WO1999017395A2 - Quadrifilar antenna - Google Patents
Quadrifilar antenna Download PDFInfo
- Publication number
- WO1999017395A2 WO1999017395A2 PCT/US1998/019993 US9819993W WO9917395A2 WO 1999017395 A2 WO1999017395 A2 WO 1999017395A2 US 9819993 W US9819993 W US 9819993W WO 9917395 A2 WO9917395 A2 WO 9917395A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- conductive elements
- substrate
- circuit board
- capacitive element
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q11/00—Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
- H01Q11/02—Non-resonant antennas, e.g. travelling-wave antenna
- H01Q11/08—Helical antennas
Definitions
- This invention generally relates to quadrifilar antennas used for radiating or receiving circularly polarized waves. More particularly, this invention relates to an improved quadrifilar antenna and its feed system for coupling signals of equal magnitude and 90 degrees out of phase to one end of the antenna, and to a method of manufacturing such an antenna .
- helical antennas comprising a plurality of resonant elements arranged around a common axis are particularly useful in ground links with orbiting satellites or in mobile/relay ground links with geosynchronous satellites. Due to the arrangement of the helical elements, the antenna exhibits a dome-shaped spatial response pattern and polarization for receiving signals from satellites. This type of antenna is disclosed in "Multielement, Fractional Turn Helices" by C. C. Kilgus in IEEE Transactions on Antennas Propagation, July 1968, pages
- a quadrifilar helix antenna can exhibit a cardioid characteristic in an axial plane and be sensitive to circularly polarized emissions.
- One type of prior art helical antenna comprises two bifilar helices arranged in phase quadrature and coupled to an axially located coaxial feeder via a split tube balun for impedance matching. While antennas based on this prior design are widely used because of the particular response pattern, they have the disadvantage that they are extremely difficult to adjust in order to achieve phase quadrature and impedance matching, due to their sensitivity to small variations in element length and other variables, and that the split tube balun is difficult to construct. As a result, their manufacture is a very skilled and expensive process.
- TT.fi. Pat. No. 5.635.945 issued to M Connell ⁇ t al on Jun. 2. 1993
- This patent is directed to a quadrifilar helix antenna comprising four conductive elements arranged to define two separate helically twisted loops, one slightly differing in electrical length than the other, to define a cylinder of constant radius supported by itself or by a cylindrical non- conductive substrate.
- the two separate helically twisted loops are connected to each other in such a way as to constitute the impedance matching, electrical phasing, coupling and power distribution for the antenna.
- This patent is directed to a quadrifilar antenna comprising four helical wire elements shaped and arranged so as to define a cylindrical envelope.
- the helical wires are mounted at their opposite ends by first and second printed circuit boards having coupling elements in the form of plated conductors which connect the helical wires to a feeder or semi-rigid coaxial cable on the first board, and with each other on the second board.
- the conductor tracks are such that the effective length of one pair of helical wires and associated impedance elements is greater than that of the other pair of helical wires, so that phase quadrature is obtained between the two pairs .
- the antenna comprises a longitudinal cylindrical non-conductive member supported at its top by four conductors each extending transversely from a center coaxial line. Two sets of the antenna conductors are attached to the non-conducting cylinder in a configuration of equally longitudinally spaced spirals. The two sets of conductors are conductively connected by pins such that one set corresponds to a half wavelength at one frequency and the other set corresponds to a half wavelength at another frequency.
- the tunable helical monopole antenna comprises a winding having both an upper portion and a lower portion which are symmetrically substantially identical to each other. Connected to each end of the winding halves are cylindrical terminal dipole elements and connected to these terminal elements are shorting fingers. By synchronously moving the shorting fingers, the respective helical windings are effectively shorten or lengthen for tuning purposes.
- This patent is directed to a combination helical antenna comprising a plurality of tuned helical antennas which are coaxially wound upon a hollow cylinder, whereby the antennas are collocated.
- the antenna further comprises a printed circuit assembly having thin metal dipoles of the type used in a microwave strip line.
- the thin metal dipoles are resonating elements that are coupled to each other in a manner similar to end-fire elements of a microstrip filter.
- a quadrifilar antenna for use in satellite communications comprises four conductive elements arranged to define two separate helical pairs with both pairs being open circuited at one end, one pair slightly differing in electrical length than the other, to define a cylinder of constant radius supported by itself or by a cylindrical non- conductive substrate.
- the two separate helical pairs are connected to each other in such a way as to constitute the impedance matching, electrical phasing, coupling and power distribution for the antenna.
- the antenna is fed at a tap point on one of the conductive elements determined by an impedance matching network which connects the antenna to a transmission line.
- the matching network can be built with distributed or lumped electrical elements and can be incorporated into the design of the antenna.
- An object of the present invention is to provide a quadrifilar antenna formed by a pair of helical elements where the coupling between the pair of helical elements is provided by a shared common current path.
- a further object of the present invention is to have a quadrifilar antenna which has a simple feed method that does not require the use of conventional folded, stepped or split shield baluns .
- Another object of the present invention is to provide a quadrifilar antenna formed by printed circuit boards which can be relatively accurately formed with predetermined shapes and dimensions, such that relatively little, if any, adjustment is required to obtain an antenna having the required electrical characteristics.
- Still another object of the present invention is to have a quadrifilar antenna which can be mass-produced to precise dimensions with high reproducibility of electromagnetic characteristics.
- yet another object of the present invention is to provide a quadrifilar antenna which is especially simple in construction, particularly light weight and compact in design.
- a further object of the present invention is to provide a low cost antenna having a quasi-hemispherical radiation pattern of the type formed by two bifilar helices used in ground and orbital satellite telecommunication links or in mobile relay telecommunication links with geosynchronous satellites.
- Another object of the present invention is to provide a method of making a radio frequency antenna having a plurality of helical elements formed through the use of alignment tabs for ease and accuracy in manufacturing.
- FIG. 1 is a perspective view of a quadrifilar helix antenna in accordance with the present invention
- FIG. 2 is a perspective view of one preferred embodiment of the quadrifilar helix antenna in accordance with the present invention
- FIG. 3 is a plan view of the conductive elements shown in FIG. 2;
- FIG. 4 is a top plan view of one side of a first printed circuit board of the antenna of the present invention.
- FIG. 5 is a top plan view of a second side of the printed circuit board shown in FIG 4;
- FIG. 6 is a perspective view of another preferred embodiment of the quadrifilar helix antenna in accordance with the present invention.
- FIG. 7 is a top plan view of one side of a first printed circuit board of the antenna shown in FIG. 6;
- FIG. 8 is a top plan view of a second side of a first printed circuit board of the antenna shown in FIG. 6;
- FIG. 9 is a top plan view shown in FIG. 3 displaying a method of manufacturing the antenna.
- FIG. 10 is a top plan view shown in FIG. 4 displaying a method of manufacturing the antenna.
- FIGS. 11, 12 , 13 respectively represent the radiation pattern and value of VSWR of an antenna built in accordance with the teachings of the present invention.
- the quadrifilar antenna in accordance with the present invention is generally indicated by numeral 10.
- the quadrifilar antenna 10 comprises a generally elongated non-conducting cylindrical support tube 12 having four conductive elements 14, 16, 18 and 20 supported on an outer surface of tube 12 so as to make the antenna 10 right- hand or left-hand circularly polarized.
- the elements 14, 16, 18 and 20 could be self-supporting without tube 12 by the use of rigid wire or could be arranged against the inner surface of tube 12.
- a first helical pair is formed by elements 14 and 18 and equal conductors 40 which are slightly longer than a second helical pair formed by elements 16 and 20 and equal conductors 42.
- the first and second helical pairs are not connected at one end, thereby forming an electrical open circuit.
- the first and second helical pair have two different electrical lengths translating into two different resonant frequencies which are chosen by design to result in an electrically 90 degree phase difference between the currents induced in each helical pair thus maintaining phase quadrature.
- a common section 38 is shared at one end by each helical pair and provides the coupling from the driven helical pair formed by elements 16 and 20 and equal conductors 42 to the other helical pair formed by elements 14 and 18 and equal conductors 40.
- a coaxial transmission line 36 has its inner conductor 28 connected at one end 44 of a capacitor 46 whose other end 48 connects through a conductor 26 to a tap point 25 on element 20 to effectively impedance match antenna 10 without the use of a conventional balun.
- the placement and value of capacitor 46 and length and tap point of conductor 26 are predetermined from the desired input impedance presented by transmission line 36.
- transmission line 36 is shown as coaxial, it may be any variety of transmission lines used to carry radio frequency signals. Therefore, the capacitor 46 and conductor 26 are used to tune out the reactance and inductance of the antenna 10 at the antenna frequency.
- An outer conductor 30 of transmission line 36 connects to the midpoint of common conductor section 38.
- the shape of the antenna 10 may be cylindrically round or square or tapered without altering the intent of the invention.
- any method of feeding the antenna 10 with a variety of unbalanced transmission lines in addition to coaxial, such as microstrip or strip line can be accomplished by connecting the signal line to the capacitor 46 at capacitor end 44 and the ground or signal return side to the midpoint of shared common segment 38.
- a transmission line is a common and practical way of transferring radio frequency electrical signals between circuits and antennae and is used herein as an example of how the invention can be utilized.
- the invention described here is placed very near to nearby circuits or adjacent to printed circuit boards directly where the coupling of signals to the antenna can be accomplished without the need for a conventional transmission line.
- another preferred embodiment of the quadrifilar antenna 10 comprises a generally elongated longitudinal cylindrical substrate 12 having the four conductive elements 14, 16, 18 and 20 supported on its outer surface with the four conductive elements 14, 16, 18 and 20 not connected at one end and having mounted a printed circuit board 24 at the other end.
- the conductive elements 14, 16, 18 and 20 respectively are arranged as helical elements around the outer surface of the substrate 12 so as to make the antenna 10 right-hand circularly polarized.
- the antenna 10 could similarly be left-hand circularly polarized.
- the cylindrical substrate 12 is made from a non-conductive material such as glass, fiberglass or the like, having a dielectric constant that corresponds to the width, length and material of the conductive elements 14, 16, 18 and 20 wherein each helical pair is preferably in a range of a quarter wavelength of the desired resonant frequencies. Using higher dielectric materials can result in significant shortening of the physical antenna structure.
- the cylindrical structure 12 can be formed as a tube or a flat structure rolled into a tubular shape and may have a cross section which is either circular or square as will be more fully described below. However, it should be well understood that the substrate or material can be varied without deviating from the teachings of the subject invention.
- the conductive elements 14, 16, 18 and 20, respectively may be made from copper, silver or like metals and are metal plated onto the substrate 12 by any type of coating technique known in the metallic plating arts.
- conductive elements 14, 16, 18 and 20, respectively are shown in a plane in order to further distinguish certain characteristics unique to the subject invention.
- the conductive elements 14, 16, 18 and 20, respectively are parallel and substantially equally transversely spaced from each other when plated onto the substrate 12.
- conductive element 18 is slightly longer then conductive elements 14, 16 and 20 wherein the length of conductive element 18 is predetermined from the desired input impedance and results in the antenna 10 being manufactured on a production basis without the need for adjustment and costly individual tuning as will be more fully described below.
- FIGS. 4 and 5 there is shown a first side 32 and second side 34 of the printed circuit board 24, which is used to perform both the power distribution and impedance matching for the antenna 10.
- the printed circuit board 24 comprises microstrip portion 29 over a ground conductor 30 shown in FIG. 5 on the second side of the board 24, wherein the microstrip structure of 29 and 30, respectively, are electrically coupled and connected to each other to form a ground return path 36.
- the transmission line 36 of the board 24 terminates into the midsection of generally rectangular portions 38, the common section coupling the helical pairs, centered on the board 24.
- the rectangular portions 38 have a first set 40 and a second set 42 of connecting lines, each set of connecting lines 40 and 42, being electrically connected to a respective one of the conducting elements 14, 16, 18 and 20, serving the same purpose as described in FIG. 1.
- the first set 40 of the connecting lines have a different electrical length, translating into two different resonant frequencies, than the second set 42 of connecting lines, and is a matter of design choice.
- the connecting lines are shown as straight, it may be envisioned that the connecting lines may also meander to obtain longer electrical lengths.
- a first capacitive element 48 separated from the rectangular portions 38 and is connected to one of the connecting lines 42 through a feed line 26 to a tap point 25 which connects to conductive element 20.
- a second capacitive element 44 on the second side 34 of the board 24 is a second capacitive element 44.
- Elements 44 and 48 on each side of board 24 form a parallel plate capacitor whose function is the same as capacitor 46 in FIG. 1.
- the feed line 26 supported by the board 24 is electrically connected to the conductive band 20 at the tap point 25 and is electrically connected to the first capacitive element 48 at the other end.
- the tap point 25 is connected to one of the second set 42 of connecting lines.
- the feed line 26 has a predetermined shape and position to impedance match the antenna 10 in association the length of conductive element 20 and with first capacitive element 48 which electrically couples to the second capacitive element 44 wherein the first and second capacitive elements, 48 and 44 respectively, have predetermined dimensions for matching out the inductance of the feed line 26 and the reactance of antenna 10.
- the quadrifilar antenna described above may be mounted to a printed circuit board electronic device by placing the second side 34 of the board 24 flush with the circuit board electronic device between the ground conductor 30 and second capacitive element 44 and electrically connecting the ground conductor 30 and second capacitive element 44 to the printed board electronic device by soldering or any electrical attachment means known in the arts. It should be appreciated that the antenna of the present invention eliminates the need for a conventional type transmission line between the antenna 10 and printed board electronic device.
- FIGS. 6 through 8 A second preferred embodiment is shown in FIGS. 6 through 8 having the same conductive elements and feed structure described above with the addition of a transmission line 36.
- the printed circuit board 24 now comprises a microstrip line 28 over an elongated ground conductor 30 formed on the other side of the board 24 wherein the microstrip structure of 28 and 30, respectively, are electrically coupled to each other to form the microstrip transmission line 36 which serves the same purpose as transmission line 36 in FIG. 1.
- the microstrip structure 30 of transmission line 36 inwardly tapers to connect to the rectangular portions 38 and microstrip structure 28 connects to second capacitive element 44 on the second side 34 of the board 24, wherein the transmission line 36 is tapered solely for mechanical reasons for bending the flexible printed circuit board 24 away from the conductive elements 14, 16, 18 and 20, respectively, and further does not interfere with the antenna radiation pattern.
- the transmission line 36 will have an impedance of 50 ohms allowing the antenna 10 to be fed by a BNC connector or coaxial connector.
- the substrate 12 having the four conductive elements 14, 16, 18 and 20 has a first extending tab portion 50 at one end and defines a first alignment slot 52 at the opposite end.
- the location of alignment slot 52 is such that the substrate 12 is rolled so that extending tab portion 50 is inserted into alignment slot 52 thereby retaining the substrate 12 into a cylindrical or tubular shape defining the proper radius for mounting the substrate 12 to printed circuit board 24 while simultaneously maximizing the electrical performance of the antenna.
- circuit board 24 defines a second pair of alignment slots 54 and 56 at its sides to receive a second pair of alignment tabs 58 and 60 shown at the bottom of substrate 12 shown in FIG. 9.
- Second alignment slot 54 is slightly longer then second alignment slot 56 and second alignment tab 58 is slightly longer then second alignment tab 60 so that when substrate 12 is placed upon board 24 and second alignment tabs 58 and 60 are inserted into second alignment slots 54 and 56, the conductive element 20 is located at tap point 25. In this configuration the antenna can now be soldered together.
- the circuit board 24 additionally defines a pair of alignment indents 62 for use in locating and mounting the antenna against a printed circuit board electronic device.
- FIG. 11 illustrates the radiation pattern of an antenna built in accordance with the present invention, obtained in the elevational plane at an approximate frequency of 1575
- the axial ratio is 1.8 db at zenith, and the maximum circular polarized gain is 2.1 dBic.
- FIG. 12 illustrates the 80 degree off zenith conic pattern of the same antenna, wherein the maximum gain is shown at 130 degrees having an axial ratio of 2.8 dB and a circular polarized gain of 3.3 dBic.
- FIG. 13 illustrates the impedance and return loss for this antenna with a VSWR of 1.15:1. The above data indicates that the antenna of the present invention performs comparably with conventionally designed quadrifilars .
- the antenna is practically matched at 50 ohms around the two resonance frequencies, the feed line in association with the printed circuit technology does not necessitate any specific assembly for additional matching. This frees the antenna from the drawbacks of conventional quadrifilar antenna designs.
- an improved quadrifilar antenna formed by printed circuit boards which can be relatively accurately formed and mass produced with predetermined shapes and dimensions, such that relatively little, if any, adjustment is required to obtain an antenna having high reproducibility of electromagnetic characteristics .
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98965364A EP1018187A2 (en) | 1997-09-24 | 1998-09-24 | Quadrifilar antenna |
JP2000514351A JP4101459B2 (en) | 1997-09-24 | 1998-09-24 | Quad refiner antenna |
AU20847/99A AU2084799A (en) | 1997-09-24 | 1998-09-24 | Quadrifilar antenna |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/937,072 | 1997-09-24 | ||
US08/937,072 US6384798B1 (en) | 1997-09-24 | 1997-09-24 | Quadrifilar antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1999017395A2 true WO1999017395A2 (en) | 1999-04-08 |
WO1999017395A3 WO1999017395A3 (en) | 1999-06-17 |
Family
ID=25469454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/019993 WO1999017395A2 (en) | 1997-09-24 | 1998-09-24 | Quadrifilar antenna |
Country Status (5)
Country | Link |
---|---|
US (1) | US6384798B1 (en) |
EP (1) | EP1018187A2 (en) |
JP (1) | JP4101459B2 (en) |
AU (1) | AU2084799A (en) |
WO (1) | WO1999017395A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000074173A1 (en) * | 1999-05-27 | 2000-12-07 | Sarantel Limited | Loop antenna with at least two resonant frequencies |
EP1217689A2 (en) * | 2000-12-15 | 2002-06-26 | Alps Electric Co., Ltd. | Compact, vibration-resistant circularly polarized wave antenna |
JP2003037430A (en) * | 2001-07-26 | 2003-02-07 | Mitsumi Electric Co Ltd | Helical antenna |
US10965012B2 (en) | 2015-08-28 | 2021-03-30 | Huawei Technologies Co., Ltd. | Multi-filar helical antenna |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9813002D0 (en) * | 1998-06-16 | 1998-08-12 | Symmetricom Inc | An antenna |
IT1321018B1 (en) * | 2000-10-10 | 2003-12-30 | Fiat Auto Spa | DEVICE FOR RECEIVING POSITION SIGNALS ACCORDING TO THE GPS SYSTEM. |
US7113146B2 (en) * | 2003-06-30 | 2006-09-26 | The Boeing Company | Broadband monopole |
US20050175813A1 (en) * | 2004-02-10 | 2005-08-11 | Wingert A. L. | Aluminum-fiber laminate |
US7173576B2 (en) * | 2004-07-28 | 2007-02-06 | Skycross, Inc. | Handset quadrifilar helical antenna mechanical structures |
US7245268B2 (en) * | 2004-07-28 | 2007-07-17 | Skycross, Inc. | Quadrifilar helical antenna |
US7908080B2 (en) | 2004-12-31 | 2011-03-15 | Google Inc. | Transportation routing |
US7420519B2 (en) * | 2005-12-16 | 2008-09-02 | Harris Corporation | Single polarization slot antenna array with inter-element coupling and associated methods |
GB2437998B (en) * | 2006-05-12 | 2009-11-11 | Sarantel Ltd | An antenna system |
GB2441566A (en) * | 2006-09-06 | 2008-03-12 | Sarantel Ltd | An antenna and its feed structure |
GB2444750B (en) | 2006-12-14 | 2010-04-21 | Sarantel Ltd | An antenna arrangement |
GB2444749B (en) * | 2006-12-14 | 2009-11-18 | Sarantel Ltd | A radio communication system |
US8799861B2 (en) * | 2008-01-30 | 2014-08-05 | Intuit Inc. | Performance-testing a system with functional-test software and a transformation-accelerator |
TW201023435A (en) * | 2008-12-15 | 2010-06-16 | Quanta Comp Inc | Antenna device |
US8970447B2 (en) | 2012-08-01 | 2015-03-03 | Northrop Grumman Systems Corporation | Deployable helical antenna for nano-satellites |
US20140152401A1 (en) * | 2012-12-03 | 2014-06-05 | Space Systems/Loral, Llc | Resonant Circuit with Improved Capacitor Quality Factor |
CA2968566C (en) * | 2016-05-27 | 2021-01-26 | TrueRC Canada Inc. | Compact polarized omnidirectional helical antenna |
US11269043B2 (en) * | 2018-06-20 | 2022-03-08 | Denso International America, Inc. | Circular polarized quadrifilar helix antennas |
EP3970230A4 (en) | 2019-06-13 | 2023-01-11 | AVX Antenna, Inc. D/B/A Ethertronics, Inc. | Antenna assembly having a helical antenna disposed on a flexible substrate wrapped around a tube structure |
US12199585B2 (en) | 2020-12-10 | 2025-01-14 | Skyworks Solutions, Inc. | Baluns with integrated matching networks |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635945A (en) * | 1995-05-12 | 1997-06-03 | Magellan Corporation | Quadrifilar helix antenna |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5198831A (en) * | 1990-09-26 | 1993-03-30 | 501 Pronav International, Inc. | Personal positioning satellite navigator with printed quadrifilar helical antenna |
US5541617A (en) * | 1991-10-21 | 1996-07-30 | Connolly; Peter J. | Monolithic quadrifilar helix antenna |
US5990847A (en) * | 1996-04-30 | 1999-11-23 | Qualcomm Incorporated | Coupled multi-segment helical antenna |
-
1997
- 1997-09-24 US US08/937,072 patent/US6384798B1/en not_active Expired - Lifetime
-
1998
- 1998-09-24 WO PCT/US1998/019993 patent/WO1999017395A2/en not_active Application Discontinuation
- 1998-09-24 EP EP98965364A patent/EP1018187A2/en not_active Withdrawn
- 1998-09-24 AU AU20847/99A patent/AU2084799A/en not_active Abandoned
- 1998-09-24 JP JP2000514351A patent/JP4101459B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635945A (en) * | 1995-05-12 | 1997-06-03 | Magellan Corporation | Quadrifilar helix antenna |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000074173A1 (en) * | 1999-05-27 | 2000-12-07 | Sarantel Limited | Loop antenna with at least two resonant frequencies |
EP1217689A2 (en) * | 2000-12-15 | 2002-06-26 | Alps Electric Co., Ltd. | Compact, vibration-resistant circularly polarized wave antenna |
EP1217689A3 (en) * | 2000-12-15 | 2002-10-02 | Alps Electric Co., Ltd. | Compact, vibration-resistant circularly polarized wave antenna |
US6707426B2 (en) | 2000-12-15 | 2004-03-16 | Alps Electric Co., Ltd. | Compact, vibration-resistant circularly polarized wave antenna |
JP2003037430A (en) * | 2001-07-26 | 2003-02-07 | Mitsumi Electric Co Ltd | Helical antenna |
US10965012B2 (en) | 2015-08-28 | 2021-03-30 | Huawei Technologies Co., Ltd. | Multi-filar helical antenna |
Also Published As
Publication number | Publication date |
---|---|
EP1018187A2 (en) | 2000-07-12 |
JP4101459B2 (en) | 2008-06-18 |
AU2084799A (en) | 1999-04-23 |
WO1999017395A3 (en) | 1999-06-17 |
US6384798B1 (en) | 2002-05-07 |
JP2001518728A (en) | 2001-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5635945A (en) | Quadrifilar helix antenna | |
US6384798B1 (en) | Quadrifilar antenna | |
US5990848A (en) | Combined structure of a helical antenna and a dielectric plate | |
US7245268B2 (en) | Quadrifilar helical antenna | |
EP1376757B1 (en) | Dual-band directional/omnidirectional antenna | |
EP1590857B1 (en) | Low profile dual frequency dipole antenna structure | |
AU760084B2 (en) | Circularly polarized dielectric resonator antenna | |
CA2198375C (en) | An antenna | |
EP0469741B1 (en) | Radio frequency apparatus | |
US6172651B1 (en) | Dual-band window mounted antenna system for mobile communications | |
US20040155832A1 (en) | Compact and low-profile antenna device having wide range of resonance frequencies | |
US6339405B1 (en) | Dual band dipole antenna structure | |
US20050040991A1 (en) | Coaxial antenna system | |
US5914695A (en) | Omnidirectional dipole antenna | |
US5563615A (en) | Broadband end fed dipole antenna with a double resonant transformer | |
US6278414B1 (en) | Bent-segment helical antenna | |
US5387919A (en) | Dipole antenna having co-axial radiators and feed | |
US7173576B2 (en) | Handset quadrifilar helical antenna mechanical structures | |
EP1608038B1 (en) | Quadrifilar helix antenna | |
EP0852823A1 (en) | Broad band antenna | |
EP0987788A2 (en) | Multiple band antenna | |
US6535179B1 (en) | Drooping helix antenna | |
US5777584A (en) | Planar antenna | |
KR100768788B1 (en) | QH feeding structure with phase correction using lambda / 4 short stub | |
JP3659562B2 (en) | Antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 514351 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998965364 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998965364 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998965364 Country of ref document: EP |