[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1999051688A1 - Reactive dye compounds - Google Patents

Reactive dye compounds Download PDF

Info

Publication number
WO1999051688A1
WO1999051688A1 PCT/US1998/006561 US9806561W WO9951688A1 WO 1999051688 A1 WO1999051688 A1 WO 1999051688A1 US 9806561 W US9806561 W US 9806561W WO 9951688 A1 WO9951688 A1 WO 9951688A1
Authority
WO
WIPO (PCT)
Prior art keywords
hair
reactive dye
cooh
dye
dyes
Prior art date
Application number
PCT/US1998/006561
Other languages
French (fr)
Inventor
Earl David Brock
David Malcolm Lewis
Taher Iqbal Yousaf
Heather Holden Harper
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU68808/98A priority Critical patent/AU6880898A/en
Priority to MXPA00009672A priority patent/MXPA00009672A/en
Priority to PCT/US1998/006561 priority patent/WO1999051688A1/en
Priority to EP99916314A priority patent/EP1066347A1/en
Priority to US09/647,584 priority patent/US6447554B1/en
Priority to AU34662/99A priority patent/AU3466299A/en
Priority to PCT/US1999/007291 priority patent/WO1999051689A1/en
Priority to JP2000542405A priority patent/JP2003534389A/en
Priority to BR9909366-9A priority patent/BR9909366A/en
Priority to CNB998068748A priority patent/CN1174053C/en
Publication of WO1999051688A1 publication Critical patent/WO1999051688A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B62/00Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
    • C09B62/02Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group directly attached to a heterocyclic ring
    • C09B62/36Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group directly attached to a heterocyclic ring to some other heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4926Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4953Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom containing pyrimidine ring derivatives, e.g. minoxidil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B62/00Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
    • C09B62/02Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group directly attached to a heterocyclic ring

Definitions

  • This invention relates to reactive dye compounds, and more especially to reactive dye compounds comprising a chromophore and a nitrogen- containing heterocycle comprising at least one thio-subtituent.
  • the reactive dye compounds of the present are particularly suitable for dyeing hair.
  • the condition and structure of human hair is not regular along the length of the hair shaft.
  • Human hair is subject to various chemical and mechanical treatments such as combing, brushing, shampooing, heating, perming as well as exposure to the sun.
  • combing combing
  • brushing brushing
  • shampooing heating
  • perming perming as well as exposure to the sun.
  • the hair at the ends of the hair shaft will generally exhibit greater signs of damage relative to the new growth close to the scalp. This damage can lead to inconsistent coloration when the hair is dyed due to irregular uptake of the hair coloring agents along the length of the hair shaft.
  • the color is resistant to fading, as occasioned by the actions of washing (also known as wash fastness), perspiration, hair spray and other exterior factors such as the action of the sun, and further that the color be retained in a consistent manner for a predictable period of time. Additionally damage to the hair that can lead to irregular dye uptake as discussed above, can lead to increased fading of the damaged portions of the hair and consequently, irregular levels of color fade over time.
  • An additional difficulty commonly associated with the dyeing of human hair is the need for dye systems which avoid any adverse effect on the hair and skin of the user, such as brittle hair, or, irritation of the skin, or, staining (coloring) of the skin.
  • a hair coloring composition which exhibits reduced fade, provides improved resistance to wash out during a regular cleansing regimen, can deliver substantially consistent hair color results throughout the hair, which has reduced irritant effect on the skin , which has reduced staining on the skin, which has reduced adverse effects on the hair of the user and also to develop a convenient and easy-to-use method for the delivery of such a hair coloring composition to the hair.
  • GB-A-0,951,021 (Turner-Hall Corporation) relates to methods and compositions for dyeing keratinous fibres by attaching a dyestuff molecule to a particular site thereof through true covalent bonds.
  • the method comprises reducing some of the disulfide linkages of the cystine in the fibers to sulfhydryl groups while breaking hydrogen bonds by applying to the fibers in alkaline aqueous solution a reducing agent for breaking disulfide linkages of keratinous fibres and a hydrogen bond breaker for keratinous fibres and bonding a water-soluble fibre reactive dye compound such as a dichlorotriazine dye to the sulfhydryl groups by applying an aqueous solution of the fibre reactive dye.
  • Thioglycolic acid is disclosed as a reducing agent.
  • US-A-3,415,606 discloses a method for dyeing human hair comprising the steps of treating said hair with an effective amount of mercaptan and then treating the hair with a dichlorotriazine fibre reactive dye.
  • a reducing-H bond breaking solution containing thioglycolate, alkali, lithium bromide and urea
  • Reactive dye hair coloring agents can be used to deliver a variety of hair colors to the hair. However substantial improvement is needed in the areas of color saturation, color development, precise initial color consistency, improved wash fastness, improved hair condition and levels of hair damage.
  • the reactive dye compounds of the present invention comprising a nitrogen-containing heterocycle selected from quinoxaline, pyridone or pyrimidone, substituted with at least one thio- derivative, provides improvements in colour saturation, colour development, colour consistence, wash fastness, hair condition, and reduction in hair damage and skin irritation.
  • conventional, reactive dye hair coloring compositions typically comprise at least two separately packaged components, which are generally, reducing agent and reactive dye hair coloring agents. These separately packaged components are admixed just prior to application to the hair. Such an admixing step can be messy and inconvenient to the user. Typically, such coloring compositions need to be used soon after admixing due to degradation of the resulting coloring composition. As such, excess admixed coloring composition is disposed of after application of the required amount to the hair.
  • the reactive dyes of the present invention can be incorporated in a singly packaged mixture with improved stability versus conventional reactive dye systems.
  • the singly packaged coloring compositions of the present invention are suitable for use in a multi- application format (i.e. the consumer can use a single package for several color applications over a period of time). It has also been found that the reactive dye compounds and compositions herein are stable over time, and can be stored as such.
  • D is a chromophore
  • X and Y are independently selected from SR', Cl, Br, or F, wherein R' is selected from: H, C1-C4 alkyl, (CH 2 )nCOOH, (CH 2 ) n CONH 2 , (CH 2 ) n S0 3 H, (CH2) n COOM, (CH2) n P0 3 H, (CH 2 ) n OH, (CH 2 ) n SS0 " , (CH 2 ) n NR" 2 , (CH2) n N + R"3, PhSS03 " , PhS0 3 H, PI1PO 3 H, PhNR" 2 , PhN + R"3, -CN, SO3 " , (CH 2 )2CH(SH)R"(CH 2 )3COOH, -CH2CHOHCH 2 SH, and NTH,
  • n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4 + or NR"3 + .
  • L is a linking moiety
  • Z is a nitrogen containing heterocycle selected from pyridone, quinoxaline or pyrimidone;
  • the reactive dye compounds of the present invention provide improved wash fastness of dye on hair and less colour fade over time.
  • the reactive dye compounds herein comprise a nitrogen-containing heterocycle, a chromophore moiety, a linking group to link the nitrogen- containing heterocycle to the chromophore.
  • the reactive dye compounds herein have the formula (I):
  • D is a chromophore
  • X and Y are independently selected from SR', Cl, Br, or F, wherein R' is selected from: H, C1-C4 alkyl, (CH 2 ) n COOH, (CH 2 ) n CONH, (CH 2 ) n S0 3 H, (CH 2 ) n COOM, (CH) n P0 3 H, (CH) n OH, (CH 2 ) n SS0 " , (CH 2 ) n NR" 2 , (CH 2 ) n N + R"3, PhSS03 ' , PhS0 3 H, PhP0 3 H, PhNR" 2 , PhN + R"3, -CN, SO3 ' , (CH 2 ) 2 CH(SH)R"(CH 2 )3COOH,-CH 2 CHOHCH 2 SH, and
  • n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4 + or NR"3 + .
  • L is a linking moiety
  • Z is a nitrogen containing heterocycle selected from pyridone, quinoxaline or pyrimidone;
  • chromophore moieties suitable for use for dying substrates can be used in the present invention.
  • the term chromophore as used herein means any photoactive compound and includes any coloured or non-coloured light absorbing species, eg. fluorescent brighteners, UV absorbers, IR absorbing dyes.
  • Suitable chromophore moieties for use in the dye compounds herein include the radicals of monoazo, disazo or polyazo dyes or of heavy metal complex azo dye derived therefrom or of an anthraquinone, phthalocyanine, 11
  • Suitable chromophore moieties for use in the dye compounds herein include those disclosed in EP-A-0,735,107 (Ciba-Geigy), incorporated herein by reference, including the radicals described therein which contain substituents customary for organic dyes, such as sulphonate substituents which enhance the water-soluble properties of the dye compound.
  • chromophore D groups for use herein are polysulphonated azo chromophores such as those present in Levafix (RTM) dyes commercially available from Dystar.
  • the nitrogen containing heterocycle herein is selected from quinoxaline, pyridone and pyrimidone, preferably quinoxaline.
  • the nitrogen containing heterocycle has at least one thio substituent SR' wherein R' is selected from H, C1-C4 alkyl, (CH 2 ) n COOH, (CH 2 ) n CONH , (CH 2 ) n S0 3 H, (CH 2 ) n COOM, (CH ) n P0 3 H, (CH 2 ) n OH, (CH 2 ) n SS03 " (CH 2 ) n NR" 2 , (CH 2 ) n N + R"3, PI1SSO3 " , PhS0 3 H, PhP0 3 H, PhNR" 2 , PhN + R"3, -CN, SO3 " , (CH 2 ) 2 CH(SH)R"(CH 2 )3COOH, - CH 2 CHOHCH 2 SH, and
  • n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4 + or NR"3 + . 14
  • R' groups for use herein are CH2COOH, CH2CH20H and (COOH) CH2CH2(COOH), preferably CH2COOH.
  • the nitrogen-containing heterocycle may be substituted by two SR' groups or by one SR' group and one halogen group, preferably by two SR' groups.
  • the compounds herein further comprise a linking moiety to link each nitrogen-containing heterocycle to each chromophore moiety.
  • Any linking moieties suitable for use in dyeing substrates can be used in the present invention.
  • dyes having the formula (I) can be prepared by reacting suitable precursors of the dye of formula (I) with one another, at least one of which contains a group D-L-Z, wherein D, L and Z are as defined above, at least one of which contains an SR' group (wherein R 1 is as defined above).
  • dye compounds of the invention having a formula (I) wherein Z is a quinoxaline heterocycle can be prepared by reacting a dichloroquinoxaline dye such as those commercially available from Dystar under the tradename Levofix E (RTM), with a suitable reactant containing an SR' group and then reacting the intermediate dye obtained with a suitable reactant containing a Q group.
  • RTM Levofix E
  • the reactions of the starting dye compounds with the reactant containing an SR' group are generally carried out at a pH of from about 7 to about 10, and at a temperature of about 0-5 C.
  • the reactions of the intermediate dye compounds with the reactant containing a Q group are generally carried out 15
  • the dye compounds herein are particularly suitable for dyeing hair but are also suitable for dyeing and printing a wide variety of substrates, such as silk, leather, wool, polyamide fibers and polyurethanes, and in particular cellulosic materials, such as the natural cellulose fibres, cotton, linen, hemp and the like, and also cellulose itself and regenerated cellulose, and hydroxyl-containing fibres contained in blend fabrics, for example blends of cotton with polyester or polyamide fibres.
  • substrates such as silk, leather, wool, polyamide fibers and polyurethanes
  • cellulosic materials such as the natural cellulose fibres, cotton, linen, hemp and the like, and also cellulose itself and regenerated cellulose, and hydroxyl-containing fibres contained in blend fabrics, for example blends of cotton with polyester or polyamide fibres.
  • the dye compounds herein can be incorporated into dye compositions together with suitable carrier materials which are selected depending on what type of substrate is being dyed.
  • suitable carrier materials will be well known to those skilled in the art.
  • the dye compounds herein are particularly suitable for dyeing hair and thus in accordance with another aspect of the present invention there is provided a hair dye composition comprising a compound having the formula (I) as described herein together with a suitable carrier.
  • Any carrier materials suitable for use in hair dye compositions can be used herein.
  • compositions of the present invention comprise from about 0.01% to about 10%, preferably from about 0.1% to about 5%, especially from about 0.1% to about 3% by weight of one or more reactive dye compounds having the formula (I).
  • the types and levels of dyes used in each composition will depend upon the desired hair shade.
  • a preferred ingredient in the hair dye compositions herein is a reducing agent.
