[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998013959A1 - Optical transmission module and optical transmission system - Google Patents

Optical transmission module and optical transmission system Download PDF

Info

Publication number
WO1998013959A1
WO1998013959A1 PCT/JP1996/002818 JP9602818W WO9813959A1 WO 1998013959 A1 WO1998013959 A1 WO 1998013959A1 JP 9602818 W JP9602818 W JP 9602818W WO 9813959 A1 WO9813959 A1 WO 9813959A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
optical transmission
output
host device
Prior art date
Application number
PCT/JP1996/002818
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Hanawa
Makoto Haneda
Original Assignee
Hitachi, Ltd.
Hitachi Microcomputer System, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Microcomputer System, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/002818 priority Critical patent/WO1998013959A1/en
Publication of WO1998013959A1 publication Critical patent/WO1998013959A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to an optical transmission module and an optical transmission system, and more particularly to a technology that is effective when applied to introduce an optical cable such as an optical fiber into a subscriber system such as a telephone or an integrated service digital network (ISDN).
  • ISDN integrated service digital network
  • optical transmission module is a module that bidirectionally converts an optical signal and an electric signal.
  • the optical transmitting side includes, for example, a laser diode and its driving circuit
  • the optical receiving side includes a photo diode and a signal extracting circuit. Etc. are provided. Examples of documents describing the optical transmission system include “LSI Handbook”, pages 1004 and 1005, published by OM Corporation (December 25, 1960).
  • Fig. 11 shows an example of a system in which optical fibers are introduced into telephones and ISDN.
  • ONU is for subscriber line network equipment
  • SLT is for subscriber line equipment ⁇ .
  • the subscriber line network device ONU and the subscriber line station device SLT include an optical transmission module that converts electric signals and optical signals in both directions.
  • the optical transmission module is connected via an optical fiber cable.
  • the distance of the subscriber line network device ONU to the subscriber line station device SLT varies, and the # 1 subscriber line network device ON U
  • the optical signal level from the optical network is larger than the optical signal level from the # 2 subscriber line network device ONU.
  • the optical transmission module of the subscriber line network device SLT renews the gain control and threshold level of the amplifier for the data of each subscriber line network device X-ray equipment SLT can recognize all data.
  • the transmission / reception characteristics of the light at the input / output points of the device are limited by the medium loss such as the branch loss due to the star force bra, the loss of the optical fiber, and the connection loss even though the transmission is 7 km as standard.
  • output level - 7 ⁇ - 2. is a 5 dBm
  • the light receiving power of the average value - circuit for the corresponding possible Geinkon trawl or threshold level changes with respect to c such losses width that is 34 dBm Increases the cost of the optical receiver or optical transmission module.
  • the present invention has been made in view of the above circumstances, and has different line losses.
  • the gain control of the circuit that amplifies the received optical reception level of multiple types and the process of resetting the threshold level for logical value judgment can be greatly simplified or the circuit for that can be eliminated.
  • An object of the present invention is to provide an optical transmission system and an optical transmission module most suitable for such an optical transmission system.
  • An optical transmission system includes a communication host device and a plurality of communication terminal devices connected to the communication host device by an optical cable.
  • the communication host device and the communication terminal device each include an optical transmission module connected to the optical cable.
  • Each optical transmission module converts bidirectionally an electric signal and an optical signal into and out of input and output, and the optical transmission module of the communication terminal device has a transmission loss (also referred to as a line loss) between the communication terminal device and the communication host device.
  • the output level of the optical signal is controlled according to the difference in (1), and the optical transmission module of the communication host device inputs an optical signal having substantially the same reception level from communication terminal devices having different transmission losses.
  • the gain control and the resetting of the threshold level of a circuit for amplifying a plurality of types of received signals suffering different line losses are greatly simplified or performed. Circuit is unnecessary. In addition, it is not necessary that the sensitivity of the photodiode receiving the optical signal in the communication host device be particularly high. Thus, the cost of the optical transmission system can be reduced. In particular, in a burst transfer mode for performing data transmission without supplying a synchronization signal separately from the data transmission signal, for example, in a system of a burst transmission system represented by a PDS system, a high transmission rate is conventionally used. Spirit It is considered that the gain control is indispensable, and in the above-mentioned system, the gain control and the resetting of the threshold level can be greatly simplified or the circuit for that can be eliminated even in the PDS system.
  • the communication terminal devices in which the transmission loss of the optical signal 1 is different from each other are substantially equal to an attenuation factor which is a ratio of the reduced optical input to the optical output of the communication host device. It has an optical transmission module that forms optical output with a reciprocal multiple. Also according to this, the optical transmission module of the communication i-host device can input optical signals having substantially the same reception level from communication terminal devices having different transmission losses.
  • the optical transmission module included in the communication terminal device is configured based on an attenuation rate that is a ratio of the reduced input level to the light output level of the communication host device.
  • the light output is controlled to be approximately the reciprocal of the attenuation rate with respect to the reference output level.
  • the optical transmission module of the communication host device can input optical signals having substantially the same reception level from the communication terminal devices having different transmission losses.
  • the optical transmission module included in the communication terminal device includes a driver circuit that drives a laser diode based on an input electric signal, and a driver circuit that controls an operation of the driver circuit.
  • the microcomputer includes: a CPU; a storage unit in which a drive control data for determining a drive current for the laser diode according to a target light output is provided by the CPU; And D / ⁇ conversion means for converting the obtained drive control data into an analog signal and providing the analog signal to the driver circuit, and determining the drive current of the laser diode.
  • the The outlet has a drive control data table for determining the drive current for the laser diode according to the target light output and the temperature, and the CPU controls the drive control according to the target light output and the temperature.
  • Data can be selected from the table, and the selected drive control data can be given to the storage means as a reciprocal multiple of the marshal rate.
  • the optical transmission module included in the communication terminal device may further include an optical receiver that converts the input optical signal into an electric signal by photodiode, amplifies the converted electric signal, and outputs the amplified electric signal.
  • the CPU can input the electric signal converted by the optical receiving unit, and calculate the attenuation rate based on the electric signal.
  • the light output is controlled by multiplying the drive control data corresponding to the light output signal in the host device by 7 times.
  • the optical transmission module included in the communication terminal device includes: a driver circuit that drives a laser diode based on an input electric signal; and a microphone opening unit that controls an operation of the driver circuit. It can be composed of
  • the micro-computer includes: a CPU; a storage unit provided with a drive control data for setting a drive current of the laser diode by the CPU; and a drive control stored in the storage unit.
  • D / A conversion means for converting the data into an analog signal and supplying the analog signal to the driver circuit, and determining the drive current of the laser diode.
  • the drive control data corresponding to the optical output signal of the communication host device is 7? Multiplied.
  • the microcombiner has A / D conversion means for converting a received optical signal (analog signal) into a digital signal in order to obtain the electric signal Y.
  • the optical transmission module most suitable for the optical transmission system includes an optical transmission unit that converts an input electric signal into an optical signal and outputs the same, and an optical reception unit that converts the input optical signal into an electric signal and outputs the same.
  • a micro-computer for controlling the operation of the optical transmitter and the optical receiver, wherein the microphone-port convenience is based on an attenuation rate which is a ratio of an input level to a reference level of an optical signal. Is controlled to be approximately the reciprocal multiple of the attenuation rate with respect to the reference output level.
  • the optical transmission unit includes a driver circuit that drives a laser diode based on a manually input electric signal
  • the microcomputer includes a CPU, and a driving current for the laser diode.
  • a drive means for determining drive control data according to the target light output, and a drive means for converting the drive control data stored in the memory means into an analog signal and providing the analog signal to the driver circuit; D / A conversion means for determining the drive current of the laser diode can be included.
  • the microcomputer has a table of drive control data for determining a drive current for the laser diode according to the target light output
  • the CPU executes the drive according to the target light output.
  • the control data is selected from the table and given to the storage means.
  • FIG. 1 is a block diagram of a PDS system which is an example of the optical transmission system according to the present invention.
  • FIG. 2 is a diagram for time division multiple access control in a PDS system.
  • FIG. 7 is an explanatory diagram of designation of an uplink signal transmission timing.
  • FIG. 3 is a block diagram of an example of the optical transmission module.
  • FIG. 4 is a flowchart showing an example of the process of obtaining the attenuation factor and controlling the light output level taking this into account.
  • FIG. 5 is a diagram for explaining the principle of another method for controlling the optical output level in the subscriber network device.
  • FIG. 6 is an explanatory diagram of the temperature characteristics of the LD and the associated extinction failure and emission delay.
  • FIG. 7 is an explanatory diagram showing that the forward current Id required to obtain a certain light output is nonlinearly changed with temperature.
  • FIG. 8 is a circuit diagram showing a detailed example of an optical transmitter.
  • FIG. 9 is a circuit diagram of an example of a switching control circuit for controlling the on / off of the current path of the laser diode.
  • FIG. 10 is a flowchart showing an example of light output control using the correction coefficient 7? Explained in FIG. .
  • FIG. 11 is a block diagram exemplifying a PDS system. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a block diagram of an optical transmission system according to one embodiment of the present invention.
  • the figure shows an example of a system in which optical fibers are installed in telephones and ISDN.
  • ONU is a subscriber line network device as a communication terminal device
  • SLT is a subscriber line station device as a communication host device
  • EX is an exchange.
  • the subscriber line network device 0NU and the subscriber line station device SLT include optical transmission modules 1 and 1A for bidirectionally converting an electric signal and an optical signal.
  • Optical transmission module 1, 1 A is made from optical fiber OPF or passive element Connected via SCP.
  • # 1 and # 2 attached to the subscriber line network device ONU are number information unique to the subscriber line network device ONU.
  • a network system represented by the above system is, for example, the PDS.
  • This PDS system separates the time for transmitting signals in the upstream direction and the time for transmitting signals in the downstream direction in order to realize bidirectional communication at a single wavelength using one optical fiber (
  • TCM time axis reduction bidirectional multiplexing
  • signal transmission timing is controlled so that upward signals from each subscriber line network unit ONU do not collide (TDMA: time division multiple access control). Is done.
  • a downlink signal is transmitted from the subscriber line station device SLT to the subscriber line network device ONU in about half of the frame time, and a reverse uplink signal can be transmitted in the other half.
  • TDMA measures the transmission delay time between the subscriber line equipment USLT and each of the subscriber line network devices ONU, and transmits the data from each subscriber line network device ONU.
  • the overhead (OH) signal is used to identify the address (identification number unique to each subscriber line network device) so that the burst signal does not overlap.
  • the transmission timing is instructed to each subscriber line network unit ONU. Since the upstream signal from each subscriber line network unit ONU has a random phase, the preamble required for the reproduction is added to the head of the upstream signal from each subscriber line network unit ONU by one byte. are doing.
  • each subscriber line network device ONU transmits a burst signal at the specified transmission timing.
  • the transmitted burst signal is passively multiplexed by a star power blur, and at the receiving point of the subscriber line station device SLT, the burst signal from each subscriber line network device 0NU is transmitted. Lined up in order. In this way, it is possible to accommodate a plurality of subscriber line network devices ONU using one optical fiber.
  • a difference of about 0 to 7 Km is allowed for each of the multiple lines split by the star power bra, and the corresponding line transmission loss occurs in optical transmission.
  • the following considerations are made so that the optical reception level does not become random at the reception point of the subscriber line equipment SLT due to such transmission loss.
  • the optical transmission modules 1 and 1A included in each of the subscriber line network device ONU and the subscriber line station device SL convert and input / output electrical and optical signals in both directions.
  • the optical transmission module 1 of the subscriber line network device ONU controls the output level of the optical signal in accordance with the difference in transmission loss between the subscriber line device SLT and the optical network module of the subscriber line device SLT.
  • the transmission module 1A inputs optical signals having substantially equal reception levels from the subscriber line network units ONU having different transmission losses.
  • the subscriber line network device ON U having different transmission loss of the optical signal is substantially opposite to the attenuation rate which is the ratio of the attenuated optical input to the optical output of the subscriber line station device SLT.
  • the optical transmission module 1 included in the subscriber line network device NUNU is based on an attenuation rate that is a ratio of the attenuated input level to the optical output level of the subscriber line station device SLT.
  • the output is controlled to be approximately the reciprocal times the attenuation rate with respect to the reference output level. For example, assuming that the standard optical reception level of the optical transmission modules 1 and 1A in the entire system is m and the standard optical transmission level is n, the subscriber line network equipment 0NU (# 1) given from the subscriber line station equipment SLT.
  • the optical output level of the subscriber line network device ONU (# 1) is set to mxl / high. Also, When the attenuation rate at the ONU (# 2) of the subscriber line network is /? (Starting-level / n), the optical output level of the network device 0NU (# 2) is ni x.
  • the subscriber line network device 0 NU outputs an optical signal to the subscriber line station device SLT at an output level that is the reciprocal multiple of the input attenuation factor, and the subscriber line device SLT becomes Signals from any of the subscriber line network units 0NU can be received at the standard optical reception level m.
  • the transmission module 1 ⁇ of the subscriber line station apparatus SL ⁇ is used to determine the logical value of the random reception level of each of the subscriber line network apparatus 0 NUs. Performs control (control of threshold voltage for logical value judgment) so that the subscriber line station equipment SLT can recognize all subscriber line network equipment 0 NU data. Can be completely eliminated. Further, it is possible to eliminate the need for a circuit configuration for performing such gain control and threshold voltage control on received data for each subscriber line network device ONU. Also, it is not necessary to make the sensitivity of the photodiode receiving the optical signal particularly high in the subscriber line equipment SLT.
  • the optical transmission module 1A of the subscriber line station device SLT it is not necessary to control the optical transmission level using the decay rate described above.
  • the control of the optical transmission level using the above-described attenuation rate is performed by software Therefore, the hardware configuration of the optical transmission modules 1 and 1A is made substantially the same, and there is no problem.
  • FIG. 3 shows a block diagram of the optical transmission module 1.
  • the optical transmission module 1 shown in FIG. 1 includes an LD module 10, a driver circuit 11, and an input circuit 12, each of which constitutes an optical transmission unit (optical transmitter) and which is individually integrated into a semiconductor circuit. It comprises a pin photodiode 13, a preamplifier 14, a main amplifier 15, and an output circuit 16, each of which constitutes an optical receiving unit (optical receiver) and individually formed as a semiconductor integrated circuit.
  • the LD module 10 includes a laser diode (also referred to as LD) 100 and a photo diode (also referred to as PD) 101 for monitoring. The optical output of the laser diode 100 is output to an optical output terminal 0 P OUT.
  • the bin photodiode 13 receives an optical signal from an optical input terminal OP IN.
  • the input circuit 12 is connected to the data input terminal DTIN, and the output circuit 16 is connected to the data output terminal DTOUT.
  • the input circuit 12 forms an input buffer circuit.
  • the driver circuit 11 includes an LD driver 110 and an auto power control circuit (APC) 111.
  • the LD driver 110 controls a data signal supplied through the input circuit 12 and the LD 100 controls a target signal.
  • the drive signal current is converted to the drive signal current required to obtain the specified optical output, and a DC bias current for guaranteeing the threshold current of the LD 100 is generated and supplied to the LD 100.
  • the DC bias current is automatically controlled based on the detection result of the current (LD light output monitor current) detected by the PD 101 so that the light output is always constant at the APC 111.
  • the optical output of the LD 100 is provided from an optical output terminal OPOUT to a transmission line such as an optical fiber.
  • the bin photodiode 13 is connected to the optical input terminal 0 PIN from the transmission line.
  • the supplied optical signal is detected and converted into a received signal current.
  • This signal current is converted into a low voltage signal by the preamplifier 14.
  • the converted voltage signal is output to the main amplifier 15.
  • the main amplifier 15 amplifies the input voltage signal to the ECL level.
  • the output M path 16 that receives the output of the main amplifier 15 widens the input signal from the main amplifier 15 sufficiently, shapes the upper and lower parts of the waveform into a sliced signal, and uses this as a de-emphasis signal. Apply to data output terminal D TOUT
  • the optical transmission module 1 shown in FIG. 3 includes a microcomputer 17.
  • the microcomputer 17 is not particularly limited, but includes a CPU (Central Processing Unit) 170, a RAM (Random Access Memory) 171, a ROM (Read Only Memory) 172, and an erasable and writable memory. It has a flash memory 173, which is an example of a nonvolatile storage device, and an input / output circuit (I / O) 174, which are coupled to an internal bus 175.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory 173 which is an example of a nonvolatile storage device
  • I / O input / output circuit
  • the ROM 172 is a mask ROM holding operation programs and constant data of the CPU 170
  • the RAM 171 is a work area of the CPU 170
  • the flash memory 173 is a CPU 170 operation programs and control data are stored in a rewritable manner.
  • the input / output circuit 174 comprises a D / A conversion circuit 176 comprising a plurality of D / A conversion channels and an input register, and an A / D converter comprising a plurality of A / D conversion channels and an output register. Including circuit 1 77 etc.
  • the input register of the A / D conversion circuit 176 is accessed by the CPU 170, and the digital signal set in this register is converted to an analog signal.
  • the analog signal converted by the 0/8 conversion circuit 1 ⁇ 6 is supplied to the LD dryer 110, which causes the LD dryer 110 to drive the LD 100 with the drive signal current (modulation current) and the DC bias current ( Bias current).
  • the A / D converter circuit 1 ⁇ 7 is connected to the PD 101 and preamplifier 14 The analog signal is converted into a digital signal, and the converted digital signal is made accessible by the CPU 170 via the output register.
  • the signal line indicated by 179 is a signal line for interfacing the microcomputer 17 with the outside of the optical transmission module 1 and is not particularly limited, but is a reset signal, data or command, or CPU operation programs to be stored in the flash memory 173 can also be exchanged.
  • the microcomputer 17 is a circuit that controls the entire optical transmission module 1.
  • the control content is to control the light output level at the reciprocal multiple of the attenuation rate.
  • the second is control to obtain the attenuation rate.
  • the drive control of the LD 100 considering the difference in temperature characteristics between the LD dryno 110 and the LD 100.
  • Fig. 4 shows the flow of control of the light output level taking into account the acquisition of the attenuation rate and that.
  • the acquisition of the attenuation rate is performed as part of the power-on reset processing by the CPU 170.
  • This process is performed, for example, as a power-on process when the subscriber network device ONU is first installed.
  • an arbitrary signal is transmitted from the subscriber line device SLT to the subscriber network device ONU at a standard optical transmission level.
  • an operation for obtaining the attenuation rate is performed.
  • the attenuation rate ⁇ is obtained by dividing the reception level by the standard optical transmission level (S 1).
  • the standard light transmission level is stored in a predetermined storage area of the flash memory 173.
  • the PD 13 detects the arbitrary signal transmitted from the subscriber line station device SLT to the subscriber network device 0NU, and amplifies the signal by the preamplifier 14 to obtain a signal.
  • I / O circuit 1 ⁇ 4 A / D conversion circuit 1 7 7 The conversion is performed by referring to the CPU 170 via the output register.
  • the arbitrary signal is output at a standard transmission level.
  • the gain of preamplifier 14 is set to a specific value.
  • the output of preamplifier 14 is converted to a digital signal by A / D conversion circuit 1 ⁇ 7 included in input / output circuit 174, and the converted digital signal is used as reception level by CPU 170 Referred to.
  • the CPU 170 reads out the data of the standard light transmission level n from the flash memory 173, and calculates the attenuation factor based on the data of the standard light transmission level n and the data of the sampled reception level.
  • the data of the standard optical transmission level n may be externally received through the signal line 179.
  • the target light output instruction data D1 is calculated using the calculated attenuation factor and the standard light reception level m (S2).
  • the data of the standard light reception level m is read out from a predetermined storage area of the flash memory 173 or externally supplied via a signal line 179.
  • the LD drive data D2 is read from the flash memory 173.
  • the LD drive data is tabulated according to the temperature and the target light output, as will be described in detail later. Reads the LD drive data D2 from the table in the flash memory 173.
  • the read LD drive data D 2 is the D / A conversion circuit of the input / output circuit 1 7
  • the LD drive data may be directly set to the inverse multiple of the attenuation rate.
  • the LD drive control data corresponding to the target light output and the temperature (atmospheric temperature of the optical transmission module) is selected from the table, and the selected LD drive control data is set to the reciprocal of the attenuation rate to obtain the DZA.
  • the attenuation power and the target light output instruction data D 1 calculated as part of the power-on reset need not be stored inside the microcomputer 17, but the operation power of the microcomputer 17 As long as is not interrupted, the above settings are maintained.
  • D2 is held in the input register of the D / A conversion circuit 1 ⁇ 6.
  • Fig. 5 shows a principle diagram of another control method of the optical output level in the subscriber network unit ONU.
  • PB is the optical output value of the optical transmission module 1A of the subscriber line device SLT
  • PR is the optical input value received by the optical transmission module 1 of a certain subscriber line network device ONU.
  • X and Y are the voltage signals at each. Therefore, the transmission loss between the subscriber line station apparatus SLT and a certain subscriber line network apparatus ONU can be represented by (X / a) (Y / ⁇ ).
  • a is a unique value depending on the circuit characteristics of the optical transmission module, and is a known value. Also, the voltage signal X and the optical output value ⁇ are known. Therefore, if ( ⁇ ) / ( ⁇ / ⁇ ) is the correction coefficient 77, If the received optical input value PR can be detected, the correction coefficient? Can be calculated. Based on this correction factor 7 ?, each of the subscriber line network units 0NU converts the optical signal into a subscriber line station device SLT with a specific correction factor of 7; Thus, the subscriber line station apparatus SLT can receive a signal from any of the subscriber line network apparatuses 0NU at a level corresponding to a standard optical output.
  • the transmission module 1A of the subscriber line station apparatus SLT is used to control the gain of the amplifier in order to determine the logical value of the random reception level for each of the subscriber line network apparatuses 0NU.
  • the threshold voltage control and even if there is no circuit for performing such gain control and threshold voltage control, the subscriber line station equipment SLT is used for all subscriber lines. You will be able to recognize the network device ONU.
  • the CPU 1 70 supplies drive control data for determining the drive current for the laser diode 100 based on the correction coefficient 77 to the input register of the D / A conversion circuit 176.
  • the drive control data loaded in the input register is converted into an analog signal and supplied to the LD driver 110.
  • the LD driver 110 generates a drive signal current of LD 100.
  • the current path of the LD 100 is turned on / off accordingly, and the LD 100 is driven to emit light and extinguish.
  • the LD 100 has a double heterojunction.
  • a forward current When a forward current is applied to the double heterojunction, when the current exceeds a certain current value, the laser 100 starts laser oscillation and emits laser light.
  • This current at the start of laser oscillation is called the threshold current (bias current) Ith.
  • the magnitude of the forward current Id to be passed through the laser diode is determined according to the required light output.
  • This forward current Id can be roughly expressed as Ith + Imod.
  • I mod is referred to as the modulation current, and the optical output of the LD 10 is obtained by passing the modulation current out of the required forward current to the LD or cutting it off (called modulation current on / off control). Can be turned on / off.
  • the LD 100 has a temperature dependency on an optical output with respect to a forward current. Therefore, in order to correct the base voltage of the current source transistor arranged in the drive current path of the LD 100 in accordance with the temperature, the bias circuit of the current source transistor needs to have the temperature dependence of the band gear of the transistor and the diode.
  • the utilized base spice circuit can be adopted.
  • the temperature characteristics of the LD 100 greatly differ depending on the temperature as illustrated in FIG.
  • the characteristics of the threshold current and the modulation current differ depending on the temperature. That is, the forward current of the LD 100 required to obtain a predetermined light output differs depending on the temperature, and at this time, the threshold current included in the forward current also differs uniquely depending on the temperature. Therefore, the modulation current, which is the difference between the forward current and the threshold current, also changes in accordance with the temperature.
  • the threshold currents I th (i), I th (j), I th (k) and the modulation currents I mod (i), I mod (j), and I mod (k) are large at each of the illustrated temperatures T (i), ⁇ (j), and T (k).
  • the forward current I d required to obtain a certain light output is changed non-linearly with respect to temperature, as illustrated in FIG.
  • the threshold current and the modulation current are also nonlinearly changed.
  • the current characteristic with respect to the temperature of the base bias circuit utilizing the temperature dependence of the band gap of a transistor or a diode is only changed linearly. Due to this hesitation, a base bias circuit that utilizes the temperature dependence of the bandgap of a transistor or a diode cannot accurately compensate for the LD drive current with respect to a temperature change.
  • the required light output must be obtained from the LD 100 in optical communication and the like. Therefore, in order to make the forward current flowing through the LD follow the temperature characteristics of the LD, the actual light emission output of the LD 100 is monitored by a photodiode (PD) 101, and the current corresponding to the monitored light emission output is required.
  • the comparator determines whether the reference potential is lower or higher than the reference potential Vref corresponding to the output, and if the reference potential is lower than Vref, control can be performed to increase the bias current flowing to the LD.
  • the feedback control increases the bias current and performs the auto power control to match the total forward current flowing through the LD 100 to the temperature characteristic of the LD 100, the light output of the LD 100 is reduced.
  • the current that is turned on / off by a transistor that causes current to flow through the LD 100 for on / off control does not match the current temperature characteristics of the LD.
  • the forward current required to obtain the required light emission output for the LD at the temperature T (j) is I d (j).
  • the drive that can be supplied by the drive circuit of the LD Assuming that the current is IC (j), the difference current is The power control adds to the bias current of the LD.
  • This difference current is not subject to on / off control as a modulation current.
  • the current value when the modulation current is turned off is larger than the threshold current, causing extinction failure, or the current value when the modulation current is turned off is smaller than the threshold current.
  • the disadvantage is that light emission is delayed when the size is reduced.
  • the modulation current that can flow in the current source transistor is I1 (Il ⁇ Imod (k)) due to the temperature characteristics of this transistor and the like. If so, a bias current I 2 (I 2> I th (k)) is passed through the bias transistor to obtain the light emission output P m. Then, when the modulation current I 1 is made zero to turn off the LD, the bias current flowing through the LD exceeds the threshold current I th (k) of the LD at the temperature T (k) at that time. This does not completely extinguish the LD. Further, in FIG.
  • the modulated current that can be passed through the current source transistor depends on the temperature characteristic of the transistor, etc., so that I 3 (I 3> I th (i) ), A bias current I 4 (I 4 ⁇ I th (i)) flows in the bias transistor in order to obtain the light emission output Pm.
  • the modulation current I 3 is made zero to turn off the LD
  • the bias current flowing through the LD becomes the threshold current I th (i) of the LD at the temperature T (i) at that time. Therefore, the next time the LD is turned on, the LD must wait for a delay time until the modulation current flowing through the LD exceeds its threshold voltage I th (i). Is emitted.
  • the optical transmission module 1 of the present embodiment takes into consideration the difference between the temperature characteristic of the laser diode 100 and the temperature characteristic of the LD Can control I am trying to. First, the contents will be described.
  • the LD driver 110 includes a transistor Tr1 for determining a bias current flowing to the LD 100 and a transistor Tr2 for determining a modulation current for controlling on / off of the LD 100, for a current source.
  • a transistor Tr 3 and Tr 4 are switching transistors for controlling the on / off of the modulation current.
  • the transistors Tr1 to Tr4 are npn-type bipolar transistors.
  • the transistors Tr 3 and Tr 4 are connected in parallel, the common emitter is connected to the collector of the transistor Tr 2, and the emitter of the transistor Tr 2 is connected to the negative power supply voltage V ee (eg, one 5.2 V).
  • V ee negative power supply voltage
  • a power source of LD 100 is coupled to the collector of the transistor Tr3, and the anode of the LD 100 and the collector of the transistor Tr4 are connected to the other power supply voltage Vcc (for example, 0 V) such as the ground potential. V).
  • a switching control circuit 114 for the transistors Tr 3 and Tr 4 includes a series circuit of the transistors Tr 5 and Tr 6 and a switching circuit for the transistors Tr 7 and Tr 8.
  • a series circuit is placed between the pair of power supply voltages Vcc and Vee.
  • the transistors Tr5 to Tr8 are npn-type bipolar transistors.
  • the bases of the transistors Tr6 and Tr8 are biased at a predetermined voltage, and function as load resistors for the transistors Tr5 and Tr7.
  • the series circuit of the transistors Tr 5 and Tr 6 and the series circuit of the transistors Tr 7 and Tr 8 each constitute an emitter follower circuit, and the emitter of the transistor Tr 5 At the pace of the transistor Tr3, the emitter of the transistor Tr7 is coupled to the base of the transistor Tr4.
  • the bases of the transistors Tr5 and Tr7 are supplied with the differential output of the differential output amplifier AMP.
  • the output of the selector 122 is supplied to the amplifier AMP.
  • the transistor Tr 3 When the base potential of the transistor Tr 3 is set to a high level, the transistor Tr 3 shifts to a saturation state, and when the base of the transistor Tr 4 is set to a high level, the transistor Tr 4 shifts to a saturation state. Is done.
  • the transition of the transistors Tr 3 and ⁇ r 4 to the saturated state is performed in a complementary manner, whereby the transistors Tr 3 and ⁇ ⁇ ⁇ r are operated in a complementary manner to switch the current source.
  • a modulation current is supplied to LD 100 in a pulse form via the transistor Tr 2.
  • the transistor Tr1 has its collector coupled to the collector of the transistor Tr3, and its emitter coupled to the power supply voltage Vee via a resistor R1.
  • This transistor Trl carries a bias current through Ld100 according to the base voltage applied to it.
  • the PD 101 is connected in series to the resistor R3, and is arranged in a reverse connection state between a pair of power supply voltages Vcc and Vee.
  • the PD 101 flows a current according to the light emission output output from the LD 100.
  • an input / output circuit 17 4 of the microcomputer 17 is a digital-to-analog conversion circuit (D / A) 176 for converting a digital signal into an analog signal, and an analog signal. The analog signal is converted into a digital signal.
  • the digital signal conversion circuit (A / D) 177 and other input / output circuits 178 are shown separately.
  • the D / A 176 has two D / A conversion channels DAC 1 and DAC 2 and input registers I REG 1 and I REG 2 corresponding respectively thereto.
  • a / D 177 is 5 A / D conversion channels A It has output registers 0 REG 1 to 0 REG 5 corresponding respectively to DC 1 to ADC 5.
  • the input registers I REG 1 and I REG2 corresponding to the D / A conversion channels D AC1 and D AC 2 are registers into which the D / A conversion target data is loaded by the CPU 170.
  • the data loaded to the input registers I REGl and I REG 2 are D / A converted, and the analog signal obtained by this conversion is based on the base bias voltages of the transistors Tr 1 and Tr 2. Is done.
  • the modulation current to be passed to the transistor Tr3 is determined by the control data set in the manual register I RG2 of the D / A conversion channel DAC2 by the CPU 170. That is, the modulation current to be passed to the transistor Tr3 is determined by the conductance control of the transistor Tr2.
  • the conductance control of the transistor Tr 2 is called modulation current control.
  • the bias current to be supplied to the LD 10 ° is determined by the control data set in the input register REG 1 of the D / A conversion channel DAC 1 by the CPU 170. That is, the bias current flowing through the LD 100 is determined by the conductance control of the transistor Tr1.
  • the conductance control of the transistor Tr1 is called the bias current control of the LD.
  • the CPU 170 individually and arbitrarily controls the modulation current and the bias current that can be supplied to the LD 100 in accordance with the digit setting set for the D / A conversion channels DAC1 and DAC2. Can be. Therefore, the CPU 170 sets the D / A conversion channels D AC 1 and D AC 2 to the data conditions based on the temperature characteristics of the LD 100 etc. with respect to the usage conditions (operating atmosphere conditions) of the optical transmission module 1. In other words, in other words, the data corresponding to the threshold current of LD 100 at the operating ambient temperature at that time is set in D / A conversion channel D AC 1 and the required optical output is set to that value.
  • the LD 100 By setting the data corresponding to the modulation current to be added to the threshold current to obtain the temperature under the temperature in the D / A conversion channel D AC 2, the LD 100 emits light without extinction error or emission delay. It becomes possible to drive. It goes without saying that the light emission output level (light emission intensity) of the LD 100 can also be controlled by controlling the magnitude of the bias current.
  • the A / D conversion channels ADC1 to ADC5 are sequentially connected to a transistor Trl emitter voltage, a transistor Tr2 emitter voltage, a PD 101 anode voltage, and a temperature sensor. 1 Assigned to the input of the detection output voltage of 12, the output voltage of the preamplifier 14 (voltage level corresponding to the received optical output), and.
  • the results of A / D conversion by the A / D conversion channels ADC1 to ADC5 with respect to the assigned input voltage are latched by the corresponding output registers OREG1 to OREG5.
  • the CPU 170 accesses, via the path 175, the data latched in the output registers 0 REG 1 to 0 REG 5.
  • the CPU 170 adjusts the bias current flowing through the transistor Trl, the current flowing through the transistor Tr2, the current flowing through the PD 201, the output of the temperature sensor 10, and the output voltage of the preamplifier 14 as necessary. It can be monitored via the / D conversion circuit 177.
  • the output of the monitor PD101 is also made available for automatic power control. That is, the actual light emission output of the LD 100 is monitored by the PD 101, and whether or not the current corresponding to the monitored light emission output is smaller or larger than the reference potential V ref corresponding to the required light emission output is determined by a comparator 1 13. Judgment is made, and the bias current flowing to LD100 via the transistor Tr1 is increased or decreased according to the judgment result.
  • Reference numeral 15 denotes an APC control circuit for forming a reference potential Vref, and the actual light emission output of the LD 100 is monitored by the PD 101, and the average value of the current corresponding to the monitored light emission output and the current value at that time are calculated.
  • the reference potential V ref is initialized based on the average value (mark rate) of the amplifier AMP input signal.
  • the auto power control is made to assist the bias current control based on the output of the D / A 176. For example, when bias current control is performed based on the output of D / A 176, feedback control by the auto power control is repeated, assuming that the required emission output cannot be obtained. Do. However, in such a case, it is desirable that the control amount (the amount of increase or decrease of the bias current) of the feedback system by the auto power control should be relatively small.
  • the CPU 170 monitors the output current of the PD 101 via the A / D 177, compares the actual light output of the LD 100 with the light output of the LD 100, and It is possible to detect, for example, a state where the light output is lower than a predetermined value with respect to the target light output.
  • the CPU 170 monitors the bias current actually flowing through the transistor Tr 1 via the A / D 177, and the monitored current value and the bias current flowing through the transistor Tr 1 via the D / A 176.
  • the bias current can be detected based on the difference between the bias current and the bias current.
  • the CPU 170 monitors the modulation current actually flowing to the transistor Tr 2 via the A / D 177, and outputs the modulated current to the transistor Tr 2 via the D / A 176. By comparing the modulation current with the modulation current to be supplied, the abnormality of the modulation current can be detected based on the difference.
  • the LD drive control data for the modulation current control and the bias current control for driving the LD 100 are the data to be set in the DAC 1 and DAC 2 to obtain the target optical output.
  • the table structure is provided for each ambient temperature, and is written in a predetermined area of the flash memory 173 of the microcomputer 170.
  • the ambient temperature where the optical transmission module 1 is placed is obtained from the temperature sensor 112 via the A / D conversion channel ADC4.
  • the light output to be output by the optical transmission module 1 is of a nature that is physically determined according to the communication environment in which it is placed. For example, an operation program of the CPU 170 or an external The CPU 170 is notified by an instruction from the CPU or a signal from a circuit such as a dip switch. Further, light emission output control based on the attenuation rate or light emission output control based on the correction coefficient? Is performed. Accordingly, the CPU 170 selects the required light emission output and the LD drive control data corresponding to the detected use environment temperature from the table of the flash memory 173. As a result, the threshold current and the modulation current according to the actual temperature characteristics of the LD 100 are given to the LD 100, and the LD 100 can be driven to emit light without a quenching error or a light emission delay.
  • FIG. 10 shows a flow chart of light output control using the correction coefficient described in FIG.
  • Control of the optical output level using 7 is performed as part of the power-on reset (or other resets). This processing is performed, for example, by power-on processing when the subscriber network device ONU is first installed. In this process, an arbitrary signal is transmitted from the subscriber line station apparatus SLT to the subscriber network apparatus 0NU at a standard optical transmission level. Using this transmission signal, a correction coefficient r? Is obtained. First, when a power-on reset is instructed, the CPU 170 measures the temperature of the optical transmission module 1 by the temperature sensor 112 (ST 1), and obtains a standard optical output under the temperature.
  • the required LD drive control data (modulation current setting data for obtaining modulation current Im, and bias current setting data for obtaining bias current Ib) are stored in the flash memory 1 13 through D / A conversion channel Input register of DAC 1 and DAC 2 I REG 1 and I REG 2 Initialize (ST2).
  • the received light signal is monitored by the bin photodiode 13 (S ⁇ 3). That is, the output of the preamplifier 14 is converted into a digital signal by the A / D conversion channel ADC 5, and the received result is monitored by the CPU 170 via the output register OREG 5 to monitor the received light.
  • a correction coefficient 7? Is calculated (S S5) c that is, the monitor voltage Is the voltage Y described in FIG.
  • the conversion coefficient ⁇ , (5 is a known value from the circuit characteristics of each optical transmission module described in FIG. 5.
  • the voltage X described in FIG. 5 is also a known voltage.
  • the optical output PB described in FIG. 5 corresponds to the modulation current setting data Im set in the step ST2. Therefore, in step ST6, Im is multiplied by 77 to obtain a new modulation current setting data Im. By providing the corrected modulation current setting data Im to the D / A conversion circuit 176, the modulation current is doubled as the modulation current set in step ST2 (ST7). Thereafter, when the input data is supplied from the input circuit 12, the current path of the LD 100 is turned on / off accordingly, and the LD 100 is driven to emit light and extinguish. In this way, the subscriber line unit SLT can receive a signal from any of the subscriber line network devices ONU at a level corresponding to the standard optical output.
  • the transmission mode is not limited to the PDS.
  • the optical fiber is laid radially from the single-sided equipment, which makes each network terminator correspond to the one-sided circuit on a one-to-one basis, and a remote multiplexing device is installed ahead of it.
  • the transmission medium may be further radially wired. It may also be a SONET-SDH system.
  • the optical transmission system of the present invention is not limited to a telephone or an ISDN, but is naturally applicable to a LAN (Local Area Network) and the like. Industrial applicability
  • the present invention can be widely applied to an optical transmission module that converts an optical signal and an electric signal in optical transmission, and an optical transmission module such as a PDS in which an optical fiber is introduced into a telephone or an ISDN subscriber system. Can be applied to the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Let the received level of reference light of an optical transmission module (1, 1A) included in an optical transmission system be m, the transmitted level thereof be n, and the attenuation factor of the light signal fed from a subscriber line station unit (SLT) and received by a subscriber line network unit (ONU) (#1) be α (= received level/n). Then the optical output level of the subscriber line network unit (ONU) (#1) is mx1/α. Thus the ONU (#1) outputs the light signal of an output level which is the product of the input and the inverse number of the attenuation factor to the SLT, and hence the SLT receives the signal at the reference light received level m from any of the ONUs. Therefore, the gain control of the circuit which amplifies the received levels of a plurality of kinds of light signals having suffered different line losses and the resetting of the threshold voltage for detecting the logical value of the received signal are simplified or the circuits for controlling the gain and resetting the threshold voltage are eliminated.

Description

明 細 書 光伝送モジュール及び光伝送システム 技術分野  Description Optical transmission module and optical transmission system
本発明は、 光伝送モジュール及び光伝送システムに係り、 例えば電話 や I SDN (Integrated Service Digital Network) などの加入者系に 光ファイバのような光ケーブル導入するのに適用して有効な技術に関 する。 背景技術  The present invention relates to an optical transmission module and an optical transmission system, and more particularly to a technology that is effective when applied to introduce an optical cable such as an optical fiber into a subscriber system such as a telephone or an integrated service digital network (ISDN). . Background art
光ファイバを用いた情報伝送は、高帯域性能や電気的絶縁性などによ り情報伝送システムのフレキシピリティーが大きく、マルチメディァに 代表されるようにビデオを含むあらゆるデータが一括的にデータ処理 される傾向にとって、 光伝送の優位制は抜群である。 今日、 電話や I S D Nなどの加入者系にも光ファイバのような光ケーブルが導入されよ うとしている。 光伝送システムにおいては、 光ファイバで接続されたセ ン夕一側回路と網終¾装置は光伝送モジユールを備えることになる。光 伝送モジュールは、光信号と電気信号を双方向で変換するモジュールで あり、光送信側には例えばレーザダイォード及びその駆動回路などを備 え、 光受信側にはフォ 卜ダイォード及び信号抽出回路等を備える。 尚、光伝送システムについて記載された文献の例としては株式会社ォ —ム社発行 (60年 12月 25日) の 「 LS Iハンドブック」第 100 4頁及び第 1005頁がある。  In information transmission using optical fibers, the flexibility of the information transmission system is high due to high bandwidth performance and electrical insulation, and all data including video is processed collectively as represented by multimedia. The dominance of optical transmission is outstanding. Today, optical cables such as optical fibers are being introduced to subscriber systems such as telephones and ISDN. In an optical transmission system, the circuit connected to the optical network and the network termination device will have an optical transmission module. The optical transmission module is a module that bidirectionally converts an optical signal and an electric signal. The optical transmitting side includes, for example, a laser diode and its driving circuit, and the optical receiving side includes a photo diode and a signal extracting circuit. Etc. are provided. Examples of documents describing the optical transmission system include “LSI Handbook”, pages 1004 and 1005, published by OM Corporation (December 25, 1960).
第 1 1図には電話や I S D Nに光ファイバを導入したシステム例が 示される。 ONUは加入者線ネッ 卜ワーク装置、 S LTは加入者線局装 ^である。加入者線ネッ トワーク装置 ONU及び加入者線局装置 S LT には電気信号と光^号を双方向で変換する光伝送モジュールが含まれ ている。光伝送モジュールは光ファイバ一 0 P Fゃス夕一力ブラ S CP を介して接続されている。 Fig. 11 shows an example of a system in which optical fibers are introduced into telephones and ISDN. ONU is for subscriber line network equipment, SLT is for subscriber line equipment ^. The subscriber line network device ONU and the subscriber line station device SLT include an optical transmission module that converts electric signals and optical signals in both directions. The optical transmission module is connected via an optical fiber cable.
上記のようなシステムに代表されるネヅ 卜ワークシステムでは、加入 者線局装置 S L Tに対して加入者線ネッ トワーク装置 ONUの距離は まちまちであり、 # 1の加入者線ネッ トワーク装置 ON Uからの光信号 レベルは # 2の加入者線ネッ 卜ワーク装置 ON Uからの光信号レベル に比べて大きくなる。 そのように、種々の加入者線ネッ トワーク装置 0 NUからの光信号レベルが相違されるとき、加入 #線 装; S L Tがそ れら信号を誤りなく判定するには、入力信号レベルに応じてそれを增幅 するアンプのゲインを変更し、入力信号の論理値を識別する回路のしき い値レベルを変更して、入力信号に対する論理値の判定を誤りなく行え るようにしなければならない。  In a network system represented by the above system, the distance of the subscriber line network device ONU to the subscriber line station device SLT varies, and the # 1 subscriber line network device ON U The optical signal level from the optical network is larger than the optical signal level from the # 2 subscriber line network device ONU. As such, when the optical signal levels from the various subscriber line network units 0NU are different, the subscriber line unit; in order for the SLT to determine these signals without error, depending on the input signal level, It is necessary to change the gain of the amplifier that widens it and change the threshold level of the circuit that identifies the logical value of the input signal so that the logical value of the input signal can be determined without error.
このため、 加入者線; ¾装置 S L Tの光伝送モジュールは、 加入者線ネ ッ トワーク装置 ON U毎のデータに対して前記アンプのゲインコン ト ロールやしきい値レベルの設定をやり直すことにより、加入 ¾線 装置 S L Tは全てのデータを認識できるようになつている。  For this reason, the optical transmission module of the subscriber line network device SLT renews the gain control and threshold level of the amplifier for the data of each subscriber line network device X-ray equipment SLT can recognize all data.
しかしながら、 上記システムにおいて、 送受光特性は、 標準で 7 Km 伝達するのにスター力ブラによる分岐損失、 光ファイバ一損失、 及びコ ネク夕損失等の媒体損失により、装置の入出力点での光出力レベルは— 7〜― 2. 5 dBmとされ、 受光電力は平均値で— 34 dBmとされる c そのような損失幅に対して対応可能なゲインコン トロールやしきい値 レベル変更のための回路は、光レシーバ若しくは光伝送モジュールのコ ス トを上昇させる。 However, in the above system, the transmission / reception characteristics of the light at the input / output points of the device are limited by the medium loss such as the branch loss due to the star force bra, the loss of the optical fiber, and the connection loss even though the transmission is 7 km as standard. output level - 7~- 2. is a 5 dBm, the light receiving power of the average value - circuit for the corresponding possible Geinkon trawl or threshold level changes with respect to c such losses width that is 34 dBm Increases the cost of the optical receiver or optical transmission module.
本発明は、 上記事情に鑑みてなされたものであり、 異なる線路損失を 受けた複数種類の光受信レベルに対してそれを増幅する回路のゲイ ン コン トロールや論理値判定のためのしきい値レベル再設定の処理を大 幅に簡略化し若しくはそのための回路を不要にできる光伝送システム、 そしてそのような光伝送システムに最適な光伝送モジュールを提供す ることにある。 The present invention has been made in view of the above circumstances, and has different line losses. The gain control of the circuit that amplifies the received optical reception level of multiple types and the process of resetting the threshold level for logical value judgment can be greatly simplified or the circuit for that can be eliminated. An object of the present invention is to provide an optical transmission system and an optical transmission module most suitable for such an optical transmission system.
本発明の前記ならびにその他の目的と新規な特徴は本明細書の以下 の記述から明らかにされるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the following description of the present specification. Disclosure of the invention
本発明の第 1の観点による光伝送システムは、 通信ホス ト装置と、 こ の通信ホス ト装置に光ケーブルで接続された複数個の通信端末装置と を含む。前記通信ホス ト装置と通信端末装置は前記光ケーブルに夫々接 続された光伝送モジュールを含む。夫々の光伝送モジュールは電気信号 と光信 を双方向に変換して入出力するものであり、前記通信端末装置 の光伝送モジュールは、 通信ホス ト装置との問の伝送損失(線路損失と も称する)の違いに応じて光信号の出力レベルを制御し、 通信ホス 卜装 置の光伝送モジュールは、相互に伝送損失の異なる通信端末装置から実 質的に受信レベルの等しい光信号を入力する。 これによれば、 通信ホス 卜装置においては、異なる線路損失を受けた複数種類の受信信号に対し てそれを増幅する回路のゲインコン トロールやしきい値レベルの再設 定を大幅に簡略化し若しくはそのための回路不要にできる。 また、 通信 ホス ト装置において光信号を受けるフォ トダイォー ドの感度を特に高 性能とすることを要しない。 これらによって、 光伝送システムのコス 卜 を低減することができる。特に、 デ一夕信号とは別に同期信号を供給し ないでデ一夕伝送を行うバース 卜転送モ一ド、例えば P D Sシステムに 代表されるようなパース ト伝送方式のシステムにおいては、 従来、 高精 度なゲインコン トロールは必須であると考えられており、上記システム では、 P D Sシステムにおいても、 前記ゲインコン トロールやしきい値 レベル再設定を大幅に簡略化し若しくはそのための回路を不要にでき る。 An optical transmission system according to a first aspect of the present invention includes a communication host device and a plurality of communication terminal devices connected to the communication host device by an optical cable. The communication host device and the communication terminal device each include an optical transmission module connected to the optical cable. Each optical transmission module converts bidirectionally an electric signal and an optical signal into and out of input and output, and the optical transmission module of the communication terminal device has a transmission loss (also referred to as a line loss) between the communication terminal device and the communication host device. The output level of the optical signal is controlled according to the difference in (1), and the optical transmission module of the communication host device inputs an optical signal having substantially the same reception level from communication terminal devices having different transmission losses. According to this, in the communication host device, the gain control and the resetting of the threshold level of a circuit for amplifying a plurality of types of received signals suffering different line losses are greatly simplified or performed. Circuit is unnecessary. In addition, it is not necessary that the sensitivity of the photodiode receiving the optical signal in the communication host device be particularly high. Thus, the cost of the optical transmission system can be reduced. In particular, in a burst transfer mode for performing data transmission without supplying a synchronization signal separately from the data transmission signal, for example, in a system of a burst transmission system represented by a PDS system, a high transmission rate is conventionally used. Spirit It is considered that the gain control is indispensable, and in the above-mentioned system, the gain control and the resetting of the threshold level can be greatly simplified or the circuit for that can be eliminated even in the PDS system.
本発明の第 2の観点による光伝送システムでは、光信 1の伝送損失が 相互に異なる前記通信端末装置は、通信ホス ト装置の光出力に対する減 £ された光入力の割合である減衰率の概ね逆数倍の関係を持って光出 力を形成する光伝送モジュールを有する。 これによつても、 通 i ホス 卜 装置の光伝送モジュールは、相互に伝送損失の異なる通信端末装^から 実質的に受信レベルの等しい光信号を入力できる。 In the optical transmission system according to the second aspect of the present invention, the communication terminal devices in which the transmission loss of the optical signal 1 is different from each other are substantially equal to an attenuation factor which is a ratio of the reduced optical input to the optical output of the communication host device. It has an optical transmission module that forms optical output with a reciprocal multiple. Also according to this, the optical transmission module of the communication i-host device can input optical signals having substantially the same reception level from communication terminal devices having different transmission losses.
本発明の第 3の観点による光伝送システムでは、前記通信端末装置に 含まれる光伝送モジユールは、通信ホス ト装置の光出カレベルに対する 減袞された入力レベルの割合である減衰率に基づいて、光出力を基準出 カレベルに対し前記減衰率の概ね逆数倍に制御する。これによつても、 通信ホス 卜装置の光伝送モジュールは、相互に伝送損失の異なる通信端 末装置から実質的に受信レベルの等しい光信号を入力できる。  In the optical transmission system according to the third aspect of the present invention, the optical transmission module included in the communication terminal device is configured based on an attenuation rate that is a ratio of the reduced input level to the light output level of the communication host device. The light output is controlled to be approximately the reciprocal of the attenuation rate with respect to the reference output level. Also according to this, the optical transmission module of the communication host device can input optical signals having substantially the same reception level from the communication terminal devices having different transmission losses.
上記第 3の観点による光伝送システムでは、前記通信端末装置に含ま れる光伝送モジュールは、入力された電気信 に基づいてレーザダイォ ―ドを駆動する ドライバ回路と、前記ドライバ回路の動作を制御するマ イク口コンビュ一夕とを含む。前記マイクロコンピュー夕は、 C P Uと、 前記レーザダイォードに対する駆動電流を目標光出力に応じて決定す るための駆動制御デ一夕が前記 C P Uによって与えられる記憶 ^段と、 この記憶手段に記憶された駆動制御データをアナログ信号に変換して 前記ドライバ回路に与え、 レーザダイォードの駆動電流を決定する D / Α変換手段とを含んで成る。  In the optical transmission system according to the third aspect, the optical transmission module included in the communication terminal device includes a driver circuit that drives a laser diode based on an input electric signal, and a driver circuit that controls an operation of the driver circuit. Includes Ikuguchi Convenience Store. The microcomputer includes: a CPU; a storage unit in which a drive control data for determining a drive current for the laser diode according to a target light output is provided by the CPU; And D / Α conversion means for converting the obtained drive control data into an analog signal and providing the analog signal to the driver circuit, and determining the drive current of the laser diode.
前記レーザダイォードに対する電流駆動という観点において、前記マ イク口コンビユー夕は、 レーザダイォ一ドに対する駆動電流を目標光出 力と温度に応じて决定するための駆動制御データのテーブルを有し、前 記 C P Uは、目標光出力と温度に応じた駆動制御データを前記テーブル から選択し、選択した駆動制御デ一夕を前記元帥率の逆数倍にして前記 記憶手段に与えることができる。 In view of the current drive for the laser diode, the The outlet has a drive control data table for determining the drive current for the laser diode according to the target light output and the temperature, and the CPU controls the drive control according to the target light output and the temperature. Data can be selected from the table, and the selected drive control data can be given to the storage means as a reciprocal multiple of the marshal rate.
また、 そのとき、 前記通信端末装置に含まれる光伝送モジュールは、 入力された光信号をフォ トダイォードで電気信号に変換し、変換された 電気信号を増幅して出力する光受信部を更に含む場合、前記 C P Uは、 前記光受信部にて変換された電気信号を入力し、この電気信号に基づい て前記減衰率を演算することができる。  Further, at this time, the optical transmission module included in the communication terminal device may further include an optical receiver that converts the input optical signal into an electric signal by photodiode, amplifies the converted electric signal, and outputs the amplified electric signal. The CPU can input the electric signal converted by the optical receiving unit, and calculate the attenuation rate based on the electric signal.
本発明の第 4の親点による光伝送システムでは、前記通信端末装置に 含まれる光伝送モジュールは、通信ホス ト装置から受信した光出力信号 を電圧信号 Yに変換するための第 1光電変換係数ァと、前記通信ホス ト 装置における光出力信号を電圧信号 Xに変換するための第 2光電変換 係数 (5とによって補正係数 7? = ( ΧΖ τ / ( Υ / 5 ) を取得し、 前記 通信ホス 卜装置における光出力信号に応ずる駆動制御データを 7?倍し たデ一夕によって光出力を制御する。  In the optical transmission system according to the fourth parent point of the present invention, the optical transmission module included in the communication terminal device includes a first photoelectric conversion coefficient for converting an optical output signal received from the communication host device into a voltage signal Y. And a second photoelectric conversion coefficient (5) for converting an optical output signal in the communication host device into a voltage signal X (5 and a correction coefficient 7? = (ΧΖτ / (Υ / 5)). The light output is controlled by multiplying the drive control data corresponding to the light output signal in the host device by 7 times.
このとき、 前記通信端末装置に含まれる光伝送モジュールは、 入力さ れた電気信号に基づいてレーザダイォードを駆動する ドライバ回路と、 前記ドライバ回路の動作を制御するマイク口コンビュ一夕とを含んで 構成できる。 前記マイクロコンビユー夕は、 C P Uと、 前記レーザダイ ォ一ドの駆動電流を泱定するための駆動制御デ一夕が前記 C P Uによ つて与えられる記憶手段と、この記憶手段に記憶された駆動制御デ一夕 をアナログ信号に変換して前記ドライバ回路に与え、 レーザダイォ一ド の駆動電流を決定する D / A変換手段とによって構成できる。このとき は、前記通信ホスト装置の光出力信号に対応される駆動制御データが 7? 倍される。 また、 前記マイクロコンビユー夕は、 前記電压信号 Yを得る ために、 受信された光信号 (アナログ信号) をディジタル信号に変換す る A / D変換手段を有する。 At this time, the optical transmission module included in the communication terminal device includes: a driver circuit that drives a laser diode based on an input electric signal; and a microphone opening unit that controls an operation of the driver circuit. It can be composed of The micro-computer includes: a CPU; a storage unit provided with a drive control data for setting a drive current of the laser diode by the CPU; and a drive control stored in the storage unit. D / A conversion means for converting the data into an analog signal and supplying the analog signal to the driver circuit, and determining the drive current of the laser diode. At this time, the drive control data corresponding to the optical output signal of the communication host device is 7? Multiplied. Further, the microcombiner has A / D conversion means for converting a received optical signal (analog signal) into a digital signal in order to obtain the electric signal Y.
上記光伝送システムに最適な光伝送モジュールは、入力された電気信 号を光信号に変換して出力する光送信部と、入力された光信号を電気信 -に変換して出力する光受信部と、前記光送信部及び光受信部の動作を 制御するマイクロコンビュ一夕とを含み、前記マイク口コンビユー夕は、 光信号の基準レベルに対する入力レベルの割合である減衰率に基づい て、光出力を基準出力レベルに対し前記減衰率の概ね逆数倍に制御する ものである。  The optical transmission module most suitable for the optical transmission system includes an optical transmission unit that converts an input electric signal into an optical signal and outputs the same, and an optical reception unit that converts the input optical signal into an electric signal and outputs the same. And a micro-computer for controlling the operation of the optical transmitter and the optical receiver, wherein the microphone-port convenience is based on an attenuation rate which is a ratio of an input level to a reference level of an optical signal. Is controlled to be approximately the reciprocal multiple of the attenuation rate with respect to the reference output level.
この光伝送モジュールにおいて、 前記光送信部は、 人力された電気信 ^に基づいてレーザダイォードを駆動する ドライバ回路を含み、前記マ ィクロコンピュー夕は、 C P Uと、 前記レーザダイォードに対する駆動 電流を目標光出力に応じて决定するための駆動制御データが前 ΰΰ〇 ρ Uによって与えられる記憶手段と、この記憶手段に記憶された駆動制御 データをアナログ信号に変換して前記ドライバ回路に与え、レーザダイ ォ一ドの駆動電流を決定する D / A変換手段とを含んで構成すること ができる。 また、 前記マイクロコンビュ一夕が、 レ一ザダイォ一ドに対 する駆動電流を目標光出力に応じて決定するための駆動制御データの テーブルを有するとき、 前記 C P Uは、 目標光出力に応じた駆動制御デ —夕を前記テーブルから選択し、 前記記憶手段に与える。 図面の簡単な説明  In this optical transmission module, the optical transmission unit includes a driver circuit that drives a laser diode based on a manually input electric signal, and the microcomputer includes a CPU, and a driving current for the laser diode. A drive means for determining drive control data according to the target light output, and a drive means for converting the drive control data stored in the memory means into an analog signal and providing the analog signal to the driver circuit; D / A conversion means for determining the drive current of the laser diode can be included. Further, when the microcomputer has a table of drive control data for determining a drive current for the laser diode according to the target light output, the CPU executes the drive according to the target light output. The control data is selected from the table and given to the storage means. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る光伝送システムの一例である P D Sシステム のブロック図である。  FIG. 1 is a block diagram of a PDS system which is an example of the optical transmission system according to the present invention.
第 2図は P D Sシステムにおける時分割多重アクセス制御のための 上り信号送出タイ ミング指定についての説明図である。 Fig. 2 is a diagram for time division multiple access control in a PDS system. FIG. 7 is an explanatory diagram of designation of an uplink signal transmission timing.
第 3図は光伝送モジュールの一例プロック図である。  FIG. 3 is a block diagram of an example of the optical transmission module.
第 4図は減衰率の取得とそれを考慮した光出力レベルの制御処理の 一例を示すフローチャートである。  FIG. 4 is a flowchart showing an example of the process of obtaining the attenuation factor and controlling the light output level taking this into account.
第 5図は加入者ネッ トワーク装置における光出力レベルを制御する 別の手法の原理説明図である。  FIG. 5 is a diagram for explaining the principle of another method for controlling the optical output level in the subscriber network device.
第 6図は L Dの温度特性とそれに関連する消光不良及び発光遅延の 説明図である。  FIG. 6 is an explanatory diagram of the temperature characteristics of the LD and the associated extinction failure and emission delay.
第 7図はある一定の光出力を得る場合に必要な順方向電流 I dが温 度に対して非線形的に変化されることを示す説明図である。  FIG. 7 is an explanatory diagram showing that the forward current Id required to obtain a certain light output is nonlinearly changed with temperature.
第 8図は光トランスミ ッ夕の詳細な一例を示す回路図である。  FIG. 8 is a circuit diagram showing a detailed example of an optical transmitter.
第 9図はレーザダイォードの電流経路をオン/オフ制御する トラン ジス夕のスィ ッチング制御回路の一例回路図である。  FIG. 9 is a circuit diagram of an example of a switching control circuit for controlling the on / off of the current path of the laser diode.
第 1 0図は第 5図で説明した補正係数 7?を用いる光出力制御の一例 フロ一チヤ一卜である。 .  FIG. 10 is a flowchart showing an example of light output control using the correction coefficient 7? Explained in FIG. .
第 1 1図は P D Sのシステムを例示的に示すプロック図である。 発明を実施するための最良の形態  FIG. 11 is a block diagram exemplifying a PDS system. BEST MODE FOR CARRYING OUT THE INVENTION
《光伝送システム》  《Optical transmission system》
第 1図には本発明の一実施例に係る光伝送システムのプロック図が 示される。図には電話や I S D Nに光ファイバを導入したシステム例が 示される。 O N Uは通信端末装置としての加入者線ネッ トワーク装置、 S L Tは通信ホス ト装置としての加入者線局装置、 E Xは交換機である。 加入者線ネッ トワーク装置 0 N U及び加入者線局装置 S L Tには電気 信号と光信号を双方向で変換する光伝送モジュール 1 , 1 Aが含まれて いる。 光伝送モジュール 1, 1 Aは光ファイバ一 O P Fや受動素子から 成るス夕一力ブラ S C Pを介して接続されている。加入者線ネッ トヮ一 ク装置 ONUに付された # 1、#2は加入者線ネッ 卜ワーク装置 ONU に固有の番号情報である。 FIG. 1 shows a block diagram of an optical transmission system according to one embodiment of the present invention. The figure shows an example of a system in which optical fibers are installed in telephones and ISDN. ONU is a subscriber line network device as a communication terminal device, SLT is a subscriber line station device as a communication host device, and EX is an exchange. The subscriber line network device 0NU and the subscriber line station device SLT include optical transmission modules 1 and 1A for bidirectionally converting an electric signal and an optical signal. Optical transmission module 1, 1 A is made from optical fiber OPF or passive element Connected via SCP. # 1 and # 2 attached to the subscriber line network device ONU are number information unique to the subscriber line network device ONU.
上記のようなシステムに代表されるネッ トワークシステムは、例えば 前記 P D Sとされる。 この P D Sシステムは、 1本の光ファイバ一を用 いて単一波長で双方向通信を実現するために、上り方向に信号を伝送す る時間と、 下り方向に信号を伝送する時間とを分ける (TCM:時間軸 压縮双方向多重) と共に、 各加入者線ネッ トワーク装置 ONUからの上 り方向の信号が衝突しないように信号の送出タイ ミングが制御(T DM A:時分割多重アクセス制御) される。  A network system represented by the above system is, for example, the PDS. This PDS system separates the time for transmitting signals in the upstream direction and the time for transmitting signals in the downstream direction in order to realize bidirectional communication at a single wavelength using one optical fiber ( Along with TCM: time axis reduction bidirectional multiplexing), signal transmission timing is controlled so that upward signals from each subscriber line network unit ONU do not collide (TDMA: time division multiple access control). Is done.
前記 T CMでは、フレーム時間の約半分で加入者線局装置 S L Tから 加入者線ネッ トワーク装置 ON Uに下り信号を送出し、残りの半部で逆 方向の上り信号を送出可能にする。  In the TCM, a downlink signal is transmitted from the subscriber line station device SLT to the subscriber line network device ONU in about half of the frame time, and a reverse uplink signal can be transmitted in the other half.
TDMAは、 通信の開始に当たって、 加入者線局装 US L Tと各加人 者線ネツ トワーク装置 ONUとの間の伝送遅延時間を測定し、夫々の加 入者線ネッ 卜ワーク装置 ON Uから上りバース ト信 ¾が重ならないよ うに、 第 2図に例示されるように、 オーバーへヅ ド (OH)信号を利用 して、 アドレス (各々の加入者線ネッ トワーク装置に固有の識別番号) の指定と共に送出タイ ミングを各加入者線ネッ トワーク装置 ONUに 指示する。 各加入者線ネッ 卜ワーク装置 ON Uからの上り信号は、 位相 がランダムであるため、これらの再生に必要なプリアンブルが各加入者 線ネッ トワーク装置 ONUからの上り信号の先頭に 1バイ ト付加して いる。 このようにして各加入者線ネッ トワーク装置 ON Uは、 指示され た送出タイミングにより、 バース 卜信号を送出する。送出されたバース 卜信号は、 スター力ブラでパッシブ多重され、 加入者線局装置 S L Tの 受信点では各加入者線ネッ トワーク装置 0NUからのバース ト信号が 順に並ぶ。 このようにして、 1本の光ファイバ一を用いて複数の加入者 線ネッ トワーク装置 ONUを収容することが可能になる。 At the start of communication, TDMA measures the transmission delay time between the subscriber line equipment USLT and each of the subscriber line network devices ONU, and transmits the data from each subscriber line network device ONU. As shown in Fig. 2, the overhead (OH) signal is used to identify the address (identification number unique to each subscriber line network device) so that the burst signal does not overlap. Along with the designation, the transmission timing is instructed to each subscriber line network unit ONU. Since the upstream signal from each subscriber line network unit ONU has a random phase, the preamble required for the reproduction is added to the head of the upstream signal from each subscriber line network unit ONU by one byte. are doing. In this way, each subscriber line network device ONU transmits a burst signal at the specified transmission timing. The transmitted burst signal is passively multiplexed by a star power blur, and at the receiving point of the subscriber line station device SLT, the burst signal from each subscriber line network device 0NU is transmitted. Lined up in order. In this way, it is possible to accommodate a plurality of subscriber line network devices ONU using one optical fiber.
スター力ブラで分岐された複数の各線路に対しては、 0〜7 Km程度 の相違が許容され、光伝送においてはそれに応じた線路の伝送損失を生 ずる。このような伝送損失によって加入者線局装置 S L Tの受信点にお いて光受信レベルがランダムにならないように、以下の考慮が払われて いる。  A difference of about 0 to 7 Km is allowed for each of the multiple lines split by the star power bra, and the corresponding line transmission loss occurs in optical transmission. The following considerations are made so that the optical reception level does not become random at the reception point of the subscriber line equipment SLT due to such transmission loss.
即ち、加入者線ネッ トワーク装置 ON U及び加入者線局装置 S L丁の 夫々が含む光伝送モジュール 1, 1 Aは電気信 と光信号を双方向に変 換して入出力するものであり、加入者線ネッ トワーク装置 ONUの光伝 送モジュール 1は、加入者線局装置 S L Tとの間の伝送損失の違いに応 じて光信号の出力レベルを制御し、加入者線局装置 S L Tの光伝送モジ ユール 1 Aは、相互に伝送損失の異なる加入者線ネッ トワーク装置 ON Uから実質的に受信レベルの等しい光信号を入力する。 具体的には、 光 信号の伝送損失が相互に異なる前記加入者線ネッ 卜ワーク装置 ON U は、加入者線局装置 S L Tの光出力に対する減衰された光入力の割合で ある減衰率の概ね逆数倍の関係を持って光出力を形成する光伝送モジ ユール 1を有する。見方を変えれば、 前記加入者線ネッ トワーク装置〇 NUに含まれる光伝送モジュール 1は、加入者線局装置 S L Tの光出力 レベルに対する減衰された入力レベルの割合である減衰率に基づいて、 光出力を基準出力レベルに対し前記減衰率の概ね逆数倍に制御する。 例えばシステム全体における光伝送モジュール 1, 1 Aの標準光受信 レベルを m、標準光送信レベルを nとすると、 加入者線局装置 S L Tか ら与えられて加入者線ネッ トワーク装置 0NU (# 1 )が受信する光信 号の減衰率がひ (=受信レベル/ n)のとき、 この加入者線ネッ トヮ一 ク装置 ON U (# 1 ) の光出力レベルは、 mx l/ひにされる。 また、 加入者線ネッ トワーク装置 O N U ( # 2 ) における減衰率が/? (ニ受倡- レベル/ n ) のとき、 この加入者線ネッ 卜ワーク装置 0 N U ( # 2 ) の 光出力レベルは、 ni x にされる。 このように、 加入者線ネッ トヮ ーク装置 0 N Uが入力の減衰率の逆数倍の出力レベルで光信号を加入 者線局装置 S L Tに出力することにより、加入者線^装置 S L Tはどの 加入者線ネッ トワーク装置 0 N Uからの信号も標準光受信レベル mで 受 βすることができるようになる。 That is, the optical transmission modules 1 and 1A included in each of the subscriber line network device ONU and the subscriber line station device SL convert and input / output electrical and optical signals in both directions. The optical transmission module 1 of the subscriber line network device ONU controls the output level of the optical signal in accordance with the difference in transmission loss between the subscriber line device SLT and the optical network module of the subscriber line device SLT. The transmission module 1A inputs optical signals having substantially equal reception levels from the subscriber line network units ONU having different transmission losses. Specifically, the subscriber line network device ON U having different transmission loss of the optical signal is substantially opposite to the attenuation rate which is the ratio of the attenuated optical input to the optical output of the subscriber line station device SLT. It has an optical transmission module 1 that forms an optical output with a relationship several times higher. In other words, the optical transmission module 1 included in the subscriber line network device NUNU is based on an attenuation rate that is a ratio of the attenuated input level to the optical output level of the subscriber line station device SLT. The output is controlled to be approximately the reciprocal times the attenuation rate with respect to the reference output level. For example, assuming that the standard optical reception level of the optical transmission modules 1 and 1A in the entire system is m and the standard optical transmission level is n, the subscriber line network equipment 0NU (# 1) given from the subscriber line station equipment SLT. When the attenuation rate of the optical signal received by the subscriber line network is high (= reception level / n), the optical output level of the subscriber line network device ONU (# 1) is set to mxl / high. Also, When the attenuation rate at the ONU (# 2) of the subscriber line network is /? (Starting-level / n), the optical output level of the network device 0NU (# 2) is ni x. In this manner, the subscriber line network device 0 NU outputs an optical signal to the subscriber line station device SLT at an output level that is the reciprocal multiple of the input attenuation factor, and the subscriber line device SLT becomes Signals from any of the subscriber line network units 0NU can be received at the standard optical reception level m.
したがって、 加入者線局装置 S L Τの伝送モジュール 1 Αは、 従来の ように、加入者線ネッ 卜ワーク装置 0 N U毎のランダムな受信レベルに 対してその論理値を判定するためにアンプのゲインコントロール(論理 値判定のためのしきい値電圧のコン トロール) をやり I有して、 加入者線 局装置 S L Tが全ての加入者線ネッ 卜ワーク装置 0 N Uのデ一夕を認 識できるようにする、 という処理を一切不要にできる。 更には、 そのよ うなゲインコン トロールやしきい値電圧コン トロールを加入者線ネッ トワーク装置 O N U毎の受信データに対して行うための回路構成を不 要にすることが可能になる。 また、 加入者線局装置 S L Tにおいて光信 号を受けるフォ トダイォードの感度を特に高性能とすることを要しな い。 これらによって、 デ一夕信号とは別の同期信号を供給しないでデー 夕伝送を行うバース ト転送モード、例えば P D Sシステムに代表される ようなバースト伝送方式のシステムにおいては、 従来、 高精度なゲイン コントロールなどが必須であると考えられいたが、本実施例システムを 採用することによって、 P D S光伝送システムのコス トを低减すること ができる。  Therefore, as in the prior art, the transmission module 1 局 of the subscriber line station apparatus SL 、 is used to determine the logical value of the random reception level of each of the subscriber line network apparatus 0 NUs. Performs control (control of threshold voltage for logical value judgment) so that the subscriber line station equipment SLT can recognize all subscriber line network equipment 0 NU data. Can be completely eliminated. Further, it is possible to eliminate the need for a circuit configuration for performing such gain control and threshold voltage control on received data for each subscriber line network device ONU. Also, it is not necessary to make the sensitivity of the photodiode receiving the optical signal particularly high in the subscriber line equipment SLT. As a result, in a burst transfer mode in which data transmission is performed without supplying a synchronization signal different from the data signal, for example, in a burst transmission system typified by a PDS system, a high-precision gain is conventionally used. Although it was considered that control and the like were indispensable, the cost of the PDS optical transmission system can be reduced by adopting the system of this embodiment.
尚、加入者線局装置 S L Tの光伝送モジュール 1 Aにおいては前述の 减衰率を用いた光送信レベルの制御が不要なことは言うまでもない。前 述の減衰率を用いた光送信レベルの制御は後述するようにソフ トゥェ ァによって実現可能であるから、光伝送モジュール 1と 1 Aのハ一ドウ エア構成は実質的に同一にされて問題無い。 Needless to say, in the optical transmission module 1A of the subscriber line station device SLT, it is not necessary to control the optical transmission level using the decay rate described above. The control of the optical transmission level using the above-described attenuation rate is performed by software Therefore, the hardware configuration of the optical transmission modules 1 and 1A is made substantially the same, and there is no problem.
《光伝送モジュールの構成》  《Configuration of optical transmission module》
第 3図には前記光伝送モジュール 1のプロック図が示されている。同 図に示される光伝送モジュール 1は、 光送信部 (光トランスミ ツ夕) を 構成する夫々個別に半導体集積回路化された L Dモジュール 10、 ドラ ィバ回路 1 1、 及び入力回路 1 2を備え、 光受信部 (光レシーバ) を構 成する夫々個別に半導体集積回路化されたピンフォ トダイォ一ド 13、 プリアンプ 14、 メインアンプ 15、 及び出力回路 16を備える。 前記 LDモジュール 10はレ一ザダイオード (LDとも記す) 100 とモニタ用のフォ トダイォード (PDとも記す) 10 1を有し、 レーザ ダイォード 100の光出力は光出力端子 0 P OUTに出力される。前記 ビンフォ トダイオード 13は光入力端子 OP INから光信号を受ける。 入力回路 12はデータ入力端子 D T I Nに結合され、出力回路 1 6はデ —夕出力端子 D T OUTに接続されている。  FIG. 3 shows a block diagram of the optical transmission module 1. The optical transmission module 1 shown in FIG. 1 includes an LD module 10, a driver circuit 11, and an input circuit 12, each of which constitutes an optical transmission unit (optical transmitter) and which is individually integrated into a semiconductor circuit. It comprises a pin photodiode 13, a preamplifier 14, a main amplifier 15, and an output circuit 16, each of which constitutes an optical receiving unit (optical receiver) and individually formed as a semiconductor integrated circuit. The LD module 10 includes a laser diode (also referred to as LD) 100 and a photo diode (also referred to as PD) 101 for monitoring. The optical output of the laser diode 100 is output to an optical output terminal 0 P OUT. The bin photodiode 13 receives an optical signal from an optical input terminal OP IN. The input circuit 12 is connected to the data input terminal DTIN, and the output circuit 16 is connected to the data output terminal DTOUT.
前記入力回路 12は入力バッファ回路を構成する。  The input circuit 12 forms an input buffer circuit.
ドライバ回路 1 1は LD ドライバ 1 10とオートパワーコン トロー ル回路 (APC) 1 1 1を有し、 LDドライバ 1 10は前記入力回路 1 2を介して供給されるデータ信号を、 LD 100が目標仕様の光出力を 得るために必要な駆動信号電流に変換し、 また、 LD 100のしきい値 電流を保証するための直流パイァス電流を生成して、 LD 100に供給 する。 前記直流バイァス電流は、 例えば、 PD 10 1で検出された電流 (LD光出力モニタ電流)の検出結果をもとに AP C 1 1 1で光出力が 常に一定になるよに自動制御される。 LD 100の光出力は光出力端子 OPOUTから光フアイパ等の伝送路に与えられる。  The driver circuit 11 includes an LD driver 110 and an auto power control circuit (APC) 111. The LD driver 110 controls a data signal supplied through the input circuit 12 and the LD 100 controls a target signal. The drive signal current is converted to the drive signal current required to obtain the specified optical output, and a DC bias current for guaranteeing the threshold current of the LD 100 is generated and supplied to the LD 100. The DC bias current is automatically controlled based on the detection result of the current (LD light output monitor current) detected by the PD 101 so that the light output is always constant at the APC 111. The optical output of the LD 100 is provided from an optical output terminal OPOUT to a transmission line such as an optical fiber.
前記ビンフォ トダイォード 13は伝送路から光入力端子 0 P I Nに 供給された光信号を検出して受信信号電流に変換する。この信号電流は、 プリアンプ 1 4で ¾圧信号に変換される。変換された電圧信号はメイン アンプ 1 5に^えられる。 メインアンプ 1 5は、 入力された電圧信号を E C Lレベルまで増幅する。メインアンプ 1 5の出力を受ける出力 M路 1 6は、 メインアンプ 1 5からの入力信号を十分に ¾幅し、 波形の上部 と下部をスライスした信号に整形し、これをデ一夕信号としてデータ出 力端子 D TOUTに与える The bin photodiode 13 is connected to the optical input terminal 0 PIN from the transmission line. The supplied optical signal is detected and converted into a received signal current. This signal current is converted into a low voltage signal by the preamplifier 14. The converted voltage signal is output to the main amplifier 15. The main amplifier 15 amplifies the input voltage signal to the ECL level. The output M path 16 that receives the output of the main amplifier 15 widens the input signal from the main amplifier 15 sufficiently, shapes the upper and lower parts of the waveform into a sliced signal, and uses this as a de-emphasis signal. Apply to data output terminal D TOUT
第 3図に示される光伝送モジュール 1はマイクロコンピュ一夕 1 7 を備える。 このマイクロコンピュー夕 1 7は、 特に制限されないが、 C P U (Central Processing Unit) 1 70、 RAM (Random Access Memory) 1 7 1 , ROM (Read Only Memory) 1 72、 ¾気的消去及び書き込み 可能な不揮発性記憶装置の一例であるフラッシュメモリ 1 73、及び入 出力回路 ( I/O) 1 74などを有し、 それらは内部バス 1 75に結合 されている。特に制限されないが、 ROM 1 7 2は C PU 1 70の動作 プログラムや定数データ等を保有するマスク ROMであり、 RAM 1 7 1は CPU 1 70のワーク領域とされ、フラッシュメモリ 1 7 3は C P U 1 70の動作プログラムや制御デ一夕等を書き換え可能に保有する。 前記入出力回路 1 74は、複数の D/A変換チャネルと入力レジス夕か ら成る D/ A変換回路 1 7 6、 そして、 複数の A/D変換チャネルと出 カレジス夕から成る A/D変換回路 1 77等を含む。前記 A/D変換回 路 1 76の入力レジス夕は CPU 170によってアクセスされ、このレ ジス夕に設定されたディジタル信号がアナログ信号に変換される。  The optical transmission module 1 shown in FIG. 3 includes a microcomputer 17. The microcomputer 17 is not particularly limited, but includes a CPU (Central Processing Unit) 170, a RAM (Random Access Memory) 171, a ROM (Read Only Memory) 172, and an erasable and writable memory. It has a flash memory 173, which is an example of a nonvolatile storage device, and an input / output circuit (I / O) 174, which are coupled to an internal bus 175. Although not particularly limited, the ROM 172 is a mask ROM holding operation programs and constant data of the CPU 170, the RAM 171 is a work area of the CPU 170, and the flash memory 173 is a CPU 170 operation programs and control data are stored in a rewritable manner. The input / output circuit 174 comprises a D / A conversion circuit 176 comprising a plurality of D / A conversion channels and an input register, and an A / D converter comprising a plurality of A / D conversion channels and an output register. Including circuit 1 77 etc. The input register of the A / D conversion circuit 176 is accessed by the CPU 170, and the digital signal set in this register is converted to an analog signal.
0/八変換回路 1 Ί 6で変換されたアナログ信号は LD ドライノ 1 1 0に供給され、これによつて LD ドライノ 1 1 0は LD 1 00の駆動 信号電流 (変調電流) と直流バイアス電流 (バイアス電流) を生成する。 前記 A/D変換回路 1 Ί 7は前記 PD 1 0 1やプリアンプ 1 4からの アナログ信号をディジタル信号に変換し、変換されたディジ夕ル信号は 前記出力レジス夕を介して C P U 1 7 0によりアクセス可能にされる。 The analog signal converted by the 0/8 conversion circuit 1Ί6 is supplied to the LD dryer 110, which causes the LD dryer 110 to drive the LD 100 with the drive signal current (modulation current) and the DC bias current ( Bias current). The A / D converter circuit 1Ί7 is connected to the PD 101 and preamplifier 14 The analog signal is converted into a digital signal, and the converted digital signal is made accessible by the CPU 170 via the output register.
1 7 9で示されるものはマイクロコンピュー夕 1 7を光伝送モジュ ール 1の外部とィン夕フェースさせる信号線であり、特に制限されない が、 リセヅ ト信号、 デ一夕若しくはコマンド、 或いはフラッシュメモリ 1 7 3に格納すべき C P Uの動作プログラムなどもやり取り可能にさ れる。  The signal line indicated by 179 is a signal line for interfacing the microcomputer 17 with the outside of the optical transmission module 1 and is not particularly limited, but is a reset signal, data or command, or CPU operation programs to be stored in the flash memory 173 can also be exchanged.
マイクロコンビュー夕 1 7は、光伝送モジュール 1を全体的に制御す る回路である。 その制御内容は、 第 1に、 前記減衰率の逆数倍で光出力 レベルを制御することである。第 2に減衰率を取得する制御である。第 3に、 L D ドライノ 1 1 0と L D 1 0 0の温度特性の相違を考慮した L D 1 0 0の駆動制御である。  The microcomputer 17 is a circuit that controls the entire optical transmission module 1. First, the control content is to control the light output level at the reciprocal multiple of the attenuation rate. The second is control to obtain the attenuation rate. Third, the drive control of the LD 100 considering the difference in temperature characteristics between the LD dryno 110 and the LD 100.
《減衰率の取得とそれを考慮した光出力レベルの制御》  《Acquisition of attenuation rate and control of light output level considering it》
第 4図には減衰率の取得とそれを考慮した光出力レベルの制御フロ —が示される。特に制限されないが、 減衰率の取得は C P U 1 7 0によ るパワーオンリセッ ト処理の一環として行われる。 その処理は、 例えば 加入者ネッ トワーク装置 O N Uを最初に設置するときのパワーオン処 理で行われる。 この処理に際して、加入者線局装置 S L Tからは当該加 入者ネッ トワーク装置 O N Uに向けて標準光送信レベルで任意の信号 が送信されてくる。 この送信信号を利用して、 減衰率を取得するための 演算が行われる。例えば減衰率 αは、 受信レベルを標準光送信レベルで 除算して得られる (S 1 ) 。標準光送信レベルはフラッシュメモリ 1 7 3の所定記憶領域に格納されている。受信レベルの検出は前記加入者線 局装置 S L Tから当該加入者ネッ トワーク装置 0 N Uに向けて送信さ れる前記任意の信号を P D 1 3で検出し、これをプリアンプ 1 4で増幅 した信号を、入出力回路 1 Ί 4の A / D変換回路 1 7 7でディジタル信 号に変換し、変換されたディジ夕ル ^号が出力レジス夕を介して C P U 1 7 0に参照されることによって行なわれる。前記任意の信号は標準送 信レベルで出力される。プリアンプ 1 4のゲインは特定の値に設定され れている。 プリアンプ 1 4の出力は、 入出力回路 1 7 4に含まれている A/D変換回路 1 Ί 7でディジ夕ル信号に変換され、変換されたディジ タル信号が受信レベルとして C PU 1 7 0に参照される。 C PU 1 7 0 は、フラッシュメモリ 1 73から標準光送信レベル nのデータを読み出 し、この標準光送信レベル nのデータとサンプリングした受信レベルの デ一夕とによって減衰率ひを演算する。標準光送信レベル nのデ一夕は 信号線 1 7 9を介して外部からもらってもよい。 Fig. 4 shows the flow of control of the light output level taking into account the acquisition of the attenuation rate and that. Although not particularly limited, the acquisition of the attenuation rate is performed as part of the power-on reset processing by the CPU 170. This process is performed, for example, as a power-on process when the subscriber network device ONU is first installed. In this process, an arbitrary signal is transmitted from the subscriber line device SLT to the subscriber network device ONU at a standard optical transmission level. Using this transmission signal, an operation for obtaining the attenuation rate is performed. For example, the attenuation rate α is obtained by dividing the reception level by the standard optical transmission level (S 1). The standard light transmission level is stored in a predetermined storage area of the flash memory 173. To detect the reception level, the PD 13 detects the arbitrary signal transmitted from the subscriber line station device SLT to the subscriber network device 0NU, and amplifies the signal by the preamplifier 14 to obtain a signal. I / O circuit 1Ί4 A / D conversion circuit 1 7 7 The conversion is performed by referring to the CPU 170 via the output register. The arbitrary signal is output at a standard transmission level. The gain of preamplifier 14 is set to a specific value. The output of preamplifier 14 is converted to a digital signal by A / D conversion circuit 1Ί7 included in input / output circuit 174, and the converted digital signal is used as reception level by CPU 170 Referred to. The CPU 170 reads out the data of the standard light transmission level n from the flash memory 173, and calculates the attenuation factor based on the data of the standard light transmission level n and the data of the sampled reception level. The data of the standard optical transmission level n may be externally received through the signal line 179.
次に、演算された減衰率ひと標準光受信レベル mを用いて目標光出力 指示デ一夕 D 1が演算される ( S 2 ) 。標準光受信レベル mのデ一夕は 前記フラッシュメモリ 1 7 3の所定記憶領域から読出され、或いは信号 線 1 7 9を介して外部から与えられる。演算された目標光出力指示デー 夕 D 1に従って、フラッシュメモリ 1 7 3から LD駆動デ一夕 D 2が読 出される。特に制限されないが、 LD駆動デ一夕は、 詳細を後述するよ うに、 温度や目標光出力に応じてテーブル化され、 前記演算された目標 光出力指示デ一夕 D 1に従って、 CPU 1 7 0がフラ ッシュメモリ 1 7 3の前記テーブルから LD駆動データ D 2を読出す。  Next, the target light output instruction data D1 is calculated using the calculated attenuation factor and the standard light reception level m (S2). The data of the standard light reception level m is read out from a predetermined storage area of the flash memory 173 or externally supplied via a signal line 179. In accordance with the calculated target light output instruction data D1, the LD drive data D2 is read from the flash memory 173. Although not particularly limited, the LD drive data is tabulated according to the temperature and the target light output, as will be described in detail later. Reads the LD drive data D2 from the table in the flash memory 173.
読出された LD駆動データ D 2は入出力回路の D/A変換回路 1 7 The read LD drive data D 2 is the D / A conversion circuit of the input / output circuit 1 7
6の入力レジス夕にロードされ、 これがアナログ信号に変換され、 LD ドライバ 1 1 0に供給される。 これによつて、 L D ドライノ、" 1 1 0は L D 1 00の駆動信号電流を生成する。 これ以降、 前記入力回路 1 2から 入力デ一夕が供給されると、それにしたがって LD 1 0 0の電流経路が オン 'オフされて、 LD 1 0 0が発光 ·消光駆動されることになる ( S 3 ) o 上 ¾の説明において、 LD駆動データを直接、 減衰率の逆数倍にして もよい。 即ち、 目標光出力と温度 (光伝送モジュールの雰囲気温度) に 応じた L D駆動制御データを前記テ一ブルから選択し、選択した L D駆 動制御データを前記減衰率の逆数倍にして、 DZA変換回路 1 7 6の入 カレジス夕にロードする。 It is loaded into the input register 6 and converted to an analog signal and supplied to the LD driver 110. As a result, the LD dry line "110" generates a drive signal current for the LD 100. Thereafter, when an input signal is supplied from the input circuit 12, the LD 100 is driven accordingly. The current path is turned on and off, and the LD 100 is driven to emit and extinguish light (S 3) o In the above description, the LD drive data may be directly set to the inverse multiple of the attenuation rate. That is, the LD drive control data corresponding to the target light output and the temperature (atmospheric temperature of the optical transmission module) is selected from the table, and the selected LD drive control data is set to the reciprocal of the attenuation rate to obtain the DZA. Input of conversion circuit 1 76 6 Load at evening.
ここで、パワーオンリセッ 卜の一環で演算された減衰率ひや目標光出 力指示データ D 1はマイクロコンビユー夕 1 7の内部に保存しなくて も、 マイクロコンピュ一夕 1 7の動作電源が途絶えない限り、 上記設定 状態は維持される。 D 2は D/A変換回路 1 Ί 6の入力レジス夕に保持 されている。  Here, the attenuation power and the target light output instruction data D 1 calculated as part of the power-on reset need not be stored inside the microcomputer 17, but the operation power of the microcomputer 17 As long as is not interrupted, the above settings are maintained. D2 is held in the input register of the D / A conversion circuit 1Ί6.
第 5図には加入者ネッ トワーク装置 ON Uにおける光出力レベルの 別の制御手法の原理図が示される。  Fig. 5 shows a principle diagram of another control method of the optical output level in the subscriber network unit ONU.
第 5図において P Bは加入者線局装置 S L Tの光伝送モ一ジュール 1 Aの光出力値であり、 PRはある加入者線ネッ トワーク装置 ONUの 光伝送モジュール 1が受信した光入力値である。 ァ ( = X/P B) は前 記加入者線局装置 S L Tにおける光出力信号を電圧信号に変換するた めの第 2光電変換係数である。 また、 5 ( = Y/PR) はある加入者線 ネッ トワーク装置 ON Uに含まれる光伝送モジュール 1が加入者線局 装置 S L Tの光伝送モージユール 1 Aから受信した光出力信号を電圧 信号に変換するための第 1光電変換係数である。 X, Yは夫々における 電圧信号である。 したがって、 前記加入者線局装置 S L Tと、 ある加人 者線ネッ トワーク装置 ONUとの間での伝送損失は (X/ァ)一 ( Y/ δ) で表すことができる。  In Fig. 5, PB is the optical output value of the optical transmission module 1A of the subscriber line device SLT, and PR is the optical input value received by the optical transmission module 1 of a certain subscriber line network device ONU. . Α (= X / P B) is a second photoelectric conversion coefficient for converting the optical output signal in the above-mentioned subscriber line device SLT into a voltage signal. 5 (= Y / PR) indicates that the optical transmission module 1 included in a certain subscriber line network device ONU converts the optical output signal received from the optical transmission module 1A of the subscriber line device SLT into a voltage signal. This is the first photoelectric conversion coefficient to perform. X and Y are the voltage signals at each. Therefore, the transmission loss between the subscriber line station apparatus SLT and a certain subscriber line network apparatus ONU can be represented by (X / a) (Y / δ).
ここで、 ァ、 は光伝送モジュールの回路特性に依存する固有の値で あり、 既知の値とされている。 また、 電圧信号 X、 光出力値 ΡΒも既知 とされる。 よって、 (ΧΖァ) / (Υ/δ) を補正係数 77とすると、 受 信した光入力値 P Rを検出できれば、補正係数 ?を演算することができ る。 この補正係数 7?に基づいて、 々の加入者線ネッ トワーク装置 0 N Uは、 標準の光出力例えば P Bに対して、 夫々に固有の補正係数 7;倍で 光信号を加入者線局装置 S L Tに出力することにより、加入者線局装置 S L Tはどの加入者線ネッ トワーク装置 0 N Uからの信号も標準の光 出力に相当するレベルで受信することができるようになる。したがって、 上述と同様に、 加入者線局装置 S L Tの伝送モジュール 1 Aは、 加入者 線ネッ トワーク装置 0 N U毎のランダムな受信レベルに対してその論 理値を判定するためにアンプのゲインコン トロールやしきい値電压コ ントロールをやり直さなくても、 また、 そのようなゲインコン トロール やしきい値電圧コン トロールを行う回路を備えていなくても、加入者線 局装置 S L Tは全ての加入者線ネッ トワーク装置 O N Uのデ一夕を認 識できるようになる。 Here, a is a unique value depending on the circuit characteristics of the optical transmission module, and is a known value. Also, the voltage signal X and the optical output value ΡΒ are known. Therefore, if (ΧΖ) / (Υ / δ) is the correction coefficient 77, If the received optical input value PR can be detected, the correction coefficient? Can be calculated. Based on this correction factor 7 ?, each of the subscriber line network units 0NU converts the optical signal into a subscriber line station device SLT with a specific correction factor of 7; Thus, the subscriber line station apparatus SLT can receive a signal from any of the subscriber line network apparatuses 0NU at a level corresponding to a standard optical output. Therefore, as described above, the transmission module 1A of the subscriber line station apparatus SLT is used to control the gain of the amplifier in order to determine the logical value of the random reception level for each of the subscriber line network apparatuses 0NU. And the threshold voltage control, and even if there is no circuit for performing such gain control and threshold voltage control, the subscriber line station equipment SLT is used for all subscriber lines. You will be able to recognize the network device ONU.
上記のように、 光伝送モジュール 1力 標準の光出力例えば P Bに対 して、補正係数 77倍で光信号を加入者線局装置 S L Tに出力するとき、 光伝送モジュール 1においては、 前記 C P U 1 7 0は、 前記補正係数 77 に基づいて前記レーザダイオード 1 0 0に対する駆動電流を決定する ための駆動制御データを前記 D / A変換回路 1 7 6の入力レジス夕に 与える。この入力レジス夕にロードされた駆動制御データがアナログ信 号に変換されて、 前記 L D ドライバ 1 1 0に与えられる。 これにより、 L D ドライバ 1 1 0は L D 1 0 0の駆動信号電流を生成する。これ以降、 前記入力回路 1 2から入力データが供給されると、それにしたがって L D 1 0 0の電流経路がオン ·オフされて、 L D 1 0 0が発光 ·消光駆動 されることになる。  As described above, when an optical signal is output to the subscriber line equipment SLT at a correction factor of 77 with respect to the standard optical output, for example, PB, of the optical transmission module 1, the CPU 1 70 supplies drive control data for determining the drive current for the laser diode 100 based on the correction coefficient 77 to the input register of the D / A conversion circuit 176. The drive control data loaded in the input register is converted into an analog signal and supplied to the LD driver 110. Thus, the LD driver 110 generates a drive signal current of LD 100. Thereafter, when input data is supplied from the input circuit 12, the current path of the LD 100 is turned on / off accordingly, and the LD 100 is driven to emit light and extinguish.
《L Dの駆動制御》  《L D drive control》
第 5図で説明した L Dの駆動制御を更に詳細に説明するために、ここ で、 前記 LD 100の電流駆動制御を説明する。 In order to describe the drive control of the LD described in FIG. 5 in more detail, Now, the current drive control of the LD 100 will be described.
前記 LD 100は、 ダブルへテロ接合を有し、 それに順方向電流を流 すと、 それがある電流値以上になるとレーザ発振を開始して、 レーザ光 を放出する。 このレーザ発振開始の電流をしきい値電流 (バイアス電 流) I t hと言う。 レーザダイォ一ドに流すべき順方向電流 I dの大き さは、 必要な光出力に応じて決定される。 この順方向電流 I dは、 概略 的に、 I t h+ Imodと表すことができる。 I mo dを変調電流と称 し、 必要な順方向電流のうち、 変調電流を LDに流したりカツ トオフし たりすること (変調電流のオン/オフ制御と称する) によって、 LD 1 0の光出力をオン/オフせることができる。 LD 100を用いた光通信 ではその光出力のオン/オフによって情報伝违を行う。光出力のオン/ オフの高速応答性を実現するためには、 順方向電流 I dのうち、 変調電 流 I mo dをパルス状にオン/オフすることが最も望ましい。  The LD 100 has a double heterojunction. When a forward current is applied to the double heterojunction, when the current exceeds a certain current value, the laser 100 starts laser oscillation and emits laser light. This current at the start of laser oscillation is called the threshold current (bias current) Ith. The magnitude of the forward current Id to be passed through the laser diode is determined according to the required light output. This forward current Id can be roughly expressed as Ith + Imod. I mod is referred to as the modulation current, and the optical output of the LD 10 is obtained by passing the modulation current out of the required forward current to the LD or cutting it off (called modulation current on / off control). Can be turned on / off. In optical communication using the LD 100, information is transmitted by turning on / off the optical output. In order to realize a high-speed response of turning on / off the optical output, it is most preferable to turn on / off the modulation current Imod of the forward current Id in a pulse shape.
前記 LD 100は、順方向電流に対する光出力に温度依存性を有する。 そのため、 LD 100の駆動電流経路に配置した電流源トランジスタの ベース電圧を温度に応じて補正するために、当該電流源トランジスタの バイァス回路に、 トランジス夕やダイォ一ドのバンドギヤヅブの温度依 存性を利用したベ一スパイァス回路を採用することができる。  The LD 100 has a temperature dependency on an optical output with respect to a forward current. Therefore, in order to correct the base voltage of the current source transistor arranged in the drive current path of the LD 100 in accordance with the temperature, the bias circuit of the current source transistor needs to have the temperature dependence of the band gear of the transistor and the diode. The utilized base spice circuit can be adopted.
しかしながら、 LD 100の温度特性は、 第 6図に例示されるように 温度によって大きく相違される。 しかも、 しきい値電流と変調電流の特 性も温度に応じてそれそれ相違される。 すなわち、所定の光出力を得る 場合に必要な LD 100の順方向電流は温度によって相違され、このと き、前記順方向電流に含まれるしきい値電流も温度に応じて独自に相違 される。 したがって、 前記順方向電流としきい値電流との差分である変 調電流も温度に応じてそれそれ変化される。第 6図において所定の光出 力 Pmを得るために必要なしきい値電流 I t h (i) , I t h ( j ) , I t h (k)と変調電流 I mod (i) , I m o d ( j ) , I m o d ( k) とは、 例示された温度 T ( i ) , Τ ( j ) , T (k) の夫々において大 きく相違されている。 したがって、 ある一定の光出力を得る場合に必要 な順方向電流 I dは、 第 7図に例示されるように、 温度に対して非線形 的に変化される。 同じく、 しきい値電流と変調電流も非線形的に夫々変 ィ匕される。 これに対して、 トランジスタやダイオードのバンドギャップ の温度依存性を利用した前記ベースバイアス回路の温度に対する電流 特性は、 線形的に変化されるに過ぎない。 この相逡により、 トランジス 夕やダイォ一ドのバン ドギヤッブの温度依存性を利用したベースバイ ァス回路では、温度変化に対する LDの駆動電流を高精度に補償するこ とができない。 However, the temperature characteristics of the LD 100 greatly differ depending on the temperature as illustrated in FIG. In addition, the characteristics of the threshold current and the modulation current differ depending on the temperature. That is, the forward current of the LD 100 required to obtain a predetermined light output differs depending on the temperature, and at this time, the threshold current included in the forward current also differs uniquely depending on the temperature. Therefore, the modulation current, which is the difference between the forward current and the threshold current, also changes in accordance with the temperature. In FIG. 6, the threshold currents I th (i), I th (j), I th (k) and the modulation currents I mod (i), I mod (j), and I mod (k) are large at each of the illustrated temperatures T (i), Τ (j), and T (k). Are very different. Therefore, the forward current I d required to obtain a certain light output is changed non-linearly with respect to temperature, as illustrated in FIG. Similarly, the threshold current and the modulation current are also nonlinearly changed. On the other hand, the current characteristic with respect to the temperature of the base bias circuit utilizing the temperature dependence of the band gap of a transistor or a diode is only changed linearly. Due to this hesitation, a base bias circuit that utilizes the temperature dependence of the bandgap of a transistor or a diode cannot accurately compensate for the LD drive current with respect to a temperature change.
このとき、光通信等においては LD 100から少なく とも所要の発光 出力を得なければらない。 そこで、 LDに流す順方向電流を LDの温度 特性に追従させるため、 LD 100の実際の発光出力をフォ トダイォー ド (PD) 101でモニタし、 モニタされた発光出力に応ずる電流が所 要の発光出力に応ずる参照電位 V r e f よりも小さいか大きいかをコ ンパレ一夕で判定し、小さい場合には L Dに流すバイァス電流を増すよ うな制御を行なうことができる。 しかしながら、 そのようなフィードバ ヅク制御によってバイァス電流を増やし、 LD 100に流れる全体的な 順方向電流の合計を L D 100の温度特性に合わせるようなォートパ ヮーコントロールを行っても、 L D 100の光出力をオン/オフ制御す るために LD 100に電流を流すトランジスタによってオン/オフ制 御される電流は、 LDのそのときの温度特性に適合していない。例えば、 第 7図において、 温度 T ( j )で LDに所要の発光出力を得るために必 要な順方向電流を I d ( j )、 このとき LDの駆動回路によって供給可 能にされる駆動電流を I C ( j ) とすると、 その差分の電流は前記ォー トパワーコン 卜ロールによって L Dのバイァス電流に加えられる。この 差分の電流は変調電流としてオン/オフ制御の対象にされない。これに より、変調電流をオフ状態にしたときの電流値がしきい値電流よりも大 きくなって消光不良を生じたり、変調電流をオフ状態にしたときの電流 値がしきい値電流よりも小さくなつて発光遅延を生じたりする不都口 が生ずる。 At this time, at least the required light output must be obtained from the LD 100 in optical communication and the like. Therefore, in order to make the forward current flowing through the LD follow the temperature characteristics of the LD, the actual light emission output of the LD 100 is monitored by a photodiode (PD) 101, and the current corresponding to the monitored light emission output is required. The comparator determines whether the reference potential is lower or higher than the reference potential Vref corresponding to the output, and if the reference potential is lower than Vref, control can be performed to increase the bias current flowing to the LD. However, even if the feedback control increases the bias current and performs the auto power control to match the total forward current flowing through the LD 100 to the temperature characteristic of the LD 100, the light output of the LD 100 is reduced. The current that is turned on / off by a transistor that causes current to flow through the LD 100 for on / off control does not match the current temperature characteristics of the LD. For example, in FIG. 7, the forward current required to obtain the required light emission output for the LD at the temperature T (j) is I d (j). At this time, the drive that can be supplied by the drive circuit of the LD Assuming that the current is IC (j), the difference current is The power control adds to the bias current of the LD. This difference current is not subject to on / off control as a modulation current. As a result, the current value when the modulation current is turned off is larger than the threshold current, causing extinction failure, or the current value when the modulation current is turned off is smaller than the threshold current. The disadvantage is that light emission is delayed when the size is reduced.
例えば第 6図において、 温度で (k) の雰囲気中において、 電流源ト ランジス夕に流せるところの変調電流が、このトランジスタ等の温度特 性によって I 1 (I l < Imo d (k) ) であるとすると、 発光出力 P mを得るために、 バイアス トランジスタにはバイアス電流 I 2 ( I 2 > I t h (k) ) が流される。 そうすると、 LDをオフ状態にするために 変調電流 I 1がゼロにされたとき、 LDに流れるバイアス電流は、 その ときの温度 T (k) における LDのしきい値電流 I t h (k) を越え、 これによつて L Dは完全に消光されない。 また、 第 6図において、 温度 T ( i )の雰囲気中において、 電流源トランジス夕に流せるところの変 調電流が、 当該卜ランジス夕等の温度特性によって I 3 (I 3> I t h ( i ) )であるとすると、 発光出力 Pmを得るためにバイァス トランジ ス夕にはバイァス電流 I 4 (I 4< I t h ( i) ) が流される。 この状 態で LDをオフにするために変調電流 I 3がゼロにされると、 LDに流 れるバイァス電流は、 そのときの温度 T ( i )における L Dのしきい値 電流 I t h ( i ) よりも小さくされ、 これによつて、 次に LDを点灯す るときは、 LDに流れようとする変調電流がそのしきい値電圧 I t h ( i ) を越えるまでの遅延時間を待って初めて LDが発光される。 本実施例の光伝送モジュール 1はそのような発光遅延や消光不良を 防止するために、 レーザダイオード 100の温度特性と LDドライノ 1 10の温度特性との相違を考慮して、 LD 100の駆動電流を制御でき るようにしている。 先ずその内容について説明する。 For example, in Fig. 6, in an atmosphere of temperature (k), the modulation current that can flow in the current source transistor is I1 (Il <Imod (k)) due to the temperature characteristics of this transistor and the like. If so, a bias current I 2 (I 2> I th (k)) is passed through the bias transistor to obtain the light emission output P m. Then, when the modulation current I 1 is made zero to turn off the LD, the bias current flowing through the LD exceeds the threshold current I th (k) of the LD at the temperature T (k) at that time. This does not completely extinguish the LD. Further, in FIG. 6, in an atmosphere of temperature T (i), the modulated current that can be passed through the current source transistor depends on the temperature characteristic of the transistor, etc., so that I 3 (I 3> I th (i) ), A bias current I 4 (I 4 <I th (i)) flows in the bias transistor in order to obtain the light emission output Pm. In this state, if the modulation current I 3 is made zero to turn off the LD, the bias current flowing through the LD becomes the threshold current I th (i) of the LD at the temperature T (i) at that time. Therefore, the next time the LD is turned on, the LD must wait for a delay time until the modulation current flowing through the LD exceeds its threshold voltage I th (i). Is emitted. The optical transmission module 1 of the present embodiment takes into consideration the difference between the temperature characteristic of the laser diode 100 and the temperature characteristic of the LD Can control I am trying to. First, the contents will be described.
第 8図には光卜ランスミッ夕の詳細な一例が示されている。前記 L D ドライバ 1 10は、 LD 100に流すバイアス電流を決定する トランジ ス夕 Tr 1と、 LD 100をオン/オフ制御するための変調電流を決定 する 卜ランジス夕 T r 2を、 電流源用のトランジスタとして備える。 ト ランジス夕 T r 3, T r 4は変調電流のオン/オフを制御するスィ ツチ ング用のトランジス夕である。前記トランジスタ T r l〜T r 4は np n型のバイポーラ トランジスタとされる。  Fig. 8 shows a detailed example of the light transmission. The LD driver 110 includes a transistor Tr1 for determining a bias current flowing to the LD 100 and a transistor Tr2 for determining a modulation current for controlling on / off of the LD 100, for a current source. Provided as a transistor. Transistors Tr 3 and Tr 4 are switching transistors for controlling the on / off of the modulation current. The transistors Tr1 to Tr4 are npn-type bipolar transistors.
前記トランジスタ T r 3, T r 4は並列接続され、 その共通ェミヅ夕 が前記トランジスタ T r 2のコレクタに接続され、当該トランジスタ T r 2のェミヅ夕は抵抗 R 2を介して負の電源電圧 V e e (例えば一 5. 2 V)に結合されている。前記トランジスタ T r 3のコレクタには LD 100の力ソードが結合され、当該 LD 100のアノードと前記トラン ジス夕 T r 4のコレク夕が接地電位のような他方の電源電圧 V c c (例 えば 0 V) に共通接続されている。  The transistors Tr 3 and Tr 4 are connected in parallel, the common emitter is connected to the collector of the transistor Tr 2, and the emitter of the transistor Tr 2 is connected to the negative power supply voltage V ee (eg, one 5.2 V). A power source of LD 100 is coupled to the collector of the transistor Tr3, and the anode of the LD 100 and the collector of the transistor Tr4 are connected to the other power supply voltage Vcc (for example, 0 V) such as the ground potential. V).
前記トランジスタ T r 3,Tr4のスィ ツチング制御回路 1 14は、 第 9図にその詳細な一例が示されるように、 トランジスタ T r 5と T r 6の直列回路と、 トランジスタ Tr 7と Tr 8の直列回路とがー対の電 源電圧 V c c, V e eの間に配置されている。 トランジスタ Tr 5〜T r 8は npn型バイポーラ トランジスタとされる。トランジスタ T r 6, T r 8のべ一スは所定の電圧でバイアスされ、 卜ランジス夕 Tr 5, T r 7の負荷抵抗として機能される。換言すれば、 トランジスタ T r 5と T r 6の直列回路と、 トランジスタ T r 7と T r 8の直列回路は、 それ それエミッ夕フォロア回路を構成し、 トランジスタ T r 5のェミ ツ夕が 前記トランジスタ T r 3のペースに、 トランジスタ T r 7のェミツ夕が 前記トランジスタ T r 4のべ一スに結合されている。 前記トランジスタ T r 5, T r 7のベースは差動出力アンプ AMPの 差動出力が供給され、 その入力が反転されると、 トランジスタ T r 3と T r 4のベース電位の状態が反転されるようになっている。アンプ AM Pには前記セレクタ 1 2 1の出力が供給される。 As shown in FIG. 9, a switching control circuit 114 for the transistors Tr 3 and Tr 4 includes a series circuit of the transistors Tr 5 and Tr 6 and a switching circuit for the transistors Tr 7 and Tr 8. A series circuit is placed between the pair of power supply voltages Vcc and Vee. The transistors Tr5 to Tr8 are npn-type bipolar transistors. The bases of the transistors Tr6 and Tr8 are biased at a predetermined voltage, and function as load resistors for the transistors Tr5 and Tr7. In other words, the series circuit of the transistors Tr 5 and Tr 6 and the series circuit of the transistors Tr 7 and Tr 8 each constitute an emitter follower circuit, and the emitter of the transistor Tr 5 At the pace of the transistor Tr3, the emitter of the transistor Tr7 is coupled to the base of the transistor Tr4. The bases of the transistors Tr5 and Tr7 are supplied with the differential output of the differential output amplifier AMP. When the inputs are inverted, the states of the base potentials of the transistors Tr3 and Tr4 are inverted. It has become. The output of the selector 122 is supplied to the amplifier AMP.
前記トランジスタ T r 3のベース電位が高レベルにされると トラン ジス夕 T r 3は飽和状態に移行され、 トランジスタ T r 4のベースが高 レベルにされると トランジスタ T r 4は飽和状態に移行される。 トラン ジス夕 T r 3, Τ r 4の飽和状態への移行は相補的に行われ、 これによ り、 トランジスタ T r 3 , Τ r が相補的にスィ ヅチング動作されるこ とにより、電流源トランジスタ T r 2を介して L D 1 0 0にパルス状に 変調電流が供給されることになる。  When the base potential of the transistor Tr 3 is set to a high level, the transistor Tr 3 shifts to a saturation state, and when the base of the transistor Tr 4 is set to a high level, the transistor Tr 4 shifts to a saturation state. Is done. The transition of the transistors Tr 3 and Τr 4 to the saturated state is performed in a complementary manner, whereby the transistors Tr 3 and さ れ る r are operated in a complementary manner to switch the current source. A modulation current is supplied to LD 100 in a pulse form via the transistor Tr 2.
第 8図に示されるように、前記トランジスタ T r 1はそのコレクタが 前記トランジスタ T r 3のコレクタに結合され、そのェミッ夕が抵抗 R 1を介して電源電圧 V e eに結合されている。このトランジスタ T r l はそれに印加されるべ一ス電圧に従って L D 1 0 0にバイァス電流を 流す。  As shown in FIG. 8, the transistor Tr1 has its collector coupled to the collector of the transistor Tr3, and its emitter coupled to the power supply voltage Vee via a resistor R1. This transistor Trl carries a bias current through Ld100 according to the base voltage applied to it.
前記 PD 1 0 1は抵抗 R 3に直列接続されて一対の電源電圧 V c c, V e eの間に逆接続状態で配置されている。 PD 1 0 1は LD 1 00か ら出力される発光出力に応じた電流を流す。  The PD 101 is connected in series to the resistor R3, and is arranged in a reverse connection state between a pair of power supply voltages Vcc and Vee. The PD 101 flows a current according to the light emission output output from the LD 100.
第 8図において前記マイクロコンピュー夕 1 7の入出力回路 1 7 4 は、 ディジ夕ル信号をアナログ信号に変換するディジ夕ル ·アナログ変 換回路 (D/A) 1 7 6、 アナログ信号をディジ夕ル信号に変換するァ ナログ .ディジ夕ル変換回路 (A/D) 1 7 7、 及びその他の入出力回 路 1 7 8に分けて示されている。前記 D/ A 1 7 6は 2個の D/A変換 チャネル DAC 1, DAC 2と夫々に対応される入力レジス夕 I RE G 1 , I RE G 2を有する。 A/D 1 7 7は 5個の A/D変換チャネル A D C 1〜 A D C 5と夫々に対応される出力レジスタ 0 R E G 1〜 0 R E G 5を有する。 In FIG. 8, an input / output circuit 17 4 of the microcomputer 17 is a digital-to-analog conversion circuit (D / A) 176 for converting a digital signal into an analog signal, and an analog signal. The analog signal is converted into a digital signal. The digital signal conversion circuit (A / D) 177 and other input / output circuits 178 are shown separately. The D / A 176 has two D / A conversion channels DAC 1 and DAC 2 and input registers I REG 1 and I REG 2 corresponding respectively thereto. A / D 177 is 5 A / D conversion channels A It has output registers 0 REG 1 to 0 REG 5 corresponding respectively to DC 1 to ADC 5.
D/A変換チャネル D AC 1 , D AC 2に対応される入力レジス夕 I REG 1 , I REG2は、 CPU 170によって D/A変換対象データ がロードされるレジス夕である。入力レジス夕 I REG l , I REG 2 にロードされたデ一夕が D/ A変換され、これによつて得られるアナ口 グ信^は、 前記トランジスタ T r 1 , T r 2のベースバイァス電圧とさ れる。 これにより、 トランジスタ Tr 3に流されるべき変調電流は、 C PU 170により D/ A変換チャネル D AC 2の人力レジス夕 I RG 2に設定される制御データによって決定される。即ち、 トランジスタ T r 3に流されるべき変調電流は、 トランジスタ T r 2のコンダクタンス 制御によって決定される。 トランジスタ T r 2のコンダクタンス制御を 変調電流制御と称する。 LD 10◦に流すべきバイアス電流は、 CPU 1 70により D/ A変換チャネル D A C 1の入力レジス夕 REG 1に 設定される制御デ一夕によって決定される。即ち、 LD 100に流すベ きバイァス電流は、 トランジスタ Tr 1のコンダク夕ンス制御によって 決定される。 トランジスタ T r 1のコンダクタンス制御を L Dのバイァ ス電流制御と称する。  The input registers I REG 1 and I REG2 corresponding to the D / A conversion channels D AC1 and D AC 2 are registers into which the D / A conversion target data is loaded by the CPU 170. The data loaded to the input registers I REGl and I REG 2 are D / A converted, and the analog signal obtained by this conversion is based on the base bias voltages of the transistors Tr 1 and Tr 2. Is done. As a result, the modulation current to be passed to the transistor Tr3 is determined by the control data set in the manual register I RG2 of the D / A conversion channel DAC2 by the CPU 170. That is, the modulation current to be passed to the transistor Tr3 is determined by the conductance control of the transistor Tr2. The conductance control of the transistor Tr 2 is called modulation current control. The bias current to be supplied to the LD 10 ° is determined by the control data set in the input register REG 1 of the D / A conversion channel DAC 1 by the CPU 170. That is, the bias current flowing through the LD 100 is determined by the conductance control of the transistor Tr1. The conductance control of the transistor Tr1 is called the bias current control of the LD.
このように、 C P U 170は、 D/ A変換チャネル D A C 1 , D A C 2に設定するディジ夕ルデ一夕に従って、 LD 100に流すことができ る変調電流とバイァス電流を個々に且つ任意に制御することができる。 したがって、 光伝送モジュール 1の使用条件 (使用雰囲気条件) に対し て LD 100等の温度特性に即したデ一夕を CPU 1 70が D/A変 換チャネル D AC 1 , D AC 2に設定することにより、 換言すれば、 そ のときの使用雰囲気温度における L D 100のしきい値電流に対応す るデータを D/A変換チャネル D AC 1に設定し、必要な光出力をその 温度下で得るために前記しきい値電流に加えられるべき変調電流に対 応されるデ一夕を D/A変換チャネル D AC 2に設定することにより、 消光誤差や発光遅延無く LD 100を発光駆動することが可能になる。 当然、偏重電流の大きさを制御することによって LD 1 00の発光出力 レベル (発光強度) も制御できることは言うまでもない。 In this way, the CPU 170 individually and arbitrarily controls the modulation current and the bias current that can be supplied to the LD 100 in accordance with the digit setting set for the D / A conversion channels DAC1 and DAC2. Can be. Therefore, the CPU 170 sets the D / A conversion channels D AC 1 and D AC 2 to the data conditions based on the temperature characteristics of the LD 100 etc. with respect to the usage conditions (operating atmosphere conditions) of the optical transmission module 1. In other words, in other words, the data corresponding to the threshold current of LD 100 at the operating ambient temperature at that time is set in D / A conversion channel D AC 1 and the required optical output is set to that value. By setting the data corresponding to the modulation current to be added to the threshold current to obtain the temperature under the temperature in the D / A conversion channel D AC 2, the LD 100 emits light without extinction error or emission delay. It becomes possible to drive. It goes without saying that the light emission output level (light emission intensity) of the LD 100 can also be controlled by controlling the magnitude of the bias current.
また、 前記 A/D変換チャネル AD C 1〜AD C 5は順次、 トランジ ス夕 T r lのェミ ツ夕電圧、 トランジスタ Tr 2のエミ ヅ夕電圧、 P D 101のァノ一ド電圧、 温度センサ 1 12の検出出力電圧、 プリアンプ 14の出力電圧 (受信した光出力に応ずる電圧レベル) 、 の入力に割り 当てられている。割り当てられた入力電圧に対する A/D変換チャネル AD C 1〜AD C 5による A/D変換結果は各々に対応される前記出 カレジス夕 OREG l〜OREG5にラッチされる。 CPU 170は前 記出力レジス夕 0 R E G 1〜 0 R E G 5にラッチされたデ一夕をパス 175を介してアクセスする。  Also, the A / D conversion channels ADC1 to ADC5 are sequentially connected to a transistor Trl emitter voltage, a transistor Tr2 emitter voltage, a PD 101 anode voltage, and a temperature sensor. 1 Assigned to the input of the detection output voltage of 12, the output voltage of the preamplifier 14 (voltage level corresponding to the received optical output), and. The results of A / D conversion by the A / D conversion channels ADC1 to ADC5 with respect to the assigned input voltage are latched by the corresponding output registers OREG1 to OREG5. The CPU 170 accesses, via the path 175, the data latched in the output registers 0 REG 1 to 0 REG 5.
これにより、 CPU 170は、 トランジスタ T r lに流れるバイアス 電流、 トランジスタ T r 2に流れる電流、 PD 20 1に流れる電流、 温 度センサ 10の出力、 プリアンプ 14の出力電圧を、 夫々必要に応じて A/D変換回路 177を介してモニタすることができる。  As a result, the CPU 170 adjusts the bias current flowing through the transistor Trl, the current flowing through the transistor Tr2, the current flowing through the PD 201, the output of the temperature sensor 10, and the output voltage of the preamplifier 14 as necessary. It can be monitored via the / D conversion circuit 177.
前記モニタ PD 1 0 1の出力はオートパワーコン トロールにも利用 可能にされる。 すなわち、 LD 100の実際の発光出力を PD 101で モニタし、モニタされた発光出力に応ずる電流が所要の発光出力に応ず る参照電位 V r e f よりも小さいか大きいかをコンパレ一夕 1 1 3で 判定し、 その判定結果に応じ、 トランジスタ T r 1を介して LD 1 00 に流すバイアス電流を増減する。 1 15は参照電位 Vr e f を形成する AP C制御回路であり、 LD 100の実際の発光出力を PD 10 1でモ 二夕し、モニタされた発光出力に応ずる電流の平均値とそのときの前記 アンプ AMPの入力信号に対する平均値(マーク率) とに基づいて参照 電位 V r e f を初期設定する。特に制限されないが、 ォートパワーコン トロールは、前記 D/A 1 7 6の出力に基づくバイアス電流制御に対し て補助的とされる。例えば、 D/A 1 7 6の出力に基づいてバイアス電 流制御を行う場合に、 所要の発光出力が得られない場合を想定して、 前 記ォートパワーコン トロールによるフィ一ドバック制御を重ねて行う。 但し、 その場合には、 ォ一トパワーコン トロールによるフイードバック 系の制御量 (バイァス電流の増減量)は比較的小さく しておくことが望 ましい。 The output of the monitor PD101 is also made available for automatic power control. That is, the actual light emission output of the LD 100 is monitored by the PD 101, and whether or not the current corresponding to the monitored light emission output is smaller or larger than the reference potential V ref corresponding to the required light emission output is determined by a comparator 1 13. Judgment is made, and the bias current flowing to LD100 via the transistor Tr1 is increased or decreased according to the judgment result. Reference numeral 15 denotes an APC control circuit for forming a reference potential Vref, and the actual light emission output of the LD 100 is monitored by the PD 101, and the average value of the current corresponding to the monitored light emission output and the current value at that time are calculated. The reference potential V ref is initialized based on the average value (mark rate) of the amplifier AMP input signal. Although not particularly limited, the auto power control is made to assist the bias current control based on the output of the D / A 176. For example, when bias current control is performed based on the output of D / A 176, feedback control by the auto power control is repeated, assuming that the required emission output cannot be obtained. Do. However, in such a case, it is desirable that the control amount (the amount of increase or decrease of the bias current) of the feedback system by the auto power control should be relatively small.
C P U 1 7 0は A/D 1 7 7を介して P D 1 0 1の出力電流をモニ 夕し、 LD 1 0 0の実際の光出力と LD 1 0 0の 標光出力とを比較し、 実際の光出力が目標光出力に対して所定よりも低下した状態などを検 出することができる。 C P U 1 7 1 0は、 トランジスタ T r 1に実際に 流れるバイァス電流を A/D 1 7 7を介してモニタし、モニタした電流 値と D/A 1 7 6を介して トランジスタ T r 1に流そうとするバイァ ス電流と比較し、 その相違に基づいて、 バイアス電流の異常を検出する ことができる。 同様に C PU 1 7 0は、 トランジスタ T r 2に実際に流 れる変調電流を A/D 1 77を介してモニタし、モニタした電流と D/ A 1 7 6を介して トランジスタ T r 2に流そうとする変調電流とを比 較し、 その相違に基づいて、 変調電流の異常を検出することができる。  The CPU 170 monitors the output current of the PD 101 via the A / D 177, compares the actual light output of the LD 100 with the light output of the LD 100, and It is possible to detect, for example, a state where the light output is lower than a predetermined value with respect to the target light output. The CPU 170 monitors the bias current actually flowing through the transistor Tr 1 via the A / D 177, and the monitored current value and the bias current flowing through the transistor Tr 1 via the D / A 176. The bias current can be detected based on the difference between the bias current and the bias current. Similarly, the CPU 170 monitors the modulation current actually flowing to the transistor Tr 2 via the A / D 177, and outputs the modulated current to the transistor Tr 2 via the D / A 176. By comparing the modulation current with the modulation current to be supplied, the abnormality of the modulation current can be detected based on the difference.
L D 1 0 0を駆動するための変調電流制御とバイアス電流制御のた めの LD駆動制御デ一夕は、 目標光出力を得るために D AC 1 , DA C 2に設定すべきデ一夕を雰囲気温度毎に備えたテーブル構造とされて、 マイクロコンビユー夕 1 7 0のフラッシュメモリ 1 7 3の所定領域に 書き込まれている。  The LD drive control data for the modulation current control and the bias current control for driving the LD 100 are the data to be set in the DAC 1 and DAC 2 to obtain the target optical output. The table structure is provided for each ambient temperature, and is written in a predetermined area of the flash memory 173 of the microcomputer 170.
マイクロコンビュ一夕 1 Ί 0は前記 LD 1 0 0の駆動制御に際して、 光伝送モジュール 1が置かれている雰囲気温度を温度センサ 1 1 2か ら A/D変換チャネル AD C 4を介して取得する。 また、 光伝送モジュ ール 1が出力すべき発光出力は、それが置かれている通信環境に従って 物理的に決定さる性質のものであり、 例えば、 C PU 1 7 0の動作プロ グラム、 又は外部からの指示、 或いはディ ヅプスィ ツチのような回路か らの信号によって CPU 1 7 0に通知される。 更に、 前記減衰率に基づ く発光出力制御、或いは前記補正係数 ?に基づく発光出力制御を行う。 これによつて C PU 1 70は、 必要な発光出力と、 検出した使用環境温 度に対応されるところの LD駆動制御デ一夕をフラッシュメモリ 1 7 3のテーブルから選択する。 これにより、 LD 1 0 0の実際の温度特性 に即した、 しきい値電流と変調電流が LD 1 0 0に与えられ、 消光誤差 や発光遅延無く LD 1 0 0を発光駆動することができる。 When the micro-computer overnight 1 駆 動 0 drives the LD 100, The ambient temperature where the optical transmission module 1 is placed is obtained from the temperature sensor 112 via the A / D conversion channel ADC4. The light output to be output by the optical transmission module 1 is of a nature that is physically determined according to the communication environment in which it is placed. For example, an operation program of the CPU 170 or an external The CPU 170 is notified by an instruction from the CPU or a signal from a circuit such as a dip switch. Further, light emission output control based on the attenuation rate or light emission output control based on the correction coefficient? Is performed. Accordingly, the CPU 170 selects the required light emission output and the LD drive control data corresponding to the detected use environment temperature from the table of the flash memory 173. As a result, the threshold current and the modulation current according to the actual temperature characteristics of the LD 100 are given to the LD 100, and the LD 100 can be driven to emit light without a quenching error or a light emission delay.
第 1 0図には第 5図で説明した補正係数 を用いる光出力制御のフ ローチヤ—トが示される。  FIG. 10 shows a flow chart of light output control using the correction coefficient described in FIG.
補正係数?7を用いる光出力レベルの制御はパワーオンリセッ ト(若し くはその他のリセッ ト) の一環として行われる。 その処理は、 例えば加 入者ネッ トワーク装置 ON Uを最初に設置するときのパワーオン処理 で行われる。 この処理に際して、加入者線局装置 S L Tからは当該加入 者ネッ 卜ワーク装置 0 NUに向けて標準光送信レベルで任意の信号が 送信されてくる。 この送信信号を利用して、 補正係数 r?を取得する。 先ず、 パワーオンリセッ 卜が指示されると、 CPU 1 7 0は温度セン サ 1 1 2によって光伝送モジュール 1の温度を計測し ( S T 1 ) 、 その 温度下で標準の光出力を得るのに必要な LD駆動制御デ一夕(変調電流 を得るための変調電流設定デ一夕 I m、バイァス電流を得るためのバイ ァス電流設定デ一夕 I b) を、 フラッシュメモリ 1 Ί 3から D/A変換 チャネル D A C 1, D A C 2の入力レジス夕 I REG 1, I RE G 2に 初期設定する ( S T 2 ) 。 次に、 ビンフォ トダイオード 13により受光 信号をモニタする ( S Τ 3 ) 。 すなわち、 プリアンプ 14の出力を前記 A/D変換チャネル ADC 5でディジ夕ル信号に変換し、その変換結果 を CPU 170が出力レジスタ OREG 5を介して取り込むことによ つて、 前記受信光をモニタする。 Correction factor? Control of the optical output level using 7 is performed as part of the power-on reset (or other resets). This processing is performed, for example, by power-on processing when the subscriber network device ONU is first installed. In this process, an arbitrary signal is transmitted from the subscriber line station apparatus SLT to the subscriber network apparatus 0NU at a standard optical transmission level. Using this transmission signal, a correction coefficient r? Is obtained. First, when a power-on reset is instructed, the CPU 170 measures the temperature of the optical transmission module 1 by the temperature sensor 112 (ST 1), and obtains a standard optical output under the temperature. The required LD drive control data (modulation current setting data for obtaining modulation current Im, and bias current setting data for obtaining bias current Ib) are stored in the flash memory 1 13 through D / A conversion channel Input register of DAC 1 and DAC 2 I REG 1 and I REG 2 Initialize (ST2). Next, the received light signal is monitored by the bin photodiode 13 (SΤ3). That is, the output of the preamplifier 14 is converted into a digital signal by the A / D conversion channel ADC 5, and the received result is monitored by the CPU 170 via the output register OREG 5 to monitor the received light. .
この時、加入者線局装置 S L Τから前記所定の光信号が供給されてい れば(前記モニタ電圧が 0でなければ)補正係数 7?を演算する( S Τ 5 )c すなわち、 そのモニタ電圧は第 5図で説明した電圧 Yとされる。第 5図 で説明した変換係数ァ、(5は夫々の光伝送モジュールの回路特性から既 知の値とされる。 また第 5図で説明した電圧 Xも既知の電圧である。 そ れら、 既知の値 X、 ァ、 ( は信号線 179を介して外部から与えられる c 或いは、 それらは予じめフラッシュメモリ 173に蓄えられている。そ れによって CPU 170は、第 5図で説明した、補正係数 77 = (X/ァ)At this time, if the predetermined optical signal is supplied from the subscriber line unit SL # (the monitor voltage is not 0), a correction coefficient 7? Is calculated (S S5) c , that is, the monitor voltage Is the voltage Y described in FIG. The conversion coefficient α, (5 is a known value from the circuit characteristics of each optical transmission module described in FIG. 5. The voltage X described in FIG. 5 is also a known voltage. The known values X, a, and ( c are supplied externally via a signal line 179, or they are stored in the flash memory 173 in advance. Thereby, the CPU 170 can perform the operations described in FIG. Correction factor 77 = (X / a)
/ (γ/ を演算する。 / (γ / is calculated.
このとき、 第 5図で説明した光出力 P Bは、 前記ステップ S T 2で設 定された変調電流設定データ I mに相当する。 したがって、 ステップ S T 6で、 I mを 77倍して、 新たな変調電流設定デ一夕 I mを取得する。 この補正された変調電流設定データ I mが D/A変換回路 176に与 えられることにより、 変調電流は、 ステップ ST 2で設定されたときの 変調電流の 倍にされる ( S T 7 )。 これ以降、 前記入力回路 12から 入力データが供給されると、それにしたがって LD 100の電流経路が オン ·オフされて、 LD 100が発光 ·消光駆動されることになる。 こ のようにして、加入者線局装置 S L Tはどの加入者線ネッ トワーク装置 ONUからの信号も標準の光出力に相当するレベルで受信することが できるようになる。  At this time, the optical output PB described in FIG. 5 corresponds to the modulation current setting data Im set in the step ST2. Therefore, in step ST6, Im is multiplied by 77 to obtain a new modulation current setting data Im. By providing the corrected modulation current setting data Im to the D / A conversion circuit 176, the modulation current is doubled as the modulation current set in step ST2 (ST7). Thereafter, when the input data is supplied from the input circuit 12, the current path of the LD 100 is turned on / off accordingly, and the LD 100 is driven to emit light and extinguish. In this way, the subscriber line unit SLT can receive a signal from any of the subscriber line network devices ONU at a level corresponding to the standard optical output.
以上本発明者によってなされた発明を実施例に基づいて具体的に説 明したが、 本発明はそれに限定されるものではなく、 その要旨を逸脱し ない範囲において種々変更可能であることは言うまでもない。 The invention made by the present inventors will be specifically described based on the embodiments. However, it is needless to say that the present invention is not limited to this, and various changes can be made without departing from the gist of the present invention.
例えば、 伝送モードは前記 PD Sに限定されない。各網終端装置とセ ン夕側回路とを 1対 1に対応させるシングルス夕一、セン夕側装置から 放射状に光ファイバを敷設し、 その先に遠隔多重装置を設置し、 この遠 隔多重装置がさらに放射状に伝送媒体を配線したァクティブダブるス 夕一等のであってもよい。 また、 SONET— SDHシステムであって もよい。 また、 本発明の光伝送システムは電話や I SDNに限定されず、 LAN (Local Area Network) 等にも当然適用可能である。 産業上の利用可能性  For example, the transmission mode is not limited to the PDS. The optical fiber is laid radially from the single-sided equipment, which makes each network terminator correspond to the one-sided circuit on a one-to-one basis, and a remote multiplexing device is installed ahead of it. However, the transmission medium may be further radially wired. It may also be a SONET-SDH system. Further, the optical transmission system of the present invention is not limited to a telephone or an ISDN, but is naturally applicable to a LAN (Local Area Network) and the like. Industrial applicability
以上のように、本発明は光伝送において光信号と電気信号を変換する 光伝送モジュ一ルに広く適用できると共に、電話や I SDNの加入者系 に光ファイバ一を導入した P D S等の光伝送システムに適用すること ができる。  As described above, the present invention can be widely applied to an optical transmission module that converts an optical signal and an electric signal in optical transmission, and an optical transmission module such as a PDS in which an optical fiber is introduced into a telephone or an ISDN subscriber system. Can be applied to the system.

Claims

請 求 の 範 囲 The scope of the claims
1 . 通信ホス ト装置と、 この通信ホス 卜装置に光ケーブルで接続された 複数個の通信端末装置とを含み、前記通信ホス ト装 11と通信端末装置 は前記光ケーブルに夫々接続された光伝送モジュールを含み、夫々の 光伝送モジュールは電気信 と光信号を双方向に変換して入出力す るものであり、 前記通信端末装置の光伝送モジュールは、 通信ホス ト 装置との間の伝送損失の違いに応じて光信号の出力レベルを制御し、 通信ホス ト装置の光伝送モジュールは、相互に伝送損失の異なる通信 端末装置から実質的に受信レベルの等しい光信号を入力するもので あることを特徴とする光伝送システム。 1. A communication host device and a plurality of communication terminal devices connected to the communication host device by an optical cable, wherein the communication host device 11 and the communication terminal device are optical transmission modules respectively connected to the optical cable. Each of the optical transmission modules converts an electric signal and an optical signal bidirectionally to input and output, and the optical transmission module of the communication terminal device has a transmission loss between the communication terminal device and the communication host device. The output level of the optical signal is controlled according to the difference, and the optical transmission modules of the communication host device receive optical signals having substantially the same reception level from communication terminal devices having different transmission losses. Characteristic optical transmission system.
2 . 通信ホス ト装置と、 この通信ホス ト装置に光ケーブルで接続された 複数個の通信端末装置とを含み、前記通信ホス ト装置と通信端末装置 は前記光ケーブルに夫々接続された光伝送モジュールを含み、夫々の 光伝送モジュールは電気信号と光信号を双方向に変換して入出力す るものであり、光信号の伝送損失が相互に異なる前記通信端末装置は、 通信ホス ト装置の光出力に対する減衰された光入力の割合である減 衰率の概ね逆数倍の関係を持って光出力を形成する光伝送モジユー ルを有して成るものであることを特徴とする光伝送システム。  2. A communication host device, and a plurality of communication terminal devices connected to the communication host device by an optical cable, wherein the communication host device and the communication terminal device each include an optical transmission module connected to the optical cable. Each of the optical transmission modules converts an electrical signal and an optical signal bidirectionally to input and output, and the communication terminal device having different transmission loss of the optical signal includes an optical output of a communication host device. An optical transmission system comprising an optical transmission module that forms an optical output with a relationship that is approximately a reciprocal multiple of an attenuation rate that is a ratio of attenuated optical input to the optical transmission system.
3 . 通信ホス ト装置と、 この通信ホス ト装置に光ケーブルで接続された 複数個の通信端末装置とを含み、前記通信ホス ト装置と通信端末装置 は前記光ケーブルに夫々接続された光伝送モジュールを含み、夫々の 光伝送モジュールは電気信号と光信号を双方向に変換して入出力す るものであり、 前記通信端末装置に含まれる光伝送モジュールは、 通 信ホス ト装置の光出力レベルに対する減衰された入力レベルの割合 である減衰率に基づいて、光出力を基準出力レベルに対し前記减衰率 の概ね逆数倍に制御するものであることを特徴とする光伝送システ ム。 3. Includes a communication host device and a plurality of communication terminal devices connected to the communication host device by optical cables, wherein the communication host device and the communication terminal device each include an optical transmission module connected to the optical cable. Each of the optical transmission modules converts an electrical signal and an optical signal bidirectionally to input and output, and the optical transmission module included in the communication terminal device has an optical output level corresponding to an optical output level of a communication host device. Based on the attenuation rate, which is the ratio of the attenuated input level, the optical output is compared with the reference output level by the above-mentioned attenuation rate. An optical transmission system characterized in that it is controlled to be approximately the reciprocal multiple of the above.
4 . 前記通信端末装置に含まれる光伝送モジュールは、 入力された電気 信号に基づいてレーザダイォードを駆動する ドライバ回路と、前記ド ライバ回路の動作を制御するマイクロコンピュー夕とを含み、前記マ ィクロコンピュー夕は、 C P Uと、 前記レ一ザダイォ一ドに対する駆 動電流を目標光出力に応じて決定するための駆動制御データが前記 4. The optical transmission module included in the communication terminal device includes a driver circuit that drives a laser diode based on an input electric signal, and a microcomputer that controls an operation of the driver circuit. The micro computer includes a CPU and drive control data for determining a drive current for the laser diode according to a target light output.
C P Uによって^えられる記憶手段と、この記憶手段に記憶された駆 動制御データをアナ口グ信号に変換して前記ドライバ回路に与え、 レ 一ザダイォードの駆動電流を决定する D / A変換手段とを含んで成 るものであることを特徴とする請求の範囲第 2項又は第 3項記載の 光伝送システム。 Storage means obtained by the CPU; and D / A conversion means for converting the drive control data stored in the storage means into an analog signal and supplying the analog signal to the driver circuit to determine the drive current of the laser diode. 4. The optical transmission system according to claim 2, wherein the optical transmission system comprises:
5 . 前記マイクロコンビユー夕は、 レーザダイォ一ドに対する駆動電流 を目標光出力と温度に応じて決定するための駆動制御データのテ一 ブルを有し、 前記 C P Uは、 目標光出力と温度に応じた駆動制御デー 夕を前記テーブル〜選択し、選択した駆動制御データを前記減衰率の 逆数倍にして前記記憶手段に与えるものであることを特徴とする請 求の範囲第 4項記載の光伝送システム。  5. The micro-computer has a drive control data table for determining a drive current for the laser diode according to the target light output and the temperature, and the CPU controls the drive current according to the target light output and the temperature. 5. The light according to claim 4, wherein the selected drive control data is selected from the table, and the selected drive control data is provided to the storage means by converting the selected drive control data into a reciprocal multiple of the attenuation rate. Transmission system.
6 . 前記通信端末装置に含まれる光伝送モジュールは、 入力された光信 号をフォ トダイォ一ドで電気信号に変換し、変換された電気信号を増 幅して出力する光受信部を更に含み、 前記 C P Uは、 前記光受信部に て変換された電気信号を入力し、 この電気信号に基づいて前記減衰率 を演算するものであることを特徴とする請求の範囲第 5項記載の光 伝送システム。  6. The optical transmission module included in the communication terminal device further includes an optical receiving unit that converts the input optical signal into an electric signal by a photodiode, amplifies the converted electric signal, and outputs the amplified electric signal. The optical transmission system according to claim 5, wherein the CPU inputs the electric signal converted by the optical receiving unit, and calculates the attenuation rate based on the electric signal. .
7 . 通信ホス 卜装置と、 この通信ホス 卜装置に光ケーブルで接続された 複数個の通信端末装置とを含み、前記通信ホス ト装置と通信端末装置 は前記光ケーブルに夫々接続された光伝送モジュールを含み、夫々の 光伝送モジュールは電気信号と光 号を双方向に変換して入出力す るものであり、 前記通信端末装置に含まれる光伝送モジュールは、 通 信ホス ト装置から受信した光出力 号を電圧信号 Yに変換するため の第 1光電変換係数ァと、前記通信ホスト装置における光出力 ί 号を 電圧信号 Xに変換するための第 2光電変換係数 5とによって補正係 数 ?7= (X/ァ) / (Y/c5) を取得し、 前記通^ホス ト装置におけ る光出力信号に対応されるデ一夕を 7?倍したデ一夕によって光出力 を制御するものであることを特徴とする光伝送システム。 7. Including a communication host device and a plurality of communication terminal devices connected to the communication host device by an optical cable, the communication host device and the communication terminal device Includes optical transmission modules respectively connected to the optical cable, each optical transmission module bidirectionally converts an electric signal and an optical signal to input and output, and the optical transmission module included in the communication terminal device. Is a first photoelectric conversion coefficient a for converting an optical output signal received from the communication host device into a voltage signal Y, and a second photoelectric conversion coefficient a for converting the optical output signal in the communication host device into a voltage signal X. The correction coefficient? 7 = (X / a) / (Y / c5) is obtained from the photoelectric conversion coefficient 5 and the data corresponding to the optical output signal in the host device is multiplied by 7 times. An optical transmission system characterized in that the optical output is controlled according to the time required.
8. 前記通信端末装置に含まれる光伝送モジュールは、 人力された電気 信号に基づいてレーザダイォ一ドを駆動する ドライバ回路と、前記ド ライバ回路の動作を制御するマイクロコンビュー夕とを含み、前記マ ィクロコンピュー夕は、 CPUと、 前記レーザダイォ一ドに対する駆 動電流を決定するための駆動制御デ一夕が前記 C PUによって与え られる記憶手段と、 この記憶手段に記憶された駆動制御データをアナ ログ信号に変換して前記ドライバ回路に与え、 レーザダイォ一ドの駆 動電流を决定する DZA変換手段とを含み、 前記 CPUは、 前記通信 ホス ト装置における光出力信号に対応される駆動制御デ一夕を 7倍 して、 これを前記記憶手段に与えるものであることを特徴とする請求 の範囲第 7項記載の光伝送システム。 8. The optical transmission module included in the communication terminal device includes: a driver circuit that drives a laser diode based on a human-operated electric signal; and a microcontroller that controls an operation of the driver circuit. The microcomputer includes: a CPU; a storage unit provided with drive control data for determining a drive current for the laser diode by the CPU; and a drive control data stored in the storage unit. DZA conversion means for converting the signal into an analog signal and supplying the analog signal to the driver circuit to determine the driving current of the laser diode. The CPU includes a drive control data corresponding to an optical output signal in the communication host device. 8. The optical transmission system according to claim 7, wherein the value is multiplied by seven to give the result to the storage means.
9. 前記マイクロコンビュ一夕は、 前記通信ホス 卜装置から受信した光 出力信号をディジ夕ル信号に変換する A/D変換手段と、 この A/D 変換手段で変換されたデイジ夕ル信号をラッチし、前記 C P Uによつ てアクセス可能にされる記憶手段とを有するものであることを特徴 とする請求の範囲第 8項記載の光伝送システム。  9. The micro-computer includes an A / D converter for converting an optical output signal received from the communication host device into a digitized signal, and a digital signal converted by the A / D converter. 9. The optical transmission system according to claim 8, further comprising: storage means for latching and being made accessible by said CPU.
1 0. 入力された電気信号を光信号に変換して出力する光送信部と、 入 力された光信号を電気信号に変換して出力する光受信部と、前記光送 信部及び光受信部の動作を制御するマイクロコンビュー夕とを含み、 前記マイクロコンビュー夕は、光信号の基準レベルに対する入カレべ ルの割合である減衰率に基づいて、光出力を基準出力レベルに対し前 記減衰率の概ね逆数倍に制御するものであることを特徴とする光伝 送モシュ一ノレ。 1 0. An optical transmitter that converts the input electrical signal to an optical signal and outputs it. An optical receiver that converts the input optical signal into an electrical signal and outputs the electrical signal; and a microcontroller that controls operations of the optical transmitter and the optical receiver. The optical transmission mosh characterized in that the optical output is controlled to be approximately the reciprocal multiple of the attenuation rate with respect to the reference output level, based on the attenuation rate which is the ratio of the input level to the reference level. One note.
1 1 . 前記光送信部は、 入力された電気信号に基づいてレーザダイォー ドを駆動する ドライバ回路を含み、 前記マイクロコンビュー夕は、 C P Uと、前記レーザダイォ一ドに対する駆動電流を目標光出力に応じ て決定するための駆動制御デ一夕が前記 C P Uによって与えられる 記憶手段と、この記憶手段に記憶された駆動制御デ一夕をアナ口グ信 号に変換して前記ドライバ回路に与え、 レーザダイォ一ドの駆動電流 を決定する D / A変換手段とを含んで成るものであることを特徴と する請求の範囲第 1 0項記載の光伝送モジュール。  11. The optical transmission unit includes a driver circuit that drives a laser diode based on an input electric signal, and the microcomputer controls a CPU and a drive current for the laser diode according to a target optical output. Storage means for providing the drive control data for determination by the CPU, and converting the drive control data stored in the storage means into analog signals and providing the analog signals to the driver circuit; 10. The optical transmission module according to claim 10, further comprising D / A conversion means for determining a drive current of the optical transmission module.
1 2 . 前記マイクロコンビュー夕は、 レ一ザダイォードに対する駆動電 流を目標光出力と温度に応じて決定するための駆動制御デ一夕のテ —ブルを有し、 前記 C P Uは、 目標光出力と温度に応じた駆動制御デ12. The micro-computer has a drive control table for determining a drive current for a laser diode according to a target light output and a temperature, and the CPU has a target light output. And drive control data according to temperature
—夕を前記テーブルから選択し、選択した駆動制御データを前記減衰 率の逆数倍にして前記記憶手段に与えるものであることを特徴とす る請求の範囲第 1 1項記載の光伝送モジュール。 11. The optical transmission module according to claim 11, wherein evening is selected from the table, and the selected drive control data is provided to the storage unit by making it a reciprocal multiple of the attenuation rate. .
1 3 . 入力された光信号をフォトダイオードで電気信号に変換し、 変換 された電気信号を増幅して出力する光受信部を更に含み、前記 C P U は、 前記光受信部にて変換された電気信号を入力し、 この電気信号に 基づいて前記減衰率を演算するものであることを特徴とする請求の 範囲第 1 2項記載の光伝送モジュール。  1 3. The optical receiving unit further includes a light receiving unit that converts an input optical signal into an electric signal by a photodiode, amplifies the converted electric signal, and outputs the amplified electric signal. The optical transmission module according to claim 12, wherein a signal is input, and the attenuation factor is calculated based on the electric signal.
PCT/JP1996/002818 1996-09-27 1996-09-27 Optical transmission module and optical transmission system WO1998013959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002818 WO1998013959A1 (en) 1996-09-27 1996-09-27 Optical transmission module and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002818 WO1998013959A1 (en) 1996-09-27 1996-09-27 Optical transmission module and optical transmission system

Publications (1)

Publication Number Publication Date
WO1998013959A1 true WO1998013959A1 (en) 1998-04-02

Family

ID=14153907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002818 WO1998013959A1 (en) 1996-09-27 1996-09-27 Optical transmission module and optical transmission system

Country Status (1)

Country Link
WO (1) WO1998013959A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409164B2 (en) 2004-04-30 2008-08-05 Samsung Electronics Co., Ltd. Optical transceiver for compensating for loss due to transmission distance in passive optical network
US7894723B2 (en) 2007-02-28 2011-02-22 Mitsubishi Electric Corporation Optical transmission control circuit
JP2013207657A (en) * 2012-03-29 2013-10-07 Hochiki Corp Receiver of notice broadcast system
JP2013247409A (en) * 2012-05-23 2013-12-09 Furukawa Electric Co Ltd:The Optical terminal device and optical transmission system
JP2014175754A (en) * 2013-03-07 2014-09-22 Fujitsu Telecom Networks Ltd PON system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992639A (en) * 1982-11-19 1984-05-28 Fujitsu Ltd Optical signal transmission system
JPS62139430A (en) * 1985-12-12 1987-06-23 Nec Corp Light emission level control device for optical communication
JPH03233602A (en) * 1990-02-09 1991-10-17 Matsushita Electric Ind Co Ltd Sequence controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992639A (en) * 1982-11-19 1984-05-28 Fujitsu Ltd Optical signal transmission system
JPS62139430A (en) * 1985-12-12 1987-06-23 Nec Corp Light emission level control device for optical communication
JPH03233602A (en) * 1990-02-09 1991-10-17 Matsushita Electric Ind Co Ltd Sequence controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409164B2 (en) 2004-04-30 2008-08-05 Samsung Electronics Co., Ltd. Optical transceiver for compensating for loss due to transmission distance in passive optical network
US7894723B2 (en) 2007-02-28 2011-02-22 Mitsubishi Electric Corporation Optical transmission control circuit
JP2013207657A (en) * 2012-03-29 2013-10-07 Hochiki Corp Receiver of notice broadcast system
JP2013247409A (en) * 2012-05-23 2013-12-09 Furukawa Electric Co Ltd:The Optical terminal device and optical transmission system
JP2014175754A (en) * 2013-03-07 2014-09-22 Fujitsu Telecom Networks Ltd PON system

Similar Documents

Publication Publication Date Title
JP4557481B2 (en) Semiconductor laser driving circuit and driving method
US4709416A (en) Laser bias current stabilization for burst mode fiber optic communication system
US5502298A (en) Apparatus and method for controlling an extinction ratio of a laser diode over temperature
CN102017469B (en) For controlling the method and apparatus of the optical output power from pulsed laser
US9525480B2 (en) Optical communication module, optical network unit, and method of controlling light-emitting element
CN100365885C (en) Laser driver circuit and system
US6697400B2 (en) Circuit for driving a laser diode which has a feed-forward type APC circuit and method for driving a laser diode by using the APC circuit
EP0756362B1 (en) Voltage controlled laser diode drive circuit
KR100909044B1 (en) Light intensity and extinction ratio adjusting device and method
EP3208897B1 (en) Optical transmitter, active optical cable, and optical transmission method
JP5305932B2 (en) Preamplifier
US6901222B2 (en) Optical transmission system and terminal device applicable to the system
WO2015019450A1 (en) Current-voltage conversion circuit, optical receiver, and optical terminator
US20150207469A1 (en) Preamplifier, optical receiver, optical termination device, and optical communication system
WO1998013959A1 (en) Optical transmission module and optical transmission system
JPH05507176A (en) Temperature control of laser diodes used in outdoor plant communication terminal equipment
WO1998013958A1 (en) Module and system for optical transmission
US5991060A (en) Automatic power control for a wavelength selective EML module
EP1458068A2 (en) Driving circuit for semiconductor laser
WO2000025458A1 (en) Optical transmission device
JPH02205086A (en) Semiconductor laser controller
TW200524233A (en) Laser driver circuit for burst mode and making method thereof
US20240113501A1 (en) Optoelectrical Assembly, Light Source Pool, Optoelectrical Switching Device, and Control Method for Optoelectrical Assembly
JP2001168843A (en) Optical burst transmission reception circuit
EP0617852B1 (en) Apparatus and method for controlling an extinction ratio of a laser diode over temperature

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase