[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999010686A1 - Cooling cycle - Google Patents

Cooling cycle Download PDF

Info

Publication number
WO1999010686A1
WO1999010686A1 PCT/JP1998/003556 JP9803556W WO9910686A1 WO 1999010686 A1 WO1999010686 A1 WO 1999010686A1 JP 9803556 W JP9803556 W JP 9803556W WO 9910686 A1 WO9910686 A1 WO 9910686A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
liquid
liquid separator
pressure
Prior art date
Application number
PCT/JP1998/003556
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corporation filed Critical Zexel Corporation
Publication of WO1999010686A1 publication Critical patent/WO1999010686A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a cooling cycle having a multi-effect cycle (gas injection cycle) in which a supercritical fluid such as co 2 is used as a refrigerant and a gas-phase refrigerant from a gas-liquid separation device is returned to a compression chamber. .
  • a supercritical fluid such as co 2
  • a gas-phase refrigerant from a gas-liquid separation device is returned to a compression chamber.
  • the cooling cycle 1 includes a compressor 2, a radiator 3, a first pressure reducing means 4, A main path 8 is formed by sequentially connecting the liquid separator 5, the second decompression means 6, and the evaporator 7, and a bypass path 9 connecting the gas-liquid separator 5 and the compressor 2 is provided.
  • the gas-phase refrigerant separated by the gas-liquid separator 5 is returned to the compressor 2, thereby improving the cooling performance.
  • a heat exchanger for exchanging heat between the refrigerant flowing out of the condenser 3 and the gas-phase refrigerant returning from the gas-liquid separator 5 is provided in the middle of the bypass path 9,
  • a configuration in which, even when a droplet refrigerant is mixed with a refrigerant, the refrigerant is returned to the compressor 2 as a complete gas state.
  • the separated liquid-phase refrigerant is further decompressed by the second decompression means 6 to become low-pressure, low-temperature wet steam indicated by point E, is evaporated and vaporized by the evaporator 7 and reaches point F, and is compressed again by the compressor 2. Is done.
  • the gas-phase refrigerant separated by the gas-liquid separator 5 passes through the point H in the process of passing through the bypass passage 9, becomes a complete gas phase, and is returned to the compressor 2 to pass through the evaporator 7. Mix with gas phase refrigerant.
  • the gas-phase refrigerant compressed by the compressor 2 from the point F is mixed with the gas-phase refrigerant returned from the gas-liquid separator 5 when it is compressed to the intermediate pressure, and the gas-phase refrigerant from the point I to the point G is formed. And then returned to point A.
  • the gas-liquid separator 5 separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the flow rate of the refrigerant flowing through the evaporator 7 is reduced by the amount that the gas-phase refrigerant separated by the gas-liquid separator 5 is returned, the cooling capacity is increased by an amount corresponding to the enthalpy difference between the points C and D. be able to.
  • the state change of the supercritical fluid due to the above-described multi-effect cycle is formed when the cycle is properly controlled, and if the adjustment of the pressure reducing means is not performed properly, the cooling performance is reduced.
  • the opening degree of the first pressure reducing means 4 is much larger than the opening degree of the second pressure reducing means 6, the pressure in the gas-liquid separator 5 becomes higher than the pressure on the radiator side (high pressure side).
  • point C reaches the gas-phase region and no liquid-phase refrigerant is formed in the gas-liquid separator. Is reduced as it is.
  • the liquid refrigerant cannot be formed in the gas-liquid separator, so that the enamel ruby cannot be made smaller than the point C.
  • the refrigeration effect (Q) is This is because it is decided by the ruby party on the side.
  • the present invention even when a supercritical fluid is used as a refrigerant for a multi-effect cycle, cooling is performed so that the liquid-phase refrigerant is always present in the gas-liquid separator to improve the cooling performance.
  • the task is to provide a cycle. Further, since the cooling performance is improved as the temperature of the refrigerant entering the first pressure reducing means is lower, the present invention provides a cooling cycle in which the temperature of the refrigerant entering the first pressure reducing means is also improved. . Disclosure of the invention
  • a cooling cycle uses a supercritical fluid as a refrigerant, a compressor that pressurizes the refrigerant, and a first heat exchanger that cools the refrigerant pressurized by the compressor.
  • a first decompression unit arranged downstream of the first heat exchanger and decompressing the refrigerant, and a gas-liquid separator for gas-liquid separation of the refrigerant decompressed by the first decompression unit.
  • a second decompression means for decompressing the liquid-phase refrigerant separated by the liquid separation device and a second heat exchanger for evaporating and evaporating the refrigerant decompressed by the second decompression means are sequentially connected by pipes.
  • the gas-liquid separator is connected to the compressor by connecting the gas-liquid separator to the compressor, and a bypass path is provided to guide the gas-phase refrigerant separated by the gas-liquid separator to the compressor.
  • the amount of pressure reduction by the first pressure reducing means is controlled in accordance with the amount of liquid refrigerant in the inside.
  • a liquid-phase refrigerant in a gas-liquid separation device is used as a method of controlling the amount of decompression by the first decompression means.
  • Liquid-phase refrigerant in the gas-liquid separation device by a signal from a refrigerant amount detection sensor that detects the amount, or by calculation based on signals from a pressure sensor and a temperature sensor that detect the pressure and temperature in the gas-liquid separation device It is conceivable that the degree of pressure reduction by the first pressure reducing means is increased by detecting whether or not the pressure is insufficient and determining that the liquid phase refrigerant is insufficient.
  • the high-temperature and high-pressure refrigerant that is pressurized by the compressor and becomes a supercritical state is cooled by the first heat exchanger and decompressed by the first decompression means to become an intermediate-pressure gas-liquid mixed refrigerant, and the gas-liquid separation Gas-liquid separation is performed inside the device.
  • the gas-phase refrigerant separated by the gas-liquid separation device returns to the compressor through the bypass path, and the separated liquid-phase refrigerant is further decompressed by the second decompression means to become low-temperature low-pressure wet steam, In the evaporator, it is vaporized and led to the compressor.
  • the first decompression means adjusts the decompression amount according to the amount of the liquid-phase refrigerant in the gas-liquid separation device, so if the amount of the liquid-phase refrigerant in the gas-liquid separation device becomes insufficient, It is possible to avoid a situation in which the refrigerant flowing into the separation device becomes a gas-liquid mixed refrigerant and the liquid-phase refrigerant does not exist here. A reasonable level of cooling performance can be maintained while maintaining the state change as shown by the solid line in FIG.
  • the temperature of the refrigerant flowing into the first pressure reducing means may be set as low as possible in addition to securing the liquid-phase refrigerant in the gas-liquid separator. That is, the gas-phase refrigerant separated on the refrigerant downstream side of the pressure reducing means may be heat-exchanged with the refrigerant flowing between the first heat exchanger and the first pressure reducing means. According to such a configuration, the refrigerant cooled in the first heat exchanger is further cooled by the gas-phase refrigerant downstream of the decompression means, and as a result, the refrigerant flowing into the evaporator is cooled. It is possible to increase the freezing effect by reducing the size of the ruby.
  • a separation device accumulator
  • FIG. 1 is a configuration diagram showing a first configuration example of a cooling cycle according to the present invention.
  • FIG. 2 is a control operation for controlling a first throttle valve by a control unit of the cooling cycle shown in FIG.
  • FIG. 3 is a flowchart showing an example
  • FIG. 3 is a Moliere diagram of a cooling cycle according to the present invention
  • FIG. 4 is a structural diagram showing a second configuration example of a cooling cycle according to the present invention.
  • FIG. 5 is a configuration diagram showing a modification of the configuration example of FIG. 4
  • FIG. 6 is a configuration diagram showing a third configuration example of the cooling cycle according to the present invention
  • FIG. 7 is a configuration diagram showing a conventional multi-effect cycle (gas injection cycle).
  • FIG. 3 is a Mollier diagram showing a refrigerant state change that can be caused by a conventional multi-effect cycle (gas injection cycle).
  • FIG. 1 shows a first configuration example of a cooling cycle 1.
  • This cooling cycle 1 is composed of a compressor 2 for compressing a refrigerant, and a radiator 3 for cooling the refrigerant compressed by the compressor 2.
  • a first throttle valve 4 disposed downstream of the radiator 3 on the refrigerant, a first gas-liquid separator 5 for separating the refrigerant decompressed by the first throttle valve 4 into gas and liquid, and a gas-liquid separator
  • a second throttle valve 6 arranged downstream of 5, and a main path 8 formed by connecting an evaporator 7 for evaporating and evaporating the refrigerant decompressed by the second throttle valve 6 in series in this order.
  • the main path 8 is provided with a bypass path 9 having one end connected to the first gas-liquid separator 5 and the other end connected to an intermediate stage of the compressor 2.
  • the separated gas-phase refrigerant is guided to the compressor 2 via the bypass path 9.
  • C 02 is used as the refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant, where it radiates heat and is cooled.
  • This refrigerant is raised to about 10 O Kg / cm 2 in the high pressure side line to be in a supercritical state, and is sent to the first throttle valve 4 without being liquefied by the radiator 3. Then, in the first throttle valve 4, the pressure is reduced to a pressure (intermediate pressure) higher than the pressure in the low-pressure line in which the evaporator 7 is disposed, and the reduced pressure refrigerant is a gas-liquid mixed refrigerant.
  • the gas-phase refrigerant and the liquid-phase refrigerant are separated in the first gas-liquid separator 5, and the gas-phase refrigerant is returned to the compressor 2 through the bypass passage 9, and the liquid-phase refrigerant is passed through the second throttle valve 6.
  • the refrigerant is further reduced in pressure to become a low-temperature low-pressure (around 0 ° C., about 35 kg / cm 2 ) gas-liquid mixed refrigerant, which is vaporized in the evaporator 7 to be gaseous and returned to the compressor 2.
  • This state change is shown by the above-mentioned Moire diagram shown by a solid line in FIG.
  • the first gas-liquid separator 5 is provided with a sensor 10 for detecting whether or not the amount of the liquid refrigerant inside is in an insufficient state.
  • the refrigerant pressure and the refrigerant temperature in the gas-liquid separator are detected, and the liquid level is indirectly detected from the detection results by calculation.
  • a signal relating to the liquid level detected by the sensor 10 is input to the control unit 11 and used to control the degree of engagement of the first throttle valve 4.
  • the control unit 11 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), an input / output port (I / O), a drive circuit, and the like (not shown). According to the predetermined program, the processing of the flowchart shown in FIG. 2 is performed.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O input / output port
  • drive circuit and the like (not shown). According to the predetermined program, the processing of the flowchart shown in FIG. 2 is performed.
  • the control unit 11 performs the processing of this routine along with the operation of the cycle. And the signal from the sensor 10 for detecting the temperature and the temperature is stored in the RAM, and in the next step 52, based on the sampling time detected by the sensor 10, the amount of refrigerant in the gas-liquid separator ( L) is calculated.
  • the refrigerant amount (L) in the gas-liquid separator is zero or larger. If the predetermined amount is larger than the predetermined amount, the normal opening control is continued (steps 54, 56), and if L ⁇ , the opening of the first throttle valve 4 is reduced to reduce the opening. Increase the pressure drop at the throttle valve 4 in (1) and set the point C in the Moliere diagram to be in the gas-liquid mixed refrigerant region as shown in Fig. 3 (Steps 54, 58) ). Then, in this configuration example, after the processes of Steps 56 and 58, the processes of Step 50 and below are repeated, and the refrigerant in the first gas-liquid separator is constantly monitored so that a shortage of the refrigerant does not occur. Has become.
  • FIG. 4 a second configuration example of the present invention is shown, and different points from the above configuration example will be mainly described. In the same configuration, the same reference numerals will be given and the description will be omitted.
  • an auxiliary heat exchanger 12 for exchanging heat between the refrigerant flowing through the main path 8 and the gas-phase refrigerant in the bypass path is provided between the radiator 3 and the first throttle valve 4,
  • the refrigerant flowing out of the radiator 3 is further cooled by a lower-temperature refrigerant downstream of the first throttle valve 4.
  • the state change of the cycle is indicated by a broken line in FIG. 3, and the high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A ′ is pointed to the point B by the radiator 3. However, it is further cooled to the point B ′ by the auxiliary heat exchanger 12 and reduced to the intermediate pressure indicated by the point C ′ by the first throttle valve 4 to become a gas-liquid mixed refrigerant, Gas-liquid separator 5 separates the refrigerant into a gaseous refrigerant and a liquid refrigerant indicated by point D '.
  • the liquid-phase refrigerant is further decompressed by the second throttle valve 6 to become low-pressure, low-temperature wet steam indicated by the point E ', which is smaller than the point E, and then evaporated and vaporized by the evaporator 7. Reach point F.
  • the gas-phase refrigerant separated by the gas-liquid separator 5 absorbs heat from the refrigerant in the high-pressure side line in the auxiliary heat exchanger 12, passes through the point H ′, and turns into a complete gaseous state.
  • the mixture with the gas-phase refrigerant shown at the point I ' which has been compressed to the intermediate pressure by step 2, mixes with the gas-phase refrigerant shown at the point G'. Then, the mixed gas-phase refrigerant is further pressurized by the compressor 2 and returned to the point A ′ again.
  • the opening degree of the first throttle valve 4 is adjusted by the control unit 11 to secure the liquid-phase refrigerant in the gas-liquid separator, and at the same time, the refrigeration effect Can be increased by an amount equivalent to the Enruby difference between points E and E '(Q2—Q1).
  • the degree of engagement of the second throttle valve 6 may be adjusted in accordance with the temperature of the evaporator 7. For example, FIG.
  • the second throttle valve 6 is a thermal expansion valve
  • the change in the degree of superheat of the refrigerant flowing out of the evaporator 6 is sensed by the temperature-sensitive cylinder 13, and the amount of refrigerant flowing into the evaporator 6 is adjusted. It is recommended to keep the degree of superheat constant.
  • FIG. 6 shows a third configuration example of the present invention.
  • a bypass path 9 connecting the first gas-liquid separator 5 and the compressor 2 is provided with a bypass path 9. 1
  • the configuration is the same as that shown in FIG. 1, except that a second gas-liquid separator (accumulator) 14 is arranged between the evaporator 7 and the compressor 2, and the refrigerant flowing out of the evaporator 7 The liquid-phase refrigerant mixed with the refrigerant is separated, and only the gas-phase refrigerant is returned to the compressor 2.
  • accumulator second gas-liquid separator
  • auxiliary heat exchanger 12 ′ for exchanging heat between the medium and the gas-phase refrigerant separated by the second gas-liquid separator (accumulator) 14 is provided, and the refrigerant flowing out of the radiator 3 evaporates. It is further cooled by the refrigerant on the downstream side.
  • the liquid-phase refrigerant can be secured in the first gas-liquid separator, and the refrigerant flowing out of the radiator 3 is further cooled to improve the cooling performance of the cycle. Operating efficiency can be improved.
  • a second phase is determined according to the amount of liquid-phase refrigerant in the gas-liquid separation device.
  • the first decompression means when the gas-phase refrigerant separated on the downstream side of the refrigerant of the decompression means is subjected to heat exchange with the refrigerant flowing between the first heat exchanger and the first decompression means, the first decompression means The temperature of the refrigerant flowing in can be further reduced, and the cooling performance of the cycle can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A cooling cycle formed so as to improve the cooling performance thereof by allowing a liquid phase refrigerant to constantly exist in a gas-liquid separator even when a supercritical fluid is used as a refrigerant for a multiple effect cycle, wherein a main path (8) is formed by connecting a compressor (2), a radiator (3), a first throttle valve (4), a gas-liquid separator (5), a second throttle valve (6) and an evaporator (7) in series, and a bypass (9) for returning a gas phase refrigerant from the gas-liquid separator (5) to the compressor (2) is provided in this main path (8), the degree of opening of the first throttle valve (4) being reduced, when the liquid phase refrigerant in the gas-liquid separator becomes insufficient, to increase the degree of pressure reduction of the refrigerant passing through the gas-liquid separator, whereby the liquid phase refrigerant constantly exists in the gas-liquid separator.

Description

明 細 冷却サイクル 技術分野  Details Cooling cycle Technical field
この発明は、 c o 2 等の超臨界流体を冷媒として用い、 気液分離装置 からの気相冷媒を圧縮室へ帰還するようにした多効サイクル (ガスィ ンジェクシヨンサイクル) を備えた冷却サイクルに関する。 The present invention relates to a cooling cycle having a multi-effect cycle (gas injection cycle) in which a supercritical fluid such as co 2 is used as a refrigerant and a gas-phase refrigerant from a gas-liquid separation device is returned to a compression chamber. .
多効サイクル (ガスインジヱクシヨンサイクル) を備えた冷却サイ クルとして、 従来、 特開平 5— 4 5 0 0 7号公報等に示される構成が 公知となっている。 これは、 第 7図に示すような構成を有しているも ので、 以下においてこの図面に基づいて説明すると、 冷却サイクル 1 は、 圧縮機 2、 放熱器 3、 第 1の減圧手段 4、 気液分離器 5、 第 2の 減圧手段 6、 蒸発器 7を順次接続して構成された主経路 8を有すると 共に、 気液分離器 5と圧縮機 2との間を接続するバイパス経路 9を有 しており、 気液分離器 5で分離された気相冷媒を圧縮機 2へ帰還させ、 これにより冷却性能を向上するようにしたものである。 また、 同公報 には、 バイパス経路 9の途中に、 凝縮器 3から流出される冷媒と気液 分離器 5から帰還する気相冷媒とを熱交換させる熱交換器を設け、 帰 還する気相冷媒に液滴冷媒が混在しているような場合でも、 完全なガ ス状態として圧縮機 2へ戻すようにした構成も開示されている。  Conventionally, as a cooling cycle having a multi-effect cycle (gas injection cycle), a configuration disclosed in Japanese Patent Application Laid-Open No. Hei 5-45007 has been known. This has a configuration as shown in FIG. 7, and will be described below with reference to this drawing. The cooling cycle 1 includes a compressor 2, a radiator 3, a first pressure reducing means 4, A main path 8 is formed by sequentially connecting the liquid separator 5, the second decompression means 6, and the evaporator 7, and a bypass path 9 connecting the gas-liquid separator 5 and the compressor 2 is provided. The gas-phase refrigerant separated by the gas-liquid separator 5 is returned to the compressor 2, thereby improving the cooling performance. Further, in the publication, a heat exchanger for exchanging heat between the refrigerant flowing out of the condenser 3 and the gas-phase refrigerant returning from the gas-liquid separator 5 is provided in the middle of the bypass path 9, There is also disclosed a configuration in which, even when a droplet refrigerant is mixed with a refrigerant, the refrigerant is returned to the compressor 2 as a complete gas state.
ところで、 自然環境に適した代替冷媒が模索される昨今において、 フロンガスを用いるよりも以前に利用されていた炭酸ガス冷媒 ( C O 2 ) が再び注目されている。 このような C 02 を用いた冷却サイクルは、 C 02 の臨界温度が 3 1 °Cであることから、 高圧側ラインが超臨界領域 で用いられる構成となっており、 十分な冷凍性能を得る必要から高圧 側ラインの圧力を 1 0 0 K g / c m2 前後に高めると共に、 上述した多 効サイクルを利用することなどが検討されている。 By the way, in recent years in which alternative refrigerants suitable for the natural environment are being sought, carbon dioxide refrigerant (CO 2), which has been used before using fluorocarbon gas, is attracting attention again. In such a cooling cycle using C02, since the critical temperature of C02 is 31 ° C, the high-pressure side line is used in the supercritical region, and it is necessary to obtain sufficient refrigeration performance. From high pressure It has been studied to increase the pressure of the side line to around 100 kg / cm 2 and to use the above-described multi-effect cycle.
上述した多効サイクルの冷媒として C 0 2 を用いた場合には、 モリエ ール線図で見ると、 第 3図の実線で示されるような状態変化を呈する。 つまり、 A点で示される圧縮機 2で圧縮された高温高圧の冷媒は、 放 熱器 3によって液化されることなく冷却されて B点に至り、 その後、 第 1の減圧手段 4で中間圧に減圧されて C点で示す気液混合の冷媒と なり、 気液分離器 5において気相冷媒と D点で示す液相冷媒とに分離 される。 分離された液相冷媒は、 更に第 2の減圧手段 6によって減圧 されて E点で示す低圧低温の湿り蒸気となり、 蒸発器 7で蒸発気化さ れて F点に至り、 再び圧縮機 2で圧縮される。 これと同時に気液分離 器 5で分離された気相冷媒は、 バイパス経路 9を通過する過程におい て H点を経て完全な気相となり、 圧縮機 2に戻されて蒸発器 7を通過 した低圧気相冷媒と混合する。 即ち、 F点から圧縮機 2で圧縮された 気相冷媒は、 中間圧まで圧縮された時点で気液分離器 5から帰還され る気相冷媒と混合して I点から G点の気相状態となり、 その後、 A点 に戻される。  When C 02 is used as the refrigerant of the above-described multi-effect cycle, the state changes as shown by the solid line in FIG. 3 when viewed on a Mollier diagram. In other words, the high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A is cooled without being liquefied by the heat radiator 3 and reaches the point B, and thereafter, the first pressure reducing means 4 returns to the intermediate pressure. The pressure is reduced to a gas-liquid mixed refrigerant indicated by point C, and separated into a gas-phase refrigerant and a liquid-phase refrigerant indicated by point D in the gas-liquid separator 5. The separated liquid-phase refrigerant is further decompressed by the second decompression means 6 to become low-pressure, low-temperature wet steam indicated by point E, is evaporated and vaporized by the evaporator 7 and reaches point F, and is compressed again by the compressor 2. Is done. At the same time, the gas-phase refrigerant separated by the gas-liquid separator 5 passes through the point H in the process of passing through the bypass passage 9, becomes a complete gas phase, and is returned to the compressor 2 to pass through the evaporator 7. Mix with gas phase refrigerant. That is, the gas-phase refrigerant compressed by the compressor 2 from the point F is mixed with the gas-phase refrigerant returned from the gas-liquid separator 5 when it is compressed to the intermediate pressure, and the gas-phase refrigerant from the point I to the point G is formed. And then returned to point A.
このような多効サイクルでは、 気液分離器 5において気相冷媒と液 相冷媒とに分離され、 この液相冷媒によってェン夕ルビーを C点から D点に減少させるところに意義があり、 気液分離器 5で分離された気 相冷媒が帰還される分だけ蒸発器 7を流れる冷媒流量は減少するもの の、 冷却能力を C点と D点とのェンタルピー差に相当する能力分だけ 高めることができる。  In such a multi-effect cycle, the gas-liquid separator 5 separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant. Although the flow rate of the refrigerant flowing through the evaporator 7 is reduced by the amount that the gas-phase refrigerant separated by the gas-liquid separator 5 is returned, the cooling capacity is increased by an amount corresponding to the enthalpy difference between the points C and D. be able to.
しかしながら、 上述の多効サイクルによる超臨界流体の状態変化は、 適切にサイクルが制御されている場合において形成されるもので、 減 圧手段の調節がうまくいかない場合には冷却性能の低下を招く。 これ は、 第 1の減圧手段 4の開度が第 2の減圧手段 6の開度より非常に大 きくなるような場合には、 気液分離器 5内の圧力が放熱器側の圧力 (高 圧側ラインの圧力) に近づき、 第 8図に示されるように C点が気相領 域に達して気液分離器内に液相冷媒が形成されない状態となり、 第 2 の減圧手段 6では気相冷媒がそのまま減圧されてしまうことによる。 つまり、 液相冷媒を気液分離器内で形成することができないためにェ ン夕ルビ一を C点よりも小さくすることができず、 結局、 冷凍効果(Q ) は、 放熱器 3の出口側のェン夕ルビ一によって決定されてしまうため である。 However, the state change of the supercritical fluid due to the above-described multi-effect cycle is formed when the cycle is properly controlled, and if the adjustment of the pressure reducing means is not performed properly, the cooling performance is reduced. this If the opening degree of the first pressure reducing means 4 is much larger than the opening degree of the second pressure reducing means 6, the pressure in the gas-liquid separator 5 becomes higher than the pressure on the radiator side (high pressure side). As shown in Fig. 8, point C reaches the gas-phase region and no liquid-phase refrigerant is formed in the gas-liquid separator. Is reduced as it is. In other words, the liquid refrigerant cannot be formed in the gas-liquid separator, so that the enamel ruby cannot be made smaller than the point C. As a result, the refrigeration effect (Q) is This is because it is decided by the ruby party on the side.
このような現象は、 既存のサイクル構成を C 0 2 等の超臨界流体にそ のまま利用したのでは冷却性能が保証されないことを示しており、 し たがって、 この点をいかに解決するかが超臨界流体を代替冷媒として 有効に利用できるか否かの重要なボイントとなってくる。  Such a phenomenon indicates that the cooling performance cannot be guaranteed if the existing cycle configuration is used as it is for supercritical fluids such as C 0 2, and therefore, how to solve this point An important point is whether supercritical fluids can be used effectively as alternative refrigerants.
そこで、 この発明においては、 超臨界流体を多効サイクルの冷媒と して用いる場合でも、 気液分離器内に常に液相冷媒が存在するように し、 冷却性能の改善を図るようにした冷却サイクルを提供することを 課題としている。 また、 冷却性能は、 第 1の減圧手段に入る冷媒温度 が低ければ低いほど向上することから、 第 1の減圧手段に入る冷媒温 度の改善をも併せて図るようにした冷却サイクルを提供する。 発明の開示  Therefore, in the present invention, even when a supercritical fluid is used as a refrigerant for a multi-effect cycle, cooling is performed so that the liquid-phase refrigerant is always present in the gas-liquid separator to improve the cooling performance. The task is to provide a cycle. Further, since the cooling performance is improved as the temperature of the refrigerant entering the first pressure reducing means is lower, the present invention provides a cooling cycle in which the temperature of the refrigerant entering the first pressure reducing means is also improved. . Disclosure of the invention
上記課題を達成するために、 この発明にかかる冷却サイクルは、 超 臨界流体を冷媒とし、 この冷媒を昇圧する圧縮機と、 この圧縮機で昇 圧された冷媒を冷却する第 1の熱交換器と、 この第 1の熱交換器より も冷媒下流側に配されて冷媒を減圧する第 1の減圧手段と、 前記第 1 の減圧手段で減圧された冷媒を気液分離する気液分離装置と、 この気 液分離装置で分離された液相冷媒を減圧する第 2の減圧手段と、 前記 第 2の減圧手段で減圧された冷媒を蒸発気化する第 2の熱交換器とを 含むように順次配管接続して主経路を構成し、 前記気液分離装置と前 記圧縮機とを接続して前記気液分離装置で分離された気相冷媒を前記 圧縮機へ導くバイパス経路を設け、 前記気液分離装置内の液相冷媒量 に応じて前記第 1の減圧手段による減圧量を制御することを特徴とし ている。 In order to achieve the above object, a cooling cycle according to the present invention uses a supercritical fluid as a refrigerant, a compressor that pressurizes the refrigerant, and a first heat exchanger that cools the refrigerant pressurized by the compressor. A first decompression unit arranged downstream of the first heat exchanger and decompressing the refrigerant, and a gas-liquid separator for gas-liquid separation of the refrigerant decompressed by the first decompression unit. This damn A second decompression means for decompressing the liquid-phase refrigerant separated by the liquid separation device and a second heat exchanger for evaporating and evaporating the refrigerant decompressed by the second decompression means are sequentially connected by pipes. The gas-liquid separator is connected to the compressor by connecting the gas-liquid separator to the compressor, and a bypass path is provided to guide the gas-phase refrigerant separated by the gas-liquid separator to the compressor. The amount of pressure reduction by the first pressure reducing means is controlled in accordance with the amount of liquid refrigerant in the inside.
超臨界流体としては、 臨界温度が常温付近にある C 0 2 、 エチレン等 の流体が用いられ、 第 1の減圧手段による減圧量を制御する手法とし ては、 気液分離装置内の液相冷媒量を検出する冷媒量検出センサから の信号によって、 又は、 気液分離装置内の圧力と温度を検出する圧力 センサ及び温度センサからの信号に基づく演算によって、 気液分離装 置内の液相冷媒が不足しているか否かを検出し、 液相冷媒が不足して いると判定された場合に第 1の減圧手段による減圧の程度を大きくす る構成が考えられる。  As the supercritical fluid, fluids such as C02 and ethylene having a critical temperature near normal temperature are used. As a method of controlling the amount of decompression by the first decompression means, a liquid-phase refrigerant in a gas-liquid separation device is used. Liquid-phase refrigerant in the gas-liquid separation device by a signal from a refrigerant amount detection sensor that detects the amount, or by calculation based on signals from a pressure sensor and a temperature sensor that detect the pressure and temperature in the gas-liquid separation device It is conceivable that the degree of pressure reduction by the first pressure reducing means is increased by detecting whether or not the pressure is insufficient and determining that the liquid phase refrigerant is insufficient.
したがって、 圧縮機で昇圧されて超臨界状態となる高温高圧の冷媒 は、 第 1の熱交換器によって冷却され、 第 1の減圧手段によって減圧 されて中間圧の気液混合冷媒となり、 気液分離装置内で気液分離され る。 この気液分離装置によって分離された気相冷媒は、 バイパス経路 を通って圧縮機に帰還し、 分離された液相冷媒は、 さらに第 2の減圧 手段によって減圧されて低温低圧の湿り蒸気となり、 蒸発器において 蒸発気化されて圧縮機へ導かれる。  Therefore, the high-temperature and high-pressure refrigerant that is pressurized by the compressor and becomes a supercritical state is cooled by the first heat exchanger and decompressed by the first decompression means to become an intermediate-pressure gas-liquid mixed refrigerant, and the gas-liquid separation Gas-liquid separation is performed inside the device. The gas-phase refrigerant separated by the gas-liquid separation device returns to the compressor through the bypass path, and the separated liquid-phase refrigerant is further decompressed by the second decompression means to become low-temperature low-pressure wet steam, In the evaporator, it is vaporized and led to the compressor.
第 1の減圧手段は、 気液分離装置内の液相冷媒量に応じて減圧量が 調節されることから、 気液分離装置内の液相冷媒量が不足するような 場合には、 気液分離装置に流入される冷媒を気液混合冷媒としてここ に液相冷媒が存在しなくなるような事態を避けることができ、 もって、 図 3の実線で示されるような状態変化を保って合理的なレベルの冷却 性能を維持することができる。 The first decompression means adjusts the decompression amount according to the amount of the liquid-phase refrigerant in the gas-liquid separation device, so if the amount of the liquid-phase refrigerant in the gas-liquid separation device becomes insufficient, It is possible to avoid a situation in which the refrigerant flowing into the separation device becomes a gas-liquid mixed refrigerant and the liquid-phase refrigerant does not exist here. A reasonable level of cooling performance can be maintained while maintaining the state change as shown by the solid line in FIG.
冷却性能を高めるにあっては、 気液分離装置内に液相冷媒を確保す ることに加え、 第 1の減圧手段に流入する冷媒温度をできるだけ低く するようにしてもよい。 即ち、 減圧手段の冷媒下流側において分離さ れる気相冷媒を、 第 1の熱交換器と第 1の減圧手段との間を流れる冷 媒と熱交換させるようにしてもよい。 このような構成によれば、 第 1 の熱交換器で冷却された冷媒が減圧手段より下流側の気相冷媒によつ てさらに冷却されることとなり、 結果として蒸発器に流入される冷媒 のェン夕ルビ一を小さく して冷凍効果を高めることができる。  To enhance the cooling performance, the temperature of the refrigerant flowing into the first pressure reducing means may be set as low as possible in addition to securing the liquid-phase refrigerant in the gas-liquid separator. That is, the gas-phase refrigerant separated on the refrigerant downstream side of the pressure reducing means may be heat-exchanged with the refrigerant flowing between the first heat exchanger and the first pressure reducing means. According to such a configuration, the refrigerant cooled in the first heat exchanger is further cooled by the gas-phase refrigerant downstream of the decompression means, and as a result, the refrigerant flowing into the evaporator is cooled. It is possible to increase the freezing effect by reducing the size of the ruby.
減圧手段の冷媒下流側において分離される気相冷媒を第 1の熱交換 器と第 1の減圧手段との間を流れる冷媒と熱交換させる構成としては、 第 1及び第 2の減圧手段の間に設けられる気液分離装置から圧縮機へ 帰還する気相冷媒を第 1の減圧手段の流入側において主経路内の冷媒 と熱交換させる構成や、 蒸発器の冷媒下流側に第 2の気液分離装置 (ァ キュムレー夕) を設け、 ここで分離された低温の気相冷媒を第 1の減 圧手段の流入側において主経路内の冷媒と熱交換させる構成が考えら れる。 図面の簡単な説明  A configuration in which the gaseous phase refrigerant separated on the downstream side of the refrigerant of the decompression means exchanges heat with the refrigerant flowing between the first heat exchanger and the first decompression means is provided between the first and second decompression means. A gas-phase refrigerant returning from the gas-liquid separator provided to the compressor to the compressor on the inflow side of the first decompression means, and a second gas-liquid flow downstream of the evaporator refrigerant. A configuration is conceivable in which a separation device (accumulator) is provided, and the separated low-temperature gas-phase refrigerant exchanges heat with the refrigerant in the main path on the inflow side of the first pressure reducing means. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明にかかる冷却サイクルの第 1の構成例を示す構成 図であり、 第 2図は、 図 1で示す冷却サイクルのコン トロールュニヅ トによる第 1の絞り弁を制御する制御動作例を示すフローチャートで あり、 第 3図は、 本発明にかかる冷却サイクルのモリエール線図であ り、 第 4図は、 本発明にかかる冷却サイクルの第 2の構成例を示す構 成図であり、 第 5図は、 第 4図の構成例の変形例を示す構成図であり、 第 6図は、 本発明にかかる冷却サイクルの第 3の構成例を示す構成図 であり、 第 7図は、 従来の多効サイクル (ガスインジェクションサイ クル) を示す構成図であり、 第 8図は、 従来の多効サイクル (ガスィ ンジェクシヨンサイクル) によって生じ得る冷媒の状態変化を示すモ リエ一ル線図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram showing a first configuration example of a cooling cycle according to the present invention. FIG. 2 is a control operation for controlling a first throttle valve by a control unit of the cooling cycle shown in FIG. FIG. 3 is a flowchart showing an example, FIG. 3 is a Moliere diagram of a cooling cycle according to the present invention, and FIG. 4 is a structural diagram showing a second configuration example of a cooling cycle according to the present invention. FIG. 5 is a configuration diagram showing a modification of the configuration example of FIG. 4, FIG. 6 is a configuration diagram showing a third configuration example of the cooling cycle according to the present invention, and FIG. 7 is a configuration diagram showing a conventional multi-effect cycle (gas injection cycle). FIG. 3 is a Mollier diagram showing a refrigerant state change that can be caused by a conventional multi-effect cycle (gas injection cycle). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面に基づいて説明する。 第 1図に おいて、 冷却サイクル 1の第 1の構成例が示され、 この冷却サイクル 1は、 冷媒を圧縮する圧縮機 2、 この圧縮機 2で圧縮された冷媒を冷 却する放熱器 3、 この放熱器 3の冷媒下流側に配された第 1の絞り弁 4、 第 1の絞り弁 4によって減圧された冷媒を気液分離する第 1の気 液分離器 5、 この気液分離器 5の下流側に配された第 2の絞り弁 6、 この第 2の絞り弁 6によって減圧された冷媒を蒸発気化する蒸発器 7 をこの順で直列に配管接続してなる主経路 8を備えている。 この主経 路 8に対して、 第 1の気液分離器 5に一端を接続し、 他端を圧縮機 2 の中間段に接続するバイパス経路 9が設けられており、 気液分離器 5 で分離された気相冷媒をこのバイパス経路 9を介して圧縮機 2へ導く ようになつている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first configuration example of a cooling cycle 1. This cooling cycle 1 is composed of a compressor 2 for compressing a refrigerant, and a radiator 3 for cooling the refrigerant compressed by the compressor 2. A first throttle valve 4 disposed downstream of the radiator 3 on the refrigerant, a first gas-liquid separator 5 for separating the refrigerant decompressed by the first throttle valve 4 into gas and liquid, and a gas-liquid separator A second throttle valve 6 arranged downstream of 5, and a main path 8 formed by connecting an evaporator 7 for evaporating and evaporating the refrigerant decompressed by the second throttle valve 6 in series in this order. ing. The main path 8 is provided with a bypass path 9 having one end connected to the first gas-liquid separator 5 and the other end connected to an intermediate stage of the compressor 2. The separated gas-phase refrigerant is guided to the compressor 2 via the bypass path 9.
このサイクルでは、 冷媒として C 02 が用いられており、 圧縮機 2に よって圧縮された冷媒は、 高温高圧の冷媒として放熱器 3に入り、 こ こで放熱して冷却する。この冷媒は、高圧側ラインにおいて 1 0 O Kg/cm2 前後まで高められて超臨界状態となっており、 放熱器 3によっても液 化されることなく第 1の絞り弁 4へ送られる。 そして、 この第 1の絞 り弁 4において、 蒸発器 7が配される低圧ラインの圧力よりも高い圧 力 (中間圧) に減圧され、 この減圧された冷媒が気液混合冷媒であれ ば、 第 1の気液分離器 5において気相冷媒と液相冷媒に分離され、 気 相冷媒はバイパス通路 9を通って圧縮機 2へ帰還され、 液相冷媒は第 2の絞り弁 6でさらに減圧されて低温低圧 ( 0°C前後、 約 35Kg/cm2) の気液混合冷媒となり、 蒸発器 7において気化してガス状となり、 圧 縮機 2へ戻される。 この状態変化は、 前述した第 3図の実線で示すモ リエール線図によって示されるようになる。 In this cycle, C 02 is used as the refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant, where it radiates heat and is cooled. This refrigerant is raised to about 10 O Kg / cm 2 in the high pressure side line to be in a supercritical state, and is sent to the first throttle valve 4 without being liquefied by the radiator 3. Then, in the first throttle valve 4, the pressure is reduced to a pressure (intermediate pressure) higher than the pressure in the low-pressure line in which the evaporator 7 is disposed, and the reduced pressure refrigerant is a gas-liquid mixed refrigerant. For example, the gas-phase refrigerant and the liquid-phase refrigerant are separated in the first gas-liquid separator 5, and the gas-phase refrigerant is returned to the compressor 2 through the bypass passage 9, and the liquid-phase refrigerant is passed through the second throttle valve 6. The refrigerant is further reduced in pressure to become a low-temperature low-pressure (around 0 ° C., about 35 kg / cm 2 ) gas-liquid mixed refrigerant, which is vaporized in the evaporator 7 to be gaseous and returned to the compressor 2. This state change is shown by the above-mentioned Moire diagram shown by a solid line in FIG.
第 1の気液分離器 5には、 内部の液相冷媒量が不足した状態にある か否かを検出するセンサ 1 0が取り付けられており、 このセンサ 1 0 は、 液相冷媒の液レベルを直接検知するものであってもいいが、 この 例では、 気液分離器内の冷媒圧力と冷媒温度とを検出し、 これら検出 結果から演算によって液位を間接的に検出するようにしている。 セン サ 1 0によって検出された液位に関する信号は、 コントロールュニッ ト 1 1に入力され、 第 1の絞り弁 4の閧度を制御するために利用され る。  The first gas-liquid separator 5 is provided with a sensor 10 for detecting whether or not the amount of the liquid refrigerant inside is in an insufficient state. However, in this example, the refrigerant pressure and the refrigerant temperature in the gas-liquid separator are detected, and the liquid level is indirectly detected from the detection results by calculation. . A signal relating to the liquid level detected by the sensor 10 is input to the control unit 11 and used to control the degree of engagement of the first throttle valve 4.
コン トロールュニッ ト 1 1は、 図示しない中央演算処理装置 ( C P U)、 読出専用メモリ (ROM)、 ランダムアクセスメモリ (RAM)、 入出力ポート ( I/O)、 駆動回路等より成り、 ROMに与えられた所 定のプログラムにしたがって、 第 2図に示すフローチャートの処理を 行うようになっている。  The control unit 11 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), an input / output port (I / O), a drive circuit, and the like (not shown). According to the predetermined program, the processing of the flowchart shown in FIG. 2 is performed.
以下において、 コン トロールュニッ ト 1 1による第 1の絞り弁 4の 制御動作例を説明すると、 コント口一ルュニッ ト 1 1はサイクルの稼 動に伴ってこのルーチンの処理を行い、 ステップ 5 0において圧力及 び温度を検出するセンサ 1 0からの信号を入力して RAMに格納し、 次のステップ 52において、 センサ 1 0によって検出されたサンプリ ングデ一夕に基づき、 気液分離器内の冷媒量 (L) を演算する。  In the following, an example of the control operation of the first throttle valve 4 by the control unit 11 will be described. The control unit 11 performs the processing of this routine along with the operation of the cycle. And the signal from the sensor 10 for detecting the temperature and the temperature is stored in the RAM, and in the next step 52, based on the sampling time detected by the sensor 10, the amount of refrigerant in the gas-liquid separator ( L) is calculated.
そして、 気液分離器内の冷媒量 (L) が零ないしはそれよりも大き く設定された所定量ひより多い場合には、 通常の開度制御を継続し (ス テヅプ 5 4 , 5 6 )、 L≤ひであれば、 第 1の絞り弁 4の開度を小さく して第 1の絞り弁 4での圧力降下を大きく し、 モリエール線図で示す 点 Cが、 第 3図で示されるように、 気液混合冷媒領域となるように設 定する (ステップ 5 4, 5 8 )。 そして、 この構成例では、 ステップ 5 6 , 5 8の処理の後にステツプ 5 0以下の処理が繰り返され、 第 1の 気液分離器内の冷媒を常時モニタ リングして冷媒不足が生じないよう になっている。 And, the refrigerant amount (L) in the gas-liquid separator is zero or larger. If the predetermined amount is larger than the predetermined amount, the normal opening control is continued (steps 54, 56), and if L≤, the opening of the first throttle valve 4 is reduced to reduce the opening. Increase the pressure drop at the throttle valve 4 in (1) and set the point C in the Moliere diagram to be in the gas-liquid mixed refrigerant region as shown in Fig. 3 (Steps 54, 58) ). Then, in this configuration example, after the processes of Steps 56 and 58, the processes of Step 50 and below are repeated, and the refrigerant in the first gas-liquid separator is constantly monitored so that a shortage of the refrigerant does not occur. Has become.
したがって、 超臨界流体を用いた場合においても、 第 8図で示すよ うな冷房性能が大きく低下するような状態を回避できると共に、 経時 的に冷媒がサイクルから漏れ出るような場合においても、 第 1の絞り 弁 4の開度が自動調節されて第 1の気液分離器内の液相冷媒が絶える ことがなくなり、 長期において安定した性能を確保することができる。 第 4図において、 この発明の第 2の構成例が示されており、 主とし て前記構成例と異なる点について説明し、 同一構成においては、 同一 番号を付して説明を省略する。  Therefore, even when a supercritical fluid is used, it is possible to avoid a state in which the cooling performance is greatly reduced as shown in FIG. 8, and even when the refrigerant leaks from the cycle over time, The opening degree of the throttle valve 4 is automatically adjusted, so that the liquid-phase refrigerant in the first gas-liquid separator does not run out, and stable performance can be secured for a long period of time. In FIG. 4, a second configuration example of the present invention is shown, and different points from the above configuration example will be mainly described. In the same configuration, the same reference numerals will be given and the description will be omitted.
このサイクル構成では、 主経路 8を流れる冷媒とバイパス経路内の 気相冷媒とを熱交換する補助熱交換器 1 2が放熱器 3と第 1の絞り弁 4との間に設けられており、 放熱器 3から流出される冷媒を第 1の絞 り弁 4より下流側のより低温の冷媒によってさらに冷却するようにな つている。  In this cycle configuration, an auxiliary heat exchanger 12 for exchanging heat between the refrigerant flowing through the main path 8 and the gas-phase refrigerant in the bypass path is provided between the radiator 3 and the first throttle valve 4, The refrigerant flowing out of the radiator 3 is further cooled by a lower-temperature refrigerant downstream of the first throttle valve 4.
このような構成によれば、 サイクルの状態変化は第 3図の破線で示 されるようになり、 A ' 点で示される圧縮機 2で圧縮された高温高圧 の冷媒は放熱器 3によって B点まで冷却されるが、 さらに補助熱交換 器 1 2によってさらに B ' 点まで冷却され、 第 1の絞り弁 4で C ' 点 で示す中間圧に減圧されて気液混合の冷媒となり、 第 1の気液分離器 5によって気相冷媒と D ' 点で示す液相冷媒とに分離される。 液相冷 媒は、 更に第 2の絞り弁 6によって減圧されて E点よりもェン夕ルビ —の小さい E ' 点で示す低圧低温の湿り蒸気となり、 その後、 蒸発器 7で蒸発気化されて F点に至る。 これと同時に気液分離器 5で分離さ れた気相冷媒は、 補助熱交換器 1 2で高圧側ラインの冷媒から熱を吸 収して H ' 点を経て完全なガス状となり、 圧縮機 2によって中間圧ま で圧縮された I ' 点で示す気相冷媒と混合して G ' 点で示す気相状態 となる。 そして、 その混合された気相冷媒は、 さらに圧縮機 2によつ て昇圧され、 再び A ' 点に戻される。 According to such a configuration, the state change of the cycle is indicated by a broken line in FIG. 3, and the high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A ′ is pointed to the point B by the radiator 3. However, it is further cooled to the point B ′ by the auxiliary heat exchanger 12 and reduced to the intermediate pressure indicated by the point C ′ by the first throttle valve 4 to become a gas-liquid mixed refrigerant, Gas-liquid separator 5 separates the refrigerant into a gaseous refrigerant and a liquid refrigerant indicated by point D '. The liquid-phase refrigerant is further decompressed by the second throttle valve 6 to become low-pressure, low-temperature wet steam indicated by the point E ', which is smaller than the point E, and then evaporated and vaporized by the evaporator 7. Reach point F. At the same time, the gas-phase refrigerant separated by the gas-liquid separator 5 absorbs heat from the refrigerant in the high-pressure side line in the auxiliary heat exchanger 12, passes through the point H ′, and turns into a complete gaseous state. The mixture with the gas-phase refrigerant shown at the point I ', which has been compressed to the intermediate pressure by step 2, mixes with the gas-phase refrigerant shown at the point G'. Then, the mixed gas-phase refrigerant is further pressurized by the compressor 2 and returned to the point A ′ again.
したがって、 このような多効サイクルによれば、 第 1の絞り弁 4の 開度がコントロールュニッ ト 1 1によって調節されて気液分離器内に 液相冷媒が確保されると同時に、 冷凍効果を E点と E ' 点とのェン夕 ルビ一差 (Q 2— Q 1 ) に相当する能力分だけ高めることができる。 尚、 上記構成において、 過熱度制御を更に付加したい場合には、 蒸 発器 7に関する温度に応じて第 2の絞り弁 6の閧度を調節するように すればよく、 たとえば、 第 5図に示されるように、 第 2の絞り弁 6を 感熱膨張弁とし、 蒸発器 6から流出する冷媒の過熱度の変化を感温筒 1 3で感知し、 蒸発器 6に流入する冷媒量を調節して過熱度を一定に 保つようにするとよい。  Therefore, according to such a multi-effect cycle, the opening degree of the first throttle valve 4 is adjusted by the control unit 11 to secure the liquid-phase refrigerant in the gas-liquid separator, and at the same time, the refrigeration effect Can be increased by an amount equivalent to the Enruby difference between points E and E '(Q2—Q1). In the above configuration, if it is desired to further add superheat control, the degree of engagement of the second throttle valve 6 may be adjusted in accordance with the temperature of the evaporator 7. For example, FIG. As shown, the second throttle valve 6 is a thermal expansion valve, the change in the degree of superheat of the refrigerant flowing out of the evaporator 6 is sensed by the temperature-sensitive cylinder 13, and the amount of refrigerant flowing into the evaporator 6 is adjusted. It is recommended to keep the degree of superheat constant.
第 6図において、 この発明の第 3の構成例が示されており、 この構 成例においては、 第 1の気液分離器 5と圧縮機 2 との間を接続するバ ィパス経路 9が第 1図で示す構成と同様になつているが、 蒸発器 7 と 圧縮機 2との間に第 2の気液分離器 (アキュムレータ) 1 4を配し、 ここで、 蒸発器 7から流出した冷媒に混在する液相冷媒を分離し、 気 相冷媒のみを圧縮機 2へ戻すようになつている。  FIG. 6 shows a third configuration example of the present invention. In this configuration example, a bypass path 9 connecting the first gas-liquid separator 5 and the compressor 2 is provided with a bypass path 9. 1 The configuration is the same as that shown in FIG. 1, except that a second gas-liquid separator (accumulator) 14 is arranged between the evaporator 7 and the compressor 2, and the refrigerant flowing out of the evaporator 7 The liquid-phase refrigerant mixed with the refrigerant is separated, and only the gas-phase refrigerant is returned to the compressor 2.
そして、 放熱器 3と第 1の絞り弁 4との間には、 高圧側ラインの冷 媒と第 2の気液分離器 (アキュムレータ) 1 4によって分離された気 相冷媒とを熱交換する補助熱交換器 1 2 ' が設けられており、 放熱器 3から流出される冷媒が蒸発器下流側の冷媒によってさらに冷却され るようになっている。 And, between the radiator 3 and the first throttle valve 4, the cooling of the high pressure side line is performed. An auxiliary heat exchanger 12 ′ for exchanging heat between the medium and the gas-phase refrigerant separated by the second gas-liquid separator (accumulator) 14 is provided, and the refrigerant flowing out of the radiator 3 evaporates. It is further cooled by the refrigerant on the downstream side.
このような構成によれば、 上述したごとく第 1の気液分離器内に液 相冷媒を確保することができると共に、 放熱器 3から流出した冷媒を さらに冷却してサイクルの冷却性能を高めることができ、 運転効率を 向上させることができる。 産業上の利用可能性  According to such a configuration, as described above, the liquid-phase refrigerant can be secured in the first gas-liquid separator, and the refrigerant flowing out of the radiator 3 is further cooled to improve the cooling performance of the cycle. Operating efficiency can be improved. Industrial applicability
以上述べたように、 この発明によれば、 多効サイクル (ガスインジ ェクシヨンサイクル) に超臨界流体を冷媒として用いるような場合に、 気液分離装置内の液相冷媒量に応じて、 第 1の減圧手段による減圧量 を制御し、 もって気液分離装置内に液相冷媒が存在しなくなる事態を 避けることができ、 合理的なレベルの冷却性能を維持することができ る。  As described above, according to the present invention, in the case where a supercritical fluid is used as a refrigerant in a multi-effect cycle (gas injection cycle), a second phase is determined according to the amount of liquid-phase refrigerant in the gas-liquid separation device. By controlling the amount of decompression by the decompression means 1, it is possible to avoid a situation in which the liquid-phase refrigerant does not exist in the gas-liquid separation device, and it is possible to maintain a reasonable level of cooling performance.
また、 冷媒が少々漏れても、 気液分離装置には常に液相冷媒が存在 することとなるので、 サイクルバランスが経時的に変化して冷却性能 が低下するような事態もなくすことができる。  In addition, even if the refrigerant leaks a little, the liquid-phase refrigerant is always present in the gas-liquid separation device, so that it is possible to prevent a situation in which the cycle balance changes over time and the cooling performance deteriorates.
さらに、 減圧手段の冷媒下流側において分離される気相冷媒を、 第 1の熱交換器と第 1の減圧手段との間を流れる冷媒と熱交換させる場 合には、 第 1の減圧手段に流入される冷媒の温度をさらに低下させる ことができ、 サイクルの冷却性能を一層向上させることが可能となる。  Further, when the gas-phase refrigerant separated on the downstream side of the refrigerant of the decompression means is subjected to heat exchange with the refrigerant flowing between the first heat exchanger and the first decompression means, the first decompression means The temperature of the refrigerant flowing in can be further reduced, and the cooling performance of the cycle can be further improved.

Claims

請 求 の 範 囲 1 . 超臨界流体を冷媒とし、  Scope of Claim 1. Supercritical fluid as refrigerant,
この冷媒を昇圧する圧縮機と、 この圧縮機で昇圧された冷媒を冷却 する第 1の熱交換器と、 この第 1の熱交換器よりも冷媒下流側に配さ れて冷媒を減圧する第 1の減圧手段と、 前記第 1の減圧手段で減圧さ れた冷媒を気液分離する気液分離装置と、 この気液分離装置で分離さ れた液相冷媒を減圧する第 2の減圧手段と、 前記第 2の減圧手段で減 圧された冷媒を蒸発気化する第 2の熱交換器とを含むように順次配管 接続して主経路を構成し、  A compressor that pressurizes the refrigerant, a first heat exchanger that cools the refrigerant pressurized by the compressor, and a second heat exchanger that is disposed downstream of the first heat exchanger and decompresses the refrigerant. (1) a pressure reducing means, a gas-liquid separator for gas-liquid separation of the refrigerant decompressed by the first pressure reducing means, and a second pressure reducing means for decompressing the liquid-phase refrigerant separated by the gas-liquid separator. And a second heat exchanger for evaporating and evaporating the refrigerant depressurized by the second decompression means.
前記気液分離装置と前記圧縮機とを接続して前記気液分離装置で分 離された気相冷媒を前記圧縮機へ導くバイパス経路を設け、  A bypass path that connects the gas-liquid separator and the compressor and guides the gas-phase refrigerant separated by the gas-liquid separator to the compressor;
前記気液分離装置内の液相冷媒量に応じて、 前記第 1の減圧手段に よる減圧量を制御するようにしたことを特徴とする冷却サイクル。  A cooling cycle, wherein the amount of reduced pressure by the first pressure reducing means is controlled in accordance with the amount of liquid-phase refrigerant in the gas-liquid separator.
2 . 前記第 1の減圧手段による減圧量の制御は、 前記気液分離装置 内の液相冷媒量を検出し、 液相冷媒が不足していると判定された場合 に前記第 1の減圧手段による冷媒の減圧量を大きくするものである請 求項 1記載の冷却サイクル。 2. The control of the amount of reduced pressure by the first pressure reducing means is performed by detecting the amount of liquid refrigerant in the gas-liquid separation device and determining that the amount of liquid refrigerant is insufficient. 2. The cooling cycle according to claim 1, wherein the amount of pressure reduction of the refrigerant by the cooling cycle is increased.
3 . 前記第 1の減圧手段による減圧量の制御は、 前記気液分離装置 内の圧力と温度とを検出し、 これら圧力と温度とから液相冷媒が不足 していると判定された場合に前記第 1の減圧手段による冷媒の減圧量 を大きくするものである請求項 1記載の冷却サイクル。 3. The control of the pressure reduction amount by the first pressure reduction means detects the pressure and temperature in the gas-liquid separation device, and when it is determined from these pressures and temperatures that the liquid refrigerant is insufficient. 2. The cooling cycle according to claim 1, wherein the amount of pressure reduction of the refrigerant by the first pressure reducing means is increased.
4 . 前記減圧手段よりも冷媒下流側において分離される気相冷媒を、 前記第 1の熱交換器と前記第 1の減圧手段との間を流れる冷媒と熱交 換させるようにしたことを特徴とする請求項 1記載の冷却サイクル。 4. The gas-phase refrigerant separated on the refrigerant downstream side from the pressure reducing means, 2. The cooling cycle according to claim 1, wherein heat is exchanged with a refrigerant flowing between the first heat exchanger and the first pressure reducing means.
5 . 前記気液分離装置で分離された気相冷媒を前記第 1の熱交換器 と前記第 1の減圧手段との間を流れる冷媒と熱交換させるようにした 請求項 4記載の冷却サイクル。 5. The cooling cycle according to claim 4, wherein the gas-phase refrigerant separated by the gas-liquid separator is heat-exchanged with a refrigerant flowing between the first heat exchanger and the first pressure reducing means.
6 . 前記第 2の熱交換器の冷媒下流側に他の気液分離装置を設け、 ここで分離された気相冷媒を前記第 1の熱交換器と前記第 1の減圧手 段との間を流れる冷媒と熱交換させるようにした請求項 4記載の冷却 サイクル。 6. Another gas-liquid separator is provided on the downstream side of the refrigerant of the second heat exchanger, and the separated gas-phase refrigerant is supplied between the first heat exchanger and the first decompression means. 5. The cooling cycle according to claim 4, wherein heat is exchanged with a refrigerant flowing through the cooling cycle.
7 . 前記第 2の熱交換器の温度に関連するパラメ一夕に応じて前記 第 2の減圧手段の減圧量を調節するようにしたことを特徴とする請求 項 1又は 4記載の冷却サイクル。 7. The cooling cycle according to claim 1, wherein the amount of reduced pressure of the second pressure reducing means is adjusted according to a parameter related to the temperature of the second heat exchanger.
8 . 前記第 2の熱交換器から流出する冷媒の過熱度を検出し、 この 過熱度が一定に保たれるように前記第 2の減圧手段の減圧量を調節す るようにしたことを特徴とする請求項 7記載の冷却サイクル。 8. The superheat degree of the refrigerant flowing out of the second heat exchanger is detected, and the pressure reduction amount of the second pressure reduction means is adjusted so that the superheat degree is kept constant. The cooling cycle according to claim 7, wherein:
PCT/JP1998/003556 1997-08-21 1998-08-11 Cooling cycle WO1999010686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/240422 1997-08-21
JP24042297A JPH1163694A (en) 1997-08-21 1997-08-21 Refrigeration cycle

Publications (1)

Publication Number Publication Date
WO1999010686A1 true WO1999010686A1 (en) 1999-03-04

Family

ID=17059251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003556 WO1999010686A1 (en) 1997-08-21 1998-08-11 Cooling cycle

Country Status (2)

Country Link
JP (1) JPH1163694A (en)
WO (1) WO1999010686A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015741A1 (en) * 2004-08-09 2006-02-16 Linde Kältetechnik Gmbh Refrigeration circuit and method for operating a refrigeration circuit
EP1577621A3 (en) * 2004-03-15 2006-05-10 SANYO ELECTRIC Co., Ltd. Refrigerating machine
WO2007111731A3 (en) * 2005-12-30 2008-01-17 Johnson Controls Tech Co Flash tank refrigerant control
WO2009046740A1 (en) * 2007-10-10 2009-04-16 Carrier Corporation Refrigerating system and method for controlling the same
EP1890095A3 (en) * 2006-08-09 2010-11-24 Matthias Leipoldt Cooling system
EP2264385A3 (en) * 2004-08-09 2011-10-19 Linde Kältetechnik GmbH Refrigeration cycle and method of operating a refrigerating cycle
CN101165439B (en) * 2006-10-17 2012-10-10 比泽尔制冷设备有限公司 Refrigeration equipment
EP2165124A4 (en) * 2007-05-14 2013-05-29 Carrier Corp Refrigerant vapor compression system with flash tank economizer
CN103994596A (en) * 2014-05-28 2014-08-20 合肥美的电冰箱有限公司 Refrigeration equipment and refrigeration system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979138B2 (en) * 2001-01-31 2012-07-18 株式会社前川製作所 Dry ice manufacturing method and apparatus
JP2002350014A (en) * 2001-05-22 2002-12-04 Daikin Ind Ltd Refrigeration equipment
JP2003065615A (en) * 2001-08-23 2003-03-05 Daikin Ind Ltd refrigerator
JP3956674B2 (en) 2001-11-13 2007-08-08 ダイキン工業株式会社 Refrigerant circuit
JP4039921B2 (en) * 2002-09-11 2008-01-30 三洋電機株式会社 Transcritical refrigerant cycle equipment
TWI301188B (en) 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
JP2004218964A (en) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd Refrigeration equipment
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
JP4312131B2 (en) * 2004-09-02 2009-08-12 三洋電機株式会社 refrigerator
CN100360875C (en) * 2005-09-26 2008-01-09 浙江春晖智能控制股份有限公司 Heat pump type central and household central air conditioning equipment refrigerating system
CN101535732B (en) * 2006-02-15 2012-06-27 Lg电子株式会社 Air-conditioning system and controlling method for the same
US7891201B1 (en) 2006-09-29 2011-02-22 Carrier Corporation Refrigerant vapor compression system with flash tank receiver
JP5828131B2 (en) * 2011-06-16 2015-12-02 パナソニックIpマネジメント株式会社 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus
JP6119616B2 (en) * 2014-01-14 2017-04-26 株式会社デンソー Heat pump cycle
KR102262722B1 (en) 2015-01-23 2021-06-09 엘지전자 주식회사 Cooling Cycle Apparatus for Refrigerator
JP2018155451A (en) * 2017-03-17 2018-10-04 株式会社デンソー Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120155A (en) * 1983-12-02 1985-06-27 三菱電機株式会社 Refrigeration cycle device
JPH01193561A (en) * 1988-01-28 1989-08-03 Ebara Res Co Ltd Heat pump
JPH0545007A (en) * 1991-08-09 1993-02-23 Nippondenso Co Ltd Freezing cycle
JPH06510111A (en) * 1991-09-16 1994-11-10 シンヴェント・アクシェセルスカープ High side pressure adjustment method in supercritical vapor compression circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120155A (en) * 1983-12-02 1985-06-27 三菱電機株式会社 Refrigeration cycle device
JPH01193561A (en) * 1988-01-28 1989-08-03 Ebara Res Co Ltd Heat pump
JPH0545007A (en) * 1991-08-09 1993-02-23 Nippondenso Co Ltd Freezing cycle
JPH06510111A (en) * 1991-09-16 1994-11-10 シンヴェント・アクシェセルスカープ High side pressure adjustment method in supercritical vapor compression circuit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577621A3 (en) * 2004-03-15 2006-05-10 SANYO ELECTRIC Co., Ltd. Refrigerating machine
US7293428B2 (en) 2004-03-15 2007-11-13 Sanyo Electric Co., Ltd. Refrigerating machine
US8844303B2 (en) 2004-08-09 2014-09-30 Carrier Corporation Refrigeration circuit and method for operating a refrigeration circuit
US9494345B2 (en) 2004-08-09 2016-11-15 Carrier Corporation Refrigeration circuit and method for operating a refrigeration circuit
EP2264385A3 (en) * 2004-08-09 2011-10-19 Linde Kältetechnik GmbH Refrigeration cycle and method of operating a refrigerating cycle
US8113008B2 (en) 2004-08-09 2012-02-14 Carrier Corporation Refrigeration circuit and method for operating a refrigeration circuit
WO2006015741A1 (en) * 2004-08-09 2006-02-16 Linde Kältetechnik Gmbh Refrigeration circuit and method for operating a refrigeration circuit
US9476614B2 (en) 2004-08-09 2016-10-25 Carrier Corporation Refrigeration circuit and method for operating a refrigeration circuit
WO2007111731A3 (en) * 2005-12-30 2008-01-17 Johnson Controls Tech Co Flash tank refrigerant control
EP1890095A3 (en) * 2006-08-09 2010-11-24 Matthias Leipoldt Cooling system
CN101165439B (en) * 2006-10-17 2012-10-10 比泽尔制冷设备有限公司 Refrigeration equipment
US8671703B2 (en) 2007-05-14 2014-03-18 Carrier Corporation Refrigerant vapor compression system with flash tank economizer
EP2165124A4 (en) * 2007-05-14 2013-05-29 Carrier Corp Refrigerant vapor compression system with flash tank economizer
WO2009046740A1 (en) * 2007-10-10 2009-04-16 Carrier Corporation Refrigerating system and method for controlling the same
US10254025B2 (en) 2007-10-10 2019-04-09 Carrier Corporation Refrigerating system and method for controlling the same
CN103994596A (en) * 2014-05-28 2014-08-20 合肥美的电冰箱有限公司 Refrigeration equipment and refrigeration system

Also Published As

Publication number Publication date
JPH1163694A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
WO1999010686A1 (en) Cooling cycle
US9951974B2 (en) Flash tank economizer cycle control
US9612047B2 (en) Refrigeration cycle apparatus and refrigerant circulation method
WO1999034156A1 (en) Refrigerating cycle
JPH09178274A (en) Refrigerating system
JP2002195673A (en) Transcritical vapor compression system and device for regulating pressure of high-pressure component of refrigerant circulating in the system
JP2008032336A (en) Two-stage expansion refrigeration apparatus
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
JP4982224B2 (en) Refrigeration equipment
JP2002081767A (en) Air conditioner
WO1999008053A1 (en) Cooling cycle
JP2012220162A (en) Refrigeration cycle method
JP4442237B2 (en) Air conditioner
JP4082435B2 (en) Refrigeration equipment
JP2002228282A (en) Refrigeration equipment
KR102313304B1 (en) Air conditioner for carbon dioxide
JPH11344265A (en) Turbo freezer of multistage compression system
WO2022013982A1 (en) Refrigeration cycle device
JP4274250B2 (en) Refrigeration equipment
JP2008096072A (en) Refrigeration cycle equipment
WO1999002928A1 (en) Freezer
US20060230773A1 (en) Method for determining optimal coefficient of performance in a transcritical vapor compression system
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JPH1163687A (en) Air conditioner cycle
JPH11248294A (en) Refrigeration equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase