[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999014408A1 - Yarn with heat-activated binder material and process of making - Google Patents

Yarn with heat-activated binder material and process of making Download PDF

Info

Publication number
WO1999014408A1
WO1999014408A1 PCT/US1998/019745 US9819745W WO9914408A1 WO 1999014408 A1 WO1999014408 A1 WO 1999014408A1 US 9819745 W US9819745 W US 9819745W WO 9914408 A1 WO9914408 A1 WO 9914408A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
yam
yarn
bundle
binder
Prior art date
Application number
PCT/US1998/019745
Other languages
French (fr)
Inventor
Charles Edward Bowers
Original Assignee
Alliedsignal Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25464560&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999014408(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/933,822 external-priority patent/US6682618B1/en
Application filed by Alliedsignal Inc. filed Critical Alliedsignal Inc.
Priority to AU94988/98A priority Critical patent/AU741990B2/en
Priority to EP98948411A priority patent/EP1038059B2/en
Priority to DE69816860T priority patent/DE69816860T3/en
Publication of WO1999014408A1 publication Critical patent/WO1999014408A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05CEMBROIDERING; TUFTING
    • D05C17/00Embroidered or tufted products; Base fabrics specially adapted for embroidered work; Inserts for producing surface irregularities in embroidered products
    • D05C17/02Tufted products
    • D05C17/026Tufted products characterised by the tufted pile surface

Definitions

  • the invention relates to yarn suitable for tufting, especially to form carpet face fiber, and other applications.
  • the yarn comprises a blend of fibers including a first, preferably synthetic, base fiber, ring spun or wrap spun with a second fiber that at least partially comprises a heat-activated adhesive material having a melting point substantially below that of the base fiber.
  • Patent 3,877,214 to Van der Werf discloses a twist-free yarn comprising a polyamide fiber melting under a relatively low temperature as a bonding component.
  • U.S. Patent 3,494,819 to McAlister discloses a blend of fusible and non-fusible polyethylene terephthalate fibers incorporated into fabric, wherein the finished fabric is heated to fusion temperatures to provide improved pill resistance.
  • U.S. Patent 3,978,267 to Selwood, issued August 31, 1976 discloses a substantially twistless compact yarn comprising a proportion of potentially adhesive fiber which has been activated to bond contacting fibers. Cut-pile carpet is customarily produced from staple yarns or bulked continuous filament yarns.
  • staple fiber is conventionally carded, pinned, and spun or wrap spun into a singles yarn, which typically is twisted and plied with similar yarn to form a 2-ply or 3 -ply yarn construction.
  • This yarn is twist set by utilizing one of several commercially available twist setting processes such as the Suessen or Superba processes.
  • the yarn is passed through a heated chamber, while in a relaxed condition.
  • the temperature of this process step is crucial to the proper twist setting of the base fiber, to obtain desired properties of the final carpet product.
  • the conditions for this step are typically 190- 200°C with a residence time of about 60 seconds for the Suessen process and about 125-140°C with a residence time of about 60 seconds for the Superba process.
  • the Superba process utilizes saturated steam and thus the yarn is subjected to a much higher level of humidity than in the Suessen process.
  • bulked continuous filament yarn is produced according to various conventional methods. Twisting, entangling, or direct cabling may be utilized in various processes.
  • a 2-ply twisted yarn combining 2 ends of 1185 denier 70 filament nylon-6 yarn is prepared and subjected to conventional twist setting conditions, such as that for the staple yarn above, or in an autoclave at 132°C in saturated steam with a residence time of about 40 to 60 minutes.
  • wrap fiber, both staple and continuous filament with a binder strand to physically bind the wrapped fiber to permit downstream processing. See, e.g., U.S. Patents 4,495,758 to Stahlecker et al. and 4,668,553 to Scott et al. Neither of these patents, however, uses or suggests the use of a binder strand or fiber that contains heat-activiated adhesive material.
  • twist set yams Multiple ends of the twist set yams are tufted into cut pile carpet and conventionally finished to obtain the desired carpet product.
  • Yam preferably synthetic, comprises at least one bundle of fiber, the fiber being ring spun or wrap spun with a second fiber (either an insert fiber in the case of ring spun or a wrapping fiber in the case of wrap spun) comprising a heat- activated binder material, preferably a fiber, having a melting point range of about 105 to 190°C, preferably 165 to 190°C, under ambient humidity conditions, such that the yam comprises a total of 0.1 to 12, preferably 0.25 to 10, more preferably 0.5 to 8, weight percent binder material.
  • the preferred fiber bundle comprise staple fibers, preferably in the form of'a sliver. Alternatively the bundle of fibers may be continuous filaments.
  • the preferred second, binder fiber is a copolyamide, more preferably a copolyamide of the nylon 6/nylon 6,6 type.
  • the preferred bundle of fiber is nylon 6.
  • the present invention is also an article, preferably tufted, more preferably a carpet, made from this yam.
  • the present invention is also a process of producing a yam suitable for tufting, the process comprising the steps of: a. forming a bundle of fiber, preferably by spinning staple fiber; b. ring spinning or wrap spinning the bundle of fiber with a second fiber comprising a heat-activated binder material having a melting point range of about
  • the insert fiber is inserted before the front delivery roll into a continuous bundle of base fibers, preferably staple fibers in a sliver.
  • This invention also relates to yam made in accordance with the aforesaid process.
  • the base fiber is selected from known synthetic fibers suitable for carpet use; such as, polyamides, nylon-6 and nylon-6,6, polyesters, and polyolefins, as well as material fibers, such as cotton and wool.
  • the binder fiber is selected to provide good adhesion to the base fiber. It is important that the melting point of the binder fiber be in the range of 105-190°c, preferably 165-190°C, under ambient humidity conditions. This range ensures that the binder fiber will melt during the conventional twist setting process yet will provide adequate adhesive properties during any subsequent dyeing steps and final use. A saturated steam environment, such as in an autoclave, reduces the fiber melting point of polyamide binder fibers dramatically.
  • a preferred class of binder fiber for use with polyamide base fibers are copolyamides within the specified melting point ranges. Suitable copolyamides of the 6/66/12 type and a process for their production are disclosed in U.K. Patent 1,168,404, issued October 22,1969 to Inventa A. G., incorporated herein by reference.
  • a melt bonding copolyamide adhesive fiber is commercially available from EMS as GRILON® type K 140 (melting range 130-140°C) and type K 115 (melting range 110-117°C) copolyamides of the 6/66 Type as in U.S. Patent 5,478,624 to Lofquist.
  • the binder fiber can be blended, wrapped around, or inserted into base fibers, and the resulting fiber blend can then be processed in known ways. It is important to ensure a thorough blending when the binder fiber is blended with base staple fiber to avoid potential clumps in the finished carpet.
  • the fiber blend should contain 0.1-12 weight percent binder fiber, preferably 0.25 to 10 weight percent, and more preferably 5 to 8 weight percent. Higher amounts cause undesirable harshness of hand due to the conditions of the twist setting process causing the binder fiber to melt substantially completely. Ring spun or wrap spun yams prepared from such a fiber blend and subjected to thermal activation can provide strength properties approaching that of bulked continuous filament (BCF) yarns. Properties of BCF yarns can also be enhanced.
  • BCF bulked continuous filament
  • thermally activated binder fiber within the weight percent ranges and melting point ranges specified it is possible to modify end-use properties of the finished carpet to improve wear resistance, resilience, reduced change of appearance over time and with use, and to increase hand, lustre and apparent value.
  • Denier per filament, cut length, fiber cross-section, crimp type and frequency, surface finish, melt viscosity, softening point, melting point, dye affinity, and other properties are crucial to achieving ideal properties in the final product.
  • a proper selection of the binder fiber must be made to obtain the desired, or optimum results from the finished carpet product. This will depend on numerous factors including the denier, length, crimp, finish, and other properties of the base fiber product.
  • twist setting conditions normally used are sufficient to activate the binder fiber, to create bind points which strengthen the final product, thereby imparting other characteristics which are desirable.
  • the twisted yam is subjected to a temperature of 190-205°C for a residence time of 50-60 seconds.
  • motion of the fiber while in the relaxed state caused by vibration or air currents, sufficiently motivates the molten binder fiber to flow to the intersecting "touch points" of the base fiber, as a function of the melt flow properties of the binder fiber and surface characteristics.
  • the binder solidifies and encapsulates or bonds two or more base fibers together at intersecting points in a durable bond.
  • the resultant carpet can be of many forms, but a typical style would be cut-pile carpet with about 40 ounces per square yard of face yam including the binder, with an attached backing. Carpet construction would be typically 5/32" gauge, 3/4" pile height, and the carpet would be dyed, dryed, backcoated, and sheared using normal processing techniques.
  • the yarn of the invention would also provide important property improvements in the production of loop-pile carpet.
  • EXAMPLE 1 A blend of staple fiber was produced with 3 weight percent GRLLON® Type K 140 copolyamide fiber having a melt point range of 130-140°C and 97 weight percent base staple fiber (AlliedSignal Type 521 nylon-6 fiber having a melt point range of 215-225°C).
  • the blended fiber was carded, pinned, and ring spun into a singles yarn by conventional processing methods.
  • the yam a 3.0/1 cotton count yarn containing 4.7 "Z" twists per inch, was plied with a similar yarn to produce a 2-ply 3.0/2 cotton count 4.7Zx4.0S yam.
  • the 2-ply yarn was twist set by a conventional Sussen twist setting process.
  • the yam was passed through a heated chamber at about 195°C while in a relaxed condition, with a residence time of about 60 seconds.
  • This yam was tufted into cut pile carpet and conventionally finished to obtain the improved product.
  • the resulting carpet was compared to a control carpet prepared in the same manner from 100 percent base staple fiber.
  • the carpet containing the binder staple fiber blend displayed enhanced carpet tuft appearance, more resilience, and better wear resistance.
  • Carpets also may be produced from bulked continuos filament (BCF) yams, and carpets thus made can be improved in surface, aesthetics, hand, or in durability and wear by using this invention.
  • BCF continuos filament
  • Filament nylon yarn is produced according to various conventional fiber producer manufacturing methods. These methods are not particularly related to the invention, except that another, smaller, filament yarn will accompany a base yarn throughout subsequent process steps. Often the combination will result in a 2-ply, 3 -ply, or other form needed for the carpet style.
  • twisting, entangling, or direct cabling may be utilized.
  • Direct cabling is often used, as in this example, where a 70 denier 14 filament ya is combined with a 1185 denier 70 filament in the creel of the direct cabler to produce a yarn with 3.5 "S" twist per inch in each of the singles and 3.5 "Z” twist in the resultant 2-ply twisted yarn (1185 x 2 ply).
  • the final yarn contains a third component, a binder yarn, which has a lower melting point and which will lose much of its identity in subsequent process steps, as it is melted and flows to bind fibers and yarn together, thereby retaining the twist in cut pile carpet.
  • the 70 denier 14 filament yarn is a copolyamide having a melt point range of 105-180°C and results in the binder fiber for the combination, combined with 2 ends of 1185 denier, providing a blend of about 2.8 percent binder.
  • This ratio can be doubled by using two binder yam ends, or varied by providing other denier products to the system.
  • the binder is activated producing a final product with the desirable characteristics of enhanced carpet tuft appearance, more resilience, and better wear resistance than similar carpets not containing the binder.
  • the twist setting conditions for this are typically 270°F, in saturated steam, with -a residence time of about 30-50 seconds for the superba twist set process or 40-60 minutes for the autoclave twist set process.
  • the binder solidifies and encapsulates or bonds two or more base ya s together in a permanent or durable bond.
  • carpets also may be produced by introducing a binder yarn as the wrapper yarn that is placed uniformly around a continuous bundle of base staple fibers at wrap (hollow spindle) spinning to produce a wrap spun yarn.
  • the binder yam can consist of 100% heat-activated adhesive fibers or consist of a blend of heat activated adhesive fibers and non-adhesive fibers.
  • Binder yarns as such can be either continuous filament yarn or spun staple yarn produced by conventional manufacturing methods.
  • the resulting wrap spun yam is twisted into a plied yam, twist set by conventional process, and the treated yarn tufted into cut-pile carpet, the carpet displays enhanced carpet tuft appearance, more resilience, and better wear resistance than similar carpets not containing the binder yarn.
  • the continuous bundle (sliver) of base staple fibers is 100% 17 denier per filament AlliedSignal T317 nylon-6 staple fibers that is wrapped with a 30 denier 12 filament yam at wrap spinning to produce a 3.35/1 cotton count yarn containing 5.2 "Z" wraps per inch.
  • This singles yam is then plied with another singles end of the same ya to produce 3.35/2 cotton count 5.2 Z wraps per inch x 5.4 S twists per inch final yam.
  • This final yam contains a binder yam, which is the 30 denier 12 filament yam wrapped around each end of the 2 plies.
  • This 30 denier yam is a copolyamide nylon having a melt point range of 105- 180°C.
  • the remainder of the 3.35/2 cotton count yam is AlliedSignal T317 nylon- 6 staple fibers having a melt point range of 215-225°C, which results in a blend of about 2.0 percent binder.
  • This ratio can be increased by using a larger denier binder yarn, or by a low weight percent of heat-activated adhesive fibers and a high weight percent of non-adhesive AlliedSignal T317 nylon-6 staple fibers blend being in the continuous bundle (sliver) of base staple fibers, before wrap spinning, that is wrapped with the 30 denier 12 filament binder yarn.
  • This final 3.35/2 cotton count yam was twist set by a conventional stuffer box Suessen twist setting process.
  • the yam was passed through a heated chamber at 190°C, while in a relaxed condition, with a residence time of 60 seconds. Multiple ends of this yam were tufted into cut-pile carpet and conventionally finished to obtain the improved product.
  • the resulting carpet was compared to a control carpet prepared in the same manner from 100 percent non-adhesive AlliedSignal T317 nylon-6 base staple fibers.
  • the carpet containing the 2.0 percent wrapper yarn binder displayed tighter and more defined individual pile tufts, a more resilient, stiffer hand, enhanced carpet surface appearance with significantly less hairiness, and better wear resistance.
  • EXAMPLE 4 Carpets also may be produced by introducing a binder yarn at ring spinning before the front delivery roll into a continuous bundle of base staple fibers being drafted to produce a ring spun yam
  • the binder yam can consist of 100% heat- activated adhesive fibers or consist of a blend of heat-activated adhesive fibers and non-adhesive fibers
  • Binder yams as such can be either continuous filament yarn or spun staple yam produced by conventional manufacturing methods This ring spun yam has greater strength due to the added strength of the inserted yam in the total spun yam structure, which results in improved operating performance at spinning by reducing single end breakouts
  • the resulting ring spun yam when later twisted into a plied yam and twist set by conventional processes results in a treated yam with altered, unique performance properties
  • the unique properties are produced by the heat activated adhesive fibers in the inserted binder yam being intermingled within the continuous bundle (sliver) of non-adhesive base staple fibers during the ring spinning process, melting during conventional twist setting processes, and then solidifying when emerging from the elevated temperature forming a durable crossbonding with the non-adhesive base staple fibers within the individual ends of the plied yarn and between the individual ends of the plied yarn
  • the treated plied twist set yam has a more resilient, stiffer hand, significantly improved ply twist retention, and a less hairy surface
  • the hand of the pile is significantly firmer, the individual tufts are tighter and more defined, and the pile surface is cleaner with less hairiness
  • the continuous bundle of base staple fibers being a blend with a low weight percent of heat-activated adhesive fibers and a high weight percent of non-adhesive fibers in which the binder yarn is inserted as described above
  • a 30 denier 12 filament yarn is inserted before the front delivery roll into the continuous bundle of base staple fibers (sliver) being drafted at ring spinning
  • the sliver is 100% 17 denier per filament AlliedSignal T317 nylon-6 staple fibers, which is spun into a 3 0/1 cotton yarn containing 4 8 "Z" twists per inch This singles yarn is then plied with another singles end of the same yarn to produce 3 0/2 cotton count
  • This 20 denier yam is a copolyamide nylon having a melt point range of 105-180°C.
  • the remainder of the 3.0/2 cotton count yam is AlliedSignal T317 nylon-6 staple fibers having a melt point range of 215- 225°C, which results in a blend of about 1.7 percent binder.
  • This ratio can be increased by inserting a larger denier binder yam at the front delivery roll, or by a low weight percent of heat activated adhesive fibers and a high weight percent of non-adhesive AlliedSignal T317 nylon-6 staple fibers blend being in the continuous bundle (sliver) of base staple fibers, before ring spinning, in which the 30 denier 12 filament binder yam is inserted at the front delivery roll of ring spinning.
  • This final 3.0/2 cotton count yam was twist set by a conventional Suessen twist setting process. The yam was passed through a heated chamber at 190°C, while in a relaxed condition, with a residence time of 60 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Carpets (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Yarn suitable for tufting comprises a base fiber ring spun or wrap spun with a second fiber at least partially comprising a heat-activated adhesive material such that the yarn includes from 0.1 to 12, preferably 0.25 to 10, weight percent adhesive material having a melting point within the range of 105° to 190 °C, more preferably 165° to 190 °C. A preferred base fiber is a synthetic staple fiber bundle. A preferred wrapping or insert fiber is a copolyamide fiber, including ternary copolyamides of the 6/66/12 type. When the yarn is twist set by conventional processes and then tufted into carpet, the resulting carpet displays enhanced wear and appearance properties.

Description

YARN WITH HEAT- ACTIVATED BINDER MATERIAL AND PROCESS OF MAKING
This is a continuation-in-part application of pending Serial No. 08/792,819 filed January 30, 1997 which is a continuation of Serial No. 08/516,506 filed August 17, 1995 (abandoned) which is a continuation of Serial No. 08/067,413 filed May 25, 1993 (abandoned) which is a continuation of Serial No. 07/436,962 filed November 15, 1989 (abandoned) which is a continuation of Serial No. 06/934,389 filed November 24, 1986 (abandoned).
1. Field of the Invention
The invention relates to yarn suitable for tufting, especially to form carpet face fiber, and other applications. The yarn comprises a blend of fibers including a first, preferably synthetic, base fiber, ring spun or wrap spun with a second fiber that at least partially comprises a heat-activated adhesive material having a melting point substantially below that of the base fiber. In a process for production of a yarn suitable for tufting, particularly for use in a carpet, exposure of the yarn to usual process conditions for twist setting the yarn causes the heat-activated adhesive material in the inserting or wrapping fiber, as appropriate, to melt substantially completely and flow to points of intersecting base fiber filaments to create a bond upon subsequent cooling, thus altering properties and performance of the resulting product.
2. Description of Related Art It has been known to blend non-adhesive fibers with potentially adhesive fibers to form a yarn or other textile structure or article, then to activate the potentially adhesive fibers to bond them to contacting fibers, thus modifying end-use properties of the yarn. U.S. Patent 2,252,999 to Wallach, issued August 19, 1941, provides a process wherein a yarn comprising an admixture of non-adhesive and potentially adhesive fibers is formed, the potentially adhesive fiber is activated, and the fibers compacted while in an adhesive condition so that they adhere to each other at points of contact. U.S. Patent 3,877,214 to Van der Werf, issued April 15, 1975, discloses a twist-free yarn comprising a polyamide fiber melting under a relatively low temperature as a bonding component. U.S. Patent 3,494,819 to McAlister, issued February 10, 1970, discloses a blend of fusible and non-fusible polyethylene terephthalate fibers incorporated into fabric, wherein the finished fabric is heated to fusion temperatures to provide improved pill resistance. U.S. Patent 3,978,267 to Selwood, issued August 31, 1976, discloses a substantially twistless compact yarn comprising a proportion of potentially adhesive fiber which has been activated to bond contacting fibers. Cut-pile carpet is customarily produced from staple yarns or bulked continuous filament yarns. For example, staple fiber is conventionally carded, pinned, and spun or wrap spun into a singles yarn, which typically is twisted and plied with similar yarn to form a 2-ply or 3 -ply yarn construction. This yarn is twist set by utilizing one of several commercially available twist setting processes such as the Suessen or Superba processes.
In a typical process the yarn is passed through a heated chamber, while in a relaxed condition. The temperature of this process step is crucial to the proper twist setting of the base fiber, to obtain desired properties of the final carpet product. For nylon-6 base fiber, the conditions for this step are typically 190- 200°C with a residence time of about 60 seconds for the Suessen process and about 125-140°C with a residence time of about 60 seconds for the Superba process. The Superba process utilizes saturated steam and thus the yarn is subjected to a much higher level of humidity than in the Suessen process. Similarly, bulked continuous filament yarn is produced according to various conventional methods. Twisting, entangling, or direct cabling may be utilized in various processes. For example, a 2-ply twisted yarn combining 2 ends of 1185 denier 70 filament nylon-6 yarn is prepared and subjected to conventional twist setting conditions, such as that for the staple yarn above, or in an autoclave at 132°C in saturated steam with a residence time of about 40 to 60 minutes. It is known to wrap fiber, both staple and continuous filament, with a binder strand to physically bind the wrapped fiber to permit downstream processing. See, e.g., U.S. Patents 4,495,758 to Stahlecker et al. and 4,668,553 to Scott et al. Neither of these patents, however, uses or suggests the use of a binder strand or fiber that contains heat-activiated adhesive material.
Multiple ends of the twist set yams are tufted into cut pile carpet and conventionally finished to obtain the desired carpet product.
SUMMARY OF THE INVENTION Yam, preferably synthetic, comprises at least one bundle of fiber, the fiber being ring spun or wrap spun with a second fiber (either an insert fiber in the case of ring spun or a wrapping fiber in the case of wrap spun) comprising a heat- activated binder material, preferably a fiber, having a melting point range of about 105 to 190°C, preferably 165 to 190°C, under ambient humidity conditions, such that the yam comprises a total of 0.1 to 12, preferably 0.25 to 10, more preferably 0.5 to 8, weight percent binder material. The preferred fiber bundle comprise staple fibers, preferably in the form of'a sliver. Alternatively the bundle of fibers may be continuous filaments. The preferred second, binder fiber is a copolyamide, more preferably a copolyamide of the nylon 6/nylon 6,6 type. The preferred bundle of fiber is nylon 6. The present invention is also an article, preferably tufted, more preferably a carpet, made from this yam. The present invention is also a process of producing a yam suitable for tufting, the process comprising the steps of: a. forming a bundle of fiber, preferably by spinning staple fiber; b. ring spinning or wrap spinning the bundle of fiber with a second fiber comprising a heat-activated binder material having a melting point range of about
105 to 190°C, preferably 165 to 190°C, under ambient humidity conditions to form a yarn comprising 0.1 to 12, preferably 0.25 to 10, more preferably 0.5 to 8, weight percent of the binder material; c. heating the yarn sufficiently to melt the binder material; followed by d. cooling the yarn, preferably during twist setting, to solidify the binder material. With ring spinning, the insert fiber is inserted before the front delivery roll into a continuous bundle of base fibers, preferably staple fibers in a sliver. This invention also relates to yam made in accordance with the aforesaid process.
When the yam is twisted, plied and twist set by conventional processes, for example 190-200°C Suessen twistsetting with a residence time of about 60 seconds, and the treated yam tufted into cut-pile carpet, the resulting carpet displays enhanced carpet tuft appearance, improved resilience, and reduced change of appearance with use.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Applicant has discovered that by incorporation of a minor proportion of heat-activated binder fiber having substantially lower melting point than the base fiber into the yam construction, the standard heat conditions for twist setting the yam will cause the binder fiber to melt, substantially losing its identity as a fiber. It will flow to intersecting points of base fiber and upon subsequent cooling will encapsulate and bind fibers and yam together, thereby retaining the twist in cut-pile carpets. Carpets made with the yam of this invention can be improved in surface, aesthetics, hand, durability and wear performance. By careful selection of the binder fiber desired improvement is "built-in" to the yam, with no additional process steps required by the yam spinner, the carpet manufacturer, or in dyeing and finishing.
The base fiber is selected from known synthetic fibers suitable for carpet use; such as, polyamides, nylon-6 and nylon-6,6, polyesters, and polyolefins, as well as material fibers, such as cotton and wool. The binder fiber is selected to provide good adhesion to the base fiber. It is important that the melting point of the binder fiber be in the range of 105-190°c, preferably 165-190°C, under ambient humidity conditions. This range ensures that the binder fiber will melt during the conventional twist setting process yet will provide adequate adhesive properties during any subsequent dyeing steps and final use. A saturated steam environment, such as in an autoclave, reduces the fiber melting point of polyamide binder fibers dramatically. A preferred class of binder fiber for use with polyamide base fibers are copolyamides within the specified melting point ranges. Suitable copolyamides of the 6/66/12 type and a process for their production are disclosed in U.K. Patent 1,168,404, issued October 22,1969 to Inventa A. G., incorporated herein by reference. A melt bonding copolyamide adhesive fiber is commercially available from EMS as GRILON® type K 140 (melting range 130-140°C) and type K 115 (melting range 110-117°C) copolyamides of the 6/66 Type as in U.S. Patent 5,478,624 to Lofquist.
The binder fiber can be blended, wrapped around, or inserted into base fibers, and the resulting fiber blend can then be processed in known ways. It is important to ensure a thorough blending when the binder fiber is blended with base staple fiber to avoid potential clumps in the finished carpet. The fiber blend should contain 0.1-12 weight percent binder fiber, preferably 0.25 to 10 weight percent, and more preferably 5 to 8 weight percent. Higher amounts cause undesirable harshness of hand due to the conditions of the twist setting process causing the binder fiber to melt substantially completely. Ring spun or wrap spun yams prepared from such a fiber blend and subjected to thermal activation can provide strength properties approaching that of bulked continuous filament (BCF) yarns. Properties of BCF yarns can also be enhanced.
By selection of the thermally activated binder fiber within the weight percent ranges and melting point ranges specified it is possible to modify end-use properties of the finished carpet to improve wear resistance, resilience, reduced change of appearance over time and with use, and to increase hand, lustre and apparent value. Denier per filament, cut length, fiber cross-section, crimp type and frequency, surface finish, melt viscosity, softening point, melting point, dye affinity, and other properties are crucial to achieving ideal properties in the final product. A proper selection of the binder fiber must be made to obtain the desired, or optimum results from the finished carpet product. This will depend on numerous factors including the denier, length, crimp, finish, and other properties of the base fiber product. With the utilization of this invention, twist setting conditions normally used are sufficient to activate the binder fiber, to create bind points which strengthen the final product, thereby imparting other characteristics which are desirable. For the Suessen process, under relatively low humidity conditions, the twisted yam is subjected to a temperature of 190-205°C for a residence time of 50-60 seconds. In the Suessen process motion of the fiber while in the relaxed state, caused by vibration or air currents, sufficiently motivates the molten binder fiber to flow to the intersecting "touch points" of the base fiber, as a function of the melt flow properties of the binder fiber and surface characteristics. As the fiber emerges from the elevated temperature condition, the binder solidifies and encapsulates or bonds two or more base fibers together at intersecting points in a durable bond. Subsequent processing including dyeing, finishing, and backcoating using commercial processing methods does not soften the bond points sufficiently to weaken them, but rather will strengthen them. The resultant carpet can be of many forms, but a typical style would be cut-pile carpet with about 40 ounces per square yard of face yam including the binder, with an attached backing. Carpet construction would be typically 5/32" gauge, 3/4" pile height, and the carpet would be dyed, dryed, backcoated, and sheared using normal processing techniques. The yarn of the invention would also provide important property improvements in the production of loop-pile carpet.
EXAMPLE 1 A blend of staple fiber was produced with 3 weight percent GRLLON® Type K 140 copolyamide fiber having a melt point range of 130-140°C and 97 weight percent base staple fiber (AlliedSignal Type 521 nylon-6 fiber having a melt point range of 215-225°C).
The blended fiber was carded, pinned, and ring spun into a singles yarn by conventional processing methods. The yam, a 3.0/1 cotton count yarn containing 4.7 "Z" twists per inch, was plied with a similar yarn to produce a 2-ply 3.0/2 cotton count 4.7Zx4.0S yam. The 2-ply yarn was twist set by a conventional Sussen twist setting process. The yam was passed through a heated chamber at about 195°C while in a relaxed condition, with a residence time of about 60 seconds.
Multiple ends of this yam was tufted into cut pile carpet and conventionally finished to obtain the improved product. The resulting carpet was compared to a control carpet prepared in the same manner from 100 percent base staple fiber. The carpet containing the binder staple fiber blend displayed enhanced carpet tuft appearance, more resilience, and better wear resistance.
EXAMPLE 2
Carpets also may be produced from bulked continuos filament (BCF) yams, and carpets thus made can be improved in surface, aesthetics, hand, or in durability and wear by using this invention. In the following example the carpet manufacturer simply uses normal processing techniques to obtain the desired effect.
Filament nylon yarn is produced according to various conventional fiber producer manufacturing methods. These methods are not particularly related to the invention, except that another, smaller, filament yarn will accompany a base yarn throughout subsequent process steps. Often the combination will result in a 2-ply, 3 -ply, or other form needed for the carpet style.
In various processes, twisting, entangling, or direct cabling may be utilized. Direct cabling is often used, as in this example, where a 70 denier 14 filament ya is combined with a 1185 denier 70 filament in the creel of the direct cabler to produce a yarn with 3.5 "S" twist per inch in each of the singles and 3.5 "Z" twist in the resultant 2-ply twisted yarn (1185 x 2 ply). The final yarn contains a third component, a binder yarn, which has a lower melting point and which will lose much of its identity in subsequent process steps, as it is melted and flows to bind fibers and yarn together, thereby retaining the twist in cut pile carpet.
In this example, the 70 denier 14 filament yarn is a copolyamide having a melt point range of 105-180°C and results in the binder fiber for the combination, combined with 2 ends of 1185 denier, providing a blend of about 2.8 percent binder. This ratio can be doubled by using two binder yam ends, or varied by providing other denier products to the system. When the product is subjected to conventional twist setting, the binder is activated producing a final product with the desirable characteristics of enhanced carpet tuft appearance, more resilience, and better wear resistance than similar carpets not containing the binder. The twist setting conditions for this are typically 270°F, in saturated steam, with -a residence time of about 30-50 seconds for the superba twist set process or 40-60 minutes for the autoclave twist set process. As the fiber emerges from the elevated temperature condition, the binder solidifies and encapsulates or bonds two or more base ya s together in a permanent or durable bond.
Multiple ends of these yams are tufted into cut pile carpet and conventionally finished to obtain the improved product.
EXAMPLE 3 Carpets also may be produced by introducing a binder yarn as the wrapper yarn that is placed uniformly around a continuous bundle of base staple fibers at wrap (hollow spindle) spinning to produce a wrap spun yarn. The binder yam can consist of 100% heat-activated adhesive fibers or consist of a blend of heat activated adhesive fibers and non-adhesive fibers. Binder yarns as such can be either continuous filament yarn or spun staple yarn produced by conventional manufacturing methods. When the resulting wrap spun yam is twisted into a plied yam, twist set by conventional process, and the treated yarn tufted into cut-pile carpet, the carpet displays enhanced carpet tuft appearance, more resilience, and better wear resistance than similar carpets not containing the binder yarn. These carpet improvements can be further enhanced by the continuous bundle of base staple fibers being a blend with a low weight percent of heat activated adhesive fibers and a high weight percent of non-adhesive fibers that is wrapped with a binder yam as described above.
In this example, the continuous bundle (sliver) of base staple fibers is 100% 17 denier per filament AlliedSignal T317 nylon-6 staple fibers that is wrapped with a 30 denier 12 filament yam at wrap spinning to produce a 3.35/1 cotton count yarn containing 5.2 "Z" wraps per inch. This singles yam is then plied with another singles end of the same ya to produce 3.35/2 cotton count 5.2 Z wraps per inch x 5.4 S twists per inch final yam. This final yam contains a binder yam, which is the 30 denier 12 filament yam wrapped around each end of the 2 plies. This 30 denier yam is a copolyamide nylon having a melt point range of 105- 180°C. The remainder of the 3.35/2 cotton count yam is AlliedSignal T317 nylon- 6 staple fibers having a melt point range of 215-225°C, which results in a blend of about 2.0 percent binder. This ratio can be increased by using a larger denier binder yarn, or by a low weight percent of heat-activated adhesive fibers and a high weight percent of non-adhesive AlliedSignal T317 nylon-6 staple fibers blend being in the continuous bundle (sliver) of base staple fibers, before wrap spinning, that is wrapped with the 30 denier 12 filament binder yarn.
This final 3.35/2 cotton count yam was twist set by a conventional stuffer box Suessen twist setting process. The yam was passed through a heated chamber at 190°C, while in a relaxed condition, with a residence time of 60 seconds. Multiple ends of this yam were tufted into cut-pile carpet and conventionally finished to obtain the improved product. The resulting carpet was compared to a control carpet prepared in the same manner from 100 percent non-adhesive AlliedSignal T317 nylon-6 base staple fibers. The carpet containing the 2.0 percent wrapper yarn binder displayed tighter and more defined individual pile tufts, a more resilient, stiffer hand, enhanced carpet surface appearance with significantly less hairiness, and better wear resistance.
EXAMPLE 4 Carpets also may be produced by introducing a binder yarn at ring spinning before the front delivery roll into a continuous bundle of base staple fibers being drafted to produce a ring spun yam The binder yam can consist of 100% heat- activated adhesive fibers or consist of a blend of heat-activated adhesive fibers and non-adhesive fibers Binder yams as such can be either continuous filament yarn or spun staple yam produced by conventional manufacturing methods This ring spun yam has greater strength due to the added strength of the inserted yam in the total spun yam structure, which results in improved operating performance at spinning by reducing single end breakouts
The resulting ring spun yam when later twisted into a plied yam and twist set by conventional processes results in a treated yam with altered, unique performance properties The unique properties are produced by the heat activated adhesive fibers in the inserted binder yam being intermingled within the continuous bundle (sliver) of non-adhesive base staple fibers during the ring spinning process, melting during conventional twist setting processes, and then solidifying when emerging from the elevated temperature forming a durable crossbonding with the non-adhesive base staple fibers within the individual ends of the plied yarn and between the individual ends of the plied yarn
The treated plied twist set yam has a more resilient, stiffer hand, significantly improved ply twist retention, and a less hairy surface When tufted into cut-pile carpet, the hand of the pile is significantly firmer, the individual tufts are tighter and more defined, and the pile surface is cleaner with less hairiness These carpet improvements can be further enhanced by the continuous bundle of base staple fibers being a blend with a low weight percent of heat-activated adhesive fibers and a high weight percent of non-adhesive fibers in which the binder yarn is inserted as described above In this example, a 30 denier 12 filament yarn is inserted before the front delivery roll into the continuous bundle of base staple fibers (sliver) being drafted at ring spinning The sliver is 100% 17 denier per filament AlliedSignal T317 nylon-6 staple fibers, which is spun into a 3 0/1 cotton yarn containing 4 8 "Z" twists per inch This singles yarn is then plied with another singles end of the same yarn to produce 3 0/2 cotton count 4 8 Z twists per inch x 4 1 S twists per inch final yarn This final yarn contains a binder yam, which is the 30 denier 12 filament yam inserted in each end of the 2 plies. This 20 denier yam is a copolyamide nylon having a melt point range of 105-180°C. The remainder of the 3.0/2 cotton count yam is AlliedSignal T317 nylon-6 staple fibers having a melt point range of 215- 225°C, which results in a blend of about 1.7 percent binder. This ratio can be increased by inserting a larger denier binder yam at the front delivery roll, or by a low weight percent of heat activated adhesive fibers and a high weight percent of non-adhesive AlliedSignal T317 nylon-6 staple fibers blend being in the continuous bundle (sliver) of base staple fibers, before ring spinning, in which the 30 denier 12 filament binder yam is inserted at the front delivery roll of ring spinning. This final 3.0/2 cotton count yam was twist set by a conventional Suessen twist setting process. The yam was passed through a heated chamber at 190°C, while in a relaxed condition, with a residence time of 60 seconds. Multiple ends of this yam were tufted into cut-pile carpet and conventionally finished to obtain the improved product. The resulting carpet was compared to a control carpet prepared in the same manner from 100 percent non-adhesive AlliedSignal T317 nylon-6 base staple fibers. The carpet containing the 1.7 percent inserted binder yarn displayed more defined individual pile tufts, a more resilient, stiffer hand, and a cleaner, enhanced carpet surface appearance which is more like a BCF cut pile carpet.

Claims

WHAT IS CLAIMED IS:
1. A yam comprising a. at least one bundle of fiber, said bundle being ring spun or wrap spun with b. a second fiber comprising a heat-activated binder material having a melting point range of about 105┬░ to 190┬░C under ambient humidity conditions, said yarn comprising a total of 0.1 to 12 weight percent binder material.
2. The yarn of claim 1 comprising 0.25 to 10 weight percent binder material.
3. The yam of claim 1 comprising 0.5 to 8 weight percent binder material.
4. The yam of claim 1 wherein the bundle of fiber is staple fibers.
5. The yam of claim 1 wherein the bundle of fibers is a sliver.
6. The yam of claim 1 wherein the bundle of fibers is continuous filaments.
7. The yam of claim 1 wherein the second fiber comprises a heat-activated binder fiber.
8. The yam of claim 7 wherein said binder fiber is a copolyamide.
9. The yarn of claim 8 wherein said binder fiber is a copolyamide of the nylon 6/nylon 6,6 type.
10. The yam of claim 1 wherein the bundle of fiber is nylon 6.
11. The yarn of claim 1 wherein the bundle of fiber is staple fibers wrap spun with the wrapping fiber, and the wrapping fiber forms substantially all of the heat-activated binder material.
12. The yarn of claim 11 wherein the staple fibers are selected from the group consisting of nylon 6 and nylon 6-6, and wherein the heat-activated binder material is a copolyamide having a melting point range of 165┬░ to 190┬░C under ambient humidity conditions.
13. An article made from the yarn of claim 1.
14. A tufted article made from the yarn of claim 1.
15. A carpet including the yarn of claim 1 as a face yarn.
16. A process for producing a yam suitable for tufting, said process comprising the steps of: a. forming a bundle of fiber; b. ring spinning or wrap spinning the bundle of fiber with a second fiber comprising a heat-activated binder material having a melting point range of about 105┬░ to 190┬░C under ambient humidity conditions to form a yam comprising 0.1 to 12 weight percent of the binder material; c. heating the yam sufficiently to melt the binder material; followed by d. cooling the yam to solidify the binder material.
17. The process of claim 16 wherein said heating step is accomplished during twist setting of the yam.
18. The process of claim 16 wherein the bundle of fiber is formed by spinning staple fiber.
19. A wrap spun yam made in accordance with the process of claim 16.
20. A ring spun yam made in accordance with the process of claim 16.
PCT/US1998/019745 1997-09-18 1998-09-18 Yarn with heat-activated binder material and process of making WO1999014408A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU94988/98A AU741990B2 (en) 1997-09-18 1998-09-18 Yarn with heat-activated binder material and process of making
EP98948411A EP1038059B2 (en) 1997-09-19 1998-09-18 Yarn with heat-activated binder material and process of making
DE69816860T DE69816860T3 (en) 1997-09-18 1998-09-18 Yarn with a heat activated binder and process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/933,822 1997-09-18
US08/933,822 US6682618B1 (en) 1986-11-24 1997-09-19 Yarn with heat-activated binder material and process of making

Publications (1)

Publication Number Publication Date
WO1999014408A1 true WO1999014408A1 (en) 1999-03-25

Family

ID=25464560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/019745 WO1999014408A1 (en) 1997-09-18 1998-09-18 Yarn with heat-activated binder material and process of making

Country Status (5)

Country Link
EP (1) EP1038059B2 (en)
AU (1) AU741990B2 (en)
DE (1) DE69816860T3 (en)
WO (1) WO1999014408A1 (en)
ZA (1) ZA988628B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012796A1 (en) * 1998-08-31 2000-03-09 Alliedsignal Inc. Yarn with heat-activated binder material and process of making
WO2002044450A2 (en) * 2000-11-28 2002-06-06 Honeywell International Inc. Untwisted wrapped singles yarns and carpets manufactured therefrom
US6682618B1 (en) 1986-11-24 2004-01-27 Alliedsignal Inc. Yarn with heat-activated binder material and process of making
US6755366B2 (en) 2002-09-30 2004-06-29 Solutia Inc. Device for direct insertion of yarn in automatic winder
EP1594686A2 (en) * 2002-12-23 2005-11-16 Milliken & Company Enhanced surface coverings, yarns and methods
US6969437B1 (en) 1997-01-30 2005-11-29 Alliedsignal Inc. Yarn with heat-activated binder material and process of making

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2205116A (en) * 1987-05-26 1988-11-30 Wool Res Organisation A method of stabilising pile yarns of tufted woven or knitted pile products
EP0444637A2 (en) * 1990-02-27 1991-09-04 E.I. Du Pont De Nemours And Company On line interlacing of bulked continuous filament yarns and low-melting binder fibers
EP0466618A1 (en) * 1990-07-13 1992-01-15 Sa Schappe Hybrid yarn for composite materials made from thermoplastic matrix and process for producing the same
WO1994009196A1 (en) * 1992-10-14 1994-04-28 Allied-Signal Inc. Synthetic yarn with heat-activated binder fiber
WO1994020657A1 (en) * 1993-03-09 1994-09-15 E.I. Du Pont De Nemours And Company Fiber blends for improved carpet texture retention
WO1995030040A1 (en) * 1994-04-29 1995-11-09 Kleen-Tex Industries, Inc. Improved track control mat and method of making the same
JPH09119034A (en) * 1995-10-26 1997-05-06 Unitika Ltd Spun yarn containing binder fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB501436A (en) * 1937-05-24 1939-02-24 Wallach Roger Improvements relating to yarns, threads and cords, and to textile fabrics made therefrom or incorporating them
CH220994A (en) * 1937-05-24 1942-05-15 Sylvania Ind Corp A method of manufacturing a textile product.
GB568675A (en) * 1943-03-12 1945-04-16 George Frederick Rayner Process of making composite yarns, and the composite yarns so produced
US4644741A (en) * 1984-06-11 1987-02-24 Golden Star, Inc. Mop yarns made by fiber bonding process
DD240918A1 (en) * 1985-09-16 1986-11-19 Ver Baumwollspinnereien Und Zw METHOD AND DEVICE FOR FASTENING FIBER BEARING
US4668552A (en) * 1986-07-28 1987-05-26 Collins & Aikman Corporation Wrap yarns having low-melt binder strands and pile fabrics formed therefrom and attendant processes
EP0324773B1 (en) * 1986-11-24 1990-11-22 AlliedSignal Inc. Synthetic yarn with heat-activated binder fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2205116A (en) * 1987-05-26 1988-11-30 Wool Res Organisation A method of stabilising pile yarns of tufted woven or knitted pile products
EP0444637A2 (en) * 1990-02-27 1991-09-04 E.I. Du Pont De Nemours And Company On line interlacing of bulked continuous filament yarns and low-melting binder fibers
EP0466618A1 (en) * 1990-07-13 1992-01-15 Sa Schappe Hybrid yarn for composite materials made from thermoplastic matrix and process for producing the same
WO1994009196A1 (en) * 1992-10-14 1994-04-28 Allied-Signal Inc. Synthetic yarn with heat-activated binder fiber
WO1994020657A1 (en) * 1993-03-09 1994-09-15 E.I. Du Pont De Nemours And Company Fiber blends for improved carpet texture retention
WO1995030040A1 (en) * 1994-04-29 1995-11-09 Kleen-Tex Industries, Inc. Improved track control mat and method of making the same
JPH09119034A (en) * 1995-10-26 1997-05-06 Unitika Ltd Spun yarn containing binder fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 97, no. 9 30 September 1997 (1997-09-30) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682618B1 (en) 1986-11-24 2004-01-27 Alliedsignal Inc. Yarn with heat-activated binder material and process of making
US7189295B2 (en) 1986-11-24 2007-03-13 Alliedsignal Inc. Yarn with heat-activated binder material and process of making
US6969437B1 (en) 1997-01-30 2005-11-29 Alliedsignal Inc. Yarn with heat-activated binder material and process of making
WO2000012796A1 (en) * 1998-08-31 2000-03-09 Alliedsignal Inc. Yarn with heat-activated binder material and process of making
WO2002044450A2 (en) * 2000-11-28 2002-06-06 Honeywell International Inc. Untwisted wrapped singles yarns and carpets manufactured therefrom
WO2002044450A3 (en) * 2000-11-28 2002-09-06 Honeywell Int Inc Untwisted wrapped singles yarns and carpets manufactured therefrom
US7402217B2 (en) * 2000-11-28 2008-07-22 Honeywell International Inc. Untwisted wrapped singles yarns and carpets manufactured therefrom
US6755366B2 (en) 2002-09-30 2004-06-29 Solutia Inc. Device for direct insertion of yarn in automatic winder
EP1594686A2 (en) * 2002-12-23 2005-11-16 Milliken & Company Enhanced surface coverings, yarns and methods
EP1594686A4 (en) * 2002-12-23 2006-04-19 Milliken & Co Enhanced surface coverings, yarns and methods

Also Published As

Publication number Publication date
ZA988628B (en) 1999-06-29
AU9498898A (en) 1999-04-05
EP1038059A1 (en) 2000-09-27
DE69816860D1 (en) 2003-09-04
DE69816860T3 (en) 2008-06-26
DE69816860T2 (en) 2004-06-03
EP1038059B1 (en) 2003-07-30
AU741990B2 (en) 2001-12-13
EP1038059B2 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
CA1323253C (en) Modification of carpet surface with binder powder
EP0324773B1 (en) Synthetic yarn with heat-activated binder fiber
CA2158019C (en) Fiber blends for improved carpet texture retention
EP1337701B1 (en) Untwisted wrapped singles yarns and carpets manufactured therefrom
US5478624A (en) Synthetic yarn with heat-activated binder fiber
US6682618B1 (en) Yarn with heat-activated binder material and process of making
AU741990B2 (en) Yarn with heat-activated binder material and process of making
US6969437B1 (en) Yarn with heat-activated binder material and process of making
US5141780A (en) Multifilament yarn with adhesive polymer component
US20030165656A1 (en) Binder fiber for improved carpet appearance retention and endpoint
WO2000012796A1 (en) Yarn with heat-activated binder material and process of making
JP2002155438A (en) Pile yarn, method for producing the same and mat using the same pile yarn
JP2002212850A (en) Pile yarn and mat using the pile yarn, and method for producing pile yarn

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 94988/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998948411

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998948411

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 94988/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998948411

Country of ref document: EP