[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998036123A2 - Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor - Google Patents

Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor Download PDF

Info

Publication number
WO1998036123A2
WO1998036123A2 PCT/EP1998/000902 EP9800902W WO9836123A2 WO 1998036123 A2 WO1998036123 A2 WO 1998036123A2 EP 9800902 W EP9800902 W EP 9800902W WO 9836123 A2 WO9836123 A2 WO 9836123A2
Authority
WO
WIPO (PCT)
Prior art keywords
motor
winding
laundry treatment
stator
rotor
Prior art date
Application number
PCT/EP1998/000902
Other languages
English (en)
French (fr)
Other versions
WO1998036123A3 (de
Inventor
Peter Rode
Frank Horstmann
Helmut Scheibner
Original Assignee
Miele & Cie. Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7820597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998036123(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Miele & Cie. Gmbh & Co. filed Critical Miele & Cie. Gmbh & Co.
Priority to US09/367,378 priority Critical patent/US6341507B1/en
Priority to KR10-1999-7004953A priority patent/KR100436152B1/ko
Priority to DE59804137T priority patent/DE59804137D1/de
Priority to JP53537798A priority patent/JP2001511674A/ja
Priority to EP98906957A priority patent/EP0960231B2/de
Priority to AT98906957T priority patent/ATE217655T1/de
Publication of WO1998036123A2 publication Critical patent/WO1998036123A2/de
Publication of WO1998036123A3 publication Critical patent/WO1998036123A3/de

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors

Definitions

  • the invention relates to a laundry treatment device such as a washing machine, tumble dryer or washer dryer with a rotatably mounted drum with at least approximately a horizontal axis of rotation, and with a drive motor arranged on the drum shaft in the form of a permanent magnet-excited synchronous motor, the stator of which is provided with a winding which is supplied with current by a converter .
  • a washing machine is already known from DE 38 19 651 A1, in which the washing drum is driven directly without using the usual intermediate drive (drive belt, pulley). In these drives, the rotor forms the rotary motion transmission part to the drum of the washing machine.
  • DE 38 19 651 A1 proposes to use an asynchronous motor with a squirrel-cage rotor. Such an engine is characterized by a relatively quiet running, but it has the disadvantage that under the given conditions such. B. large air gap and multi-pole design with asynchronous machines good efficiencies are not possible. Especially with a frequently operated household appliance, however, there is a desire for an environmentally friendly, ie. H. energy-saving mode of operation.
  • a motor according to the preamble of claim 1 is known from DE 43 41 832 A1. There, a motor that drives the drum is described, which is designed as an inverter-fed synchronous motor. No further details are given on the type of engine.
  • Washing machines with directly driving motors are also known which are constructed as external rotor motors (DE 44 14 768 A1, DE 43 35 966 A1, EP 413 915 A1, EP 629 735 A2).
  • the rotor can be manufactured as a deep-drawn part, as a plastic bell or in a composite construction.
  • the solution is advantageous as a deep-drawn part, since the iron forms the magnetic yoke at the same time.
  • This design is, among other things, a typical version of fan motors.
  • collectorless DC motors are used.
  • Their stator winding can either be designed as a conventional three-phase winding with a winding step over several stator teeth or as a single-pole winding with winding around a stator tooth.
  • the current is reversed using power semiconductors. The individual are dependent on the rotor position
  • CONFIRMATION COPY Strands of the stator winding are energized by an inverter so that the field of excitation rotates with the motor.
  • this motor control only ever flows a current in two phases, which is used to generate moments, the third phase remaining de-energized.
  • the current flow in the individual strings is block or trapezoidal.
  • Hall sensors In electronically commutated direct current motors, Hall sensors, magnetic sensors or optical sensors are used to sense the rotor position.
  • the attachment of such sensors and the associated signal lines is associated with additional costs.
  • sensors and cables are prone to failure.
  • Another disadvantage is that operation with field weakening is not readily possible with such self-guided permanent magnet excited motors.
  • the large torque and speed spreads between washing and spinning operations required in washing machines normally cause large spreads in the motor current. Therefore switchable or tapped windings must be installed or the motor winding and the power semiconductors must be dimensioned for the largest possible current.
  • Synchronous motors with sinusoidal current and controlled via a converter are already known as servo drives. They are used where precise positioning is required.
  • the stator winding is designed as a classic three-phase winding, and the number of poles of the rotor and stator are identical.
  • the three-phase winding is characterized by common and known winding techniques, but has the disadvantage that the copper volume is particularly large in the winding heads, which increases the manufacturing costs and increases the depth of the motor. The latter would reduce the drum volume in washing machines with a given housing depth.
  • servo drives for controlled operation require very precise and expensive sensors to detect the rotor position
  • the invention thus presents the problem of optimizing the motor in terms of energy consumption, noise development and costs in a laundry treatment machine of the type mentioned at the outset. According to the invention, this problem is solved by a laundry treatment appliance with the features specified in claim 1. Advantageous refinements and developments of the invention result from the following subclaims.
  • the copper insert is less than with a classic three-phase winding, in particular the copper volume of the winding heads is significantly lower. This makes the entire drive smaller and more compact. Due to the lower copper volume, higher efficiency can be achieved with the same motor size due to lower copper losses.
  • a control device which adjusts the output voltage of the frequency converter by regulating such that a minimal sinusoidal current is established as a function of the load torque. Sinusoidal currents make the motor run very quietly and reduce the losses caused by current harmonics. This is particularly the case if the output voltage is set in the form of a sinus-weighted pulse width modulation. Furthermore, the torque-dependent current control ensures optimum efficiency at every load point.
  • the number of magnetic poles differs in a characteristic manner from the number of stator poles.
  • a ratio of rotor poles to stator poles of 2 to 3 or 4 to 3 is favorable. Only in these two cases does the vectorial addition of the voltages of a phase induced in the individual pole windings result in a maximum and an optimum in efficiency.
  • stator poles With a pole ratio of 4 to 3, the use of about 30 stator poles is favorable in order to cover the required speed range from 0 to 2000 1 / min.
  • the selected number of poles guarantees a safe start-up with externally controlled operation, a low torque ripple and a large speed spread.
  • control device for regulating the motor current is based on a mathematical model of the motor and if the current is applied to the winding strands without the use of rotary sensors. Since the motor current and the voltage on the motor can be recorded in the frequency converter itself, no sensors are required on the motor.
  • the mathematical model can be calibrated as required or continuously.
  • the motor-specific parameters such as winding resistance, motor inductance and constant of the induced voltage can be determined using the current sensors and the microprocessor control in the frequency converter and the mathematical model can be adapted based on the measured values.
  • the main advantage of the laundry treatment device designed according to the invention results from the possibility of dimensioning the number of turns of the stator windings in such a way that the amount of the induced voltage or the magnet wheel voltage for high speeds is greater than the maximum output voltage of the frequency converter.
  • Such a winding design enables a field weakening operation of the synchronous motor in the higher speed range.
  • the advantage of this winding design is a significant reduction in the motor current in washing mode. It can be chosen such that the motor can be operated with the same current in the washing and spinning mode. Because of the lower motor current, smaller and more cost-effective power semiconductors can therefore be used. In addition, the losses in the power semiconductors are reduced, which means that the overall efficiency of the motor and power electronics is higher than that of comparable ones
  • field weakening can also be used to achieve good efficiencies at high speeds even with multi-pole, permanently excited synchronous motors, since the magnetic loss as a result of the field weakening is reduced.
  • Collectorless DC motors can only be operated with extensive field weakening, since the position of the rotor position encoder would then have to be changed or the commutation times would have to be shifted computationally.
  • a field weakening operation is not known for servo drives for the aforementioned reasons.
  • FIG. 1 shows a section through a washing machine constructed according to the invention as
  • FIG. 4 shows a single sheet of a stator (16) of the drive motor (10)
  • Figure 5 shows a permanent magnetic rotor (15) in perspective
  • FIG. 6 is a block diagram of the structure of the controlled drive with three-phase
  • FIG. 7 is a block diagram of the structure of the sensorless controlled drive with three-phase synchronous motor
  • the washing machine shown in Figure 1 has a housing (1) in which a tub (2) is suspended on springs (4) so that it can move. To dampen the vibrations, it is supported against the housing base (1a) by friction dampers (5).
  • a drum (6) for holding laundry (not shown) is rotatably mounted in the tub (2) in a known manner.
  • Drum (6), tub (2) and the housing front wall (1a) have corresponding openings through which the laundry can be filled into the drum (6).
  • the openings can be opened through a front wall (1a) arranged door (7) are closed.
  • the door (7) is locked by an electromagnetic locking device (8).
  • the door lock is only shown schematically in the drawing.
  • an electromagnetic closure device (8) itself is sufficiently known from the above-mentioned DE-OS 16 10 247 or from DE 34 23 083 C2 and is therefore not described in more detail.
  • a control panel not shown
  • a rotary selector switch 9
  • the washing programs include a wash cycle and a subsequent rinse cycle, during which the laundry is spun several times.
  • the washing speed for household washing machines is between 20 and 60 min-1, the spin speed should be as high as possible, especially during the last spin at the end of the wash cycle. It is limited by the resilience of the vibrating tub (2) - suspension (3; 4) - drive motor (10) - drum (6) system, the limits are currently around 1600 min-1.
  • FIG. 2 shows a partial section through the rear area of a tub (2), a drum (6) and its drive motor (10).
  • a four-armed bearing cross (11) shown in FIG. 3 is provided on an edge attachment (2a), which is formed by the jacket (2b) of the tub (2) and an edge of its base (2c) ) attached.
  • a bearing hub (12) In the center of this bearing cross (11) is a bearing hub (12) into which two radial roller bearings (13a, b) are inserted. These roller bearings (13a, b) in turn serve for rotatably receiving a drive shaft (14) which is connected to the drum base (6a) in a rotationally fixed manner.
  • the rear end (14a) of the drive shaft (14) protrudes from the bearing hub (12).
  • a permanent magnet rotor (15) designed as an external rotor is attached to it and thus drives the drum (6) directly.
  • the stator (16) of the drive motor (10) is attached to the bearing cross (11).
  • FIG. 4 shows the sheet metal section of an individual stator sheet (17a).
  • the individual sheets (17a) have attachment eyes for attaching the stator laminated core (17) to the bearing cross, which are arranged on the inner circumferential surface and are provided with through holes (19). Fastening screws (not shown) are guided through these bores (19) and screwed into threaded bores (26) on the bearing cross (11).
  • the bores (26) are arranged concentrically with the bearing hub (12). Their free ends have contact surfaces (20) for an end face of the stator core (17).
  • the stator lamination stack (17) is centered by means of radially designed stiffening ribs (21).
  • the rotor (15) consists of a pot-shaped deep-drawn part or an aluminum injection molded part (15a) with a hollow cylinder section (15b), which contains an annular iron yoke (22) and the permanent magnets (23) attached to it as rotor poles (see also FIG. 5). Furthermore, the rotor (15) has a hub (24) which is positively connected to the free end (14a) of the drive shaft (14) by means of a screw bolt (25) and a serration (not shown) and thus non-rotatably.
  • the drive motor is designed as a permanent magnet three-phase synchronous motor.
  • a three-strand single-pole winding (tooth winding) is accommodated in the stator (16), the strands being connected in a star connection (see FIGS. 5, 6).
  • the windings of the teeth (27) of one strand are connected in series.
  • the drive motor is thus constructed as a modular permanent magnet machine.
  • the pole ratio of rotor poles (23) to stator poles (27) is 4 to 3 with a number of 30 stator poles (27).
  • Figure 5 shows a block diagram of the structure of the controlled drive with three-phase synchronous motor (10).
  • the speed of the motor (10) is a function of the program set with the rotary selection switch (9, see FIG. 1)) as a setpoint by the program control
  • the aforementioned variables are adjusted via the frequency converter (104).
  • the mains voltage is first converted into a DC voltage using a rectifier (105) and smoothed using an intermediate circuit capacitor (106).
  • the DC voltage is converted by a three-phase inverter (107) which is connected on the output side to the stator winding (18). Since the DC link voltage is constant, the voltage at the motor (10) is set using pulse width modulation. The effective value of the voltage can be changed over the pulse width.
  • a pulse pattern is selected by means of which sinusoidal currents form in the stator winding (18) of the motor (10). One speaks therefore of a sinus-weighted pulse width modulation. The sinusoidal currents cause the motor (10) to run very quietly and reduce the losses caused by current harmonics.
  • the inverter (107) is assigned a microprocessor control MC (108) in which a control R (109) and a valve control V ⁇ 1 0) are integrated.
  • the control signals for the transistors of the inverter (107) are calculated on the basis of the respective rotor position in order to set the optimal orientation and strength of the rotating field at all times and thus to ensure a sufficient torque on the rotor (15). Because of the sinusoidal current supply to the synchronous motor (10) and the torque-dependent current control, continuous and accurate rotor position detection is required. Resolvers or analog Hall generators (111) can be used for this. Hall sensors (111) should be preferred because of their low cost.
  • FIG. 6 shows a block diagram of the structure of a control system in which sensors for rotor position detection can be dispensed with.
  • the rotor position In the case of sensorless control of the synchronous motor (10) with continuous, in particular with sinusoidal current supply, the rotor position must be calculated by the microprocessor control MC (108). This is done on the basis of a mathematical model M (113) of the motor (10) stored in the control, in which the characteristic motor parameters such as winding resistance, motor inductance and induced voltage must be known.
  • the motor currents (I1 2) and the motor voltage U_ w are continuously measured vectorially, ie according to the magnitude and phase position, the currents being measured with the sensors and the voltage being known on the basis of the pulse pattern generated by the valve control V (110).
  • the respective operating point of the motor (10) can thus be determined precisely and the motor (10) can be operated with the minimum current required for the load torque. Since the motor current and the voltage on the motor (10) can be recorded in the frequency converter (104) itself, no further sensors on the motor (10) are required.
  • the parameters of the mathematical model M (113) are adjusted either as required or continuously. Such a calibration may be necessary if the motor-specific parameters (winding resistance, motor inductance and induced voltage) change during operation as the motor (10) heats up.
  • the winding resistance and induced voltage in particular are highly temperature-dependent variables.
  • Switch-on frequencies of 0.1 to 1 Hz are typical. In conjunction with the high number of poles of the motor (10), this guarantees a safe and smooth start even under load.
  • the number of turns of the stator winding (18) is dimensioned such that at higher speeds the magnet wheel voltage and the induced voltage of the synchronous motor (10) are higher than the output voltage or the intermediate circuit voltage of the frequency converter (104). This design enables operation with field weakening at higher speeds. The field weakening enables the motor (10) to operate at approximately the same motor current in two operating points with different speeds and different moments, such as washing and spinning operation.
  • field weakening is to be understood as a weakening of the field generated by the permanent magnets (23) of the rotor (15) in the air gap by a field generated in the stator (16) with a corresponding strength and phase position.
  • the magnet wheel voltage and motor current are not in phase, but the phase current leads the magnet wheel voltage.
  • the angle between the stator flooding and the rotor field becomes greater than 90 ° (electrical) when the field is weakened.
  • the current has a negative stator longitudinal current component which is opposite to the rotor field.
  • the phase current can be broken down vectorially into a force-forming and a field-forming component, the force-forming component being in phase with the magnet wheel voltage and the field-forming component being directed towards the rotor field and weakening it.
  • the torque-forming component of the current in the transverse axis and the stator longitudinal current component can be set separately from one another with the aid of the current sensors (103a, b), which detect the phase current in at least two phases.
  • the drive can also be operated in the field weakening area with minimal current and optimum efficiency. Sensing and regulating the motor current is advantageous in operation with field weakening, since if the longitudinal stator current component is too large, the magnets can be irreversibly weakened by the field generated by the stator flooding.
  • the rotor position or the position of the rotor field is calculated with the aid of the measured phase currents and with the mathematical model M (113) of the motor (10).
  • the rotor position can therefore only be determined as long as the motor (10) is energized.
  • the frequency and amplitude of the rotating field specified by the frequency converter (104) is continuously reduced until standstill is reached.
  • the outlet can also be unguided or de-energized.
  • the drive described further enables reversing without or with only a slight reversing pause.
  • washing machines which have a drive belt as an intermediate drive, this is not readily possible.
  • universal motors are usually used as the drive, which run out uncontrolled or braked. After the engine has been switched off, the laundry drum will coast down or swing out. To avoid increased wear and noise from the drive belt, wait until the washing drum has come to a standstill after switching it off and then on again until the motor is switched on again.
  • These downtimes for washing machines with drive belts are typically 2 to 4 seconds. The elimination of these hitherto usual and necessary breaks in reversing operation results in shorter washing times in the direct drive described here.
  • a further advantageous embodiment of a laundry treatment device has a device for evaluating the voltage induced by the rotor (15) during the runout.
  • the current speed can be inferred from this voltage.
  • a voltage is induced in the stator winding (18) of the motor (10).
  • the height and frequency are proportional to the rotor speed.
  • the induced voltage can be used to sense the drum rotation.
  • the induced voltage can be used to operate the lock.
  • a state-dependent, secure locking (8) of the door (7) is possible in a simple manner without the use of additional speed sensors.
  • Such an application is generally possible in washing machines with permanent magnet excited rotors and is therefore not limited to the embodiment according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Control Of Ac Motors In General (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Multiple Motors (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Die Erfindung betrifft ein Wäschebehandlungsgerät wie Waschmaschinen, Wäschetrockner oder Waschtrockner mit einer drehbar gelagerten Trommel (6) mit mindestens annähernd horizontaler Drehachse, und mit einem auf der Trommelwelle (6) angeordneten Antriebsmotor (10), in Form eines permanentmagneterregten Synchronmotors (10), dessen Stator (16) mit einer Wicklung (18) versehen ist, welche durch einen Umrichter bestromt wird. Um bei diesen den Motor in puncto Energieverbrauch, Geräuschentwicklung und Kosten zu optimieren, wird vorgeschlagen, daß die Wicklung (18) als Einzelpolwicklung ausgeführt ist, wobei die Anzahl der Statorpole (27) und der Magnetpole (23) ungleich ist, und daß als Umrichter ein Frequenzumrichter (104) verwendet wird, dessen Ausgangsspannung derart eingestellt ist, daß sich in allen Wicklungssträngen kontinuierliche Ströme ausbilden.

Description

Beschreibung
Wäschebehandlungsgerät mit einem auf der Trommelwelle angeordneten Antriebsmotor
Die Erfindung betrifft ein Wäschebehandlungsgeräte wie Waschmaschine, Wäschetrockner oder Waschtrockner mit einer drehbar gelagerten Trommel mit mindestens annähernd horizontaler Drehachse, und mit einem auf der Trommelwelle angeordneten Antriebsmotor in Form eines permanentmagneterregten Synchronmotors, dessen Stator mit einer Wicklung versehen ist, welche durch einen Umrichter bestromt wird.
Aus der DE 38 19 651 A1 ist bereits eine Waschmaschine bekannt, bei der ohne Verwendung des üblichen Zwischentriebs (Antriebsriemen, Riemenscheibe) die Wäschetrommel direkt angetrieben wird. Bei diesen Antrieben bildet der Rotor das Drehbewegungsübertragungsteil zur Trommel der Waschmaschine. In der DE 38 19 651 A1 wird vorgeschlagen, einen Asynchronmotor mit einem Käfigläufer zu verwenden. Ein solcher Motor zeichnet sich durch einen relativ geräuscharmen Lauf aus, er besitzt jedoch den Nachteil, daß unter den gegebenen Randbedingungen wie z. B. großer Luftspalt und hochpolige Ausführung bei Asynchronma- schinen gute Wirkungsgrade nicht möglich sind. Gerade bei einem häufig betriebenen Haushaltgerät besteht jedoch der Wunsch nach einer umweltfreundlichen, d. h. energiesparenden Betriebsweise.
Ein Motor gemäß Oberbegriff des Anspruchs 1 ist aus der DE 43 41 832 A1 bekannt. Dort ist ein die Trommel direkt antreibender Motor beschrieben, der als umrichtergespeister Synchron- motor ausgeführt ist. Weitere Angaben sind zur Motorart nicht gemacht.
Es sind weiterhin Waschmaschinen mit direkt antreibenden Motoren bekannt, die als Außenläufermotoren aufgebaut sind (DE 44 14 768 A1 , DE 43 35 966 A1 , EP 413 915 A1 , EP 629 735 A2). Der Rotor kann als Tiefziehteil, als Kunststoffglocke oder in einer Verbundbauweise hergestellt werden. Vorteilhaft ist die Lösung als Tiefziehteil, da hierbei das Eisen gleichzeitig den magnetischen Rückschluß bildet. Diese Bauform ist unter anderem auch eine typische Ausführung von Lüftermotoren.
Bei den oben genannten Direktantrieben für Waschmaschinen werden kollektorlose Gleichstrommotoren eingesetzt. Deren Statorwicklung kann entweder als herkömmliche Drehstromwicklung mit einem Wickelschritt über mehrere Statorzähne oder als Einzelpolwicklung mit Wicklung um einen Statorzahn ausgeführt sein. Die Stromwendung erfolgt bei diesem Motortyp mit Leistungshalbleitern. Dabei werden in Abhängigkeit von der Rotorlage die einzelnen
BESTATIGUNGSKOPIE Stränge der Statorwicklung von einem Wechselrichter bestromt, so daß das Erregerfeld mit dem Motor umläuft. In einer dreisträngigen Erregerwicklung fließt bei dieser Ansteuerung des Motors immer nur in zwei Strängen ein Strom, der zur Momentenbildung dient, wobei der dritte Strang unbestromt bleibt. Der zeitliche Stromverlauf in den einzelnen Strängen ist block- oder trapezförmig. Dadurch treten beim Ein- und Ausschalten der einzelnen Wicklungen hohe Stromänderungsgeschwindigkeiten auf, die Geräusche am Motor erzeugen. Bei Wäschebehandlungsgeräten, die zum Teil in Wohnräumen (Küche, Bad) aufgestellt werden, sind solche Geräusche unerwünscht.
Bei elektronisch kommutierten Gleichstrommotoren, werden zur Sensierung der Rotorlage Hallsensoren, Magnetgeber oder optische Sensoren verwendet. Das Anbringen solcher Sensoren und der dazugehörenden Signalleitungen ist mit zusätzlichen Kosten verbunden. Außerdem sind Sensoren und Leitungen störanfällig. Ein weiterer Nachteil besteht darin, daß bei solchen selbstgeführten permanentmagneterregten Motoren ein Betrieb mit Feldschwächung nicht ohne weiteres möglich ist. Die bei Waschmaschinen erforderliche große Momenten- und Drehzahlspreizungen zwischen Wasch- und Schleuderbetrieb bewirken normalerweise große Spreizungen des Motorstroms. Deshalb müssen umschaltbare oder angezapfte Wicklungen installiert werden oder die Motorwicklung und die Leistungshalbleiter müssen für den größtmöglichen Strom dimensioniert werden.
Über einen Umrichter sinusförmig bestromte und geregelte Synchronmotoren sind bereits als Servoantriebe bekannt. Sie werden dort eingesetzt, wo ein genaues Positionieren erforderlich ist. Bei bekannten Servoantrieben ist die Statorwicklung als klassische Drehstromwicklung ausgeführt, und die Polzahl von Rotor und Stator sind identisch. Die Drehstromwicklung zeichnet sich zwar durch gängige und bekannte Wickeltechniken aus, besitzt jedoch den Nachteil, daß das Kupfervolumen insbesondere in den Wickelköpfen sehr groß ist, was die Fertigunskosten erhöht und die Bautiefe des Motors vergrößert. Letzteres würde bei Waschmaschinen mit vorgegebener Gehäusetiefe das Trommelvolumen verringern. Außerdem benötigen Servoantriebe für einen geregelten Betrieb sehr genaue und teure Sensoren zur Erkennung der Rotorlage
Ein weiterer Nachteil aller vorgenannten permanentmagneterregten Motoren besteht darin, daß sie keine Feldschwächung kennen, da der magnetische Fluß des Motors im wesentlichen vom Feld der Dauermagnete abhängt und somit konstant ist. Für Waschmaschinenantriebe sind solche Motoren deshalb eher ungeeignet, da eine große Momenten- und Drehzahlspreizung zwischen dem Waschbetrieb und dem Schleuderbetrieb eine große Spreizung des Motorstroms zur Folge hätte. Die Motorwicklung und die Leistungshalbleiter des Frequenzumrichters müßten deshalb für den größten Strom dimensioniert werden und wären sehr teuer. Alternativ dazu könnte eine Wicklungsanzapfung verwendet werden, wobei jedoch zusätzliche Leitungen vom Motor zur Elektronik geführt werden müssen. Außerdem werden teure Umschaltrelais notwendig.
Der Erfindung stellt sich somit das Problem, bei einer Wäschebehandlungsmaschine der eingangs genannten Art den Motor in puncto Energieverbrauch, Geräuschentwicklung und Kosten zu optimieren. Erfindungsgemäß wird dieses Problem durch ein Wäschebehandlungsgerät mit den im Patentanspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den nachfolgenden Unteransprüchen.
Im Gegensatz zu bisher bekannten Direktantrieben für Waschmaschinen mit kollektorlosen Gleichstrommotoren werden bei dem hier beschriebenen Antriebskonzept alle drei Wicklungsstränge der dreiphasigen Erregerwicklung kontinuierlich bestromt, wobei die Frequenz des Erregerfeldes von der Elektronik vorgegeben wird. Der Motor wird in diesem Fall als fremdgeführter Synchronmotor betrieben. Dieses Verfahren garantiert die geringste Geräuschent- Wicklung in Verbindung mit einem permanentmagneterregten Synchronmotor.
Durch die Verwendung der Einzelpolwicklung ist der Kupfereinsatz geringer als bei einer klassischen Drehstromwicklung, insbesondere das Kupfervolumen der Wickelköpfe ist deutlich geringer. Hierdurch wird der gesamte Antrieb kleiner und kompakter. Durch das geringere Kupfervolumen können bei gleicher Motorgröße aufgrund geringerer Kupferverluste höhere Wirkungsgrade erreicht werden.
Es ist vorteilhaft, den Rotor als Außenläufer auszubilden, hierdurch lassen sich die kompaktesten Bauformen erzielen, weil der drehmomentbildende Luftspaltradius nahe am Außenradius liegt.
Es ist weiterhin vorteilhaft, eine Steuervorrichtung einzusetzen, welche die Ausgangsspannung des Frequenzumrichters durch eine Regelung derart einstellt, daß sich in Abhängigkeit vom Lastmoment ein minimaler sinusförmiger Strom einstellt. Sinusförmige Ströme bewirken einen sehr leisen Motorlauf und eine Reduzierung der durch Stromoberwellen hervorgerufenen Verluste. Dies ist insbesondere der Fall, wenn die Ausgangsspannung in Form einer sinusbewerteten Pulsweitenmodulation eingestellt ist. Weiterhin gewährleistet die momentenabhängige Stromregelung in jedem Lastpunkt einen optimalen Wirkungsgrad.
Bei Synchronmotoren mit Einzelpolwicklung weicht die Anzahl der Magnetpole in charakteristischer Weise von der Zahl der Statorpole ab. Bei einer dreisträngigen Auslegung und einer kontinuierlichen Bestromung bzw. einer Drehdurchflutung der Statorwicklung ist ein Verhältnis von Rotorpolen zu Statorpolen von 2 zu 3 oder von 4 zu 3 günstig. Nur in diesen beiden Fällen ergibt die vektorielle Addition der in den einzelnen Polwicklungen induzierten Spannungen eines Stranges ein Maximum und ein Optimum an Wirkungsgrad.
Bei einem Polverhältnis von 4 zu 3 ist die Verwendung von etwa 30 Statorpolen günstig, um den geforderten Drehzahlbereich von 0 bis 2000 1/min zu überdecken. Die gewählte Polzahl gewährleistet einen sicheren Anlauf bei fremdgeführten Betrieb, eine geringe Momentenwellig- keit und eine große Drehzahlspreizung.
Daneben ist es vorteilhaft, wenn der Steuervorrichtung zur Regelung des Motorstroms ein mathematisches Modell des Motors zugrundeliegt und wenn die Bestromung der Wicklungs- sträne unter Verzicht auf Rotoriagegeber erfolgt. Da die Erfassung des Motorstroms und der Spannung am Motor im Frequenzumrichter selbst erfolgen kann, sind keine Sensoren am Motor erforderlich.
In einer vorteilhaften Ausführung einer sensorlosen Regelung kann bei Bedarf oder kontinu- ierlich eine Kalibrierung des mathematischen Modells erfolgen. Die motorspezifischen Parameter wie Wicklungswiderstand, Motorinduktivität und Konstante der induzierten Spannung können mithilfe der ohnehin vorhandenen Stromsensoren und der Mikroprozessor-Steuerung im Frequenzumrichter ermittelt und das mathematischen Modell anhand der gemessenen Werte angepaßt werden.
Der wesentliche Vorteil des erfindungsgemäß ausgebildeten Wäschebehandlungsgeräts ergibt sich aus der Möglichkeit, die Windungszahl der Statorwicklungen derart zu dimensionieren, daß der Betrag der induzierten Spannung bzw. der Polradspannung für hohe Drehzahlen größer als die maximale Ausgangsspannung des Frequenzumrichters ist. Eine solche Wicklungsauslegung ermöglicht einen Feldschwächungsbetrieb des Synchronmotors im höheren Drehzahl- bereich. Der Vorteil dieser Wicklungsauslegung ist eine deutliche Reduzierung des Motorstromes im Waschbetrieb. Sie kann derart gewählt sein, daß der Motor im Wasch- und Schleuderbetrieb mit dem gleichen Strom betrieben werden kann. Aufgrund des geringeren Motorstroms können deswegen kleinere und kostengünstigere Leistungshalbleiter eingesetzt werden. Außerdem werden die Verluste in den Leistungshalbleitern reduziert, wodurch der Gesamtwirkungsgrad von Motor und Leistungselektronik höher ist als bei vergleichbaren
Antrieben mit gleichem Kupfereinsatz. Um eine Feldschwächung auch bei Verwendung einer Regelung mit .Rotorlagegebern zu ermöglichen, ist es vorteilhaft, auf deren Auswertung bei höheren Drehzahlen zu verzichten. Bei höheren Drehzahlen treten bei Waschmaschinen keine großen oder kurzzeitigen Lastschwankungen auf, so daß eine Regelung des Motorstromes nicht unbedingt erfoderlich ist. Der Motor wird in diesem Fall fremdgeführt betrieben, wobei Spannung und Frequenz vom Umrichter ohne Rücksicht auf die Lage des Rotorfeldes vorgegeben werden. Der Motorstrom stellt sich dann in Abhängigkeit vom Lastmoment in Grenzen von selbst ein. Um eine Überlastung und ein außer Tritt fallen des Motors zu verhindern, reicht es aus die Höhe des Motostromes in Abhängigkeit von der Drehfeldfrequenz zu überwachen.
Weiterhin lassen sich durch eine Feldschwächung auch mit hochpoligen permanenterregten Synchronmotoren gute Wirkungsgrade bei hohen Drehzahlen erzielen, da die Ummagneti- sierungsverluste in Folge der Feldschwächung verringert werden.
Kollektorlose Gleichstrommmotoren können nur sehr aufwendig mit Feldschwächung betrieben werden, da dann die Position der Rotorlagegeber verändert oder die Kommutierungszeitpunkte rechnerisch verschoben werden müßten. Bei Servoantrieben ist ein Feldschwächebetrieb aus den vorgenannten Gründen nicht bekannt.
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Es zeigt:
Figur 1 einen Schnitt durch eine erfindungsgemäß aufgebaute Waschmaschine als
Schemaskizze Figur 2 einen Teilschnitt durch den hinteren Bereich eines Laugenbehälters (2), einer
Trommel (6) und deren Antriebsmotor (10) Figur 3 das Lagerkreuz (11 ) einer Waschmaschine in perspektivischer Darstellung
Figur 4 ein Einzelblech eines Stators (16) des Antriebsmotors (10)
Figur 5 einen permanentmagnetischen Rotor (15) in perspektivischer Darstellung
Figur 6 ein Blockschaltbild der Struktur des geregelten Antriebs mit Drehstrom-
Synchronmotor und Rotorlagegebern Figur 7 ein Blockschaltbild der Struktur des sensorlos geregelten Antriebs mit Drehstrom-Synchronmotor
Die in Figur 1 dargestellte Waschmaschine besitzt ein Gehäuse (1 ), in dem ein Laugenbehälter (2) an Federn (4) schwingbeweglich aufgehängt ist. Zur Dämpfung der Schwingungen wird er gegenüber dem Gehäuseboden (1a) durch Reibungsdämpfer (5) abgestützt. Im Lau- genbehälter (2) ist in bekannter Weise eine Trommel (6) zur Aufnahme von Waschgut (nicht dargestellt) drehbar gelagert. Trommel (6), Laugenbehälter (2) und die Gehäusevorderwand (1a) besitzen korrespondierende Öffnungen, durch die das Waschgut in die Trommel (6) eingefüllt werden kann. Die Öffnungen können durch eine an der Gehäusevorderwand (1a) angeordnete Tür (7) verschlossen werden. Die Verriegelung der Tür (7) erfolgt durch eine elektromagnetischen Verschlußeinrichtung (8). Die Türverriegelung ist in der Zeichnung lediglich schematisch dargestellt. Der Aufbau und die Funktionsweise einer elektromagnetischen Verschlußeinrichtung (8) selbst ist aus der o. g. DE-OS 16 10 247 oder aus der DE 34 23 083 C2 hinreichend bekannt und wird deshalb nicht näher beschrieben. Im oberen Teil der Gehäusevorderwand (1a) ist ein Bedienfeld (nicht dargestellt) angeordnet, in dem ein Drehwahlschalter (9) zur Anwahl von Waschprogrammen dient. Die Waschprogramme beinhalten bekanntermaßen einen Waschgang und einen sich daran anschließenden Spülgang, in dessen Verlauf die Wäsche mehrmals geschleudert wird. Die Waschdrehzahl beträgt bei Haushaltswaschmaschinen zwischen 20 und 60 min-1 , die Schleuderdrehzahl sollte insbesondere beim letzten Schleudern zum Ende des Spülgangs möglichst hoch sein. Sie wird durch die Belastbarkeit des schwingenden Systems Laugenbehälter (2) - Aufhängung (3; 4) - Antriebsmotor (10) -Trommel (6) nach oben begrenzt, die Grenzen liegen derzeit etwa bei 1600 min-1.
Figur 2 zeigt einen Teilschnitt durch den hinteren Bereich eines Laugenbehälters (2), einer Trommel (6) und deren Antriebsmotor (10). Zur drehbaren Lagerung der Trommel (6) ist an einem Randansatz (2a), der durch den Mantel (2b) des Laugenbehälters (2) und eine Umkan- tung seines Bodens (2c) gebildet wird, ein in Figur 3 dargestelltes vierarmiges Lagerkreuz (11) befestigt. Im Zentrum dieses Lagerkreuzes (11) befindet sich eine Lagernabe (12), in die zwei Radialwälzlager (13a, b) eingesetzt sind. Diese Wälzlager (13a,b) wiederum dienen zur drehbaren Aufnahme einer Antriebswelle (14), welche drehfest mit dem Trommelboden (6a) verbunden ist. Das hintere Ende (14a) der Antriebswelle (14) ragt aus der Lagernabe (12) heraus. An ihm ist ein als Außenläufer ausgebildeter permantentmagnetischer Rotor (15) befestigt und treibt die Trommel (6) somit direkt an. Der Stator (16) des Antriebsmotors (10) ist am Lager- kreuz (11 ) befestigt.
Das Statorblechpaket (17) mit den Statorwicklungen (18) ist im wesentlichen ringförmig ausgebildet. Figur 4 zeigt den Blechschnitt eines einzelnen Statorblechs (17a). Zur Befestigung des Statorblechpakets (17) am Lagerkreuz besitzt die einzelnen Bleche (17a) Befestigungsaugen, die an der inneren Umfangsfläche angeordnet und mit Durchgangsbohrungen (19) versehen sind. Durch diese Bohrungen (19) werden Befestigungsschrauben (nicht dargestellt) geführt und in Gewindebohrungen (26) am Lagerkreuz (11 ) geschraubt. Die Bohrungen (26) sind konzentrisch zur Lagernabe (12) angeordnet. Ihre freien Enden weisen Auflageflächen (20) für eine Stirnfläche des Statorblechpaketes (17) auf. Die Zentrierung des Statorblechpaketes (17) erfolgt über radial ausgebildete Versteifungsrippen (21 ). Der Rotor (15) besteht aus einem topfförmigen Tiefziehteil oder einem Aluminiumspritzgußteil (15a) mit einem Hohlzylinderabschnitt (15b), welcher einen ringförmigen Eisenrückschluß (22) und die darauf befestigten Permanentmagnete (23) als Rotorpole enthält (s. a. Figur 5). Weiterhin weist der Rotor (15) eine Nabe (24) auf, die mit dem freien Ende (14a) der Antriebswelle (14) durch einen Schraubenbolzen (25) und eine Kerbverzahnung (nicht dargestellt) formschlüssig und somit drehfest verbunden ist.
Der Antriebsmotor ist als permanentmagneterregter Drehstrom-Synchronmotor ausgeführt. Im Stator (16) ist eine dreisträngige Einzelpolwicklung (Zahnbewicklung) untergebracht, wobei die Stränge in einer Sternschaltung (s. Fig. 5, 6) verbunden sind. Die Wicklungen der Zähne (27) eines Stranges sind in Reihe geschaltet. Der Antriebsmotor ist somit als modulare Dauermagnetmaschine aufgebaut. Das Polverhältnis von Rotorpolen (23) zu Statorpolen (27) beträgt 4 zu 3 bei einer Anzahl von 30 Statorpolen (27).
Figur 5 zeigt als Blockschaltbild die Struktur des geregelten Antriebs mit Drehstrom-Synchronmotor (10). Die Drehzahl des Motors (10) wird in Abhängigkeit von dem mit dem Drehwahl- Schalter (9, s. Fig. 1)) eingestellten Programm als Sollwert von der Programmsteuerung
ST (101 ) der Waschmaschine vorgegeben. Zur Beeinflussung der Motordrehzahl muß sowohl die Frequenz von Spannung und Strom als auch die Höhe der Spannung in den Statorwicklungen (18) verstellt werden. Zur Regelung des Motors (10) wird zusätzlich der Motorstrom in Abhängigkeit vom Lastmoment eingestellt. Hierzu werden mit Stromsensoren (103a, b) min- destens zwei Strangströme und l2 gemessen.
Die Verstellung der vorgenannten Größen erfolgt über den Frequenzumrichter (104). Hierbei wird zunächst die Netzspannung über einen Gleichrichter (105) in eine Gleichspannung umgewandelt und über einen Zwischenkreiskondensator (106) geglättet. Die Gleichspannung wird von einem dreiphasigen Wechselrichter (107) umgewandelt, der ausgangsseitig an die Stator- Wicklung (18) angeschlossen ist. Da die Zwischenkreisspannung konstant ist, wird die Spannung am Motor (10) über eine Pulsweiten-modulation eingestellt. Der Effektivwert der Spannung läßt sich dabei über die Pulsbreite verändern. Es wird ein Pulsmuster gewählt, durch das sich in der Statorwicklung (18) des Motors (10) sinusförmige Ströme ausbilden. Man spricht deshalb von einer sinusbewerteten Pulsweitenmodulation. Die sinusförmigen Ströme bewirken einen sehr leisen Lauf des Motors (10) und eine Reduzierung der durch Stromoberwellen hervorgerufenen Verluste. Zur Beeinflussung der Pulsmuster ist dem Wechselrichter (107) eine Mikroprozessor-Steuerung MC (108) zugeordnet, in der eine Regelung R (109) und eine Ventilansteuerung V {1 0) integriert ist. Die Berechnung der Steuersignale für die Transistoren des Wechselrichters (107) erfolgt auf der Grundlage der jeweiligen Rotorlage, um jederzeit die optimale Ausrichtung und Stärke des Drehfeldes einzustellen und damit ein ausreichendes Moment am Rotor (15) zu gewährleisten. Wegen der sinusförmigen Bestromung des Synchronmotors (10) und der momentenab- hängigen Stromregelung ist eine kontinuierliche und genaue Rotorlageerkennung erforderlich. Hierzu können Resolver oder analoge Hallgeneratoren (111) eingesetzt werden. Hallsensoren (111 ) ist wegen ihrer Preisgünstigkeit der Vorzug zu geben. In beiden Fällen handelt es sich um absolute Meßsysteme, die bereits unmittelbar nach dem Einschalten eine genaue Information über die absolute Lage des Rotors (15) in Bezug auf den Stator (16) liefern. Bei Verwendung von zwei analogen Hallgeneratoren (111 ) werden diese mit Hilfe der Rotormagneten zwei gegeneinander um 90° phasenverschobene Signale erzeugen. Mit diesen beiden Signalen läßt sich mit Hilfe der mathematischen Funktion ß= arctan(a/b) der Rotorwinkel bestimmen.
Bei Einsatz von analogen Hallgeneratoren (111) ist deren Selbstkalibrierung sinnvoll, da aufgrund von Exemplarstreuungen wie z. B. Empfindlichkeit, Offset, Temperaturdrift usw. die analogen Ausgangssignale verschiedener Hallgeneratoren (111) in einem konstanten magnetischen Feld nicht unbedingt identisch sind. Für eine genaue Rotorlageerkennung muß daher eine Korrektur der Ausgangssignale erfolgen. Ziel dieser Korrektur ist es, daß die eingesetzten Hallgeneratoren (111) in einem konstanten magnetischen Feld die gleichen Ausgangssignale liefern. Eine solche Korrektur kann dadurch erfolgen, daß in einer in der Mikroprozessor-Steuerung MC (108) integrierten Korrekturvorrichtung K (112) während einer Rotorumdrehung die analogen Ausgangssignale beider Hallgeneratoren (111) gespeichert werden und anschließend aus den gespeicherten Werten der Mittelwert sowie Maximum und Minimum ermittelt werden. Ist der Mittelwert bekannt, so läßt sich ein Offset korrigieren, während anhand von Maximum und Minimum die Empfindlichkeit und die Temperaturdrift korrigiert werden können. Ein Temperatureinfluß auf die Remanenzinduktion der Magnete (23) braucht nicht berücksichtig zu werden, da in diesem Fall die Ausgangssignale beider Hallgeneratoren (111) in gleicher Weise und in gleicher Größe verändert werden. Wird der Rotorwinkel mit Hilfe der mathematischen Funktion ß = arctan(a/b) berechnet, so bleibt der Quotient (a/b) bei Änderung des Magnetfeldes in Abhängigkeit von der
Temperatur konstant. Figur 6 zeigt ein Blockschaltbild der Struktur einer Regelung bei der auf Sensoren zur Rotorlageerkennung verzichtet werden kann. Bei einer sensorlosen Regelung des Synchronmotors (10) mit kontinuierlicher, insbesondere mit sinusförmiger Bestromung muß die Rotorpostion durch die Mikroprozessor-Steuerung MC (108) berechnet werden. Dies erfolgt auf der Grundlage eines in der Steuerung abgelegten mathematischen Modells M (113) des Motors (10), bei dem die charakteristischen Motorparameter wie Wicklungswiderstand, Motorinduktivität und induzierte Spannung bekannt sein müssen. Die Motorströme (I1 2) und die Motorspannung U_w werden kontinuierlich vektoriell, d. h. nach Betrag und Phasenlage erfaßt, wobei die Ströme mit den Sensoren gemessen werden und die Spannung aufgrund des von der Ventilansteuerung V (110) erzeugten Pulsmusters bekannt ist. Somit läßt sich der jeweilige Betriebspunkt des Motors (10) genau bestimmen und der Motor (10) kann mit dem für das Lastmoment erforderlichen minimalen Strom betrieben werden. Da die Erfassung des Motorstroms und der Spannung am Motor (10) im Frequenzumrichter (104) selbst erfolgen kann, sind keine weiteren Sensoren am Motor (10) erforderlich.
In einer vorteilhaften Ausführung der sensorlosen Regelung erfolgt entweder bedarfsweise oder kontinuierlich eine Anpassung der Parameter des mathematischen Modells M (113). Eine solche Kalibrierung kann erforderlich werden, wenn sich die motorspezifischen Parameter (Wicklungswiderstand, Motorinduktivität und induzierte Spannung) durch Erwärmung des Motors (10) im Betrieb verändern. Insbesondere der Wicklungswiderstand und induzierte Spannung sind stark temperaturabhängige Größen. Durch eine kurzzeitige Bestromung der Statorwicklung (18) durch den Frequenzumrichter (104) mit Gleichstrom, vorteilhafterweise während der Reversierpausen im Waschbetrieb, läßt sich sowohl der augenblickliche Wicklungswiderstand (und damit auch die Temperatur des Motors) als auch die Motorinduktivität ermitteln, wenn die Spannung am Motor (10) bekannt ist und der Strom über die Senso- ren (103a, b) im Frequenzumrichter (104) gemessen wird.
Der Wicklungswiderstand R ergibt sich aus Beziehung R = U/l und die Induktivität L aus der Zeitkonstanten T = L/R, wobei der Strom kontinuierlich erfasst werden muß, um die Zeitkonstante T zu ermitteln.
Da die Maschine als fremdgeführter Synchronmotor (10) betrieben wird, ist es wichtig, daß die Ausgangsfrequenz des Frequenzumrichters (104) beim Anlauf des Motors (10) niedrig ist.
Typisch sind Einschalt-Frequenzen von 0,1 bis 1 Hz. Dies gewährleistet in Verbindung mit der hohen Polzahl des Motors (10) auch unter Last einen sicheren und ruckfreien Anlauf. Die Windungszahl der Statorwicklung (18) ist derart bemessen, daß bei höheren Drehzahlen die Polradspannung und die induzierte Spannung des Synchronmotors (10) höher sind als die Ausgangsspannung oder die Zwischenkreisspannung des Frequenzumrichters (104). Diese Auslegung ermöglicht einen Betrieb mit Feldschwächung bei höheren Drehzahlen. Die Feld- Schwächung ermöglicht den Motor (10) in zwei Betriebspunkten mit unterschiedlichen Drehzahlen und unterschiedlichen Momenten, wie z.B. Wasch- und Schleuderbetrieb, mit etwa dem gleichem Motorstrom zu betreiben.
Unter Feldschwächung ist in diesem Fall eine Schwächung des von den Permanentmagneten (23) des Rotors (15) erzeugten Feldes im Luftspalt durch ein im Stator (16) erzeugtes Feld mit entsprechender Stärke und Phasenlage zu verstehen. Bei Feldschwächung sind Polradspannung und Motorstrom nicht in Phase, sondern der Strangstrom eilt der Polradspannung voraus. Der Winkel zwischen Ständerdurchflutung und Läuferfeld wird bei Feldschwächung größer als 90° (elektrisch). Der Strom weist zusätzlich zu der kraftbildenden Komponente in der Querachse eine negative Ständerlängsstromkomponente auf, die dem Läuferfeld entgegengerichtet ist. Der Strangstrom kann vektoriell in eine kraftbildende und eine feldbildende Komponente zerlegt werden, wobei die kraftbildende Komponente in Phase mit der Polradspannung ist und die feldbildende Komponente dem Läuferfeld entgegengerichtet ist und dieses schwächt.
Im geregelten Betrieb läßt sich mit Hilfe der Stromsensoren (103a, b), die in mindestens zwei Phasen den Strangstrom erfassen, die drehmomentbildende Komponente des Strom in der Querachse und die Ständerlängsstromkomponente getrennt voneinander einstellen. Damit kann der Antrieb auch im Feldschwächbereich mit minimalen Strom und optimalen Wirkungsgrad betrieben werden. Eine Sensierung und Regelung des Motorstroms ist im Betrieb mit Feldschwächung vorteilhaft, da bei einer zu großen negativen Ständerlängsstromkomponente die Magnete durch das von der Ständerdurchflutung erzeugte Feld irreversibel geschwächt werden können.
Bei einer sensorlosen Regelung wird die Rotorposition bzw. die Lage des Rotorfeldes mit Hilfe der gemessenen Strangströme und mit dem mathematischen Modell M (113) des Motors (10) berechnet. Die Rotorlage kann daher nur bestimmt werden, solange der Motor (10) bestromt wird. Bei einer sensorlosen Regelung ist es daher vorteilhaft, den Motor (10) auch während der Auslaufphase von der Waschdrehzahl oder von der Schleuderdrehzahl bis zum Stillstand zu bestromen. Hierbei wird das vom Frequenzumrichter (104) vorgegebene Drehfeld kontinuierlich in Frequenz und Amplitude verringert, bis der Stillstand erreicht ist. Werden die Wicklungsstränge des Motors (10) auch im Stillstand, zumindest teilweise, bestromt und der Rotor (15) dadurch in Position gehalten, so kann der nächste Anlauf sofort und ruckfrei in die vorgegebene Drehrichtung erfolgen. Bei Verwendung von Rotorpositionssensoren (111 ) kann der Auslauf auch ungeführt bzw. auch unbestromt erfolgen.
Der beschriebene Antrieb ermöglicht weiterhin ein Reversieren ohne oder mit nur geringer Reversierpause. Dies ist bei Waschmaschinen, die einen Antriebsriemen als Zwischentrieb aufweisen, nicht ohne weiteres möglich. Bei diesen Waschmaschinen werden üblicherweise Universalmotoren als Antrieb eingesetzt, die ungeregelt bzw. ungebremst auslaufen. Hierbei kommt es nach dem Abschalten des Motors zu einem Austrudeln oder Auspendeln der Wäschetromel. Um eine erhöhte Abnutzung und Geräusche des Antriebsriemens zu ver- meiden, muß nach Abschalten bis zum Wiedereinschalten des Motors solange gewartet werden, bis die Wäschetrommel mit Sicherheit den Stillstand erreicht hat. Diese Stillstandszeiten bei Waschmaschinen mit Antriebsriemen betragen typisch 2 bis 4 Sekunden. Durch den Entfall dieser bisher üblichen und notwendigen Pausen im Reversierbetrieb ergeben sich bei dem hier beschriebenen Direktantrieb Verkürzungen der Waschdauer.
Eine weitere vorteilhafte Ausführungsform eines Wäschebehandlungsgeräts besitzt eine Vorrichtung zur Auswertung der vom Rotor (15) während des Auslaufs induzierten Spannung. Anhand dieser Spannung kann auf die momentane Drehzahl geschlossen werden. Solange der Motor (10) dreht, wird in der Statorwicklung (18) des Motors (10) eine Spannung induziert. Höhe und Frequenz verhalten sich proportional zur Rotordrehzahl. Die induzierte Spannung kann zur Sensierung der Trommeldrehung genutzt werden. Bei einer Waschmaschine mit einer elektromagnetisch oder elektromechanisch verriegelten Tür kann die induzierte Spannung zum Betrieb der Verriegelung verwendet werden. Hierdurch ist in einfacher Weise ohne Verwendung zusätzlicher Drehzahlsensoren eine zustandsabhängige, sichere Verriegelung (8) der Tür (7) möglich. Eine solche Anwendung ist allgemein bei Waschmaschinen mit permanentmagnet- erregten Rotoren möglich und beschränkt sich deshalb nicht auf die erfindungsgemäße Ausführungsform.

Claims

Patentansprüche
1. Wäschebehandlungsgerät wie Waschmaschine, Wäschetrockner oder Waschtrockner mit einer drehbar gelagerten Trommel (6) mit mindestens annähernd horizontaler Drehachse, und mit einem auf der Trommelwelle angeordneten Antriebsmotor (10), in Form eines perma- nentmagneterregten Synchronmotors (10), dessen Stator (16) mit einer Wicklung (18) versehen ist, welche durch einen Umrichter bestromt wird, dadurch gekennzeichnet, daß die Wicklung (18) als Einzelpolwicklung ausgeführt ist, wobei die Anzahl der Statorpole (27) und der Magnetpole (23) ungleich ist, und daß als Umrichter ein Frequenzum- richter (104) verwendet wird, dessen Ausgangsspannung derart eingestellt ist, daß sich in allen Wicklungssträngen kontinuierliche Ströme ausbilden.
2. Wäschebehandlungsgerät nach Anspruch 1 , dadurch gekennzeichnet, daß der Rotor (15) als Außenläufer ausgebildet ist.
3. Wäschebehandlungsgerät nach einem der Ansprüche 1 oder 2, gekennzeichnet durch eine Steuervorrichtung (108), welche die Ausgangsspannung des Frequenzumrichters (104) durch eine Regelung (109) derart einstellt, daß sich in Abhängigkeit vom Lastmoment ein minimaler sinusförmiger Motorstrom erzeugt wird.
4. Wäschebehandlungsgerät nach Anspruch 3, dadurch gekennzeichnet, daß die Ausgangsspannung in Form einer sinusbewerteten Pulsweitenmodulation eingestellt ist.
5. Wäschebehandlungsgerät nach Anspruch 4, dadurch gekennzeichnet, daß die Statorwicklung (18) als dreisträngige Wicklung ausgeführt ist und daß das Verhältnis von Magnetpolen (23) zu Statorpolen (27) 2/3 oder 4/3 beträgt.
6. Wäschebehandlungsmaschine nach Anspruch 5, dadurch gekennzeichnet, daß die Anzahl der Statorpole ca. 30 beträgt.
7. Wäschebehandlungsgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Steuervorrichtung (108) zur Regelung des Motorstroms ein mathematisches Modell (113) des Motors (10) zugrundeliegt und daß die Bestromung der Wicklungsstränge (18) unter Verzicht auf Rotorpositionssensoren erfolgt.
8. Wäschebehandlungsgerät nach Anspruch 7, gekennzeichnet durch Sensoren zur Ermittlung veränderlicher motorspezifischer Parameter wie Wicklungswiderstand, Motorinduktivität und Konstante der induzierten Spannung, wobei durch die gemessenen Werte die entsprechenden Bezugswerte des mathematischen Modells (113) in der Steuervorrichtung (108) korrigierbar sind.
9. Wäschebehandlungsgerät nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß der Rotor (15) durch einen geführten Auslauf im Waschbetrieb derart positionierbar ist, daß nach seinem Stillstand ein sofortiger Anlauf in entgegengesetzter Richtung möglich ist.
10. Wäschebehandlungsgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Bestromung der Wicklungsstränge unter Verwendung der analogen Ausgangssignale von zwei Hallsensoren (111), wobei diese Ausgangssignale durch eine Korrekturvor- richtung (112) hinsichtlich ihrer zeit- oder zustandsabhängigen Schwankungen kalibriert werden.
11. Wäschebehandlungsmaschie nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Windungszahl der Statorwicklungen (18) derart dimensioniert ist, daß der Betrag der induzierten Spannung bzw. der Polradspannung größer als die maximale Ausgangsspannung des Frequenzumrichters (104) ist.
12. Wäschebehandlungsmaschine nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Bestromung des Motors (10) bei höheren Drehzahlen mit Feldschwächung ohne Auswertung eventuell vorhandener Rotorpositionssensoren (111) erfolgt.
13. Wäschebehandlungsmaschine, insbesondere nach einem der Ansprüche 1 bis 12, gekennzeichnet durch eine Vorrichtung (8) zur Auswertung der vom Rotor (15) induzierten Spannung.
14. Wäschebehandlungsmaschine nach Anspruch 13 mit einer elektromagnetisch oder elektromechanisch verriegelten Tür (7), dadurch gekennzeichnet, daß die Tür (7) durch die Vorrichtung (8) verschließbar ist.
PCT/EP1998/000902 1997-02-17 1998-02-17 Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor WO1998036123A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/367,378 US6341507B1 (en) 1997-02-17 1998-02-17 Laundry treating equipment with a driving motor mounted on the drum shaft
KR10-1999-7004953A KR100436152B1 (ko) 1997-02-17 1998-02-17 드럼축상에 배치된 구동모터를 가지는 세탁처리장치
DE59804137T DE59804137D1 (de) 1997-02-17 1998-02-17 Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor
JP53537798A JP2001511674A (ja) 1997-02-17 1998-02-17 ドラム軸上に配置された駆動モータを有する洗濯処理装置
EP98906957A EP0960231B2 (de) 1997-02-17 1998-02-17 Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor
AT98906957T ATE217655T1 (de) 1997-02-17 1998-02-17 Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19706184 1997-02-17
DE19706184.2 1997-02-17

Publications (2)

Publication Number Publication Date
WO1998036123A2 true WO1998036123A2 (de) 1998-08-20
WO1998036123A3 WO1998036123A3 (de) 1998-11-19

Family

ID=7820597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000902 WO1998036123A2 (de) 1997-02-17 1998-02-17 Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor

Country Status (8)

Country Link
US (1) US6341507B1 (de)
EP (1) EP0960231B2 (de)
JP (1) JP2001511674A (de)
KR (1) KR100436152B1 (de)
AT (1) ATE217655T1 (de)
DE (2) DE59804137D1 (de)
ES (1) ES2176972T3 (de)
WO (1) WO1998036123A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982425A2 (de) 1998-08-17 2000-03-01 Miele & Cie. GmbH & Co. Wäschebehandlungsgerät
EP1094145A2 (de) * 1999-10-18 2001-04-25 Lg Electronics Inc. Aufbau der Antriebseinheit in einer Trommelwaschmaschine
KR100370010B1 (ko) * 2000-04-19 2003-02-05 엘지전자 주식회사 드럼세탁기의 구동부
DE10202252C1 (de) * 2002-01-21 2003-03-20 Miele & Cie Verfahren zum Betrieb einer Waschmaschine
KR100539513B1 (ko) * 1998-12-29 2006-02-28 엘지전자 주식회사 드럼세탁기의 베어링 지지구조
EP1265351A3 (de) * 2001-06-06 2006-08-16 Kabushiki Kaisha Toshiba Waschmaschine mit Vektorregelung für den Antriebsmotor
US7478547B2 (en) * 2003-03-06 2009-01-20 Kabushiki Kaisha Toshiba Drum washing machine

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849594C1 (de) * 1998-10-27 2000-03-30 Miele & Cie Waschmaschine oder Waschtrockner
TW470801B (en) * 1999-03-31 2002-01-01 Toshiba Corp Drum type washing machine
TW472094B (en) * 1999-05-19 2002-01-11 Toshiba Corp Rolling drum type washing machine
DE29910332U1 (de) * 1999-06-10 2000-10-26 Struckmeier GmbH Antriebstechnik, 65527 Niedernhausen Elektrischer Antriebsmotor für Arbeitsmaschinen, insbesondere für Extruder oder Spritzgießmaschinen
US6341509B1 (en) * 1999-09-03 2002-01-29 Kryptonite Corporation Tie lock assemblage with replaceable lock mechanism
EP1091037B1 (de) * 1999-09-28 2003-06-18 Miele & Cie. GmbH & Co. Wäschebehandlungsmaschine mit einer fliegend gelagerten Trommel
AU753411B2 (en) 1999-10-19 2002-10-17 Lg Electronics Inc. Structure of driving unit in drum type washing machine
DE19963703A1 (de) * 1999-12-29 2001-07-05 Bsh Bosch Siemens Hausgeraete Antriebsvorrichtung für eine Waschmaschine
KR100348626B1 (ko) * 2000-09-28 2002-08-13 엘지전자주식회사 세탁기의 포량감지장치
DE10054947A1 (de) * 2000-11-06 2002-05-08 Bsh Bosch Siemens Hausgeraete Verfahren und Vorrichtung zum Behandeln von Wäsche
DE10060633A1 (de) * 2000-12-06 2002-06-13 Bsh Bosch Siemens Hausgeraete Trommelwaschmaschine
DE10064549A1 (de) * 2000-12-22 2002-06-27 Bsh Bosch Siemens Hausgeraete Trommelwaschmaschine mit verbesserter Wasch- oder Spülflüssigkeitszufuhr in die Innentrommel
JP3651595B2 (ja) * 2001-12-13 2005-05-25 株式会社東芝 洗濯機のインバータ装置及び洗濯乾燥機のインバータ装置
RU2337194C2 (ru) * 2002-03-26 2008-10-27 Арчелык А.Ш. Барабан для стиральной/сушильной машины
DE10254286B4 (de) * 2002-11-20 2007-06-28 Miele & Cie. Kg Verfahren zur Herstellung eines als Außenläufer ausggebildeten Rotors für eine permanentmagneterregten Synchronmotor
KR100495183B1 (ko) * 2002-11-28 2005-06-14 엘지전자 주식회사 세탁기의 터브 어셈블리
ES2392686T3 (es) 2003-06-11 2012-12-12 Askoll Holding S.R.L. Procedimiento para detectar condiciones desequilibradas de una carga giratoria accionada por un motor síncrono y para controlar dicho motor
DE10361405A1 (de) * 2003-12-29 2005-07-28 BSH Bosch und Siemens Hausgeräte GmbH Wäschebehandlungsgerät mit einer Steueranordnung zum Betreiben eines elektrischen Motors
KR20050089355A (ko) * 2004-03-04 2005-09-08 엘지전자 주식회사 대용량 드럼세탁기용 비엘디시 모터
DE102004049549A1 (de) * 2004-03-24 2005-10-13 Diehl Ako Stiftung & Co. Kg Motor als Direktantrieb und Verfahren zur Montage des Motors
DE102004050898B4 (de) * 2004-10-19 2007-04-12 Siemens Ag Verfahren und Einrichtung zur Überwachung einer Temperatur eines Lagers einer rotierend umlaufenden Welle
DE202005021593U1 (de) 2005-02-25 2008-10-30 Askoll Holding S.R.L., Povolaro Di Dueville Struktur eines elektrischen Synchronmotors, insbesondere für Waschmaschinen mit einer rotierenden Trommel, die durch einen Riemenscheibenantrieb mit dem Motor kinematisch gekoppelt ist
DE102005048487A1 (de) * 2005-10-07 2007-04-19 TRüTZSCHLER GMBH & CO. KG Vorrichtung an einer Spinnereivorbereitungsmaschine, insbes. Karde, Reiniger, Strecke, Kämmmaschine o. dgl., mit mindestens einer elektromotorisch angetriebenen Walze
DE102006028201A1 (de) * 2006-06-20 2007-12-27 Schaeffler Kg Antrieb für Waschmaschine
KR101270538B1 (ko) * 2006-07-12 2013-06-03 삼성전자주식회사 식기세척기
DE102006045146A1 (de) * 2006-07-17 2008-01-31 Diehl Ako Stiftung & Co. Kg Antriebsvorrichtung für eine Waschmaschine
ITTO20070843A1 (it) * 2007-11-23 2009-05-24 Indesit Co Spa Metodo per rilevare il livello di un liquido di lavaggio all'interno di una macchina di lavaggio, e relativa macchina di lavaggio.
DE102008015717A1 (de) * 2008-03-26 2009-10-08 BSH Bosch und Siemens Hausgeräte GmbH Schaltungsanordnung zum sensorlosen Betreiben eines Universalmotors eines Hausgeräts und entsprechendes Verfahren
DE102008018356A1 (de) * 2008-04-11 2009-10-15 Diehl Ako Stiftung & Co. Kg Wäschetrockner
DE102008019921A1 (de) * 2008-04-21 2009-10-22 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät zur Trocknung von Wäschestücken und Verfahren zum Betreiben eines derartigen Hausgeräts
KR20100022145A (ko) * 2008-08-19 2010-03-02 삼성전자주식회사 세탁기 및 모터의 제어 방법
DE102009033026A1 (de) * 2009-07-02 2011-01-05 Ebm-Papst Mulfingen Gmbh & Co. Kg Elektronisch kommutierter Elektromotor
US8405268B2 (en) 2010-02-18 2013-03-26 Nidec Motor Corporation Stator with monolithic mounting bosses and assembly comprising the same
WO2012087156A1 (en) 2010-12-22 2012-06-28 Fisher & Paykel Appliances Limited Improved appliance, motor or stator
DE102014203550A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Elektrisches Antriebssystem
DE102014206637A1 (de) * 2014-04-07 2015-10-08 BSH Hausgeräte GmbH Verfahren zum Herstellen eines Trommelbodens für eine Wäschetrommel eines Haushaltsgeräts, Wäschetrommel und Haushaltsgerät
DE102015101043A1 (de) 2015-01-26 2016-07-28 Miele & Cie. Kg Frequenzumrichter für einen elektrischen Motor, mechatronisches System und Waschmaschine
BE1029057B1 (de) * 2021-01-26 2022-08-29 Miele & Cie Verfahren zum Ansteuern eines mindestens zweiphasigen bürstenlosen Motors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2220681A (en) * 1985-11-12 1990-01-17 Gen Electric Laundering apparatus directly driven by a salient pole electronically commutated motor
EP0410784A1 (de) * 1989-07-28 1991-01-30 General Electric Company Antrieb für Waschmaschinen
EP0413915A1 (de) * 1989-08-19 1991-02-27 ebm Elektrobau Mulfingen GmbH & Co. Antriebseinheit für eine Wäsche-Behandlungsmaschine
DE4335966A1 (de) * 1993-10-21 1995-04-27 Licentia Gmbh Antriebsvorrichtung für eine Wasch- oder eine ähnliche Maschine mit einem kollektorlosen Gleichstrommotor
EP0657575A1 (de) * 1993-12-08 1995-06-14 Licentia Patent-Verwaltungs-GmbH Waschautomat
GB2295160A (en) * 1992-08-27 1996-05-22 Gen Electric Washing machine motor control
US5586455A (en) * 1994-03-30 1996-12-24 Kabushiki Kaisha Toshiba Float-type clutch for automatic washing machine
WO1998000902A1 (en) * 1996-07-02 1998-01-08 Domel Elektromotorji In Gospodinjski Aparati, D.O.O. Electronically commutated motor for direct drive of washing machine drum

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1760382A1 (de) 1968-05-11 1971-06-16 Licentia Gmbh Trommelwaschmaschine
US3840764A (en) * 1972-08-25 1974-10-08 M Burger Drive arrangement for a washing or dry cleaning machine
US4654566A (en) 1974-06-24 1987-03-31 General Electric Company Control system, method of operating an electronically commutated motor, and laundering apparatus
DE3275393D1 (en) * 1981-12-18 1987-03-12 Cerac Inst Sa Washing machine
CH664654A5 (fr) * 1981-12-18 1988-03-15 Cerac Inst Sa Procede et dispositif pour la commande d'un moteur a courant alternatif sans balai.
DE3436470A1 (de) 1984-10-05 1986-04-10 Joachim-Andreas Dipl.-Ing. Wozar (FH), 7300 Esslingen Einstechwerkzeug
NZ213490A (en) * 1985-09-16 1990-03-27 Fisher & Paykel Cyclic motor reversal by forced commutation
NZ215389A (en) 1986-03-06 1992-02-25 Fisher & Paykel Washing machine: spin tub connected to drive at low water level
DE3819651A1 (de) 1988-06-09 1989-12-14 Miele & Cie Waschmaschine oder waeschetrockner mit einem die waeschetrommel direkt antreibenden antriebsmotor
JPH02142350A (ja) * 1988-08-03 1990-05-31 Victor Co Of Japan Ltd 多相直流コア有モータ
US5162709A (en) 1989-04-25 1992-11-10 Diesel Kiki Co., Ltd. Apparatus for controlling blower motor of automobile air-conditioner
AU633738B2 (en) 1990-06-20 1993-02-04 Matsushita Electric Industrial Co., Ltd. Brushless DC motor
JP2895942B2 (ja) * 1990-09-18 1999-05-31 三洋電機株式会社 洗濯機
JPH05344741A (ja) * 1992-06-10 1993-12-24 Hitachi Ltd インバータ装置及びこのインバータ装置を備えた空気調和機並びに電気洗濯機それに電気掃除機
GB9217761D0 (en) 1992-08-21 1992-10-07 British Tech Group Method of and apparatus for determining a rotor displacement parameter
JPH06165561A (ja) * 1992-11-26 1994-06-10 Toshiba Corp 同期電動機の制御装置
DE4414768A1 (de) 1994-04-27 1995-11-02 Mulfingen Elektrobau Ebm Wäschebehandlungsgerät, wie Waschmaschine oder Wäschetrockner
US5448149A (en) 1994-06-20 1995-09-05 Texas A&M University Indirect rotor position sensor for a sinusoidal synchronous reluctance machine
JP2956484B2 (ja) * 1994-09-01 1999-10-04 日本ビクター株式会社 ブラシレスモータ
JP2905119B2 (ja) * 1995-06-30 1999-06-14 株式会社東芝 洗濯機
JPH0947075A (ja) * 1995-07-28 1997-02-14 Matsushita Electric Ind Co Ltd ブラシレスモータ
JP3290354B2 (ja) 1996-07-05 2002-06-10 株式会社東芝 洗濯機及び洗濯機の駆動方法
KR100229135B1 (ko) 1997-02-18 1999-11-01 윤종용 세탁기용 동력전달장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2220681A (en) * 1985-11-12 1990-01-17 Gen Electric Laundering apparatus directly driven by a salient pole electronically commutated motor
EP0410784A1 (de) * 1989-07-28 1991-01-30 General Electric Company Antrieb für Waschmaschinen
EP0413915A1 (de) * 1989-08-19 1991-02-27 ebm Elektrobau Mulfingen GmbH & Co. Antriebseinheit für eine Wäsche-Behandlungsmaschine
GB2295160A (en) * 1992-08-27 1996-05-22 Gen Electric Washing machine motor control
DE4335966A1 (de) * 1993-10-21 1995-04-27 Licentia Gmbh Antriebsvorrichtung für eine Wasch- oder eine ähnliche Maschine mit einem kollektorlosen Gleichstrommotor
EP0657575A1 (de) * 1993-12-08 1995-06-14 Licentia Patent-Verwaltungs-GmbH Waschautomat
US5586455A (en) * 1994-03-30 1996-12-24 Kabushiki Kaisha Toshiba Float-type clutch for automatic washing machine
WO1998000902A1 (en) * 1996-07-02 1998-01-08 Domel Elektromotorji In Gospodinjski Aparati, D.O.O. Electronically commutated motor for direct drive of washing machine drum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0960231A2 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982425A2 (de) 1998-08-17 2000-03-01 Miele & Cie. GmbH & Co. Wäschebehandlungsgerät
KR100539513B1 (ko) * 1998-12-29 2006-02-28 엘지전자 주식회사 드럼세탁기의 베어링 지지구조
US7114355B2 (en) 1999-10-18 2006-10-03 Lg Electronics, Inc. Drum type washing machine having a driving unit
US8677788B2 (en) 1999-10-18 2014-03-25 Lg Electronics Inc. Method of forming a drum type washing machine having a driving unit
EP1477605A1 (de) * 1999-10-18 2004-11-17 Lg Electronics Inc. Aufbau der Antriebseinheit in einer Trommelwaschmaschine
US6914363B2 (en) 1999-10-18 2005-07-05 Lg Electronics Inc. Structure of driving unit in drum type washing machine
EP1094145A3 (de) * 1999-10-18 2001-05-02 Lg Electronics Inc. Aufbau der Antriebseinheit in einer Trommelwaschmaschine
EP1094145A2 (de) * 1999-10-18 2001-04-25 Lg Electronics Inc. Aufbau der Antriebseinheit in einer Trommelwaschmaschine
US7596973B2 (en) 1999-10-18 2009-10-06 Lg Electronics Inc. Structure of driving unit in drum type washing machine
US7131178B2 (en) 1999-10-18 2006-11-07 Lg Electronics Inc. Method of forming a drum type washing machine having a driving unit
US7166950B2 (en) 1999-10-18 2007-01-23 Lg Electronics Inc. Structure of driving unit in drum type washing machine
US7305857B2 (en) 1999-10-18 2007-12-11 Lg Electronics Inc. Structure of driving unit in drum type washing machine
US7441423B2 (en) 1999-10-18 2008-10-28 Lg Electronics Inc. Drum type washing machine having a driving unit
KR100370010B1 (ko) * 2000-04-19 2003-02-05 엘지전자 주식회사 드럼세탁기의 구동부
EP1265351A3 (de) * 2001-06-06 2006-08-16 Kabushiki Kaisha Toshiba Waschmaschine mit Vektorregelung für den Antriebsmotor
DE10202252C1 (de) * 2002-01-21 2003-03-20 Miele & Cie Verfahren zum Betrieb einer Waschmaschine
US7478547B2 (en) * 2003-03-06 2009-01-20 Kabushiki Kaisha Toshiba Drum washing machine

Also Published As

Publication number Publication date
ES2176972T3 (es) 2002-12-01
ATE217655T1 (de) 2002-06-15
KR100436152B1 (ko) 2004-06-18
KR20000069295A (ko) 2000-11-25
WO1998036123A3 (de) 1998-11-19
EP0960231B2 (de) 2012-01-25
EP0960231A2 (de) 1999-12-01
US6341507B1 (en) 2002-01-29
EP0960231B1 (de) 2002-05-15
DE19806258A1 (de) 1998-08-20
JP2001511674A (ja) 2001-08-14
DE59804137D1 (de) 2002-06-20

Similar Documents

Publication Publication Date Title
EP0960231B2 (de) Wäschebehandlungsgerät mit einem auf der trommelwelle angeordneten antriebsmotor
DE69723913T2 (de) System und Verfahren zum Schutz eines Einphasenmotors vor Freilaufströmen
EP0945973B1 (de) Vorrichtung zum Steuern eines Einphasen-Synchronmotors
EP1124321B1 (de) Wechelstrom-Synchronmotor
EP1284540A2 (de) Geschirrspüler-Pumpenantrieb
EP2112264B1 (de) Hausgerät zur Trocknung von Wäschestücken und Verfahren zum Betreiben eines derartigen Hausgeräts
EP1071200B1 (de) Elektronisch kommutierbarer Motor
EP0957570B1 (de) Vorrichtung zum Steuern eines Einphasen-Synchronmotors
DE4404889A1 (de) Elektrisches Antriebssystem für ein gleichstrombetriebenes Fahrzeug sowie Verfahren zum Steuern eines gleichstrombetriebenen Antriebs-Elektromotors
WO2004038907A1 (de) Sensorsystem und verfahren zur vektorsteuerung
DE3805662A1 (de) Ringspinnmaschine
DE4411293C2 (de) Antriebsvorrichtung für ein mit hoher Drehzahl rotierendes Bauteil
DE4404926A1 (de) Elektrisches Antriebssystem für ein gleichstrombetriebenes Fahrzeug sowie Verfahren zum Steuern eines gleichstrombetriebenen Antriebs-Elektromotors
EP1048774B1 (de) Verfahren und Vorrichtung zur Detektion von Unwuchten bei einem durch einen bürstenlosen Elektromotor angetriebenen Rotor
WO2009098143A2 (de) Permanentmagneterregte elektrische maschine für ein hausgerät und schaltungsanordnung mit einer permanentmagneterregten maschine
WO1999010584A1 (de) Waschmaschine
DE69031548T2 (de) Motor mit einem ständig angeschlossenen Phasenverschiebungskondensator für eine Waschmaschine
EP0539617B1 (de) Unwuchtüberwachung für einen Waschautomaten
BE1029031B1 (de) Verfahren zur thermischen Überwachung eines mindestens zweiphasigen bürstenlosen Motors
EP2086094A2 (de) Permanentmagneterregte elektrische Maschine für ein Hausgerät
AT383916B (de) Gleichstrommotor mit permanentmagnetischem rotor und elektronischer kommutierschaltung
DE3140405A1 (de) Waschmaschinenantrieb
EP2319976B1 (de) Hausgerät zur Pflege von Wäschestücken und Verfahren zum Betreiben eines bürstenbehafteten Gleichstrommotors
DE102009046681A1 (de) Antriebsmotor zum Antreiben einer Komponente eines Hausgeräts, Antriebseinrichtung und Hausgerät
DE10012084A1 (de) Verfahren zur Reduzierung der Schaltverluste

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998906957

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997004953

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09367378

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 535377

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998906957

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997004953

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998906957

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997004953

Country of ref document: KR