  • Any reducing agents suitable for use in hair dye compositions may be used herein. Some typical reducing agents for use herein are listed in GB-A-951,021 and GB-A-589,956, incorporated herein by reference. Examples of suitable reducing agents include thioglycolic acid, thiolactic acid, dihydrolipoate, thioglycerol, mercaptopropionic acid, sodium bisulfite, ammonium bisulfide, zinc formaldehyde sulfoxylate, sodium formaldehyde 16
  • sulfoxylate sodium metabisulfite
  • potassium borohydride potassium borohydride
  • hydroquinone Particularly suitable for use herein is thioglycolic acid.
  • a hydrogen bond breaker is a hydrogen bond breaker.
  • Any hydrogen bond breaker suitable for use in a hair dye composition can be used herein. Suitable examples include lithium bromide, urea, resorcinol, catechol, dihydroxyacetone, formamide, potassium chloride and magnesium chloride. Particularly preferred for use herein is urea.
  • the coloring compositions of the present invention have a pH in the range of from about 7 to about 11 , preferably from about 9 to about 10.5. In order to maintain such a pH the compositions may contain one or more optional buffering agents.
  • alkaline buffering agents are ammonium hydroxide, ethylamine, dipropylamine, triethylamine and alkanediamines such as 1,3- diaminopropane, anhydrous alkaline alkanolamines such as, mono or di- ethanolamine, preferably those which are completely substituted on the amine group such as dimethylaminoethanol, polyalkylene poly amines such as diethylenetriamine or a heterocyclic amine such as mo ⁇ holine as well as the hydroxides of alkali metals, such as sodium and potassium hydroxide, hydroxides of alkali earth metals, such as magnesium and calcium hydroxide, basic amino acids such as L-argenine, lysine, alanine, leucine, iso-leucine, oxy lysine and histidine and alkanolamines such as dimethylaminoethanol and aminoalkylpropanediol and mixtures thereof.
  • ion forming compounds compounds that form HCO3" by dissociation in water
  • suitable ion forming compounds are Na 2 C03, NaHC ⁇ 3, K C ⁇ 3, (NH4) C ⁇ 3, NH4HCO3, CaC ⁇ 3 and Ca(HC03) and mixtures thereof.
  • Preferred buffering agents for use herein are ammonium hydroxide, and sodium hydroxide.
  • the coloring compositions of the present invention may additionally include a thickener at a level of from about 0.05 % to about 20% , preferably from about 0.1 % to about 10% , more preferably from about 17
  • Thickening agents suitable for use in the compositions herein are selected from oleic acid, cetyl alcohol, oleyl alcohol, sodium chloride, cetearyl alcohol, stearyl alcohol, synthetic thickeners such as Carbopol, Aculyn and Acrosyl and mixtures thereof.
  • Preferred thickeners for use herein are Aculyn 22 (RTM), steareth-20 methacrylate copolymer; Aculyn 44 (RTM) ,polyurethane resin and Acusol 830 (RTM), acrylates copolymer which are available from Rohm and Haas, Philadelphia, PA, USA.
  • Additional thickening agents suitable for use herein include sodium alginate or gum arabic, or cellulose derivatives, such as methyl cellulose or the sodium salt of carboxymethylcellulose or acrylic polymers.
  • Water is the preferred diluent for the compositions according to the present invention.
  • the compositions according to the present invention may include one or more solvents as additional diluent materials.
  • solvents suitable for use in the coloring compositions of the present invention are selected to be miscible with water and innocuous to the skin.
  • Solvents suitable for use as additional diluents herein include C ⁇ - C 2 o mono- or polyhydric alcohols and their ethers, glycerine, with monohydric and dihydric alcohols and their ethers preferred. In these compounds, alcoholic residues containing 2 to 10 carbon atoms are preferred.
  • a preferred group includes ethanol, isopropanol, n- propanol, butanol, propylene glycol, ethylene glycol monoethyl ether, and mixtures thereof.
  • Water is the preferred principal diluent in the compositions according to the present invention. Principal diluent, as defined herein, means, that the level of water present is higher than the total level of any other diluents.
  • the diluent is present at a level preferably of from about 5% to about 99.98%, preferably from about 15% to about 99.5%, more preferably at least from about 30% to about 99%, and especially from about 50% to about 98% by weight of the compositions herein.
  • compositions of the present invention can additionally contain a surfactant system.
  • Suitable surfactants for inclusion in the compositions of the invention generally have a lipophilic chain length of from about 8 to 18
  • Anionic surfactants suitable for inclusion in the compositions of the invention include alkyl sulphates, ethoxylated alkyl sulphates, alkyl glyceryl ether sulfonates, methyl acyl taurates, fatty acyl glycinates, N-acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl ethoxysulphosuccinates, alpha-sulfonated fatty acids, their salts and/or their esters, alkyl ethoxy carboxylates, alkyl phosphate esters, ethoxylated alkyl phosphate esters, alkyl sulphates, acyl sarcosinates and fatty acid/protein condensates, and mixtures thereof.
  • Alkyl and/or acyl chain lengths for these surfactants are C ⁇ 2 -C 22 , preferably C ⁇ 2 -C ⁇ g more
  • compositions of the invention can also comprise water-soluble nonionic surfactant(s).
  • surfactants of this class include C ⁇ 2 _Ci4 fatty acid mono-and diethanolamides, sucrose polyester surfactants and polyhydroxy fatty acid amide surfactants having the general formula below.
  • N-alkyl, N-alkoxy or N-aryloxy, polyhydroxy fatty acid amide surfactants according to the above formula are those in which Rg is C5-C31 hydrocarbyl, preferably C6-C19 hydrocarbyl, including straight- chain and branched chain alkyl and alkenyl, or mixtures thereof and R9 is typically hydrogen, Ci-Cg alkyl or hydroxyalkyl, preferably methyl, or a group of formula -R1-0-R2 wherein Rl is C 2 -C8 hydrocarbyl including straight-chain, branched-chain and cyclic (including aryl), and is preferably C 2 -C4 alkylene, R2 is Ci-Cs straight-chain, branched-chain and cyclic hydrocarbyl including aryl and oxyhydrocarbyl, and is preferably C1-C4 alkyl, especially methyl, or phenyl.
  • Z 2 is a polyhydroxyhydrocarbyl moiety having a linear hydrocar
  • Z 2 preferably will be derived from a reducing sugar in a reductive amination reaction, most preferably Z 2 is a glycityl moiety.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde.
  • high dextrose com syrup, high fructose com syrup, and high maltose com syrup can be utilised as well as the individual sugars listed above. These com syrups may yield a mix of sugar components for Z 2 .
  • Z 2 preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n _ ⁇ -CH 2 H, CH 2 (CHOH) 2 (CHOR')CHOH)-CH 2 OH, where n is an integer from 1 to 5, inclusive, and R is H or a cyclic mono- or polysaccharide, and alkoxylated derivatives thereof. As noted, most preferred are glycityls wherein n is 4, particularly -CH 2 -(CHOH) 4 -CH 2 OH.
  • the most preferred polyhydroxy fatty acid amide has the formula R8(CO)N(CH3)CH 2 (CHOH)4CH 2 OH wherein Rg is a C6-C19 straight chain alkyl or alkenyl group.
  • Rg-CO- N ⁇ can be, for example, cocoamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmiamide, tallowamide, etc.
  • Suitable oil derived nonionic surfactants for use herein include water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted; ethoxylated mono and di-glycerides, polyethoxylated lanolins and ethoxylated butter derivatives.
  • water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted
  • ethoxylated mono and di-glycerides ethoxylated mono and di-glycerides
  • polyethoxylated lanolins polyethoxylated lanolins
  • ethoxylated butter derivatives ethoxylated butter derivatives.
  • One preferred class of oil-derived nonionic surfactants for use herein have the general formula below:
  • n is from about 5 to about 00, preferably from about 20 to about 100, more preferably from about 30 to about 85, and wherein R comprises an aliphatic radical having on average from about 5 to 20 carbon atoms, preferably from about 7 to 18 carbon atoms.
  • Suitable ethoxylated oils and fats of this class include polyethyleneglycol derivatives of glyceryl cocoate, glyceryl caproate, glyceryl caprylate, glyceryl tallowate, glyceryl palmate, glyceryl stearate, glyceryl laurate, glyceryl oleate, glyceryl ricinoleate, and glyceryl fatty esters derived from triglycerides, such as palm oil, almond oil, and com oil, preferably glyceryl tallowate and glyceryl cocoate.
  • Preferred for use herein are polyethyleneglycol based polyethoxylated C9- C 15 fatty alcohol nonionic surfactants containing an average of from about 5 to about 50 ethyleneoxy moieties per mole of surfactant.
  • Suitable polyethylene glycol based polyethoxylated C9-C15 fatty alcohols suitable for use herein include C9-C11 Pareth-3, C9-C11 Pareth-4, C9-C11 Pareth-5, C9-C1 1 Pareth-6, C9-C11 Pareth-7, C9-C11 Pareth-8, C11-C15 Pareth-3, C11-C15 Pareth-4, C11-C15 Pareth-5, C11-C15 Pareth-6, C ⁇ - C15 Pareth-7, C11-C15 Pareth-8, C11-C15 Pareth-9, C11-C15 Pareth-10, C11-C15 Pareth-11, C11-C15 Pareth-12, C11-C15 Pareth-13 and C11-C15 Pareth-14.
  • PEG 40 hydrogenated castor oil is commercially available under the tradename Cremophor (RTM) from BASF.
  • RTM Cremophor
  • PEG 7 glyceryl cocoate and PEG 20 glyceryl laurate are commercially available from Henkel under the tradenames Cetiol (RTM) HE and Lamacit (RTM) GML 20 respectively.
  • C9-C11 Pareth-8 is commercially available from Shell Ltd under the tradename Dobanol (RTM) 91-8.
  • Particulary preferred for use herein are polyethylene glycol ethers of ceteryl alcohol such as Ceteareth 25 which is available from BASF under the trade name Cremaphor A25.
  • nonionic surfactants derived from composite vegetable fats extracted from the fruit of the Shea Tree (Butyrospermum Karkii Kotschy) and derivatives thereof.
  • ethoxylated derivatives of Mango, Cocoa and Illipe butter may be used in compositions according to the invention. Although these are classified as ethoxylated nonionic surfactants it is understood that a certain proportion may remain as non- ethoxylated vegetable oil or fat. 21
  • suitable oil-derived nonionic surfactants include ethoxylated derivatives of almond oil, peanut oil, rice bran oil, wheat germ oil, linseed oil, jojoba oil, oil of apricot pits, walnuts, palm nuts, pistachio nuts, sesame seeds, rapeseed, cade oil, com oil, peach pit oil, poppyseed oil, pine oil, castor oil, soybean oil, avocado oil, safflower oil, coconut oil, hazelnut oil, olive oil, grapeseed oil, and sunflower seed oil.
  • Amphoteric surfactants suitable for use in the compositions of the invention include:
  • Rj is C ⁇ -C 22 alkyl or alkenyl
  • R 2 is hydrogen or CH 2 Z
  • each Z is independently C0 2 M or CH 2 C0 2 M
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium; and/or ammonium derivatives of formula (VIII)
  • n, m, p, and q are numbers from 1 to 4, and Rj and M are independently selected from the groups specified above;
  • Suitable amphoteric surfactants of type (a) are marketed under the trade name Miranol and Empigen and are understood to comprise a complex mixture of species.
  • the Miranols have been described as having the general formula (VII), although the CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure (VIII) while the 4th Edition indicates yet another structural isomer in which R 2 is O-linked rather than N-linked.
  • CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure (VIII) while the 4th Edition indicates yet another structural isomer in which R 2 is O-linked rather than N-linked.
  • a complex mixture of cyclic and non- cyclic species is likely to exist and both definitions are given here for sake of completeness.
  • Preferred for use herein, however, are the non-cyclic species.
  • amphoteric surfactants of type (a) include compounds of formula XII and/or XIII in which Rj is CgHj7 (especially iso-capryl), C9H19 and CnH 2 3 alkyl. Especially preferred are the compounds in which Rj is C9H19, Z is C0 2 M and R 2 is H; the compounds in which Rj is Cl lH 2 3, Z is C0 2 M and R is CH 2 C0 M; and the compounds in which Rl is Ci ⁇ H 2 3, Z is C0 2 M and R is H.
  • materials suitable for use in the present invention include cocoamphocarboxypropionate, cocoamphocarboxy propionic acid, and especially cocoamphoacetate and cocoamphodiacetate (otherwise 23
  • cocoamphocarboxyglycinate cocoamphocarboxyglycinate
  • Specific commercial products include those sold under the trade names of Ampholak 7TX (sodium carboxy methyl tallow polypropyl amine), Empigen CDL60 and CDR 60 (Albright & Wilson), Miranol H2M Cone. Miranol C2M Cone. N.P., Miranol C2M Cone.
  • Miranol C2M SF Miranol CM Special (Rh ⁇ ne- Poulenc); Alkateric 2CIB (Alkaril Chemicals); Amphoterge W-2 (Lonza, Inc.); Monateric CDX-38, Monateric CSH-32 (Mona Industries); Rewoteric AM-2C (Rewo Chemical Group); and Schercotic MS-2 (Scher Chemicals).
  • amphoteric surfactants suitable for use herein include Octoxynol-1 (RTM), polyoxethylene (1) octylphenyl ether; Nonoxynol-4 (RTM), polyoxyethylene (4) nonylphenyl ether and Nonoxynol-9, polyoxyethylene (9) nonylphenyl ether.
  • amphoteric surfactants of this type are manufactured and sold in the form of electroneutral complexes with, for example, hydroxide counterions or with anionic sulfate or sulfonate surfactants, especially those of the sulfated Cg- Ci alcohol, Cg-Cig ethoxylated alcohol or Cg-Cjg acyl glyceride types.
  • concentrations and weight ratios of the amphoteric surfactants are based herein on the uncomplexed forms of the surfactants, any anionic surfactant counterions being considered as part of the overall anionic surfactant component content.
  • amphoteric surfactants of type (b) include N-alkyl polytrimethylene poly-, carboxymethylamines sold under the trade names Ampholak X07 and Ampholak 7CX by Berol Nobel and also salts, especially the triethanolammonium salts and salts of N-lauryl-beta-amino propionic acid and N-lauryl-imino-dipropionic acid.
  • Such materials are sold under the trade name Deriphat by Henkel and Mirataine by Rh ⁇ ne-Poulenc.
  • Water-soluble auxiliary zwitterionic surfactants suitable for inclusion in the compositions of the present invention include alkyl betaines of the formula R5R6R7N+ (CH 2 ) n C0 2 M and amido betaines of the formula (XII) below: 24
  • R5 is Ci l-C 22 alkyl or alkenyl
  • R ⁇ and R7 are independently C ⁇ - C3 alkyl
  • M is H
  • alkali metal alkaline earth metal
  • n, m are each numbers from 1 to 4.
  • Preferred betaines include cocoamidopropyldimethylcarboxymethyl betaine, laurylamidopropyldimethylcarboxymethyl betaine and Tego betaine (RTM).
  • auxiliary sultaine surfactants suitable for inclusion in the compositions of the present invention include alkyl sultaines of the formula (XIII) below:
  • R ⁇ is C7 to C 22 alkyl or alkenyl
  • R 2 and R3 are independently C ⁇ to C3 alkyl
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium
  • m and n are numbers from 1 to 4.
  • Preferred for use herein is coco amido propylhydroxy sultaine.
  • Water-soluble auxiliary amine oxide surfactants suitable for inclusion in the compositions of the present invention include alkyl amine oxide R5R6R7NO and amido amine oxides of the formula (XIV) below: 25
  • R5 is Ci 1 to C 22 alkyl or alkenyl
  • R ⁇ and R7 are independently Ci to C3 alkyl
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium
  • m is a number from 1 to 4.
  • Preferred amine oxides include cocoamidopropylamine oxide, lauryl dimethyl amine oxide and myristyl dimethyl amine oxide.
  • the hair coloring compositions of the present invention may, in addition to the essential oxidative hair coloring agents, optionally include non- oxidative and other dye materials.
  • Optional non-oxidative and other dyes suitable for use in the hair coloring compositions and processes according to the present invention include both semi-permanent, temporary and other dyes.
  • Non-oxidative dyes as defined herein include the so-called 'direct action dyes', metallic dyes, metal chelate dyes, fibre reactive dyes and other synthetic and natural dyes.
  • Various types of non-oxidative dyes are detailed in: 'Chemical and Physical Behaviour of Human Hair' 3rd Ed. by Clarence Robbins (pp250-259); 'The Chemistry and Manufacture of Cosmetics' . Volume IV. 2nd Ed.
  • Direct action dyes which do not require an oxidative effect in order to develop the color, are also designated hair tints and have long been known in the art. They are usually applied to the hair in a base matrix which includes surfactant material. Direct action dyes include nitro dyes such as the derivatives of nitroamino benzene or nitroaminophenol; disperse dyes 26
  • nitroaryl amines such as nitroaryl amines, aminoanthraquinones or azo dyes; anthraquinone dyes, naphthoquinone dyes; basic dyes such as Acridine Orange C.I. 46005.
  • Nitrodyes are added to dyeing compositions to enhance colour of colorant and to add suitable aesthetic colour to the dye mixture prior to application.
  • direct action dyes include the Arianor dyes basic brown 17, C.I.(color index) - no. 12,251; basic red 76, C.I. - 12,245; basic brown 16, C.I. - 12,250; basic yellow 57, C.I. - 12,719 and basic blue 99, C.I. - 56,059 and further direct action dyes such as acid yellow 1, C.I. - 10,316 (D&C yellow no.7); acid yellow 9, C.I. - 13,015; basic violet CI. - 45,170; disperse yellow 3, CI. - 11,855; basic yellow 57, CI. - 12,719; disperse yellow 1, C.I. - 10,345; basic violet 1, CI.
  • Fibre reactive dyes include the Procion (RTM), Drimarene (RTM), Cibacron (RTM), Levafix (RTM) and Remazol (RTM) dyes available from ICI, Sandoz, Ciba-Geigy, Bayer and Hoechst respectively.
  • Natural dyes and vegetable dyes as defined herein include henna (Lawsonia alba), camomile (Matricaria chamomila or Anthemis nobilis), indigo, logwood and walnut hull extract. 27
  • Temporary hair dyes are generally comprised of dye molecules which are too large to diffuse into the hair shaft and which act on the exterior of the hair. They are usually applied via a leave-in procedure in which the dye solution is allowed to dry on the hair surface. As such these dyes are typically less resistant to the effects of washing and cleaning the hair with surface active agents and are washed off of the hair with relative ease. Any temporary hair dye may suitably be used in the compositions of the invention and examples of preferred temporary hair dyes are illustrated below.
  • Semi-permanent hair dyes are dyes which are generally smaller in size and effect to temporary hair rinses but are generally larger than permanent (oxidative) dyes.
  • semi-permanent dyes act in a similar manner to oxidative dyes in that they have the potential to diffuse into the hair shaft.
  • semi-permanent dyes are generally smaller in size than the aforementioned conjugated oxidative dye molecules and as such are pre-disposed to gradual diffusion out of the hair again. Simple hair washing and cleaning action will encourage this process and in general semi-permanent dyes are largely washed out of the hair after about 5 to 8 28
  • any semi-permanent dye system may be suitably used in the compositions of the present invention.
  • Suitable semi-permanent dyes for use in the compositions of the present invention are HC Blue 2, HC Yellow 4, HC Red 3, Disperse Violet 4, Disperse Black 9, HC Blue 7, HC Yellow 2, Disperse Blue 3, Disperse violet 1 and mixtures thereof. Examples of semi-permanent dyes are illustrated below:
  • Typical semi-permanent dye systems inco ⁇ orate mixtures of both large and small color molecules. As the size of the hair is not uniform from root to tip the small molecules will diffuse both at the root and tip, but will not 29
  • a number of additional optional materials can be added to the coloring compositions herein described each at a level of from about 0.001%) to about 5%, preferably from about 0.01% to about 3%, more preferably from about 0.05% to about 2% by weight of composition.
  • Such materials include proteins and polypeptides and derivatives thereof; water-soluble or solubilizable preservatives such as DMDM Hydantoin, Germall 115, methyl, ethyl, propyl and butyl esters of hydroxybenzoic acid, EDTA, Euxyl (RTM) K400, natural preservatives such as benzyl alcohol, potassium sorbate and bisabalol, benzoic acid, sodium benzoate and 2-phenoxyethanol; antioxidants such as sodium sulphite, hydroquinone, sodium bisulphite, sodium metabisulphite, sodium dithionite, erythrobic acid and other mercaptans; dye removers such as oxalic acid, sulphated castor
  • viscosity control agents such as magnesium sulfate and other electrolytes
  • viscosity control agents such as magnesium sulfate and other electrolytes
  • quaternary amine compounds such as distearyl-, dilauryl-, di-hydrogenated beef tallow-, dimethyl ammonium chloride, dicetyldiethyl ammoniumethylsulphate, ditallowdimethyl ammonium methylsulphate, disoya dimethyl ammonium chloride and dicoco dimethyl ammonium chloride
  • hair conditioning agents such as silicones, higher alcohols, cationic polymers and the like
  • enzyme stabilisers such as water soluble 30
  • sources of calcium or borate species include colouring agents; Ti0 2 and Ti0 2 - coated mica; perfumes and perfume solubilizers; and zeolites such as Valfour BV400 and derivatives thereof and Ca2 + /Mg2+ sequestrants such as polycarboxylates, amino polycarboxylates, polyphosphonates, amino polyphosphonates etc. and water softening agents such as sodium citrate.
  • the present invention is represented by the following non-limiting examples.
  • all concentrations are on a 100% active basis and all percentages are by weight unless otherwise stated and the abbreviations have the following designations.
  • the chlorothioglycolato quinoxaline dye is prepared using the synthesis route as illustrated in Diagram 9.
  • reaction scheme D is a chromophore and varies depending on which starting dye is used.
  • Levafix Goldgelb E-G commercially available from DyStar is used a starting material but this can be replaced by any suitable quinoxaline dye such as Levafix Brilliant Blue E-B, Levafix Brilliant Red E-RN and Levafix Brown E-2R.
  • the reaction is then allowed to proceed at 30-35°C and pH 9 (which is corrected using sodium carbonate and HC1) for 4-5 hours.
  • the end-of- reaction point for this part of the synthesis is indicated by the pH of the reaction system remaining constant for more than 5 minutes. At this point, thioglycolato quinoxaline dye is obtained.
  • KCl ⁇ 35% of the total solution
  • Filtration using Whatman filter paper follows. The precipitate is then washed with acetone for 4-5 times ( ⁇ 50ml of acetone used each time to obtain the dye product.
  • the compounds according to Example 1 can be included in a hair coloring composition.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

Reactive dye compounds having formula (I), wherein D is a chromophore; X and Y are independently selected from SR', Cl, Br, or F, wherein R' is selected from: H, Cl-C4 alkyl, (CH2)nCOOH, (CH2)nCONH2, (CH2)nSO3H, (CH2)nCOOM, (CH2)nPO3H, (CH2)nOH, (CH2)nSSO3-, (CH2)nNR'2, (CH2)nN+R'3, PhSSO3-, PhSO¿3?H, PhPO3H, PhNR'2, PhN?+R'¿3, -CN, SO3-, (CH2)2CH(SH)R'(CH2)3COOH, -CH2CHOHCH2SH, and (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), -CH2CH2NH2. n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4+ or NR'¿3?+. L is a linking moiety; Z is a nitrogen containing heterocycle selected from pyridone, quinoxaline or pyrimidone; provided that at least one of X or Y is SR' and esters and salts thereof. The reactive dye compounds of the present invention provide improved wash fastness of dye on hair and less colour fade over time.

Description

Reactive Dye Compounds
Technical Field
This invention relates to reactive dye compounds, and more especially to reactive dye compounds comprising a chromophore and a nitrogen- containing heterocycle comprising at least one thio-subtituent. The reactive dye compounds of the present are particularly suitable for dyeing hair.
Background of the Invention
The desire to alter the color of human hair is not a facet of modern times. Since the days of the Roman Empire the color of human hair has been routinely altered to accommodate the changes of fashion and style. However the attainment of precise initial colors which are retained by the hair for a desirable period has remained a more elusive goal. The difficulties in the development of hair coloring compositions which can deliver precise long-lasting colors are in part due to the inherent structure of the hair itself and in part due to the necessary conditions of effective hair coloration processes.
In general, the condition and structure of human hair is not regular along the length of the hair shaft. Human hair is subject to various chemical and mechanical treatments such as combing, brushing, shampooing, heating, perming as well as exposure to the sun. As such, the hair at the ends of the hair shaft will generally exhibit greater signs of damage relative to the new growth close to the scalp. This damage can lead to inconsistent coloration when the hair is dyed due to irregular uptake of the hair coloring agents along the length of the hair shaft.
Once the hair has been colored there is a desire for the color to be resistant to fading, as occasioned by the actions of washing (also known as wash fastness), perspiration, hair spray and other exterior factors such as the action of the sun, and further that the color be retained in a consistent manner for a predictable period of time. Additionally damage to the hair that can lead to irregular dye uptake as discussed above, can lead to increased fading of the damaged portions of the hair and consequently, irregular levels of color fade over time. An additional difficulty commonly associated with the dyeing of human hair is the need for dye systems which avoid any adverse effect on the hair and skin of the user, such as brittle hair, or, irritation of the skin, or, staining (coloring) of the skin.
Thus, it would be desirable to develop a hair coloring composition which exhibits reduced fade, provides improved resistance to wash out during a regular cleansing regimen, can deliver substantially consistent hair color results throughout the hair, which has reduced irritant effect on the skin , which has reduced staining on the skin, which has reduced adverse effects on the hair of the user and also to develop a convenient and easy-to-use method for the delivery of such a hair coloring composition to the hair.
Over the years significant effort has been directed towards the elimination of many of the problems associated with the dyeing of human hair. Various approaches to hair dyeing have been developed, these include, oxidative dyes, direct action dyes, natural dyes, metallic dyes and reactive dyes.
GB-A-0,951,021 (Turner-Hall Corporation) relates to methods and compositions for dyeing keratinous fibres by attaching a dyestuff molecule to a particular site thereof through true covalent bonds. The method comprises reducing some of the disulfide linkages of the cystine in the fibers to sulfhydryl groups while breaking hydrogen bonds by applying to the fibers in alkaline aqueous solution a reducing agent for breaking disulfide linkages of keratinous fibres and a hydrogen bond breaker for keratinous fibres and bonding a water-soluble fibre reactive dye compound such as a dichlorotriazine dye to the sulfhydryl groups by applying an aqueous solution of the fibre reactive dye. Thioglycolic acid is disclosed as a reducing agent.
US-A-3,415,606 discloses a method for dyeing human hair comprising the steps of treating said hair with an effective amount of mercaptan and then treating the hair with a dichlorotriazine fibre reactive dye. "The Reaction Mechanism of Fibre Reactive Dyestuffs with Hair Keratin", Albert Shansky, American Perfumer and Cosmetics, November 1966, and "Dyeing of Human Hair with Fibre Reactive Dyestuffs", Albert Shansky, Cosmetics and Toiletries, November 1976, disclose a method of coloring hair comprising treating the hair for five minutes with a reducing-H bond breaking solution (containing thioglycolate, alkali, lithium bromide and urea) followed by rinsing the hair and then treating the hair with a dichlorotriazine fibre reactive dye.
Dyes and Pigments 14, 1990, pages 239-263, "Synthesis and Application of Reactive Dyes with Heterocyclic Reactive Systems" discloses fibre reactive dyes containing chlorotriazine heterocycles with thio substituents.
Reactive dye hair coloring agents can be used to deliver a variety of hair colors to the hair. However substantial improvement is needed in the areas of color saturation, color development, precise initial color consistency, improved wash fastness, improved hair condition and levels of hair damage.
Thus there is a need for reactive dye hair coloring compounds and compositions which effectively dye the hair but avoid or reduce damage to the hair, which can color the hair effectively and avoid or reduce irritation and/or staining to the skin of the user.
It has surprisingly been found that the reactive dye compounds of the present invention comprising a nitrogen-containing heterocycle selected from quinoxaline, pyridone or pyrimidone, substituted with at least one thio- derivative, provides improvements in colour saturation, colour development, colour consistence, wash fastness, hair condition, and reduction in hair damage and skin irritation.
In addition, conventional, reactive dye hair coloring compositions typically comprise at least two separately packaged components, which are generally, reducing agent and reactive dye hair coloring agents. These separately packaged components are admixed just prior to application to the hair. Such an admixing step can be messy and inconvenient to the user. Typically, such coloring compositions need to be used soon after admixing due to degradation of the resulting coloring composition. As such, excess admixed coloring composition is disposed of after application of the required amount to the hair. It has been found that the reactive dyes of the present invention can be incorporated in a singly packaged mixture with improved stability versus conventional reactive dye systems. The singly packaged coloring compositions of the present invention are suitable for use in a multi- application format (i.e. the consumer can use a single package for several color applications over a period of time). It has also been found that the reactive dye compounds and compositions herein are stable over time, and can be stored as such.
All percentages are by weight of the final compositions in the form intended to be used unless specified otherwise.
Summary of the Invention
According to the present invention there is provided a reactive dye compound having the formula:
D-
Figure imgf000006_0001
Y
wherein D is a chromophore;
X and Y are independently selected from SR', Cl, Br, or F, wherein R' is selected from: H, C1-C4 alkyl, (CH2)nCOOH, (CH2)nCONH2, (CH2)nS03H, (CH2)nCOOM, (CH2)nP03H, (CH2)nOH, (CH2)nSS0 " , (CH2)nNR"2, (CH2)nN+R"3, PhSS03", PhS03H, PI1PO3H, PhNR"2, PhN+R"3, -CN, SO3", (CH2)2CH(SH)R"(CH2)3COOH, -CH2CHOHCH2SH, and NTH,
^
NH,
NH2
/
HC CH
\
COOH
HC COOH
C IH2 COOH
C=CH
C IOOHC IOOH .
CH3
C I COOH
H
OH
C I COOH
C IH3 O
H,C- (CH2)n-
CH O CO (CH2)n SH
CH2" -o- •co- (CH2)n- -SH
H2C- (CH2)n-
CH O CO (CH2)n SR"
CH2 O CO (CH2)n SR" _
H n(H2C) O C (CH2)n-
CH2 O C (CH2)n-
CH2 O CO (CH2)n SH s
O
CH2 O I CI (CH2)n-
CH2 O CO (CH2)n SR" ? CH2CH2CH CH2CH2CH2COOH
SR"
-CH2CH2NH2.
n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4+ or NR"3+.
L is a linking moiety;
Z is a nitrogen containing heterocycle selected from pyridone, quinoxaline or pyrimidone;
provided that at least one of B or C is SR'
and esters and salts thereof.
The reactive dye compounds of the present invention provide improved wash fastness of dye on hair and less colour fade over time.
Detailed Description of the Invention
The reactive dye compounds herein comprise a nitrogen-containing heterocycle, a chromophore moiety, a linking group to link the nitrogen- containing heterocycle to the chromophore.
The reactive dye compounds herein have the formula (I):
Figure imgf000009_0001
wherein D is a chromophore;
X and Y are independently selected from SR', Cl, Br, or F, wherein R' is selected from: H, C1-C4 alkyl, (CH2)nCOOH, (CH2)nCONH, (CH2)nS03H, (CH2)nCOOM, (CH)nP03H, (CH)nOH, (CH2)nSS0" , (CH2)nNR"2, (CH2)nN+R"3, PhSS03', PhS03H, PhP03H, PhNR"2, PhN+R"3, -CN, SO3', (CH2)2CH(SH)R"(CH2)3COOH,-CH2CHOHCH2SH, and
N+H,
-c ^
NH?
NH2
/
•HC CH
\
COOH
HC COOH
C IH2 COOH
C=CH
C IOOHC IOOH.
CH3
C COOH
H OH
C I COOH
C IH3
H2C- -(CH2)„-
CH- co- (CH2)n- SH
CH2 O CO (CH2)n SH f
H2C O C (CH2)n
CH O CO (CH2)n SR"
CH2 O CO (CH2)n SR" f
O
H n(H2C) O C II (CH2)n
CH2 O C (CH2)n
CH2 O CO (CH2)n SH 10
O
CH, (CH2)n-
CH3 CO- "(CH2)n- SR"
CH2CH2CH CH2CH2CH2COOH
SR"
-CH2CH2NH2.
n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4+ or NR"3+.
L is a linking moiety;
Z is a nitrogen containing heterocycle selected from pyridone, quinoxaline or pyrimidone;
provided that at least one of B or C is SR'
and esters and salts thereof.
Chromophore Moiety
Any chromophore moieties suitable for use for dying substrates can be used in the present invention. The term chromophore as used herein means any photoactive compound and includes any coloured or non-coloured light absorbing species, eg. fluorescent brighteners, UV absorbers, IR absorbing dyes.
Suitable chromophore moieties for use in the dye compounds herein include the radicals of monoazo, disazo or polyazo dyes or of heavy metal complex azo dye derived therefrom or of an anthraquinone, phthalocyanine, 11
formazan, azomethine, dioxazine, phenazine, stilbene, triphenylmethane, xanthene, thioxanthene, nitroaryl, naphthoquinone, pyrenequinone or perylenetetracarbimide dye.
Suitable chromophore moieties for use in the dye compounds herein include those disclosed in EP-A-0,735,107 (Ciba-Geigy), incorporated herein by reference, including the radicals described therein which contain substituents customary for organic dyes, such as sulphonate substituents which enhance the water-soluble properties of the dye compound.
Most preferred chromophore D groups for use herein are polysulphonated azo chromophores such as those present in Levafix (RTM) dyes commercially available from Dystar.
Nitrogen Containing Heterocycle
The nitrogen containing heterocycle herein is selected from quinoxaline, pyridone and pyrimidone, preferably quinoxaline.
The nitrogen containing heterocycle has at least one thio substituent SR' wherein R' is selected from H, C1-C4 alkyl, (CH2)nCOOH, (CH2)nCONH , (CH2)nS03H, (CH2)nCOOM, (CH )nP03H, (CH2)nOH, (CH2)nSS03" (CH2)nNR"2, (CH2)nN+R"3, PI1SSO3", PhS03H, PhP03H, PhNR"2, PhN+R"3, -CN, SO3", (CH2)2CH(SH)R"(CH2)3COOH, - CH2CHOHCH2SH, and
N+H,
-c ^
NH2
NH2
/
-H2C CH
COOH 12
HC COOH
CH2 COOH
C=CH
C IOOHC IOOH.
CH3
C COOH
H I
OH
C I COOH
C IH3
HC- "(CH2)n-
CH- o- -CO- (CH2)n- SH
CH, -O CO (CH2)n SH 13
O
H C- 0- "(CH2)n-
CH- -co- (CH2)n- SR"
CH, co- "(CH2)n- SR"
O
H- n(H2 o- O C (CH2)n-
CH, "(CH2)n-
CH, -CO (CH2)n SH
CH, "(CH2)n-
CH, CO (CH2)n SR"
CH2CH2CH CH2CH2CH2COOH
SR"
-CH2CH2NH2.
n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4+ or NR"3+. 14
Preferred R' groups for use herein are CH2COOH, CH2CH20H and (COOH) CH2CH2(COOH), preferably CH2COOH.
The nitrogen-containing heterocycle may be substituted by two SR' groups or by one SR' group and one halogen group, preferably by two SR' groups.
Linking Moiety
The compounds herein further comprise a linking moiety to link each nitrogen-containing heterocycle to each chromophore moiety. Any linking moieties suitable for use in dyeing substrates can be used in the present invention. Preferably the linking moiety is selected from NR, NRC=0, C(0)NR, NRS02 and -S02NR wherein R is H or C C4 alkyl which can be substituted by halogen, preferably fluorine or chlorine, hydroxyl, cyano, - C4 alkoxy, C -C5 alkoxycarbonyl, carboxyl, sulfamoyl, sulfo or sulfato. When the heterocycle is quinoxaline or phthalazine, a preferred linking moiety is NRC=0, where R is H or C1-C4 alkyl, more preferably where R is H or CH3, especially H.
The present invention furthermore relates to processes for the preparation of dyes herein. In general, dyes having the formula (I) can be prepared by reacting suitable precursors of the dye of formula (I) with one another, at least one of which contains a group D-L-Z, wherein D, L and Z are as defined above, at least one of which contains an SR' group (wherein R1 is as defined above).
For example, dye compounds of the invention having a formula (I) wherein Z is a quinoxaline heterocycle can be prepared by reacting a dichloroquinoxaline dye such as those commercially available from Dystar under the tradename Levofix E (RTM), with a suitable reactant containing an SR' group and then reacting the intermediate dye obtained with a suitable reactant containing a Q group.
The reactions of the starting dye compounds with the reactant containing an SR' group are generally carried out at a pH of from about 7 to about 10, and at a temperature of about 0-5 C. The reactions of the intermediate dye compounds with the reactant containing a Q group are generally carried out 15
at a pH of from about 5 to about 6 and at a temperature of from about 50- 85C.
The dye compounds herein are particularly suitable for dyeing hair but are also suitable for dyeing and printing a wide variety of substrates, such as silk, leather, wool, polyamide fibers and polyurethanes, and in particular cellulosic materials, such as the natural cellulose fibres, cotton, linen, hemp and the like, and also cellulose itself and regenerated cellulose, and hydroxyl-containing fibres contained in blend fabrics, for example blends of cotton with polyester or polyamide fibres. Thus in accordance with another aspect of the present invention there is provided a use of the compounds herein for dyeing hair and cotton, and the like.
The dye compounds herein can be incorporated into dye compositions together with suitable carrier materials which are selected depending on what type of substrate is being dyed. Such carrier materials will be well known to those skilled in the art.
The dye compounds herein are particularly suitable for dyeing hair and thus in accordance with another aspect of the present invention there is provided a hair dye composition comprising a compound having the formula (I) as described herein together with a suitable carrier.
Any carrier materials suitable for use in hair dye compositions can be used herein.
The compositions of the present invention comprise from about 0.01% to about 10%, preferably from about 0.1% to about 5%, especially from about 0.1% to about 3% by weight of one or more reactive dye compounds having the formula (I). The types and levels of dyes used in each composition will depend upon the desired hair shade.
A preferred ingredient in the hair dye compositions herein is a reducing agent. Any reducing agents suitable for use in hair dye compositions may be used herein. Some typical reducing agents for use herein are listed in GB-A-951,021 and GB-A-589,956, incorporated herein by reference. Examples of suitable reducing agents include thioglycolic acid, thiolactic acid, dihydrolipoate, thioglycerol, mercaptopropionic acid, sodium bisulfite, ammonium bisulfide, zinc formaldehyde sulfoxylate, sodium formaldehyde 16
sulfoxylate, sodium metabisulfite, potassium borohydride and hydroquinone. Particularly suitable for use herein is thioglycolic acid.
Another preferred ingredient herein is a hydrogen bond breaker. Any hydrogen bond breaker suitable for use in a hair dye composition can be used herein. Suitable examples include lithium bromide, urea, resorcinol, catechol, dihydroxyacetone, formamide, potassium chloride and magnesium chloride. Particularly preferred for use herein is urea.
The coloring compositions of the present invention have a pH in the range of from about 7 to about 11 , preferably from about 9 to about 10.5. In order to maintain such a pH the compositions may contain one or more optional buffering agents.
Examples of alkaline buffering agents are ammonium hydroxide, ethylamine, dipropylamine, triethylamine and alkanediamines such as 1,3- diaminopropane, anhydrous alkaline alkanolamines such as, mono or di- ethanolamine, preferably those which are completely substituted on the amine group such as dimethylaminoethanol, polyalkylene poly amines such as diethylenetriamine or a heterocyclic amine such as moφholine as well as the hydroxides of alkali metals, such as sodium and potassium hydroxide, hydroxides of alkali earth metals, such as magnesium and calcium hydroxide, basic amino acids such as L-argenine, lysine, alanine, leucine, iso-leucine, oxy lysine and histidine and alkanolamines such as dimethylaminoethanol and aminoalkylpropanediol and mixtures thereof. Also suitable for use herein are compounds that form HCO3" by dissociation in water (hereinafter referred to as 'ion forming compounds'). Examples of suitable ion forming compounds are Na2C03, NaHCθ3, K Cθ3, (NH4) Cθ3, NH4HCO3, CaCθ3 and Ca(HC03) and mixtures thereof.
Preferred buffering agents for use herein are ammonium hydroxide, and sodium hydroxide.
The coloring compositions of the present invention may additionally include a thickener at a level of from about 0.05 % to about 20% , preferably from about 0.1 % to about 10% , more preferably from about 17
0.5 % to about 5 % by weight. Thickening agents suitable for use in the compositions herein are selected from oleic acid, cetyl alcohol, oleyl alcohol, sodium chloride, cetearyl alcohol, stearyl alcohol, synthetic thickeners such as Carbopol, Aculyn and Acrosyl and mixtures thereof. Preferred thickeners for use herein are Aculyn 22 (RTM), steareth-20 methacrylate copolymer; Aculyn 44 (RTM) ,polyurethane resin and Acusol 830 (RTM), acrylates copolymer which are available from Rohm and Haas, Philadelphia, PA, USA. Additional thickening agents suitable for use herein include sodium alginate or gum arabic, or cellulose derivatives, such as methyl cellulose or the sodium salt of carboxymethylcellulose or acrylic polymers.
Water is the preferred diluent for the compositions according to the present invention. However, the compositions according to the present invention may include one or more solvents as additional diluent materials. Generally, solvents suitable for use in the coloring compositions of the present invention are selected to be miscible with water and innocuous to the skin. Solvents suitable for use as additional diluents herein include C\- C2o mono- or polyhydric alcohols and their ethers, glycerine, with monohydric and dihydric alcohols and their ethers preferred. In these compounds, alcoholic residues containing 2 to 10 carbon atoms are preferred. Thus, a preferred group includes ethanol, isopropanol, n- propanol, butanol, propylene glycol, ethylene glycol monoethyl ether, and mixtures thereof. Water is the preferred principal diluent in the compositions according to the present invention. Principal diluent, as defined herein, means, that the level of water present is higher than the total level of any other diluents.
The diluent is present at a level preferably of from about 5% to about 99.98%, preferably from about 15% to about 99.5%, more preferably at least from about 30% to about 99%, and especially from about 50% to about 98% by weight of the compositions herein.
The compositions of the present invention can additionally contain a surfactant system. Suitable surfactants for inclusion in the compositions of the invention generally have a lipophilic chain length of from about 8 to 18
about 22 carbon atoms and can be selected from anionic, cationic, nonionic, amphoteric, zwitterionic surfactants and mixtures thereof.
(i) Anionic Surfactants
Anionic surfactants suitable for inclusion in the compositions of the invention include alkyl sulphates, ethoxylated alkyl sulphates, alkyl glyceryl ether sulfonates, methyl acyl taurates, fatty acyl glycinates, N-acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl ethoxysulphosuccinates, alpha-sulfonated fatty acids, their salts and/or their esters, alkyl ethoxy carboxylates, alkyl phosphate esters, ethoxylated alkyl phosphate esters, alkyl sulphates, acyl sarcosinates and fatty acid/protein condensates, and mixtures thereof. Alkyl and/or acyl chain lengths for these surfactants are Cι2-C22, preferably Cι2-Cιg more preferably Cι _Ci4.
(ii) Nonionic Surfactants
The compositions of the invention can also comprise water-soluble nonionic surfactant(s). Surfactants of this class include Cι2_Ci4 fatty acid mono-and diethanolamides, sucrose polyester surfactants and polyhydroxy fatty acid amide surfactants having the general formula below.
o Rq R8 — C — N — Z2
The preferred N-alkyl, N-alkoxy or N-aryloxy, polyhydroxy fatty acid amide surfactants according to the above formula are those in which Rg is C5-C31 hydrocarbyl, preferably C6-C19 hydrocarbyl, including straight- chain and branched chain alkyl and alkenyl, or mixtures thereof and R9 is typically hydrogen, Ci-Cg alkyl or hydroxyalkyl, preferably methyl, or a group of formula -R1-0-R2 wherein Rl is C2-C8 hydrocarbyl including straight-chain, branched-chain and cyclic (including aryl), and is preferably C2-C4 alkylene, R2 is Ci-Cs straight-chain, branched-chain and cyclic hydrocarbyl including aryl and oxyhydrocarbyl, and is preferably C1-C4 alkyl, especially methyl, or phenyl. Z2 is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 2 (in the case of glyceraldehyde) or at least 3 hydroxyls (in the case of other reducing sugars) 19
directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z2 preferably will be derived from a reducing sugar in a reductive amination reaction, most preferably Z2 is a glycityl moiety. Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde. As raw materials, high dextrose com syrup, high fructose com syrup, and high maltose com syrup can be utilised as well as the individual sugars listed above. These com syrups may yield a mix of sugar components for Z2. It should be understood that it is by no means intended to exclude other suitable raw materials. Z2 preferably will be selected from the group consisting of -CH2-(CHOH)n-CH2OH, -CH(CH2OH)-(CHOH)n_ι-CH2H, CH2(CHOH)2(CHOR')CHOH)-CH2OH, where n is an integer from 1 to 5, inclusive, and R is H or a cyclic mono- or polysaccharide, and alkoxylated derivatives thereof. As noted, most preferred are glycityls wherein n is 4, particularly -CH2-(CHOH)4-CH2OH.
The most preferred polyhydroxy fatty acid amide has the formula R8(CO)N(CH3)CH2(CHOH)4CH2OH wherein Rg is a C6-C19 straight chain alkyl or alkenyl group. In compounds of the above formula, Rg-CO- N< can be, for example, cocoamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmiamide, tallowamide, etc.
Suitable oil derived nonionic surfactants for use herein include water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted; ethoxylated mono and di-glycerides, polyethoxylated lanolins and ethoxylated butter derivatives. One preferred class of oil-derived nonionic surfactants for use herein have the general formula below:
o
RCOCH2CH(OH) CH2 (OCH2CH2)nOH
wherein n is from about 5 to about 00, preferably from about 20 to about 100, more preferably from about 30 to about 85, and wherein R comprises an aliphatic radical having on average from about 5 to 20 carbon atoms, preferably from about 7 to 18 carbon atoms. 20
Suitable ethoxylated oils and fats of this class include polyethyleneglycol derivatives of glyceryl cocoate, glyceryl caproate, glyceryl caprylate, glyceryl tallowate, glyceryl palmate, glyceryl stearate, glyceryl laurate, glyceryl oleate, glyceryl ricinoleate, and glyceryl fatty esters derived from triglycerides, such as palm oil, almond oil, and com oil, preferably glyceryl tallowate and glyceryl cocoate.
Preferred for use herein are polyethyleneglycol based polyethoxylated C9- C 15 fatty alcohol nonionic surfactants containing an average of from about 5 to about 50 ethyleneoxy moieties per mole of surfactant.
Suitable polyethylene glycol based polyethoxylated C9-C15 fatty alcohols suitable for use herein include C9-C11 Pareth-3, C9-C11 Pareth-4, C9-C11 Pareth-5, C9-C1 1 Pareth-6, C9-C11 Pareth-7, C9-C11 Pareth-8, C11-C15 Pareth-3, C11-C15 Pareth-4, C11-C15 Pareth-5, C11-C15 Pareth-6, Cπ- C15 Pareth-7, C11-C15 Pareth-8, C11-C15 Pareth-9, C11-C15 Pareth-10, C11-C15 Pareth-11, C11-C15 Pareth-12, C11-C15 Pareth-13 and C11-C15 Pareth-14. PEG 40 hydrogenated castor oil is commercially available under the tradename Cremophor (RTM) from BASF. PEG 7 glyceryl cocoate and PEG 20 glyceryl laurate are commercially available from Henkel under the tradenames Cetiol (RTM) HE and Lamacit (RTM) GML 20 respectively. C9-C11 Pareth-8 is commercially available from Shell Ltd under the tradename Dobanol (RTM) 91-8. Particulary preferred for use herein are polyethylene glycol ethers of ceteryl alcohol such as Ceteareth 25 which is available from BASF under the trade name Cremaphor A25.
Also suitable for use herein are nonionic surfactants derived from composite vegetable fats extracted from the fruit of the Shea Tree (Butyrospermum Karkii Kotschy) and derivatives thereof. Similarly, ethoxylated derivatives of Mango, Cocoa and Illipe butter may be used in compositions according to the invention. Although these are classified as ethoxylated nonionic surfactants it is understood that a certain proportion may remain as non- ethoxylated vegetable oil or fat. 21
Other suitable oil-derived nonionic surfactants include ethoxylated derivatives of almond oil, peanut oil, rice bran oil, wheat germ oil, linseed oil, jojoba oil, oil of apricot pits, walnuts, palm nuts, pistachio nuts, sesame seeds, rapeseed, cade oil, com oil, peach pit oil, poppyseed oil, pine oil, castor oil, soybean oil, avocado oil, safflower oil, coconut oil, hazelnut oil, olive oil, grapeseed oil, and sunflower seed oil.
(iii) Amphoteric Surfactants
Amphoteric surfactants suitable for use in the compositions of the invention include:
(a) imidazolinium surfactants of formula (VII)
C2 H4 OR2
CH2 Z
R -r N.
1ST
wherein Rj is Cγ-C22 alkyl or alkenyl, R2 is hydrogen or CH2Z, each Z is independently C02M or CH2C02M, and M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium; and/or ammonium derivatives of formula (VIII)
C2H4OH
R1CONH(CH2) 2N+CH2Z
R2
wherein Ri , R2 and Z are as defined above;
(b) aminoalkanoates of formula (IX)
RlNH(CH2)nC02M
iminodialkanoates of formula (X) 22
RlN[(CH2)mC02M]2
and iminopolyalkanoates of formula (XI)
Rl_[N(CH2)p]qN[CH2C02M]2
I I
CH2C02M
wherein n, m, p, and q are numbers from 1 to 4, and Rj and M are independently selected from the groups specified above; and
(c) mixtures thereof.
Suitable amphoteric surfactants of type (a) are marketed under the trade name Miranol and Empigen and are understood to comprise a complex mixture of species. Traditionally, the Miranols have been described as having the general formula (VII), although the CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure (VIII) while the 4th Edition indicates yet another structural isomer in which R2 is O-linked rather than N-linked. In practice, a complex mixture of cyclic and non- cyclic species is likely to exist and both definitions are given here for sake of completeness. Preferred for use herein, however, are the non-cyclic species.
Examples of suitable amphoteric surfactants of type (a) include compounds of formula XII and/or XIII in which Rj is CgHj7 (especially iso-capryl), C9H19 and CnH23 alkyl. Especially preferred are the compounds in which Rj is C9H19, Z is C02M and R2 is H; the compounds in which Rj is Cl lH23, Z is C02M and R is CH2C0 M; and the compounds in which Rl is Ci ιH23, Z is C02M and R is H.
In CTFA nomenclature, materials suitable for use in the present invention include cocoamphocarboxypropionate, cocoamphocarboxy propionic acid, and especially cocoamphoacetate and cocoamphodiacetate (otherwise 23
referred to as cocoamphocarboxyglycinate). Specific commercial products include those sold under the trade names of Ampholak 7TX (sodium carboxy methyl tallow polypropyl amine), Empigen CDL60 and CDR 60 (Albright & Wilson), Miranol H2M Cone. Miranol C2M Cone. N.P., Miranol C2M Cone. O.P., Miranol C2M SF, Miranol CM Special (Rhόne- Poulenc); Alkateric 2CIB (Alkaril Chemicals); Amphoterge W-2 (Lonza, Inc.); Monateric CDX-38, Monateric CSH-32 (Mona Industries); Rewoteric AM-2C (Rewo Chemical Group); and Schercotic MS-2 (Scher Chemicals). Further examples of amphoteric surfactants suitable for use herein include Octoxynol-1 (RTM), polyoxethylene (1) octylphenyl ether; Nonoxynol-4 (RTM), polyoxyethylene (4) nonylphenyl ether and Nonoxynol-9, polyoxyethylene (9) nonylphenyl ether.
It will be understood that a number of commercially-available amphoteric surfactants of this type are manufactured and sold in the form of electroneutral complexes with, for example, hydroxide counterions or with anionic sulfate or sulfonate surfactants, especially those of the sulfated Cg- Ci alcohol, Cg-Cig ethoxylated alcohol or Cg-Cjg acyl glyceride types. Note also that the concentrations and weight ratios of the amphoteric surfactants are based herein on the uncomplexed forms of the surfactants, any anionic surfactant counterions being considered as part of the overall anionic surfactant component content.
Examples of preferred amphoteric surfactants of type (b) include N-alkyl polytrimethylene poly-, carboxymethylamines sold under the trade names Ampholak X07 and Ampholak 7CX by Berol Nobel and also salts, especially the triethanolammonium salts and salts of N-lauryl-beta-amino propionic acid and N-lauryl-imino-dipropionic acid. Such materials are sold under the trade name Deriphat by Henkel and Mirataine by Rhδne-Poulenc.
(iv) Zwitterionic Surfactants
Water-soluble auxiliary zwitterionic surfactants suitable for inclusion in the compositions of the present invention include alkyl betaines of the formula R5R6R7N+ (CH2)nC02M and amido betaines of the formula (XII) below: 24
R6 R5CON (CH2 ) mN (CH2 ) nC02M
R7
wherein R5 is Ci l-C22 alkyl or alkenyl, Rβ and R7 are independently C\- C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium, and n, m are each numbers from 1 to 4. Preferred betaines include cocoamidopropyldimethylcarboxymethyl betaine, laurylamidopropyldimethylcarboxymethyl betaine and Tego betaine (RTM).
Water-soluble auxiliary sultaine surfactants suitable for inclusion in the compositions of the present invention include alkyl sultaines of the formula (XIII) below:
R2
R1CON(CH2)mN+(CH2)nCH(OH)CH2Sθ3-M+
R<:
wherein R\ is C7 to C22 alkyl or alkenyl, R2 and R3 are independently C\ to C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium and m and n are numbers from 1 to 4. Preferred for use herein is coco amido propylhydroxy sultaine.
Water-soluble auxiliary amine oxide surfactants suitable for inclusion in the compositions of the present invention include alkyl amine oxide R5R6R7NO and amido amine oxides of the formula (XIV) below: 25
R5CON(CH2)mN ► o
R
wherein R5 is Ci 1 to C22 alkyl or alkenyl, Rβ and R7 are independently Ci to C3 alkyl, M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium and m is a number from 1 to 4. Preferred amine oxides include cocoamidopropylamine oxide, lauryl dimethyl amine oxide and myristyl dimethyl amine oxide.
The hair coloring compositions of the present invention may, in addition to the essential oxidative hair coloring agents, optionally include non- oxidative and other dye materials. Optional non-oxidative and other dyes suitable for use in the hair coloring compositions and processes according to the present invention include both semi-permanent, temporary and other dyes. Non-oxidative dyes as defined herein include the so-called 'direct action dyes', metallic dyes, metal chelate dyes, fibre reactive dyes and other synthetic and natural dyes. Various types of non-oxidative dyes are detailed in: 'Chemical and Physical Behaviour of Human Hair' 3rd Ed. by Clarence Robbins (pp250-259); 'The Chemistry and Manufacture of Cosmetics' . Volume IV. 2nd Ed. Maison G. De Navarre at chapter 45 by G.S. Kass (pp841-920); 'cosmetics: Science and Technology' 2nd Ed., Vol. II Balsam Sagarin, Chapter 23 by F.E. Wall (pp 279-343); 'The Science of Hair Care' edited by C. Zviak, Chapter 7 (pp 235-261) and .'Hair Dyes', J.C. Johnson, Noyes Data Coφ., Park Ridge, U.S.A. (1973), (pp 3-91 and 113-139).
Direct action dyes which do not require an oxidative effect in order to develop the color, are also designated hair tints and have long been known in the art. They are usually applied to the hair in a base matrix which includes surfactant material. Direct action dyes include nitro dyes such as the derivatives of nitroamino benzene or nitroaminophenol; disperse dyes 26
such as nitroaryl amines, aminoanthraquinones or azo dyes; anthraquinone dyes, naphthoquinone dyes; basic dyes such as Acridine Orange C.I. 46005.
Nitrodyes are added to dyeing compositions to enhance colour of colorant and to add suitable aesthetic colour to the dye mixture prior to application.
Further examples of direct action dyes include the Arianor dyes basic brown 17, C.I.(color index) - no. 12,251; basic red 76, C.I. - 12,245; basic brown 16, C.I. - 12,250; basic yellow 57, C.I. - 12,719 and basic blue 99, C.I. - 56,059 and further direct action dyes such as acid yellow 1, C.I. - 10,316 (D&C yellow no.7); acid yellow 9, C.I. - 13,015; basic violet CI. - 45,170; disperse yellow 3, CI. - 11,855; basic yellow 57, CI. - 12,719; disperse yellow 1, C.I. - 10,345; basic violet 1, CI. - 42,535, basic violet 3, CI. - 42,555; greenish blue, CI. - 42090 (FD&C Blue no. l); yellowish red, C.I.-14700 (FD&C red no.4); yellow, CI.19140 (FD&C yellow no5); yellowish orange, CI.15985 (FD&C yellow no.6); bluish green, CI.42053 (FD&C green no.3); yellowish red, CI.16035 (FD&C red no.40); bluish green, C.I.61570 (D&C green no.3); orange, CI.45370 (D&C orange no.5); red, CI.15850 (D&C red no.6); bluish red, CI.15850(D&C red no.7); slight bluish red, CI.45380(D&C red no.22); bluish red, CI.45410(D&C red no.28); bluish red, C.I.73360(D&C red no.30); reddish puφle, CI.17200(D&C red no.33); dirty blue red, CI.15880(D&C red no.34); bright yellow red, CI.12085(D&C red no.36); bright orange, CI.15510(D&C orange no.4); greenish yellow, CI.47005(D&C yellow no.10); bluish green, CI.59040(D&C green no.8); bluish violet, CI.60730(Ext. D&C violet no.2); greenish yellow, C.I.10316(Ext. D&C yellow no.7);
Fibre reactive dyes include the Procion (RTM), Drimarene (RTM), Cibacron (RTM), Levafix (RTM) and Remazol (RTM) dyes available from ICI, Sandoz, Ciba-Geigy, Bayer and Hoechst respectively.
Natural dyes and vegetable dyes as defined herein include henna (Lawsonia alba), camomile (Matricaria chamomila or Anthemis nobilis), indigo, logwood and walnut hull extract. 27
Temporary hair dyes, or hair coloring rinses, are generally comprised of dye molecules which are too large to diffuse into the hair shaft and which act on the exterior of the hair. They are usually applied via a leave-in procedure in which the dye solution is allowed to dry on the hair surface. As such these dyes are typically less resistant to the effects of washing and cleaning the hair with surface active agents and are washed off of the hair with relative ease. Any temporary hair dye may suitably be used in the compositions of the invention and examples of preferred temporary hair dyes are illustrated below.
o V -CH3 OH NH;
<Q N=N rV SO3CH3
Figure imgf000029_0001
SO3CH3
II 1 O OH
Figure imgf000029_0004
Violet R
SO3CH3
SO H
Figure imgf000029_0002
Figure imgf000029_0003
Yellow Blue- Violet
Semi-permanent hair dyes are dyes which are generally smaller in size and effect to temporary hair rinses but are generally larger than permanent (oxidative) dyes. Typically, semi-permanent dyes act in a similar manner to oxidative dyes in that they have the potential to diffuse into the hair shaft. However, semi-permanent dyes are generally smaller in size than the aforementioned conjugated oxidative dye molecules and as such are pre-disposed to gradual diffusion out of the hair again. Simple hair washing and cleaning action will encourage this process and in general semi-permanent dyes are largely washed out of the hair after about 5 to 8 28
washes. Any semi-permanent dye system may be suitably used in the compositions of the present invention. Suitable semi-permanent dyes for use in the compositions of the present invention are HC Blue 2, HC Yellow 4, HC Red 3, Disperse Violet 4, Disperse Black 9, HC Blue 7, HC Yellow 2, Disperse Blue 3, Disperse violet 1 and mixtures thereof. Examples of semi-permanent dyes are illustrated below:
H. N.C2H4OH NH O NH-
Figure imgf000030_0001
NO-
Figure imgf000030_0002
N(C2H4OH)2
Figure imgf000030_0003
Blue Blue
OH
NH' N=N
Figure imgf000030_0006
N(C2H4OH)2
Figure imgf000030_0004
Figure imgf000030_0005
NH<
Yellow Yellow
HN ( 2H4OH NO;
A N02 " 1
V NH2 ^
NO; >
Figure imgf000030_0007
Red Red
Typical semi-permanent dye systems incoφorate mixtures of both large and small color molecules. As the size of the hair is not uniform from root to tip the small molecules will diffuse both at the root and tip, but will not 29
be retained within the tip, while the larger molecules will be generally only be able to diffuse into the ends of the hair. This combination of dye molecule size is used to help give consistent color results from the root to the tip of the hair both during the initial dyeing process and during subsequent washing.
A number of additional optional materials can be added to the coloring compositions herein described each at a level of from about 0.001%) to about 5%, preferably from about 0.01% to about 3%, more preferably from about 0.05% to about 2% by weight of composition. Such materials include proteins and polypeptides and derivatives thereof; water-soluble or solubilizable preservatives such as DMDM Hydantoin, Germall 115, methyl, ethyl, propyl and butyl esters of hydroxybenzoic acid, EDTA, Euxyl (RTM) K400, natural preservatives such as benzyl alcohol, potassium sorbate and bisabalol, benzoic acid, sodium benzoate and 2-phenoxyethanol; antioxidants such as sodium sulphite, hydroquinone, sodium bisulphite, sodium metabisulphite, sodium dithionite, erythrobic acid and other mercaptans; dye removers such as oxalic acid, sulphated castor oil, salicylic acid and sodium thiosulphate; H202 stabilisers such as tin compounds such as sodium stannate, stannic hydroxide and stannous octoate, acetanilide, phenacetin colloidal silica such as magnesium silicate, oxyquinoline sulphate, sodium phosphate, and tetrasodium pyrophosphate; and p- hydroxybenzoates; moisturising agents such as hyaluronic acid, chitin , and starch-grafted sodium polyacrylates such as Sanwet (RTM) IM-1000, IM- 1500 and IM-2500 available from Celanese Superabsorbent Materials, Portsmith, VA, USA and described in US-A-4,076,663 as well as methyl cellulose, starch, higher fatty alcohols, paraffin oils, fatty acids and the like; solvents ; anti-bacterial agents such as Oxeco (phenoxy isopropanol); low temperature phase modifiers such as ammonium ion sources (e.g. NH4 CI); viscosity control agents such as magnesium sulfate and other electrolytes; quaternary amine compounds such as distearyl-, dilauryl-, di-hydrogenated beef tallow-, dimethyl ammonium chloride, dicetyldiethyl ammoniumethylsulphate, ditallowdimethyl ammonium methylsulphate, disoya dimethyl ammonium chloride and dicoco dimethyl ammonium chloride; hair conditioning agents such as silicones, higher alcohols, cationic polymers and the like; enzyme stabilisers such as water soluble 30
sources of calcium or borate species; colouring agents; Ti02 and Ti02- coated mica; perfumes and perfume solubilizers; and zeolites such as Valfour BV400 and derivatives thereof and Ca2+/Mg2+ sequestrants such as polycarboxylates, amino polycarboxylates, polyphosphonates, amino polyphosphonates etc. and water softening agents such as sodium citrate.
31
The present invention is represented by the following non-limiting examples. In the examples, all concentrations are on a 100% active basis and all percentages are by weight unless otherwise stated and the abbreviations have the following designations.
Example 1 :
Synthesis of chlorothioglycolato quinoxaline dye
The chlorothioglycolato quinoxaline dye is prepared using the synthesis route as illustrated in Diagram 9.
D- HN-
Figure imgf000033_0001
thioglycolic acid
D- HN-
Figure imgf000033_0002
In the reaction scheme D is a chromophore and varies depending on which starting dye is used. In the present example, Levafix Goldgelb E-G commercially available from DyStar is used a starting material but this can be replaced by any suitable quinoxaline dye such as Levafix Brilliant Blue E-B, Levafix Brilliant Red E-RN and Levafix Brown E-2R.
Synthesis of monothioglycolatoquinoxaline dye 32
0.1 moles of pure Levafix Goldgelb E-G dye and 150ml distilled water are introduced into a flask. 0.1 moles of mercaptoacetic acid is then added dropwise to the reaction mixture with stirring. The total addition time is 1 hour. The pH of the reaction system is maintained at pH 9 and the temperature of the reaction system 30-35°C throughout the addition of mercaptoacetic acid.
The reaction is then allowed to proceed at 30-35°C and pH 9 (which is corrected using sodium carbonate and HC1) for 4-5 hours. The end-of- reaction point for this part of the synthesis is indicated by the pH of the reaction system remaining constant for more than 5 minutes. At this point, thioglycolato quinoxaline dye is obtained. Using 6N HC1, the pH of the system is then reduced to below pH2 to terminate the reaction. KCl (≤35% of the total solution) is then added to the reaction mixture in order to precipitate the dye. Filtration using Whatman filter paper follows. The precipitate is then washed with acetone for 4-5 times (≡50ml of acetone used each time to obtain the dye product.
Example 2
The compounds according to Example 1 can be included in a hair coloring composition.
Auburn Dye
Ingredients %
Urea 10.00
Cocamidopropyl Betaine 0.80
Red Dye from Eg 1 0.23
Yellow Dye from Eg 1 0.42
Blue Dye from Eg. 1 0.35
Thioglycolic Acid 80% 9.26
Triethanolamine 99% 50.74
Ammonium Hydroxide 29% 9.00
Figure imgf000034_0001
Water to 100

Claims

33Claims:
1. Reactive dye compound having the formula:
wherein D is a chromophore;
X and Y are independently selected from SR', CI, Br, or F, wherein R' is selected from: H, C1-C4 alkyl, (CH2)nCOOH, (CH2)nCONH , (CH2)nS03H, (CH2)nCOOM, (CH2)nP03H, (CH )nOH, (CH2)nSS03 " , (CH2)nNR" , (CH2)nN+R"3, PhSS03", PhS03H, PhP03H, PhNR" , PhN+R"3, -CN, SO3", (CH2)2CH(SH)R"(CH2)3COOH, -CH2CHOHCH2SH, and
N+H,
^
NH,
NH2
/
ΓûáH,C CH
\
COOH
HC COOH
CH2 COOH 34
:CH
COOHCOOH
CH3
C COOH
H I
OH
-C COOH
CH3
O
H C- ΓûáO- "(CH2)n-
CH- Γûá O- -CO- ΓÇó(CH2)n- ΓûáSH
CH2 O CO (CH2)n SH
H2C O- "(CH2)n-
CH O CO (CH2)n SR"
CH2 O CO (CH2)n SR" 35
O
H- -n(H2C)- -O- Γûá(CH2)n-
O
CH, -O- "(CH2)n-
CH, Γûáco- "(CH2)n- ΓûáSH
CH, "(CH2)n-
CH, -CO- "(CH2)n- ΓÇóSR"
-CH2CH2CH CH2CH2CH2COOH
SR"
-CH.CH NH 2.
n is an integer in the range of 1 to 4 wherein within the same molecule n is not necessarily the same integer; and M is a cation of alkaline earth metal, alkali metal, NH4+ or NR"3+.
L is a linking moiety;
Z is a nitrogen containing heterocycle selected from pyridone, quinoxaline or pyrimidone;
provided that at least one of X or Y is SR'
and esters and salts thereof. 36
2. A reactive dye compound according to Claim 1 wherein both X and Y are SR'.
3. A reactive dye compound according to any of Claims 1 to 3 wherein Z is quinoxaline.
4. A reactive dye compound according to any of Claims 1 to 3 wherein L is selected from NR, NRC=0, C(0)NR, NRS02 and -S02NR wherein R is H or Cj-C4 alkyl which can be substituted by halogen, preferably fluorine or chlorine, hydroxyl, cyano, C C4 alkoxy, C2-C5 alkoxycarbonyl, carboxyl, sulfamoyl, sulfo or sulfato.
5. A reactive dye compound according to Claim 4 wherein L is NR.
6. A reactive dye compounds according to Claim 5 wherein R is selected from C1-C4 alkyl or H, preferably H.
7. A reactive dye compounds according to Claims 8 wherein R' is selected from CH2COOH.
8. A dye composition suitable for dyeing hair comprising a reactive dye compound according to any of Claims 1 to 7 and a carrier.
9. Use of a reactive dye compound according to any of Claims 1 to 8 for dyeing hair.
10. Use of a reactive dye compound according to any of Claims 1 to 9 for dyeing textiles.
PCT/US1998/006561 1998-04-02 1998-04-02 Reactive dye compounds WO1999051688A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU68808/98A AU6880898A (en) 1998-04-02 1998-04-02 Reactive dye compounds
MXPA00009672A MXPA00009672A (en) 1998-04-02 1998-04-02 Reactive dye compounds.
PCT/US1998/006561 WO1999051688A1 (en) 1998-04-02 1998-04-02 Reactive dye compounds
EP99916314A EP1066347A1 (en) 1998-04-02 1999-04-01 Reactive dye compounds
US09/647,584 US6447554B1 (en) 1998-04-02 1999-04-01 Reactive dye compounds
AU34662/99A AU3466299A (en) 1998-04-02 1999-04-01 Reactive dye compounds
PCT/US1999/007291 WO1999051689A1 (en) 1998-04-02 1999-04-01 Reactive dye compounds
JP2000542405A JP2003534389A (en) 1998-04-02 1999-04-01 Reactive dye compound
BR9909366-9A BR9909366A (en) 1998-04-02 1999-04-01 Reactive dye compound, dye composition and use
CNB998068748A CN1174053C (en) 1998-04-02 1999-04-01 Reactive dye compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/006561 WO1999051688A1 (en) 1998-04-02 1998-04-02 Reactive dye compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/647,584 Continuation US6447554B1 (en) 1998-04-02 1999-04-01 Reactive dye compounds

Publications (1)

Publication Number Publication Date
WO1999051688A1 true WO1999051688A1 (en) 1999-10-14

Family

ID=22266752

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1998/006561 WO1999051688A1 (en) 1998-04-02 1998-04-02 Reactive dye compounds
PCT/US1999/007291 WO1999051689A1 (en) 1998-04-02 1999-04-01 Reactive dye compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US1999/007291 WO1999051689A1 (en) 1998-04-02 1999-04-01 Reactive dye compounds

Country Status (7)

Country Link
EP (1) EP1066347A1 (en)
JP (1) JP2003534389A (en)
CN (1) CN1174053C (en)
AU (2) AU6880898A (en)
BR (1) BR9909366A (en)
MX (1) MXPA00009672A (en)
WO (2) WO1999051688A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097754A2 (en) * 2000-06-17 2001-12-27 Henkel Kommanditgesellschaft Auf Aktien Agent for dyeing fibres containing keratin, containing at least one quinoxaline derivative
WO2001097765A1 (en) * 2000-06-21 2001-12-27 Henkel Kommanditgesellschaft Auf Aktien Agent for dyeing keratin containing fibers
WO2006087194A2 (en) * 2005-02-18 2006-08-24 L'oreal Dye composition comprising an oxonol type methine direct dye, process for implementation and uses thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716969B1 (en) 1999-05-19 2004-04-06 North Carolina State University Reactive dye compounds
US6713613B1 (en) 1999-05-19 2004-03-30 North Carolina State University Reactive dye compounds
US6736864B1 (en) 1999-10-01 2004-05-18 North Carolina State University Reactive dye compounds
US6869453B1 (en) 1999-10-01 2005-03-22 North Carolina State University Reactive dye compounds
US6723834B1 (en) 1999-10-01 2004-04-20 North Carolina State University Reactive dye compounds
US6790943B1 (en) 1999-10-01 2004-09-14 North Carolina State University Reactive dye compounds
FR2898903B1 (en) * 2006-03-24 2012-08-31 Oreal DYEING COMPOSITION COMPRISING A FLUORESCENT DISULFIDE DYE, METHOD OF LIGHTENING KERATINIC MATERIALS FROM THAT COLORANT
BRPI0906159B1 (en) * 2008-03-10 2018-06-05 Perachem Limited PROCESS TO REMOVE DYED HAIR COLOR
US8178080B2 (en) * 2008-04-30 2012-05-15 Avon Products, Inc. Hair care compositions
US9138599B2 (en) 2008-12-31 2015-09-22 L'oreal Waving compositions
US8926954B2 (en) 2009-02-09 2015-01-06 L'oreal S.A. Wave composition containing a bisulfite compound, a sulfate compound, and a phenol
US8187340B2 (en) * 2009-12-21 2012-05-29 Living Proof, Inc. Coloring agents and methods of use thereof
JP5987140B1 (en) * 2015-07-17 2016-09-07 株式会社繊維リソースいしかわ Method for immobilizing xanthophylls on fibers and fiber products thereof
JP6044734B1 (en) * 2016-04-28 2016-12-14 株式会社繊維リソースいしかわ Method for immobilizing astaxanthin on fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH54062A4 (en) * 1961-02-07 1964-06-30
BE644495A (en) * 1963-03-01 1964-08-28
FR1392152A (en) * 1963-04-11 1965-03-12 Bayer Ag Azaporphine dyes and process for making and applying them
CH482807A (en) * 1961-02-07 1969-12-15 Bayer Ag Process for the production of dyes
EP0356394A2 (en) * 1988-08-26 1990-02-28 Ciba-Geigy Ag Reactive dyes, their preparation and their use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH54062A4 (en) * 1961-02-07 1964-06-30
CH482807A (en) * 1961-02-07 1969-12-15 Bayer Ag Process for the production of dyes
BE644495A (en) * 1963-03-01 1964-08-28
FR1392152A (en) * 1963-04-11 1965-03-12 Bayer Ag Azaporphine dyes and process for making and applying them
EP0356394A2 (en) * 1988-08-26 1990-02-28 Ciba-Geigy Ag Reactive dyes, their preparation and their use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEHR F: "SYNTHESIS AND APPLICATION OF REACTIVE DYES WITH HETEROCYCLIC REACTIVE SYSTEMS", DYES AND PIGMENTS, vol. 14, no. 4, 1 January 1990 (1990-01-01), pages 239 - 263, XP000176926 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097754A2 (en) * 2000-06-17 2001-12-27 Henkel Kommanditgesellschaft Auf Aktien Agent for dyeing fibres containing keratin, containing at least one quinoxaline derivative
WO2001097754A3 (en) * 2000-06-17 2002-05-23 Henkel Kgaa Agent for dyeing fibres containing keratin, containing at least one quinoxaline derivative
WO2001097765A1 (en) * 2000-06-21 2001-12-27 Henkel Kommanditgesellschaft Auf Aktien Agent for dyeing keratin containing fibers
WO2006087194A2 (en) * 2005-02-18 2006-08-24 L'oreal Dye composition comprising an oxonol type methine direct dye, process for implementation and uses thereof
EP1719544A1 (en) * 2005-02-18 2006-11-08 L'oreal Dye composition comprising an oxonol type methine direct dye, process for implementation and uses thereof
WO2006087194A3 (en) * 2005-02-18 2006-12-21 Oreal Dye composition comprising an oxonol type methine direct dye, process for implementation and uses thereof

Also Published As

Publication number Publication date
EP1066347A1 (en) 2001-01-10
JP2003534389A (en) 2003-11-18
CN1174053C (en) 2004-11-03
MXPA00009672A (en) 2002-04-24
CN1303417A (en) 2001-07-11
AU6880898A (en) 1999-10-25
BR9909366A (en) 2000-12-26
AU3466299A (en) 1999-10-25
WO1999051689A1 (en) 1999-10-14

Similar Documents

Publication Publication Date Title
EP2260077B1 (en) Hair colouring composition and methods
ES2215284T3 (en) DIRECT DYE PROCEDURE IN TWO STAGES OF KERATIN FIBERS USING BASIC DIRECT COLORS.
WO1999051688A1 (en) Reactive dye compounds
US20020088062A1 (en) Hair colouring compositions and their use
US6398822B1 (en) Packaged hair coloring composition
WO1999051194A1 (en) Packaged hair colouring composition
US6447554B1 (en) Reactive dye compounds
US6783558B2 (en) Hair coloring method and composition
MXPA00009673A (en) Packaged hair colouring composition
EP1240892A2 (en) Hair colouring method and composition comprising a ring-fused heterocycle direct dyestuff
MX2009002595A (en) Hair dyeing process using a leave-in anionic coloured polyelectrolyte.
AU9732301A (en) Hair colouring compositions and their use
CZ398699A3 (en) Preparations for dyeing the hair and method of their use
AU9732401A (en) HIR colouring compositions and their use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/009672

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase