[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999005779A1 - Method and device for controlling drive of air conditioner - Google Patents

Method and device for controlling drive of air conditioner Download PDF

Info

Publication number
WO1999005779A1
WO1999005779A1 PCT/JP1998/003258 JP9803258W WO9905779A1 WO 1999005779 A1 WO1999005779 A1 WO 1999005779A1 JP 9803258 W JP9803258 W JP 9803258W WO 9905779 A1 WO9905779 A1 WO 9905779A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
switching element
air conditioner
brushless motor
compressor
Prior art date
Application number
PCT/JP1998/003258
Other languages
French (fr)
Japanese (ja)
Inventor
Yoriyuki Takekawa
Nobukazu Takagi
Yuji Kawasaki
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corporation filed Critical Zexel Corporation
Publication of WO1999005779A1 publication Critical patent/WO1999005779A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current

Definitions

  • the present invention relates to a drive control method and apparatus for an air conditioner including a compressor driven by a DC brushless motor.
  • a rotation speed reduction command signal is output in the evening, and the rotation speed of the compressor is gradually reduced to reduce the compression speed.
  • a configuration is disclosed in which the compressor is stopped at a timing when the difference between the inlet pressure and the outlet pressure of the compressor becomes equal to or less than a predetermined value.
  • An object of the present invention is to provide an air conditioner drive control method and apparatus that can solve the above-described problems in an air conditioner including a compressor driven by a DC brushless motor.
  • Another object of the present invention is to prevent reverse rotation when the operation of the compressor is stopped without causing the above-described problems in the prior art, without providing a reverse rotation prevention mechanism in the compressor.
  • An object of the present invention is to provide a drive control method and apparatus for an air conditioner having a compressor driven by a DC brushless motor. Disclosure of the invention
  • a DC brushless motor including a magnet rotor and a set of drive windings; a compressor having a compression mechanism driven by the DC brushless motor; A first switching element group and a second switching element group for commutating a drive current from a DC power supply to the drive winding; and each of the first and second switching element groups is rotated.
  • the quenching device simultaneously conductive facedown state, thereby method as the least short-circuit state of one drive winding of the set of drive winding is provided.
  • the switching elements of the first and second switching element groups are turned on and off in accordance with the position of the rotor, and the drive current flowing through one set of drive windings is controlled.
  • the switching generates a rotating magnetic field.
  • the magnet rotor rotates, and the compression mechanism is rotationally driven by the DC brushless motor.
  • the on / off control is stopped and the first switching Control is performed so that a plurality of switching elements of the element group or a plurality of switching elements of the second switching element group are simultaneously turned on.
  • at least one drive winding is short-circuited, and a braking force can be applied to the rotation of the magnet rotor.
  • the configuration may be such that shoving is performed and intermittently turned on to limit the current flowing through the drive coil due to a short circuit.
  • Another feature of the present invention is a drive control device for an air conditioner including a compressor having a compression mechanism driven by a DC brushless motor including a magnet rotor and a set of drive windings.
  • a second switching element group connected between the first and second switching elements, a position detection circuit for detecting a rotational position of the magnet rotor, and a detection result of the position detection circuit.
  • each switching element of the first and second switching element groups in order to commutate the drive current supplied from the DC power supply to the drive winding so that a rotational force is applied to the rotor in response to the current;
  • Commutation control signal for off control A position feedback drive signal generating means for generating; and a stop control means for simultaneously controlling one of the plurality of switching elements of the first and second switching element groups to a conduction state.
  • the output of the commutation control signal from the position feedback drive signal generating means is stopped in response to a stop command signal, and the plurality of switching elements are simultaneously controlled to be conductive by the stop control means. It is in.
  • the switching elements of the first switching element group and the second switching element group are turned on and off by the commutation control signal, and the drive current flowing through one set of drive windings is controlled.
  • the switching generates a rotating magnetic field, which rotates the magnet rotor, and drives the compression mechanism to rotate.
  • the stop command signal is given, the output of the commutation control signal is stopped, the on / off control for each switching element is stopped, and the first or second switching is performed by the stop control means.
  • a plurality of switching elements of the element group are simultaneously controlled to be conductive. As a result, at least one drive winding is short-circuited, and a braking force can be applied to the rotation of the magnet rotor.
  • the rotation of the magnet rotor is suppressed by the short-circuiting of the drive windings, and the rotation of the DC brushless motor is reduced.
  • the compressor can be effectively prevented from rotating in the reverse direction, and the compressor can be prevented from being damaged. If the input / output pressure difference at the time of the compressor rotation stop command is large, the compressor will overcome the above-mentioned braking force acting on the DC brushless motor and rotate slightly in the reverse direction. This has the effect of reducing the input / output pressure difference of the machine and facilitating restarting.
  • ADVANTAGE OF THE INVENTION According to this invention, it can prevent reverse rotation of a compressor at very low cost, and can suppress generation
  • FIG. 1 is a system diagram showing one embodiment of an air conditioner according to the present invention.
  • FIG. 2 is a schematic vertical sectional view showing a compression mechanism of the scroll-type electric compressor shown in FIG.
  • FIG. 3 is a schematic longitudinal sectional view taken along the line BB shown in FIG.
  • FIG. 4 is a circuit diagram showing a circuit configuration of the DC brushless motor shown in FIG. 1 and its drive control device.
  • FIG. 5 is a detailed circuit diagram of the position detection circuit shown in FIG.
  • FIG. 6 is a waveform diagram of each signal for explaining the commutation control of the drive current in the drive control device shown in FIG.
  • FIG. 7 is a flowchart showing a control program for realizing a function equivalent to the function of the control unit shown in FIG. 4 by using a micro-combination system.
  • FIG. 1 is a system diagram showing a schematic configuration of an embodiment of an air conditioner using a drive control device according to the present invention.
  • the air conditioner 100 is provided with a scroll-type electric compressor 1, a four-way switching valve 2, an outdoor heat exchanger 3, a throttle mechanism 4, an indoor heat exchanger 5, etc.
  • a known heat pump cycle is configured, and the refrigerant circulates during a cooling operation as indicated by a solid line arrow, and circulates during a heating operation as indicated by a broken line arrow.
  • the compressor 1 includes a scroll-type compression mechanism 10 and a DC brushless motor 30 built in a closed container 1C.
  • the DC brushless motor 30 is driven and controlled by the drive control device 40 to which DC power is supplied from the DC power source B.
  • a schematic configuration of the scroll-type compression mechanism 10 is shown in FIGS. 2 and 3.
  • Numeral 1 1 denotes a fixed scroll, which is composed of an end plate 1 ia, a spiral wrap 11 b erected on the inner surface thereof, and a peripheral wall 11 c surrounding the wrap.
  • Reference numeral 12 denotes an orbiting scroll, which is provided on an end plate 12a and an inner surface thereof, and includes a spiral wrap 12b having substantially the same shape as the spiral wrap 11b.
  • the fixed scroll 11 and the orbiting scroll 12 are decentered by a predetermined distance, and their phases are shifted by 180 ° to engage each other.
  • One compression chamber 13 is formed.
  • a drive bush 15 is rotatably fitted into a cylindrical boss 14 protruding from the center of the outer surface of the end plate 12 a of the orbiting scroll 12 via a bearing 16.
  • An eccentric pin 19 that projects eccentrically from the end surface of the rotary shaft 18 by a predetermined distance from the end face of the rotary shaft 18 is fitted into a slide hole 17 formed in the drive bush 15. When the rotating shaft 18 rotates, this rotational force is transmitted from the eccentric pin 19 through the slide hole 17 to the drive bush 15, and further, through the bearing 16 and the boss 14. It is transmitted to 1 and 2.
  • the orbiting scroll 12 orbits in a circular orbit around the axis of the rotating shaft 18 with a predetermined radius around the axis of the rotating shaft 18 in a state where the orbiting scroll 12 is prevented from rotating by a rotation preventing mechanism (not shown).
  • the gas wraps around the outer ends of the spiral wraps 1 lb and 1 2b and the opposite wrap.
  • each compression chamber 13 It is taken into the compression chamber 13 from the gap between the back side of 12b and 11b, and the compression chamber 13 moves toward the center of the spiral while reducing its volume. Accordingly, the gas in each compression chamber 13 is gradually compressed, and when each compression chamber 13 communicates with the central discharge chamber 21, it merges and is discharged from the discharge port 22.
  • a valve chamber 26 is formed in the middle of the discharge port 22, and a free check valve 23 is disposed in the valve chamber 26.
  • the check valve 23 abuts on the second valve seat 24 on the downstream side to open the discharge port 22, and the downstream of the discharge port 22.
  • the gas pressure is applied from the side, it comes into contact with the first valve seat 25 on the upstream side and closes the discharge port 22.
  • the DC brushless motor 30 includes a three-phase Y-connected A-phase drive winding 31, a B-phase drive winding 32, and a C-phase drive winding 33. And a set of drive windings and a magnet rotor 3 4. Since the DC brushless motor 30 itself has a known configuration, a detailed description of its structure is omitted.
  • the drive control device 40 for controlling the drive of the DC brushless motor 30 includes a commutator circuit 41 for commutating the drive current from the DC power source B to the drive windings 31 to 33. ing.
  • the commutator circuit 41 connects each terminal of the drive windings 31 to 33 with direct current.
  • a switching transistor 42 to 44 that constitutes a first switching element group connected to the positive terminal of the power source B, and a second terminal that connects each terminal of the drive windings 31 to 33 to the negative terminal of the DC power source B It has a known circuit configuration in which the switching transistors 45 to 47 and the diodes D1 to D6 constituting the above switching element group are connected as shown.
  • Position feedback drive signal generator 5 1 is outputted from the position detecting circuit 6 0 to be described later, a set of sensorless signal ZA indicating the occasional position of the magnet rotor 3 4, Z B, in response to Z c, One set of switches for turning on and off the switching transistors 42 to 47 in order to generate the rotating magnetic field required to rotate the magnet rotor 34 by one set of drive coils 31 to 33.
  • the bases of the switching transistors 42 to 47 are connected to the commutation control signals A u and A u from the position feedback drive signal generator 51 of the control unit 50 via the corresponding OR gates 52 to 57. Bu, Cu, A, B L , C L are provided.
  • the switching transistors 42 to 47 are turned on / off in accordance with the commutation control signals A u to CL, respectively, whereby commutation of the drive current from the DC power supply B to the drive windings 31 to 33 is performed.
  • the magnet rotor 34 is rotationally driven by the rotating magnetic field generated thereby.
  • the position detection circuit 60 determines the rotational position of the magnet rotor 34 from the back induced voltage induced in each of the drive windings 31 to 33 by the rotation of the magnet rotor 34, and determines the result.
  • sensorless signal Z a shown, Z B, and outputs the Zc, sensorless signal Z a, Z B, Zc is fed to the position feedback drive signal generator 5 first control Yuni' bets 5 0.
  • FIG. 5 shows a detailed circuit diagram of the position detection circuit 60.
  • the first differential amplifier circuit 61 is the terminal voltage V B TogaIri force between the terminal voltage V A of the drive winding 3 1 drive winding 3 2 first voltage difference signal is these voltage differences VBA is output.
  • Reference numeral 64 denotes a first comparator which receives the first voltage difference signal V BA and the second voltage difference signal V CB and supplies a sensorless signal Z A to the position feedback drive signal generator 51.
  • Reference numeral 65 denotes a second comparator which inputs the second voltage difference signal V CB and the third voltage difference signal V AC and supplies a sensorless signal Z B to the position feedback drive signal generator 51.
  • 6 6 is a third comparator receives a third voltage difference signal V AC and the first voltage difference signal V BA, giving a sensorless signal Z C to the position feedback drive signal generating unit 5 1.
  • FIG. 6 shows the waveforms of the commutation control signals Au to CL output in response to the sensorless signals ZA to Zc.
  • the control unit 50 responds to the stop command signal SC output from the stop command signal generator 80, and outputs a signal from the plurality of predetermined ones of the switching transistors 42 to 44.
  • Switching transistor or switching transistor 45 A stop control signal generator 5 that outputs a set of stop control signals SS for simultaneously turning on a plurality of switching transistors out of 5 to 47. Has eight.
  • a set of stop control signals SS output from the stop control signal generator 58 is applied to the bases of the corresponding switching transistors 42 to 47 via the OR gates 52 to 57.
  • the stop command signal SC is also input to the position feedback drive signal generator 51, and the position feedback drive signal generator 51 responds to the input of the stop command signal SC to generate commutation control signals A U to C. It is configured to stop the output of L.
  • the stop control signal generator 58 responds to the stop command signal SC and outputs a set of control signals for turning on the switching transistors 42, 43, and 44 simultaneously. It is configured to output as signal SS.
  • the terminals of the A-phase winding 31, the B-phase winding 32, and the C-phase winding 33 are short-circuited, thereby providing a braking force to the rotation of the magnet rotor 34. It has become. In this case, since all of the switching transistors 45 to 47 are off, No current flows from the source B to the DC brushless motor 30 via the commutator circuit 41.
  • the set of stop control signals SS described above is an example, and the present invention is not limited to this configuration.
  • Two of the group of switching transistors 42 to 44 for example, switching transistors Only 42, 4 and 3 may be turned on.
  • a configuration may be adopted in which two or more of the other group of switching transistors 45 to 47 are simultaneously turned on. In this case, three of them may be turned on at the same time, or any two of them may be turned on at the same time.
  • the selected switching transistors are completely turned on, and the switching transistors are turned on intermittently by cycling to limit the current flowing through the drive winding to a predetermined level or less. Thus, an excessive current may be prevented from flowing through the drive winding.
  • the output is stopped commutation control signal A u -C L from the position feedback driving signal generating unit 5 1 in response to an input of the stop command signal SC, alternatively 1
  • a set of stop control signals SS is output from the stop control signal generator 58, and the rotating drive windings 31, 32, and 33 of the DC brushless motor 30 are short-circuited.
  • a magnetic field that suppresses the rotation of the magnet rotor 34 is generated by the current flowing through the drive windings 31, 32, and 33. Rotation can be prevented without the addition of special circuit elements.
  • the control unit 50 may be configured using a microcomputer having a known hardware configuration.
  • FIG. 7 is a flowchart showing a control program of a microcomputer system configured to perform a function equivalent to the function of the control unit 50 shown in FIG.
  • the compressor 1 is operated at a rotation speed according to the air-conditioning load. This operation is performed by providing a sensor-less signal ZA from the position detecting circuit 6 0, Z B, in response to Z c in Community involvement Te Ichita circuit 4 1 a commutation control signals A u ⁇ C L You.
  • step 72 it is determined whether or not the stop command signal SC has been input. If the stop command signal SC has not been input, the flow returns to step 71 to continue the operation of the compressor 1.
  • Step 7 2 enters YES next scan Tetsupu 7 3, wherein one set of the control stop stops the output of the commutation control signals A u -C L A signal SS is output, and a predetermined switching transistor is turned on. Thereby, a braking force against the rotation of the magnet rotor 34 can be given.
  • step 74 it is determined whether a predetermined set time has elapsed after execution of step 73. This set time is set to a time necessary for the input / output pressure difference of the compressor 1 to become substantially zero after the stop command signal SC is input.
  • step 74 If it is determined in step 74 that the set time has not elapsed, the determination result in step 74 becomes NO, and the flow waits for the set time to elapse. When the set time has elapsed, the determination result of step 74 is YES, and the process proceeds to step 75. In step 75, the switching transistors 42 to 47 are all turned off, and the operation stop of the compressor 1 is completed.
  • the air conditioner drive control method and apparatus according to the present invention are useful for preventing reverse rotation of an air conditioner equipped with a compressor driven by a DC brushless motor when the operation is stopped. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A method for controlling the drive of an air conditioner (100) provided with a compressor (1) having a compressing mechanism (10) driven by means of a DC brushless motor (30), which comprises simultaneously controlling a plurality of prescribed switching elements in the first switching element group (42-44) and a plurality of prescribed switching elements in the second switching element group (45-47) of a commutator circuit (41) which supplies driving currents to driving windings (31-33) of the DC brushless motor (30) in response to a stop command signal (Sc) to reach energized states by means of a stop control signal (SS) from a stop control signal generating section (58). As a result, the driving windings (31-33) are short-circuited and the reverse rotation of the compressor (1) caused by the difference between the input pressure and the output pressure of the compressor (1) can be prevented without providing the compressor (1) with any reverse rotation preventing mechanism.

Description

明 細 書 空気調和機の駆動制御方法及び装置 技術分野  Description Air-conditioner drive control method and device
本発明は、 直流ブラシレスモータによって駆動される圧縮機を備えた空気調和 機の駆動制御方法及び装置に関するものである。 背景技術  The present invention relates to a drive control method and apparatus for an air conditioner including a compressor driven by a DC brushless motor. Background art
空気調和機において圧縮機構を直流ブラシレスモータにより駆動する構成のも のが公知であるが、 この構成によると直流ブラシレスモータの運転を停止させた 時に圧縮機構の吸入側と吐出側との圧力差によって圧縮機の逆転が生じ、 騒音が 発生する上に圧縮機が損傷を起こすという問題を生じる。 この問題を解決するた め、 特開平 7 - 9 7 9 9 4号公報には、 スィツチと抵抗器とを別途設け、 作動停 止時にスィツチを閉じて電動機のコイルをこの抵抗器によつて短絡させて逆転防 止のためのブレーキ力を発生させる技術が開示されている。 さらに、 特開平 8— 2 1 9 5 2 6号公報には、 圧縮機の運転を停止する場合に、 インバー夕に回転数 低下指令信号を出力し、 圧縮機の回転数を次第に低下させ、 圧縮機の入口側圧力 と出口側圧力との差が所定の値以下となるタイ ミ ングで圧縮機を停止させるよう にした構成が開示されている。  An air conditioner is known in which a compression mechanism is driven by a DC brushless motor, but according to this configuration, when the operation of the DC brushless motor is stopped, the pressure difference between the suction side and the discharge side of the compression mechanism is reduced. Reversal of the compressor occurs, causing noise and damaging the compressor. In order to solve this problem, Japanese Patent Application Laid-Open No. 7-97994 discloses that a switch and a resistor are separately provided, and when the operation is stopped, the switch is closed and the coil of the motor is short-circuited by the resistor. A technique for generating a braking force for preventing reverse rotation is disclosed. Further, in Japanese Patent Application Laid-Open No. 8-2199526, when the operation of the compressor is stopped, a rotation speed reduction command signal is output in the evening, and the rotation speed of the compressor is gradually reduced to reduce the compression speed. A configuration is disclosed in which the compressor is stopped at a timing when the difference between the inlet pressure and the outlet pressure of the compressor becomes equal to or less than a predetermined value.
しかし、 特開平 7 - 9 7 9 9 4号公報に開示されている、 スィツチと抵抗器と を別途設け作動停止時に電動機のコィルをこの抵抗器によって短絡させて逆転防 止のためのブレーキ力を発生させる構成によると、 部品点数が増加するためにコ ス 卜の上昇を招く という別の問題を生じることになる。 一方、 特開平 8 - 2 1 9 5 2 6号公報に開示されているように、 圧縮機の運転停止時にその回転速度を次 第に低下させることにより圧縮機の入口側圧力と出口側圧力との差を零にするよ うにした構成によると、 停止指令が出されても圧縮機の運転がすぐに停止しない という不具台のほか、 消費電力が増大するという不具合を生じる。 また、 圧縮機 に逆転防止機構を設ける構成も公知であるが、 この場合には圧縮機の構成が複雑 となり、 コス ト も高くなるという問題を生じる。 However, when a switch and a resistor are separately provided and a motor coil is short-circuited by this resistor when the operation is stopped, a braking force for preventing reverse rotation is disclosed in Japanese Patent Application Laid-Open No. Hei 7-99794. According to the configuration in which the components are generated, another problem arises in that the number of components increases, which leads to an increase in cost. On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 8-2199526, when the operation of the compressor is stopped, its rotational speed is reduced one by one to reduce the inlet pressure and the outlet pressure of the compressor. According to the configuration in which the difference between the two is set to zero, not only is the malfunction that the operation of the compressor does not stop immediately even when a stop command is issued, but also the power consumption increases. Also, the compressor Although a configuration in which a reverse rotation preventing mechanism is provided is also known, in this case, there is a problem that the configuration of the compressor becomes complicated and the cost increases.
本発明の目的は、 直流ブラシレスモータによって駆動される圧縮機を備えた空 気調和機における上述の問題点を解決することができる、 空気調和機の駆動制御 方法及び装置を提供することにある。  An object of the present invention is to provide an air conditioner drive control method and apparatus that can solve the above-described problems in an air conditioner including a compressor driven by a DC brushless motor.
本発明の他の目的は、 圧縮機に逆転防止機構を設けなくても、 従来技術におけ る上述の問題点を生じさせることなしに圧縮機の運転停止時における逆転を防止 することができるようにした、 直流ブラシレスモータによって駆動される圧縮機 を備えた空気調和機の駆動制御方法及び装置を提供することにある。 発明の開示  Another object of the present invention is to prevent reverse rotation when the operation of the compressor is stopped without causing the above-described problems in the prior art, without providing a reverse rotation prevention mechanism in the compressor. An object of the present invention is to provide a drive control method and apparatus for an air conditioner having a compressor driven by a DC brushless motor. Disclosure of the invention
本発明によれば、 磁石回転子と 1組の駆動巻線とを具えて成る直流ブラシレス モータと、 該直流ブラシレスモータによって駆動される圧縮機構を有して成る圧 縮機と、 前記 1組の駆動巻線に対する直流電源からの駆動電流を転流させるため の第 1 のスィ ツチング素子群と第 2のスィツチング素子群とを備え該第 1及び第 2スィツチング素子群の各スィ ツチング素子を前記回転子の回転位置に応じてォ ン、 オフ制御することによって前記直流ブラシレスモータを回転駆動させるため の回路手段とを備えて成る空気調和機の駆動制御方法において、 前記直流ブラシ レスモータに対する序止指令信号に応答して前記スィツチング素子のオン、 オフ 制御を停止させ、 前記第 1又は第 2のスィツチング素子群のうちのいずれか一方 の複数のスィ ツチング素子を同時に導通伏態とし、 これにより前記 1組の駆動巻 線のうちの少なく とも 1つの駆動巻線を短絡状態とするようにした方法が提供さ れる。  According to the present invention, a DC brushless motor including a magnet rotor and a set of drive windings; a compressor having a compression mechanism driven by the DC brushless motor; A first switching element group and a second switching element group for commutating a drive current from a DC power supply to the drive winding; and each of the first and second switching element groups is rotated. Circuit means for rotating and driving the DC brushless motor by on / off control in accordance with the rotational position of the motor, wherein a stop command signal for the DC brushless motor is provided. And stops the on / off control of the switching element in response to the control signal, and switches the plurality of one of the first or second switching element group. The quenching device simultaneously conductive facedown state, thereby method as the least short-circuit state of one drive winding of the set of drive winding is provided.
空気調和機が作動モ一 ドでは、 回転子の位置に応じて第 1及び第 2のスィッチ ング素子群の各スイッチング素子がオン、 オフ制御され、 1組の駆動巻線に流れ る駆動電流の切り替えにより回転磁界が発生する。 これにより磁石回転子が回転 し、 圧縮機構が直流ブラシレスモータにより回転駆動される。 一方、 停止指令信 号が与えられると、 上記オン、 オフ制御が停止せしめられ、 第 1 のスイッチング 素子群のうちの複数のスィ ツチング素子、 又は第 2のスィツチング素子群のうち の複数のスイ ッチング素子が同時に導通状態となるように制御される。 これによ り少なく とも 1つの駆動巻線が短絡状態とされ、 磁石回転子の回転にブレーキ力 を与えることができる。 In the operation mode of the air conditioner, the switching elements of the first and second switching element groups are turned on and off in accordance with the position of the rotor, and the drive current flowing through one set of drive windings is controlled. The switching generates a rotating magnetic field. As a result, the magnet rotor rotates, and the compression mechanism is rotationally driven by the DC brushless motor. On the other hand, when a stop command signal is given, the on / off control is stopped and the first switching Control is performed so that a plurality of switching elements of the element group or a plurality of switching elements of the second switching element group are simultaneously turned on. As a result, at least one drive winding is short-circuited, and a braking force can be applied to the rotation of the magnet rotor.
ここで、 所要の複数のスイッチング素子は完全にオンとする構成のほか、 チヨ ッビングを行って断続的にオンとし、 短絡によって駆動コイルに流れる電流を制 限する構成としてもよい。  Here, in addition to the configuration in which the required plurality of switching elements are completely turned on, the configuration may be such that shoving is performed and intermittently turned on to limit the current flowing through the drive coil due to a short circuit.
このように、 まだ回転している駆動卷線が完全に又は断続的に短絡されること により磁石回転子の回転に制動力が働き、 直流ブラシレスモータの回転を低下さ せることができる。 この結果、 直流ブラシレスモ一夕停止指令時において生じる 圧縮機の入出力圧力差のために圧縮機が逆回転するのを有効に防止することがで き、 圧縮機が損傷するのを防ぐことができる。 なお、 圧縮機の回転停止指令時に おける入出力圧力差が大きいと、 圧縮機が直流ブラシレスモータに対して働く上 記ブレーキ力に打ち勝って若干逆回転することになるが、 この逆回転によって圧 縮機の入出力圧力差が減少し再起動を容易にさせることになるという効果を生じ る。  In this way, a completely or intermittently short-circuiting the drive winding that is still rotating exerts a braking force on the rotation of the magnet rotor, thereby reducing the rotation of the DC brushless motor. As a result, it is possible to effectively prevent the compressor from rotating in reverse due to the input / output pressure difference of the compressor that occurs at the time of the DC brushless motor overnight stop command, and prevent the compressor from being damaged. it can. If the input / output pressure difference at the time of the compressor rotation stop command is large, the compressor will overcome the above-mentioned braking force acting on the DC brushless motor and rotate slightly in the reverse direction. This has the effect of reducing the input / output pressure difference of the machine and facilitating restarting.
本発明の他の特徴は、 磁石回転子と 1組の駆動巻線とを具えて成る直流ブラシ レスモータによって駆動される圧縮機構を有して成る圧縮機を備えた空気調和機 の駆動制御装置において、 直流電源と、 該直流電源の一方の出力と前記 1組の駆 動巻線との間に接続された第 1のスイツチング素子群と該直流電源の他方の出力 と前記 1組の駆動巻線との間に接続された第 2のスィツチング素子群とを含んで 成るコミ ュテ一タ回路と、 前記磁石回転子の回転位置を検出する位置検出回路と 、 該位置検出回路での検出結果に応答し前記回転子に回転力が与えられるよう前 記直流電源から前記駆動巻線に供給される駆動電流を転流させるために前記第 1 及び第 2のスイッチング素子群の各スイッチング素子をオン、 オフ制御するため の転流制御信号を発生させる位置帰還駆動信号発生手段と、 前記第 1及び第 2の スイツチング素子群のうちのいずれか一方の複数のスィッチング素子を同時に導 通伏態に制御する停止用制御手段とを備え、 前記直流ブラシレスモータに対する 停止指令信号に応答して前記位置帰還駆動信号発生手段からの前記転流制御信号 の出力を停止すると共に前記複数のスィッチング素子が前記停止用制御手段によ り同時に導通制御されるようにした点にある。 Another feature of the present invention is a drive control device for an air conditioner including a compressor having a compression mechanism driven by a DC brushless motor including a magnet rotor and a set of drive windings. A DC power supply; a first switching element group connected between one output of the DC power supply and the set of drive windings; the other output of the DC power supply; and the set of drive windings A second switching element group connected between the first and second switching elements, a position detection circuit for detecting a rotational position of the magnet rotor, and a detection result of the position detection circuit. Turning on each switching element of the first and second switching element groups in order to commutate the drive current supplied from the DC power supply to the drive winding so that a rotational force is applied to the rotor in response to the current; Commutation control signal for off control A position feedback drive signal generating means for generating; and a stop control means for simultaneously controlling one of the plurality of switching elements of the first and second switching element groups to a conduction state. For brushless motor The output of the commutation control signal from the position feedback drive signal generating means is stopped in response to a stop command signal, and the plurality of switching elements are simultaneously controlled to be conductive by the stop control means. It is in.
停止指令信号の出力前までは、 転流制御信号により第 1 のスィツチング素子群 と第 2のスイッチング素子群との各スイッチング素子がオン、 オフ制御され、 1 組の駆動巻線に流れる駆動電流の切り替えにより回転磁界を発生させ、 これによ り磁石回転子が回転し、 圧縮機構の回転駆動が行われる。 一方、 停止指令信号が 与えられると、 転流制御信号の出力が停止せしめられ、 各スイ ッチング素子に対 するオン、 オフ制御が停止し、 停止用制御手段により第 1又は第 2のスィ ッチン グ素子群の複数のスイ ッチング素子が同時に導通状態に制御される。 この結果、 少なく とも 1つの駆動巻線が短絡状態とされ、 これにより磁石回転子の回転にブ レーキ力を与えることができる。  Before the output of the stop command signal, the switching elements of the first switching element group and the second switching element group are turned on and off by the commutation control signal, and the drive current flowing through one set of drive windings is controlled. The switching generates a rotating magnetic field, which rotates the magnet rotor, and drives the compression mechanism to rotate. On the other hand, when the stop command signal is given, the output of the commutation control signal is stopped, the on / off control for each switching element is stopped, and the first or second switching is performed by the stop control means. A plurality of switching elements of the element group are simultaneously controlled to be conductive. As a result, at least one drive winding is short-circuited, and a braking force can be applied to the rotation of the magnet rotor.
このように、 駆動巻線が短絡されることにより磁石回転子の回転が抑制され、 直流ブラシレスモータの回転を低下させるので、 直流ブラシレスモータ停止指令 時において生じる圧縮機の入出力圧力差のために圧縮機が逆回転するのを有効に 防止することができ、 圧縮機が損傷するのを防ぐことができる。 なお、 圧縮機の 回転停止指令時における入出力圧力差が大きいと、 圧縮機が直流ブラシレスモー 夕に対して働く上記ブレーキ力に打ち勝って若干逆回転することになる力く、 この 逆回転によって圧縮機の入出力圧力差が減少し再起動を容易にさせることになる という効果を生じる。  As described above, the rotation of the magnet rotor is suppressed by the short-circuiting of the drive windings, and the rotation of the DC brushless motor is reduced. The compressor can be effectively prevented from rotating in the reverse direction, and the compressor can be prevented from being damaged. If the input / output pressure difference at the time of the compressor rotation stop command is large, the compressor will overcome the above-mentioned braking force acting on the DC brushless motor and rotate slightly in the reverse direction. This has the effect of reducing the input / output pressure difference of the machine and facilitating restarting.
本発明によれば、 極めて低コス トにて圧縮機の逆回転を防止し、 逆転による騒 音の発生や損傷の発生を有効に抑えることができる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention, it can prevent reverse rotation of a compressor at very low cost, and can suppress generation | occurrence | production of noise and damage by reverse rotation. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による空気調和装置の一実施例を示す系統図である。  FIG. 1 is a system diagram showing one embodiment of an air conditioner according to the present invention.
第 2図は、 第 1図に示したスクロール形電動圧縮機の圧縮機構を示す略示的縦 断面図である。  FIG. 2 is a schematic vertical sectional view showing a compression mechanism of the scroll-type electric compressor shown in FIG.
第 3図は、 第 2図に示す B - B線に沿う略示的縦断面図である。 第 4図は、 第 1図に示した直流ブラシレスモータとその駆動制御装置との回路 構成を示す回路図である。 FIG. 3 is a schematic longitudinal sectional view taken along the line BB shown in FIG. FIG. 4 is a circuit diagram showing a circuit configuration of the DC brushless motor shown in FIG. 1 and its drive control device.
第 5図は、 第 4図に示した位置検出回路の詳細回路図である。  FIG. 5 is a detailed circuit diagram of the position detection circuit shown in FIG.
第 6図は、 第 4図に示す駆動制御装置における駆動電流の転流制御を説明する ための各信号の波形図である。  FIG. 6 is a waveform diagram of each signal for explaining the commutation control of the drive current in the drive control device shown in FIG.
第 7図は、 第 4図に示した制御ュニッ 卜の機能と同等の機能をマイクロコンビ ユー夕システムを用いて実現するための制御プログラムを示すフローチヤ一 卜で ある。 発明を実施するための最良の形態  FIG. 7 is a flowchart showing a control program for realizing a function equivalent to the function of the control unit shown in FIG. 4 by using a micro-combination system. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 第 1図は、 本発明による駆動制御装置を用いた空気調和機の一実施例の概略構 成を示す系統図である。 空気調和機 1 0 0は、 第 1図に示すように、 ィンバ一夕 駆動のスクロール形電動圧縮機 1、 四方切換弁 2、 室外熱交換器 3、 絞り機構 4 、 室内熱交換器 5等によって公知のヒートポンプサイクルが構成され、 冷媒は冷 房運転時には実線矢印で示すように循環し、 暖房運転時には破線矢印で示すよう に循環する。  The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a system diagram showing a schematic configuration of an embodiment of an air conditioner using a drive control device according to the present invention. As shown in Fig. 1, the air conditioner 100 is provided with a scroll-type electric compressor 1, a four-way switching valve 2, an outdoor heat exchanger 3, a throttle mechanism 4, an indoor heat exchanger 5, etc. A known heat pump cycle is configured, and the refrigerant circulates during a cooling operation as indicated by a solid line arrow, and circulates during a heating operation as indicated by a broken line arrow.
圧縮機 1 は、 密閉容器 1 Cに内蔵されたスクロール形の圧縮機構 1 0と直流ブ ラシレスモータ 3 0とを具えている。 この直流ブラシレスモータ 3 0は、 直流電 源 Bから直流電力が供給されている駆動制御装置 4 0により駆動制御される。 スクロール形の圧縮機構 1 0の略示的構成が第 2図及び第 3図に示されている 。 1 1 は固定スクロールで、 端板 1 i aとその内面に立設されたうず巻状ラップ 1 1 bとこれを囲む周壁 1 1 cとからなっている。 1 2は旋回スクロールで、 端 板 1 2 aとその内面に立設され、 上記うず巻状ラップ 1 1 bと実質的に同じ形状 のうず卷状ラップ 1 2 bとからなっている。 固定スクロール 1 1 と旋回スク口一 ル 1 2 とを所定距離だけ偏心させ、 且つ、 その位相を 1 8 0 ° だけずらして相互 に嚙み合わせることによってうず巻の中心に対して点対象に複数個の圧縮室 1 3 が形成されている。 旋回スクロール 1 2の端板 1 2 aの外面中央部に突設された円筒状ボス 1 4内 にはドライブブッシュ 1 5が軸受 1 6を介して回動自在に嵌合されている。 この ドライブブッシュ 1 5に穿設されたスライ ド穴 1 7内には回転軸 1 8の端面から その軸芯より所定距離だけ偏心して突出する偏心ピン 1 9が嵌合されている。 回 転軸 1 8が回転すると、 この回転力は偏心ピン 1 9からスライ ド穴 1 7を経てド ラィブブッシュ 1 5に伝達され、 さらに、 軸受 1 6、 ボス 1 4を経て旋回スク口 —ル 1 2に伝達される。 かく して、 旋回スクロール 1 2は図示しない自転阻止機 構によってその自転を阻止された状態で回転軸 1 8の軸芯まわりに所定距離を半 径とする円軌道上を公転旋回運動する。 The compressor 1 includes a scroll-type compression mechanism 10 and a DC brushless motor 30 built in a closed container 1C. The DC brushless motor 30 is driven and controlled by the drive control device 40 to which DC power is supplied from the DC power source B. A schematic configuration of the scroll-type compression mechanism 10 is shown in FIGS. 2 and 3. Numeral 1 1 denotes a fixed scroll, which is composed of an end plate 1 ia, a spiral wrap 11 b erected on the inner surface thereof, and a peripheral wall 11 c surrounding the wrap. Reference numeral 12 denotes an orbiting scroll, which is provided on an end plate 12a and an inner surface thereof, and includes a spiral wrap 12b having substantially the same shape as the spiral wrap 11b. The fixed scroll 11 and the orbiting scroll 12 are decentered by a predetermined distance, and their phases are shifted by 180 ° to engage each other. One compression chamber 13 is formed. A drive bush 15 is rotatably fitted into a cylindrical boss 14 protruding from the center of the outer surface of the end plate 12 a of the orbiting scroll 12 via a bearing 16. An eccentric pin 19 that projects eccentrically from the end surface of the rotary shaft 18 by a predetermined distance from the end face of the rotary shaft 18 is fitted into a slide hole 17 formed in the drive bush 15. When the rotating shaft 18 rotates, this rotational force is transmitted from the eccentric pin 19 through the slide hole 17 to the drive bush 15, and further, through the bearing 16 and the boss 14. It is transmitted to 1 and 2. Thus, the orbiting scroll 12 orbits in a circular orbit around the axis of the rotating shaft 18 with a predetermined radius around the axis of the rotating shaft 18 in a state where the orbiting scroll 12 is prevented from rotating by a rotation preventing mechanism (not shown).
この結果、 ガスが各うず卷状ラップ 1 l b、 1 2 bの外終端と対手側のラップ As a result, the gas wraps around the outer ends of the spiral wraps 1 lb and 1 2b and the opposite wrap.
1 2 b、 1 1 bの背側側面との間隙から圧縮室 1 3内に取りこまれ、 これらの圧 縮室 1 3がその容積を減少しながらうず巻の中心に向かって移動するのに伴って 各圧縮室 1 3内のガスは次第に圧縮され、 各圧縮室 1 3が中央の吐出室 2 1 に連 通すると合流して吐出ポー 卜 2 2から吐出される。 It is taken into the compression chamber 13 from the gap between the back side of 12b and 11b, and the compression chamber 13 moves toward the center of the spiral while reducing its volume. Accordingly, the gas in each compression chamber 13 is gradually compressed, and when each compression chamber 13 communicates with the central discharge chamber 21, it merges and is discharged from the discharge port 22.
吐出ポー ト 2 2の途中には弁室 2 6が形成されており、 この弁室 2 6内にはフ リ一式の逆止弁 2 3が配設されている。 この逆止弁 2 3は吐出ポー ト 2 2の上流 側からガス圧が加わると下流側の第 2の弁座 2 4に当接して吐出ポート 2 2を開 放し、 吐出ポー ト 2 2の下流側からガス圧が加わると、 上流側の第 1の弁座 2 5 に当接して吐出ポー ト 2 2を閉塞する。  A valve chamber 26 is formed in the middle of the discharge port 22, and a free check valve 23 is disposed in the valve chamber 26. When the gas pressure is applied from the upstream side of the discharge port 22, the check valve 23 abuts on the second valve seat 24 on the downstream side to open the discharge port 22, and the downstream of the discharge port 22. When the gas pressure is applied from the side, it comes into contact with the first valve seat 25 on the upstream side and closes the discharge port 22.
次に、 第 4図を参照して直流ブラシレスモータ 3 0及び駆動制御装置 4 0につ いて説明する。 本実施例においては、 直流ブラシレスモータ 3 0は、 3相 Y結線 されている A相の駆動巻線 3 1、 B相の駆動巻線 3 2及び C相の駆動巻線 3 3か ら成る 1組の駆動巻線と、 磁石回転子 3 4 とを備えて成っている。 この直流ブラ シレスモータ 3 0それ自体は公知の構成であるからその詳細な構造説明は省略す る。  Next, the DC brushless motor 30 and the drive control device 40 will be described with reference to FIG. In the present embodiment, the DC brushless motor 30 includes a three-phase Y-connected A-phase drive winding 31, a B-phase drive winding 32, and a C-phase drive winding 33. And a set of drive windings and a magnet rotor 3 4. Since the DC brushless motor 30 itself has a known configuration, a detailed description of its structure is omitted.
直流ブラシレスモータ 3 0を駆動制御するための駆動制御装置 4 0は、 直流電 源 Bから駆動巻線 3 1〜3 3への駆動電流を転流するためのコミ ュテ一タ回路 4 1 を備えている。 コ ミ ュテ一タ回路 4 1 は、 駆動巻線 3 1〜 3 3の各端子を直流 電源 Bの正極に接続する第 1のスィ ツチング素子群を構成するスィツチングトラ ンジスタ 4 2〜4 4、 駆動巻線 3 1〜3 3の各端子を直流電源 Bの負極に接続す る第 2のスィ ッチング素子群を構成するスイッチングトランジスタ 4 5〜4 7、 及びダイォ一 ド D 1〜D 6が図示の如く接続されて成る公知の回路構成のもので ある。 The drive control device 40 for controlling the drive of the DC brushless motor 30 includes a commutator circuit 41 for commutating the drive current from the DC power source B to the drive windings 31 to 33. ing. The commutator circuit 41 connects each terminal of the drive windings 31 to 33 with direct current. A switching transistor 42 to 44 that constitutes a first switching element group connected to the positive terminal of the power source B, and a second terminal that connects each terminal of the drive windings 31 to 33 to the negative terminal of the DC power source B It has a known circuit configuration in which the switching transistors 45 to 47 and the diodes D1 to D6 constituting the above switching element group are connected as shown.
位置帰還駆動信号発生部 5 1 は、 後述する位置検出回路 6 0から出力される、 磁石回転子 3 4のその時々の位置を示す 1組のセンサレス信号 Z A 、 ZB 、 Zc に応答し、 磁石回転子 3 4を回転させるのに必要な回転磁界を 1組の駆動コイル 3 1〜 3 3によって発生させるためにスィツチングトランジスタ 4 2〜4 7をォ ン、 オフ制御するための 1組の転流制御信号 A u 、 Bu 、 Cu 、 AL 、 B l 、 CPosition feedback drive signal generator 5 1 is outputted from the position detecting circuit 6 0 to be described later, a set of sensorless signal ZA indicating the occasional position of the magnet rotor 3 4, Z B, in response to Z c, One set of switches for turning on and off the switching transistors 42 to 47 in order to generate the rotating magnetic field required to rotate the magnet rotor 34 by one set of drive coils 31 to 33. Commutation control signals A u, B u , Cu, A L , B l , C
L を発生するための回路である。 This is a circuit for generating L.
スイッチングトランジスタ 4 2 ~ 4 7の各ベースには、 制御ュニッ ト 5 0の位 置帰還駆動信号発生部 5 1から、 対応する ORゲート 5 2 ~5 7を介して転流制 御信号 Au 、 Bu 、 Cu 、 Aし 、 BL 、 CL が与えられるようになつている。 ス イッチングトランジスタ 4 2〜 4 7は転流制御信号 A u ~ C L に従つてそれぞれ オン/オフし、 これにより、 駆動巻線 3 1〜 3 3に対する直流電源 Bからの駆動 電流の転流が行われ、 これにより生じた回転磁界によって磁石回転子 3 4が回転 駆動される。 The bases of the switching transistors 42 to 47 are connected to the commutation control signals A u and A u from the position feedback drive signal generator 51 of the control unit 50 via the corresponding OR gates 52 to 57. Bu, Cu, A, B L , C L are provided. The switching transistors 42 to 47 are turned on / off in accordance with the commutation control signals A u to CL, respectively, whereby commutation of the drive current from the DC power supply B to the drive windings 31 to 33 is performed. Thus, the magnet rotor 34 is rotationally driven by the rotating magnetic field generated thereby.
位置検出回路 6 0は、 磁石回転子 3 4が回転することにより駆動巻線 3 1〜 3 3のそれぞれに誘起される逆誘起電圧から磁石回転子 3 4の回転位置を判別して その結果を示すセンサレス信号 ZA 、 ZB 、 Zc を出力し、 センサレス信号 ZA 、 ZB 、 Zc は制御ュニッ ト 5 0の位置帰還駆動信号発生部 5 1 に供給される。 第 5図には、 位置検出回路 6 0の詳細回路図が示されている。 第 1の差動増幅 器 6 1 には、 駆動巻線 3 1の端子電圧 VA と駆動巻線 3 2の端子電圧 VB とが入 力されこれらの電圧差である第 1の電圧差信号 VBAが出力される。 第 2の差動增 幅器 6 2には、 駆動卷線 3 2の端子電圧 VB と駆動巻線 3 3の端子電圧 Vc とが 入力され、 これらの電圧差である第 2の電圧差信号 VCBが出力される。 第 3の差 動増幅器 6 3には、 駆動巻線 3 3の端子電圧 VC と駆動巻線 3 1の端子電圧 VA とが入力され、 これらの電圧差である第 3の電圧差信号 VACが出力される。 The position detection circuit 60 determines the rotational position of the magnet rotor 34 from the back induced voltage induced in each of the drive windings 31 to 33 by the rotation of the magnet rotor 34, and determines the result. sensorless signal Z a shown, Z B, and outputs the Zc, sensorless signal Z a, Z B, Zc is fed to the position feedback drive signal generator 5 first control Yuni' bets 5 0. FIG. 5 shows a detailed circuit diagram of the position detection circuit 60. The first differential amplifier circuit 61, is the terminal voltage V B TogaIri force between the terminal voltage V A of the drive winding 3 1 drive winding 3 2 first voltage difference signal is these voltage differences VBA is output. Second the Sado增width unit 6 2, drive卷線3 2 between the terminal voltage V B and the terminal voltage V c of the drive winding 3 3 is input, a second voltage difference is these voltage differences The signal V CB is output. Third difference The dynamic amplifier 6 3, is the input terminal voltage V C of the drive winding 3 3 and the terminal voltage V A of the drive winding 3 1, the third voltage difference signal V AC is these voltage difference is outputted You.
6 4は第 1の比較器で、 第 1の電圧差信号 VBAと第 2の電圧差信号 VCBとを入 力し、 センサレス信号 Z A を位置帰還駆動信号発生部 5 1 に与える。 6 5は第 2 の比較器で、 第 2の電圧差信号 VCBと第 3の電圧差信号 VACとを入力し、 センサ レス信号 Z B を位置帰還駆動信号発生部 5 1 に与える。 6 6は第 3の比較器で、 第 3の電圧差信号 VACと第 1 の電圧差信号 VBAとを入力し、 センサレス信号 Z C を位置帰還駆動信号発生部 5 1 に与える。 Reference numeral 64 denotes a first comparator which receives the first voltage difference signal V BA and the second voltage difference signal V CB and supplies a sensorless signal Z A to the position feedback drive signal generator 51. Reference numeral 65 denotes a second comparator which inputs the second voltage difference signal V CB and the third voltage difference signal V AC and supplies a sensorless signal Z B to the position feedback drive signal generator 51. 6 6 is a third comparator receives a third voltage difference signal V AC and the first voltage difference signal V BA, giving a sensorless signal Z C to the position feedback drive signal generating unit 5 1.
センサレス信号 Z A 〜Z C は、 第 6図に示すようなパルス列信号となり、 これ らの立ち上がり部分および立ち下がり部分が駆動巻線 3 1〜3 3に発生する誘起 電圧のゼロクロスボイン トを表わしている。 第 6図には、 センサレス信号 Z A 〜 Zc に応答して出力される転流制御信号 Au ~C L の波形が示されている。 第 4図に戻ると、 制御ュニッ ト 5 0は、 停止指令信号発生器 8 0から出力され る停止指令信号 S Cに応答し、 スイ ッチングトランジスタ 4 2〜 4 4のうちの所 定の複数のスイ ッチングトランジスタ、 又はスイ ッチングトランジスタ 4 5〜4 7のうちの複数のスイ ッチングトランジスタを同時にオンとするための 1組の停 止用制御信号 S Sを出力する停止用制御信号発生部 5 8を有している。 停止用制 御信号発生部 5 8から出力される 1組の停止用制御信号 S Sはオアゲ一ト 5 2〜 5 7を介して対応するスイ ッチングトランジスタ 4 2 - 4 7のベースに印加され る。 なお、 停止指令信号 S Cは位置帰還駆動信号発生部 5 1 にも入力されており 、 位置帰還駆動信号発生部 5 1 は停止指令信号 S Cの入力に応答して転流制御信 号 AU 〜C L の出力を停止させるように構成されている。 Sensorless signal Z A to Z C becomes a pulse train signal as shown in FIG. 6, is these rising portions and falling portions of the represent zero cross Boyne City of induced voltage generated in the drive winding 3 1-3 3 I have. FIG. 6 shows the waveforms of the commutation control signals Au to CL output in response to the sensorless signals ZA to Zc. Returning to FIG. 4, the control unit 50 responds to the stop command signal SC output from the stop command signal generator 80, and outputs a signal from the plurality of predetermined ones of the switching transistors 42 to 44. Switching transistor or switching transistor 45 A stop control signal generator 5 that outputs a set of stop control signals SS for simultaneously turning on a plurality of switching transistors out of 5 to 47. Has eight. A set of stop control signals SS output from the stop control signal generator 58 is applied to the bases of the corresponding switching transistors 42 to 47 via the OR gates 52 to 57. . Note that the stop command signal SC is also input to the position feedback drive signal generator 51, and the position feedback drive signal generator 51 responds to the input of the stop command signal SC to generate commutation control signals A U to C. It is configured to stop the output of L.
本実施例においては、 停止用制御信号発生部 5 8は停止指令信号 S Cに応答し て、 スイッチングトランジスタ 4 2、 4 3、 4 4を同時にオンとするための制御 信号を 1組の停止用制御信号 S Sとして出力する構成となっている。 この結果、 A相巻線 3 1、 B相巻線 3 2及び C相巻線 3 3の各端子を短絡させ、 これにより 磁石回転子 3 4の回転に対して制動力を与えることができる構成となっている。 この場合、 スイッチングトランジスタ 4 5〜4 7は全てオフであるから、 直流電 源 Bからコミ ュテ一タ回路 4 1 を介して直流ブラシレスモータ 3 0に電流が流入 することはない。 In the present embodiment, the stop control signal generator 58 responds to the stop command signal SC and outputs a set of control signals for turning on the switching transistors 42, 43, and 44 simultaneously. It is configured to output as signal SS. As a result, the terminals of the A-phase winding 31, the B-phase winding 32, and the C-phase winding 33 are short-circuited, thereby providing a braking force to the rotation of the magnet rotor 34. It has become. In this case, since all of the switching transistors 45 to 47 are off, No current flows from the source B to the DC brushless motor 30 via the commutator circuit 41.
上述した 1組の停止用制御信号 S Sは一例であり、 本発明をこの構成に限定す るものではなく、 一群のスイッチングトランジスタ 4 2〜4 4のうちの 2つのス イッチングトランジスタ、 例えば、 スイッチングトランジスタ 4 2、 4 3のみを ォンとするだけでもよい。 他の一群のスィ ツチングトランジスタ 4 5〜4 7のう ちの 2つ以上を同時にオンさせる構成を採用してもよい。 この場合も 3つ同時に オンさせてもよいし、 任意の 2つを同時にオンさせてもよい。 さらに、 いずれの 場合においても、 選択された複数のスィッチングトランジスタを完全にォン状態 とするほか、 チヨ ッ ビングによって断続的にオン状態とし、 駆動巻線に流れる電 流を所定レベル以下に制限して駆動巻線に過大な電流が流れるのを防止するよう にしてもよい。  The set of stop control signals SS described above is an example, and the present invention is not limited to this configuration. Two of the group of switching transistors 42 to 44, for example, switching transistors Only 42, 4 and 3 may be turned on. A configuration may be adopted in which two or more of the other group of switching transistors 45 to 47 are simultaneously turned on. In this case, three of them may be turned on at the same time, or any two of them may be turned on at the same time. In addition, in each case, the selected switching transistors are completely turned on, and the switching transistors are turned on intermittently by cycling to limit the current flowing through the drive winding to a predetermined level or less. Thus, an excessive current may be prevented from flowing through the drive winding.
図 4に示す構成によれば、 停止指令信号 S Cの入力に応答して位置帰還駆動信 号発生部 5 1からの転流制御信号 A u 〜C L の出力が停止し、 これに代えて 1組 の停止用制御信号 S Sが停止用制御信号発生部 5 8から出力され、 直流ブラシレ スモータ 3 0の回転中の駆動巻線 3 1、 3 2、 3 3が短絡される。 これにより、 駆動巻線 3 1、 3 2、 3 3に流れる電流により磁石回転子 3 4の回転を抑制する 磁界が発生するので、 圧縮機構 1 0の入出力圧力差による圧縮機構 1 0の逆回転 を特別な回路素子の追加なしに防止することができる。 なお、 圧縮機構 1 0の入 出力圧力差が大きいと、 圧縮機 1が直流ブラシレスモータにおける上記ブレーキ 力に打ち勝って若干逆回転することになるが、 この逆回転によって圧縮機構 1 0 の入出力圧力差が減少し再起動を容易にさせることになるという効果を生じる。 したがって、 第 2図に示されている圧縮機構 1 0において採用されている逆止 弁 2 3を省略することも可能である。 すなわち、 逆止弁 2 3を設けない場合には 、 直流ブラシレスモータ 3 0の回転を停止させたとき吐出ポー ト 2 2に生じる圧 力により吐出室 2 1の圧力が増大し、 圧縮機 1を逆回転させようとするが、 駆動 巻線 3 1、 3 2、 3 3の短絡による磁石回転子 3 4の回転抑止力により逆止弁 2 3なしでもこの逆回転を有効に抑えることができる。 以上、 本発明の実施の形態の一例について説明したが、 制御ュニッ 卜 5 0は、 公知のハ一 ドウヱァ構成のマイクロコンピュータを用いて構成することも可能で ある。 According to the configuration shown in FIG. 4, the output is stopped commutation control signal A u -C L from the position feedback driving signal generating unit 5 1 in response to an input of the stop command signal SC, alternatively 1 A set of stop control signals SS is output from the stop control signal generator 58, and the rotating drive windings 31, 32, and 33 of the DC brushless motor 30 are short-circuited. As a result, a magnetic field that suppresses the rotation of the magnet rotor 34 is generated by the current flowing through the drive windings 31, 32, and 33. Rotation can be prevented without the addition of special circuit elements. If the input / output pressure difference of the compression mechanism 10 is large, the compressor 1 overcomes the above-mentioned braking force of the DC brushless motor and rotates slightly in the reverse direction. This has the effect of reducing the difference and facilitating restart. Therefore, the check valve 23 employed in the compression mechanism 10 shown in FIG. 2 can be omitted. That is, when the check valve 23 is not provided, the pressure in the discharge chamber 21 increases due to the pressure generated in the discharge port 22 when the rotation of the DC brushless motor 30 is stopped, and the compressor 1 Although the reverse rotation is attempted, the reverse rotation can be effectively suppressed without the check valve 23 due to the rotation suppressing force of the magnet rotor 34 due to the short-circuit of the drive windings 31, 32, 33. As described above, an example of the embodiment of the present invention has been described. However, the control unit 50 may be configured using a microcomputer having a known hardware configuration.
第 7図は第 4図に示した制御ュニッ ト 5 0の機能と同等の機能を果たすことが できるように構成されたマイクロコンピュータシステムの制御プログラムを示す フローチャー トである。 制御が開始されると、 ステップ 7 1で圧縮機 1が空調負 荷に応じた回転速度で運転される。 この運転は、 位置検出回路 6 0からのセンサ レス信号 Z A 、 Z B 、 Z c に応答してコ ミ ュテ一タ回路 4 1に転流制御信号 A u ~ C L を与えることにより実行される。 ステップ 7 2では停止指令信号 S Cが入 力されたか否かが判別され、 停止指令信号 S Cが入力されていなければステップ 7 1に戻り、 圧縮機 1の運転を続ける。 FIG. 7 is a flowchart showing a control program of a microcomputer system configured to perform a function equivalent to the function of the control unit 50 shown in FIG. When the control is started, in step 71, the compressor 1 is operated at a rotation speed according to the air-conditioning load. This operation is performed by providing a sensor-less signal ZA from the position detecting circuit 6 0, Z B, in response to Z c in Community involvement Te Ichita circuit 4 1 a commutation control signals A u ~ C L You. In step 72, it is determined whether or not the stop command signal SC has been input. If the stop command signal SC has not been input, the flow returns to step 71 to continue the operation of the compressor 1.
停止指合信号 S Cが入力されると、 ステップ 7 2の判別結果は Y E Sとなりス テツプ 7 3に入り、 ここで転流制御信号 A u 〜C L の出力を停止すると共に 1組 の停止用制御信号 S Sを出力し、 予め定められたスィツチングトランジスタをォ ンとする。 これにより磁石回転子 3 4の回転に対する制動力を与えることができ る。 ステップ 7 4ではステップ 7 3の実行後所定の設定時間が経過したか否かが 判別される。 この設定時間は、 停止指令信号 S Cが入力されてから圧縮機 1の入 出力圧力差が実質的に零となるのに必要な時間に設定されている。 ステップ 7 4 において設定時間が経過していないと判別された場合にはステツプ 7 4の判別結 果は N Oとなり設定時間が経過するのを待つ。 設定時間が経過するとステップ 7 4の判別結果は Y E Sとなり、 ステップ 7 5に入る。 ステップ 7 5ではスィッチ ングトランジスタ 4 2〜4 7を全てオフとし、 これにより圧縮機 1の運転停止が 完了する。 産業上の利用可能性 When the stop Sashiawase signal SC is inputted, the determination result Step 7 2 enters YES next scan Tetsupu 7 3, wherein one set of the control stop stops the output of the commutation control signals A u -C L A signal SS is output, and a predetermined switching transistor is turned on. Thereby, a braking force against the rotation of the magnet rotor 34 can be given. In step 74, it is determined whether a predetermined set time has elapsed after execution of step 73. This set time is set to a time necessary for the input / output pressure difference of the compressor 1 to become substantially zero after the stop command signal SC is input. If it is determined in step 74 that the set time has not elapsed, the determination result in step 74 becomes NO, and the flow waits for the set time to elapse. When the set time has elapsed, the determination result of step 74 is YES, and the process proceeds to step 75. In step 75, the switching transistors 42 to 47 are all turned off, and the operation stop of the compressor 1 is completed. Industrial applicability
以上のように、 本発明にかかる空気調和機の駆動制御方法及び装置は、 直流ブ ラシレスモータによって駆動される圧縮機を備えた空気調和装置の運転停止時に おける逆回転を防止するのに有用である。  As described above, the air conditioner drive control method and apparatus according to the present invention are useful for preventing reverse rotation of an air conditioner equipped with a compressor driven by a DC brushless motor when the operation is stopped. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 磁石回転子と 1組の駆動巻線とを具えて成る直流ブラシレスモータと、 該直 流ブラシレスモータによって駆動される圧縮機構を有して成る圧縮機と、 前記 1 組の駆動卷線に対する直流電源からの駆動電流を転流させるための第 1のスィッ チング素子群と第 2のスイッチング素子群とを備え該第 1及び第 2スィッチング 素子群の各スィッチング素子を前記回転子の回転位置に応じてォン、 オフ制御す ることによって前記直流ブラシレスモータを回転駆動させるための回路手段とを 備えて成る空気調和機の駆動制御方法において、 1. DC brushless motor comprising a magnet rotor and a set of drive windings; a compressor having a compression mechanism driven by the DC brushless motor; A first switching element group and a second switching element group for commutating a drive current from a DC power supply are provided, and each of the switching elements of the first and second switching element groups is set at a rotational position of the rotor. Circuit control means for driving the DC brushless motor to rotate by controlling ON / OFF in response to the ON / OFF control.
前記直流ブラシレスモータに対する停止指令信号に応答して前記スィツチング 素子のオン、 オフ制御を停止させ、 前記第 1又は第 2のスイッチング素子群のう ちのいずれか一方の複数のスィツチング素子を同時に導通状態とし、 これにより 前記 1組の駆動巻線のうちの少なく とも 1つの駆動巻線を短絡状態とするように したことを特徴とする空気調和機の駆動制御方法。  In response to a stop command signal to the DC brushless motor, on / off control of the switching element is stopped, and one of the first or second switching element group is simultaneously turned on. Thus, a drive control method for an air conditioner, wherein at least one of the one set of drive windings is brought into a short-circuit state.
2 . 前記導通状態が連続導通状態である請求の範囲第 1項記載の空気調和機の駆 動制御方法。 2. The drive control method for an air conditioner according to claim 1, wherein the conduction state is a continuous conduction state.
3 . 前記導通状態が断続導通状態である請求の範囲第 1項記載の空気調和機の駆 動制御方法。 3. The drive control method for an air conditioner according to claim 1, wherein the conduction state is an intermittent conduction state.
4 . 磁石回転子と 1組の駆動巻線とを具えて成る直流ブラシレスモータによって 駆動される圧縮機構を有して成る圧縮機を備えた空気調和機の駆動制御装置にお いて、 4. In a drive control device for an air conditioner including a compressor having a compression mechanism driven by a DC brushless motor including a magnet rotor and a set of drive windings,
直流電源と、  DC power supply,
該直流電源の一方の出力と前記 1組の駆動巻線との間に接続された第 1のスィ ツチング素子群と該直流電源の他方の出力と前記 1組の駆動巻線との間に接続さ れた第 2のスイ ツチング素子群とを含んで成るコ ミ ュテ一夕回路と、 前記磁石回転子の回転位置を検出する位置検出回路と、 A first group of switching elements connected between one output of the DC power supply and the set of drive windings, and a first switching element group connected between the other output of the DC power supply and the set of drive windings; A commutation circuit including the second switching element group, A position detection circuit for detecting a rotational position of the magnet rotor,
該位置検出回路での検出結果に応答し前記回転子に回転力が与えられるよう前 記直流電源から前記駆動卷線に供給される駆動電流を転流させるために前記第 1 及び第 2のスイツチング素子群の各スィッチング素子をオン、 オフ制御するため の転流制御信号を発生させる位置帰還駆動信号発生手段と、  The first and second switching means for commutating a drive current supplied from the DC power supply to the drive winding so that a rotational force is applied to the rotor in response to a detection result of the position detection circuit. Position feedback drive signal generating means for generating a commutation control signal for controlling on / off of each switching element of the element group;
前記第 1及び第 2のスイツチング素子群のうちのいずれか一方の複数のスィッ チング素子を同時に導通状態に制御する停止用制御手段とを備え、  Stopping control means for simultaneously controlling a plurality of one of the first and second switching element groups to a conductive state,
前記直流ブラシレスモータに対する停止指令信号に応答して前記位置帰還駆動 信号発生手段からの前記転流制御信号の出力を停止すると共に前記複数のスィッ チング素子が前記停止用制御手段により同時に導通制御されるようにしたことを 特徴とする空気調和機の駆動制御装置。  In response to a stop command signal to the DC brushless motor, the output of the commutation control signal from the position feedback drive signal generation means is stopped, and the plurality of switching elements are simultaneously controlled to be conductive by the stop control means. A drive control device for an air conditioner, characterized in that:
5 . 前記導通状態が連続導通状態である請求の範囲第 4項記載の空気調和機の駆 動制御装置。 5. The drive control device for an air conditioner according to claim 4, wherein the conduction state is a continuous conduction state.
6 . 前記導通状態が断続導通状態である請求の範囲第 4項記載の空気調和機の駆 動制御装置。 6. The drive control device for an air conditioner according to claim 4, wherein the conduction state is an intermittent conduction state.
7 . 前記停止用制御手段が、 前記第 1及び第 2のスイッチング素子群を構成する スイ ッチング素子のそれぞれのオン、 オフ状態を制御する 1組の停止用制御信号 を出力する請求の範囲第 4項記載の空気調和機の駆動制御装置。 7. The stop control means for outputting a set of stop control signals for controlling the ON / OFF state of each of the switching elements constituting the first and second switching element groups. The drive control device for an air conditioner according to any one of the preceding claims.
8 . 前記第 1及び第 2のスィツチング素子群を構成するスィ ツチング素子のそれ ぞれに対応したオアゲー トを備えており、 前記転流制御信号及び前記停止用制御 信号が対応するオアゲー 卜を介して対応するスィツチング素子に供給されるよう に構成されている請求の範囲第 7項記載の空気調和機の駆動制御装置。 8. There is provided an orgate corresponding to each of the switching elements constituting the first and second switching element groups, and the commutation control signal and the stop control signal are transmitted through the corresponding orgate. The drive control device for an air conditioner according to claim 7, wherein the drive control device is configured to be supplied to a corresponding switching element.
9 . 前記位置検出回路が、 前記 1組の駆動巻線のそれぞれに誘起される逆誘起電 圧から前記磁石回転子の回転位置を検出するように構成された請求の範囲第 4項 記載の空気調和機の駆動制御装置。 9. The position detecting circuit is configured to generate a back electromotive force induced in each of the one set of drive windings. The drive control device for an air conditioner according to claim 4, wherein the rotational position of the magnet rotor is detected from pressure.
PCT/JP1998/003258 1997-07-24 1998-07-22 Method and device for controlling drive of air conditioner WO1999005779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9212718A JPH1146494A (en) 1997-07-24 1997-07-24 Air conditioner
JP9/212718 1997-07-24

Publications (1)

Publication Number Publication Date
WO1999005779A1 true WO1999005779A1 (en) 1999-02-04

Family

ID=16627290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003258 WO1999005779A1 (en) 1997-07-24 1998-07-22 Method and device for controlling drive of air conditioner

Country Status (2)

Country Link
JP (1) JPH1146494A (en)
WO (1) WO1999005779A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025753A2 (en) 2011-08-17 2013-02-21 Trane International Inc. Reverse rotation braking for a pm motor
WO2017190917A1 (en) * 2016-05-02 2017-11-09 Robert Bosch Gmbh Method for controlling a heat pump circuit with an electrical machine of a compressor system, and heat pump circuit
EP3429047A4 (en) * 2016-03-09 2019-10-30 GD Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and shutdown control method and device for compressor thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529937B1 (en) * 2004-01-08 2005-11-22 엘지전자 주식회사 Linear compressor and its method for the same
GB2547366B (en) 2013-03-11 2017-11-08 Trane Int Inc Controls and operation of variable frequency drives
JP2015081745A (en) * 2013-10-24 2015-04-27 カルソニックカンセイ株式会社 Electric compressor
JP2023056894A (en) * 2021-10-08 2023-04-20 パナソニックIpマネジメント株式会社 Cleaner connectable to collection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731188A (en) * 1993-07-14 1995-01-31 Ibiden Co Ltd Rotation controller of brushless motor for dental polishing apparatus
JPH07184394A (en) * 1993-12-24 1995-07-21 Mitsuba Electric Mfg Co Ltd Control circuit for brushless motor
JPH09163791A (en) * 1995-12-07 1997-06-20 Sanden Corp Driving method for motor-driven compressor and drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731188A (en) * 1993-07-14 1995-01-31 Ibiden Co Ltd Rotation controller of brushless motor for dental polishing apparatus
JPH07184394A (en) * 1993-12-24 1995-07-21 Mitsuba Electric Mfg Co Ltd Control circuit for brushless motor
JPH09163791A (en) * 1995-12-07 1997-06-20 Sanden Corp Driving method for motor-driven compressor and drive device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025753A2 (en) 2011-08-17 2013-02-21 Trane International Inc. Reverse rotation braking for a pm motor
EP2745395A4 (en) * 2011-08-17 2016-03-09 Trane Int Inc Reverse rotation braking for a pm motor
US9525369B2 (en) 2011-08-17 2016-12-20 Trane International Inc. Reverse rotation braking for a PM motor
EP3429047A4 (en) * 2016-03-09 2019-10-30 GD Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and shutdown control method and device for compressor thereof
WO2017190917A1 (en) * 2016-05-02 2017-11-09 Robert Bosch Gmbh Method for controlling a heat pump circuit with an electrical machine of a compressor system, and heat pump circuit

Also Published As

Publication number Publication date
JPH1146494A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
US5782610A (en) Method of stopping scroll compressor that is driven by 3-phase DC motor
JPH09121590A (en) Rotary compressor provided with counter-current braking mechanism
US6925824B2 (en) Apparatus for driving a compressor and a refrigerating air conditioner
US5518373A (en) Compressor start-up controller
EP0734115B1 (en) Method for operating a motor/compressor combination and a motor/compressor combination for carrying out that method
US20090256507A1 (en) Method for operating sensorless and brushless motors
WO1999005779A1 (en) Method and device for controlling drive of air conditioner
KR20180109716A (en) Motor-driven compressor for a vehicle
US8901867B2 (en) Electrical machine, method of controlling an electrical machine, and system including an electrical machine
US20020008493A1 (en) Device for driving an air-conditioning compressor
JP2952839B2 (en) Startup control device for compressor
JP4465770B2 (en) Brushless motor control device and self-priming pump using the same
JP2004011473A (en) Control device for scroll type electric compressor
KR101859281B1 (en) Motor-driven compressor
JP3487099B2 (en) Motor control device, refrigeration / air conditioning device
CN110121597B (en) Scroll compressor having a plurality of scroll members
WO2024084913A1 (en) Scroll-type electric compressor
KR20170026200A (en) Motor-driven compressor
JP3068354B2 (en) Scroll compressor
JP4584389B2 (en) Scroll fluid machinery
JP2004245186A (en) Control method and control mechanism for compressor
JPH1193859A (en) Pump driving device
JPH05172065A (en) Scroll type fluid machine
JP2650951B2 (en) Scroll type fluid machine
JPH07298675A (en) Control equipment for motor for compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR