[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999003577A1 - Absorbent composition, process for producing the same, and absorbent article - Google Patents

Absorbent composition, process for producing the same, and absorbent article Download PDF

Info

Publication number
WO1999003577A1
WO1999003577A1 PCT/JP1998/003231 JP9803231W WO9903577A1 WO 1999003577 A1 WO1999003577 A1 WO 1999003577A1 JP 9803231 W JP9803231 W JP 9803231W WO 9903577 A1 WO9903577 A1 WO 9903577A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
water
absorbent composition
resin
filler
Prior art date
Application number
PCT/JP1998/003231
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Takai
Tsuyoshi Yuki
Shingo Mukaida
Daisuke Tagawa
Kenji Tanaka
Original Assignee
Sanyo Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries, Ltd. filed Critical Sanyo Chemical Industries, Ltd.
Priority to DE19882553T priority Critical patent/DE19882553T1/en
Priority to AU82440/98A priority patent/AU739387B2/en
Publication of WO1999003577A1 publication Critical patent/WO1999003577A1/en
Priority to US09/484,457 priority patent/US6284362B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15203Properties of the article, e.g. stiffness or absorbency
    • A61F2013/15284Properties of the article, e.g. stiffness or absorbency characterized by quantifiable properties

Definitions

  • the present invention relates to an absorbent composition, a method for producing the same, and an absorbent article.
  • an absorbent composition in which a microfilament is incorporated in a water-absorbent resin to improve the surface area and the absorption rate associated therewith; an absorbent composition in which the absorption rate to blood and the water retention are further improved;
  • the absorption rate of the water-absorbing resin is influenced by its surface area. That is, in the case of the particulate water-absorbing resin having a constant mass, the larger the particle size of the particles, the smaller the surface area and the smaller the area in contact with water. Conversely, as the particle size becomes smaller, the surface ⁇ ⁇ ⁇ becomes larger, so that the absorption rate becomes faster. However, if the particle size is too small, when the water-absorbent resin comes into contact with water, a phenomenon occurs in which the fine particles associate with each other via water (a phenomenon called “mamako”). Speed slows down.
  • the methods (1) to (4) show that, when the liquid to be absorbed is a low-viscosity liquid such as urine or salt water, a certain effect of improving the flute is recognized, but the manufacturing and quality aspects are as follows. It was not always satisfactory.
  • the water-absorbent resin obtained by the method (1) has too fine particles, when it is mixed with fibrous materials such as pulp to be used as an absorbent and applied to paper diapers etc., it is said that the fine particles will be released from the fibrous materials. There's a problem. Furthermore, the water-absorbent resin obtained by the method 1 is treated with a surfactant or a water-soluble polymer, so that the powder fluidity deteriorates and fine particles cause dust generation. May cause environmental degradation problems.
  • the amino group-containing azo compound is decomposed to generate nitrogen gas, and at the same time, radicals are generated. Therefore, the absorption performance is reduced due to a decrease in the molecular weight of the water-absorbing resin, and water-soluble components are not used. The problem arises of the increase of.
  • the effect of improving the absorption rate becomes insufficient if the bond strength of the binder is increased. Conversely, if the adhesive force of the binder is weakened, the mechanical strength of the granulated material is weakened, and the granulation is broken by mechanical shear and mechanical friction in the powder feeder and the powder transfer process by wind pressure. This causes a problem of returning to the original fine particles.
  • the blood when blood is used as the liquid to be absorbed, the blood is highly viscous and contains high molecular organic components such as blood cells, hemoglobin, cytoplasm, and protein components. Did not give good results.
  • the method (1) can improve the blood absorption rate to some extent, it has a drawback that the absorption capacity and the water retention are reduced because a large amount of salts of inorganic or organic acids must be added.
  • the absorption capacity for the blood coat is improved to some extent, the absorption rate of blood is not always a satisfactory level.
  • the absorption performance with respect to physiological saline is excellent, the absorption capacity with respect to blood is as low as 6 to 11 times, and the absorption rate is not always at a satisfactory level.
  • a first object of the present invention is to provide an absorbent composition comprising a water-absorbent resin having an improved surface area and an accompanying improved absorption rate.
  • a second object of the present invention is to provide an absorbent composition in which the problems in the above methods (1) to (4) have been improved.
  • a third object of the present invention is to provide an absorbent composition having improved absorption capacity for blood and improved water retention and absorption speed.
  • a fourth object of the present invention is to provide an absorbent article using such an absorbent composition. Disclosure of the invention
  • the present invention relates to the following absorbent composition [1] [2]; a method for producing the absorbent composition [3; ⁇ [ Five ]; And absorbent articles [6].
  • Absorbent resin (A) and before the drying step to produce a hydrogel polymer Te ⁇ , true density of less than 0. 1 g / cm a particle size of 1 ⁇ 200 ⁇ M micro filler (B1) This is a method for producing an absorbent composition in which is incorporated and dried.
  • a heat-expandable hollow filler ( ⁇ 2 ') with a particle size of 1 to 15 O ⁇ m is built in and dried by heating.
  • This is a method for producing an absorbent composition in which a fine filler ( ⁇ 2) obtained by thermally expanding ( ⁇ 2 ') is incorporated in a water-absorbent resin ( ⁇ ).
  • An absorbent article comprising the absorbent composition according to the above [1] or [2] and an absorbent layer comprising a fibrous material, which is wrapped in a surface protective sheet having a water-permeable portion.
  • water-absorbent resin (II) in the absorbent composition [1] of the present invention include the following water-absorbent resins. Also, in addition to 1, the following water-absorbent resins 1 to 4 can be exemplified.
  • B a water-absorbent resin obtained by polymerizing and, if necessary, hydrolyzing a water-insoluble water-swellable polymer having a crosslinked structure and / or a graft structure;
  • a particulate polysaccharide is crosslinked to form a water-insoluble, water-swellable structure (for example, water-soluble polysaccharide such as guar gum, xanthan gum, cellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, or a modified product thereof). Particles obtained by surface cross-linking using a polyfunctional cross-linking agent);
  • Water-soluble radically polymerizable monomers are polymerized and, if necessary, thermally cross-linked in the presence of a cross-linking agent to form a water-insoluble, water-swellable polymer (for example, acrylamide and acrylic acid. (Salt) And a copolymer obtained by heating the copolymer.
  • a cross-linking agent for example, acrylamide and acrylic acid.
  • the water-soluble radically polymerizable monomer (al) of the monomer (a) is, for example, a water-soluble monomer having an acid grave such as a carboxylic acid group, a sulfonic acid group, or a phosphate group.
  • Water-soluble radical polymerizable monomer having all acid groups (all); nonionic water-soluble radical polymerizable monomer (al3); I can do it.
  • examples of the radically polymerizable water-soluble monomer having a carboxylic acid group include unsaturated mono- or polycarboxylic acids [(meth) acrylic acid (acrylic acid and / or methacrylic acid. Use the same description), crotonic acid, sorbic acid, maleic acid, itaconic acid, cinnamic acid, salts thereof, etc., and their anhydrides [non-maleic acid, etc.].
  • examples of the radically polymerizable water-soluble monomer having a sulfonic acid group include fatty acids or aromatic vinylsulfonic acids (vinylsulfonic acid, arylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, etc.) , (Meth) acrylalkyl sulfonic acid, [(meth) acrylic acid sulphoethyl, (meth) acrylic acid sulphob pill), (meth) acrylamide alkyl sulfonic acid [2-acrylamide 2-methylpropanesulfone Acid and the like], and salts thereof.
  • the radically polymerizable water-soluble monomer having a phosphate group includes, for example, (meth) acrylic acid hydroxyalkyl phosphate monoester [2-hydroxyshethyl (meth) acryloyl phosphate, , Phenyl-2-ethylacryloxyethyl phosphate, etc.].
  • Examples of the kind of the salt in (a12) include an alkali metal salt, an ammonium salt, an amine salt and the like, and preferably an alkali metal salt, particularly a sodium salt.
  • nonionic water-soluble radically polymerizable monomer (al3) examples include (meth) acrylamide, vinyl vinylidone, 2-hydroxyethyl (meth) acrylate, and the like.
  • the radically polymerizable monomers (a 2) which become water-soluble by hydrolysis include (meth) acrylonitrile, (meth) acrylic acid lower alkyl esters (alkyl groups having a carbon number of 1 4), maleic acid lower alkyl esters (1 to 4 carbon atoms in the alkyl group), vinyl acetate, and the like.
  • the monomer (a) two or more of those exemplified above may be used in combination.
  • the degree of neutralization of the acid group in the resin is preferably 50 to 90 mol%, particularly preferably 60 to 80 mol%. Mol%. This neutralization may be performed at the stage of the monomer before the polymerization, or may be performed after the polymerization.
  • crosslinking agent (b1) examples include a bridging agent having two or more ethylenic unsaturated groups (b11), a crosslinking agent having at least one ethylenically unsaturated group and at least one reactive functional group (b12), Crosslinking agents (bl3) having two or more reactive functional groups are exemplified.
  • cross-linking agent (b ll) examples include N, N, -methylenebis (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and glycerol.
  • examples include phosphorus (di or tri) acrylate, trimethylpropane triacrylate, triallylamine, triallyl cyanurate, triallyl cisyanurate, tetraaryloxyphene, and pentaerythritol triallyl ether.
  • crosslinking agent (bl2) examples include glycidyl (meth) acrylate, N-meth (Meth) acrylamide.
  • crosslinking agent (bl3) examples include ethylene glycol, diethylene glycol, glycerin, propylene glycol, diethanolamine, trimethyl propylpropane, polyethyleneimine, ethylene glycol diglycidyl ether, and 'glycerol diglycidyl. Ether and polyglyceryl polyglycidyl ether.
  • crosslinking agents Two or more of these crosslinking agents may be used in combination.
  • preferred crosslinking agents (b11) are N, N'-methylenebisacrylamide, ethyleneglycoldiacrylate, trimethylolpropanetriacrylate, and tetraaryloxy. , Pentaerythritol triallyl ether and triarylamine.
  • graft base (b2) examples include water-soluble polysaccharides such as starch, guar gum, xanthan gum, cellulose, methylcellulose, ethylcellulose, cellulose dimethylcellulose, and modified products thereof, polyvinyl alcohol, and polyester resins. And the like.
  • This water-absorbent resin (A) forms at least one multifunctional compound (b) selected from the group consisting of a crosslinking agent (bl) and a graft base (b2) in order to form a crosslinked structure and / or a graft structure. ) Is used.
  • the amount of the agent used for forming the crosslinked structure is usually 0.0015% based on the total mass of the monomer (a) and the agent (bl), and is preferably 0.001%. , 0.05 to 2%, more preferably 0.1 to 1%.
  • the amount of the cross-linking agent (bl) is less than 0.001%, it becomes a sol when absorbing water, the water absorbing ability, which is a function of the water-absorbing resin, is reduced, and when it comes into contact with the aqueous liquid, And the apparent absorption rate is reduced. Also, the drying property is very poor and the productivity is inefficient. On the other hand, if it exceeds 5%, on the other hand, the crosslinking becomes too strong and does not exhibit sufficient water absorption / water retention capacity.
  • the amount of the graft base (b2) used for forming the graft structure does not usually exceed 30 based on the total mass of the monomer, the crosslinking agent (bl) and the graft base (b2). Amount, preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass. % By mass.
  • the water-absorbing resin (1) include a saponified starch-acrylonitrile copolymer, a cross-linked starch-acrylate copolymer, a cross-linked polyacrylate, and (meth) acrylic acid.
  • Examples include crosslinked acrylamide copolymers, crosslinked polyacrylamides and hydrolysates thereof, crosslinked polyvinyl vinylidone, and crosslinked cellulose derivatives.
  • the water-absorbing resin (A) are those which can absorb and hold a large amount of liquid due to ionic osmotic pressure, and have a salt of a carboxyl group and / or a lipoxyl group with little water separation even when a load or external force is applied. It is a water-absorbing resin containing a polymerizable monomer as a main component, and more preferably a crosslinked product of a starch-acrylate copolymer and a crosslinked product of a polyacrylate.
  • the salt type and the degree of neutralization are preferably alkali metal salts, more preferably sodium salts and potassium salts.
  • the degree of neutralization with respect to the acid groups is preferably 50 to 90 mol%, more preferably 60 to 80 mol%.
  • water-absorbing resin (1) various additives, chain transfer agents (for example, thiol compounds, etc.) and surfactants are added to the polymerization system for polymerizing the monomer (a) and the polyfunctional compound (b) as necessary. It cannot be added even if an agent is added.
  • chain transfer agents for example, thiol compounds, etc.
  • surfactants are added to the polymerization system for polymerizing the monomer (a) and the polyfunctional compound (b) as necessary. It cannot be added even if an agent is added.
  • the polymerization method for producing the water-absorbent resin (A) is not particularly limited, and examples thereof include an aqueous solution polymerization method, an opaque polymerization method, a reversed-phase turbidity polymerization method, a spray S synthesis method, a photopolymerization method, and a radiation polymerization method.
  • a preferred polymerization method is a method of performing aqueous solution polymerization using a radical polymerization initiator.
  • the type of radical polymerization initiator and the radical polymerization conditions are not particularly limited, and may be as usual.
  • the absorbent composition [1] of the present invention is an absorbent composition having a structure in which a fine filler (B) is incorporated in a water-absorbent resin (A). ⁇
  • the fine filler ( ⁇ ) examples include a fine filler (B1) having a true density of 0.1 lg / cm 3 or less and a particle size of 1 to 20 O / m and a heat filler having a particle size of 1 to 150 / m.
  • a fine filler ( ⁇ ⁇ 2) formed by thermally expanding an expandable hollow filler ( ⁇ 2 '). Both the small filler (B1) and the small filler ( ⁇ 2) are water-absorbent resin ( ⁇ ) in any ratio. It may be built inside.
  • the true density of the micro filler (B1) usually 0. lg / cm 3 or less, preferably 0. 0 8 g / cm a, particularly preferably 0. 01 ⁇ 0 ⁇ 06 g / cm 3 .
  • True density is a value measured by, for example, ACCUPYC 1330 PYCNOMETER.
  • An example of a specific measurement operation is as follows.
  • PYCNOMETER has two chambers (chambers) connected by pulp, cell chamber and expansion chamber, and their volumes are indicated by V (c) and V (e).
  • V (c) the volume of this sample is V
  • P (e) the volume of this sample is V
  • P (1) The pressure of the expansion chamber at that time is P (a).
  • P (2) the pulp connected to the expansion chamber is sealed, and the pressure P (2) distributed to both chambers is measured.
  • the sample volume is obtained from the volume and pressure of each chamber before and after opening the pulp, and the true density is calculated by the following equation.
  • the particle size of (B1) is usually 1 to 200 m, preferably 1 to 50 m, and more preferably 5 to 100 m.
  • the particle size of (B) is larger than 200, the uniformity of blending (B) with the hydrogel of (A) in the production method [3] of the present invention is poor, and the resulting absorbent composition is obtained. This is not preferred because the effect of improving the absorption rate of the water may be poor.
  • it is smaller than 1 m when (B1) is mixed with the hydrogel of (A), aggregation of the (B1) is likely to occur, resulting in poor uniformity.
  • the material of (B1) is not particularly limited, and may be either organic or inorganic.
  • organic materials include polyethylene, polypropylene, polystyrene, and polystyrene.
  • thermoplastic polyurethane polyethylene oxide, polypropylene oxide, polytetramethylene oxide, polyacetal, and cellulose derivatives. Those obtained by copolymerizing two or more monomers constituting these resins are also included.
  • inorganic materials include silicon oxide, aluminum oxide, iron oxide, titanium oxide, magnesium oxide, zirconium oxide, and the like.
  • organic materials preferred are polyacrylate, polymethacrylate, polyvinylidene chloride, polyacetate biel, and polyacrylonitrile.
  • the shape of (B1) is not particularly limited, hollow, 6 favored correct shape such as porous and the like are hollow.
  • fine filler (B1) in the present invention include, for example, Matsumoto Microsphere F—50E manufactured by Matsumoto Yushi Co., Ltd., and Expanscel 551 DE and 46 manufactured by Nippon Ferrite Co., Ltd. 1 DE, 09 I DE, etc. These may be used in combination of two or more.
  • (B2) is a thermally expandable hollow filler (B2 ') having a particle size of 1 to 15 mm2. Is a minute filler that is thermally expanded.
  • heat-expandable hollow filler ( ⁇ 2 ′) examples include a fine hollow resin containing a gas or a volatile compound in a void.
  • Examples of the type of resin that forms the outer wall in this minute hollow resin include polyethylene, polypropylene, polystyrene, poly-xylylene, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and polyvinyl acetate.
  • Examples thereof include lenoxide, polytetramethylene glycol, polyacetal, and the like, and examples include those obtained by copolymerizing two or more monomers constituting these resins. These may be used in combination of two or more.
  • polyacrylate polyvinylidene chloride
  • polyacrylonitrile preferred are polyacrylonitrile.
  • the expansion start temperature of ( ⁇ 2 ') can be variously changed depending on the softening temperature of the resin forming the outer wall, the type of gas present in the voids, and the type of the volatile compound, but is preferably 60 to 1 50 ° C., while the maximum expansion temperature is preferably 80-180. C. More preferably, the expansion start temperature is 70 to 120. C, the maximum expansion temperature is 90 ⁇ 150.
  • the expansion start temperature is lower than 60 ° C., in the production method of the present invention, it may be necessary to cool the hydrogel, which is inefficient.
  • the expansion start temperature is higher than 150 ° C., in the production method [4] of the present invention, in the heating and drying step, the evaporation of the water in the hydrogel state (A) precedes.
  • the swelling efficiency may decrease because the flexibility of the hydrogel may be reduced.
  • the maximum expansion temperature is less than 80 ° C. or more than 18 (TC)
  • the same phenomenon as described above may occur, which is not preferable.
  • the boiling point at normal pressure is 150. It is a compound having a boiling point of not more than C, preferably not more than 120 ° C, more preferably not more than 100 ° C. Boiling point is 150. If it is larger than C, in the production method of the present invention, the thermal expansion start temperature of (B 2) becomes high, and heat treatment must be performed at a high temperature, which is inefficient. Further, the thermal expansion may be insufficient, and the effect of improving the absorption rate of the obtained absorbent composition may be poor.
  • Examples of the gas or volatile compound contained in the voids of ( ⁇ 2 ') include isoptan, isopentane, petroleum ether, ⁇ -butane, ⁇ -pentane, n- ⁇ xane, cyclopentane, and cyclohexane. Trifluoromethane, dichlorofluoromethane, butylene, methylene chloride and the like. These may be used in combination of two or more.
  • isobutane isopentane
  • n-butane n-pentane
  • petroleum It is ether.
  • the particle size of ( ⁇ 2 ′) is not particularly limited, but is usually 1 to 150 ⁇ , preferably 1 to 100 / zm or less.
  • the particle size of (2,) is larger than 150 m or smaller than 1 m, in the production method [4] of the present invention, the uniformity of blending of ( ⁇ 2 ') into the hydrogel of (A) is improved. And the effect of improving the absorption rate of the obtained absorbent composition may be poor, which is not preferable.
  • the volume expansion ratio of ( ⁇ 2 ′) is preferably 1 ° or more, particularly preferably 30 times or more. If the volume expansion ratio of ( ⁇ 2 ′) is less than 10, the expansion rate of ( ⁇ ) is low, and the effect of improving the absorption rate of the obtained absorbent composition may be poor.
  • heat-expandable hollow filler ( ⁇ 2 ′) in the present invention include Matsumoto Microspheres F-20, F-30, F-40, F-50, F-80S manufactured by Matsumoto Yushi Seiyaku Co., Ltd. , F-82, F-85, F-100, F-30VS, F-80GS, F-80VS, F-100SS, F-1300, F-1400, etc .; and Expansel 820 manufactured by Nippon Ferrite Co., Ltd. , 642, 551, 461, 051, 091, and the like, and two or more of these may be used in combination.
  • the mass ratio of (A) to (B) is preferably 100: (0.05 to 10), more preferably 100: (0.1 to 7), and Is 100: (0.5 ⁇ 5).
  • (B) is less than 0.05, the effect of improving the absorption rate is poor.
  • it exceeds 10 the absorption rate can be improved, but the volume increase becomes so large that the mechanical properties of the resulting absorbent composition particles are reduced. In this case, the mechanical strength tends to be weak, and the effect of improving the absorption rate of the resulting absorbent composition under pressure tends to be poor.
  • the absorbent composition [1] of the present invention can be obtained, for example, by a production method [3] using a microfilament (B1) or a production method [4] using a heat-expandable hollow filler ( ⁇ 2 ⁇ ).
  • the fine filler (B1) is incorporated and dried before drying in the step of producing the water-absorbent resin (A) via the hydrogel polymer to obtain an absorbent composition.
  • An embodiment of the production method [3] includes a method of drying a hydrogel of the water-absorbing resin (A) containing the microfilament (B1) to obtain an absorbent composition.
  • This embodiment is a case where the water-absorbent resin (A) is formed before drying, but other forms include a drying step or a drying step or after drying, a thermal crosslinking method or a surface crosslinking method. Thus, a water-absorbing resin can be formed.
  • the fine filler (B1) is blended at any stage from before the polymerization of the water-absorbent resin (A) to before the drying.
  • a preferred method is to add and knead the (A) hydrogel polymer in a stage after polymerization to before drying. This is because the addition of (B1) to (A) in the hydrogel state improves the absorption rate because (B1) is contained inside the water-absorbing resin particles.
  • (B1) can be added in any form of powder, water slurry, and water dispersion.However, in order to enhance the uniformity and the effect of improving the absorption rate of the obtained absorbent composition, water slurry or water It is preferable to add as a dispersion liquid and uniformly add it to the hydrogel.
  • the water content of the blend of the hydrogel (A) and (B1) is preferably 2 to 10 times the solid content of (A). If it is less than twice, the uniformity at the time of mixing will be low, and the effect of improving the absorption rate of the obtained absorbent composition may be poor. If it is higher than 10 times, it takes a long time to dry, which is not economical.
  • a conventionally known apparatus can be used as a kneading apparatus for blending (B1) with (A) in a hydrogel state and uniformly dispersing the same.
  • a conventionally known apparatus can be used.
  • the device include a double-armed kneader, an internal mixer (bread palry mixer), a self-cleaning mixer, a gear compounder, a screw-type extruder, a screw-type kneader, and a mincing machine. These can be used in combination of two or more.
  • the drying temperature of the hydrogel formulation containing (B1) is usually from 60 to 230. C, preferably 100-200. C, especially 105-180. C. Drying temperature is 60. If it is less than C, it takes a very long time to dry and is not economical, whereas 230. C If the amount exceeds the above range, side reactions or decomposition of the resin may occur, leading to a decrease in absorption performance and absorption speed.
  • the device for drying the blend of (A) and (B1) in the hydrogel state may be a conventional device, such as a drum dryer, a parallel flow bread dryer (tunnel dryer), a ventilation band dryer, and a jet flow. (Nozzle jet) Dryer, box type hot air dryer, infrared dryer, etc.
  • the heat source is not particularly limited. These dryers can be used in combination of two or more.
  • the surface of the absorbent composition particles incorporating (B1) is coated with a functional group capable of reacting with acid groups such as lipoxyl graves and Z or its base.
  • a functional group capable of reacting with acid groups such as lipoxyl graves and Z or its base.
  • Such a surface cross-linked type absorbent composition is suitable for the present invention because it has excellent absorption performance and absorption rate under normal pressure as well as under load, and also has a high gel strength.
  • cross-linking agent used for the surface chair examples include polyglycidyl ether compounds (ethylene glycol diglycidyl ether, glycerin-1,3-diglycidyl ether, glycerin triglycidyl ether, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, Polyol compounds (glycerin, ethylene glycol, polyethylene glycol, etc.); polyamine compounds (ethylene diamine, diethylene triamine, etc.); polyamine resins (boriamide polyamine ebichlorhydrin resin, polyamine ebik D) Hydrin resin), alkylene carbonate, aziridine compound, polyimine compound and the like.
  • the amount of the cross-linking agent in the surface cross-linking is not particularly limited because it can be variously changed depending on the type of the cross-linking agent, cross-linking conditions, target performance, and the like. However, the amount is usually 0.0 with respect to the absorbent composition.
  • the content is 0.1 to 3% by mass, preferably 0.01 to 2% by mass, and more preferably 0.05 to 1% by mass.
  • the amount of the crosslinking agent is less than 0.001% by mass, there is no great difference in performance from the water-absorbing resin not subjected to the Jie treatment. On the other hand, over 3% by mass If so, the absorption capacity and water retention tend to decrease, which is not preferable.
  • a blend of (A) and (B1) in a hydrogel form may be used as an additive, as a brightener, a residual monomer reducing agent (eg, sodium sulfite, hydrogen peroxide, etc.), an antibacterial agent (eg, Quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.), preservatives, fragrances, deodorants, coloring agents, antioxidants, silica, zeolite and the like.
  • a residual monomer reducing agent eg, sodium sulfite, hydrogen peroxide, etc.
  • an antibacterial agent eg, Quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.
  • preservatives eg, Quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.
  • fragrances eg, Quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.
  • a heat-expandable hollow filler ( ⁇ 2 ') is incorporated and heated and dried before drying in the process of producing the water-absorbent resin (A) via the hydrogel polymer.
  • This is a method for obtaining an absorbent composition in which a microfilament ( ⁇ 2) formed by thermally expanding ( ⁇ 2 ') in an aqueous resin ( ⁇ ) is incorporated.
  • the water-containing gel of the water-absorbent resin ( ⁇ ) containing the heat-expandable hollow filler ( ⁇ 2 ′) is heated and dried, and the above-mentioned fine filler is contained in the water-absorbent resin ( ⁇ ).
  • ( ⁇ 2 ′) is combined before polymerization of the water-absorbent resin ( ⁇ ), that is, in any stage from the step of adjusting the mixing of the raw materials for polymerization to the step of drying.
  • the mixture is added to the hydrogel polymer in the stage from the stage of mounting (i) to before drying, and the mixture is scoured. This is because ( ⁇ ) in the hydrogel state has an appropriate flexibility to expand, and can be expanded in volume by heating in the subsequent drying step to increase the surface area.
  • ( ⁇ ) when ( ⁇ ) is blended with the hydrogel polymer in the stage from the polymerization of ( ⁇ ) to before drying, a more uniform mixture can be obtained by using a crosslinking agent (for example, a polyglycidyl ether compound) together. Volumetric expansion Inflation can take place.
  • a crosslinking agent for example, a polyglycidyl ether compound
  • ( ⁇ 2 ′) can be added in any form of powder, water slurry, or water dispersion, but is required to promote uniform expansion and the effect of improving the absorption rate of the resulting absorbent composition. Is preferably added in the form of a water slurry or a water dispersion and uniformly added to the hydrogel.
  • the water content of the blend of the water-containing gel of (II) and ( ⁇ 2 ′) is preferably 2 to 10 times the solid content of (II). If it is less than 2 times, the expansion ratio will be low, and the effect of improving the absorption rate of the obtained absorbent composition may be poor. If it is higher than 10 times, the drying time becomes longer and it is uneconomical.
  • (B) is mixed with ( ⁇ ) in the production method [3] of the present invention exemplified above.
  • the same kneading device as used for uniform dispersion can be used.
  • Heat drying temperature (B2 ') hydrogel formulations with added is usually sixty to two hundred thirty ° C, preferably 100 to 200 e C, in particular 105 to: L 80. C. If the drying temperature is below 60 ° C, drying takes a very long time and is not economical, whereas 230. If it exceeds C, side reactions or decomposition of the resin may occur, leading to a decrease in absorption performance and absorption speed.
  • the device for heating and drying the mixture of (A) and ( ⁇ 2 ') in the form of a hydrogel may be a conventional device, such as a drum dryer, a parallel flow band dryer (tunnel dryer), a ventilation band dryer, Jet flow (nozzle jet) Dryers, box-type hot air dryers, infrared dryers, etc.
  • a direct-fired heat source is not preferable, but for a non-combustible compound, the heat source is not particularly limited.
  • These dryers can be used in combination of two or more.
  • the surface of the absorbent composition particles obtained by pulverization and particle size adjustment is surfaced with a crosslinking agent having at least two functional groups capable of reacting with a carboxylic acid group and / or its base.
  • the absorbent composition of the present invention can be crosslinked.
  • Such a surface cross-linked type absorbent composition is excellent in absorption performance and absorption speed under normal pressure as well as under gravity, and also has a high gel strength, and is therefore preferred for the present invention. Suitable.
  • cross-linking agent to be used for the surface cross-linking the same one as in the case of the surface cross-linking in the production method [5] of the present invention can be used, and the amount used is also the same.
  • additives or thickeners may be used, such as residual monomer inhibitors (eg, sodium sulfite, hydrogen peroxide, etc.), antibacterial agents ( For example, quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.), preservatives, fragrances, deodorants, coloring agents, antioxidants, silica, zeolites, etc. it can.
  • residual monomer inhibitors eg, sodium sulfite, hydrogen peroxide, etc.
  • antibacterial agents For example, quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.
  • preservatives e.g, quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.
  • fragrances e.g, quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.
  • preservatives e.g., quaternary ammonium salt compounds, chlorhexidine compounds, metal
  • the preferred shape of the absorbent composition [1] of the present invention is particulate, for example, crushed particles obtained by polymerizing an aqueous solution and then drying and pulverizing, or a reverse phase turbidity polymerization method. May be obtained.
  • the average particle size of the absorbent composition [1] of the present invention is usually from 200 to 600 m, preferably from 250 to 550 Aim.
  • the particle size distribution is usually 1000 ⁇ !
  • the content in the range from 100 to 100 / m is 90% by mass or more, preferably 95% by mass or more.
  • the average particle size exceeds 600 m or coarse particles exceeding 1000 m exist in excess of 10% by mass, the absorption rate tends to decrease.
  • fine particles having an average particle diameter of less than 200 m or less than 100 Aim are present in an amount of more than 10% by mass, problems such as a reduction in powder handling properties and a quantitative supply property by a sprayer, and generation of dust are caused. In many cases, the problem of deteriorating the work environment may occur.
  • the absorbent composition [1] of the present invention is characterized in that the specific surface area is improved by 10% or more as compared with (A) in which (B) is not incorporated.
  • the specific surface area is a value measured by the BET method. Therefore, the specific surface area of (A) in which (B) is not incorporated is compared with the value measured by the BET method.
  • the value measured by the T method is improved by 10% or more.
  • the specific surface area of the absorbent composition [1] of the present invention having a particle size of 150 to 500 m was 0.1 lm 2 / g or more, particularly 0.15 m 2 / g or more, as measured by the BET method. Preferably, there is.
  • the bulk density of the absorbent composition [1] of the present invention is usually 0.1 to 0.7 g / cm 3 , preferably 0.1 to 0.55 g cm 3 , particularly 0.2 to 0.5 g / cm 3 . cm 3.
  • the bulk density is a value measured based on JISK 3362.
  • the absorbent composition [1] of the present invention has an improved specific surface area as described above, the absorption rate of physiological saline ( ⁇ ) without ( ⁇ ) is not incorporated ( The absorption rate is improved with respect to the absorption time, and the degree of improvement in the absorption rate is preferably 80% or less in time.
  • the absorption rate of physiological saline (absolute time of absorption of a certain amount) of (1), in which ( ⁇ ) is not incorporated, is compared with the absorption rate of physiological saline of absorbent composition [1] of the present invention (constant). Is preferably reduced to 80% or less.
  • the absorbent rate of the physiological saline solution of the absorbent composition [1] of the present invention is preferably 25 seconds or less, particularly 20 seconds or less. With such an absorbent rate, it can be used for sanitary articles such as disposable diapers. In this case, it is effective to improve dry feeling and reduce leakage.
  • the absorbent composition [1] of the present invention obtained by surface cross-linking has an improved absorption capacity under pressure and an absorption rate to physiological saline of preferably 25 seconds or less, particularly preferably 20 seconds or less.
  • the absorption under pressure of 20 g / cm 2 for physiological saline can be preferably 25 g / g or more, especially 28 gZg or more.
  • the absorbent composition [2] of the present invention is obtained by further adding a surfactant (C) to the surface of the absorbent composition [1:].
  • the shape and particle size distribution, specific surface area, bulk density, and other physical properties of the absorbent composition [2] of the present invention are basically the same as those of the absorbent composition [1]. The characteristic of fast absorption is maintained.
  • the type of surfactant (C) is not particularly limited, and any of nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants can be used.
  • nonionic surfactants include alkylphenols, aliphatic alcohols, carboxylic acids, aliphatic amines, fatty acid amides, ethylenoxide and active hydrogen-containing compounds such as polyphenylene-modified or amine-modified polysiloxanes.
  • non-ionic surfactant The following are specific examples of the non-ionic surfactant.
  • anionic surfactants include alkali metal salts of (C8-C24) -alkyl sulfonic acids, alkali metal salts of (C8-C24) -alkyl sulfates or Real alkanoammonium salts, sulfosuccinic acid diesters, sulfosuccinic acid monoesters, (C8 C24) -alkylarylsulfonic acids, alkylphenols, and sulfuric acid half-esters of products obtained by adding ethylene oxide to aliphatic alcohols, etc. No. These anionic surfactants can be used in combination of two or more, and can also be used in combination with the above-mentioned nonionic surfactants.
  • cationic surfactant examples include salts of inorganic acids (such as hydrochloric acid) and salts of organic acids (such as acetic acid and citrate) of higher aliphatic amines (such as laurylamine and stearylamine) and higher fatty acids such as lower amines.
  • inorganic acids such as hydrochloric acid
  • organic acids such as acetic acid and citrate
  • higher aliphatic amines such as laurylamine and stearylamine
  • higher fatty acids such as lower amines.
  • Steparic acid, oleic acid, etc. Solomin A-type quatin surfactant, Sapamin A-type quatin surfactant, Quaternary ammonium salt having long-chain (C10-C22) alkyl (Long-chain alkyl benzyl dimethyl ammonium chloride) And the like, and an inorganic acid or an organic acid salt of an alkylene oxide (such as ethylene oxide) adduct of an aliphatic amine.
  • the amphoteric surfactant include a compound having at least one cationic group (for example, a quaternary ammonium group) and an anionic group (for example, a carboxylate group or a sulfate group) in the same molecule. Specific examples include dimethylcarboxydimethyl-fatty acid monoalkylamide ammonium quinones, and 3- (3-fatty acid amide doped lovir) dimethylammonium 2-hydroxyhydropropanesulfonates.
  • nonionic surfactants having an HLB (Griffin) of 3 or more, especially 8-14.
  • HLB is an indicator indicating the balance between hydrophilicity and lipophilicity of a surfactant, and can be controlled by the type and number of functional groups, or the number of moles and molecular weight of alkylene oxide added.
  • a surfactant (C) is further added to the surface of the absorbent composition [1] obtained by the production method described in the above item [3] or [4]. It is obtained by doing.
  • the amount of the surfactant (C) is usually 0.1 to 5%, preferably 0.1 to 3%, particularly 0.2 to 2%, based on the quality of the absorbent composition [1]. .
  • the content of the fleas of (C) is less than 0.1%, the treatment effect of (C) is poor, and almost no improvement in the affinity between the obtained composition and blood can be expected. Things may not be obtained.
  • the amount of (C) exceeds 5%, it is effective for improving the absorption rate. However, the powder flowability of the resulting composition deteriorates, which may cause problems in powder handling properties, which is not preferred.
  • the surfactant (C) By applying the surfactant (C) to the surface of the absorbent composition [1], the surfactant (C) adheres to the surface, and if the surfactant has permeability, it penetrates into the interior of the composition. .
  • the method of adding the surfactant (C) to the absorbent composition [1] is not particularly limited.
  • the surfactant (C) is mixed with the absorbent composition using a normal mixing device.
  • the surfactant (C) may be as such or diluted in water or an aqueous liquid.
  • Examples of specific equipment include a V-type mixer, a repump blender, a turbula mixer, a universal mixer, a Nauta mixer, a fluidized bed mixer, a spray mixer, a line blender, a continuous mixer, and a panbury. Mixer, mortar mixer and the like. These can be used in combination of two or more. [Absorption rate for sheep blood]
  • composition [2] of the present invention has an absorption rate to sheep blood of usually 30 seconds or less, preferably 25 seconds or less, and a water retention g after swelling in sheep blood for 30 minutes is usually 20 g /. g or more, preferably 23 g / g or more.
  • composition [2] of the present invention has such a balance of absorption characteristics (absorption rate and water retention) for blood, it can be used for various absorbent articles (for example, sanitary napkins, panty liners, tampons, surgery) Underpads, puerperal mats, dressings for wound protection, etc.), especially when applied to sanitary napkins, improves the dryness of the surface, reduces leakage, and increases water retention compared to conventional water-absorbent resins. It is a target.
  • composition [2] of the present invention When the composition [2] of the present invention is surface-crosslinked, the amount of absorption under a load against sheep blood is further improved, and the absorption ⁇ under a load of 20 g / cm 2 is reduced to 20 g. It is possible to make Z g or more.
  • artificial blood eg, about 0.9% sodium chloride, about 0.4% sodium bicarbonate, about 30% glycerin, about 30% carboxylate, Methylcell mouth sodium (about 0.18%, aqueous solution containing surfactants and coloring agents as needed) has been used, but the absorption behavior by this simulated blood and actual blood (human blood) have been used. , Bovine blood, bovine blood, sheep blood, etc.), it is necessary to use actual blood to determine the absorption performance for blood.
  • the absorbent article of the present invention comprises an absorbent layer comprising the absorbent composition [1] or [2] of the present invention and a fibrous material wrapped in a surface protective sheet having a water-permeable portion.
  • the surface protection sheet usually consists of a water-impermeable sheet on the outer surface and a water-permeable sheet on the inner surface, depending on the form of use.
  • the absorbent layer is wrapped between the two sheets, and the ends of the two sheets are joined to form a water absorbent article. If necessary, a water-absorbing paper, a liquid diffusion sheet and the like are used together with the absorbing layer between the two sheets.
  • the fibrous material used in the absorbent layer includes pulp, synthetic fiber, semi-synthetic fiber, natural fiber and the like, and is not particularly limited.
  • the thickness and length of the fibrous material are not particularly limited.
  • the measurement was carried out by BET one-point method using a device manufactured by Cyuasa Ionics Inc. (Canleeve QS-19).
  • the water-absorbent resin or absorbent sample used for the measurement was adjusted to 30 to 100 mesh in advance.
  • a beaker (100 ml capacity) containing 50 g of 0.9% sodium chloride solution in a magnet (08 mm in diameter at the center, 7 mm in diameter at both ends, 30 mm in length, medium size coated with fluororesin) And place the beaker on the center of the magnetic stirrer.
  • the time when the vortex disappeared and the liquid level became horizontal was defined as the end point, and the time required for the end point was measured in seconds to determine the absorption rate.
  • Absorbent composition sample adjusted to a particle size of 30 to 60 mesh with a JIS standard screen in a cylindrical plastic tube (inner diameter 30 mm> height 60 mm) with a 250 mesh nylon net attached to the bottom 0.1 'Add 0 g and level.
  • a weight having an outer diameter of 30 mm is placed on the absorbent composition so as to give a load of 20 g / cm 2 .
  • a plastic tube containing the absorbent composition is placed in a petri dish (diameter ⁇ 12 cm) containing 60 ml of 0.9% by mass saline solution with the nylon mesh side facing down. The g of the absorbent composition increased by absorbing 0.9% saline was measured after 5 minutes and 60 minutes.
  • the 10-fold value of the measured value after 5 minutes was defined as the initial pressure absorption g in 0.9% saline, and the 10-fold value of the measured value after 60 minutes was defined as the pressure absorption amount in 0.9% saline solution.
  • a tea bag (length 20 cm, width 10 cm) made of 250 mesh nylon net, 1.0 g of an absorbent composition sample adjusted to a particle size of 30 to 60 mesh with a JIS standard sieve was put into sheep blood. After immersion for 30 minutes to absorb and swell, suspend by ice for 15 minutes, dehydrate with a centrifugal dehydrator at 250 G for 2 minutes, and measure the increase. This increased weight was defined as water retention for sheep blood.
  • a fluff pulp layer having a basis weight of 100 g / m 2 is cut into a size of 6 cm x 15 cm, and 0.4 g of a sample of the absorbent composition is uniformly sprayed thereon. Furthermore, a fluff pulp layer of the same tsubo g and the same size is piled up and pressed on a wire mesh at 10 kgZcm 2 for 30 seconds to form an absorber layer.
  • a leak-proof film larger than the absorber eyebrows is placed on the lower surface, and a rayon nonwoven fabric is placed on the upper surface, and the periphery is heat-sealed along the absorber layer to create a model napkin.
  • the absorption rate measurement After the absorption rate measurement, the area where the sheep blood was absorbed and spread in the absorber layer was determined, and the average value of the three measurements was taken as the diffusion area.
  • a 1 liter glass reaction vessel was charged with 77 g of sodium acrylate, 22.8 g of acrylic acid, 0.2 g of N, N, monomethylenebisacrylamide and 295 g of deionized water, stirred, mixed and mixed. While maintaining the temperature of the contents at 3'C.
  • the hydrogel polymer (A1G) is shredded to a size of 3 to 7 mm with an internal mixer, and then is passed through a ventilated pan drier at 150 ° C and a wind speed of 2.0 m / sec. It was dry. The obtained dried product was pulverized and adjusted to a particle size of 20 to 100 mesh to obtain a water-absorbent resin (A1).
  • Table 1 shows the results of measuring the specific surface area of the water-absorbent resin (A1) and the absorbent composition (1), and calculating the rate of increase in the specific surface area.
  • Table 2 shows the performance evaluation results of the absorbent composition (1).
  • Table 1 shows the results of measuring the specific surface area of the water absorbent resin (A2) and the absorbent composition (2), and calculating the rate of increase in the specific surface area.
  • Table 2 shows the performance evaluation results of the absorbent composition (2).
  • Example 1 100 g of the dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 1 except that the addition of the dispersion liquid (B11) in Example 1 was changed to 25 g or 250 g, Surface cross-linking was performed in the same manner as in Example 1 to obtain an absorbent composition (3) and an absorbent composition (4).
  • Table 1 shows the results of calculating the rate of increase of the specific surface area with respect to.
  • Table 2 shows the performance evaluation results of the absorbent compositions (3) and (4).
  • Example 1 the following dispersion layer (B12) or (B12) was used instead of the dispersion liquid (B11).
  • Example 2 Except that 13)-was used in the same manner as in Example 1, and the surface was crosslinked in the same manner as in Example 2 to obtain an absorbent composition (5) and an absorbent composition (6).
  • Table 1 shows the results of measuring the specific surface area of the absorbent compositions (5) and (6) and calculating the rate of increase of the specific surface area with respect to the water-absorbent resin (A2).
  • Table 2 shows the performance evaluation results of the absorbent compositions (5) and (6).
  • a 1-liter glass reaction vessel was charged with 77 g of sodium acrylate: 22.8 g of acrylic acid, 0.2 g of ⁇ , ⁇ '-methylenebisacrylamide and 293 g of deionized water, and stirred. While mixing, 2 g of Expanscel 09 IDEj was added to keep the contents at a temperature of 3.
  • the hydrogel polymer composition (AB1G) was chopped with an internal mixer, and then dried with a ventilated pan drier at 150 ° C and a wind speed of 2.0 m / sec.
  • the obtained dried product was pulverized and adjusted to a mesh size of 20 to 100 meshes, and 100 g of this product was stirred at a high speed while a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (permanent / 2 g of methanol (70/30) was added and mixed, followed by heat crosslinking at 140 for 30 minutes to obtain a surface-crosslinkable absorbent composition (7).
  • Table 1 shows the results obtained by measuring the specific surface area of the absorbent composition (7) and calculating the increase rate of the specific surface area with respect to the water absorbent resin (A2).
  • Table 2 shows the performance evaluation results of the absorbent composition (7). (Example 8)
  • a 1 liter glass reaction vessel was charged with 81.8 g of acrylic acid, 0.2 g of N, N, -methyl bis (acrylamide) and 241 g of deionized water, and the contents were stirred and mixed. Temperature was kept at 3 eC .
  • This hydrogel polymer was shredded with an internal mixer, and 109.1 g of a 30% aqueous sodium hydroxide solution was added and kneaded, whereby the hydrogel was neutralized with 72 mol% of the carboxylic acid.
  • a polymer (A3G) was obtained.
  • Example 2 The same 2% aqueous dispersion (BID 100 g) as in Example 1 was added to the hydrogel polymer (A3G), and the mixture was uniformly mixed using an internal mixer. It dried with the ventilation type band dryer of the conditions.
  • the hydrogel polymer (A3G) was uniformly mixed with an internal mixer, and then dried with a ventilated band dryer at 150 ° C and a wind speed of 2. Om / sec.
  • the obtained dried product was pulverized and adjusted to a particle size of 20 to 100 mesh.
  • a surface-Ji bridge type water-absorbent resin (A3) was obtained.
  • Example 1 The water absorbent resin (A1) obtained in Example 1 was used as a comparative absorbent composition (cl), and the performance evaluation results are shown in Table 2.
  • the water absorbent resin (A2) obtained in Example 2 was used as a comparative absorbent composition (c2), and the performance evaluation results are shown in Table 2.
  • Example 1 100 g of a dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 1 except that the amount of the dispersion liquid (B11) added was changed to 2 g or 600 g in Example 1, Surface cross-linking was performed in the same manner as in Example 2 to obtain a comparative absorbent composition (c3) and a comparative absorbent composition (c4).
  • Table 1 shows the results obtained by measuring the specific surface ⁇ of the comparative absorbent compositions (c 3) and (c 4) and calculating the rate of increase of the specific surface area with respect to the water-absorbent resin (A 2).
  • Table 2 shows the performance evaluation results of the comparative absorbent compositions (c3) and (c4).
  • Example 5 100 g of a dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 1 except that the same amount of the following dispersion liquid (B14) is used in place of the dispersion liquid (B11) in Example 1 was subjected to surface crosslinking in the same manner as in Example 2 to obtain a comparative absorbent composition (c5).
  • Table 1 shows the results of measuring the specific surface area of the comparative absorbent composition (c5) and calculating the rate of increase of the specific surface area with respect to the water absorbent resin (A2).
  • Table 2 shows the performance evaluation results of the comparative absorbent composition (C5).
  • BU 2% aqueous dispersion of Mazumoto Mike D-Sfair-1 MF L80 QTA (true density: 0.2 g / cm3; particle size: 20 m, manufactured by Matsumoto Yushi Jie Co., Ltd.).
  • the hydrogel polymer (A1G) obtained in Example 1 was shredded to a size of 3 to 7 mm with an internal mixer, and then thermally decomposed foaming agent “Vinihole AZ-S” (decomposition) Temperature 100.
  • C main component: azobisisobutyronitrile, manufactured by Eiwa Kasei Kogyo Co., Ltd.) was added at 2% based on the solid content of (A 1 G), and then uniformly mixed with an internal mixer. Ventilation band drying at 150 ° C, wind speed 2. Om / sec 31
  • Table 1 shows the results of measuring the specific surface area of the comparative absorbent composition (c6) and calculating the rate of increase of the specific surface area with respect to the water absorbent resin (A2).
  • Table 2 shows the performance evaluation results of the comparative absorbent composition (c6).
  • a hydrogel polymer (A 1 G) was obtained in the same manner as in Example 1.
  • Table 3 shows the results of measuring the specific surface area of the absorbent composition (9) and measuring the rate of increase of the specific surface area with respect to the water-absorbent resin (A1).
  • Table 4 shows the performance evaluation results of the absorbent composition (9).
  • Table 3 shows the results of measuring the specific surface area of the absorbent composition (10) and calculating the rate of increase of the specific surface area with respect to the surface-crosslinked type water-absorbent resin (A2).
  • Table 4 shows the performance evaluation results of the absorbent composition (10).
  • Example 9 except that the addition amount of the dispersion liquid (B21) was changed to 2.5 g and 25 g, respectively, a dried product having a particle size of 20 to 100 mesh and 10 Og obtained in the same manner as in Example 9, The surface was crosslinked in the same manner as in Example 10 to obtain an absorbent composition (1.1) and an absorbent composition (12). 33
  • Table 3 shows the results of measuring the specific surface areas of the absorbent compositions (11) and (12) and calculating the rate of increase of the specific surface area with respect to the surface-crosslinkable water-absorbent resin (A2).
  • Table 4 shows the performance evaluation results of the absorbent compositions (11) and (12).
  • Example 9 the following dispersion liquid was used instead of the dispersion liquid (B21).
  • An absorbent composition (13) and an absorbent composition (14) were obtained in the same manner as in Example 9 except that the same g of (B2Z) or (B23) was used, and surface-crosslinked in the same manner as in Example 10. .
  • Dispersion (B24) A 20% aqueous dispersion of "Matsumoto Microsphere I F-20" (expansion temperature 80-85. C, maximum expansion temperature 105-115 C, expansion ratio about 43 times).
  • Table 3 shows the results of measuring the specific surface areas of the absorbent compositions (13) and (1) and calculating the rate of increase in the specific surface area with respect to the surface-crosslinkable water-absorbent resin (A2).
  • Table 4 shows the performance evaluation results of the absorbent compositions (13) and (14).
  • a 1 liter glass reaction vessel was charged with 77 g of sodium acrylate, 22.8 g of acrylic acid, 0.2 g of N, N, methylenebisacrylamide and 293 g of deionized water, stirred and mixed. While adding 2 g of "Matsumoto mylos F-30", the temperature of the contents was kept at 3 ° C.
  • the hydrogel polymer blend (AB 2G) was shredded with an internal mixer, and then dried with a ventilated pan drier at 150 ° C and a wind speed of 2.0 m / sec.
  • the obtained dried product is pulverized and adjusted to a particle size of 20 to 100 mesh.
  • Table 3 shows the results obtained by measuring the specific area of the absorbent composition (15) and calculating the rate of increase in the specific surface area with respect to the surface-absorbing water-absorbent resin (A2).
  • Table 4 shows the performance evaluation results' of the absorbent composition (15).
  • Example 9 10 g of the same dispersion coat (B21) as in Example 9 was added to the hydrogel polymer (A 3 G), and the mixture was uniformly mixed with an internal mixer. C, Drying was performed with a ventilated pan drier at a wind speed of 2.0 msec.
  • the specific surface area of the absorbent composition (16>) was measured, and the result of calculating the rate of increase of the specific surface area with respect to the surface-crosslinkable water-absorbent resin (A3) obtained in Example 8 is shown in Table 3.
  • Table 4 shows the results of evaluating the performance of the agent composition (16).
  • Example 9 100 g of a dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 9 except that the added amount of the dispersion liquid (B21) was changed to 0.2 g or 60 respectively, Surface cross-linking was performed in the same manner as in Example 10 to obtain a comparative absorbent composition (c7) and a comparative absorbent composition (c8).
  • Table 3 shows the results of measuring the specific surface area of the comparative absorbent compositions (c7) and (c8), and calculating the rate of increase of the specific surface area with respect to the surface-crosslinked type water-absorbent resin (A2).
  • Table 4 shows the performance evaluation results of comparative absorbent compositions (c7) and (c8). 35
  • absorbent compositions (2) and (5) were obtained in the same manner as in Examples 2 and 5. Further, absorbent compositions (13) and (14) were obtained in the same manner as in Examples 13 and 14.
  • Example 18 the absorbent composition of the present invention (25) to (28) was prepared in the same manner as in Example 18 except that the following surfactant was used in the same amount instead of the polyoxyethylene-modified silicone oil. I got Table 5 shows the results of the evaluation of these properties.
  • absorbent composition (28) polyoxyethylene lauroyl ethanolamide disodium succinate ("Bulite A-5000” manufactured by Sanyo Chemical Industries; amphoteric surfactant).
  • the comparative absorbent composition (c1) obtained in Comparative Example 1 was used as a comparative absorbent composition (c9), and the results of measurement of bulk density and evaluation using sheep blood are shown in Table 6.
  • the comparative absorbent composition (c 2) obtained in Comparative Example 2 was used as a comparative absorbent composition (c 10), and the results of measurement of bulk density and evaluation using sheep blood are shown in Table 6.
  • Absorbent composition (9) obtained in Example 9 surface-crosslinked type absorbent composition (18 ') obtained in Example 18, absorbent composition (2) obtained in the same manner as in Examples 2 and 5.
  • Absorbent compositions (13), (14) obtained in the same manner as in Examples 13 and 14 are referred to as comparative absorbent compositions (cll) to (cl6), respectively. Table 6 shows the evaluation results.
  • Comparative Example 18 100 g of the comparative absorbent composition (c9) obtained in Comparative Example 9 was put in a V-type mixer (volume: 300 ml), and the same polyoxyethylene-modified silicone oil as in Example 17 was rotated while rotating. 1 g was added and mixed to obtain a comparative absorbent composition (c17). Table 6 shows the performance evaluation results of the comparative absorbent composition (c17). Comparative Example 18
  • the hydrogel polymer (AB 2 G) obtained in Example 15 was cut into a size of 3 to 7 mm with an internal mixer, and then 150. C, wind speed 2. Dried with a ventilated band dryer at Om / sec. The obtained dried product is pulverized and adjusted to a particle size of 20 to 1 Q0 mesh. The dried product having the adjusted particle size is subjected to surface crosslinking as in Example 2. 39
  • the hydrogel polymer (A1G) obtained in Example 1 was cut into pieces having a size of 3 to 7 mm using an internal mixer, and then a thermal decomposition type foaming agent “Vinihole AZ—S j ( Decomposition temperature 100 C, main component: azobisisobutyronitrile, manufactured by Eiwa Kasei Kogyo Co., Ltd.) was added at 2% to the solid content of (A 1 G), and after uniform mixing with an internal mixer, At 150 ° C and a wind speed of 2.0 m / sec with a ventilated band dryer. The dried product obtained was pulverized and adjusted to a particle size of 20 to 100 mesh to obtain a comparative absorbent composition ( Table 6 shows the evaluation results of the comparative absorbent composition (c19).
  • Comparative absorbent composition obtained in Comparative Example 9 (c 9), Comparative absorbent composition obtained in Comparative Example 11 (c 11), Comparative absorbent composition obtained in Comparative Example 15 (C15) and comparative absorbent compositions (cl7) to (cl9) obtained in Comparative Examples 17 to 19, comparative model napkins were prepared and their performance was evaluated. Table 7 shows the results.
  • the absorbent composition and the production method of the present invention have the following features and effects. (1) Since the absorption rate under normal pressure is high and the initial pressure absorption amount (absorption rate under pressure) is excellent, when used as an absorbent for sanitary goods, for example, the effect of improving the initial dry feeling and reducing the leakage is obtained. Demonstrate.
  • Ru can improve the absorption rate in a simple method of heat drying by blending fine filler to hydrogel of any stage before the polymerization of the water-absorbent resin to a dry ⁇ 6
  • surfactants treated with surfactants have a high absorption rate for blood and blood, and have excellent water retention properties.
  • the surface dryness can be improved. It has an excellent effect on the reduction of leaks. It also exhibits excellent absorption performance and absorption rate for other body coats (urine, breast milk, amniotic fluid at birth, etc.).
  • the absorbent composition of the present invention can be used for various absorbent articles, for example, disposable disposable diapers (children and adult disposable diapers), sanitary napkins, pads for incontinent persons, breast milk pads. It is particularly suitable for sanitary and medical products such as a pad, a surgical underpad, a puerperium mart, and a dressing material for wound protection. It is also suitable for use with various absorbent sheets (eg, urine absorbent sheet, freshness preserving sheet, drip absorbing sheet, paddy rice seedling seedling sheet, concrete curing sheet, water running prevention sheet for cables, etc.). be able to.
  • various absorbent sheets eg, urine absorbent sheet, freshness preserving sheet, drip absorbing sheet, paddy rice seedling seedling sheet, concrete curing sheet, water running prevention sheet for cables, etc.
  • powders of absorbent compositions for example, soil preservatives, sludge solidifying agents, solidifying agents such as waste blood and aqueous effluents, urine gelling agents, battery electrolyte gelling agents, etc.
  • powders of absorbent compositions for example, soil preservatives, sludge solidifying agents, solidifying agents such as waste blood and aqueous effluents, urine gelling agents, battery electrolyte gelling agents, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

An absorbent composition having a structure comprising a water-absorbing resin (A) and a fine filler (B) contained therein, characterized by having a specific surface area larger by at least 10 % than that of the water-absorbing resin (A) not containing the fine filler (B); and a process for producing the absorbent composition involving the step of drying a polymer in an aqueous gel form to produce a water-absorbing resin (A), after a fine filler (B1) having a true density of 0.1 g/cm3 or lower and a particle diameter of 1 to 200 νm is incorporated into the polymer.

Description

明細霤  Detail
吸収剤組成物とその製造方法及び吸収性物品  Absorbent composition, method for producing the same, and absorbent article
本発明は、 吸収剤組成物とその製造方法及び吸収性物品に関する。 The present invention relates to an absorbent composition, a method for producing the same, and an absorbent article.
特に、 吸水性樹脂中に微小フイラ一が内蔵され、 表面積の改善とそれに伴う吸 収速度とが改善された吸収剤組成物;血液に対する吸収速度や保水量が更に改善 された吸収剤組成物; これらの製造方法;及びこれらの組成物を用いた吸収性物 品に関する。 背景技術  In particular, an absorbent composition in which a microfilament is incorporated in a water-absorbent resin to improve the surface area and the absorption rate associated therewith; an absorbent composition in which the absorption rate to blood and the water retention are further improved; These production methods; and absorbent articles using these compositions. Background art
吸水性樹脂の吸収速度はその表面積に影饗される。 即ち、 一定質量の粒子状の 吸水性樹脂では、 粒子の粒径が大きいほど表面積は小さくなり水と接触する面積 が小さくなるので吸収速度は遅くなる。 逆に、 粒径が小さくなるほど表面檟は大 きくなるので吸収速度は速くなる。 しかし、 粒径が小さすきると、 吸水性樹脂が 水と接触したとき微粒子同士が水を介して会合する現象(「ままこ」と呼ばれてい る現象である) が生じ、 逆に見かけの吸収速度は遅くなる。  The absorption rate of the water-absorbing resin is influenced by its surface area. That is, in the case of the particulate water-absorbing resin having a constant mass, the larger the particle size of the particles, the smaller the surface area and the smaller the area in contact with water. Conversely, as the particle size becomes smaller, the surface く な る becomes larger, so that the absorption rate becomes faster. However, if the particle size is too small, when the water-absorbent resin comes into contact with water, a phenomenon occurs in which the fine particles associate with each other via water (a phenomenon called “mamako”). Speed slows down.
従来、 吸水性樹脂の吸収速度を向上させる方法としては、 下記①〜⑤などの方 法が提案されている。  Conventionally, the following methods (1) to (4) have been proposed as methods for improving the absorption rate of a water-absorbing resin.
①細かい粒子状の吸水性樹脂の表面に、 界面活性剤や水溶性高分子を添加して (1) Add surfactant and water-soluble polymer to the surface of fine particulate water-absorbent resin
「ままこ」 を防止する方法 (特公平 2— 3 0 3 3 6号公報); How to prevent "mamako" (Japanese Patent Publication No. 2-303036);
②吸水性樹脂の製造プロセスにおける重合原液中に、 低沸点揮発性溶剤を添加 し、重合熱で揮発性溶剤を気化させることにより、樹脂を多孔質化させる方法(特 開昭 5 9— 1 8 7 1 2号公報);  (2) A method in which a low boiling point volatile solvent is added to the polymerization stock solution in the process of producing a water-absorbent resin, and the volatile solvent is vaporized by the heat of polymerization to make the resin porous. No. 7 1 2);
③カルボキシル S含有吸水性樹脂とグリシジル基含有ボリオレフィン樹脂に架 樯剤と熱分解型の発泡剤を混合し、 加熱究泡させ、 フォーム状とする方法 (特開 昭 6 3— 2 5 1 4 3 7号公報);  (3) A method in which a crosslinking agent and a pyrolytic foaming agent are mixed with a carboxyl S-containing water-absorbent resin and a glycidyl group-containing polyolefin resin, and the mixture is heated to form a foam. No. 37);
④不飽和単量体と架橋剤とを含む単虽体水溶液にアミノ甚含有ァゾ化合物から なる発泡剤を分散させて重合し、 多孔質の吸水性樹脂を得る方法 (再公表特許 W 0 9 6 - 1 7 8 8 4号公報); (4) A method of obtaining a porous water-absorbent resin by dispersing and polymerizing a foaming agent comprising an amino-containing azo compound in a monomer aqueous solution containing an unsaturated monomer and a crosslinking agent (Republished Patent W No. 0 9 6-1 7 8 8 4);
⑤微粒子を、 水や熱溶融性樹脂パインダーを用いて造粒する方法。  方法 A method of granulating fine particles using water or a heat-fusible resin binder.
しかし、 ①〜⑤の方法は、 被吸収液が尿や塩水のような低粘度の液体の場合は ある桎度の改良効果は認められる'ものの、 以下のように製造面および品質面にお いて必ずしも満足のいくものではなかった。  However, the methods (1) to (4) show that, when the liquid to be absorbed is a low-viscosity liquid such as urine or salt water, a certain effect of improving the flute is recognized, but the manufacturing and quality aspects are as follows. It was not always satisfactory.
①の方法で得られる吸水性樹脂は、 粒子が細かすぎるため、 パルプ等の繊維状 物と泯贪して吸収体とし紙おむつ等に適用した場合、 細かい粒子が繊維状物から 脱雜しゃすいと言う問題がある。 更に、 ①の方法で得られる吸水性樹脂は、 界面 活性剤や水溶性高分子で処理していることから粉体流動性が悪化する問題や、 微 粒子が粉麈発生の原因となつて作業環境を悪化させるという問題を生じることが ある。  Since the water-absorbent resin obtained by the method (1) has too fine particles, when it is mixed with fibrous materials such as pulp to be used as an absorbent and applied to paper diapers etc., it is said that the fine particles will be released from the fibrous materials. There's a problem. Furthermore, the water-absorbent resin obtained by the method ① is treated with a surfactant or a water-soluble polymer, so that the powder fluidity deteriorates and fine particles cause dust generation. May cause environmental degradation problems.
②の多孔質化させる方法では、 吸収速度の向上はある程度認められるものの、 低沸点揮発性溶剤を使用することから防爆型などの特殊な製造設備を必要とする。 In the method of making porous, the improvement of absorption rate is recognized to some extent, but special manufacturing equipment such as explosion-proof type is required because a low boiling point volatile solvent is used.
③の熱分解型の発泡剤を用いる方法では、 原料の吸水性樹脂やポリオレフィン 樹脂は硬くて可撓性のない樹脂であるため、 ある程度の高いガス圧になった時点 でガスを一気に放出することから、 発泡径が大きく、 不均一な気泡となり、 一定 した吸収速度や吸収性能が得られにくいと言う問題がある。 In the method using a thermal decomposition type blowing agent in (3), since the raw water-absorbent resin and polyolefin resin are hard and inflexible resins, the gas must be released at once when the gas pressure reaches a certain level. Therefore, there is a problem that the foam diameter is large and the cells become non-uniform, and it is difficult to obtain a constant absorption rate and absorption performance.
④の多孔質化させる方法では、 アミノ基含有ァゾ化合物が分解して窒素ガスを 発生する際にラジカルも同時に生成するため、 吸水性樹脂の分子量低下による吸 収性能の低下や水可溶性成分萤の増加という問題を生じる。  In the method of making porous, the amino group-containing azo compound is decomposed to generate nitrogen gas, and at the same time, radicals are generated. Therefore, the absorption performance is reduced due to a decrease in the molecular weight of the water-absorbing resin, and water-soluble components are not used. The problem arises of the increase of.
⑤の微粒子をバインダーを用いて造粒させる方法では、 パインダ一の接着力を 強くすると、 吸収速度の改善効果が不十分となる。 反対にパインダ一の接着力を 弱くすると、 造粒物の機械的強度が弱くなり、 スクリユーフィーダ一や風圧によ る粉体移送工程における機械的剪断や機械的摩擦によって、 造粒が壊れて元の微 粒子に戻ってしまうという問題を生じる。  In the method of granulating the fine particles with a binder, the effect of improving the absorption rate becomes insufficient if the bond strength of the binder is increased. Conversely, if the adhesive force of the binder is weakened, the mechanical strength of the granulated material is weakened, and the granulation is broken by mechanical shear and mechanical friction in the powder feeder and the powder transfer process by wind pressure. This causes a problem of returning to the original fine particles.
また、 血液を被吸収液とする際においては、 血液は粘性が髙く、 血球やへモグ ロビン, 細胞質, タンパク成分などの高分子有機成分を含有するので、 上記①〜 ⑤の方法は必ずしも満足のいく結果を与えていない。  In addition, when blood is used as the liquid to be absorbed, the blood is highly viscous and contains high molecular organic components such as blood cells, hemoglobin, cytoplasm, and protein components. Did not give good results.
この血液に対する吸収倍率や保水量と吸収速度との双方を満足し、 生理用ナプ キンなどの血液吸収性物品に好適な吸水性樹脂の出現が強く望まれているのが実 状である。 血液に対する吸水性樹脂の吸収特性を改良する方法としては、 従来、 下記⑥〜③などが提案されている。 Satisfies both the absorption capacity for water and the water retention and absorption rate, In fact, the emergence of a water-absorbent resin suitable for blood-absorbing articles such as kin is strongly desired. Conventionally, the following methods (1) to (3) have been proposed as methods for improving the absorption characteristics of the water-absorbent resin for blood.
⑥吸水性樹脂に無機酸または有機酸の塩を添加する方法 (特開昭 5 8— 5 0 1 1 0 7号公報);  (4) A method of adding a salt of an inorganic acid or an organic acid to a water-absorbing resin (Japanese Patent Application Laid-Open No. 58-501107);
⑦吸水性樹脂の中和塩の一部を力リウムまたはリチウム塩とする方法 (特鬨平 6 - 2 5 5 4 3号公報);  (4) A method in which a part of the neutralized salt of the water-absorbing resin is converted to lithium or lithium salt (Japanese Patent Publication No. 6-255543);
⑧吸水性樹脂にポリアミノ酸 (塩) 水性液を添加混合するか、 あるいはポリア ミノ酸 (塩) および架橋剤の存在下で水溶性不飽和単量体を重合する方法 (特関 平 7— 3 1 0 0 2 1号公報)。  (4) A method in which an aqueous solution of a polyamino acid (salt) is added to a water-absorbent resin and mixed, or a water-soluble unsaturated monomer is polymerized in the presence of a polyamino acid (salt) and a cross-linking agent. No. 10021).
しかし、 ⑥の方法では、 血液の吸収速度の改良はある程度認められるものの、 無機酸あるいは有機酸の塩を多量に添加しなければならないことから吸収倍率や 保水量が低下するいう欠点がある。  However, although the method (1) can improve the blood absorption rate to some extent, it has a drawback that the absorption capacity and the water retention are reduced because a large amount of salts of inorganic or organic acids must be added.
⑦の方法では、 血被に対する吸収倍率はある程度向上するものの、 血液の吸収 速度に関しては必ずしも満足のいくレペルではない。  In the method (1), although the absorption capacity for the blood coat is improved to some extent, the absorption rate of blood is not always a satisfactory level.
⑧の方法では、 生理食塩水に対する吸収性能は優れるものの、 血液に対する吸 収倍率は 6〜 1 1倍と低く、 かつ吸収速度については必ずしも満足のいくレベル ではない。  In the method (1), although the absorption performance with respect to physiological saline is excellent, the absorption capacity with respect to blood is as low as 6 to 11 times, and the absorption rate is not always at a satisfactory level.
本発明の第 1の目的は、 表面積の改蓥及びそれに伴う吸収速度の改善された吸 水性樹脂からなる吸収剤組成物を提供することである。  A first object of the present invention is to provide an absorbent composition comprising a water-absorbent resin having an improved surface area and an accompanying improved absorption rate.
本発明の第 2の目的は、 上記①〜⑤の方法における問題点が合わせて改善され た吸収剤組成物を提供することである。  A second object of the present invention is to provide an absorbent composition in which the problems in the above methods (1) to (4) have been improved.
本発明の第 3の目的は、 血液に対する吸収倍率の改善及び保水量と吸収速度と の双方が改善された吸収剤組成物を提供することである。  A third object of the present invention is to provide an absorbent composition having improved absorption capacity for blood and improved water retention and absorption speed.
本発明の第 4の目的は、 このような吸収剤組成物を用いた吸収性物品を提供す ることである。 発明の開示  A fourth object of the present invention is to provide an absorbent article using such an absorbent composition. Disclosure of the invention
本発明は、下記吸収剤組成物 [ 1 ] [ 2 ] ;吸収剤組成物の製造方法 [ 3;!〜 [ 5 ]; 及び吸収性物品 [6] である。 The present invention relates to the following absorbent composition [1] [2]; a method for producing the absorbent composition [3; ~ [ Five ]; And absorbent articles [6].
[ 1 ] 吸収剤組成物  [1] Absorbent composition
吸水性樹脂 (A) 中に、 微小フイラ一 (B) が内蔵された構造の吸収剤組成物 であり、 微小フイラ一 (B) が内蔵されていない吸水性樹脂 (A) に対し、 比表 面積が 10%以上向上していることを特徴とする吸収剤組成物である。  This is an absorbent composition with a structure in which the microfilament (B) is incorporated in the water-absorbent resin (A), and a comparison table with the water-absorbent resin (A) in which the microfilament (B) is not incorporated. An absorbent composition characterized in that the area is improved by 10% or more.
[2] 吸収剤組成物  [2] absorbent composition
前記 [ 1] に記載の吸収剤組成物の表面に更に界面活性剤 (C) が付与されて いる吸収剤組成物である。  An absorbent composition according to the above [1], wherein the surface of the absorbent composition is further provided with a surfactant (C).
[3] 吸収剤組成物の製造方法  [3] Method for producing absorbent composition
吸水性樹脂 (A) を含水ゲル状重合体を絰て製造する工程の乾燥前までに、 真 密度が 0. 1 g/cma以下で粒径が 1〜200〃mの微小フィラー (B1) を内 蔵させて乾燥する吸収剤組成物の製造方法である。 Absorbent resin (A) and before the drying step to produce a hydrogel polymer Te絰, true density of less than 0. 1 g / cm a particle size of 1~200〃M micro filler (B1) This is a method for producing an absorbent composition in which is incorporated and dried.
[4] 吸収剤組成物の製造方法  [4] Method for producing absorbent composition
吸水性樹脂 (A) を含水ゲル状重合体を経て製造する工程の乾燥前までに、 粒 径 1〜 1 5 O^mの熱膨張性中空フィラー (Β2') を内蔵させて加熱乾燥し、 吸 水性樹脂 (Α) 中に (Β2') が熱膨張してなる微小フィラー (Β2) を内蔵させる 吸収剤組成物の製造方法である。  Before drying in the process of producing the water-absorbent resin (A) via the hydrogel polymer, a heat-expandable hollow filler (Β2 ') with a particle size of 1 to 15 O ^ m is built in and dried by heating. This is a method for producing an absorbent composition in which a fine filler (Β2) obtained by thermally expanding (Β2 ') is incorporated in a water-absorbent resin (Α).
[5] 吸収剤組成物の製造方法  [5] Method for producing absorbent composition
[3] または [4] に記載の製造方法で得られる組成物の表面に、 さらに界面 活性剤 (C) を付与する吸収剤組成物の製造方法である。  This is a method for producing an absorbent composition in which a surfactant (C) is further provided on the surface of the composition obtained by the production method according to [3] or [4].
[ 6 ] 吸収性物品  [6] Absorbent articles
前記 [1]または [2]に記載の吸収剤組成物及び繊維状物からなる吸収層が、 透水性部分を有する表面保護シートに包まれてなる吸収性物品である。 発明を実施するための最良の形態  An absorbent article comprising the absorbent composition according to the above [1] or [2] and an absorbent layer comprising a fibrous material, which is wrapped in a surface protective sheet having a water-permeable portion. BEST MODE FOR CARRYING OUT THE INVENTION
[吸水性樹脂 (Α) の具体例]  [Specific examples of water absorbent resin (樹脂)]
本発明の吸収剤組成物 [1〕 における吸水性樹脂 (Α) の代表例としては、 下 記①の吸水性樹脂が挙げられる。 また、 ①以外にも下記②〜④の吸水性樹脂が例 示できる。 ①水溶性もしくは加水分解により水溶性となるラジカル重合性単量体( a )と、 架橋剤 (b l) 及びグラフト基剤 (b 2) からなる群より選ばれる 1種以上の多官 能性化合物 (b ) とを重合し、 必要により加水分解して得られ、 架橋構造及び/ ヌはグラフト構造を有する水不溶性水膨潤性の重合体とした吸水性樹脂; Representative examples of the water-absorbent resin (II) in the absorbent composition [1] of the present invention include the following water-absorbent resins. Also, in addition to ①, the following water-absorbent resins ① to ④ can be exemplified. (1) One or more multifunctional compounds selected from the group consisting of a water-soluble or water-soluble radically polymerizable monomer (a), a crosslinking agent (bl) and a graft base (b2). (B) a water-absorbent resin obtained by polymerizing and, if necessary, hydrolyzing a water-insoluble water-swellable polymer having a crosslinked structure and / or a graft structure;
②粒子状のポリサッカライ ドの表面を架橋させて水不溶性水膨潤性の構造とし たもの (例えば、 グァガム, キサンタンガム, セルロース, メチルセルロース, ェチルセルロース, カルボキシメチルセルロース, それらの変性物等の水溶性ポ リサッカライ ド粒子を多官能性架橋剤を用いて表面架橋したもの);  (2) The surface of a particulate polysaccharide is crosslinked to form a water-insoluble, water-swellable structure (for example, water-soluble polysaccharide such as guar gum, xanthan gum, cellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, or a modified product thereof). Particles obtained by surface cross-linking using a polyfunctional cross-linking agent);
③水溶性ラジカル重合性単萤体を重合するにあたり、 自己架橋させて水不溶性 水膨潤性の重合体としたもの (例えば、 自己架橋したポリアクリル酸塩); (3) In polymerizing a water-soluble radically polymerizable monomer, it is self-crosslinked to form a water-insoluble, water-swellable polymer (for example, a self-crosslinked polyacrylate);
④水溶性ラジカル重合性単垦体を重合し、 必要により架橋剤の存在下で熱架橋 させて水不溶性水膨潤性の重合体としたもの (例えば、 アクリルアミ ドとァクリ ル酸.(塩) との共重合体を熱架橘したもの)。 (4) Water-soluble radically polymerizable monomers are polymerized and, if necessary, thermally cross-linked in the presence of a cross-linking agent to form a water-insoluble, water-swellable polymer (for example, acrylamide and acrylic acid. (Salt) And a copolymer obtained by heating the copolymer.
①の吸水性樹脂において、 単 g体 (a ) のうち、 水溶性ラジカル重合性単萤体 ( a l) としては、 例えば、 カルポン酸基, スルホン酸基又はリン酸基等の酸墓を 有する水溶性ラジカル重合性単垦体(a ll) ;これら酸基を有する水溶性ラジ ル 重合性単里体の塩(a l2) ;非イオン性水溶性ラジカル重合性単量体(a l3) が挙 げられる。  In the water-absorbent resin (1), the water-soluble radically polymerizable monomer (al) of the monomer (a) is, for example, a water-soluble monomer having an acid grave such as a carboxylic acid group, a sulfonic acid group, or a phosphate group. Water-soluble radical polymerizable monomer having all acid groups (all); nonionic water-soluble radical polymerizable monomer (al3); I can do it.
( a ll)のうち、 カルポン酸基を有するラジカル重合性水溶性単萤体としては、 例えば、 不飽和モノまたはポリカルボン酸 [ (メタ) アクリル酸(アクリル酸及び /またはメタクリル酸をいう。以下同様の記載を用いる), クロトン酸, ソルビン 酸, マレイン酸, ィタコン酸, ケィ皮酸, これらの塩など]、 それらの無水物 [無 永マレイン酸など] などが挙げられる。  In (all), examples of the radically polymerizable water-soluble monomer having a carboxylic acid group include unsaturated mono- or polycarboxylic acids [(meth) acrylic acid (acrylic acid and / or methacrylic acid. Use the same description), crotonic acid, sorbic acid, maleic acid, itaconic acid, cinnamic acid, salts thereof, etc., and their anhydrides [non-maleic acid, etc.].
( a l l)のうち、 スルホン酸基を有するラジカル重合性水溶性単垦体としては、 例えば、 脂肪酸または芳香族ビニルスルホン酸 (ビニルスルホン酸, ァリルスル ホン酸, ビニルトルエンスルホン酸, スチレンスルホン酸など)、 (メタ) ァクリ ルアルキルスルホン酸、 [ (メタ)アクリル酸スルホェチル, (メタ)アクリル酸ス ルホブ口ピルなど]、 (メタ) アクリルアミ ドアルキルスルホン酸 [ 2—アクリル アミ ドー 2—メチルプロパンスルホン酸など]、 これらの塩などが挙げられる。 ( a ll) のうち、 リン酸基を有するラジカル重合性水溶性単量体としては、 例 えば、 (メタ)ァクリル酸ヒドロキシアルキルリン酸モノエステル [ 2—ヒドロキ シェチル(メタ)ァクリロイルホスフェート、, フエ二ルー 2—ァクリロイロキシ ェチルホスフェートなど] などが挙げられる。 Among (all), examples of the radically polymerizable water-soluble monomer having a sulfonic acid group include fatty acids or aromatic vinylsulfonic acids (vinylsulfonic acid, arylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, etc.) , (Meth) acrylalkyl sulfonic acid, [(meth) acrylic acid sulphoethyl, (meth) acrylic acid sulphob pill), (meth) acrylamide alkyl sulfonic acid [2-acrylamide 2-methylpropanesulfone Acid and the like], and salts thereof. Of (all), the radically polymerizable water-soluble monomer having a phosphate group includes, for example, (meth) acrylic acid hydroxyalkyl phosphate monoester [2-hydroxyshethyl (meth) acryloyl phosphate, , Phenyl-2-ethylacryloxyethyl phosphate, etc.].
( a 12) における塩の種類としては、 アルカリ金属塩、 アンモニゥム塩、 アミ ン塩等が挙げられ、 好ましくはアルカリ金属塩、 特にナトリウム塩である。  Examples of the kind of the salt in (a12) include an alkali metal salt, an ammonium salt, an amine salt and the like, and preferably an alkali metal salt, particularly a sodium salt.
非イオン性水溶性ラジカル重合性単运体(a l3) としては、 (メタ) アクリルァ ミ ド、 ビニルビ口リ ドン、 2—ヒドロキシェチル (メタ) ァクリレート等が挙げ られる。  Examples of the nonionic water-soluble radically polymerizable monomer (al3) include (meth) acrylamide, vinyl vinylidone, 2-hydroxyethyl (meth) acrylate, and the like.
単量体(a )のうち、加水分解により水溶性となるラジカル重合性単量体(a 2) としては、 (メタ) アクリロニトリル、 (メタ) アクリル酸低級アルキルエステル (アルキル基の炭索数 1〜4 )、マレイン醆低級アルキルエステル(アルキル基の 炭索数 1〜4 )、 ビニルアセテート等が挙げられる。  Among the monomers (a), the radically polymerizable monomers (a 2) which become water-soluble by hydrolysis include (meth) acrylonitrile, (meth) acrylic acid lower alkyl esters (alkyl groups having a carbon number of 1 4), maleic acid lower alkyl esters (1 to 4 carbon atoms in the alkyl group), vinyl acetate, and the like.
単量体(a ) としては、 以上例示したもののうち、 2種以上を併用してもよい。 また、 吸水性樹脂 (A ) が酸基および/またはその塩を有する樹脂である場合 の樹脂中の酸基の中和度は、好ましくは 5 0〜 9 0モル%、特に 6 0〜8 0モル% である。 この中和は重合前の単量体の段階であってもよく、 重合後中和してもよ い。  As the monomer (a), two or more of those exemplified above may be used in combination. When the water-absorbent resin (A) is a resin having an acid group and / or a salt thereof, the degree of neutralization of the acid group in the resin is preferably 50 to 90 mol%, particularly preferably 60 to 80 mol%. Mol%. This neutralization may be performed at the stage of the monomer before the polymerization, or may be performed after the polymerization.
架橋剤( b 1)としては、例えばェチレン性不飽和基を 2個以上有する桀橋剤( b 11)、 エチレン性不飽和基と反応性官能基を少なくとも一個ずつ有する架橋剤(b 12)、 反応性官能基を 2個以上有する架橋剤 (b l3) などが挙げられる。  Examples of the crosslinking agent (b1) include a bridging agent having two or more ethylenic unsaturated groups (b11), a crosslinking agent having at least one ethylenically unsaturated group and at least one reactive functional group (b12), Crosslinking agents (bl3) having two or more reactive functional groups are exemplified.
架橋剤 (b ll ) の具体例としては、 N , N,ーメチレンビス (メタ) ァクリルァ 5. ド、 エチレングリコールジ (メタ) ァクリレート、 ポリエチレングリコールジ (メタ) ァクリレート、 プロピレングリコールジ (メタ) ァクリレート、 グリセ リン (ジまたはトリ)ァクリレート、 トリメチ ールプロパントリァクリレート、 トリアリルアミン、 トリァリルシアヌレート、 トリアリルィゾシァヌレート、 テ トラァリロキシェ夕ン、 ペンタエリスリ トールトリアリルエーテルなどが挙げら れる。  Specific examples of the cross-linking agent (b ll) include N, N, -methylenebis (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and glycerol. Examples include phosphorus (di or tri) acrylate, trimethylpropane triacrylate, triallylamine, triallyl cyanurate, triallyl cisyanurate, tetraaryloxyphene, and pentaerythritol triallyl ether.
架橋剤 (b l2) の具体例としては、 グリシジル (メタ) ァクリレート、 N—メ チ口"ル (メタ) ァクリルアミ ドなどが挙げられる。 Specific examples of the crosslinking agent (bl2) include glycidyl (meth) acrylate, N-meth (Meth) acrylamide.
架橋剤 (bl3) の具体例としては、 エチレングリコール、 ジエチレングリコー ル、 グリセリン、 プロピレングリコール、 ジエタノールァミン、 トリメチ P—ル プロパン、 ポリエチレンィミン、 エチレングリコールジグリシジルェ一テル、 'グ リセロールジグリシジルエーテル、 ボリグリセロールポリグリシジルエーテルな どが挙げられる。  Specific examples of the crosslinking agent (bl3) include ethylene glycol, diethylene glycol, glycerin, propylene glycol, diethanolamine, trimethyl propylpropane, polyethyleneimine, ethylene glycol diglycidyl ether, and 'glycerol diglycidyl. Ether and polyglyceryl polyglycidyl ether.
これらの架橋剤は 2種類以上併用しても良い。 これらのうち好ましいものは、 架橋剤 (b 11〉 であり、 特に好ましくは、 N, N'—メチレンビスァクリルアミ ド、 エチレングリコ一ルジァクリレート、トリメチロールプロバントリァクリレート、 テトラァリロキシェ夕ン、 ベンタエリスルトールトリアリルエーテルおよびトリ ァリルアミンである。  Two or more of these crosslinking agents may be used in combination. Of these, preferred are crosslinking agents (b11), and particularly preferred are N, N'-methylenebisacrylamide, ethyleneglycoldiacrylate, trimethylolpropanetriacrylate, and tetraaryloxy. , Pentaerythritol triallyl ether and triarylamine.
グラフト基剤 (b2) としては、 デンプン、 グァガム、 キサンタンガム、 セル口 ース、 メチルセルロース、 ェチルセルロース、 力ルポキジメチルセルロース、 そ れらの変性物等の水溶性ポリサッカライ ド、 ポリビニルアルコール、 ポリエステ ル樹脂等が挙げられる。  Examples of the graft base (b2) include water-soluble polysaccharides such as starch, guar gum, xanthan gum, cellulose, methylcellulose, ethylcellulose, cellulose dimethylcellulose, and modified products thereof, polyvinyl alcohol, and polyester resins. And the like.
この吸水性樹脂 (A) は、 架橋構造及び/又はグラフト構造を形成するため、 架橋剤 (bl) 及びグラフト基剤 (b2) からなる群より選ばれる 1種以上の多官 能性化合物 (b) を用いている。  This water-absorbent resin (A) forms at least one multifunctional compound (b) selected from the group consisting of a crosslinking agent (bl) and a graft base (b2) in order to form a crosslinked structure and / or a graft structure. ) Is used.
架橋構造を形成させる場合の桀樯剤 (bl) の使用量は、 単量体 (a) と桀樯剤 (bl) の合計質量に基づいて、 通常 0. 00 1 5%であり、 好ましくは、 0. 05〜2%、 さらに好ましくは、 0. 1〜1%である。  The amount of the agent used for forming the crosslinked structure is usually 0.0015% based on the total mass of the monomer (a) and the agent (bl), and is preferably 0.001%. , 0.05 to 2%, more preferably 0.1 to 1%.
架橋剤 (bl)の量が 0. 00 1 %より少ない場合は吸水時にゾル状になり、 吸 水性樹脂の機能である吸水 '保水能力が小さくなるとともに、 水性液と接触した 際に 「ままこ」 を生じやすくなり、 見掛けの吸収速度が遅くなる。 また、 乾燥性 が非常に悪く、 生産性が非効率的である。 一方、 5%を超える場合は逆に架橋が 強くなりすぎ、 十分な吸水 ·保水能力を発揮しない。  If the amount of the cross-linking agent (bl) is less than 0.001%, it becomes a sol when absorbing water, the water absorbing ability, which is a function of the water-absorbing resin, is reduced, and when it comes into contact with the aqueous liquid, And the apparent absorption rate is reduced. Also, the drying property is very poor and the productivity is inefficient. On the other hand, if it exceeds 5%, on the other hand, the crosslinking becomes too strong and does not exhibit sufficient water absorption / water retention capacity.
グラフト構造を形成させる場合のグラフ卜基剤 (b 2) の使用量は、 単量体、 架橋剤 (bl)及びグラフト基剤 (b 2) の合計質量に基づいて、 通常 30質 を越えない量、 好ましくは、 0. 1〜20質量%、 さらに好ましくは、 1〜10 質量%である。 The amount of the graft base (b2) used for forming the graft structure does not usually exceed 30 based on the total mass of the monomer, the crosslinking agent (bl) and the graft base (b2). Amount, preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass. % By mass.
①の吸水性樹脂の具体例としては、 デンプンーァクリロ二卜リル共重合体のケ ン化物、 デンプンーアクリル酸塩共重合体架橋物、 ポリアクリル酸塩架橋物、 (メ タ) アクリル酸エステル一酢酸ビニル共重合体架橋物のケン化物、 イソプチレン /無水マレイン酸共重合体の架橋物、 ポリスルホン酸塩架橋物、 ポリアクリル酸 塩 ポリスルホン酸塩共重合体架樯物、 ボリアクリル酸/ポリアクリルアミ ド共 重合体架橋物、 架橋ポリアクリルアミ ド及びその加水分解物、 架橋ポリビニルビ 口リ ドン、 セルロース誘導体架樯物などが挙げられる。  Specific examples of the water-absorbing resin (1) include a saponified starch-acrylonitrile copolymer, a cross-linked starch-acrylate copolymer, a cross-linked polyacrylate, and (meth) acrylic acid. Saponified product of crosslinked ester monovinyl acetate copolymer, crosslinked product of isobutylene / maleic anhydride copolymer, crosslinked product of polysulfonate, polyacrylate salt, crosslinked product of polysulfonate copolymer, polyacrylic acid / poly Examples include crosslinked acrylamide copolymers, crosslinked polyacrylamides and hydrolysates thereof, crosslinked polyvinyl vinylidone, and crosslinked cellulose derivatives.
吸水性樹脂(A)として好ましいものは、イオン浸透圧により多 gの液を吸収■ 保持することができ、 荷重や外力が加わっても離水の少ないカルボキシル基の塩 および/または力ルポキシル基を有する重合性単量体を主構成成分とする吸水性 樹脂であり、 更に好ましくは、 デンプン—アクリル酸塩共重合体架橋物およびポ リアクリル酸塩架橋物である。  Preferred as the water-absorbing resin (A) are those which can absorb and hold a large amount of liquid due to ionic osmotic pressure, and have a salt of a carboxyl group and / or a lipoxyl group with little water separation even when a load or external force is applied. It is a water-absorbing resin containing a polymerizable monomer as a main component, and more preferably a crosslinked product of a starch-acrylate copolymer and a crosslinked product of a polyacrylate.
上記吸水性樹脂 (A ) の具体例においても、 中和塩の形態である場合の塩の種 類および中和度については、 好ましくはアルカリ金属塩、 さらに好ましくはナト リウム塩およびカリウム塩であり、 酸基に対する中和度は、 好ましくは 5 0〜 9 0モル%、 さらに好ましくは 6 0〜8 0モル%である。  In the specific examples of the water-absorbent resin (A) as well, in the case of the neutralized salt form, the salt type and the degree of neutralization are preferably alkali metal salts, more preferably sodium salts and potassium salts. The degree of neutralization with respect to the acid groups is preferably 50 to 90 mol%, more preferably 60 to 80 mol%.
①の吸水性樹脂を得るため、 単量体 (a ) 及び多官能性化合物 (b ) を重合す る重合系に、 必要により各種添加剤、 連鎖移動剤 (例えば、 チオール化合物など)、 界面活性剤等を添加しても差しまえない。  In order to obtain the water-absorbing resin (1), various additives, chain transfer agents (for example, thiol compounds, etc.) and surfactants are added to the polymerization system for polymerizing the monomer (a) and the polyfunctional compound (b) as necessary. It cannot be added even if an agent is added.
吸水性樹脂 (A ) を製造する際の重合方法は特に限定されず、 水溶液重合法、 想濁重合法、 逆相^濁重合法、 噴霧 S合法、 光重合法、 放射線重合法などが挙げ られる。 好ましい重合方法は、 ラジカル重合開始剤を使用して水溶液重合する方 法である。 この場合のラジカル重合閧始剤の種類、 ラジカル重合条件についても 特に限定はなく、 通常通りでよい。  The polymerization method for producing the water-absorbent resin (A) is not particularly limited, and examples thereof include an aqueous solution polymerization method, an opaque polymerization method, a reversed-phase turbidity polymerization method, a spray S synthesis method, a photopolymerization method, and a radiation polymerization method. . A preferred polymerization method is a method of performing aqueous solution polymerization using a radical polymerization initiator. In this case, the type of radical polymerization initiator and the radical polymerization conditions are not particularly limited, and may be as usual.
[微小フィラー (B ) の具体例] [Specific examples of micro filler (B)]
本発明の吸収剤組成物 [ 1 ] は、 吸水性樹脂 (A ) 中に、 微小フィラー (B ) が内蔵された構造の吸収剤組成物である。 θ The absorbent composition [1] of the present invention is an absorbent composition having a structure in which a fine filler (B) is incorporated in a water-absorbent resin (A). θ
こ-の微小フィラー (Β) としては、 例えば、 真密度が 0. l g/cm3以下で、 粒径が 1〜20 O/ mの微小フィラー(B1)及び粒径 1〜 150 / mの熱膨張性 中空フィラー (Β2') が熱膨張してなる微小フイラ一 (Β2) が挙げられ、 微小フ イラ一 (B1) と微小フィラー (Β2) とが任意の比率で共に吸水性樹脂 (Α) 中 に内蔵されていてもよい。 Examples of the fine filler (Β) include a fine filler (B1) having a true density of 0.1 lg / cm 3 or less and a particle size of 1 to 20 O / m and a heat filler having a particle size of 1 to 150 / m. One example is a small filler (な る 2) formed by thermally expanding an expandable hollow filler (Β2 '). Both the small filler (B1) and the small filler (Β2) are water-absorbent resin (Α) in any ratio. It may be built inside.
微小フィラー (B1) の真密度は通常 0. l g/cm3以下、 好ましくは 0. 0 8 g/cma以下、 特に好ましくは 0. 01〜0· 06 g/cm3である。 The true density of the micro filler (B1) usually 0. lg / cm 3 or less, preferably 0. 0 8 g / cm a, particularly preferably 0. 01~0 · 06 g / cm 3 .
(B) の真密度が 0. 1 g/ cm3より大きい場合、 吸収剤組成物の体積増加 が小さく、 表面積増加も小さいため、 得られる吸収剤組成物の吸収速度向上の効 果が乏しい。 When the true density of (B) is greater than 0.1 g / cm 3 , the effect of improving the absorption rate of the obtained absorbent composition is poor because the increase in volume and the increase in surface area of the absorbent composition are small.
真密度とは、 例えば ACCUPYC 1330 PYCNOMETERによって測定される値である。 具体的な測定操作の例は次の通りである。  True density is a value measured by, for example, ACCUPYC 1330 PYCNOMETER. An example of a specific measurement operation is as follows.
PYCNOMETER には、 パルプで連結された 2つの部屋 (chamber), すなわち cell chamberと expansion chamberとがあり、 それぞれの体積は V (c)、 V (e) で 示す。 cell chamber内で、 試料質 g (W) を gり (この試料の体積を Vとする)、 expansion chamberにつながるバルブは閉じ、 cell chamber内の圧力は P ( 1) に固定する。 また、 その時の expansion chamberの圧力は P (a) である。 そし て expansion chamberにつながるパルブを,閧栓し両方の chamberに行き渡った圧 力 P (2) を測定する。 パルプを開く前後のそれぞれの chamberの体積と圧力か ら試料体積が求まり、 次式によって真密度が算出されるものである。  PYCNOMETER has two chambers (chambers) connected by pulp, cell chamber and expansion chamber, and their volumes are indicated by V (c) and V (e). In the cell chamber, remove the sample material g (W) (the volume of this sample is V), close the valve connected to the expansion chamber, and fix the pressure in the cell chamber to P (1). The pressure of the expansion chamber at that time is P (a). Then, the pulp connected to the expansion chamber is sealed, and the pressure P (2) distributed to both chambers is measured. The sample volume is obtained from the volume and pressure of each chamber before and after opening the pulp, and the true density is calculated by the following equation.
真密度 =W+V=W÷[V(c V(e)x{P(a)-P(2) {P(l)-P(2)}〕  True density = W + V = W ÷ [V (c V (e) x {P (a) -P (2) {P (l) -P (2)}]
(B1) の粒径は、 通常 1〜200 m、 好ましくは 1〜: I 50 m, さらに好 ましくは 5〜100 mである。 (B)の粒径が 200 より大きい場合、本発 明の製造方法 [3] において、 (A) の含水ゲルへ (B) を配合する際の均一性に 乏しくなり、 得られる吸収剤組成物の吸収速度の向上効果が乏しくなる場合があ り好ましくない。 一方、 1 mより小さい場合、 (A) の含水ゲルへ (B1) を配 合する際、 (B1) 同士の凝集が起こりやすく均一性に乏しくなる。  The particle size of (B1) is usually 1 to 200 m, preferably 1 to 50 m, and more preferably 5 to 100 m. When the particle size of (B) is larger than 200, the uniformity of blending (B) with the hydrogel of (A) in the production method [3] of the present invention is poor, and the resulting absorbent composition is obtained. This is not preferred because the effect of improving the absorption rate of the water may be poor. On the other hand, when it is smaller than 1 m, when (B1) is mixed with the hydrogel of (A), aggregation of the (B1) is likely to occur, resulting in poor uniformity.
(B1) の材質は特に限定されず、 有機系, 無機系のいず ήであってもよい。 有機系材質の例としては、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポ リー 一キシリレン、 ポリアクリレート、 ポリメタクリレート、 ポリ塩化ビニル、 ボリ塩化ビニリデン、 ポリ酢酸ビニル、 フッ素樹脂、 ポリアクリロニトリル、 ポ リビニルエーテル、 ポリブタジエン、 ポリアミ ド、 熱可塑性ポリエステル、 ポリ カーボネート、 ポリフエ二レンォキシド、 ポリスルホン、熱可塑性ポリウレタン、 ポリエチレンォキシド、 ポリプロピレンォキシド、 ポリテトラメチレンォキシド、 ポリアセタール、 セルロース誘導体などが挙げられる。 これらの樹脂を構成する 単量体を 2種以上共重合して得られるものも挙げられる。 The material of (B1) is not particularly limited, and may be either organic or inorganic. Examples of organic materials include polyethylene, polypropylene, polystyrene, and polystyrene. L-xylylene, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, fluororesin, polyacrylonitrile, polyvinyl ether, polybutadiene, polyamide, thermoplastic polyester, polycarbonate, polyphenylene oxide, polysulfone, Examples include thermoplastic polyurethane, polyethylene oxide, polypropylene oxide, polytetramethylene oxide, polyacetal, and cellulose derivatives. Those obtained by copolymerizing two or more monomers constituting these resins are also included.
無機系材質の例としては、 酸化ケィ素、 酸化アルミニウム、 酸化鉄、 酸化チタ ン、 酸化マグネシウム、 酸化ジルコニウムなどが挙げられる。  Examples of inorganic materials include silicon oxide, aluminum oxide, iron oxide, titanium oxide, magnesium oxide, zirconium oxide, and the like.
これらは 2種以上併用してもよい。 これらのうちで好ましいものは有機材質で あり、 更に好ましくは、 ボリァクリレー卜、 ポリメタクリレート、 ポリ塩化ビニ リデン、 ポリ酢酸ビエル、 ポリアクリロニトリルである。  These may be used in combination of two or more. Of these, preferred are organic materials, and more preferred are polyacrylate, polymethacrylate, polyvinylidene chloride, polyacetate biel, and polyacrylonitrile.
(B1) の形状は、 特に限定されず、 中空状、 多孔質状などが挙げられる 6好ま しい形状は中空状である。 The shape of (B1) is not particularly limited, hollow, 6 favored correct shape such as porous and the like are hollow.
本発明における微小フィラー (B1) の具体的な例としては、 例えば、松本油脂 株式会社製のマツモトマイクロスフェアー F— 5 0 E、 日本フェライ ト株式会 社製のェクスパンセル 5 5 1 D E、 4 6 1 D E、 0 9 I DEなどである。 これ らは 2種以上併用してもよい。  Specific examples of the fine filler (B1) in the present invention include, for example, Matsumoto Microsphere F—50E manufactured by Matsumoto Yushi Co., Ltd., and Expanscel 551 DE and 46 manufactured by Nippon Ferrite Co., Ltd. 1 DE, 09 I DE, etc. These may be used in combination of two or more.
一方、 吸水性樹脂 (A) 中に、 微小フィラー (B2) が内蔵された構造の吸収剤 組成物における (B2) は、 粒径 1〜1 5 Ο ΠΙの熱膨張性中空フィラー (B2'〉 が熱膨張してなる微小フィラーである。  On the other hand, in the absorbent composition having a structure in which the fine filler (B2) is embedded in the water-absorbent resin (A), (B2) is a thermally expandable hollow filler (B2 ') having a particle size of 1 to 15 mm2. Is a minute filler that is thermally expanded.
熱膨張性中空フイラ一 (Β2' ) としては、 例えば、 空隙中にガスまたは揮発性 化合物を含有する微小中空樹脂が挙げられる。  Examples of the heat-expandable hollow filler (Β2 ′) include a fine hollow resin containing a gas or a volatile compound in a void.
この微小中空樹脂において外壁を形成する樹脂の種類としては、 例えばポリェ チレン、 ポリプロピレン、 ポリスチレン、 ポリ- Ρ-キシリレン、 ポリアクリレー ト、 ポリメタクリレート、 ポリ塩化ビニル、 ポリ塩化ビニリデン、 ポリ酢酸ビニ ル、 フヅ素樹脂、 ポリアクリロニトリル、 ポリビニルエーテル、 ボリブタジエン、 ポリアミ ド、 熱可塑性ポリエステル、 ポリ力一ポネート、 ポリフエ二レンォキシ ド、 ポリスルホン、 熱可塑性ポリウレタン、 ポリエチレンォキシド、 ポリプ Dビ W 99 Examples of the type of resin that forms the outer wall in this minute hollow resin include polyethylene, polypropylene, polystyrene, poly-xylylene, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and polyvinyl acetate. Resin, polyacrylonitrile, polyvinyl ether, polybutadiene, polyamide, thermoplastic polyester, polyacrylonitrile, polyphenylene oxide, polysulfone, thermoplastic polyurethane, polyethylene oxide, polyp W 99
11  11
レンォキシド、ポリテトラメチレングリコール、ポリアセタールなどが挙げられ、 これらの樹脂を構成する単量体を 2種以上共重合して得られるものも挙げられる。 また、 これらは 2種以上併用してもよい。 Examples thereof include lenoxide, polytetramethylene glycol, polyacetal, and the like, and examples include those obtained by copolymerizing two or more monomers constituting these resins. These may be used in combination of two or more.
これらの樹脂の種類のうちで好ましいものはポリアクリレート、 ポリ塩化ビニ リデン、 ポリアクリロニトリルである。  Among these resin types, preferred are polyacrylate, polyvinylidene chloride, and polyacrylonitrile.
( Β 2' ) の膨張開始温度は外壁を形成する樹脂の軟化温度や、 空隙に存在する ガスの種類、 摔発性化合物の種類によって種々変化させることができるが、 好ま しくは 6 0〜 1 5 0 °Cであり、 一方、 最大膨張温度は好ましくは 8 0〜 1 8 0。C である。 さらに好ましくは膨張開始温度が 7 0〜 1 2 0。C、 最大膨張温度が 9 0 〜 1 5 0でである。  The expansion start temperature of (Β2 ') can be variously changed depending on the softening temperature of the resin forming the outer wall, the type of gas present in the voids, and the type of the volatile compound, but is preferably 60 to 1 50 ° C., while the maximum expansion temperature is preferably 80-180. C. More preferably, the expansion start temperature is 70 to 120. C, the maximum expansion temperature is 90 ~ 150.
膨張開始温度が 6 0 °C未満の場合、 本発明の製造方法において、 含水ゲルの冷 却が必要となる場合があり非効率的である。 一方、 膨張開始温度が 1 5 0 °Cより 高い場合、本発明の製造方法 [ 4 ]において、加熱乾燥工程で含水ゲル状態の( A ) の水分蒸発が先行して進行するため、 ( B )が膨張を開始する時点では含水ゲルの 可撓性が低下していることがあるため、 膨張効率が低下することがある。  When the expansion start temperature is lower than 60 ° C., in the production method of the present invention, it may be necessary to cool the hydrogel, which is inefficient. On the other hand, when the expansion start temperature is higher than 150 ° C., in the production method [4] of the present invention, in the heating and drying step, the evaporation of the water in the hydrogel state (A) precedes. When the swelling starts, the swelling efficiency may decrease because the flexibility of the hydrogel may be reduced.
最大膨張温度が 8 0 °C未満、 あるいは 1 8 (TCを越える場合においても上記と 同様の現象を生じること場合があることから好ましくない。  When the maximum expansion temperature is less than 80 ° C. or more than 18 (TC), the same phenomenon as described above may occur, which is not preferable.
( Β 2' ) の中空部の空隙に含まれるガスまたは揮発性化合物の例としては、 常 圧における沸点が 1 5 0。C以下、 好ましくは沸点が 1 2 0 °C以下、 さらに好まし くは 1 0 0 °C以下の化合物である。 沸点が 1 5 0。Cより大きいと本発明の製造方 法において、 (B 2' )の熱膨張開始温度が高くなり、高い温度で加熱処理しなけれ ばならず非絰済的である。 また熱膨張が不十分となって、 得られる吸収剤組成物 の吸収速度の向上効果が乏しくなる場合がある。  As an example of the gas or the volatile compound contained in the hollow space of (部 2 ′), the boiling point at normal pressure is 150. It is a compound having a boiling point of not more than C, preferably not more than 120 ° C, more preferably not more than 100 ° C. Boiling point is 150. If it is larger than C, in the production method of the present invention, the thermal expansion start temperature of (B 2) becomes high, and heat treatment must be performed at a high temperature, which is inefficient. Further, the thermal expansion may be insufficient, and the effect of improving the absorption rate of the obtained absorbent composition may be poor.
( Β 2' ) の空隙に含まれるガスまたは揮発性化合物としては、 例えば、 イソプ タン、 イソペンタン、 石油エーテル、 η—ブタン、 η—ペン夕ン、 n—^ ^キサン、 シクロペンタン、 シクロへキサン、 トリクロ口フルォロメ夕ン、 ジクロロフルォ ロメタン、 ブチレン、 塩化メチレンなどが挙げられる。 これらは 2種以上併用し てもよい。  Examples of the gas or volatile compound contained in the voids of (Β 2 ') include isoptan, isopentane, petroleum ether, η-butane, η-pentane, n-^^ xane, cyclopentane, and cyclohexane. Trifluoromethane, dichlorofluoromethane, butylene, methylene chloride and the like. These may be used in combination of two or more.
好ましいものはイソブタン、 イソペン夕ン、 n—ブタン、 n—ペンタン、 石油 エーテルである。 Preferred are isobutane, isopentane, n-butane, n-pentane, petroleum It is ether.
(Β2') の粒径については特に限定はないが、 通常 1〜150 ίπι、 好ましく は 1〜 100 /zm以下である。 ( 2,)の粒径が150 mより大きい場合あるい は 1 mより小さい場合、 本発明の製造方法 [4]において、 (A)の含水ゲルへ の (Β2') の配合の均一性に乏しくなり、 得られる吸収剤組成物の吸収速度の向 上効果が乏しくなる場合があり好ましくない。  The particle size of (Β2 ′) is not particularly limited, but is usually 1 to 150 μπι, preferably 1 to 100 / zm or less. When the particle size of (2,) is larger than 150 m or smaller than 1 m, in the production method [4] of the present invention, the uniformity of blending of (Β2 ') into the hydrogel of (A) is improved. And the effect of improving the absorption rate of the obtained absorbent composition may be poor, which is not preferable.
(Β2')の体積膨張倍率は 1◦倍以上、 特に 30倍以上が好ましい。 (Β2')の 体積膨張倍率が 10倍未満では (Α) の膨張率が低いため、 得られる吸収剤組成 物の吸収速度の向上効果が乏しくなる場合がある。  The volume expansion ratio of (Β2 ′) is preferably 1 ° or more, particularly preferably 30 times or more. If the volume expansion ratio of (Β2 ′) is less than 10, the expansion rate of (Α) is low, and the effect of improving the absorption rate of the obtained absorbent composition may be poor.
本発明における熱膨張性中空フィラー (Β2') の具体例としては、 松本油脂製 薬株式会社製のマツモトマイクロスフェアー F— 20、 F— 30、 F-40, F - 50、 F - 80 S、 F— 82、 F - 85、 F - 100、 F - 30VS、 F— 80GS、 F— 80VS、 F - 100 S S, F— 1300、 F— 1400など; 並びに、 日本フェライ ト株式会社製のェクスパンセル 820、 642、 551、 46 1、 051、 09 1などが挙げられ、 これらは 2種以上併用してもよい。  Specific examples of the heat-expandable hollow filler (Β2 ′) in the present invention include Matsumoto Microspheres F-20, F-30, F-40, F-50, F-80S manufactured by Matsumoto Yushi Seiyaku Co., Ltd. , F-82, F-85, F-100, F-30VS, F-80GS, F-80VS, F-100SS, F-1300, F-1400, etc .; and Expansel 820 manufactured by Nippon Ferrite Co., Ltd. , 642, 551, 461, 051, 091, and the like, and two or more of these may be used in combination.
[(A) と (B) の比率] [Ratio of (A) and (B)]
本発明の吸収性組成物 [ 1] において、 (A) と (B) の質量比は、 好ましく は 100 : (0. 05~ 10)、 さらに好ましくは 100 : ( 0. 1〜 7 )、 さらに は 100 : (0. 5~5) である。 (B) が 0. 05より少ないと吸収速度の向上 効果が乏しく、 一方、 10を超えると吸収速度の向上は図れるが、 体積増加が大 きくなりすきて、得られる吸収剤組成物粒子の機械的強度が弱くなる傾向にあり、 かつ得られる吸収剤組成物の加圧下における吸収速度の向上効果が乏しくなる傾 向にある。  In the absorbent composition [1] of the present invention, the mass ratio of (A) to (B) is preferably 100: (0.05 to 10), more preferably 100: (0.1 to 7), and Is 100: (0.5 ~ 5). When (B) is less than 0.05, the effect of improving the absorption rate is poor. On the other hand, when it exceeds 10, the absorption rate can be improved, but the volume increase becomes so large that the mechanical properties of the resulting absorbent composition particles are reduced. In this case, the mechanical strength tends to be weak, and the effect of improving the absorption rate of the resulting absorbent composition under pressure tends to be poor.
[吸収剤組成物 [ 1] の製造方法] [Production method of absorbent composition [1]]
本発明の吸収剤組成物 [1] は、 例えば、 微小フイラ一 (B1) を用いる製造方 法 [3]又は熱膨張性中空フィラー (Β2Ίを用いる製造方法 [4] により得ら れる。 製造方法 [3] では吸水性樹脂 (A) を含水ゲル状重合体を経て製造する工程 の乾燥前までに、 微小フィラー(B1) を内蔵させて乾燥し、 吸収剤組成物を得る。 製造方法 [3]の実施態様としては、 微小フイラ一 (B1) を内蔵する吸水性樹 脂 (A) の含水ゲルを乾燥し、 吸収剤組成物を得る方法が挙げられる。 この実施 態様は、 乾炫する前に吸水性樹脂 (A) が形成されている場合であるが、 他の態 様としては、 乾燥する段階ないし、 乾燥時や乾燥後、 熱架橋や表面架橋法により 吸水性樹脂を形成させることも可能である。 The absorbent composition [1] of the present invention can be obtained, for example, by a production method [3] using a microfilament (B1) or a production method [4] using a heat-expandable hollow filler ({2}). In the production method [3], the fine filler (B1) is incorporated and dried before drying in the step of producing the water-absorbent resin (A) via the hydrogel polymer to obtain an absorbent composition. An embodiment of the production method [3] includes a method of drying a hydrogel of the water-absorbing resin (A) containing the microfilament (B1) to obtain an absorbent composition. This embodiment is a case where the water-absorbent resin (A) is formed before drying, but other forms include a drying step or a drying step or after drying, a thermal crosslinking method or a surface crosslinking method. Thus, a water-absorbing resin can be formed.
本発明の製造方法 [3] において、 微小フィラー (B1) は、 吸水性樹脂 (A) の重合前から乾燥前までのいずれかの段階において配合される。 好ましくは、 (A) の重合後から乾燥前までの段階の含水ゲル状重合体に添加して混練する方 法である。 なぜなら、 含水ゲル状態の (A) に (B1) を添加した方が、 吸水性樹 脂粒子内部に(B1)が含有されるため吸収速度の向上効果が高くなるからである。  In the production method [3] of the present invention, the fine filler (B1) is blended at any stage from before the polymerization of the water-absorbent resin (A) to before the drying. A preferred method is to add and knead the (A) hydrogel polymer in a stage after polymerization to before drying. This is because the addition of (B1) to (A) in the hydrogel state improves the absorption rate because (B1) is contained inside the water-absorbing resin particles.
(B1)は粉末、 水スラリー、水分散液のいずれの形態にしても添加可能である が、 均一性と得られる吸収剤組成物の吸収速度の向上効果を高めるためには、 水 スラリーあるいは水分散液にして添加し、 含水ゲル中に均一に添加するのが好ま しい。  (B1) can be added in any form of powder, water slurry, and water dispersion.However, in order to enhance the uniformity and the effect of improving the absorption rate of the obtained absorbent composition, water slurry or water It is preferable to add as a dispersion liquid and uniformly add it to the hydrogel.
また、 (A)の含水ゲルと (B1) との配合物における含水率は、 (A)の固形分 に対し、 2〜 10倍であることが好ましい。 2倍未満であると浪練時における均 —性が低くなり、 得られる吸収剤組成物の吸収速度の向上効果が乏しくなる場合 がある。 10倍より高いと乾燥に要する時間が長くなつて非絰済的である。  The water content of the blend of the hydrogel (A) and (B1) is preferably 2 to 10 times the solid content of (A). If it is less than twice, the uniformity at the time of mixing will be low, and the effect of improving the absorption rate of the obtained absorbent composition may be poor. If it is higher than 10 times, it takes a long time to dry, which is not economical.
含水ゲル状態の (A) に (B1) を配合し、 均一分散させるための混練装置とし ては、 従来から公知の装置を使用できる。 具体的な装置の例として、 双腕型ニー ダー、 ィンターナルミキサー(パンパリーミキサー)、 セルフクリーニング型ミキ サー、 ギアコンパゥンダ一、 スクリュー型押し出し機、 スクリュー型ニーダー、 ミンチ機などが挙げられる。 これらは複数個を組み合わせて使用することもでき る。  As a kneading apparatus for blending (B1) with (A) in a hydrogel state and uniformly dispersing the same, a conventionally known apparatus can be used. Specific examples of the device include a double-armed kneader, an internal mixer (bread palry mixer), a self-cleaning mixer, a gear compounder, a screw-type extruder, a screw-type kneader, and a mincing machine. These can be used in combination of two or more.
(B1) を添加した含水ゲル状配合物の乾燥温度は、 通常 60〜230。C、 好ま しくは 100〜200。C、 特に 105〜180。Cである。 乾燥温度が 60。C未満 の場合、 乾燥に非常に長くの時間を必要とし絰済的ではなく、 一方、 230。Cを 超える場合は、 副反応や樹脂の分解などが起こることがあり、 吸収性能と吸収速 度の低下を招く。 The drying temperature of the hydrogel formulation containing (B1) is usually from 60 to 230. C, preferably 100-200. C, especially 105-180. C. Drying temperature is 60. If it is less than C, it takes a very long time to dry and is not economical, whereas 230. C If the amount exceeds the above range, side reactions or decomposition of the resin may occur, leading to a decrease in absorption performance and absorption speed.
含水ゲル状態の (A ) と (B 1 ) との配合物を乾燥する装置は通常の装置でよく、 例えば、 ドラムドライヤー、 平行流パンド乾燥機(トンネル乾燥機)、 通気バンド 乾燥機、 噴出流 (ノズルジヱット) 乾燥機、 箱型熱風乾燥機、 赤外線乾燥機など が挙げられる。 特に熱源は限定されない。 これらの乾燥機は複数個を組み合わせ て使用することもできる。  The device for drying the blend of (A) and (B1) in the hydrogel state may be a conventional device, such as a drum dryer, a parallel flow bread dryer (tunnel dryer), a ventilation band dryer, and a jet flow. (Nozzle jet) Dryer, box type hot air dryer, infrared dryer, etc. The heat source is not particularly limited. These dryers can be used in combination of two or more.
乾炫後、 粉砕及び粒度調整して得られる、 (B 1) が内蔵された吸収剤組成物粒 子の表面近傍を、 力ルポキシル墓等の酸基および Zまたはその塩基と反応しうる 官能基を少なくとも 2個有する架橋剤で表面架橋して本発明の吸収剤組成物とす ることができる。  After drying, pulverization and particle size adjustment, the surface of the absorbent composition particles incorporating (B1) is coated with a functional group capable of reacting with acid groups such as lipoxyl graves and Z or its base. Can be surface-crosslinked with a crosslinking agent having at least two of the above to give the absorbent composition of the present invention.
このような表面架橋型の吸収剤組成物は、 常圧下だけでなく荷重下においても 吸収性能と吸収速度に優れ、 かつゲル強度も大きくなるので、 本発明に好適であ る  Such a surface cross-linked type absorbent composition is suitable for the present invention because it has excellent absorption performance and absorption rate under normal pressure as well as under load, and also has a high gel strength.
表面架椅に使用する架橋剤としては、 例えば、 ポリグリシジルエーテル化合物 (エチレングリコ一ルジグリシジルェ一テル、 グリセリン一 1 , 3—ジグリシジ ルェ一テル、 グリセリン ト リグリシジルエーテル、 ポリエチレングリコ一ルジグ リシジルエーテル、 ポリグリセロールボリグリシジルエーテルなど);ポリオール 化合物 (グリセリン、 エチレングリコール、 ポリエチレングリコールなど);ポリ アミン化合物(エチレンジァミン、 ジエチレントリアミンなど);ポリアミン系樹 脂 (ボリアミ ドポリアミンェビクロルヒ ドリン樹脂、 ポリアミンェビク Dルヒ ド リン樹脂など)、 アルキレンカーボネィ ト、 アジリジン化合物、 ポリイミン化合物 などが挙げられる。 好ましくは、 比較的低い温度で表面桀橋が行なえるという点 で、 ポリグリシジルエーテル化合物およびポリアミン系樹脂である。  Examples of the cross-linking agent used for the surface chair include polyglycidyl ether compounds (ethylene glycol diglycidyl ether, glycerin-1,3-diglycidyl ether, glycerin triglycidyl ether, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, Polyol compounds (glycerin, ethylene glycol, polyethylene glycol, etc.); polyamine compounds (ethylene diamine, diethylene triamine, etc.); polyamine resins (boriamide polyamine ebichlorhydrin resin, polyamine ebik D) Hydrin resin), alkylene carbonate, aziridine compound, polyimine compound and the like. Preferred are a polyglycidyl ether compound and a polyamine-based resin in that a surface bridge can be formed at a relatively low temperature.
表面架橋における架橋剤の量は、 架橋剤の種類、 架橋させる条件、 目檫とする 性能などにより種々変化させることができるため特に限定はないが、 吸収剤組成 物に対して、 通常 0 . 0 0 1〜3質量%、 好ましくは 0 . 0 1〜 2質量%、 さら に好ましくは 0 . 0 5〜 1質¾ %である。 架橋剤の量が 0 . 0 0 1質量%未満で は桀樯処理を行わない吸水性樹脂と性能面で大差はない。 一方、 3質量%を越え ると 吸収倍率や保水性が低下する傾向にあり好ましくない。 The amount of the cross-linking agent in the surface cross-linking is not particularly limited because it can be variously changed depending on the type of the cross-linking agent, cross-linking conditions, target performance, and the like. However, the amount is usually 0.0 with respect to the absorbent composition. The content is 0.1 to 3% by mass, preferably 0.01 to 2% by mass, and more preferably 0.05 to 1% by mass. When the amount of the crosslinking agent is less than 0.001% by mass, there is no great difference in performance from the water-absorbing resin not subjected to the Jie treatment. On the other hand, over 3% by mass If so, the absorption capacity and water retention tend to decrease, which is not preferable.
含水ゲル状態の (A) と (B1) との配合物中に、 必要により添加剤ゃ增晨剤と して、 残存モノマー低減剤 (例えば、 亜硫酸ナトリゥム、 過酸化水素など)、 抗菌 剤 (例えば、 第 4級アンモニゥム塩化合物、 クロルへキシジン化合物、 金属塩系 抗菌剤など)、 防腐剤、 芳香剤、 消臭剤、 着色剤、 酸化防止剤、 シリカ、 ゼォライ ト等を添加してもよい。 これらの添加剤は含水ゲル状配合物の乾炫工程中または 乾燥後に添加することもできる。  If necessary, a blend of (A) and (B1) in a hydrogel form may be used as an additive, as a brightener, a residual monomer reducing agent (eg, sodium sulfite, hydrogen peroxide, etc.), an antibacterial agent (eg, Quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.), preservatives, fragrances, deodorants, coloring agents, antioxidants, silica, zeolite and the like. These additives can also be added during or after the drying step of the hydrogel composition.
この吸収剤組成物の見掛け密度は真密度が低い (B1) を含有するため、 (B1) を配合しない場合に比べて、 その配合量次第で最小約 1/3に至る迄の範囲で低 下したものである。 そのため単位重量当りの表面積が飛躍的に増大し、 吸収速度 が向上する。  The apparent density of this absorbent composition is lower than the case where (B1) is not blended. It was done. Therefore, the surface area per unit weight is dramatically increased, and the absorption rate is improved.
一方、 製造方法 [4] は吸水性樹脂 (A) を含水ゲル状重合体を経て製造する 工程の乾燥前迄に、 熱膨張性中空フイラ一 (Β2') を内蔵させて加熱乾燥し、 吸 水性樹脂 (Α) 中に (Β2') が熱膨張してなる微小フイラ一 (Β2) を内蔵させた 吸収剤組成物を得る方法である。  On the other hand, in the production method [4], a heat-expandable hollow filler (Β2 ') is incorporated and heated and dried before drying in the process of producing the water-absorbent resin (A) via the hydrogel polymer. This is a method for obtaining an absorbent composition in which a microfilament (Β2) formed by thermally expanding (Β2 ') in an aqueous resin (Α) is incorporated.
製造方法 [4] の実施態様としては、 熱膨張性中空フィラー (Β2') を内蔵す る吸水性樹脂 (Α) の含水ゲルを加熱乾燥し、 吸水性樹脂 (Α) 中に上記微小フ イラ一 (Β2)を内蔵させた吸収剤組成物を得る方法が挙げられる。 この実施態様 は、 加熱乾姣する前に吸水性樹脂 (Α) が形成されている場合であるが、 他の態 様としては、 加熱乾燥する段階ないし加熱乾燥時や加熱乾燥後、 熱架橋や表面架 橋法により吸水性樹脂を形成させることも可能である。  In an embodiment of the production method [4], the water-containing gel of the water-absorbent resin (Α) containing the heat-expandable hollow filler (Β2 ′) is heated and dried, and the above-mentioned fine filler is contained in the water-absorbent resin (Α). (1) A method for obtaining an absorbent composition incorporating (Β2). This embodiment is a case where the water-absorbent resin (Α) is formed before heating and drying. However, in another embodiment, it is possible to carry out thermal crosslinking or heat drying or after heat drying. It is also possible to form a water-absorbent resin by the surface bridging method.
本発明の製造方法 [4] において、 (Β2') は、 吸水性樹脂 (Α) の重合前、 即 ち重合用原材料の混合等の調整段階から乾燥前までのいずれかの段階において配 合される。好ましくは、 (Α)の重台後から乾燥前までの段階の含水ゲル状重合体 に添加して浪練する方法である。 なぜなら、 含水ゲル状態の (Α) は膨張するの に適度の可撓性を有しており、 さらにその後の乾燥工程での加熱により体積膨張 させて表面積を增加させることができるからである。また、 (Α)の重合後から乾 燥前までの段階の含水ゲル状重合体に (Β) を配合する際、 架橋剤 (例えば、 ポ リグリシジルェ一テル化合物など〉 を併用することにより、 さらに均一な体積膨 膨張を行わせることができる。 In the production method [4] of the present invention, (Β2 ′) is combined before polymerization of the water-absorbent resin (Α), that is, in any stage from the step of adjusting the mixing of the raw materials for polymerization to the step of drying. You. Preferably, it is a method in which the mixture is added to the hydrogel polymer in the stage from the stage of mounting (i) to before drying, and the mixture is scoured. This is because (Α) in the hydrogel state has an appropriate flexibility to expand, and can be expanded in volume by heating in the subsequent drying step to increase the surface area. Further, when (Β) is blended with the hydrogel polymer in the stage from the polymerization of (Α) to before drying, a more uniform mixture can be obtained by using a crosslinking agent (for example, a polyglycidyl ether compound) together. Volumetric expansion Inflation can take place.
(Β2') は粉末、 水スラリー、 水分散液のいずれの形態にしても添加可能であ るが、 均一な膨張と得られる吸収剤組成物の吸収速度の向上効果とを商めるため には、 水スラリーあるいは水分散液にして添加し、 含水ゲル中に均一に添加する のが好ましい。  (Β2 ′) can be added in any form of powder, water slurry, or water dispersion, but is required to promote uniform expansion and the effect of improving the absorption rate of the resulting absorbent composition. Is preferably added in the form of a water slurry or a water dispersion and uniformly added to the hydrogel.
また、 (Α) の含水ゲルと (Β2') との配合物における含水率は、 (Α) の固形 分に対し 2〜 10倍であることが好ましい。 2倍未満であると膨張倍率が低くな り、 得られる吸収剤組成物の吸収速度の向上効果が乏しくなる場合がある。 10 倍より高いと乾燥に要する時間が長くなつて非経済的である。  Further, the water content of the blend of the water-containing gel of (II) and (Β2 ′) is preferably 2 to 10 times the solid content of (II). If it is less than 2 times, the expansion ratio will be low, and the effect of improving the absorption rate of the obtained absorbent composition may be poor. If it is higher than 10 times, the drying time becomes longer and it is uneconomical.
含水ゲル状態の (Α) に (Β2') を配合し、 均一分散させるための混練装置と しては、 前記に例示した本発明の製造方法 [3] において (Α) に (B1) を配合 し、 均一分散させるための混練装置と同様のものが使用できる。  As a kneading apparatus for mixing (Β2 ′) with (Α) in a hydrogel state and uniformly dispersing, (B) is mixed with (Α) in the production method [3] of the present invention exemplified above. However, the same kneading device as used for uniform dispersion can be used.
(Β2') を添加した含水ゲル状配合物の加熱乾燥温度は、 通常 60〜230°C、 好ましくは 100〜200eC、 特に 105〜: L 80。Cである。 乾燥温度が 60 °C 未満の場合、乾燥に非常に長くの時間を必要とし絰済的ではなく、一方、 230。C を超える場合は、 副反応や樹脂の分解などが起こることがあり、 吸収性能と吸収 速度の低下を招く。 Heat drying temperature (B2 ') hydrogel formulations with added is usually sixty to two hundred thirty ° C, preferably 100 to 200 e C, in particular 105 to: L 80. C. If the drying temperature is below 60 ° C, drying takes a very long time and is not economical, whereas 230. If it exceeds C, side reactions or decomposition of the resin may occur, leading to a decrease in absorption performance and absorption speed.
含水ゲル状態の (A) と (Β2') との配合物を加熱乾燥する装置は、 通常のも のでよく、 例えば、 ドラムドライヤー、 平行流バンド乾燥機(トンネル乾燥機)、 通気バンド乾燥機、 噴出流 (ノズルジヱツ ト) 乾炫機、 箱型熱風乾燥機、 赤外線 乾燥機などが挙げられる。  The device for heating and drying the mixture of (A) and (Β2 ') in the form of a hydrogel may be a conventional device, such as a drum dryer, a parallel flow band dryer (tunnel dryer), a ventilation band dryer, Jet flow (nozzle jet) Dryers, box-type hot air dryers, infrared dryers, etc.
(Β2') の空隙部に可燃性の化合物が含まれる場合は直火型の熱源は好ましく ないが、 不燃性の化合物の場合については、 特に熱源は限定されない。 これらの 乾燥機は複数個を組み合わせて使用することもできる。  When a combustible compound is contained in the void of (Β2 ′), a direct-fired heat source is not preferable, but for a non-combustible compound, the heat source is not particularly limited. These dryers can be used in combination of two or more.
必要により、 加熱乾燥後、 粉砕及び粒度調整して得られる吸収剤組成物粒子の 表面近傍をカルボン酸基および/またはその塩基-と反応しうる官能基を少なくと も 2個有する架橋剤で表面架橋して本発明の吸収剤組成物とすることができる。 このような表面架橋型の吸収剤組成物は、 常圧下だけでなく祷重下においても吸 収性能と吸収速度とに優れており、 かつゲル強度も大きくなるので、 本発明に好 適である。 If necessary, after heating and drying, the surface of the absorbent composition particles obtained by pulverization and particle size adjustment is surfaced with a crosslinking agent having at least two functional groups capable of reacting with a carboxylic acid group and / or its base. The absorbent composition of the present invention can be crosslinked. Such a surface cross-linked type absorbent composition is excellent in absorption performance and absorption speed under normal pressure as well as under gravity, and also has a high gel strength, and is therefore preferred for the present invention. Suitable.
表面架橋に使用する架橋剤としては、 前記本発明の製造方法 [5〕 において表 面架橋する場合と同様のものが使用でき、 使用量も同様である。  As the cross-linking agent to be used for the surface cross-linking, the same one as in the case of the surface cross-linking in the production method [5] of the present invention can be used, and the amount used is also the same.
含水ゲル状態の (A) と (Β2') との配合物中に、 必要により添加剤や増虽剤 として、 残存モノマー低减剤 (例えば、 亜硫酸ナトリウム、 過酸化水素など)、 抗 菌剤 (例えば、 第 4級アンモニゥム塩化合物、 クロルへキシジン化合物、 金属塩 系抗菌剤など)、 防腐剤、 芳香剤、 消臭剤、 着色剤、 酸化防止剤、 シリカ、 ゼオラ ィ ト等を添加することができる。 これらの添加剤は含水ゲル状配合物の加熱乾燥 工程中または加熱乾燥後に添加することもできる。  In the blend of (A) and (Β2 ') in the form of hydrogel, if necessary, additives or thickeners may be used, such as residual monomer inhibitors (eg, sodium sulfite, hydrogen peroxide, etc.), antibacterial agents ( For example, quaternary ammonium salt compounds, chlorhexidine compounds, metal salt antibacterial agents, etc.), preservatives, fragrances, deodorants, coloring agents, antioxidants, silica, zeolites, etc. it can. These additives can also be added during or after the heating and drying step of the hydrogel composition.
[形状及び粒度分布] [Shape and particle size distribution]
本発明の吸収剤組成物 [1] の好適な形状は粒子状であり、 例えば、 水溶液重 合後、 乾燥粉砕して得られる破砕状の粒子であっても、 あるいは、 逆相想濁重合 法により得られる球状のものであってもよい。  The preferred shape of the absorbent composition [1] of the present invention is particulate, for example, crushed particles obtained by polymerizing an aqueous solution and then drying and pulverizing, or a reverse phase turbidity polymerization method. May be obtained.
本発明の吸収剤組成物 [ 1 ] の平均粒径は、 通常 200〜 600 m、 好まし くは 250〜 550 Aimである。 また、 粒度分布は、 通常 1000 π!〜 100 / mの範囲の含有量が 90質量%以上、 好ましくは 95質量%以上である。  The average particle size of the absorbent composition [1] of the present invention is usually from 200 to 600 m, preferably from 250 to 550 Aim. The particle size distribution is usually 1000 π! The content in the range from 100 to 100 / m is 90% by mass or more, preferably 95% by mass or more.
平均粒径が 600 mを越える、 あるいは 1000 mを越える粗粒子が 10 質 S%を越えて存在する場合、 吸収速度が低下する傾向が生じてくる。 一方、 平 均粒径が 200 m未満、 あるいは 100 Aim未満の細粒子が 10質量%を越え て存在する場合、 粉体ハンドリング性や散布機による定量供給性の低下といった 問題や、 粉塵の発生が多くなつて作業環境を悪化させるという問題が生じること がある。  If the average particle size exceeds 600 m or coarse particles exceeding 1000 m exist in excess of 10% by mass, the absorption rate tends to decrease. On the other hand, when fine particles having an average particle diameter of less than 200 m or less than 100 Aim are present in an amount of more than 10% by mass, problems such as a reduction in powder handling properties and a quantitative supply property by a sprayer, and generation of dust are caused. In many cases, the problem of deteriorating the work environment may occur.
[比表面積] [Specific surface area]
本発明の吸収剤組成物 [1]は、 (B)が内蔵されていない (A)に対し、 比表 面積が 10%以上向上していることを特徴としている。 ここで、 比表面積は BE T法により測定した値であり、 従って、 (B)が内蔵されていない (A)の比表面 稂を BET法により測定した値に対し、 本発明の吸収剤組成物の比表面積を BE O 99/03577 The absorbent composition [1] of the present invention is characterized in that the specific surface area is improved by 10% or more as compared with (A) in which (B) is not incorporated. Here, the specific surface area is a value measured by the BET method. Therefore, the specific surface area of (A) in which (B) is not incorporated is compared with the value measured by the BET method. The specific surface area of BE O 99/03577
18  18
T法こより測定した値は 10 %以上向上している。 The value measured by the T method is improved by 10% or more.
また、 本発明の吸収剤組成物 [1] における粒径 150〜500 mのものの 比表面積は、 BET法により測定して、 0. lm2/g以上、 特に 0. 15 m2/ g以上であることが好ましい。 The specific surface area of the absorbent composition [1] of the present invention having a particle size of 150 to 500 m was 0.1 lm 2 / g or more, particularly 0.15 m 2 / g or more, as measured by the BET method. Preferably, there is.
[かさ密度] [Bulk density]
本発明の吸収剤組成物 [ 1] のかさ密度は、 通常 0. 1〜0, 7g/cm3、 好ましくは 0. 1〜0. 55 g cm3、 特に 0. 2〜0, 5 g/cm3である。 The bulk density of the absorbent composition [1] of the present invention is usually 0.1 to 0.7 g / cm 3 , preferably 0.1 to 0.55 g cm 3 , particularly 0.2 to 0.5 g / cm 3 . cm 3.
0. 7 g/cm3を越えると質量当りの表面植の増加効果が不十分である。 尚、 かさ密度は J I S K 3362に基づいて測定した値である。 If it exceeds 0.7 g / cm 3 , the effect of increasing the surface plant per mass is insufficient. The bulk density is a value measured based on JISK 3362.
[吸収速度、 加圧吸収量] [Absorption speed, pressure absorption amount]
本発明の吸収剤組成物 [1] は、 上記のように比表面積が改善されたものであ るため、 (Β)が内蔵されていない (Α)の生理食塩水の吸収速度(一定量を吸収 する時間) に対して吸収速度が改善されており、 吸収速度の改善の程度は好まし くは時間で 80 %以下である。  Since the absorbent composition [1] of the present invention has an improved specific surface area as described above, the absorption rate of physiological saline (Α) without (Β) is not incorporated ( The absorption rate is improved with respect to the absorption time, and the degree of improvement in the absorption rate is preferably 80% or less in time.
即ち、 (Β)が内蔵されていない (Α)の生理食塩水の吸収速度(一定量を吸収 する時間) に対し、 本発明の吸収剤組成物 [1] の生理食塩水の吸収速度 (一定 虽を吸収する時間) は、 好ましくは 80%以下に短縮される。  That is, the absorption rate of physiological saline (absolute time of absorption of a certain amount) of (1), in which (Β) is not incorporated, is compared with the absorption rate of physiological saline of absorbent composition [1] of the present invention (constant). Is preferably reduced to 80% or less.
本発明の吸収剤組成物 [ 1 ] の生理食塩水の吸収速度は、 好ましくは 25秒以 下、 特に 20秒以下であり、 このような吸収速度を有すると、 紙おむつなどの衛 生用品に使用した場合は、 ドライ感の向上や漏れの低減に効果的である。  The absorbent rate of the physiological saline solution of the absorbent composition [1] of the present invention is preferably 25 seconds or less, particularly 20 seconds or less. With such an absorbent rate, it can be used for sanitary articles such as disposable diapers. In this case, it is effective to improve dry feeling and reduce leakage.
特に、 表面架橋して得られる本発明の吸収剤組成物 [1] は、 加圧吸収量が向 上し、 生理食塩水に対する吸収速度を好ましくは 25秒以下、 特に好ましくは 2 0秒以下とし、 かつ生理食塩水に対する 20 g/ cm2条件での加圧吸収量を好 ましくは 25 g/g以上、 特に 28 gZg以上とすることができ、 紙おむつなど の衛生用品に使用した場合、 ドライ感が更に向上し、 漏れも更に減少できてより 効果的である。 In particular, the absorbent composition [1] of the present invention obtained by surface cross-linking has an improved absorption capacity under pressure and an absorption rate to physiological saline of preferably 25 seconds or less, particularly preferably 20 seconds or less. In addition, the absorption under pressure of 20 g / cm 2 for physiological saline can be preferably 25 g / g or more, especially 28 gZg or more.When used for sanitary goods such as disposable diapers, The feeling is further improved and leakage can be further reduced, which is more effective.
なお、 吸収速度及び加圧吸収量は後述する方法で測定される値である„ [界面活性剤処理] Note that the absorption rate and the pressure absorption amount are values measured by the method described below. [Surfactant treatment]
本発明の吸収剤組成物 [2] は前記吸収剤組成物 [ 1:] の表面に更に界面活性 剤 (C) が付与されてなるものである。  The absorbent composition [2] of the present invention is obtained by further adding a surfactant (C) to the surface of the absorbent composition [1:].
従って、 本究明の吸収剤組成物 [2] の形状及び粒度分布、 比表面積、 かさ密 度等の物性値は基本的に吸収剤組成物 [ 1] と同じであり、 組成物 [ 1 ] の吸収 速度が早い特性は維持されたものである。  Therefore, the shape and particle size distribution, specific surface area, bulk density, and other physical properties of the absorbent composition [2] of the present invention are basically the same as those of the absorbent composition [1]. The characteristic of fast absorption is maintained.
界面活性剤 (C) の種類については特に限定はなく、 非イオン界面活性剤、 ァ 二オン界面性活性剤、 カチオン界面活性剤、 両性界面活性剤のいずれもが使用で さる。  The type of surfactant (C) is not particularly limited, and any of nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants can be used.
非イオン界面活性剤の例としては、 アルキルフエノール類、 脂肪族アルコール 類、 カルボン酸類、 脂肪族ァミン類、 脂肪酸アミ ド類、 ヒドりキジ変性もしくは ァミン変性ポリシロキサンなどの活性水素含有化合物にェチレンォキシドおよび Examples of nonionic surfactants include alkylphenols, aliphatic alcohols, carboxylic acids, aliphatic amines, fatty acid amides, ethylenoxide and active hydrogen-containing compounds such as polyphenylene-modified or amine-modified polysiloxanes.
Zまたはプロピレンォキシドが付加 (エチレンォキシドとプロピレンォキシドの 併用の場合はランダムまたはブ Dック付加) した化合物、 脂肪酸類で部分的にェ ステル化された多価アルコール類などから選ばれる 1種以上が挙げられる。 Selectable from compounds with Z or propylene oxide added (random or block addition when ethylene oxide and propylene oxide are used together), polyhydric alcohols partially esterified with fatty acids, etc. One or more types are mentioned.
非ィォン界面活性剤の具体例としては、 以下のものが挙げられる。  The following are specific examples of the non-ionic surfactant.
©エチレンォキシト'および/またはプロピレンォキシドでアルコキシル化され た、 C8〜C24のアルキルフエノール類。  © C8-C24 alkylphenols alkoxylated with 'ethylene oxide' and / or propylene oxide.
◎同様にアルコキシル化された、 C10〜C24の脂肪族アルコール類。  ◎ C10-C24 aliphatic alcohols similarly alkoxylated.
◎同様にアルコキシル化された、 C10〜C24の脂肪酸類。  ◎ C10-C24 fatty acids similarly alkoxylated.
◎同様にアルコキシル化された、 C10〜C24の脂肪族ァミン類。  ◎ C10-C24 aliphatic amines also alkoxylated.
◎同様にアルコキシル化された、 C10〜C24の脂肪酸アミ ド類。  ◎ Also alkoxylated C10-C24 fatty acid amides.
◎ポリオキシエチレン変性シリコーンオイル。  ◎ Polyoxyethylene modified silicone oil.
◎ C10〜 C24の脂肪酸類で部分的にエステル化された、 C3〜 C6の多価アルコ ◎ C3-C6 polyhydric alcohol partially esterified with C10-C24 fatty acids
—ル類、 またはこの部分エステル化物に 2〜 20モルのエチレンォキシドおよび—2 to 20 moles of ethylene oxide and
/またはプロピレンォキシドをさらに付加した化合物。 And / or a compound to which propylene oxide is further added.
ァニオン性界面活性剤の例としては、 (C8〜C24) —アルキルスルホン酸のァ ルカリ金属塩、 (C8〜C24) —アルキルスルフアートのアルカリ金属塩またはト リアルカノ一ルアンモニゥム塩、 スルホコハク酸ジエステル類、 スルホコハク酸 モノエステル類、 (C8 C24) —アルキルァリールスルホン酸、 アルキルフエノ ールまたは脂肪族アルコールにエチレンォキシドが付加した生成物の硫酸ハーフ エステル類などが挙げられる。 これらのァニオン性界面活性剤は 2種以上を併用 することができるし、 上記の非イオン性界面活性剤と併用することもできる。 カチオン性界面活性剤の例としては、 脂肪族高級アミン (ラウリルアミン、 ス テアリルアミン等) の無機酸 (塩酸等) 塩または有機酸 (酢酸、 儀酸等) 塩、 低 級ァミン類の高級脂肪酸(ステアリン酸、 ォレイン酸等)、 ソロミン A型カオチン 界面活性剤、 サパミン A型カオチン界面活性剤、 長鎖 (C10〜C22) アルキルを 有する第 4級アンモニゥム塩 (長鎖アルキルペンジルジメチルアンモニゥムクロ ライ ド等)、脂肪族ァミンのアルキレンォキシド (エチレンォキシド等)付加物の 無機酸または有機酸塩等が挙げられる。 両性界面活性剤の例としては、 同じ分子 に少なくとも 1つのカチオン性基 (例えば、 第 4アンモニゥム基) とァニオン性 基(例えば、 カルポキシレート基、 スルフアート基) を有する化合物が挙げられ、 より具体的には、 ジメチルカルポキジメチルー脂肪酸一アルキルアミ ドアンモニ ゥムぺ夕イン類、 3— ( 3—脂肪酸アミ ドープロビル) ジメチルアンモニゥムー 2—ヒドロキジプロパンスルホナート類などが挙げられる。 Examples of anionic surfactants include alkali metal salts of (C8-C24) -alkyl sulfonic acids, alkali metal salts of (C8-C24) -alkyl sulfates or Real alkanoammonium salts, sulfosuccinic acid diesters, sulfosuccinic acid monoesters, (C8 C24) -alkylarylsulfonic acids, alkylphenols, and sulfuric acid half-esters of products obtained by adding ethylene oxide to aliphatic alcohols, etc. No. These anionic surfactants can be used in combination of two or more, and can also be used in combination with the above-mentioned nonionic surfactants. Examples of the cationic surfactant include salts of inorganic acids (such as hydrochloric acid) and salts of organic acids (such as acetic acid and citrate) of higher aliphatic amines (such as laurylamine and stearylamine) and higher fatty acids such as lower amines. (Stearic acid, oleic acid, etc.), Solomin A-type quatin surfactant, Sapamin A-type quatin surfactant, Quaternary ammonium salt having long-chain (C10-C22) alkyl (Long-chain alkyl benzyl dimethyl ammonium chloride) And the like, and an inorganic acid or an organic acid salt of an alkylene oxide (such as ethylene oxide) adduct of an aliphatic amine. Examples of the amphoteric surfactant include a compound having at least one cationic group (for example, a quaternary ammonium group) and an anionic group (for example, a carboxylate group or a sulfate group) in the same molecule. Specific examples include dimethylcarboxydimethyl-fatty acid monoalkylamide ammonium quinones, and 3- (3-fatty acid amide doped lovir) dimethylammonium 2-hydroxyhydropropanesulfonates.
これらのうち好ましいものは、 HLB (グリフィン) が 3以上、 特に 8〜14 の非イオン界面活性剤である。 ここで HLBとは、 界面活性剤の親水性と親油性 とのバランスを表す指檫であり、 官能基の種類や数、 あるいはアルキレンォキサ ィ ドの付加モル数や分子量でコントロールできる。  Preferred among these are nonionic surfactants having an HLB (Griffin) of 3 or more, especially 8-14. Here, HLB is an indicator indicating the balance between hydrophilicity and lipophilicity of a surfactant, and can be controlled by the type and number of functional groups, or the number of moles and molecular weight of alkylene oxide added.
本究明の吸収剤組成物 [2] は、 例えば前記 [3] 又は [4] 項記載の製造方 法で得られる吸収剤組成物 [ 1] の表面に、 さらに界面活性剤 (C) を付与する ことにより得られる。  In the absorbent composition [2] of the present invention, for example, a surfactant (C) is further added to the surface of the absorbent composition [1] obtained by the production method described in the above item [3] or [4]. It is obtained by doing.
界面活性剤 (C) の量は、 吸収剤組成物 [1] に対して質虽基準で通常 0. 1 〜5%、好ましくは 0. 1〜3%、特に 0. 2〜2%である。 (C)の蚤が 0. 1% 未満の場合、 (C)による処理効果が乏しく、得られる組成物と血液との親和性の 向上がほとんど望めないことから、 血液に対する吸収速度に優れた組成物が得ら れない場合がある。 一方、 (C)の量が 5%を越える場合、 吸収速度の向上には効 果があるが、 得られる組成物の粉体流動性が悪化し、 粉体ハンドリング性の面で 問題を生じることがあり好ましくない。 The amount of the surfactant (C) is usually 0.1 to 5%, preferably 0.1 to 3%, particularly 0.2 to 2%, based on the quality of the absorbent composition [1]. . When the content of the fleas of (C) is less than 0.1%, the treatment effect of (C) is poor, and almost no improvement in the affinity between the obtained composition and blood can be expected. Things may not be obtained. On the other hand, if the amount of (C) exceeds 5%, it is effective for improving the absorption rate. However, the powder flowability of the resulting composition deteriorates, which may cause problems in powder handling properties, which is not preferred.
吸収剤組成物 [ 1 ] の表面に界面活性剤 (C ) を付与することにより、 表面に 界面活性剤 (C ) が付着し、 更に界面活性剤に浸透性があれば組成物内部へ浸透 する。  By applying the surfactant (C) to the surface of the absorbent composition [1], the surfactant (C) adheres to the surface, and if the surfactant has permeability, it penetrates into the interior of the composition. .
吸収剤組成物 [ 1 ] に界面活性剤 (C ) を付与する方法は特に限定されるもの ではなく、 例えば、 通常の浪合装置を用い吸収剤組成物に界面活性剤 (C ) を混 合する。 界面活性剤 (C ) は、 そのものでも水や水性液に希釈されたものでもよ い。  The method of adding the surfactant (C) to the absorbent composition [1] is not particularly limited. For example, the surfactant (C) is mixed with the absorbent composition using a normal mixing device. . The surfactant (C) may be as such or diluted in water or an aqueous liquid.
具体的な装置の例としては、 V型混合機、 リポンプレンダー、 タービユラ一ザ 一、 万能混合機、 ナウターミキサー、 流動層式混合機、 スプレー混合機、 ライン プレンダー、 コンチイ二ユアスミキサー、 パンバリーミキサー、 モルタルミキサ 一などが挙げられる。 これらは複数個を組み合わせて使用することもできる。 [羊血に対する吸収速度]  Examples of specific equipment include a V-type mixer, a repump blender, a turbula mixer, a universal mixer, a Nauta mixer, a fluidized bed mixer, a spray mixer, a line blender, a continuous mixer, and a panbury. Mixer, mortar mixer and the like. These can be used in combination of two or more. [Absorption rate for sheep blood]
本発明の組成物 [ 2 ] は、 羊血に対する吸収速度が通常 3 0秒以下、 好ましく は 2 5秒以下であり、 かつ羊血中で 3 0分間膨潤後の保水 gが通常 2 0 g/ g以 上、 好ましくは 2 3 g/ g以上である。  The composition [2] of the present invention has an absorption rate to sheep blood of usually 30 seconds or less, preferably 25 seconds or less, and a water retention g after swelling in sheep blood for 30 minutes is usually 20 g /. g or more, preferably 23 g / g or more.
本発明の組成物 [ 2 ] はこのような血液に対する吸収特性 (吸収速度及び保水 ) のパランスがあるものであるため、 各種の吸収性物品 (例えば、 生理用ナブ キン、 パンティーライナー、 タンポン、 手術用アンダーパッ ド、 産褥用マッ ト、 創傷保護用ドレヅシング材など)、特に生理用ナプキンに適用した場合、従来の吸 水性樹脂に比べて表面ドライ感の向上や漏れの低減、 保水 gアップに効果的であ る。  Since the composition [2] of the present invention has such a balance of absorption characteristics (absorption rate and water retention) for blood, it can be used for various absorbent articles (for example, sanitary napkins, panty liners, tampons, surgery) Underpads, puerperal mats, dressings for wound protection, etc.), especially when applied to sanitary napkins, improves the dryness of the surface, reduces leakage, and increases water retention compared to conventional water-absorbent resins. It is a target.
また、 本発明の組成物 [ 2 ] が表面架橋されたものの場合は、 羊血に対する荷 重下での吸収量がさらに向上し、 2 0 g/ c m2荷重下での吸収虽を 2 0 g Z g 以上とすることが可能である。 When the composition [2] of the present invention is surface-crosslinked, the amount of absorption under a load against sheep blood is further improved, and the absorption 虽 under a load of 20 g / cm 2 is reduced to 20 g. It is possible to make Z g or more.
羊血に対する吸収速度、 羊血中で 3 0分間膨潤後の保水呈、 羊血に対する荷重 下吸収萤、 ナプキンの表面ドライ感およびナプキンの保水量は後記の方法で測定 22 Absorption rate to sheep blood, water retention after swelling in sheep blood for 30 minutes, absorption under load to sheep blood, dryness of napkin surface and napkin water retention measured by the methods described below twenty two
される値である。 Value.
なお、 従来から吸水性樹脂の血液に対する吸収性能を評価する際に人工の疑似 血液 (例えば、 塩化ナトリウム約 0 . 9 %、 炭酸水素ナトリウム約 0 . 4 %、 グ リセリン約 3 0 %、 カルポキシメチルセル口一スナトリウム約 0 . 1 8 %含有し、 必要により界面活性剤や着色剤を添加した水溶液など) が使用されてきたが、 こ の疑似血液による吸収挙動と実際の血液 (人血、 絰血、 牛血、 羊血など) に対す る吸収挙動とは大きく異なることから、 血液に対する吸収性能を調べるには実際 の血液を使用する必要がある。  Conventionally, artificial blood (eg, about 0.9% sodium chloride, about 0.4% sodium bicarbonate, about 30% glycerin, about 30% carboxylate, Methylcell mouth sodium (about 0.18%, aqueous solution containing surfactants and coloring agents as needed) has been used, but the absorption behavior by this simulated blood and actual blood (human blood) have been used. , Bovine blood, bovine blood, sheep blood, etc.), it is necessary to use actual blood to determine the absorption performance for blood.
なぜなら、 実際の血液中には血球やヘモグロビン、 細胞質、 タンパク成分など の髙分子^機物質が約 4 5容量%も含まれているからである。  This is because actual blood contains about 45% by volume of 髙 molecular substances such as blood cells, hemoglobin, cytoplasm, and protein components.
[吸収性物品] [Absorptive articles]
本発明の吸収性物品は、 本発明の吸収剤組成物 [ 1 ] 又は [ 2 ] 及び繊維状物 からなる吸収層が、 透水性部分を有する表面保護シートに包まれてなるものであ る。 表面保護シートは、 例えば、 大人用や子供用の紙ォ厶ッ、 生理用品等の場合 は、 使用形態からみて、 通常外側表面の不透水性シートと、 内側表面の透水性シ ートからなり、 この両シート間に該吸収層が包み込まれ、 両シート端部が接合さ れて吸水性物品が形成される。 両シート間の該吸収層とともに、 必要により、 吸 水紙、 液拡散シートなども併用される。  The absorbent article of the present invention comprises an absorbent layer comprising the absorbent composition [1] or [2] of the present invention and a fibrous material wrapped in a surface protective sheet having a water-permeable portion. For example, in the case of adult and children's paper and sanitary products, the surface protection sheet usually consists of a water-impermeable sheet on the outer surface and a water-permeable sheet on the inner surface, depending on the form of use. The absorbent layer is wrapped between the two sheets, and the ends of the two sheets are joined to form a water absorbent article. If necessary, a water-absorbing paper, a liquid diffusion sheet and the like are used together with the absorbing layer between the two sheets.
この吸収層に用いる繊維状物は、 パルプ、 合成繊維、 半合成繊維、 天然紘維等 従来公知のものが挙げられ特に制限はない。 繊維状物の太さ、 長さ等も特に制限 はない。 実施例  The fibrous material used in the absorbent layer includes pulp, synthetic fiber, semi-synthetic fiber, natural fiber and the like, and is not particularly limited. The thickness and length of the fibrous material are not particularly limited. Example
以下実施例により本発明をさらに説明するが、 本発明はこれらに限定されるも のではない。 なお、 特に定めない限り%は質量%を示すものである。  Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto. Unless otherwise specified,% means mass%.
吸水性樹脂、 吸収剤組成物及びナプキンの以下の 1 ) 〜1 0 ) の測定項目につ いて、 測定方法を以下に示す。 O 99/03577 The measurement methods for the following items 1) to 10) of the water-absorbent resin, the absorbent composition and the napkin are shown below. O 99/03577
23  twenty three
〔輒定項目] [Shorted items]
吸水性樹脂及び吸収剤組成物:  Water absorbent resin and absorbent composition:
1) 比表面積  1) Specific surface area
吸収剤組成物:  Absorbent composition:
2) 0. 9%食塩水に対する吸収速度  2) Absorption rate for 0.9% saline
3) 0. 9%食塩水に対する加圧吸収暈  3) Pressurized absorption halo for 0.9% saline
4) 0. 9%食塩永に対する保水量  4) Water retention for 0.9% salt
5) 羊血に対する吸収速度  5) Absorption rate for sheep blood
6) 羊血に対する保水量  6) Water retention for sheep blood
7) 羊血に対する荷重下吸収虽  7) Absorption under load to sheep blood.
ナプキン ;  Napkins;
8) 羊血に対する吸収速度  8) Absorption rate for sheep blood
9 ) 羊血の拡散面積  9) Sheep blood diffusion area
10) 羊血拡散後の表面ドライ感  10) Surface dryness after sheep blood diffusion
1 1) 羊血に対する保水量 1 1) Water retention for sheep blood
[測定方法] [Measuring method]
1) 比表面積の測定法:  1) Measurement method of specific surface area:
ュアサアイオニスク株式会社製 (カンリーブ QS— 19) を用いて、 B.E.T1 点法で測定した。 測定条件は、 測定ガスが He/Kr = 99. 1/0. 1 vo 1%、 検垦ガスが N2、 セルは標準セルで行った。 測定に用いた吸水性樹脂ある いは吸収剤サンプルは、 予め 30〜 100メッシュに調整した。 The measurement was carried out by BET one-point method using a device manufactured by Cyuasa Ionics Inc. (Canleeve QS-19). The measurement conditions were as follows: He / Kr = 99.1 / 0.1.1 vo 1% for the measurement gas, N 2 for the detection gas, and a standard cell as the cell. The water-absorbent resin or absorbent sample used for the measurement was adjusted to 30 to 100 mesh in advance.
2 ) 吸収剤組成物の吸収速度の測定法:  2) Method for measuring absorption rate of absorbent composition:
J I S標準フルイで 30〜60メヅシュの粒度に調整した吸収剤組成物 2.0 0 gを試料として用意する。  2.00 g of an absorbent composition adjusted to a particle size of 30 to 60 mesh with a JIS standard sieve is prepared as a sample.
0. 9質虽%の食塩水 50 gをマグネッ ト (中央部の直径 08mm、 両端の直 径 7mm、 長さ 30mmで、 フッ素樹脂でコーティングされた中太のもの) の 入ったビーカー (容量 100mlで底が平らなもの) に入れ、'ビーカーをマグネ チックスターラー中央部に載せる。 24 A beaker (100 ml capacity) containing 50 g of 0.9% sodium chloride solution in a magnet (08 mm in diameter at the center, 7 mm in diameter at both ends, 30 mm in length, medium size coated with fluororesin) And place the beaker on the center of the magnetic stirrer. twenty four
マグネチックスターラーの回転数を毎分 600 ±30回転に調節し、 食塩水が 安定した^を形成していることを確認する。 Adjust the rotation speed of the magnetic stirrer to 600 ± 30 rpm, and confirm that the saline solution forms a stable ^.
試料をできるだけビーカ一の内壁面付近でかつ壁面に接触させない位置にすば やく添加した後、 タイマ一による計測を開始する。 ここまでは J IS K 722 4に基づく操作である。  As soon as possible, add the sample to the beaker as close to the inner wall of the beaker as possible and avoid contact with the wall. The operation so far is based on J IS K 7224.
渦が消滅して液面が水平になった時点を終点とし、 終点までに要した時間を秒 の単位まで測定して吸収速度とした。  The time when the vortex disappeared and the liquid level became horizontal was defined as the end point, and the time required for the end point was measured in seconds to determine the absorption rate.
3 ) 吸収剤組成物の加圧吸収量の測定法:  3) Measuring method of pressure absorption amount of absorbent composition:
250メッシュのナイロン網を底面に貼った円筒型プラスチックチューブ (内 径 30 mm> 高さ 60 mm) 内に、 J I S檫準フルイで 30~60メヅシュの 粒度に調整した吸収剤組成物試料 0. 1' 0 g入れて平坦に均す。  Absorbent composition sample adjusted to a particle size of 30 to 60 mesh with a JIS standard screen in a cylindrical plastic tube (inner diameter 30 mm> height 60 mm) with a 250 mesh nylon net attached to the bottom 0.1 'Add 0 g and level.
この吸収剤組成物の上に 20 g/cm2の荷重となるように外径 30 mmの 分銅を乗せる。 0. 9質量%食塩水 60mlの入ったシャーレ (直径 ø 12 cm) の中に吸収剤組成物の入ったプラスチックチューブをナイロン網側を下面にして 静置する。 吸収剤組成物が 0. 9%食塩水を吸収して増加した質 gを 5分後及び 60分後に測定した。 A weight having an outer diameter of 30 mm is placed on the absorbent composition so as to give a load of 20 g / cm 2 . A plastic tube containing the absorbent composition is placed in a petri dish (diameter ø 12 cm) containing 60 ml of 0.9% by mass saline solution with the nylon mesh side facing down. The g of the absorbent composition increased by absorbing 0.9% saline was measured after 5 minutes and 60 minutes.
5分後の測定値の 10倍値を 0. 9%食塩水に対する初期加圧吸収 g、 60分 後の測定値の 10倍値を 0. 9 %食塩水に対する加圧吸収量とした。  The 10-fold value of the measured value after 5 minutes was defined as the initial pressure absorption g in 0.9% saline, and the 10-fold value of the measured value after 60 minutes was defined as the pressure absorption amount in 0.9% saline solution.
4) 吸収剤組成物の保水量の測定法:  4) Method for measuring the water retention of the absorbent composition:
250メッシュのナイロン網で作成したティーバッグ (縦 20 cm、 横 10 c m) に J I S標準フルイで 30〜 60メッシュの粒度に調整した吸収剤組成物試 料 1. 00gを入れ、 0. 9質量%の食塩水 500ml中に 60分間浸漬して吸 収させた後、 15分間吊して永切りしてから、 さらに遠心脱水機にて 150 Gの 遠心力で 90秒間脱水し、 増加質量を測定して 0, 9質量%の食塩水に対する保 水量とした。  In a tea bag (length 20 cm, width 10 cm) made of a 250 mesh nylon net, 1.00 g of the absorbent composition sample adjusted to a particle size of 30 to 60 mesh with a JIS standard sieve was added, and 0.9 mass% was added. Immersed in 500 ml of a saline solution for 60 minutes to absorb, suspended for 15 minutes, cut off, dehydrated with a centrifugal dehydrator at 150 G for 90 seconds, and measured the increased mass. The amount of water retained was 0.9% by mass of saline.
5) 吸収剤組成物の羊血に対する吸収速度の測定法:  5) Method of measuring absorption rate of absorbent composition to sheep blood:
J I S樓準フルイで 30〜 60メッシュの粒度に調整した吸収剤組成物 10 g を試料として用意する。 シャーレ (直径 12 cm) に試料 20 gを入れて平坦 にならし、 中央に羊血(3, 8%のクェン酸含有:東和純桀製) 5gを注入する。 注入開始から、羊血が完全に吸収されるまでの時間を測定して、吸収速度とした。 Prepare a sample of 10 g of the absorbent composition adjusted to a particle size of 30 to 60 mesh with JIS Toru Screen. Place 20 g of sample in a Petri dish (diameter 12 cm), flatten it, and inject 5 g of sheep blood (containing 3.8% of citric acid: made by Towa Jun-Ji) into the center. The time from the start of the infusion until the sheep blood was completely absorbed was measured and defined as the absorption rate.
6) 吸収剤組成物の羊血に対する保水量の測定法:  6) Method of measuring water retention of sheep blood by absorbent composition:
250メッシュのナイロン網で作成したティーバッグ (縦 20 cm、 横 10 c m) に J I S標準フルイで 30〜60メッシュの粒度に調整した吸収剤組成物試 料 1. 0 gを入れ、 羊血中に 30分間浸湏して吸収膨潤させた後、 15分間吊し て氷切りしてから、 さらに遠心脱水機にて 250 Gの遠心力で 2分間脱水し、 増 加賀镊を測定する。 この増加重量を羊血に対する保水萤とした。  A tea bag (length 20 cm, width 10 cm) made of 250 mesh nylon net, 1.0 g of an absorbent composition sample adjusted to a particle size of 30 to 60 mesh with a JIS standard sieve was put into sheep blood. After immersion for 30 minutes to absorb and swell, suspend by ice for 15 minutes, dehydrate with a centrifugal dehydrator at 250 G for 2 minutes, and measure the increase. This increased weight was defined as water retention for sheep blood.
7) 吸収剤組成物の羊血に対する荷重下吸収量の測定法:  7) Method for measuring absorption amount of absorbent composition under load to sheep blood:
250メッシュのナイロン網を底面に貼った円筒型プラスチックチューブ (内 径^ 30mm、 高さ 60 mm) 内に、 J I S標準フルイで 30〜 60メッシュの 粒度に調整した吸収剤組成物試料 0. 1 g入れて平坦にならす。  In a cylindrical plastic tube (inner diameter ^ 30 mm, height 60 mm) with a 250 mesh nylon mesh attached to the bottom, 0.1 g of an absorbent composition sample adjusted to a particle size of 30 to 60 mesh with JIS standard sieve Add and level.
この試料の上に 20 gZcm2の荷重となるように外径 ø 30mmの分銅を乗 せる。 羊血 50 gの入ったシャーレ (直径 ø 12 cm) の中に試料の入ったプラ スチックチューブをナイ πン網側を下面にして静置する。 試料が羊血を吸収して 増加した質量を 30分後に測定する。 この測定値の 10倍値を羊血に対する荷重 下吸収量とした。 This causes multiplication the weight of the outer diameter ų 30 mm so that the load of 20 gZcm 2 on the sample. Place the plastic tube containing the sample in a Petri dish (diameter ø 12 cm) containing 50 g of sheep blood with the nylon net side facing down. The mass of the sample that has absorbed the sheep blood is measured after 30 minutes. The 10-fold value of this measured value was taken as the absorption under load for sheep blood.
8) ナブキンの吸収速度の測定法:  8) Measurement method of absorption rate of napkin:
坪量 100 g/m2のフラッフパルプ層を 6 cmx 15 cmの大きさに裁断し、 その上に吸収剤組成物試料 0. 4 gを均一に散布する。 さらに同じ坪 g、 同じ大 きさのフラヅフパルプ層をかさね、 10 k gZcm2で 30秒間金網上でプレス して吸収体層を作成する。 A fluff pulp layer having a basis weight of 100 g / m 2 is cut into a size of 6 cm x 15 cm, and 0.4 g of a sample of the absorbent composition is uniformly sprayed thereon. Furthermore, a fluff pulp layer of the same tsubo g and the same size is piled up and pressed on a wire mesh at 10 kgZcm 2 for 30 seconds to form an absorber layer.
この吸収体眉より大きめの防漏フィルムを下面に、 レーヨン製不織布を上面に 配置し、 周辺を吸収体層に沿ってヒートシールしてモデルナプキンを作成する。 モデルナプキンの吸収体層と同じ面積のァクリル板の中央に直径 12 mmの穴 をあけ、 穴の上に内径 12 mmの円筒 (長さ 10 cm) を固定した注入板を用意 する。 この注入板をモデルナプキンの上に配置し、 さらに 20 gの荷重を均等に のせ、 円筒から羊血 5 gを注入し、 5 g全 Sが吸収されるまでの時間を測定する。 これを 3回測定し、 平均値を吸収速度とした。  A leak-proof film larger than the absorber eyebrows is placed on the lower surface, and a rayon nonwoven fabric is placed on the upper surface, and the periphery is heat-sealed along the absorber layer to create a model napkin. Prepare an injection plate with a 12 mm diameter hole in the center of an acryl plate with the same area as the absorber layer of the model napkin, and a 12 mm inner diameter cylinder (10 cm long) fixed on the hole. This injection plate is placed on the model napkin, and a load of 20 g is evenly applied. 5 g of sheep blood is injected from the cylinder, and the time until 5 g of total S is absorbed is measured. This was measured three times and the average value was taken as the absorption rate.
9) ナプキンの拡散面積の測定法: 26 9) Method for measuring napkin diffusion area: 26
吸収速度測定後に、 羊血が吸収体層に吸収されて広がった面積を求め、 3回測 定の平均値を拡散面積とした。 After the absorption rate measurement, the area where the sheep blood was absorbed and spread in the absorber layer was determined, and the average value of the three measurements was taken as the diffusion area.
10) ナプキンの表面ドライ惑の測定法:  10) Measurement method of surface dryness of napkin:
拡散面積測定後に、 モデルナプキン表面のドライ感を 5名のパネラーで指触判 定する。 この操作を 3回繰り返し、 これらの平均を下記の基準で評価した。  After measuring the diffusion area, five panelists judge the dryness of the model napkin surface by finger touch. This operation was repeated three times, and the average of these was evaluated according to the following criteria.
®: ドライ感良好。  ®: Good dry feeling.
〇:若干湿つぼい感じがするが、 実用上問題のないレベル。  〇: Slightly moist feeling, but no practical problem.
厶:液の渙み出しは少ないが、 ぺトツキを感じる。  Rum: There is little leaching of the liquid, but I feel a luck.
X:液の滲み出しが多く、 ぺトぺトしている。  X: There is a lot of seepage of the liquid and it is wet.
11) ナプキンの保水量の測定法:  11) Method for measuring napkin water retention:
モデルナプキンを過剰の羊血中に 5分間浸して吸収させる。 その後、 表面不織 布側を外向きにして重力 250 Gで 2分間遠心脱水し、 増加重量を求め、 小数点 1桁目を四捨五入した値を保水量とした。 (実施例 1)  Soak the model napkins in excess sheep blood for 5 minutes. Then, the nonwoven fabric was turned outward with centrifugal dehydration at 250 G for 2 minutes to determine the increased weight, and the value obtained by rounding off the first decimal place was used as the water retention capacity. (Example 1)
容量 1リッ トルのガラス製反応容器にァクリル酸ナトリウム 77 g、 アクリル 酸 22. 8 g、 N, N, 一メチレンビスアクリルアミ ド 0. 2gおよび脱イオン 水 295 gを仕込み、 攒拌、 混合しながら内容物の温度を 3'Cに保った。  A 1 liter glass reaction vessel was charged with 77 g of sodium acrylate, 22.8 g of acrylic acid, 0.2 g of N, N, monomethylenebisacrylamide and 295 g of deionized water, stirred, mixed and mixed. While maintaining the temperature of the contents at 3'C.
内容物に窒素を流入して溶存酸素量を 1 p pm以下とした後、 過酸化水素の 1%水溶液 l g、 ァスコルビン酸の 0. 2%水溶液 1. 2gおよび 2, 2, ーァ ゾビスアミジノプロパンジハイ ドロクロライ ドの 2%水溶液 2. 8 gを添加 '混 合して重合を開始させ、約 5時間重合することにより含水ゲル状重合体( A 1 G) を得た。  After flowing nitrogen into the contents to reduce the dissolved oxygen content to 1 ppm or less, a 1% aqueous solution of hydrogen peroxide lg, a 1.2% aqueous solution of ascorbic acid 1.2 g and 2,2, azobisamidino 2.8 g of a 2% aqueous solution of propanedihydrochloride was added, and the mixture was mixed and the polymerization was started, followed by polymerization for about 5 hours to obtain a hydrogel polymer (A1G).
含水ゲル状重合体 (A1G) をインタ一ナルミキサーで 3〜7 mmの大きさに 細断後に、 ェクスパンセル 091DE (真密度- 0. 03g/cm3 ;粒径 50 〜80 ^m) の 2 %水分散液 (B11) を 100 g添加し、 さらにィンターナルミ キサ一で均一に浪合した後、 150。C、 風速 2. 0m/秒の条件の通気型バンド 乾燥機 (井上金属工業製) で乾燥した。 得られた乾燥物を粉碎し、 20〜 100 メッシュの粒度に調整して吸収剤組成物 (1) を得た。 27 Hydrogel polymer (A1G) after shredding to a size of 3 to 7 mm in inter one internal mixer, Ekusupanseru 091DE (true density - 0. 03g / cm 3; particle size 50 ~80 ^ m) 2% of the 100 g of the aqueous dispersion (B11) was added, and the mixture was mixed uniformly with an internal mixer. C. Drying was performed with a ventilated band dryer (Inoue Kinzoku Kogyo) at a wind speed of 2.0 m / sec. The obtained dried product was pulverized and adjusted to a particle size of 20 to 100 mesh to obtain an absorbent composition (1). 27
~方、 含水ゲル状重合体 (A 1 G) をインターナルミキサーで 3〜7 mmの大 きさに細断後、 150°C、 風速 2. 0m/秒の条件の通気型パンド乾燥機で乾燥 した。 得られた乾燥物を粉砕し、 20〜 100メッシュの粒度に調整することに より吸水性樹脂 (A1) を得た。 On the other hand, the hydrogel polymer (A1G) is shredded to a size of 3 to 7 mm with an internal mixer, and then is passed through a ventilated pan drier at 150 ° C and a wind speed of 2.0 m / sec. It was dry. The obtained dried product was pulverized and adjusted to a particle size of 20 to 100 mesh to obtain a water-absorbent resin (A1).
吸水性樹脂 (A1) と吸収剤組成物 (1) の比表面積を測定し、 比表面積の増 加率を計算した結果を表 1に示す。 又、 吸収剤組成物 (1) の性能評価結果を表 2に示す。  Table 1 shows the results of measuring the specific surface area of the water-absorbent resin (A1) and the absorbent composition (1), and calculating the rate of increase in the specific surface area. Table 2 shows the performance evaluation results of the absorbent composition (1).
(実施例 2)  (Example 2)
吸収剤組成物 ( 1 ) 100 gを高速攒拌しながらエチレングリコールジグリシ ジルエーテルの 10%水/メタノール混合溶液 (水/メタノール = 70/30) を 2 g加えて混合した後、 140°Cで 30分間加熱架橋することで表面架橋型の 吸収剤組成物 (2) を得た。  While stirring 100 g of the absorbent composition (1) at a high speed, 2 g of a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol = 70/30) was added and mixed. Crosslinking by heating for 30 minutes was performed to obtain a surface crosslinked type absorbent composition (2).
一方、 実施例 1で得た吸水性樹脂 (Al) 100 gを高速攪拌しながらェチレ ングリコールジグリシジルエーテルの 10%水/メタノ一ル滔合溶液 (水ノメタ ノール = 70/30 ) を 2 g加えて混合した後、 140。Cで 30分間加熱架橋す ることで表面架橋型の吸水性樹脂 (A2) を得た。  On the other hand, 100 g of the water-absorbent resin (Al) obtained in Example 1 was stirred at a high speed while 2 g of a 10% water / methanol-toluene solution of ethylene glycol diglycidyl ether (water methanol = 70/30) was added. After adding and mixing 140. Heat-crosslinking was performed for 30 minutes at C to obtain a surface-crosslinkable water-absorbent resin (A2).
吸水性樹脂 (A2) と吸収剤組成物 (2) との比表面積を測定し、 比表面積の 増加率を計算した結果を表 1に示す。 又、 吸収剤組成物 (2) の性能評価結果を 表 2に示す。  Table 1 shows the results of measuring the specific surface area of the water absorbent resin (A2) and the absorbent composition (2), and calculating the rate of increase in the specific surface area. Table 2 shows the performance evaluation results of the absorbent composition (2).
(実施例 3, 4)  (Examples 3, 4)
実施例 1において、 分散液 (B11) の添加: gを 25gあるいは 250 gに代え る以外は実施例 1と同様にして得られた 20~ 100メッシュの粒度の乾燥物 1 00gを、 実施例 2と同様に表面架橋して、 吸収剤組成物 (3) および吸収剤組 成物 (4) を得た。  100 g of the dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 1 except that the addition of the dispersion liquid (B11) in Example 1 was changed to 25 g or 250 g, Surface cross-linking was performed in the same manner as in Example 1 to obtain an absorbent composition (3) and an absorbent composition (4).
吸収剤組成物 (3)、 (4) の比表面積を測定し、 吸水性樹脂 (A2)  The specific surface area of the absorbent composition (3), (4) was measured, and the water-absorbent resin (A2)
に対する比表面積の増加率を計算した結果を表 1に示す。又、 吸収剤組成物(3)、 (4) の性能評価結果を表 2に示す。  Table 1 shows the results of calculating the rate of increase of the specific surface area with respect to. Table 2 shows the performance evaluation results of the absorbent compositions (3) and (4).
(実施例 5, 6)  (Examples 5, 6)
実施例 1において、 分散液(B11)に代えて、 下記の分散被(B12)または(B 28 In Example 1, the following dispersion layer (B12) or (B12) was used instead of the dispersion liquid (B11). 28
13)-を同悬使用する以外は実施例 1と同様にし、 かつ実施例 2と同様に表面架橋 して、 吸収剤組成物 (5) および吸収剤組成物 ( 6) を得た。 Except that 13)-was used in the same manner as in Example 1, and the surface was crosslinked in the same manner as in Example 2 to obtain an absorbent composition (5) and an absorbent composition (6).
◎分散液 (B12):ェクスパンセル 46 1 DE (真密度- 0. 06 g/cm3 ; 粒径 20〜40 m) の 2%水分散液。 ◎ Dispersion (B12): 2% aqueous dispersion of Expanscel 46 1 DE (true density-0.06 g / cm 3 ; particle size 20 to 40 m).
©分散液 (B13):ェクスパンセル 5 5 1 DE (真密度 = 0♦ 04 g/cma ; 粒径 30〜5 Ou ) の 2%水分散液。 © dispersion (B13): Ekusupanseru 5 5 1 DE (true density = 0 ♦ 04 g / cm a ; particle size 30 to 5 Ou) 2% aqueous dispersion of.
吸収剤組成物 (5)、 (6) の比表面積を測定し、 吸水性樹脂 (A2) に対する 比表面積の増加率を計算した結果を表 1に示す。 また、 吸収剤組成物(5)、 (6) の性能評価結果を表 2に示す。  Table 1 shows the results of measuring the specific surface area of the absorbent compositions (5) and (6) and calculating the rate of increase of the specific surface area with respect to the water-absorbent resin (A2). Table 2 shows the performance evaluation results of the absorbent compositions (5) and (6).
(実施例 7)  (Example 7)
容¾ 1リットルのガラス製反応容器にァクリル酸ナトリウム 77 g:、 アクリル 酸 22. 8 g、 Ν, Ν' ーメチレンビスアクリルアミ ド 0. 2 gおよび脱イオン 水 29 3 gを仕込み、 攪拌、 混合しながら 「ェクスパンセル 09 IDEj を 2 g 添加して内容物の温度を 3てに保った。  A 1-liter glass reaction vessel was charged with 77 g of sodium acrylate: 22.8 g of acrylic acid, 0.2 g of Ν, Ν'-methylenebisacrylamide and 293 g of deionized water, and stirred. While mixing, 2 g of Expanscel 09 IDEj was added to keep the contents at a temperature of 3.
内容物に窒素を琉入して溶存酸素虽を 1 p pm以下とした後、 過酸化水素の 1 %水溶液 l g、 ァスコルビン酸の 0. 2%水溶液1. 2 gおよび 2, 2, ーァ ゾビスアミジノプロパンジハイ ドロクロライ ドの 2%水溶液 2. 8 gを添加■混 合して重合を閲始させ、約 5時間重合することにより含水ゲル状重合体配合物( A B 1 G) を得た。  After introducing nitrogen into the contents to reduce dissolved oxygen 虽 to 1 ppm or less, a 1% aqueous solution of hydrogen peroxide lg, a 1.2% aqueous solution of ascorbic acid 1.2 g and 2,2, -azo 2.8 g of a 2% aqueous solution of bisamidinopropanedihydrochloride was added and mixed to start polymerization, and polymerization was carried out for about 5 hours to obtain a hydrogel polymer composition (AB1G).
含水ゲル状重合体配合物 (AB 1 G) をインターナルミキサーで細断した後、 1 50 °C 風速 2. 0m/秒の条件の通気型パンド乾燥機で乾燥した。  The hydrogel polymer composition (AB1G) was chopped with an internal mixer, and then dried with a ventilated pan drier at 150 ° C and a wind speed of 2.0 m / sec.
得られた乾燥物を粉砕し、 20〜 1 00メッシュの 度に調整した後、 このも の 1 00 gを高速挽拌しながらエチレングリコールジグリシジルエーテルの 1 0%水/メタノール混合溶液 (永/メタノール = 70/30) を 2 g加えて混合 し、 140でで 30分間加熱架橋することで表面架橋型の吸収剤組成物 (7) を 得た。  The obtained dried product was pulverized and adjusted to a mesh size of 20 to 100 meshes, and 100 g of this product was stirred at a high speed while a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (permanent / 2 g of methanol (70/30) was added and mixed, followed by heat crosslinking at 140 for 30 minutes to obtain a surface-crosslinkable absorbent composition (7).
吸収剤組成物 (7) の比表面積を測定し、 吸水性樹脂 (A2) に対する比表面 積の増加率を計算した結杲を表 1に示す。 又、 吸収剤組成物 (7) の性能評価結 果を表 2に示す。 (実施例 8 ) Table 1 shows the results obtained by measuring the specific surface area of the absorbent composition (7) and calculating the increase rate of the specific surface area with respect to the water absorbent resin (A2). Table 2 shows the performance evaluation results of the absorbent composition (7). (Example 8)
容量 1リヅトルのガラス製反応容器に、 アクリル酸 81. 8 g、 N, N, ーメ チレンビスァクリルアミ ド 0. 2 gおよび脱イオン水 241 gを仕込み、 授拌、 混合しながら内容物の温度を 3eCに保った。 A 1 liter glass reaction vessel was charged with 81.8 g of acrylic acid, 0.2 g of N, N, -methyl bis (acrylamide) and 241 g of deionized water, and the contents were stirred and mixed. Temperature was kept at 3 eC .
内容物に窒素を流入して溶存酸素量を lppm以下とした後、 過酸化水素の 1%水溶液 l g、 ァスコルビン酸の 0, 2%水溶液 1, 2gおよび 2, 2' —ァ ゾビスアミジノプロパンジハイ ド Dクロライ ドの 2 %7 溶液 2. 8gを添加 '混 合して重合を閧始させ、 約 5時間重合することにより含水ゲル状重合体を得た。  After injecting nitrogen into the contents to reduce the dissolved oxygen content to lppm or less, 1% aqueous solution of hydrogen peroxide lg, 0,2% aqueous solution of ascorbic acid 1,2g and 2,2'-azobisamidinopropanedihyd 2.8 g of a 2% solution of D-chloride was added and mixed, and polymerization was started. Polymerization was carried out for about 5 hours to obtain a hydrogel polymer.
この含水ゲル状重合体をィン夕一ナルミキサーで細断しながら、 30 %水酸化 ナトリウム水溶液 109. 1 gを添加して混練することによりカルボン酸の 72 モル%が中和された含水ゲル状重合体 (A3G) を得た。  This hydrogel polymer was shredded with an internal mixer, and 109.1 g of a 30% aqueous sodium hydroxide solution was added and kneaded, whereby the hydrogel was neutralized with 72 mol% of the carboxylic acid. A polymer (A3G) was obtained.
実施例 1と同じ 2 %水分散液 (BID 100 gを含水ゲル状重合体 (A3 G) に添加し、 インターナルミキサーで均一に混合した後、 150'C、 風速 2. 0 m /秒の条件の通気型バンド乾燥機で乾燥した。  The same 2% aqueous dispersion (BID 100 g) as in Example 1 was added to the hydrogel polymer (A3G), and the mixture was uniformly mixed using an internal mixer. It dried with the ventilation type band dryer of the conditions.
得られた乾燥物を粉砕し、 20〜 100メッシュの粒度に調整した後、 このも の 100 gを高速攪拌しながらエチレングリコールジグリシジルェ一テルの 1 0%水 Zメタノール混合溶液 (水/メタノール = 70/30 ) を 2 g加えて混合 し、 140でで 30分間加熱架橋することで表面架樯型の吸収剤組成物 (8) を 得た。  The obtained dried product is pulverized, adjusted to a particle size of 20 to 100 mesh, and 100 g of this is stirred at a high speed while a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol). = 70/30) was added and mixed, followed by heat crosslinking at 140 for 30 minutes to obtain a surface-framed absorbent composition (8).
—方、 含水ゲル状重合体 (A3G) をインターナルミキサーで均一に滔合した 後、 150°C、 風速 2. Om/秒の条件の通気型バンド乾燥機で乾燥した。 得ら れた乾燥物を粉砕し、 20〜 100メッシュの粒度に調整した後、 このもの 10 0 gを高速攪拌しながらエチレングリコールジグリシジルエーテルの 10%水/ メタノール混合溶液 (水/メタノール =70/30) を 2 g加えて混台し、 14 0。Cで 30分間加熱架橋することで表面桀橋型の吸水性樹脂 (A3) を得た。 吸水性樹脂 (A3) と吸収剤組成物 (8〉 の比表面積を測定し、 比表面積の增 加率を計算した結杲を表 1に示す。 また、 吸収剤組成物 (8) の性能評価結果を 表 2に示す。  On the other hand, the hydrogel polymer (A3G) was uniformly mixed with an internal mixer, and then dried with a ventilated band dryer at 150 ° C and a wind speed of 2. Om / sec. The obtained dried product was pulverized and adjusted to a particle size of 20 to 100 mesh. Then, 100 g of this product was stirred at a high speed while a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol = 70). / 30) and add 2 g and mix. By heating and crosslinking with C for 30 minutes, a surface-Ji bridge type water-absorbent resin (A3) was obtained. The specific surface areas of the water-absorbent resin (A3) and the absorbent composition (8) were measured, and the results obtained by calculating the addition ratio of the specific surface area are shown in Table 1. Also, the performance evaluation of the absorbent composition (8) Table 2 shows the results.
(比較例 1) 実施例 1で得られた吸水性樹脂 (A1) を比較の吸収剤組成物 (c l) とし、 その性能評価結果を表 2に示す。 (Comparative Example 1) The water absorbent resin (A1) obtained in Example 1 was used as a comparative absorbent composition (cl), and the performance evaluation results are shown in Table 2.
(比較例 2)  (Comparative Example 2)
実施例 2で得られた吸水性樹脂 (A2) を比較の吸収剤組成物 (c 2) とし、 その性能評価結果を表 2に示す。  The water absorbent resin (A2) obtained in Example 2 was used as a comparative absorbent composition (c2), and the performance evaluation results are shown in Table 2.
(比較例 3、 4)  (Comparative Examples 3, 4)
実施例 1において、 分散液 (B11) の添加量を 2 gあるいは 600 gに代える 以外は実施例 1と同様にして得られた 20〜 100メッシュの粒度の乾燥物 10 0 gを、 実施例 2と同様に表面架橋して、 比較の吸収剤組成物 (c 3) および比 較の吸収剤組成物 (c 4) を得た。  100 g of a dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 1 except that the amount of the dispersion liquid (B11) added was changed to 2 g or 600 g in Example 1, Surface cross-linking was performed in the same manner as in Example 2 to obtain a comparative absorbent composition (c3) and a comparative absorbent composition (c4).
比較の吸収剤組成物 ( c 3 )、 (c 4)の比表面稂を測定し、 吸水性樹脂( A 2 ) に対する比表面積の増加率を計算した結果を表 1に示す。  Table 1 shows the results obtained by measuring the specific surface 稂 of the comparative absorbent compositions (c 3) and (c 4) and calculating the rate of increase of the specific surface area with respect to the water-absorbent resin (A 2).
比較の吸収剤組成物 (c 3)、 (c 4) の性能評価結果を表 2に示す。 Table 2 shows the performance evaluation results of the comparative absorbent compositions (c3) and (c4).
(比較例 5 )  (Comparative Example 5)
実施例 1において、 分散液 (B11) に代えて、 下記の分散液 (B14) を同量使 用する以外は実施例 1と同様にして得られた 20〜 100メッシュの粒度の乾燥 物 100 gを、 実施例 2と同様に表面架橋して、 比較の吸収剤組成物 (c 5) を 得た。  100 g of a dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 1 except that the same amount of the following dispersion liquid (B14) is used in place of the dispersion liquid (B11) in Example 1 Was subjected to surface crosslinking in the same manner as in Example 2 to obtain a comparative absorbent composition (c5).
比較の吸収剤組成物 (c 5) の比表面積を測定し、 吸水性樹脂 (A2) に対す る比表面積の増加率を計算した結果を表 1に示す。 比較の吸収剤組成物 (C 5) の性能評価結果を表 2に示す。  Table 1 shows the results of measuring the specific surface area of the comparative absorbent composition (c5) and calculating the rate of increase of the specific surface area with respect to the water absorbent resin (A2). Table 2 shows the performance evaluation results of the comparative absorbent composition (C5).
分散液(BU):マヅモトマイク Dスフエア一 MF L 80 QTA (真密度二 0. 2 g/cm3 ;粒径 20 m、 松本油脂製桀株式会社製) の 2%水分散液。  Dispersion (BU): 2% aqueous dispersion of Mazumoto Mike D-Sfair-1 MF L80 QTA (true density: 0.2 g / cm3; particle size: 20 m, manufactured by Matsumoto Yushi Jie Co., Ltd.).
(比較例 6)  (Comparative Example 6)
実施例 1で得られた含水ゲル状重合体 (A 1 G) をインターナルミキサーで 3 〜7mmの大きさに細断した後、熱分解型の 泡剤である「ビニホール A Z— S」 (分解温度 100。C、 主成分:ァゾビスイソプチロニトリル、 永和化成工業株式 会社製) を (A 1 G) の固形分に対して 2%添加し、 さらにインターナルミキサ —で均一に混合した後、 150°C、 風速 2. Om/秒の条件の通気型バンド乾燥 31 The hydrogel polymer (A1G) obtained in Example 1 was shredded to a size of 3 to 7 mm with an internal mixer, and then thermally decomposed foaming agent “Vinihole AZ-S” (decomposition) Temperature 100. C, main component: azobisisobutyronitrile, manufactured by Eiwa Kasei Kogyo Co., Ltd.) was added at 2% based on the solid content of (A 1 G), and then uniformly mixed with an internal mixer. Ventilation band drying at 150 ° C, wind speed 2. Om / sec 31
機).で乾燥した。 得られた乾燥物を粉砕し、 20〜 100メッシュの粒度に調整 した後、 このもの 1 00 gを高速授拌しながらエチレングリコールジグリシジル エーテルの 10%水/メタノール混合溶液 (水/メタノール =70/30) を 2 g加えて混合し、 140でで 30分間加熱架檎す ¾ことで表面架橋型の比較の吸 収剤組成物 (c 6) を得た。 Machine). The obtained dried product is pulverized and adjusted to a particle size of 20 to 100 mesh. Then, 100 g of the dried product is stirred at a high speed while a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol = 70). / 30) was added and mixed, followed by heating at 140 ° C. for 30 minutes to obtain a comparative absorbent composition (c6) of a surface cross-linked type.
比較の吸収剤組成物 (c 6) の比表面積を測定し、 吸水性樹脂 (A2) に対す る比表面積の増加率を計算した結果を表 1に示す。 比較の吸収剤駔成物 (c 6) の性能評価結果を表 2に示す。  Table 1 shows the results of measuring the specific surface area of the comparative absorbent composition (c6) and calculating the rate of increase of the specific surface area with respect to the water absorbent resin (A2). Table 2 shows the performance evaluation results of the comparative absorbent composition (c6).
(表 1 ) (table 1 )
Figure imgf000033_0001
Figure imgf000033_0001
:表 2 )  : Table 2)
吸収剤組成物 吸収速度 初期加圧吸水: § 加圧吸水虽 保水量  Absorbent composition Absorption rate Initial pressure water absorption: § Pressure water absorption 水 Water retention
(秒) (g/g) (g/g) (g/g) 実施例 1 (1) 17 14 17 53 実施例 2 (2) 15 24 33 41 実施例 3 (3) 19 23 34 41 実施例 4 (4) 11 27 33 41 実施例 5 (5) 18 23 34 41 実施例 6 (6) 17 25 33 41 実施例 7 (7) 16 24 33 41 実施例 8 (8) 16 26 36 44 比較例 1 (cl) 35 5 16 53 比較例 2 (c2) 34 18 33 41 32 (Sec) (g / g) (g / g) (g / g) Example 1 (1) 17 14 17 53 Example 2 (2) 15 24 33 41 Example 3 (3) 19 23 34 41 Example 4 (4) 11 27 33 41 Example 5 (5) 18 23 34 41 Example 6 (6) 17 25 33 41 Example 7 (7) 16 24 33 41 Example 8 (8) 16 26 36 44 Comparative example 1 (cl) 35 5 16 53 Comparative Example 2 (c2) 34 18 33 41 32
Figure imgf000034_0001
Figure imgf000034_0001
(実施例 9) (Example 9)
実施例 1と同様にして含水ゲル状重合体 (A 1 G) を得た。  A hydrogel polymer (A 1 G) was obtained in the same manner as in Example 1.
含水ゲル状重合体 (A 1 G) をィンターナルミキサーで 3〜7mmの大きさに 細断後、 「マツモトマイクロスフェアー; F— 30」 (膨張開始温度 85〜90。C、 最大膨張温度 130〜 140°C、 膨張倍率約 72倍) の 20。/。水分散液 (B21) を 10 g添加し、 さらにインタ一ナルミキサーで均一に混合した後、 150°C、 風速 2. 0m/秒の条件の通気型バンド乾燥機 (井上金属工業製) で乾燥した。 得られた乾燥物を粉砕し、 20〜 100メッシュの粒度に調整して吸収剤組成 物 (9 ) を得た。  After slicing the hydrogel polymer (A1G) to a size of 3 to 7 mm with an internal mixer, "Matsumoto Microsphere; F-30" (expansion start temperature 85 to 90. C, maximum expansion temperature 130-140 ° C, expansion ratio approx. 72 times) /. Add 10 g of the aqueous dispersion (B21), mix evenly with an internal mixer, and dry with a ventilated band dryer (made by Inoue Metal Industry) at 150 ° C and a wind speed of 2.0 m / sec. did. The obtained dried product was pulverized and adjusted to a particle size of 20 to 100 mesh to obtain an absorbent composition (9).
吸収剤組成物 (9) の比表面積を測定し、 吸水性樹脂 (A 1) に対する比表面 積の増加率を針箅した結果を表 3に示す。 また、 吸収剤組成物 (9) の性能評価 結果を表 4に示す。  Table 3 shows the results of measuring the specific surface area of the absorbent composition (9) and measuring the rate of increase of the specific surface area with respect to the water-absorbent resin (A1). Table 4 shows the performance evaluation results of the absorbent composition (9).
(実施例 10)  (Example 10)
吸収剤組成物 (9) 1 00 gを高速撩拌しながらエチレングリコールジグリシ ジルエーテルの 10%水/メタノール混合溶液 (水/メタノール =70/30 ) を 2 g加えて混合した後、 140。Cで 30分間加熱架橋することで表面架橋型の 吸収剤組成物 ( 10) を得た。  Absorbent composition (9) 100 g of high-speed stirring was added to 2 g of a 10% water / methanol mixed solution (water / methanol = 70/30) of ethylene glycol diglycidyl ether, followed by mixing. Crosslinking by heating for 30 minutes at C gave a surface crosslinked type absorbent composition (10).
吸収剤組成物 ( 10) の比表面積を測定し、 表面架橋型の吸水性樹脂 (A2) に対する比表面積の増加率を計算した結果を表 3に示す。 又、 吸収剤組成物 ( 1 0) の性能評価結果を表 4に示す。  Table 3 shows the results of measuring the specific surface area of the absorbent composition (10) and calculating the rate of increase of the specific surface area with respect to the surface-crosslinked type water-absorbent resin (A2). Table 4 shows the performance evaluation results of the absorbent composition (10).
(実施例 1 1 , 12)  (Examples 11 and 12)
実施例 9において、 分散液 (B21) の添加垦を各々 2. 5 g、 25 gに代える 以外は実施例 9と同様にして得られた 20〜 100メッシュの粒度の乾燥物 10 O gを、 実施例 10と同様に表面架橋して、 吸収剤組成物( 1.1)、 吸収剤組成物 ( 12) を得た。 33 In Example 9, except that the addition amount of the dispersion liquid (B21) was changed to 2.5 g and 25 g, respectively, a dried product having a particle size of 20 to 100 mesh and 10 Og obtained in the same manner as in Example 9, The surface was crosslinked in the same manner as in Example 10 to obtain an absorbent composition (1.1) and an absorbent composition (12). 33
吸収剤組成物 ( 1 1)、 ( 12) の比表面積を測定し、 表面架橋型の吸水性樹脂 (A2) に対する比表面積の増加率を計算した結果を表 3に示す。 又、 吸収剤組 成物 ( 1 1)、 ( 12) の性能評価結果を表 4に示す。 Table 3 shows the results of measuring the specific surface areas of the absorbent compositions (11) and (12) and calculating the rate of increase of the specific surface area with respect to the surface-crosslinkable water-absorbent resin (A2). Table 4 shows the performance evaluation results of the absorbent compositions (11) and (12).
(実施例 13, 14)  (Examples 13, 14)
実施例 9において、 分散液 (B21) に代えて、 各々下記の分散液  In Example 9, the following dispersion liquid was used instead of the dispersion liquid (B21).
(B2Z) または (B23) を同 g使用する以外は実施例 9と同様にし、 且つ実施例 10と同様に表面架橋して吸収剤組成物 ( 13) および吸収剤組成物 ( 14) を 得た。  An absorbent composition (13) and an absorbent composition (14) were obtained in the same manner as in Example 9 except that the same g of (B2Z) or (B23) was used, and surface-crosslinked in the same manner as in Example 10. .
分散液(B23) :「マツモトマイクロスフェアー: F— 40j (膨張閲始温度 10 D 〜 105 °C、 最大膨張温度 130〜: I 40 、 膨張倍率 46倍) の 20 %水分散 液。  Dispersion (B23): 20% aqueous dispersion of Matsumoto Microsphere: F-40j (expansion temperature: 10D to 105 ° C, maximum expansion temperature: 130 to: I40, expansion ratio: 46 times).
分散液(B24):「マツモトマイクロスフェア一 F— 20」(膨張閲始温度 80〜 85。C、 最大膨張温度 105 ~ 1 15 C、膨張倍率約 43倍)の 20 %水分散液。 吸収剤組成物 ( 13)、 ( 1 ) の比表面積を測定し、 表面架橋型の吸水性樹脂 (A2) に対する比表面積の増加率を計算した結果を表 3に示す。 又、 吸収剤組 成物 ( 13 )、 ( 14 ) の性能評価結果を表 4に示す。  Dispersion (B24): A 20% aqueous dispersion of "Matsumoto Microsphere I F-20" (expansion temperature 80-85. C, maximum expansion temperature 105-115 C, expansion ratio about 43 times). Table 3 shows the results of measuring the specific surface areas of the absorbent compositions (13) and (1) and calculating the rate of increase in the specific surface area with respect to the surface-crosslinkable water-absorbent resin (A2). Table 4 shows the performance evaluation results of the absorbent compositions (13) and (14).
(実施例 15)  (Example 15)
容量 1リヅ トルのガラス製反応容器にァクリル酸ナトリウム 77 g、 アクリル 酸 22. 8 g、 N, N, ーメチレンビスアクリルアミ ド 0. 2 gおよび脱イオン 水 293 gを仕込み、 授拌、 混合しながら 「マツモトマイロスフヱァー F— 30」 を 2 g添加して内容物の温度を 3 °Cに保った。  A 1 liter glass reaction vessel was charged with 77 g of sodium acrylate, 22.8 g of acrylic acid, 0.2 g of N, N, methylenebisacrylamide and 293 g of deionized water, stirred and mixed. While adding 2 g of "Matsumoto mylos F-30", the temperature of the contents was kept at 3 ° C.
内容物に窒素を流入して溶存酸累虽を 1 p pm以下とした後、 過酸化水素の 1%水溶液 l g、 ァスコルビン酸の 0. 2%水溶液1. 2 gおよび 2, 2, ーァ ゾビスアミジノプロパンジハイ ドロクロライ ドの 2%水溶液 2. 8 gを添加,混 合して重合を開始させ、約 5時間重合することにより含水ゲル状重合体配合物( A B 2 G) を得た 0 After flowing nitrogen into the contents to reduce the accumulated acid concentration to 1 ppm or less, a 1% aqueous solution of hydrogen peroxide (lg), a 1.2% aqueous solution of ascorbic acid (1.2 g) and 2,2, -azo 2% aqueous solution 2. added 8 g of bis amidinopropane Jihai Dorokurorai de, mixed combined to initiate the polymerization, to obtain hydrogel polymer formulation (AB 2 G) by polymerizing about 5 hours 0
含水ゲル状重合体配合物 (AB 2G) をインターナルミキサーで細断した後、 150°C、 風速 2. 0m/秒の条件の通気型パンド乾燥機で乾燥した。  The hydrogel polymer blend (AB 2G) was shredded with an internal mixer, and then dried with a ventilated pan drier at 150 ° C and a wind speed of 2.0 m / sec.
得られた乾燥物を粉碎し、 20〜 i 00メ'ッシュの粒度に調整した後、 このも 34 The obtained dried product is pulverized and adjusted to a particle size of 20 to 100 mesh. 34
の 1.00 gを高速授拌しながらエチレングリコールジグリシジルェ一テルの 1 0%水/メタノール浪合溶液 (水/メタノール =70/30) を 2 g加えて混合 し、 140でで 30分間加熱架樯することで表面架橘型の吸収剤組成物 ( 15) を得た。 While stirring 1.00 g of the mixture at a high speed, 2 g of a 10% aqueous solution of ethylene glycol diglycidyl ether (water / methanol = 70/30) was added and mixed, followed by heating at 140 for 30 minutes. As a result, a surface frame type absorbent composition (15) was obtained.
吸収剤組成物 ( 15) の比峩面積を測定し、 表面架樯型の吸水性樹脂 (A2) に対する比表面積の増加率を計算した結果を表 3に示す。 又、 吸収剤組成物 ( 1 5) の性能評価結果'を表 4に示す。  Table 3 shows the results obtained by measuring the specific area of the absorbent composition (15) and calculating the rate of increase in the specific surface area with respect to the surface-absorbing water-absorbent resin (A2). In addition, Table 4 shows the performance evaluation results' of the absorbent composition (15).
(実施例 16)  (Example 16)
実施例 8と同様にしてカルボン酸の 72モル%が中和された含水ゲル状重合体 (A3 G) を得た。  In the same manner as in Example 8, a hydrogel polymer (A3G) in which 72 mol% of the carboxylic acid was neutralized was obtained.
実施例 9と同じ分散被 (B21) 10 gを含水ゲル状重合体(A 3 G)に添加し、 インタ一ナルミキサーで均一に混合した後、 150。C、 風速 2. 0mノ秒の条件 の通気型パンド乾燥機で乾燥した。  10 g of the same dispersion coat (B21) as in Example 9 was added to the hydrogel polymer (A 3 G), and the mixture was uniformly mixed with an internal mixer. C, Drying was performed with a ventilated pan drier at a wind speed of 2.0 msec.
得られた乾燥物を粉砕し、 20〜100メッシュの粒度に調整した後、 このも の 100 gを高速換拌しながらエチレングリコールジグリシジルエーテルの 1 0%水/メタノール浪合溶液 (水/メタノール =70/30) を 2 g加えて混合 し、 14 CTCで 30分間加熱架橋することで表面架橋型の吸収剤組成物 (16) を得た。  The obtained dried product is pulverized, adjusted to a particle size of 20 to 100 mesh, and 100 g of the obtained product is stirred at a high speed while a 10% water / methanol mixed solution of ethylene glycol diglycidyl ether (water / methanol = 70/30) was added and mixed, followed by heat crosslinking at 14 CTC for 30 minutes to obtain a surface crosslinked absorbent composition (16).
吸収剤組成物 ( 16〉 の比表面積を測定し、 実施例 8で得た表面架橋型の吸水 性樹脂 (A3) に対する比表面積の増加率を計算した結果を表 3に示す。 又、 吸 収剤組成物 ( 16) の性能評価結果を表 4に示す。  The specific surface area of the absorbent composition (16>) was measured, and the result of calculating the rate of increase of the specific surface area with respect to the surface-crosslinkable water-absorbent resin (A3) obtained in Example 8 is shown in Table 3. Table 4 shows the results of evaluating the performance of the agent composition (16).
(比較例 7, 8)  (Comparative Examples 7, 8)
実施例 9において、 分散液 (B21) の添加量を各々 0. 2 gあるいは 60 に 代える以外は実施例 9と同様にして得られた 20〜 100メヅシュの粒度の乾燥 物 100 gを、 実施例 10と同様に表面架橋して、 比較の吸収剤組成物 (c 7) および比較の吸収剤組成物 (c 8) を得た。  In Example 9, 100 g of a dried product having a particle size of 20 to 100 mesh obtained in the same manner as in Example 9 except that the added amount of the dispersion liquid (B21) was changed to 0.2 g or 60 respectively, Surface cross-linking was performed in the same manner as in Example 10 to obtain a comparative absorbent composition (c7) and a comparative absorbent composition (c8).
比較の吸収剤組成物 (c 7)、 (c 8) の比表面積を測定し、 表面架橋型の吸水 性樹脂 (A2) に対する比表面積の増加率を計算した結果を表 3に示す。 又、 比 較の吸収剤組成物 (c 7)、 (c 8) の性能評'価結果を表 4に示す。 35 Table 3 shows the results of measuring the specific surface area of the comparative absorbent compositions (c7) and (c8), and calculating the rate of increase of the specific surface area with respect to the surface-crosslinked type water-absorbent resin (A2). Table 4 shows the performance evaluation results of comparative absorbent compositions (c7) and (c8). 35
(表 3) (Table 3)
Figure imgf000037_0001
Figure imgf000037_0001
(表 4 (Table 4
Figure imgf000037_0002
Figure imgf000037_0002
(実施例 17 ) (Example 17)
実施例 9と同様にして吸収剤組成物 (9) を得た。  An absorbent composition (9) was obtained in the same manner as in Example 9.
この吸収剤組成物 (9) 100 gを V型混合機 (容量 300ml) に入れ、 回 転させながら、 ポリオキシエチレン変性シリコーンオイル(「信越シリコーン KF 一 618」、 信越化学製; HLB= 14)  100 g of this absorbent composition (9) is placed in a V-type mixer (capacity 300 ml), and while rotating, a polyoxyethylene-modified silicone oil (“Shin-Etsu Silicone KF-618”, Shin-Etsu Chemical; HLB = 14)
0, 1 gを添加して混合することにより本発明の吸収剤組成物 ( 17) を得た。 吸収.剤組成物 (17) の性能評価結果を表 5に示す。 0.1 g was added and mixed to obtain an absorbent composition (17) of the present invention. Table 5 shows the performance evaluation results of the absorbent composition (17).
(実施例 18)  (Example 18)
実施例 9で得た吸収剤組成物 (9) 100 gを用い、 高速攒拌しながらェチレ ングリコールジグリシジルェ一テルの 5 %水 メタノール滔合溶液 (水 Zメ夕ノ —ル =70/30) を 2. 5写加えて浪合した後、 140°Cで 30分間加熱架橈 することで表面架橋型の吸収剤組成物  Using 100 g of the absorbent composition (9) obtained in Example 9, a 5% aqueous solution of ethylene glycol diglycidyl ether in methanol and methanol (water Z methyl alcohol = 70 / 30) was added 2.5 times, and the mixture was heated at 140 ° C for 30 minutes to form a surface crosslinked absorbent composition.
(18') を得た。  (18 ').
この吸収剤組成物 ( 18') 100 gを V型浪合機(容量 300 ml)に入れ、 回転させながら、実施例 17と同じポリオキシエチレン変性シリコ一ンオイル 0 , 1 gを添加して混合することにより本発明の吸収剤組成物 (18) を得た。 吸収 剤組成物 (18) の性能評価結果を表 5に示す。  100 g of this absorbent composition (18 ') is placed in a V-type Nami-ai machine (capacity: 300 ml), and while being rotated, 0,1 g of the same polyoxyethylene-modified silicone oil as in Example 17 is added and mixed. Thereby, the absorbent composition (18) of the present invention was obtained. Table 5 shows the performance evaluation results of the absorbent composition (18).
(実施例 19, 20)  (Examples 19 and 20)
実施例 11、 12と同様にして吸収剤組成物 (1 1) および吸収剤組成物 (1 2) を得た。  In the same manner as in Examples 11 and 12, an absorbent composition (11) and an absorbent composition (12) were obtained.
吸収剤組成物 ( 11 )、 ( 12) の各 100 gを V型混合機 (容 g300ml) に 入れ、 回転させながら、 実施例 17と同じポリオキシエチレン変性シリコーンォ ィル 0. 1 gを添加して混合することにより本発明の吸収剤組成物 (19) およ び (20) を得た。 これらの性能評価結果を表 5に示す。  Put 100 g of each of the absorbent compositions (11) and (12) in a V-type mixer (capacity: 300 ml), and add 0.1 g of the same polyoxyethylene-modified silicone oil as in Example 17 while rotating. Then, the absorbent compositions (19) and (20) of the present invention were obtained by mixing. Table 5 shows the results of these performance evaluations.
(実施例 21^24)  (Example 21 ^ 24)
実施例 2、 5と同様にして吸収剤組成物 (2)、 (5)を得た。 又、 実施例 13、 14と同様にして吸収剤組成物 (13)、 (14) を得た。  Absorbent compositions (2) and (5) were obtained in the same manner as in Examples 2 and 5. Further, absorbent compositions (13) and (14) were obtained in the same manner as in Examples 13 and 14.
これらの吸収剤組成物 (2)、 (5)、 (13)、 (14) の各 100 を¥型混合 機 (容量 300ml) に入れ、 回転させながら、 実施例 17と同じポリオキシェ チレン変性シリコーンオイル 0 · 1 gを添加して混合することにより本発明の吸 収剤組成物 (21) 〜 (24) を得お。 これらの性能評価結果を表 5に示す。  100 parts of each of these absorbent compositions (2), (5), (13) and (14) were placed in a ¥ -type mixer (capacity: 300 ml), and the same polyoxyethylene-modified silicone oil as in Example 17 was rotated while rotating. By adding and mixing 0.1 g of the absorbent, the absorbent compositions (21) to (24) of the present invention are obtained. Table 5 shows the results of these performance evaluations.
(実施例 25〜28)  (Examples 25 to 28)
実施例 18において、 ポリオキシエチレン変性シリコーンオイルに代えて、 下 記の界面活性剤を同量使用する以外は実施例 18と同様にして本発明の吸収剤組 成物 (25) 〜 (28) を得た。 これらの性'能評価結果を表 5に示す。 37 In Example 18, the absorbent composition of the present invention (25) to (28) was prepared in the same manner as in Example 18 except that the following surfactant was used in the same amount instead of the polyoxyethylene-modified silicone oil. I got Table 5 shows the results of the evaluation of these properties. 37
吸.収剤組成物 (25) に使用 :,ポリオキシエチレンラウリル ' ミリスチルエー テル (「ノ二ポールソフト SS— 50」 三洋化成工業製; HLB= 10. 6)。 Used for the absorbent composition (25): Polyoxyethylene lauryl 'myristyl ether (“Nonipol Soft SS-50” manufactured by Sanyo Chemical Industries; HLB = 10.6).
吸収剤組成物( 26 )に使用:ポリオキシエチレンノニルフエノルエーテル(「ノ 二ポール 40」 三洋化成工業製; HLB = 8. 9)。  Used for the absorbent composition (26): polyoxyethylene nonylphenol ("NOPOL 40" manufactured by Sanyo Chemical Industries; HLB = 8.9).
吸収剤組成物 ( 27) に使用 :ポリオキシエチレンラウリルエーテル硫酸ナト リウム (「サンデッ ド ENj 三洋化成工業製;ァニオン性界面活性剤)。  Used for absorbent composition (27): Polyoxyethylene lauryl ether sodium sulfate (“Sanded ENj Sanyo Chemical Industries; anionic surfactant”).
吸収剤組成物 (28) に使用 :スルホコハク酸ポリオキシエチレンラウロイ ルエタノールアミ ド - 2ナトリウム (「ビューライ ト A— 5000」三洋化成工業 製;両性界面活性剤)。  Used in absorbent composition (28): polyoxyethylene lauroyl ethanolamide disodium succinate ("Bulite A-5000" manufactured by Sanyo Chemical Industries; amphoteric surfactant).
(実施例 29)  (Example 29)
実施例 15と同様にして吸収剤組成物 ( 1 5) を得た。 この吸収剤組成物 ( 1 In the same manner as in Example 15, an absorbent composition (15) was obtained. This absorbent composition (1
5) 100 gを V型混合機 (容量 300ml) に入れ、 回転させながら、 実施例 17と同じポリオキシエチレン変性シリコーンオイル 0. 1 gを添加して混合す ることにより本発明の吸収剤組成物(29) を得た。 (29)の性能評価結果を表 5に示す。 5) 100 g was placed in a V-type mixer (capacity: 300 ml), and while rotating, 0.1 g of the same polyoxyethylene-modified silicone oil as in Example 17 was added and mixed, whereby the absorbent composition of the present invention was obtained. A product (29) was obtained. Table 5 shows the performance evaluation results of (29).
(実施例 30)  (Example 30)
実施例 16と同様にして吸収剤組成物 ( 16) を得た。 この吸収剤組成物 ( 1 In the same manner as in Example 16, an absorbent composition (16) was obtained. This absorbent composition (1
6) 100 を 型混合機 (容量 300ml) に入れ、 回転させながら、 実施例 17と同じポリオキシエチレン変性シリコーンオイル 0. 1 gを添加して混合す ることにより本発明の吸収剤組成物 (30) を得た。 組成物 (30) の性能評価 結果を表 5に示す。 6) Put 100 g into a mold mixer (capacity: 300 ml), add and mix 0.1 g of the same polyoxyethylene-modified silicone oil as in Example 17 while rotating, and mix the absorbent composition of the present invention ( 30) was obtained. Table 5 shows the results of the performance evaluation of the composition (30).
(表 5) 吸収剤組成物のかさ密度および羊血による評価結果 O 99/03577 38 (Table 5) Evaluation results of absorbent composition by bulk density and sheep blood O 99/03577 38
Figure imgf000040_0001
Figure imgf000040_0001
(比較例 9 ) (Comparative Example 9)
比較例 1で得た比較の吸収剤組成物 ( c 1 ) を比較の吸収剤組成物 ( c 9 ) と し、 かさ密度の測定および羊血による評価を行った結果を表 6に示す。  The comparative absorbent composition (c1) obtained in Comparative Example 1 was used as a comparative absorbent composition (c9), and the results of measurement of bulk density and evaluation using sheep blood are shown in Table 6.
比較例 10  Comparative Example 10
比較例 2で得た比較の吸収剤組成物 ( c 2 ) を、 比較の吸収剤組成物( c 10 ) とし、 かさ密度の測定および羊血による評価を行った結果を表 6に示す。  The comparative absorbent composition (c 2) obtained in Comparative Example 2 was used as a comparative absorbent composition (c 10), and the results of measurement of bulk density and evaluation using sheep blood are shown in Table 6.
比較例 1 1〜 16  Comparative Example 11-16
実施例 9で得た吸収剤組成物(9)、実施例 18で得た表面架橋型の吸収剤組成 物 ( 18')、 実施例 2、 5と同様にして得た吸収剤組成物 (2)、 (5)、 実施例 1 3、 14と同様にして得た吸収剤組成物 ( 13)、 ( 14) を、 各々比較の吸収剤 組成物 (c l l ) 〜 (c l 6) とし、 これらの評価結果を表 6に示す。  Absorbent composition (9) obtained in Example 9, surface-crosslinked type absorbent composition (18 ') obtained in Example 18, absorbent composition (2) obtained in the same manner as in Examples 2 and 5. ), (5), Absorbent compositions (13), (14) obtained in the same manner as in Examples 13 and 14 are referred to as comparative absorbent compositions (cll) to (cl6), respectively. Table 6 shows the evaluation results.
比較例 17  Comparative Example 17
比較例 9で得られた比較の吸収剤組成物 (c 9) 100 gを V型混合機 (容悬 300 ml) に入れ、 回転させながら、 実施例 17と同じポリオキシエチレン変 性シリコーンオイル 0. 1 gを添加して混合することにより比較の吸収剤組成物 (c 17) を得た。 比較の吸収剤組成物 (c 17)の性能評価結果を表 6に示す。 比較例 18  100 g of the comparative absorbent composition (c9) obtained in Comparative Example 9 was put in a V-type mixer (volume: 300 ml), and the same polyoxyethylene-modified silicone oil as in Example 17 was rotated while rotating. 1 g was added and mixed to obtain a comparative absorbent composition (c17). Table 6 shows the performance evaluation results of the comparative absorbent composition (c17). Comparative Example 18
実施例 1 5で得られた含水ゲル状重合体 (AB 2 G) をィン夕ーナルミキサー で 3〜7mmの大きさに細断後、 150。C、 風速 2. Om/秒の条件の通気型バ ンド乾燥機で乾燥した。 得られた乾燥物を粉砕し、 20〜1 Q 0メッシュの粒度 に調整する。 この粒度調整された乾燥物を、 -さらに実施例 2と同様、 表面架橋す 39 The hydrogel polymer (AB 2 G) obtained in Example 15 was cut into a size of 3 to 7 mm with an internal mixer, and then 150. C, wind speed 2. Dried with a ventilated band dryer at Om / sec. The obtained dried product is pulverized and adjusted to a particle size of 20 to 1 Q0 mesh. The dried product having the adjusted particle size is subjected to surface crosslinking as in Example 2. 39
るこ.とにより比較の吸収剤組成物 (c 18) を得た。 比較の吸収剤組成物 (c 1 8) の評価結果を表 6に示す。 With this, a comparative absorbent composition (c18) was obtained. Table 6 shows the evaluation results of the comparative absorbent composition (c18).
比較例 19  Comparative Example 19
実施例 1で得られた含水ゲル状重合体 (A 1 G) をインターナルミキサーで 3 〜 7 mmの大きさに細断した後、熱分解型の発泡剤である「ビニホール AZ— S j (分解温度 100 C、 主成分:ァゾビスイソプチロニトリル、 永和化成工業株式 会社製) を (A 1 G) の固形分に対して 2%添加し、 さらにインターナルミキサ 一で均一に浪合した後、 150°C、 風速 2. 0m/秒の条件の通気型バンド乾燥 機) で乾燥した。 得られた乾燥物を粉碎し、 20〜 100メッシュの粒度に調整 して比較の吸収剤組成物 (c 19) を得た。 比較の吸収剤組成物 (c 1 9) の評 価結果を表 6に示す。  The hydrogel polymer (A1G) obtained in Example 1 was cut into pieces having a size of 3 to 7 mm using an internal mixer, and then a thermal decomposition type foaming agent “Vinihole AZ—S j ( Decomposition temperature 100 C, main component: azobisisobutyronitrile, manufactured by Eiwa Kasei Kogyo Co., Ltd.) was added at 2% to the solid content of (A 1 G), and after uniform mixing with an internal mixer, At 150 ° C and a wind speed of 2.0 m / sec with a ventilated band dryer.The dried product obtained was pulverized and adjusted to a particle size of 20 to 100 mesh to obtain a comparative absorbent composition ( Table 6 shows the evaluation results of the comparative absorbent composition (c19).
(表 6) 比較の吸収剤のかさ密度および羊血による評価結果 (Table 6) Evaluation results of comparative absorbents by bulk density and sheep blood
Figure imgf000041_0001
(実施例 31〜37)
Figure imgf000041_0001
(Examples 31 to 37)
実施例 17 ~ 20で得られた吸収剤組成物 ( 17 )〜 ( 20 )、 実施例 23で得 られた吸収剤組成物 (23)、 実施例 25で得られた吸収剤組成物 (25)および 実施例 29で得られた吸収剤組成物(29)を使用してモデルナブキンを作成し、 これらの性能を評価した結果を表 7に示す。 40 Absorbent compositions (17) to (20) obtained in Examples 17 to 20, Absorbent compositions (23) obtained in Example 23, Absorbent compositions (25) obtained in Example 25 And Model napkins were prepared using the absorbent composition (29) obtained in Example 29, and the results of evaluating these performances are shown in Table 7. 40
(J:.匕較例 20〜 25) (J: Comparative example 20-25)
比較例 9で得られた比較の吸収剤組成物(c 9)、比較例 1 1で得られた比較の 吸収剤組成物(c 1 1)、 比較例 15で得られた比較の吸収剤組成物(c 1 5)お よび比較例 17~19で得られた比較の吸収剤組成物 (c l 7) 〜 (c l 9) を 使用して比較のモデルナプキンを作成し、 これらの性能を評価した結果を表 7に 示す。  Comparative absorbent composition obtained in Comparative Example 9 (c 9), Comparative absorbent composition obtained in Comparative Example 11 (c 11), Comparative absorbent composition obtained in Comparative Example 15 (C15) and comparative absorbent compositions (cl7) to (cl9) obtained in Comparative Examples 17 to 19, comparative model napkins were prepared and their performance was evaluated. Table 7 shows the results.
(表 7 ) モデルナプキンによる評価結果 (Table 7) Evaluation results using model napkins
Figure imgf000042_0001
産業上の利用可能性
Figure imgf000042_0001
Industrial applicability
本発明の吸収剤組成物および製造方法は次のような特徴および効果を有する。 ①常圧下における吸収速度が速く、初期加圧吸収量(加圧下における吸収速度) にも優れることから、 例えば衛生用品の吸収剤として使用した際、 初期ドライ感 の向上やモレの減少といった効果を発揮する。  The absorbent composition and the production method of the present invention have the following features and effects. (1) Since the absorption rate under normal pressure is high and the initial pressure absorption amount (absorption rate under pressure) is excellent, when used as an absorbent for sanitary goods, for example, the effect of improving the initial dry feeling and reducing the leakage is obtained. Demonstrate.
②保水量及び加圧吸収量に優れる。  ②Excellent water retention and pressure absorption.
③通常の粒子径としても①、 ②の効果が発揮されることから、 粉体のハンドリ ング性に優れる。 且つ、 微粒子の造粒物のように、 機械的剪断力や摩擦によって 微粒子を発生がほとんどない。 ④ .通常の粒子径としても①、 ②の効果が発揮されることから、 パルプ等の織維 状物と混合して吸収体とした場合、 振動などの外力が加わっても繊維状物からの 脱離がほとんどない。 (3) The effects of (1) and (2) are exhibited even with a normal particle size, so the powder is excellent in handling. Moreover, unlike a granulated product of fine particles, there is almost no generation of fine particles due to mechanical shearing force or friction. ④ Since the effects of (1) and (2) are exhibited even with a normal particle size, when mixed with a woven material such as pulp to form an absorber, even if external force such as vibration is applied, the fiber Almost no detachment.
⑤熱分解型の発泡剤による吸収速度の改善とは異なり、 加熱乾燥時にラジカル 等の生成がないことから、 吸収性能に優れ、 水可溶性成分虽の少ない吸収剤組成 物が得られる。  Unlike the improvement of the absorption rate by the thermal decomposition type foaming agent, there is no generation of radicals and the like during heating and drying, so that an absorbent composition having excellent absorption performance and a small amount of water-soluble components can be obtained.
⑥吸水性樹脂の重合前から乾炫前までのいずれかの段階の含水ゲルに微小フィ ラーを配合して加熱乾燥するという簡単な方法で吸収速度を改善することができ る 6 ⑥ Ru can improve the absorption rate in a simple method of heat drying by blending fine filler to hydrogel of any stage before the polymerization of the water-absorbent resin to a dry炫前6
⑦界面活性剤で処理したものは、 血液ゃ絰血に対する吸収速度が速く、 保水虽 も優れることから、 例えば衛生用品 (特に生理用ナプキン) の吸収剤として使用 した場合、 表面ドライ感の向上やモレの減少に優れた効果を発揮する。 又、 その 他の体被 (尿、 母乳、 出産時の羊水など) に対しても優れた吸収性能と吸収速度 を発揮する。  も の Surfactants treated with surfactants have a high absorption rate for blood and blood, and have excellent water retention properties. For example, when used as an absorbent for sanitary goods (especially sanitary napkins), the surface dryness can be improved. It has an excellent effect on the reduction of leaks. It also exhibits excellent absorption performance and absorption rate for other body coats (urine, breast milk, amniotic fluid at birth, etc.).
⑧界面活性剤で処理したものは、 生理用ナプキンなどの吸収性物品に適用する ことにより、 従来からの吸水性樹脂使用に比べて、 吸収速度、 拡散面積、 表面ド ライ感、 保水虽などに優れたナプキンが得られる。  も の Applied to absorbent articles, such as sanitary napkins, to improve absorption rate, diffusion area, surface dryness, water retention, etc., compared to conventional water-absorbent resins An excellent napkin is obtained.
上記効果を奏することから、 本発明の吸収剤組成物は、 各種の吸収性物品、 例 えば、 使い捨て紙おむつ (子供用および大人用紙おむつ)、 生理用ナプキン、 失禁 者用パヅ ド、 母乳パヅ ド、 手術用アンダーパッ ド、 産褥マヅ ト、 創傷保護用ドレ ヅシング材などの衛生用品ゃ医瘃用品に特に好適である。 また、 各種の吸収シー ト類 (例えば、 ぺッ ト尿吸収シート、 鮮度保持シート、 ドリップ吸収シート、 水 稲育苗シート、 コンクリート養生シート、 ケーブル類の水走り防止シートなど) にも好適に使用することができる。更に、吸収剤組成物の粉末を応用する用途(例 えば、 土壌保永剤、 ヘドロ固化剤、 廃血液や水性廃液などの固形化剤、 尿ゲル化 剤、 電池の電解液ゲル化剤など) にも好適に使用できる。  Due to the above effects, the absorbent composition of the present invention can be used for various absorbent articles, for example, disposable disposable diapers (children and adult disposable diapers), sanitary napkins, pads for incontinent persons, breast milk pads. It is particularly suitable for sanitary and medical products such as a pad, a surgical underpad, a puerperium mart, and a dressing material for wound protection. It is also suitable for use with various absorbent sheets (eg, urine absorbent sheet, freshness preserving sheet, drip absorbing sheet, paddy rice seedling seedling sheet, concrete curing sheet, water running prevention sheet for cables, etc.). be able to. Furthermore, it is used in applications where powders of absorbent compositions are applied (for example, soil preservatives, sludge solidifying agents, solidifying agents such as waste blood and aqueous effluents, urine gelling agents, battery electrolyte gelling agents, etc.). Can also be suitably used.

Claims

請求の範囲 The scope of the claims
1.吸水性樹脂 (A)中に、 微小フィラー (B)が内蔵された構造の吸収剤組成物 であり、 微小フイラ一 (B) が内蔵されていない吸水性樹脂 (A) に対し、 比表 面積が 10%以上向上していることを特徴とする吸収剤組成物。 1. An absorbent composition with a structure in which a fine filler (B) is incorporated in the water-absorbent resin (A). The ratio is higher than that of the water-absorbent resin (A) in which the fine filler (B) is not incorporated. An absorbent composition having a surface area improved by 10% or more.
2.前記微小フィラー(B)が内蔵されていない吸水性樹脂(A)の生理食塩水の 吸収速度 (一定量を吸収する時間) に対して吸収速度が 80%以下である、 請求 項 1記載の吸収剤組成物。 2. The absorption rate of the water-absorbent resin (A) in which the fine filler (B) is not incorporated is 80% or less of the absorption rate of physiological saline (time for absorbing a certain amount). Absorbent composition.
3.平均粒径 200〜600 mの粒子状の吸収剤組成物であり、粒径 150〜5 00 inのものの比表面積が、 BET法により測定して、 0. lm2/g以上で ある、 請求項 1または 2に記載の吸収剤組成物。 3.A particulate absorbent composition having an average particle size of 200 to 600 m, and having a particle size of 150 to 500 in, has a specific surface area of at least 0.1 lm 2 / g as measured by the BET method. 3. The absorbent composition according to claim 1 or 2.
4.生理食塩水の吸収速度が 25秒以下である、請求項 1〜 3のいずれかに記載の 吸収剤組成物。 4. The absorbent composition according to any one of claims 1 to 3, wherein the absorption rate of physiological saline is 25 seconds or less.
5,前記吸水性樹脂 (A) と微小フィラー (B) との質量比が 100: (0. 05 〜10) である、 請求項 1〜 4のいずれかに記載の吸収剤組成物。 5. The absorbent composition according to any one of claims 1 to 4, wherein the mass ratio of the water-absorbent resin (A) to the fine filler (B) is 100: (0.05 to 10).
6.前記微小フィラー (B) は真密度が 0. 1 g/cm3以下でありかつ粒径が 1 〜20 O ^mの微小フィラー(B1)である、 請求項 1〜 5のいずれかに記載の吸 収剤組成物。 6. The fine filler (B1) according to any one of claims 1 to 5, wherein the fine filler (B) is a fine filler (B1) having a true density of 0.1 g / cm 3 or less and a particle size of 1 to 20 O ^ m. The absorbent composition according to any one of the preceding claims.
7.前記微小フィラー (B1) は、 ポリアクリレート, ポリメタクリレート, ポリ 塩化ピニリデン, ポリ酢酸ビニル及びポリアクリロニトリルからなる群より選ば れる少なくとも 1種の樹脂材質の中空状フイラ一である、 請求項 6に記載の吸収 剤組成物。 7. The fine filler (B1) is a hollow filler made of at least one resin material selected from the group consisting of polyacrylate, polymethacrylate, polypinylidene chloride, polyvinyl acetate and polyacrylonitrile. The absorbent composition as described in the above.
8.前記吸水性樹脂 (A) の含水ゲル中に前記微小フィラー (B1) が内蔵された ものを乾燥して得る、 請求項 6または 7に記載の吸収剤組成物。 8. The absorbent composition according to claim 6, wherein the water-containing gel of the water-absorbent resin (A) in which the fine filler (B1) is incorporated is obtained by drying.
9.前記吸水性樹脂 (A) の含水ゲル中に前記微小フィラー (B1) が内蔵された ものを乾燥粉碎して得られる粒子を表面架橋し、 前記吸水性樹脂 (A) を表面架 橋された粒子としてなる、 請求項 6〜 8の何れか記載の吸収剤組成物。 9. Particles obtained by drying and pulverizing the fine particles (B1) embedded in the water-containing gel of the water-absorbent resin (A) are surface-crosslinked, and the water-absorbent resin (A) is surface-crosslinked. The absorbent composition according to any one of claims 6 to 8, wherein the composition is formed as particles.
10.前記微小フィラー(B)が粒径 1〜150 mの熱膨張性中空フィラー(B 2')が熱膨張してなる微小フィラー(B2)である、 請求項 1〜5の何れかに記載 の吸収剤組成物。 10. The fine filler (B2) according to any one of claims 1 to 5, wherein the fine filler (B) is a fine filler (B2) obtained by thermally expanding a thermally expandable hollow filler (B2 ') having a particle size of 1 to 150 m. Absorbent composition.
11.前記熱膨張性中空フィラー( B 2' )が空隙中にガスまたは揮発性物質を含有 する微小中空樹脂である、 請求項 10に記載の吸収剤組成物。 11. The absorbent composition according to claim 10, wherein the thermally expandable hollow filler (B2 ') is a minute hollow resin containing a gas or a volatile substance in a void.
12.前記熱膨張性中空フィラー(B 2')の熱膨張による体積膨張倍率が 10倍以 上である請求項 10または 11に記載の吸収剤組成物。 12. The absorbent composition according to claim 10 or 11, wherein a volume expansion ratio of the thermally expandable hollow filler (B2 ') due to thermal expansion is 10 times or more.
13.前記熱膨張性中空フィラー(Β2')が熱膨張開始温度 60-150。C,最大 膨張温度 80〜18 CTCの性質を有する熱膨張性中空フィラーである、 請求項 1 0〜: L 2のいずれかに記載の吸収剤組成物。 13. The heat-expandable hollow filler (# 2 ') has a thermal expansion start temperature of 60 to 150. C. The absorbent composition according to any one of claims 10 to 10, which is a thermally expandable hollow filler having a property of a maximum expansion temperature of 80 to 18 CTC.
14.前記吸水性樹脂(A)の含水ゲル中に前記熱膨張性中空フィラー(Β2')が 内蔵されたものを加熱乾燥してなる、 請求項 10〜13の何れかに記載の吸収剤 組成物。 14. The absorbent composition according to any one of claims 10 to 13, wherein a substance in which the thermally expandable hollow filler (# 2 ') is incorporated in the hydrogel of the water absorbent resin (A) is heated and dried. object.
15. 前記吸水性樹脂 (Α) の含水ゲル中に前記吸水性樹脂 (Β2') が内蔵され たものを加熱乾燥粉砕して得られる粒子を表面架橋し、 前記吸水性樹脂 (Α) を 表面架橋された粒子としてなる、請求項 10~ 14の何れか記載の吸収剤組成物。 15. Particles obtained by heating, drying and pulverizing the water-absorbent resin (Β2) incorporated in the hydrogel of the water-absorbent resin (Α) are subjected to surface cross-linking, and the water-absorbent resin (樹脂) is subjected to surface treatment. 15. The absorbent composition according to claim 10, which is formed as cross-linked particles.
16. 吸水性樹脂 (A) 中に、 微小フイラ〜 (B) が内蔵された構造であり、 生 理食塩水の吸収速度が 25秒以下である吸収剤組成物。 16. An absorbent composition having a structure in which microfilaments (B) are incorporated in a water-absorbent resin (A), and having a physiological saline absorption rate of 25 seconds or less.
17.かさ密度が 0. 1〜0. 55 g/ cm3であり、 平均粒径が 200〜600 mの粒子状である請求項 16に記載の吸収剤組成物。 17. bulk density 0. 1~0. 55 g / cm 3 and an average particle size of the absorbent composition of claim 16 which is a particulate 200 to 600 m.
18. 吸水性樹脂 (A) が、 表面架橋構造を有する吸水性樹脂であり、 生理食塩 水の 20 gZ cm2条件での組成物の加圧吸収量が 25 g/g以上である、 請求 項 16または 17に記載の吸収剤組成物。 18. water-absorbing resin (A) is a water-absorbent resin having a surface cross-linked structure, pressurized intake yield of the composition at 20 gZ cm 2 Conditions saline is 25 g / g or more, claim 18. The absorbent composition according to 16 or 17.
19.請求項 1~18の何れかに記載の吸収剤組成物の表面にさらに界面活性剤 (C) が付与されてなる吸収剤組成物。 19. An absorbent composition obtained by further adding a surfactant (C) to the surface of the absorbent composition according to any one of claims 1 to 18.
20.前記界面活性剤(C)が HLB 8〜14の非イオン界面活性剤である、請求 項 19記載の吸収剤組成物。 20. The absorbent composition according to claim 19, wherein the surfactant (C) is a nonionic surfactant of HLB 8-14.
21. 吸水性樹脂 (A) を主成分とし、 かさ密度が 0. 1〜0. 55g/cm3 であり、 平均粒径が 200〜600 Aimの吸収性粒子の表面に、界面活性剤(C) が付与されてなる吸収剤組成物であり、 羊血に対する吸収速度が 30秒以下であ り、かつ羊血中で 30分間膨潤後の保水量が 20 gZg以上である吸収剤組成物。 21. The surface of the absorbent particles mainly composed of water-absorbent resin (A), having a bulk density of 0.1 to 0.55 g / cm 3 and an average particle size of 200 to 600 Aim, ), Wherein the absorbent composition has an absorption rate for sheep blood of 30 seconds or less and a water retention capacity after swelling in sheep blood for 30 minutes of 20 gZg or more.
22.吸水性榭脂(A)を含水ゲル状重合体を絰て製造する工程の乾燥前までに、 真密度が 0. 1 g/cma以下で、 粒径が 1〜200 mの微小フイラ一 (B1) を内蔵させて乾燥する吸収剤組成物の製造方法。 22. The absorbent榭脂(A) and before the drying step to produce a hydrogel polymer Te絰, below the true density of 0. 1 g / cm a, particle size of 1 to 200 m micro FILLER A method for producing an absorbent composition, wherein (A1) is incorporated and dried.
23.吸水性樹脂(A)を含水ゲル状重合体を経て製造する工程の乾燥前までに、 粒径 1〜150 mの熱膨張性中空フィラー (Β2') を内蔵させて加熱乾燥し、 吸水性樹脂 (Α) 中に熱膨張性中空フィラー (Β2') が熱膨張してなる微小フィ ラー (Β2) を内蔵させる吸収剤組成物の製造方法。 23. Before drying in the process of manufacturing the water-absorbent resin (A) through the hydrogel polymer, heat-dry with a built-in heat-expandable hollow filler ('2') having a particle size of 1 to 150 m to absorb water. A method for producing an absorbent composition in which a micro-filler (Β2) formed by thermally expanding a thermally-expandable hollow filler () 2 ') is incorporated in a water-soluble resin (Α).
24.請求項 22または 23に記載の製造方法で得られる吸収剤組成物の粒子を 表面架橋する吸収剤組成物の製造方法。 24. A method for producing an absorbent composition, wherein the particles of the absorbent composition obtained by the production method according to claim 22 or 23 are surface-crosslinked.
25■請求項 22~24のいずれかに記載の製造方法で得られる組成物の表面に、 さらに界面活性剤 (C) を付与する吸収剤組成物の製造方法。  25. A method for producing an absorbent composition, wherein the surface of the composition obtained by the production method according to any one of claims 22 to 24 is further provided with a surfactant (C).
26 ,請求項 1〜21のいずれかに記載の吸収剤組成物及び繊維状物からなる吸 収層が、 透水性部分を有する表面保護シートに包まれてなる吸収性物品。  26. An absorbent article, wherein the absorbent layer comprising the absorbent composition according to any one of claims 1 to 21 and a fibrous material is wrapped in a surface protective sheet having a water-permeable portion.
PCT/JP1998/003231 1997-07-18 1998-07-17 Absorbent composition, process for producing the same, and absorbent article WO1999003577A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19882553T DE19882553T1 (en) 1997-07-18 1998-07-17 Absorbent composition, process for its manufacture and absorbent products
AU82440/98A AU739387B2 (en) 1997-07-18 1998-07-17 Absorbent composition, method for producing thereof and absorbent products
US09/484,457 US6284362B1 (en) 1997-07-18 2000-01-18 Absorbent compositions, methods for producing thereof and absorbent products

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/209848 1997-07-18
JP20984897 1997-07-18
JP22742997 1997-08-07
JP9/227429 1997-08-07
JP9/335074 1997-11-18
JP33507497 1997-11-18

Publications (1)

Publication Number Publication Date
WO1999003577A1 true WO1999003577A1 (en) 1999-01-28

Family

ID=27329063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003231 WO1999003577A1 (en) 1997-07-18 1998-07-17 Absorbent composition, process for producing the same, and absorbent article

Country Status (3)

Country Link
AU (1) AU739387B2 (en)
DE (1) DE19882553T1 (en)
WO (1) WO1999003577A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005949A1 (en) 2000-07-18 2002-01-24 Sanyo Chemical Industries, Ltd. Absorbents and process for producing the same, absorbable constructs and absorbable articles
JP2003082250A (en) * 2001-06-27 2003-03-19 San-Dia Polymer Ltd Water-absorbing resin composition and method for producing the same
US7867623B2 (en) 2003-10-31 2011-01-11 Basf Aktiengesellschaft Polymeric particles capable of absorbing blood and/or body fluids
JP2012522880A (en) * 2009-04-07 2012-09-27 エボニック ストックハウゼン ゲーエムベーハー Use of hollow bodies for the production of water-absorbing polymers
EP1291368B1 (en) 2001-04-16 2017-05-31 Sumitomo Seika Chemicals Co., Ltd. Water-absorbing resin suitable for absorbing viscous liquid containing high-molecular compound, and absorbent and absorbent article each comprising the same
JP2018021090A (en) * 2016-08-01 2018-02-08 Sdpグローバル株式会社 Absorptive resin particle and method for producing the same
JP2020520401A (en) * 2017-09-05 2020-07-09 エルジー・ケム・リミテッド Super absorbent resin
JP2020520402A (en) * 2017-09-05 2020-07-09 エルジー・ケム・リミテッド Super absorbent polymer and method for producing the same
WO2020145384A1 (en) 2019-01-11 2020-07-16 株式会社日本触媒 Water absorbent having water-absorbent resin as main component, and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018571A1 (en) * 2011-08-03 2013-02-07 住友精化株式会社 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689839A (en) * 1979-12-21 1981-07-21 Zuikou Tekko Kk Production of water absorbing material
JPS5710334A (en) * 1980-06-23 1982-01-19 Kao Corp Absorptive article
JPS5986657A (en) * 1982-11-09 1984-05-18 Nippon Shokubai Kagaku Kogyo Co Ltd Highly absorptive resin composition
JPS63267435A (en) * 1987-04-24 1988-11-04 Kao Corp Manufacture of liquid-absorptive composite
JPH07216706A (en) * 1993-12-30 1995-08-15 Kimberly Clark Corp Absorber composition containing micro fiber
JPH08289903A (en) * 1995-02-08 1996-11-05 Sanyo Chem Ind Ltd Absorptive article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278601B2 (en) * 1987-01-28 1999-07-14 Kao Corporation Process for manufacturing an absorbent composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689839A (en) * 1979-12-21 1981-07-21 Zuikou Tekko Kk Production of water absorbing material
JPS5710334A (en) * 1980-06-23 1982-01-19 Kao Corp Absorptive article
JPS5986657A (en) * 1982-11-09 1984-05-18 Nippon Shokubai Kagaku Kogyo Co Ltd Highly absorptive resin composition
JPS63267435A (en) * 1987-04-24 1988-11-04 Kao Corp Manufacture of liquid-absorptive composite
JPH07216706A (en) * 1993-12-30 1995-08-15 Kimberly Clark Corp Absorber composition containing micro fiber
JPH08289903A (en) * 1995-02-08 1996-11-05 Sanyo Chem Ind Ltd Absorptive article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005949A1 (en) 2000-07-18 2002-01-24 Sanyo Chemical Industries, Ltd. Absorbents and process for producing the same, absorbable constructs and absorbable articles
EP1291368B1 (en) 2001-04-16 2017-05-31 Sumitomo Seika Chemicals Co., Ltd. Water-absorbing resin suitable for absorbing viscous liquid containing high-molecular compound, and absorbent and absorbent article each comprising the same
JP2003082250A (en) * 2001-06-27 2003-03-19 San-Dia Polymer Ltd Water-absorbing resin composition and method for producing the same
US7867623B2 (en) 2003-10-31 2011-01-11 Basf Aktiengesellschaft Polymeric particles capable of absorbing blood and/or body fluids
US8071222B2 (en) 2003-10-31 2011-12-06 Basf Se Polymeric particles capable of absorbing blood and/or body fluids
JP2012522880A (en) * 2009-04-07 2012-09-27 エボニック ストックハウゼン ゲーエムベーハー Use of hollow bodies for the production of water-absorbing polymers
JP2018021090A (en) * 2016-08-01 2018-02-08 Sdpグローバル株式会社 Absorptive resin particle and method for producing the same
JP2020520401A (en) * 2017-09-05 2020-07-09 エルジー・ケム・リミテッド Super absorbent resin
JP2020520402A (en) * 2017-09-05 2020-07-09 エルジー・ケム・リミテッド Super absorbent polymer and method for producing the same
US11504696B2 (en) 2017-09-05 2022-11-22 Lg Chem, Ltd. Super absorbent polymer
WO2020145384A1 (en) 2019-01-11 2020-07-16 株式会社日本触媒 Water absorbent having water-absorbent resin as main component, and method for producing same
KR20210110350A (en) 2019-01-11 2021-09-07 가부시키가이샤 닛폰 쇼쿠바이 Absorbent containing water absorbent resin as a main component and method for producing the same
US12053756B2 (en) 2019-01-11 2024-08-06 Nippon Shokubai Co., Ltd. Water absorbent agent having water-absorbent resin as main component and comprising a sulfur-containing reducing agent

Also Published As

Publication number Publication date
AU8244098A (en) 1999-02-10
DE19882553T1 (en) 2000-07-27
AU739387B2 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
CN1182878C (en) Resilient superabsorbent compositions
JP4669127B2 (en) Water-absorbing foam-like cross-linked polymer with improved distribution action, process for its production and use thereof
CA2542491C (en) Blood- and/or body fluid-absorbing hydrogel
PL209646B1 (en) Water absorbing agent and method for the production thereof
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
US10960102B2 (en) Superabsorbent polymer composition
US6284362B1 (en) Absorbent compositions, methods for producing thereof and absorbent products
JP2010501697A (en) Polyamine-coated superabsorbent polymer with transient hydrophobicity
US20040265387A1 (en) Super-absorbing hydrogel with specific particle size distribution
JP2002536471A (en) Crosslinked hydrophilic, high swelling hydrogels, methods for their preparation and their use
BRPI0507563B1 (en) PARTICULATE WATER ABSORPTION AGENT HAVING IRREGULAR SPRAYED FORM, METHOD FOR PRODUCTION THEREOF AND ABSORBENT ARTICLE
KR20120043165A (en) Use of hollow bodies for producing water-absorbent polymer structures
NZ198139A (en) Absorbent-immobilizing compositions containing a polymer,a liquid polyhydroxy organic compound,and optionally a blowing agent
JP2008528752A (en) Polyamine-coated super absorbent polymer
JP2003508202A (en) Polymer composition and method for producing the same
CA2433044A1 (en) Hydrogels coated with steric or electrostatic spacers
JP2008528750A (en) Polyamine-coated super absorbent polymer
JP2000015093A (en) Absorbable article and water absorbent therefor
JP2002226599A (en) Method for producing water-absorbing resin
WO1999003577A1 (en) Absorbent composition, process for producing the same, and absorbent article
JP3466318B2 (en) Water-absorbing agent composition, method for producing the same, and absorbent article containing these water-absorbing agent compositions
US6103785A (en) Water-absorbing agent and its production process and use
JP2000109714A (en) Water absorbent and its production
JP2001213914A (en) Preparation method of water-absorbing resin
JP2006233008A (en) Water absorptive resin composition and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 82440/98

Country of ref document: AU

RET De translation (de og part 6b)

Ref document number: 19882553

Country of ref document: DE

Date of ref document: 20000727

WWE Wipo information: entry into national phase

Ref document number: 19882553

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 82440/98

Country of ref document: AU

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607