる温度推定器のニューラルネットワークの構 成を示す図である。 また、 第 3図は、 ニューラルネットワークに使用されるシグ モイド関数を示す図である。 第 4図は、 最良の形態 1の温度推定器による車室内 温度の推定値と実測値の関係を示す図であり、 第 5図は、 最良の形態 1に係わる 車両用空調装置の制御フローを示す図である。 FIG. 1 is a diagram illustrating a configuration of a vehicle air conditioner according to a first embodiment of the present invention, and FIG. 2 is a diagram illustrating a configuration of a neural network of a temperature estimator according to the first embodiment. It is. FIG. 3 is a diagram showing a sigmoid function used in the neural network. FIG. 4 is a diagram showing a relationship between an estimated value and a measured value of the vehicle interior temperature by the temperature estimator of the first embodiment, and FIG. 5 is a control flow of the vehicle air conditioner according to the first embodiment. FIG.
また、 第 6図は、 本発明の最良の形態 2に係わる温度推定器のニューラルネッ トワークの構成を示す図であり、 第 7図は、 最良の形態 2の温度推定器による車 室内温度の推定値と実測値の関係を示す図である。 FIG. 6 is a diagram showing the configuration of a neural network of a temperature estimator according to the second embodiment of the present invention. FIG. 7 is a diagram showing the estimation of the vehicle interior temperature by the temperature estimator according to the second embodiment. It is a figure showing the relation between a value and an actual measurement value.
第 8図は、 発明の最良の形態 3に係わるシグモイド関数の近似方法を示す図で あり、 第 9図は、 シグモイド関数と一次関数との誤差を示す図である。 また、 第 1 0図は、 本発明の最良の形態 3に係わる車両用空調装置の制御フローを示す図 である。 FIG. 8 is a diagram showing an approximation method of a sigmoid function according to the third embodiment of the present invention, and FIG. 9 is a diagram showing an error between the sigmoid function and a linear function. FIG. 10 is a diagram showing a control flow of the vehicle air conditioner according to Embodiment 3 of the present invention.
第 1 1図は、 従来の車両用空調装置の制御フローを示す図であり、 第 1 2図は
、 従来の車両用空調装置のニューラルネットワークの構成を示す図である。 発明を実施するための最良の形態 FIG. 11 is a diagram showing a control flow of a conventional vehicle air conditioner, and FIG. FIG. 2 is a diagram showing a configuration of a conventional neural network of a vehicle air conditioner. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をより詳細に説明するために、 添付の図面に従ってこれを説明 する。 Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
最良の形態 1 . Best mode 1.
第 1図は本発明の最良の形態 1に係わる車両用空調装置の構成を示す図で、 1 は制御装置、 2はエアダクト、 3は空調空気の温度や風量等の設定を行う設定パ ネル、 4は設定パネル 3から入力された車室内の目標温度 T zを設定し制御装置 1に出力する温度設定器、 5はエアダクト 2内のエアエアミックスドア 2 eの開 度調整を行ったり、 内外気切換えドア 2 aや吹出し口切換えドアの切換えを行つ たり、 ブロア 2 bを駆動するための駆動装置、 6は通常フロントパネルの下方に 設置された室内温度検出手段としての内気温センサ、 7は車両のバンパー近傍に 設置された外気温センサ、 8はフロントパネルの上部に設置された日射センサで あ 。 FIG. 1 is a diagram showing a configuration of a vehicle air conditioner according to a first embodiment of the present invention, wherein 1 is a control device, 2 is an air duct, 3 is a setting panel for setting the temperature and air volume of the conditioned air, 4 temperature settings for outputting to the control unit 1 sets the target temperature T z of the vehicle interior which is input from the setting panel 3, 5 or perform opening degree adjustment of the air air mix door 2 e in the air duct 2, the inside and outside air A driving device for switching the switching door 2a and the outlet switching door, and for driving the blower 2b, 6 is an inside air temperature sensor as room temperature detecting means usually installed below the front panel, and 7 is The outside air temperature sensor is installed near the bumper of the vehicle, and the solar radiation sensor 8 is installed above the front panel.
エアダクト 2は、 エアダク卜に導入する内気と外気との割合を調整する内外気 切換ドア 2 aと、 上記内外気切換ドア 2 aからの吸入空気を送風するブロア 2 b と、 送風空気を冷却するエバポレー夕 2 pと、 送風空気を暖めるヒータ 2 dと、 その開閉度によりエバポレー夕 2 pで冷却された送風空気のうちヒータ 2 dを通 過する空気量を制御して送風空気の温度を調節するエアミックスドア 2 eと、 上 記温度調節された空気を上部吹出し口 2 f及び下部吹出し口 2 gに分配する吹出 し口切換ドア 2 hとから構成される。 なお、 上部吹出し口 2 fには、 上部吹出し 口 2 fからの送風空気の温度を検出する上部吹出し口温度センサ 2 mが設置され 、 下部吹出し口 2 gには、 下部吹出し口 2 gからの送風空気の温度を検出する下 部吹出し口温度センサ 2 nが設置されている。 The air duct 2 includes an inside / outside air switching door 2a that adjusts a ratio of inside air and outside air introduced into the air duct, a blower 2b that blows air taken in from the inside / outside air switching door 2a, and cools the blown air. The temperature of the blown air is controlled by controlling the amount of air that passes through the heater 2d of the blown air cooled by the evaporator 2p, based on the evaporator 2p, the heater 2d that warms the blast air, and the opening / closing degree of the heater. An air mix door 2e to be used and an outlet switching door 2h for distributing the temperature-controlled air to the upper outlet 2f and the lower outlet 2g. The upper outlet 2 f is provided with an upper outlet temperature sensor 2 m for detecting the temperature of the air blown from the upper outlet 2 f, and the lower outlet 2 g is provided with a lower outlet 2 g from the lower outlet 2 g. A lower outlet temperature sensor 2n that detects the temperature of the blast air is installed.
また、 駆動装置 5は、 上記内外気切換ドア 2 aを駆動するァクチユエ一夕 1 c の制御装置と、 ブロア 2 bの回転速度制御用の制御器 2 cの制御装置と、 ェアミ ヅクスドア 2 eを駆動するァクチユエ一夕 3 cの制御装置と、 吹出し口切換ドア The driving device 5 includes a control device of the actuator 1c that drives the inside / outside air switching door 2a, a control device of the control device 2c for controlling the rotation speed of the blower 2b, and a laser door 2e. Actuator drive 3c control device and outlet switching door
(吹き出しモード切換えドア) 2 hを制御するァクチユエ一夕 4 cの制御装置と
か、 あるいは他の部分を制御する制御装置を備えている。 なお、 各制御装置は図 示を省略している。 (Blow-up mode switching door) Actuator to control 2h 4c with control device Or a control device for controlling other parts. The illustration of each control device is omitted.
制御装置 1は、 外気温度等の環境因子や空調空気の吹出しモード等の空調機器 の状態 (制御因子) に応じて、 エアミックスドア 2 eの開度等を制御する制御信 号を各駆動装置 5に出力する制御ロジック 1 aと、 内気温センサ 6からの測定温 度 1 と制御ロジック 1 aからの環境因子や空調機器の状態の情報を入力信号と し、 上記制御ロジック 1 aに出力する車室内の温度の推定値1 を出力値とする ニューラルネットワークで構成された温度推定器 1 bとを備えている。 なお、 上 記制御因子は、 例えば、 外気温センサ 7や日射センサ 8からの出力、 内外気切換 ドア 2 aの切換えモード, エアミックスドア 2 eの開度, 吹出し口切換ドア 2 h の切換えモード、 ブロア 2 bの速度制御用の駆動電圧などがある。 上記内外気切 換ドア 2 aの切換えモードには、 内気導入モードと外気導入モードの 2つのモ一 ドがあり、 吹出し口切換ドア 2 hの切換えモードには、 ベントモード、 足元吹き 出しモード、 バイレベルモード、 デフロストモードの 4つのモードがある。 第 2図は、 温度推定器 1 bにおけるニューラルネヅトワークの構成 (温度モデ ル) を示す図で、 ニューラルネットワークは、 入力層、 隠れ層、 出力層から成る 3層の階層型ネットワークである。 The control device 1 transmits a control signal for controlling the opening degree of the air mix door 2 e according to the environmental factors such as the outside air temperature and the condition (control factors) of the air conditioning equipment such as the air-conditioning air blowing mode. Control logic 1a to be output to 5 and measured temperature 1 from inside air temperature sensor 6 and information on environmental factors and air conditioner status from control logic 1a as input signals and output to control logic 1a above A temperature estimator 1b configured by a neural network that outputs an estimated value 1 of the temperature in the vehicle compartment as an output value. The above control factors include, for example, the output from the outside air temperature sensor 7 and the solar radiation sensor 8, the switching mode of the inside / outside air switching door 2a, the opening degree of the air mixing door 2e, and the switching mode of the outlet switching door 2h. The drive voltage for speed control of the blower 2b, etc. The switching mode of the inside / outside air switching door 2a has two modes, an inside air introduction mode and an outside air introduction mode.The switching mode of the outlet switching door 2h includes a vent mode, a foot blowing mode, There are four modes, bi-level mode and defrost mode. Fig. 2 is a diagram showing the configuration (temperature model) of the neural network in the temperature estimator 1b. The neural network is a three-layer hierarchical network consisting of an input layer, a hidden layer, and an output layer.
入力信号は、 外気温センサ 7からの外気温度 TA (°C) 、 内気温センサ (I n c. s) 6からの測定温度 1\ (°C) 、 エアミックスドア 2 eの開度 P (%) 、 ブロア 2 bの速度を制御する駆動電圧に相当するブロアデューティ比 D (%) 、 下部吹出し口温度センサ 2 nからのフット吹出し温度 TF (°C) 、 上部吹出し口 温度センサ 2mからのベント吹出し温度 TB (°C) 、 設定パネル 3で設定された 上記吹出し口 2 hの切換えモードを示す吹出しモード切換え信号 Mx、 内外気切 換ドア 2 aの内外気切換モードを示すインテ一ク信号 My、 日射センサ 8からの 日射量 Ts (Kc a l/m2hour) とから成り、 出力値は、 車室内の温度の 推定値 TN (°C) である。 The input signals are the outside air temperature T A (° C) from the outside air temperature sensor 7, the measured temperature 1 \ (° C) from the inside air temperature sensor (Inc.s) 6, and the opening P of the air mix door 2 e. (%), Blower duty ratio D (%) corresponding to the drive voltage that controls the speed of blower 2b, foot outlet temperature TF (° C) from lower outlet temperature sensor 2n, upper outlet temperature sensor 2m Venting temperature T B (° C) from the outlet, a blowing mode switching signal M x indicating the switching mode of the outlet 2 h set on the setting panel 3, indicating the inside / outside air switching mode of the inside / outside air switching door 2 a made from Intel Ichiku signal M y, and insolation T s (Kc al / m 2 hour) from solar radiation sensor 8, the output value is an estimate of the temperature of the passenger compartment T N (° C).
また、 このニューラルネットワークでは以下の式 (1) のようなシグモイド関 数が使用される。 In this neural network, a sigmoid function as shown in the following equation (1) is used.
yj= l/ (1 + exp (- | χ , | ) …… (1)
ここで、 χ」は、 層 iへの各入力信号 V iにウェイ ト w を乗算した値からバ ィァス b jを減じたもの (X j =∑ V i · wu— b』) で、 yjは層 iからの出力 信号 (層:) 'への入力信号) である。 なお、 このシグモイ ド関数は、 第 3図に示す ように、 入力変数がが (一∞〜+∞) に対して、 0から 1を出力する。 y j = l / (1 + exp (-| χ, |) …… (1) Here, χ ”is the value obtained by subtracting the bias bj from the value obtained by multiplying each input signal V i to the layer i by the weight w (X j = ∑V i · w u —b”), and yj is The output signal from layer i (the input signal to layer :) '). Note that this sigmoid function outputs 0 to 1 when the input variable is (1∞ to + ∞) as shown in FIG.
温度推定器 lbは、 ニューラルネットワークの学習時の教師信号として、 運転 席と助手席のそれそれの頭部及び足部に相当する位置の 4点平均温度を用い、 上 記車室内の温度の推定値 TNの演算式の各入力信号に対するウェイ ト w やバイ ァス bjの値を学習によって求め、 制御時には、 上記各入力信号に対して、 車室 内の温度の推定値 TNを制御ロジック 1 aに出力するものである。 The temperature estimator lb uses the four-point average temperatures of the driver's seat and the passenger's seat at positions corresponding to the head and feet as teacher signals when learning the neural network, and estimates the temperature in the above-mentioned cabin. The value of weight w and bias bj for each input signal in the formula for calculating the value TN is determined by learning, and at the time of control, the estimated value TN of the temperature in the vehicle compartment for each of the input signals is controlled by control logic. Output to 1a.
ニューラルネットワークへの入力状態として、 各入力信号は、 計測デ一夕の最 小値から最大値を 0から 1に正規化し、 上記各入力信号の種類に対するウェイ ト Wi jを同じに評価できるようにしている。 一方、 上記教師信号は、 上記シグモ ィド関数の出力特性として 0及び 1が飽和出力値であることを考慮し、 計測デ一 夕の最小値から最大値を 0. 02から0. 98に正規化している。 すなわち、 上 記シグモイ ド関数をニューロンの入力関数としているニューラルネットワークの 学習においては、 学習効率及び安全性を考慮すると、 上記教師信号を 0から 1に 正規ィ匕するよりも、 若干狭い範囲の 0. 02から 0. 98に正規ィ匕した方が収束 速度も速く有効である。 As the input state to the neural network, each input signal is normalized from the minimum value to the maximum value of the measurement data from 0 to 1 so that the weight Wij for each of the above input signal types can be evaluated equally. ing. On the other hand, the teacher signal takes the maximum and minimum values of the measurement data from 0.02 to 0.98 in consideration of the fact that 0 and 1 are saturation output values as output characteristics of the sigmoid function. Is becoming In other words, in learning a neural network using the above sigmoid function as an input function of a neuron, considering the learning efficiency and safety, a range of 0 which is slightly narrower than that of normalizing the teacher signal from 0 to 1 is considered. The convergence speed is faster and more effective when the normalization is performed from .02 to 0.98.
第 4図は、 上述したニューラルネットワークで構成された温度推定器 1 bにお いて、 下記の学習条件で十分学習した後、 外気温度デ一夕を入力して車室内温度 T0を推定したグラフである。 なお、 上記車室内温度 T。は、 運転席と助手席の それぞれの頭部及び足部に相当する位置で計測した各計測温度の平均値である。 学習条件 Graph Figure 4 is have your temperature estimator 1 b made of a neural network as described above, was thoroughly learned by the learning under the following conditions, estimating the vehicle interior temperature T 0 by entering Isseki outside air temperature de It is. The above vehicle interior temperature T. Is the average value of the measured temperatures measured at the positions corresponding to the head and feet of the driver's seat and the passenger's seat. Learning conditions
外気温度 10〜 35 (。C) Outside air temperature 10 ~ 35 (.C)
日射量 ···· 0〜660 (Kcal/m2hour) 車速 ····アイドル〜 40 (Km/h)相当 Insolation 0 to 660 (Kcal / m 2 hour) Vehicle speed ... Idle to 40 (Km / h) equivalent
実線で示した温度推定器 1 bの出力値 (推定値 TN) の変化をみると、 最大誤 差は外気温度の急変時で 4. 9°Cあるが、 誤差の絶対値の平均は 0. 83°Cと小 さく、 〇で示した車室内温度 T。の変化にほぼ追従しており、 破線で示した In
c. s (内気温センサ) 6からの測定温度 Tiの変化に比べて、 はるかに車室内 温度 T。に近い値を示していることが分かる。 Looking at the change in the output value (estimated value T N ) of the temperature estimator 1b shown by the solid line, the maximum error is 4.9 ° C when the outside air temperature changes suddenly, but the average of the absolute value of the error is 0. The temperature inside the vehicle, T, which is as small as 83 ° C and indicated by 〇. Almost follow the change in c. Compared to the change in measured temperature Ti from s (internal temperature sensor) 6, the temperature T in the vehicle compartment is much higher. It can be seen that the value is close to.
また、 第 2図に示した入力信号に対して、 各信号を削除して学習した場合の最 大誤差と誤差絶対値の平均を以下に記す。 The average of the maximum error and the absolute value of the error when the input signal shown in Fig. 2 is learned by deleting each signal is described below.
( 1 ) エアミックスドァ開度信号除去 (1) Air mix door opening signal removal
最大誤差が 2. 8°Cで、 誤差絶対値の平均は 0. 64°C The maximum error is 2.8 ° C, and the average absolute error is 0.64 ° C
(2) インテーク信号除去 (2) Intake signal removal
最大誤差が 2. 4°Cで、 誤差絶対値の平均は 0. 90°C The maximum error is 2.4 ° C and the average absolute error is 0.90 ° C
(3) 吹出し温度信号除去 (3) Removal of blow-out temperature signal
最大誤差が 4. 0°Cで、 誤差絶対値の平均は 0. 69°C The maximum error is 4.0 ° C, and the average absolute error is 0.69 ° C
(4) エアミックスドア開度信号とインテ一ク信号除去 (4) Air mix door opening signal and intake signal removal
最大誤差が 2. 8 で、 誤差絶対値の平均は 1. 04°C The maximum error is 2.8 and the average absolute error is 1.04 ° C
以上の結果から、 入力信号を削減しても車室内温度 T。に近い推定値 TNを得 ることができる。 例えば、 第 2図に示した入力信号に対して、 フット吹出し温度 TF (°C) 、 ベント吹出し温度 TB (°C) 、 インテ一ク信号 Myの 3つを除去し、 入力信号数を 5つとした場合でも、 最大誤差が 1. 5°Cで、 誤差絶対値の平均は 0. 5°Cとなり、 仕様を十分満たすことが可能である。 From the above results, the vehicle interior temperature T even when the input signal is reduced. The estimated value T N close to can be obtained. For example, for the input signal shown in FIG. 2, the foot air temperature T F (° C), the vent blowout temperature T B (° C), to remove three of Intel Ichiku signal M y, the number of input signal Even if the number is set to 5, the maximum error is 1.5 ° C and the average of the absolute error values is 0.5 ° C, which is enough to meet the specifications.
次に、 上記車両用空調装置の車室内温度の制御方法について、 第 5図の制御フ ローに基づき説明する。 制御ロジック l aは、 入力された外気温度 T A等の環境 因子や空調空気の吹出しモ一ド等の空調機器の状態から成る各制御因子から、 温 度推定器 1 bの入力信号となる制御因子を抽出し、 温度推定器 1 bに出力する。 温度推定器 l bは、 上記抽出された制御因子と、 I nc. s (内気温センサ) 6 からの測定温度 1\とを入力信号とし、 ニューラルネヅトワークにより、 車室内 温度の推定値 TNを求めて制御ロジック 1 aに出力する。 制御ロジック 1 aは、 上記各制御因子と上記推定値 T Nから、 車室内温度 T 0が温度設定器 4で設定さ れ目標温度 Tzになるように、 エアミックスドア 2 eの開度 Ρ ( ) 等のエアダ クト 2の制御要素を予め設定された制御ロジック 1 aに従って車室内の温度をフ イードバック制御する。 すなわち、 車室内の温度は、 上記内気温センサ 6で測定 された後、 温度推定器 1 bに入力され、 推定値 TNとして制御ロジック 1 aにフ
イードバックされる。 したがって、 制御ロジック l aは、 内気温センサ 6からの 測定温度 Ί\ではなく、 車室内温度 T。に極めて近い値である温度推定器 1 bか らの車室内温度の推定値 T Nをフィードバック値とした制御を行うので、 車室内 の温度を正確にかつ迅速に目標温度 T zにすることができる。 Next, a method of controlling the cabin temperature of the vehicle air conditioner will be described with reference to the control flow of FIG. The control logic la is a control factor that becomes an input signal of the temperature estimator 1b from each control factor consisting of an environmental factor such as the input outside air temperature T A and an air conditioner state such as an air conditioning air blowing mode. Is extracted and output to the temperature estimator 1b. The temperature estimator lb receives the control factor extracted above and the measured temperature 1 \ from Inc. s (internal temperature sensor) 6 as input signals, and estimates the interior temperature T N of the vehicle interior temperature using a neural network. And outputs it to the control logic 1a. Control logic 1 a, said from the control factors and the estimated value T N, as vehicle interior temperature T 0 is set target temperature T z at a temperature setter 4, the opening degree of the air mixing door 2 e [rho The feedback control of the temperature in the passenger compartment of the control element of the air duct 2 such as () is performed according to the preset control logic 1a. That is, the temperature in the cabin is measured by the inside air temperature sensor 6 and then input to the temperature estimator 1b, and is sent to the control logic 1a as the estimated value TN. It is eavesdropped. Therefore, the control logic la is not the measured temperature Ί \ from the internal air temperature sensor 6 but the vehicle interior temperature T. Since the estimated value TN of the cabin temperature from the temperature estimator 1b, which is very close to the above, is used as the feedback value, it is possible to accurately and quickly bring the cabin temperature to the target temperature Tz. it can.
このように、 本発明の最良の形態 1によれば、 内気温センサ 6からの測定温度 T iと、 外気温度 T A, エアミックスドア 2 eの開度 P (% ) , ブロアデューテ ィ比 D (%) 等の車両の環境因子及び空調機器の状態とを入力信号とし、 車室内 の温度の推定値 T Nを出力値とするニューラルネットワークで構成した温度推定 器 l bを設け、 制御ロジック 1 aにおいて、 上記推定値 T Nをフィードバック値 とした制御を行うようにしたので、 車室内の温度を正確にかつ迅速に目標温度 T zにすることができる。 Thus, according to the best mode 1 of the present invention, the measured temperature T i from the inside air temperature sensor 6, the outside air temperature T A , the opening degree P (%) of the air mixing door 2 e, and the blow duty ratio D (%) As input signals, and a temperature estimator lb composed of a neural network that uses the estimated value TN of the cabin temperature as an output value as input signals, and a control logic 1a In the above, control is performed using the above-mentioned estimated value T N as a feedback value, so that the temperature in the vehicle compartment can be accurately and quickly set to the target temperature T z .
更に、 ニューラルネットワークの学習は、 教師信号が運転席と助手席のそれそ れの頭部及び足部に相当する位置での 4点平均温度のみであるので、 温度推定器 l bの学習が容易で、 短期間に上記推定値 T Nの学習を行うことができる。 また 、 制御ロジック 1 aで使用する車室内温度の推定値 T Nが車室内温度 T。に極め て近い値であるため、 制御ロジック 1 aのマッチング精度が大幅に向上するだけ でなく、 マツチング作業時間やマツチングプロセスでの風洞実験の回数を大幅に 削減することができる。 更に、 異なる車種の空調装置の設計においても、 制御口 ジヅク 1 aにおいて、 制御因子としての内気温センサ 6からの測定温度 Ί を単 に車室内温度の推定値1 に変えるだけで、 パラメ一夕の調整を行う必要がない ので、 車種毎に制御ロジック 1 aを変更する必要がなく、 車種毎の温度モデルの み調節すれば良いので、 開発効率も著しく向上する。 Furthermore, learning of the neural network is easy because learning of the temperature estimator lb is easy because the teacher signal is only the four-point average temperature at the positions corresponding to the head and foot of the driver's seat and the passenger's seat. The learning of the estimated value T N can be performed in a short time. The estimated value T N of the vehicle interior temperature used in the control logic 1 a is the vehicle interior temperature T. Since the value is very close to, not only does the matching accuracy of the control logic 1a greatly improve, but also the time required for the matching process and the number of wind tunnel experiments in the matching process can be significantly reduced. Furthermore, even in the design of air conditioners of different types of vehicles, the control temperature of the internal temperature sensor 6 as a control factor is simply changed to the estimated value 1 of the vehicle interior temperature at the control port jack 1a. Since there is no need to adjust the temperature, there is no need to change the control logic 1a for each vehicle type, and only the temperature model for each vehicle type needs to be adjusted, thus significantly improving development efficiency.
なお、 本発明の最良の形態 1においては、 制御ロジック 1 aに入力された外気 温度等の環境因子や空調空気の吹出しモード等の空調機器の状態等の各制御因子 から温度推定器 1 bの入力信号となる要素を選択して温度推定器 1 bに出力した が、 制御ロジック 1 aと温度推定器 1 bとに各制御因子を独立に入力するように 構成してもよい。 また、 制御ロジック 1 aに入力する制御因子は、 全てが制御口 ジック 1 aで使用するパラメ一夕である必要もなく、 制御ロジック 1 aで使用す るパラメ一夕は必ずしも温度推定器 1 bの入力信号の全てを含む必要はないこと
は言うまでもない。 In the best mode 1 of the present invention, the temperature estimator 1b is obtained from the environmental factors such as the outside air temperature input to the control logic 1a and the control factors such as the state of the air conditioner such as the air-conditioning air blowing mode. Although an element to be an input signal is selected and output to the temperature estimator 1b, each of the control factors may be independently input to the control logic 1a and the temperature estimator 1b. Also, the control factors input to the control logic 1a do not need to be all the parameters used in the control logic 1a, and the parameters used in the control logic 1a are not necessarily the temperature estimator 1b. Need not include all of the input signals Needless to say.
最良の形態 2. Best mode 2.
第 6図は、 本発明の最良の形態 2に係わるニューラルネットワークの構成 (温 度モデル) を示す図で、 ニューラルネットヮ一クは、 上記最良の形態 1と同様に 、 入力層、 隠れ層、 出力層から成る 3層の階層型ネットワークである。 FIG. 6 is a diagram showing a configuration (temperature model) of a neural network according to the second embodiment of the present invention. As in the first embodiment, the neural network has an input layer, a hidden layer, This is a three-layer hierarchical network consisting of an output layer.
入力信号は、 内気温センサ (Inc. s) 6からの測定温度 Ί\ (°C)、 外気 温センサ 7からの外気温度 TA (°C) 、 日射センサ 8からのの日射量 Ts (Kc a l/m2hour) 、 ブロア 2 bの駆動電圧に相当するブロアデューティ比 D (%) 、 設定パネル 3で設定された吹出しモード切換え信号 Mx、 下部吹出し口 温度センサ 2 nからのフッ ト吹出し温度 TF (°C)、 上部吹出し口温度センサ 2 mからのベント吹出し温度 TB (°C) とから成り、 出力値は、 車室内の温度の推 定値 TN (°C) である。 但し、 上記フッ ト吹出し温度 TF (°C) と上記ベント吹 出し温度 TB (°C) とは、 上記吹出しモードで設定される吹出し口以外の吹出し 口の温度データを所定の値 (例えば、 25°C) に固定するものとする。 The input signals are the measured temperature Ί \ (° C) from the inside air temperature sensor (Inc. s) 6, the outside air temperature T A (° C) from the outside air temperature sensor 7, and the amount of solar radiation T s ( Kc al / m 2 hour), blower duty ratio D (% corresponding to a drive voltage of the blower 2 b), the set blowing mode switching signal M x at setting panel 3, foot from the lower air outlet temperature sensor 2 n It consists of the outlet temperature T F (° C) and the vent outlet temperature T B (° C) from the upper outlet temperature sensor 2 m, and the output value is the estimated value T N (° C) of the cabin temperature. . However, the foot outlet temperature TF (° C) and the vent outlet temperature T B (° C) are defined as a predetermined value (for example, the temperature data of outlets other than the outlets set in the outlet mode). , 25 ° C).
また、 ニューラルネットワークへの入力状態として、 各入力信号は、 計測デー 夕の最小値から最大値を 0から 1に正規ィ匕し、 上記各入力信号の種類に対するゥ エイ ト を同じに評価できるようにしている。 一方、 上記教師信号は、 上記 シグモイ ド関数の出力特性として 0及び 1が飽和出力値であることを考慮し、 計 測データの最小値から最大値を 0. 02から 0. 98に正規ィ匕している。 In addition, as the input state to the neural network, each input signal is normalized from the minimum value of the measurement data to the maximum value from 0 to 1 so that the Eight for each type of the input signal can be evaluated in the same manner. I have to. On the other hand, in consideration of the fact that 0 and 1 are saturation output values as output characteristics of the sigmoid function, the teacher signal is normalized from the minimum value to the maximum value of the measured data from 0.02 to 0.98. are doing.
第 7図は、 上述したニューラルネットワークで構成された温度推定器 1 bにお いて、 下記の学習条件で十分学習した後、 外気温度データを入力して車室内温度 T0を推定したグラフである。 なお、 上記車室内温度 T。は、 運転席と助手席の それそれの頭部及び足部に相当する位置で計測した各計測温度の平均値である。 学習条件 Figure 7 is have your temperature estimator 1 b made of a neural network as described above, was thoroughly learned by the learning conditions below, is a graph estimating the vehicle interior temperature T 0 by entering the outside air temperature data . The above vehicle interior temperature T. Are the average values of the measured temperatures measured at the positions corresponding to the head and feet of the driver's seat and front passenger seat, respectively. Learning conditions
外気温度 10〜 3.5 (°C) Outside air temperature 10 to 3.5 (° C)
日射量 ···· 0〜660 (Kcal/m2hour) 車速 ····アイドル〜 40 (Km/h)相当 Insolation 0 to 660 (Kcal / m 2 hour) Vehicle speed ... Idle to 40 (Km / h) equivalent
実線で示した温度推定器 1 bの出力値 (推定値 TN) の変化をみると、 最大誤 差は 1. 9。C、 誤差の絶対値の平均は 0. 5°Cと、 上述したエアミックスドア開
度を入力信号とした場合 (最大誤差; 4. 9°C、 誤差の絶対値の平均; 0. 83 °C) ) に比べ小さく、 しかも、 同図の〇で示した車室内温度 T。の変化に対する 追従性もよい。 これは、 入力信号として用いた因子が適切に選択されているだけ でなく、 吹出しモードで設定される吹出し口以外の吹出し口の温度デ一夕を所定 の値 (例えば、 25°C) に固定したため不用な温度変動がなくなり、 車室内の温 度の推定値 TNを更に正確に求めることができるようになつたためである。 なお 、 同図の破線は、 Inc. s (内気温センサ) 6の検出温度である。 Looking at the change in the output value (estimated value T N ) of the temperature estimator 1 b shown by the solid line, the maximum error is 1.9. C, the average of the absolute value of the error is 0.5 ° C, Temperature is the input signal (maximum error; 4.9 ° C, average of absolute value of error; 0.83 ° C)), and the vehicle interior temperature T indicated by ② in the figure. Good follow-up to changes in This is because not only the factor used as the input signal is properly selected, but also the temperature data of the outlets other than the outlets set in the blowout mode is fixed to a predetermined value (for example, 25 ° C). As a result, unnecessary temperature fluctuations have been eliminated, and the estimated value T N of the vehicle interior temperature can be obtained more accurately. Note that the broken line in the figure is the detection temperature of Inc. s (internal temperature sensor) 6.
最良の形態 3. Best mode 3.
上記最良の形態 1, 2においては、 ニューラルネッ トワークに式 (1) に示す シグモイ ド関数を用いたが、 このシグモイ ド関数を複数の直線で近似することに より、 温度推定器 1 bの必要メモリ数を低減できるとともに、 演算時間を大幅に 短縮することができるので、 車室内の温度を更に迅速に目標温度 Tzにすること ができる。 In the above first and second best modes, the sigmoid function shown in equation (1) was used for the neural network. However, approximation of this sigmoid function with a plurality of straight lines required the temperature estimator 1b. Since the number of memories can be reduced and the calculation time can be significantly reduced, the temperature in the vehicle compartment can be more quickly brought to the target temperature Tz .
すなわち、 式 (1) に示すシグモイ ド関数を、 例えば 8ビットの組込み型マイ コンでプログラムする場合には、 精度維持のため、 指数関数と浮動小数演算ライ ブラリが必要となるため、 ROM容量や計算時間が大きくなる。 一方、 一次関数 は割り算を含んでいないので浮動小数演算の必要もなく、 整数演算を用いても演 算精度を維持できるとともに、 RO M容量や計算時間を小さくできるという利点 がある。 そこで、 ニューラルネットワークが学習するときには上記 (1)式のシ グモイ ド関数を使用し、 学習後のネットワークを実際の組込み型マイコンにプロ グラムするときには、 第 8図に示すように、 上記 (1)式のシグモイ ド関数を誤 差が、 例えば ±0. 005以内になるような 17本の直線 (一次関数; yi = a iX + b i (i = 1〜17) ) で近似した関数を、 上記 (1) 式のシグモイ ド関 数の代用とすることにより、 ROM容量や計算時間を小さくでき、 なおかつ、 演 算精度を維持することができる。 In other words, when the sigmoid function shown in equation (1) is programmed with, for example, an 8-bit built-in microcomputer, an exponential function and a floating-point arithmetic library are required to maintain accuracy, so that ROM capacity and Calculation time increases. On the other hand, since the linear function does not include division, there is no need for floating-point arithmetic, so that even if integer arithmetic is used, the arithmetic accuracy can be maintained, and the ROM capacity and calculation time can be reduced. Therefore, when the neural network learns, the sigmoid function of the above equation (1) is used, and when the trained network is programmed into an actual embedded microcomputer, as shown in FIG. A function approximating the sigmoid function of the equation with 17 straight lines (linear function; yi = a iX + bi (i = 1 to 17)) whose error is within ± 0.005, for example, By substituting the sigmoid function in equation (1), the ROM capacity and calculation time can be reduced, and the calculation accuracy can be maintained.
第 9図は、 ( 1 ) 式のシグモイ ド関数とシグモイド関数を上記一次関数で近似 した関数との誤差を示す図で、 直線が 17本の場合には、 誤差の大きさは、 全入 力範囲で ±0. 005以内にすることができる。 Fig. 9 shows the error between the sigmoid function of equation (1) and the function obtained by approximating the sigmoid function with the linear function. If there are 17 straight lines, the magnitude of the error is The range can be within ± 0.005.
なお、 上記例では、 シグモイ ド関数を誤差が ± 0. 005以内になるような
17本の直線近似したが、 誤差が ±0. 03 (±3%) 以内であれば実用上問 題はない。 In the above example, the sigmoid function is set so that the error is within ± 0.005. Although 17 straight lines were approximated, there is no practical problem if the error is within ± 0.03 (± 3%).
また、 上記近似した関数は必ずしも折れ線である必要はなく、 直線数 (入力範 囲の分割数) を少なくし計算速度を早くするためにはむしろ不連続とした方が良 い場合もある。 In addition, the function approximated above does not necessarily have to be a broken line, and in some cases, it may be better to make the function discontinuous in order to reduce the number of straight lines (the number of divisions of the input range) and increase the calculation speed.
また、 上記最良の形態 1, 2、 3では、 式 (1) の対数型シグモイド関数を使 用した場合について説明したが、 以下の式 (2) に示すような t a nh型シグモ ィド関数などの他の型のシグモイド関数を用いてもよいことはもちろんである。 In the first, second, and third embodiments, the case where the logarithmic sigmoid function of Equation (1) is used has been described. However, a tanh sigmoid function as shown in Equation (2) below is used. Of course, other types of sigmoid functions may be used.
最良の形態 4. Best mode 4.
上記最良の形態 1、 2においては、 通常タイプの車両用空調装置について説明 したが、 前部座席と後部座席のそれぞれで、 設定温度 ΤΖ1, ΤΖ2及び送風量 Wz !, WZ2を設定できるワンボックス用ツインタイプの車両用空調装置においても 、 外気温度等の環境因子や空調空気の吹出しモード等の空調機器の状態や前部座 席の内気温センサ (前席温度センサ) 6 a及び後部座席の内気温センサ (後席温 度センサ) 6 bからの測定温度 Ί\い Ti2とを入力信号とし、 前席推定温度 TN iと後席推定温度 TN2とを出力値とするニューラルネットワークで構成した温度 推定器 1 Bを設けて上記前席推定温度 T N iと後席推定温度 T N 2とに基づいて車 両用空調装置を制御することにより、 車室内の前部座席と後部座席の温度を正確 にかつ迅速にそれそれの目標温度 ΤΖ1, Τ ζ 2にすることができる。 In the above-described best mode 1, 2, has been described ordinary type air conditioner for a vehicle, in each of the front seat and a rear seat, the set temperature T .zeta.1, T ?? 2 and air volume W z! , W Z2 can also be set in a one-box twin type vehicle air conditioner, such as the environmental factors such as the outside air temperature, the state of the air conditioning equipment such as the air-conditioning air blowing mode, and the inside air temperature sensor of the front seat (front seat temperature) sensor) 6 a and an inside air temperature sensor (rear temperature sensor in the rear seat) as a measurement temperature i \ have the input signal and T i2 from 6 b, the front seat estimated temperature T N i and rear estimated temperature T N2 by controlling the vehicle dual air conditioner based on providing the temperature estimator 1 B configured in a neural network to an output value in the above front seat estimated temperature T N i and rear estimated temperature T N 2 the passenger compartment The temperature of the front and rear seats can be accurately and quickly set to the respective target temperatures Ζ Ζ1 , Τ そ れ 2 .
第 10図は本発明の最良の形態 4に係わる車両用空調装置の車室内温度の制御 方法を示す制御フローである。 但し、 繁雑さを避けるため、 前席制御ロジック 1 1と後席制御ロジック 12に入力される各制御因子については省略した。 FIG. 10 is a control flow chart showing a method of controlling the temperature in the passenger compartment of the vehicle air conditioner according to the fourth embodiment of the present invention. However, in order to avoid complexity, the control factors input to the front seat control logic 11 and the rear seat control logic 12 have been omitted.
温度推定器 1Bは、 外気温度 ΤΑ, 日射量 Ts, 前部座席 9と後部座席 10の 各送風量, 図示しない前部及び後部の各エアダクトのエアミックスドア開度, 前 部及び後部の各吹出しモードと、 前部座席と後部座席のそれぞれの近傍に設置さ れた前席温度センサ 6 a及び後席温度センサ 6 bからの測定温度 T , Ti2と を入力信号とし、 ニューラルネットワークにより、 車室内の前部及び後部の温度 の推定値 TN1, TN2を求めて、 それぞれ、 制御口ジヅク 11, 12に出力する
。 このとき、 上記前部の温度の推定値 TN1は、 後部座席 10への送風量, 後部 のエアミックスドアの開度, 後部の吹出しモ一ド, 後席温度センサ 6 bからの測 定温度 Ti2を考慮した値として学習され、 後部の温度の推定値 TN 2は、 前部座 席 9の上記各デ一夕を考慮した値として学習されているので、 上記推定値 TN1 , TN2は、 前後の空調装置の相互作用を含んだ推定値として求めることができ るので、 実際の車室前部の温度 T i及び T 2に極めて近い値を得ることができる 制御ロジック 11は、 上記各制御因子と上記推定値 TN1から、 車室前部の温 度 T!が温度設定器 4 aで設定され目標温度 T z iになるように、 前部のエアダク トを制御する。 同様に、 制御ロジック 12は、 上記各制御因子と上記推定値1 2から、 車室前部の温度 T 2が温度設定器 4 bで設定され目標温度 T z 2になるよ うに、 後部のエアダクトを制御する。 したがって、 車室内の前部及び後部の温度 の推定値 TN1, TN2をフィードバック値とした制御を行うことにより、 車室内 の前部及び後部の温度を正確にかつ迅速にそれそれの目標温度 Tzい ΤΖ2にす ることができる。 The temperature estimator 1B calculates the outside air temperature Τ 日 , the amount of solar radiation T s , the amount of air blown by the front seat 9 and the rear seat 10, the air mix door opening of each of the front and rear air ducts (not shown), the front and rear Each of the blowout modes and the measured temperatures T and Ti2 from the front seat temperature sensor 6a and the rear seat temperature sensor 6b installed near the front and rear seats, respectively, are used as input signals, and a neural network is used. The estimated values T N1 and T N2 of the temperatures at the front and rear of the vehicle cabin are obtained and output to the control outlet jacks 11 and 12, respectively. . At this time, the estimated value T N1 of the temperature at the front part is the amount of air blown to the rear seat 10, the opening degree of the air mix door at the rear part, the blowing mode at the rear part, and the measured temperature from the rear seat temperature sensor 6b. It is learned as a value taking into account T i2, and the estimated value T N2 of the rear part is learned as a value taking into account each of the above-mentioned data of the front seat 9, so that the above-mentioned estimated values T N1 , T N Since N2 can be obtained as an estimated value including the interaction between the front and rear air conditioners, the control logic 11 that can obtain values very close to the actual temperatures T i and T 2 at the front of the passenger compartment is From the above control factors and the above estimated value T N1 , the temperature T! So it becomes the target temperature T z i is set at a temperature setter 4 a, to control the front of Eadaku bets. Similarly, the control logic 12, the from the regulator and the estimated value 1 2, urchin by the temperature T 2 of the cabin front reaches a target temperature T z 2 is set at a temperature setter 4 b, the rear of the air duct Control. Therefore, by performing control using the estimated values T N1 and T N2 of the front and rear temperatures in the passenger compartment as feedback values, the temperatures in the front and rear of the passenger compartment can be accurately and promptly set to the respective target temperatures. T z Ζ Ζ2 .
なお、 本発明の最良の形態 4においては、 外気温度 ΤΑ, 日射量 Ts, 前部と 後部の各送風量, エアミックスドアの開度, 吹出しモード, 前席温度センサ 6 a 及び後席温度センサ 6 bの測定温度 T i i, T i 2とを入力信号としたがこれに限 るものではない。 例えば、 上記最良の形態 1で入力信号として用いた、 フット吹 出し温度 TFやベント吹出し温度 TB等を入力信号に加えてもよい。 また、 上記 入力信号の 1つあるいは複数を適宜削除してもよい。 産業上の利用可能性 In the fourth embodiment of the present invention, the outside air temperature Τ 日 , the amount of solar radiation T s , the front and rear air flow rates, the opening of the air mix door, the blowing mode, the front seat temperature sensor 6 a and the rear seat The measured temperatures T ii and T i 2 of the temperature sensor 6b were used as input signals, but are not limited thereto. For example, it was used as the input signal in the above best mode 1, may be added to the input signal a foot blow-out temperature T F and the vent outlet air temperature T B, and the like. Further, one or more of the input signals may be appropriately deleted. Industrial applicability
以上のように、 本発明は、 車室内の温度を適正に目標温度に制御するための車 両用空調装置の制御方法及び車両用空調装置として優れており、 特に、 本発明の 車両用空調装置の制御方法は、 車両用空調装置の開発効率を向上させるのに有効 である。
INDUSTRIAL APPLICABILITY As described above, the present invention is excellent as a vehicle air conditioner control method and a vehicle air conditioner for appropriately controlling the temperature in a vehicle cabin to a target temperature. The control method is effective in improving the development efficiency of vehicle air conditioners.
Claims
1 . 車室内の温度を検出する車室内温度検出手段の出力値から車室内温度を推 定する温度モデルを設定し、 上記温度モデルからの推定温度に基づいて車室内の 温度を制御するようにしたことを特徴とする車両用空調装置の制御方法。 1. A temperature model for estimating the cabin temperature from the output value of the cabin temperature detecting means for detecting the cabin temperature is set, and the cabin temperature is controlled based on the estimated temperature from the temperature model. A method for controlling a vehicle air conditioner.
2 . 上記温度モデルを、 車両の環境因子と空調機器の状態とを入力信号とし車 室内の温度の推定値を出力値とするニューラルネットワークで構成することを特 徴とする請求の範囲第 1項記載の車両用空調装置の制御方法。 2. The temperature model according to claim 1, wherein the temperature model is configured by a neural network using an environmental factor of the vehicle and a state of the air conditioner as input signals and an estimated value of the temperature in the passenger compartment as an output value. The control method of the vehicle air conditioner according to the above.
3 . 上記環境因子を外気温度及び日射量とし、 上記空調機器の状態を吹出しモ —ド, 吹出し温度, 吹出し風量, 吸い込み口位置の各情報のいずれかの組合せか あるいは全部とすることを特徴とする請求の範囲第 2項記載の車両用空調装置の 制御方法。 3. The environmental factors are the outside air temperature and the amount of solar radiation, and the state of the air conditioner is any combination or all of the following information: blow mode, blow temperature, blow air volume, and inlet position. 3. The control method for a vehicle air conditioner according to claim 2, wherein:
4 . 車室内の温度を検出する車室内温度検出手段と、 上記車室内温度検出手段 の検出温度と車両の環境因子及び空調機器の状態とを入力信号とし車室内の温度 の推定値を出力値とするニューラルネットワークで構成した温度推定器とを備え 、 上記推定値に基づいて車室内の温度を制御するようにしたことを特徴とする車 4. Vehicle interior temperature detecting means for detecting the temperature in the vehicle interior, and the detected temperature of the vehicle interior temperature detecting means, the environmental factors of the vehicle, and the state of the air conditioner as input signals, and output the estimated value of the vehicle interior temperature as an output value. And a temperature estimator configured by a neural network, wherein the temperature in the vehicle interior is controlled based on the estimated value.
5 . 上記推定値をフイードバヅク値として車室内の温度を制御するようにした ことを特徴とする請求の範囲第 4項記載の車両用空調装置。 5. The vehicle air conditioner according to claim 4, wherein the temperature in the passenger compartment is controlled using the estimated value as a feedback value.
6 . 上記環境因子を外気温度と日射量とし、 上記空調機器の状態を吹出しモ一 ド, 吹出し温度, 吹出し風量, 吸い込み口位置の各情報のいずれかの組合せかあ るレ、は全部とすることを特徴とする請求の範囲第 4項または第 5項記載の車両用 6. The above environmental factors are the outside air temperature and the amount of solar radiation, and the condition of the air conditioner is the combination of any one of the information of the blow mode, blow temperature, blow air volume, and suction port position. The vehicle according to claim 4 or 5, wherein
7 . 上記吹出し温度のうち、 吹出しモードで設定される吹出し口以外の吹出し 口の温度を所定の値に固定するようにしたことを特徴とする請求の範囲第 6項記 載の車両用空調装置。 7. The vehicle air conditioner according to claim 6, wherein the temperature of the air outlets other than the air outlets set in the air outlet mode among the air outlet temperatures is fixed to a predetermined value. .
8 . 車室内の前部及び後部の温度を検出する少なくとも 2つの車室内温度検出 手段と、 上記車室内温度検出手段からのそれそれの検出温度と車両の環境因子及 び空調機器の状態とを入力信号とし車室内の前部及び後部の温度の推定値を出力
値とするニューラルネットワークで構成した温度推定器とを備え、 上記 2つの推 定値に基づいて車室内の温度を制御するようにしたことを特徴とする車両用空調 8. At least two vehicle interior temperature detecting means for detecting the temperatures of the front and rear parts of the vehicle interior, and the detected temperatures from the vehicle interior temperature detecting means, the environmental factors of the vehicle, and the state of the air conditioning equipment. Outputs estimated values of front and rear temperatures in the passenger compartment as input signals And a temperature estimator configured by a neural network for controlling the temperature of the vehicle interior based on the above two estimated values.
9 . 上記 2つの推定値をフィードバック値として車室内の温度を制御するよう にしたことを特徴とする請求の範囲第 8項記載の車両用空調装置。 9. The vehicle air conditioner according to claim 8, wherein the temperature in the passenger compartment is controlled using the two estimated values as feedback values.
1 0 . 上記環境因子を外気温度と日射量とし、 上記空調機器の状態を車室の前 部及び後部の吹出しモード, 吹出し温度, 吹出し風量, 吸い込み口位置の各情報 のいずれかの組合せかあるいは全部とすることを特徴とする請求の範囲第 8項ま たは第 9項記載の車両用空調装置。 10. The above environmental factors are the outside air temperature and the amount of solar radiation, and the state of the air conditioner is any combination of the following information on the blow mode, blow temperature, blow air volume, and suction port position at the front and rear of the passenger compartment. 10. The vehicle air conditioner according to claim 8 or 9, wherein the vehicle air conditioner is a whole.
1 1 . ニューラルネットワークの学習時に使用する教師信号を、 運転席と助手 席のそれそれの頭部及び足部に相当する位置の平均温度としたことを特徴とする 請求の範囲第 4項または第 8項記載の車両用空調装置。 11. The teacher signal used in learning of the neural network is an average temperature at a position corresponding to a head and a foot of a driver's seat and a passenger's seat, respectively. Item 8. The vehicle air conditioner according to item 8.
1 2 . ニューラルネットワークの学習時に使用する教師信号の入力状態を、 0 . 0 2から 0 . 9 8に正規ィ匕するようにしたことを特徴とする請求の範囲第 4項 または第 8項記載の車両用空調装置。 12. The input state of a teacher signal used at the time of learning of the neural network is set to a normal value from 0.02 to 0.98. Vehicle air conditioner.
1 3 . ニューラルネットワークに使用するシグモイド関数を、 入力範囲により 異なる係数を有する一次関数から構成され、 かつ上記一次関数のそれそれの入力 範囲における出力値と上記シグモイド関数の出力値との誤差の絶対値が 3 %以内 になるように上記入力範囲及び上記一次関数の係数を設定した関数で近似したこ とを特徴とする請求の範囲第 4項または第 8項記載の車両用空調装置。
1 3. The sigmoid function used for the neural network is composed of a linear function having different coefficients depending on the input range, and the absolute value of the error between the output value of the linear function and the output value of the sigmoid function in each input range. 9. The vehicle air conditioner according to claim 4, wherein the input range and the coefficient of the linear function are approximated by a function in which the value is within 3%.
補正書の請求の範囲 Claims of amendment
[ 1 9 9 9年 1月 1 1日 (1 1 . 0 1 . 9 9 ) 国際事務局受理:出願当初の請求の範囲 2は 取り下げられた;出顔当初の請求の範囲 1は補正された;他の請求の範囲は変更なし。 [11.11.99.99 (11.0.1.99) Accepted by the International Bureau: Claim 2 originally filed was withdrawn; Claim 1 originally filed was amended The other claims remain unchanged.
( 2頁) ] (Page 2)]
1 . (補正後) 車室内温度検出手段からの検出温度と車両の環境因子及び空調機 器の状態とを入力信号とし、 車室内の ^asの推定値を出力値とするニューラルネ ヅトワークで構成した 推定器により車室内の温度を推定し、 上記車室内の温 度の推定値に基づいて車室内の温度を制御するようにしたことを ^とする車両 空調装置の制御方法。 1. (After correction) A neural network that uses the temperature detected by the vehicle interior temperature detection means, the environmental factors of the vehicle, and the state of the air conditioner as input signals, and outputs the estimated value of ^ as in the vehicle interior as the output value. A vehicle air conditioner control method comprising: estimating a vehicle interior temperature using the estimator; and controlling the vehicle interior temperature based on the estimated value of the vehicle interior temperature.
2 . (削除) 2. (Delete)
3 . 上記環境因子を外気温度及び日射量とし、 上記空調機器の状態を吹出しモ ード, 吹出し 吹出し風量, 吸い込み口位置の各情報のいずれかの組合せか あるいは全部とすることを特徴とする請求の範囲第 2項記載の車両用空調装置の 制御方法。 3. The environmental factors are the outside air temperature and the amount of solar radiation, and the condition of the air conditioner is any combination or all of the information of the blow mode, the blow air flow, and the position of the suction port. 3. The control method for a vehicle air conditioner according to claim 2, wherein
4 . 車室内の温度を検出する車室内温度検出手段と、 上記車室内温度検出手段 の検出 と車両の環境因子及び空調機器の状態とを入力信号とし車室内の温度 の推定値を出力値とするニューラルネットワークで構成した温度推定器とを備え、 上記推定値に基づいて車室内の温度を制御するようにしたことを特徴とする車両 用空調装置。 4. Vehicle interior temperature detecting means for detecting the temperature in the vehicle interior, detection of the vehicle interior temperature detecting means, the environmental factors of the vehicle and the state of the air conditioner as input signals, and an estimated value of the vehicle interior temperature as an output value. And a temperature estimator configured by a neural network. The vehicle air conditioner is configured to control a temperature in a vehicle cabin based on the estimated value.
5 . 上記推定値をフィードバック値として車室内の温度を制御するようにした ことを特徴とする請求の範囲第 4項記載の車両用空調装置。 5. The vehicle air conditioner according to claim 4, wherein the temperature in the passenger compartment is controlled using the estimated value as a feedback value.
6 . 上記環境因子を外気温度と日射量とし、 上記空調機器の状態を吹出しモー ド, 吹出し^, 吹出し風量, 吸い込み口位置の各情報のいずれかの組合せかあ るいは全部とすることを特徴とする請求の範囲第 4項または第 5項記載の車両用 空調装置。 6. The environmental factors are the outside air temperature and the amount of solar radiation, and the condition of the air conditioning equipment is any combination or all of the following information: blowout mode, blowout ^, blowout airflow, and suction port position. 6. The vehicle air conditioner according to claim 4 or claim 5, wherein
7 . 上記吹出し温度のうち、 吹出しモードで設定される吹出し口以外の吹出し 口の温度を所定の値に固定するようにしたことを特徴とする請求の範囲第 6項記 載の車両用空調装置。 7. The vehicle air conditioner according to claim 6, wherein the temperature of the air outlets other than the air outlets set in the air outlet mode among the air outlet temperatures is fixed to a predetermined value. .
8 . 車室内の前部及び後部の温度を検出する少なくとも 2つの車室内温度検出 手段と、 上記車室内温度検出手段からのそれそれの検出温度と車両の環境因子及 び空調機器の状態とを入力信号とし車室内の前部及び後部の温度の推定値を出力 8. At least two vehicle interior temperature detecting means for detecting the temperatures of the front and rear parts of the vehicle interior, and the detected temperatures from the vehicle interior temperature detecting means, the environmental factors of the vehicle, and the state of the air conditioning equipment. Outputs estimated values of front and rear temperatures in the passenger compartment as input signals
補正された用紙 (条約第 19条)
値とするニューラルネットワークで構成した温度推定器とを備え、 上記 2つの推 定値に基づいて車室内の温度を制御するようにしたことを特徴とする車両用空調 Amended paper (Article 19 of the Convention) And a temperature estimator configured by a neural network for controlling the temperature of the vehicle interior based on the above two estimated values.
9 . 上記 2つの推定値をフィ一ドバック値として車室内の温度を制御するよう にしたことを特徴とする請求の範囲第 8項記載の車両用空調装置。 9. The vehicle air conditioner according to claim 8, wherein the temperature in the vehicle cabin is controlled using the two estimated values as feedback values.
1 0 . 上記環境因子を外気温度と日射量とし、 上記空調機器の状態を車室の前 部及び後部の吹出しモード, 吹出し温度, 吹出し風量, 吸い込み口位置の各情報 のいずれかの組合せかあるいは全部とすることを特徴とする請求の範囲第 8項ま たは第 9項記載の車両用空調装置。 10. The above environmental factors are the outside air temperature and the amount of solar radiation, and the state of the air conditioner is any combination of the following information on the blow mode, blow temperature, blow air volume, and suction port position at the front and rear of the passenger compartment. 10. The vehicle air conditioner according to claim 8 or 9, wherein the vehicle air conditioner is a whole.
1 1 . ニューラルネットワークの学習時に使用する教師信号を、 運転席と助手 席のそれぞれの頭部及び足部に相当する位置の平均温度としたことを特徴とする 請求の範囲第 4項または第 8項記載の車両用空調装置。 11. The teacher signal used in learning of the neural network is an average temperature at a position corresponding to a head and a foot of a driver seat and a passenger seat, respectively. An air conditioner for a vehicle according to the item.
1 2 . ニューラルネヅトワークの学習時に使用する教師信号の入力状態を、 0 . 0 2から 0 . 9 8に正規ィ匕するようにしたことを特徴とする請求の範囲第 4項ま たは第 8項記載の車両用空調装置。 12. The input state of a teacher signal used in learning of a neural network is changed from 0.02 to 0.98 in a regular manner. 9. The vehicle air conditioner according to claim 8.
1 3 . ニューラルネットワークに使用するシグモイド関数を、 入力範囲により 異なる係数を有する一次関数から構成され、 かつ上記一次関数のそれそれの入力 範囲における出力値と上記シグモイド関数の出力値との誤差の絶対値が 3 %以内 になるように上記入力範囲及び上記一次関数の係数を設定した関数で近似したこ とを特徴とする請求の範囲第 4項または第 8項記載の車両用空調装置。 1 3. The sigmoid function used for the neural network is composed of a linear function having different coefficients depending on the input range, and the absolute value of the error between the output value of the linear function and the output value of the sigmoid function in each input range. 9. The vehicle air conditioner according to claim 4, wherein the input range and the coefficient of the linear function are approximated by a function in which the value is within 3%.
補正された用紙 (条約第 19条)
条約 1 9条に基づく説明書 もとのクレーム 1は室内温度の推定値から車室内の温度を制御するものである が、 もとのクレーム 2の内容、 すなわち、 ニューラルネットワーク構成を加えて、 このクレーム 1を補正した。 クレーム 1は、 単に限定を加えたものであり、 その 要旨を変更するものではない。
Amended paper (Article 19 of the Convention) Statement based on Article 9 of Convention 1 The original claim 1 controls the temperature in the cabin from the estimated indoor temperature, but the contents of the original claim 2, that is, the neural network configuration, Claim 1 has been amended. Claim 1 is merely limiting and does not change its gist.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10/7930 | 1998-01-19 | ||
JP793098 | 1998-01-19 | ||
JP10/169009 | 1998-06-16 | ||
JP16900998A JP2000001114A (en) | 1998-06-16 | 1998-06-16 | Air conditioning device for vehicle |
JP10170372A JP3046798B2 (en) | 1998-01-19 | 1998-06-17 | Vehicle air conditioner and control method thereof |
JP10/170372 | 1998-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999036280A1 true WO1999036280A1 (en) | 1999-07-22 |
Family
ID=27277802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/003528 WO1999036280A1 (en) | 1998-01-19 | 1998-08-05 | Air-conditioning device for vehicles and method for controlling the device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999036280A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140100716A1 (en) * | 2011-05-18 | 2014-04-10 | Toyota Jidosha Kabushiki Kaisha | Air-condition remote control system for vehicle, server, mobile terminal, and vehicle |
CN107199845A (en) * | 2017-06-12 | 2017-09-26 | 吉林大学 | One kind drives indoor environment active control system and its control method |
DE102020109299A1 (en) | 2020-04-03 | 2021-10-07 | Bayerische Motoren Werke Aktiengesellschaft | Method for controlling an air conditioning device for a motor vehicle, air conditioning device and motor vehicle |
CN114670599A (en) * | 2022-01-12 | 2022-06-28 | 北京新能源汽车股份有限公司 | Control method and system for automobile air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0332919A (en) * | 1989-06-30 | 1991-02-13 | Suzuki Motor Corp | Air conditioner |
JPH07228125A (en) * | 1994-02-17 | 1995-08-29 | Mitsubishi Heavy Ind Ltd | Air conditioner for vehicle |
JPH09286222A (en) * | 1996-04-23 | 1997-11-04 | Zexel Corp | Air conditioner for vehicle |
JPH106734A (en) * | 1996-06-18 | 1998-01-13 | Nissan Motor Co Ltd | Air conditioner for vehicle |
-
1998
- 1998-08-05 WO PCT/JP1998/003528 patent/WO1999036280A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0332919A (en) * | 1989-06-30 | 1991-02-13 | Suzuki Motor Corp | Air conditioner |
JPH07228125A (en) * | 1994-02-17 | 1995-08-29 | Mitsubishi Heavy Ind Ltd | Air conditioner for vehicle |
JPH09286222A (en) * | 1996-04-23 | 1997-11-04 | Zexel Corp | Air conditioner for vehicle |
JPH106734A (en) * | 1996-06-18 | 1998-01-13 | Nissan Motor Co Ltd | Air conditioner for vehicle |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140100716A1 (en) * | 2011-05-18 | 2014-04-10 | Toyota Jidosha Kabushiki Kaisha | Air-condition remote control system for vehicle, server, mobile terminal, and vehicle |
US9085215B2 (en) * | 2011-05-18 | 2015-07-21 | Toyota Jidosha Kabushiki Kaisha | Air-conditioner remote control system for vehicle, server, mobile terminal, and vehicle |
CN107199845A (en) * | 2017-06-12 | 2017-09-26 | 吉林大学 | One kind drives indoor environment active control system and its control method |
CN107199845B (en) * | 2017-06-12 | 2018-07-06 | 吉林大学 | A kind of driving indoor environment active control system and its control method |
DE102020109299A1 (en) | 2020-04-03 | 2021-10-07 | Bayerische Motoren Werke Aktiengesellschaft | Method for controlling an air conditioning device for a motor vehicle, air conditioning device and motor vehicle |
CN113492641A (en) * | 2020-04-03 | 2021-10-12 | 宝马股份公司 | Method for controlling an air conditioning device of a motor vehicle, air conditioning device and motor vehicle |
DE102020109299B4 (en) | 2020-04-03 | 2022-08-25 | Bayerische Motoren Werke Aktiengesellschaft | Method for controlling an air conditioning device for a motor vehicle and air conditioning device therewith |
CN114670599A (en) * | 2022-01-12 | 2022-06-28 | 北京新能源汽车股份有限公司 | Control method and system for automobile air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08238927A (en) | Method and system of controlling hvac system for automobile for antifogging | |
US6912861B2 (en) | Vehicle air conditioner | |
JPH0773971B2 (en) | Blower temperature control device for automobile air conditioners | |
WO1999036280A1 (en) | Air-conditioning device for vehicles and method for controlling the device | |
JP3046798B2 (en) | Vehicle air conditioner and control method thereof | |
JP3309542B2 (en) | Vehicle air conditioner | |
JP3533716B2 (en) | Vehicle air conditioner | |
JP2000001116A (en) | Air conditioning system for vehicle | |
JP2579514B2 (en) | Vehicle air conditioning controller | |
JP2000001114A (en) | Air conditioning device for vehicle | |
JP2000001115A (en) | Air conditioning system for vehicle | |
JP3245722B2 (en) | Equivalent temperature computing device for vehicle air conditioner | |
JP3951965B2 (en) | Air conditioning control device and air conditioning device | |
JP2000177362A (en) | Controller of door for chageover between inside air and outside air | |
JP3438277B2 (en) | Vehicle air conditioner | |
JP3186383B2 (en) | Vehicle air conditioner | |
JP3417025B2 (en) | Vehicle air conditioner | |
JP3480016B2 (en) | Vehicle air conditioner | |
JPH0732853A (en) | Air conditioner for automobile | |
JP3858446B2 (en) | Air conditioner | |
JP3301200B2 (en) | Vehicle air conditioner | |
JP4147618B2 (en) | Air conditioner for vehicles | |
JP3454189B2 (en) | Vehicle air conditioner | |
JP2817273B2 (en) | Vehicle air conditioner | |
JP4399979B2 (en) | Air conditioner for vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |